人教版九年级数学上册期末培优检测卷及答案

合集下载

九年级数学上册期末试卷(培优篇)(Word版 含解析)

九年级数学上册期末试卷(培优篇)(Word版 含解析)

九年级数学上册期末试卷(培优篇)(Word 版 含解析)一、选择题1.已知抛物线221y ax x =+-与x 轴没有交点,那么该抛物线的顶点所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限2.在△ABC 中,若|sinA ﹣12|+(2﹣cosB )2=0,则∠C 的度数是( ) A .45°B .75°C .105°D .120°3.在Rt ABC ∆中,90C ∠=︒,3AC =,=1BC ,则sin A 的值为( ) A .10B .310C .13D .10 4.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=3:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )A .3:4B .9:16C .9:1D .3:15.二次函数22y x x =-+在下列( )范围内,y 随着x 的增大而增大. A .2x < B .2x >C .0x <D .0x > 6.已知α、β是一元二次方程22210x x --=的两个实数根,则αβ+的值为( )A .-1B .0C .1D .27.已知二次函数y =x 2+mx +n 的图像经过点(―1,―3),则代数式mn +1有( ) A .最小值―3 B .最小值3 C .最大值―3 D .最大值3 8.已知关于x 的一元二次方程 (x - a )(x - b ) -12= 0 (a < b ) 的两个根为 x 1、x 2,(x 1< x 2)则实数 a 、b 、x 1、x 2的大小关系为( ) A .a < x 1< b <x 2 B .a < x 1< x 2 < b C .x 1< a < x 2 < b D .x 1< a < b < x 2 9.若两个相似三角形的相似比是1:2,则它们的面积比等于( )A .12B .1:2C .1:3D .1:410.已知二次函数y =ax 2+bx +c 的图像如图所示,则下列结论正确的个数有( ) ①c >0;②b 2-4ac <0;③ a -b +c >0;④当x >-1时,y 随x 的增大而减小.A .4个B .3个C .2个D .1个11.将抛物线23y x =先向左平移一个单位,再向上平移两个单位,两次平移后得到的抛物线解析式为( )A .23(1)2y x =++B .23(1)2y x =+-C .23(1)2y x =-+D .23(1)2=--y x 12.一组数据10,9,10,12,9的平均数是( ) A .11B .12C .9D .10二、填空题13.150°的圆心角所对的弧长是5πcm ,则此弧所在圆的半径是______cm .14.如图,为了测量某棵树的高度,小明用长为2m 的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m ,与树相距15m ,则树的高度为_________m.15.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是____________.16.如图,AB 是⊙O 的直径,点C 是⊙O 上的一点,若BC=6,AB=10,OD ⊥BC 于点D ,则OD 的长为______.17.如图,ABC ∆是O 的内接三角形,45BAC ∠=︒,BC 的长是54π,则O 的半径是__________.18.如图,矩形ABCD 中,2AB =,点E 在边CD 上,且BC CE =,AE 的延长线与BC 的延长线相交于点F ,若CF AB =,则tan DAE ∠=______.19.如图,△ABC 中,AB >AC ,D ,E 两点分别在边AC ,AB 上,且DE 与BC 不平行.请填上一个你认为合适的条件:_____,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)20.如图,∠C=∠E=90°,AC=3,BC=4,AE=2,则AD=_________ .21.圆锥的底面半径是4cm ,母线长是6cm ,则圆锥的侧面积是______cm 2(结果保留π).22.一组数据:3,2,1,2,2,3,则这组数据的众数是_____.23.用配方法解一元二次方程2430x x +-=,配方后的方程为2(2)x n +=,则n 的值为______.24.已知学校航模组设计制作的火箭的升空高度h (m )与飞行时间t (s )满足函数表达式21220h t t =-++,则火箭升空的最大高度是___m三、解答题25.已知二次函数216y ax bx =++的图像经过点(-2,40)和点(6,-8),求一元二次方程2160ax bx ++=的根.26.如图,AC 为圆O 的直径,弦AD 的延长线与过点C 的切线交于点B ,E 为BC 中点,AC= 3BC=4.(1)求证:DE 为圆O 的切线; (2)求阴影部分面积.27.(1)解方程:2670x x +-= (2)计算:()4sin 45831tan 30︒-+--︒28.二次函数y =ax 2+bx +c 中的x ,y 满足下表 x … -1 0 1 3 … y…31…不求关系式,仅观察上表,直接写出该函数三条不同类型的性质: (1) ; (2) ; (3) .29.如图,C 是直径AB 延长线上的一点,CD 为⊙O 的切线,若∠C =20°,求∠A 的度数.30.如图,AB 是⊙O 的直径,弦DE 垂直平分半径OA ,C 为垂足,弦DF 与半径OB 相交于点P ,连结EF 、EO ,若DE=23∠DPA=45°. (1)求⊙O 的半径;(2)求图中阴影部分的面积.31.如图 1,直线 y=2x+2 分别交 x 轴、y 轴于点A、B,点C为x轴正半轴上的点,点 D从点C处出发,沿线段CB匀速运动至点 B 处停止,过点D作DE⊥BC,交x轴于点E,点C′是点C关于直线DE的对称点,连接EC′,若△ DEC′与△ BOC 的重叠部分面积为S,点D的运动时间为t(秒),S与 t 的函数图象如图 2 所示.(1)V D= ,C 坐标为;(2)图2中,m= ,n= ,k= .(3)求出S与t 之间的函数关系式(不必写自变量t的取值范围).32.如图,AB是⊙O的直径,D是弦AC的延长线上一点,且CD=AC,DB的延长线交⊙O 于点E.(1)求证:CD=CE;(2)连结AE,若∠D=25°,求∠BAE的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据题目信息可知当y=0时,20a 21x x =+-,此时0<,可以求出a 的取值范围,从而可以确定抛物线顶点坐标的符号,继而可以确定顶点所在的象限. 【详解】解:∵抛物线2y a 21x x =+-与x 轴没有交点,∴2a 210x x +-=时无实数根; 即,24440b ac a =-=+<, 解得,a 1<-,又∵2y a 21x x =+-的顶点的横坐标为:2102a a-=->; 纵坐标为:()414104a a aa⨯----=<; 故抛物线的顶点在第四象限. 故答案为:D. 【点睛】本题考查的知识点是抛物线与坐标轴的交点问题,解题的关键是根据抛物线与x 轴无交点得出2a 210x x +-=时无实数根,再利用根的判别式求解a 的取值范围.2.C解析:C 【解析】 【分析】根据非负数的性质列出关系式,根据特殊角的三角函数值求出∠A 、∠B 的度数,根据三角形内角和定理计算即可. 【详解】由题意得,sinA-12=0,2-cosB=0,即sinA=12,2=cosB , 解得,∠A=30°,∠B=45°, ∴∠C=180°-∠A-∠B=105°, 故选C . 【点睛】本题考查的是非负数的性质的应用、特殊角的三角函数值的计算和三角形内角和定理的应用,熟记特殊角的三角函数值是解题的关键.3.A解析:A 【解析】 【分析】先根据勾股定理求出斜边的长,再根据正弦的定义解答即可.【详解】解:在Rt ABC ∆中,∵90C ∠=︒,3AC =,=1BC ,∴AB =∴sin10BC A AB ===. 故选:A. 【点睛】本题考查了勾股定理和正弦的定义,属于基本题型,熟练掌握基本知识是解题关键.4.B解析:B 【解析】 【分析】可证明△DFE ∽△BFA ,根据相似三角形的面积之比等于相似比的平方即可得出答案. 【详解】∵四边形ABCD 为平行四边形, ∴DC ∥AB , ∴△DFE ∽△BFA , ∵DE :EC=3:1, ∴DE :DC=3:4, ∴DE :AB=3:4, ∴S △DFE :S △BFA =9:16. 故选B .5.C解析:C 【解析】 【分析】先求函数的对称轴,再根据开口方向确定x 的取值范围. 【详解】222(1)1y x x x =-+=--+,∵图像的对称轴为x=1,a=-10<, ∴当x 1<时,y 随着x 的增大而增大, 故选:C. 【点睛】此题考查二次函数的性质,当a 0a 0<时,对称轴左增右减,当>时,对称轴左减右增.6.C解析:C 【解析】 【分析】根据根与系数的关系即可求出αβ+的值. 【详解】解:∵α、β是一元二次方程22210x x --=的两个实数根 ∴212αβ-+=-= 故选C . 【点睛】此题考查的是根与系数的关系,掌握一元二次方程的两根之和=ba-是解决此题的关键. 7.A解析:A 【解析】 【分析】把点(-1,-3)代入y =x 2+mx +n 得n=-4+m ,再代入mn +1进行配方即可. 【详解】∵二次函数y =x 2+mx +n 的图像经过点(-1,-3), ∴-3=1-m+n , ∴n=-4+m ,代入mn+1,得mn+1=m 2-4m+1=(m-2)2-3. ∴代数式mn +1有最小值-3. 故选A. 【点睛】本题考查了二次函数图象上点的坐标特征,以及二次函数的性质,把函数mn+1的解析式化成顶点式是解题的关键.8.D解析:D 【解析】 【分析】根据二次函数的图象与性质即可求出答案. 【详解】如图,设函数y =(x−a )(x−b ), 当y =0时, x =a 或x =b , 当y =12时, 由题意可知:(x−a )(x−b )−12=0(a <b )的两个根为x 1、x 2, 由于抛物线开口向上,由抛物线的图象可知:x 1<a <b <x 2故选:D.【点睛】本题考查一元二次方程,解题的关键是正确理解一元二次方程与二次函数之间的关系,本题属于中等题型.9.D解析:D【解析】【分析】根据相似三角形面积的比等于相似比的平方解答即可.【详解】解:∵两个相似三角形的相似比是1:2,∴这两个三角形们的面积比为1:4,故选:D.【点睛】此题考查相似三角形的性质,掌握相似三角形面积的比等于相似比的平方是解决此题的关键.10.C解析:C【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:由图象可知,a<0,c>0,故①正确;抛物线与x轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0,故③正确;由图象可知,图象开口向下,对称轴x>-1,在对称轴右侧, y随x的增大而减小,而在对称轴左侧和-1之间,是y随x的增大而减小,故④错误.故选:C.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a 共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.11.A解析:A 【解析】 【分析】按照“左加右减,上加下减”的规律,进而得出平移后抛物线的解析式即可. 【详解】抛物线23y x =先向左平移1个单位得到解析式:()231y x =+,再向上平移2个单位得到抛物线的解析式为:()2312y x =++. 故选:A . 【点睛】此题考查了抛物线的平移变换以及抛物线解析式的变化规律:左加右减,上加下减.12.D解析:D 【解析】 【分析】利用平均数的求法求解即可. 【详解】这组数据10,9,10,12,9的平均数是1(10910129)105++++= 故选:D . 【点睛】本题主要考查平均数,掌握平均数的求法是解题的关键.二、填空题 13.6; 【解析】解:设圆的半径为x ,由题意得: =5π,解得:x=6,故答案为6.点睛:此题主要考查了弧长计算,关键是掌握弧长公式l= (弧长为l ,圆心角度数为n ,圆的半径为R ).解析:6; 【解析】解:设圆的半径为x ,由题意得:150180x π =5π,解得:x =6,故答案为6. 点睛:此题主要考查了弧长计算,关键是掌握弧长公式l =180n R π (弧长为l ,圆心角度数为n ,圆的半径为R ). 14.7【解析】设树的高度为m ,由相似可得,解得,所以树的高度为7m解析:7【解析】设树的高度为x m ,由相似可得6157262x +==,解得7x =,所以树的高度为7m 15.15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解析:15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】解:根据题意得圆锥的底面圆的半径为3,母线长为5,所以这个圆锥的侧面积=12×5×2π×3=15π. 【点睛】本题考查圆锥侧面积的计算,掌握公式,准确计算是本题的解题关键. 16.4【解析】【分析】根据垂径定理求得BD ,然后根据勾股定理求得即可.【详解】解:∵OD ⊥BC ,∴BD=CD=BC=3,∵OB=AB=5,∴在Rt △OBD 中,OD==4.故答案为4.解析:4【解析】【分析】根据垂径定理求得BD ,然后根据勾股定理求得即可.【详解】解:∵OD ⊥BC ,∴BD=CD=12BC=3, ∵OB=12AB=5, ∴在Rt △OBD 中,=4.故答案为4.【点睛】本题考查垂径定理及其勾股定理,熟记定理并灵活应用是本题的解题关键.17.【解析】【分析】连接OB 、OC ,如图,由圆周角定理可得∠BOC 的度数,然后根据弧长公式即可求出半径.【详解】解:连接OB 、OC ,如图,∵,∴∠BOC=90°,∵的长是,∴,解得: 解析:52【解析】【分析】连接OB 、OC ,如图,由圆周角定理可得∠BOC 的度数,然后根据弧长公式即可求出半径.【详解】解:连接OB 、OC ,如图,∵45BAC ∠=︒,∴∠BOC =90°,∵BC的长是54π,∴905 1804OBππ⋅=,解得:52 OB=.故答案为:5 2 .【点睛】本题考查了圆周角定理和弧长公式,属于基本题型,熟练掌握上述基本知识是解答的关键. 18.【解析】【分析】设BC=EC=a,根据相似三角形得到,求出a的值,再利用tanA即可求解.【详解】设BC=EC=a,∵AB∥CD,∴△ABF∽△ECF,∴,即解得a=(-舍去)∴解析:51 2【解析】【分析】设BC=EC=a,根据相似三角形得到222aa=+,求出a的值,再利用tan DAE∠=tanA即可求解.【详解】设BC=EC=a,∵AB∥CD,∴△ABF∽△ECF,∴AB ECBF CF=,即222aa=+解得1(-1舍去)∴tan DAE ∠=tanF=2EC a CF ==12. 【点睛】 此题主要考查相似三角形的判定与性质,解题的关键是熟知矩形的性质及正切的定义.19.∠B=∠1或【解析】【分析】此题答案不唯一,注意此题的已知条件是:∠A=∠A ,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可.【详解】此题答案不唯解析:∠B=∠1或AE AD AC AB = 【解析】【分析】此题答案不唯一,注意此题的已知条件是:∠A =∠A ,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可.【详解】此题答案不唯一,如∠B =∠1或AD AE AB AC=. ∵∠B =∠1,∠A =∠A ,∴△ADE ∽△ABC ; ∵AD AE AB AC=,∠A =∠A , ∴△ADE ∽△ABC ; 故答案为∠B =∠1或AD AE AB AC = 【点睛】此题考查了相似三角形的判定:有两角对应相等的三角形相似;有两边对应成比例且夹角相等三角形相似,要注意正确找出两三角形的对应边、对应角,根据判定定理解题. 20..【解析】试题分析:由∠C=∠E=90°,∠BAC=∠DAE 可得△ABC ∽△ADE ,根据相似三角形的对应边的比相等就可求出AD 的长.试题解析:∵∠C=∠E=90°,∠BAC=∠DAE解析:10 3.【解析】试题分析:由∠C=∠E=90°,∠BAC=∠DAE可得△ABC∽△ADE,根据相似三角形的对应边的比相等就可求出AD的长.试题解析:∵∠C=∠E=90°,∠BAC=∠DAE∴△ABC∽△ADE∴AC:AE=BC:DE∴DE=83∴103AD=考点: 1.相似三角形的判定与性质;2.勾股定理.21.24π【解析】【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.【详解】解:∵圆锥的底面半径为4cm,∴圆锥的底面圆的周长=2π•4=8π,解析:24π【解析】【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.【详解】解:∵圆锥的底面半径为4cm,∴圆锥的底面圆的周长=2π•4=8π,∴圆锥的侧面积=12×8π×6=24π(cm2).故答案为:24π.【点睛】本题考查了圆锥的侧面积的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周长,扇形的半径为圆锥的母线长.也考查了扇形的面积公式:S=12•l•R,(l为弧长).22.【解析】根据众数的定义:一组数据中出现次数最多的数据解答即可.【详解】在数据:3,2,1,2,2,3中,2出现3次,出现的次数最多,∴这组数据的众数是2,故答案为:2.【点睛解析:【解析】【分析】根据众数的定义:一组数据中出现次数最多的数据解答即可.【详解】在数据:3,2,1,2,2,3中,2出现3次,出现的次数最多,∴这组数据的众数是2,故答案为:2.【点睛】此题考查的是求一组数据的众数,掌握众数的定义是解决此题的关键.23.7【解析】【分析】根据配方法,先移项,然后两边同时加上4,即可求出n 的值.【详解】解:∵,∴,∴,∴,∴;故答案为:7.【点睛】本题考查了配方法解一元二次方程,解题的关键是熟解析:7【解析】【分析】根据配方法,先移项,然后两边同时加上4,即可求出n 的值.【详解】解:∵2430x x +-=,∴243x x +=,∴2447x x ++=,∴2(2)7x +=,∴7n =;故答案为:7.【点睛】本题考查了配方法解一元二次方程,解题的关键是熟练掌握配方法的步骤. 24.56【解析】【分析】将函数解析式配方,写成顶点式,按照二次函数的性质可得答案.【详解】解:∵==,∵,∴抛物线开口向下,当x=6时,h 取得最大值,火箭能达到最大高度为56m .故解析:56【解析】【分析】将函数解析式配方,写成顶点式,按照二次函数的性质可得答案.【详解】解:∵21220h t t =-++=2(23636)120t t -+-+-=2(6)56t --+,∵10a =-<,∴抛物线开口向下,当x=6时,h 取得最大值,火箭能达到最大高度为56m .故答案为:56.【点睛】本题考查了二次函数的应用,熟练掌握配方法及二次函数的性质,是解题的关键.三、解答题25.x 1=2,x 2=8.【解析】【分析】把已知两点坐标代入二次函数解析式求出a 与b 的值,代入方程计算即可求出解.【详解】解:将点(-2,40)和点(6,-8)代入二次函数得,404216836616a b a b =-+⎧⎨-=++⎩解得:110a b =⎧⎨=-⎩ ∴求得二次函数关系式为21016y x x =-+,当y=0时,210160x x -+=,解得x 1=2,x 2=8.【点睛】此题考查了抛物线与x 轴的交点,抛物线与x 轴的交点与根的判别式有关:根的判别式大于0,有两个交点;根的判别式大于0,没有交点;根的判别式等于0,有一个交点.26.(1)证明见解析;(2)S 阴影=43-2π【解析】【分析】(1)根据斜边中线等于斜边一半得到DE=CE,再利用切线的性质得到∠BCO=90°,最后利用等量代换即可证明,(2)根据S 阴影=2S △ECO -S扇形COD 即可求解.【详解】(1)连接DC 、DO.因为AC 为圆O 直径,所以∠ADC=90°,则∠BDC=90°,因为E 为Rt △BDC 斜边BC 中点,所以DE=CE=BE=12BC , 所以∠DCE=∠EDC,因为OD=OC ,所以∠DCO=∠CDO.因为BC 为圆O 切线,所以BC ⊥AC ,即∠BCO=90°,所以∠ODE=∠ODC+∠EDC=∠OCD+∠DCE=∠BCO=90°,所以ED ⊥OD ,所以DE 为圆O 的切线.(2)S 阴影=2S △ECO -S扇形COD =-2π 【点睛】本题主要考查切线的性质和判定及扇形面积的计算,掌握切线的判定定理及扇形的面积公式是解题的关键.27.(1)17x =-,21x =;(2)13-【解析】【分析】(1)利用求根公式法解方程即可(2)第一、四项利用特殊角的三角函数值计算,第二项化为最简二次根式,第三项利用零指数幂法则计算,【详解】解:(1)()2641764=-⨯⨯-=∴68x 342-±===-± ∴17x =-,21x =(2)原式4112=⨯-=【点睛】本题考查的知识点有解一元二次方程和实数的运算,熟记求根公式和特殊角的三角函数值是解此题的关键.28.(1)抛物线与x 轴交于点(-1,0)和(3,0);与y 轴交于点(0,3);(2)抛物线的对称轴为直线x=1;(3)当x <1时,y 随x 的增大而增大【解析】【分析】根据表格中数据,可得抛物线与x 轴交点坐标,与y 轴交点坐标,抛物线的对称轴直线以及抛物线在对称轴左侧的增减性,从而进行解答.【详解】解:由表格数据可知:当x=0时,y=3;当y=0时,x=-1或3∴该函数三条不同的性质为:(1)抛物线与x 轴交于点(-1,0)和(3,0);与y 轴交于点(0,3);(2)抛物线的对称轴为直线x=1;(3)当x <1时,y 随x 的增大而增大【点睛】本题考查二次函数性质,数形结合思想解题是本题的解题关键.29.35°【解析】【分析】连接OD ,根据切线的性质得∠ODC =90°,根据圆周角定理即可求得答案.【详解】连接OD ,∵CD 为⊙O 的切线,∴∠ODC =90°,∴∠DOC =90°﹣∠C =70°,由圆周角定理得,∠A =12∠DOC =35°. 【点睛】本题考查了切线的性质和圆周角定理,有圆的切线时,常作过切点的半径.30.(1) 2 ;(2)π-2.【解析】【分析】(1)因为AB ⊥DE ,求得CE 的长,因为DE 平分AO ,求得CO 的长,根据勾股定理求得⊙O 的半径(2)连结OF ,根据S 阴影=S 扇形– S △EOF 求得【详解】解:(1)∵直径AB ⊥DE ∴132CE DE ==∵DE 平分AO ∴1122CO AO OE == 又∵90OCE ︒∠=∴30CEO ︒∠=在Rt △COE 中,2OE =∴⊙O 的半径为2(2)连结OF在Rt △DCP 中,∵45DPC ︒∠=∴904545D ︒︒︒∠=-=∴290EOF D ︒∠=∠=∵2902360OWF S ππ=⨯⨯=扇形 ∴S 阴影=2π-【点睛】 本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了扇形的面积公式、圆周角定理和含30度的直角三角形三边的关系.31.(1)点D 的运动速度为1单位长度/秒,点C 坐标为(4,0).(285;45;53)①当点C ′在线段BC 上时, S =14t 2;②当点C ′在CB 的延长线上, S=−1312t 285203;③当点E 在x 轴负半轴, S =t 25t +20. 【解析】【分析】(1)根据直线的解析式先找出点B 的坐标,结合图象可知当t 5C ′与点B 重合,通过三角形的面积公式可求出CE 的长度,结合勾股定理可得出OE 的长度,由OC =OE +EC 可得出OC 的长度,即得出C 点的坐标,再由勾股定理得出BC 的长度,根据CD =12BC ,结合速度=路程÷时间即可得出结论; (2)结合D 点的运动以及面积S 关于时间t 的函数图象的拐点,即可得知当“当t =k 时,点D 与点B 重合,当t =m 时,点E 和点O 重合”,结合∠C 的正余弦值通过解直角三角形即可得出m 、k 的值,再由三角形的面积公式即可得出n 的值;(3)随着D 点的运动,按△DEC ′与△BOC 的重叠部分形状分三种情况考虑:①通过解直角三角形以及三角形的面积公式即可得出此种情况下S 关于t 的函数关系式;②由重合部分的面积=S △CDE−S △BC ′F ,通过解直角三角形得出两个三角形的各边长,结合三角形的面积公式即可得出结论;③通过边与边的关系以及解直角三角形找出BD 和DF 的值,结合三角形的面积公式即可得出结论.【详解】 (1)令x =0,则y =2,即点B 坐标为(0,2),∴OB =2.当t =5时,B 和C ′点重合,如图1所示,此时S =12×12CE •OB =54, ∴CE =52, ∴BE =52. ∵OB =2,∴OE =2253222⎛⎫-= ⎪⎝⎭, ∴OC =OE +EC =32+52=4,BC =222425+=,CD =5, 5÷5=1(单位长度/秒),∴点D 的运动速度为1单位长度/秒,点C 坐标为(4,0).故答案为:1单位长度/秒;(4,0);(2)根据图象可知:当t =k 时,点D 与点B 重合,此时k =1BC =25; 当t =m 时,点E 和点O 重合,如图2所示.sin ∠C =OB BC 255,cos ∠C =25525OC BC ==, OD =OC •sin ∠C =45=455,CD =OC •cos ∠C =425=855.∴m=1CD=855,n=12BD•OD=12×(25−855)×455=45.故答案为:855;45;25.(3)随着D点的运动,按△DEC′与△BOC的重叠部分形状分三种情况考虑:①当点C′在线段BC上时,如图3所示.此时CD=t,CC′=2t,0<CC′≤BC,∴0<t≤5.∵tan∠C=12OBOC=,∴DE=CD•tan∠C=12t,此时S=12CD•DE=14t2;②当点C′在CB的延长线上,点E在线段OC上时,如图4所示.此时CD=t,BC′=5,DE=CD•tan∠C=12t,CE=CDcos C∠5t,OE=OC−CE=5t,∵CC BCCE OC'⎧⎨≤⎩>,即225542t⎧≤⎩>,5t85.由(1)可知tan∠OEF=232=43,∴OF =OE •tan ∠OEF=162533-t ,BF =OB−OF =251033t -, ∴FM =BF •cos ∠C =4453t -. 此时S =12CD•DE−12BC ′•FM =−2138520123t t +-; ③当点E 在x 轴负半轴,点D 在线段BC 上时,如图5所示.此时CD =t ,BD =BC−CD =5,CE 5t ,DF =2452BD BD t tan C ==∠, ∵CE OC CD BC ⎧⎨≤⎩>,即5425t t ⎪⎨⎪≤⎩>, 85<t ≤5 此时S =12BD •DF =12×5=5+20. 综上,当点C ′在线段BC 上时, S =14t2;当点C ′在CB 的延长线上, S=−1312t2+85203;当点E 在x 轴负半轴, S =5+20. 【点睛】本题考查了勾股定理、解直角三角形以及三角形的面积公式,解题的关键是:(1)求出BC 、OC 的长度;(2)根据图象能够了解当t =m 和t =k 时,点DE 的位置;(3)分三种情况求出S 关于t 的函数关系式.本题属于中档题,(1)(2)难度不大;(3)需要画出图形,利用数形结合,通过解直角三角形以及三角形的面积公式找出S 关于t 的函数解析式.32.(1)证明见解析;(2)40°.【解析】【分析】(1) 连接BC ,利用直径所对的圆周角是直角、线段垂直平分线性质、同弧所对的圆周角相等、等角对等边即可证明.(2)利用三角形外角等于不相邻的两个内角和、利用直径所对的圆周角是直角、直角三角形两锐角互余即可解答.【详解】(1)证明:连接BC,∵AB是⊙O的直径,∴∠ABC=90°,即BC⊥AD,∵CD=AC,∴AB=BD,∴∠A=∠D,∴∠CEB=∠A,∴∠CEB=∠D,∴CE=CD.(2)解:连接AE.∵∠A BE=∠A+∠D=50°,∵AB是⊙O的直径,∴∠AEB=90°,∴∠BAE=90°﹣50°=40°.【点睛】本题考查圆周角定理,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.。

人教版九年级上册数学 期末培优检测卷

人教版九年级上册数学  期末培优检测卷

人教版九年级上册数学期末培优检测卷一.选择题(每题3分,共30分)1. 关于x 的方程(m ﹣3)x 2﹣4x ﹣2=0有两个不相等的实数根,则实数m 的取值花围是( )A .m≥1B .m >1C .m≥1且m≠3D .m >1且m≠3 2. 对于抛物线y =2(x ﹣5)2+3,下列说法错误的是( )A .对称轴是直线x =5B .函数的最大值是3C .开口向上,顶点坐标(5,3)D .当x >5时y 随x 的增大而增大3. 下列图案中,不是中心对称图形的是( )A .B .C .D .4. 将一枚硬币抛掷两次,则这枚硬币两次正面都向上的概率为 ( )A .12B .13C .14D .165. 如图⊙O 的直径AB 垂直于弦CD ,垂足是E ,22.5A ∠=︒,4OC =,CD 的长为( )A .B .4C .D .86. 如图,O AB 与CD 为O 的两条平行弦,30∠=︒CDE ,2AD =,则弦BE 的长为( )A .3B .3.5C .D .27.抛物线y=﹣x 2+bx+c 的部分图象如图所示,则一元二次方程﹣x 2+bx+c=0的根为( )A .x=1B .x 1=1,x 2=﹣1C .x 1=1,x 2=﹣2D .x 1=1,x 2=﹣38. 如图,在Rt △ABC 中,∠BAC =90°,将△ABC 绕点A 顺时针旋转90°后得到△AB ′C ′(点B 的对应点是点B ′,点C 的对应点是点C ′),连接CC ′.若∠CC ′B ′=22°,则∠B 的大小是( )A .63°B .67°C .68°D .77°9. 某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率,设每次降价的百分率为x ,下面所列的方程中正确的是( )A .()25601315x +=B .()25601315x -= C .()56012315x -= D . ()25601315x -= 10. 拱桥的形状是抛物线,其函数关系式为213y x =-,当水面离桥顶的高度为253m 时,水面的宽度为( )米.A .8B .9C .10D .11二.填空题(每题3分,共18分)11. 若抛物线223y x x c =-+1y x =+没有交点,则c 的取值范围是______.12. 若关于x 的一元二次方程()222240a x x a -++-=有一个根为0,则a 的值为_________.13.点A 是半径为2的⊙O 上一动点,点O 到直线MN 的距离为3.点P 是MN 上一个动点,在运动过程中若∠POA =90°,则线段PA 的最小值是________.14. 如图,平行四边形的中心在原点,AD ∥BC ,D (3,2),C (1,﹣2),则A 点的坐标为 ,B 点的坐标为 .15. 如图,四边形ABCD 为矩形,AD =4,AB =6,点F 为BC 的中点,以点A 为圆心,AD 长为半径画弧交AB 于点E ,连接EC 和EF ,再以点E 为圆心,EF 长为半径画弧交AB 的延长线于点G ,则阴影部分的面积为 ___(结果保留π).16.如图,一次足球训练中,一球员从球门正前方将球射向球门,球射向球门的路线呈抛物线,当球飞行的水平距离为6米时,球达到最高点,此时球离地面3米,当足球下落到离地面53米时,足球飞行的水平距离为__________米.三.解答题(第17-19题每题6分,第20- 22题每题8分,第23题10分共52分)17. 用适当的方法解下列方程(1) 2(3)2(3)x x x -=-(2) 2430x x -+=18.如图,在平面直角坐标系中,已知点B (4,2),BA ⊥x 轴于A .(1)画出将△OAB 绕原点顺时针旋转90°后所得的△OA 1B 1,并写出点A 1、B 1的坐标;(2)画出△OAB 关于原点O 的中心对称图形△OA 2B 2,并写出点A 2、B 2的坐标.19.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60平方米,两块绿地之间及周边留有宽度相等的人行通道,求人行道的宽度为多少米?20. 如图,AB是⊙O的直径,C点在⊙O上,AD平分∠BAC交⊙O于D,过D作直线AC的垂线,交AC 的延长线于E,连接BD,CD.(1)求证:直线DE是⊙O的切线;(2)若直径AB=6,填空:①当AD=时,四边形ACDO是菱形;②过D作DH⊥AB,垂足为H,当AD=时,四边形AHDE是正方形.21.端午节前夕.某食品厂抽样调查了某居民区市民对A、B、C、D四种不同口味粽子样品的喜爱情况,并将调查情况绘制成如图两幅不完整统计图:(1)本次参加抽样调查的居民有人.(2)喜欢C种口味粽子的人数所占圆心角为度.根据题中信息补全条形统计图.(3)若该居民小区有6000人,请你估计爱吃D种粽子的有人.(4)若有外型完全相同的A、B、C、D粽子各一个,煮熟后,琪琪吃了两个,请用列表或画树状图的方法求他第二个吃的粽子恰好是A种粽子的概率.22. 如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于C点,OA=2,OC=6,连接AC和BC.(1)求抛物线的解析式;(2)点E是第四象限内抛物线上的动点,连接CE和BE.求BCE面积的最大值及此时点E的坐标;(3)若点M是y轴上的动点,在坐标平面内是否存在点N,使以点A、C、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.23. 在平面直角坐标系中,已知点A的坐标为(0,2),△ABO为等边三角形,P是x轴上的一个动点(不与O点重合),将线段AP绕A点按逆时针旋转60°,P点的对应点为点Q,连接OQ,BQ(1)点B的坐标为;(2)①如图①,当点P在x轴负半轴运动时,求证:∠ABQ=90°;②当点P在x轴正半轴运动时,①中的结论是否仍然成立?请补全图②,并作出判断(不需要说明理由);(3)在点P运动的过程中,若△OBQ是直角三角形,直接..写出点P的坐标.。

九年级上册数学 期末试卷(培优篇)(Word版 含解析)

九年级上册数学 期末试卷(培优篇)(Word版 含解析)

九年级上册数学 期末试卷(培优篇)(Word 版 含解析)一、选择题1.已知抛物线221y ax x =+-与x 轴没有交点,那么该抛物线的顶点所在的象限是( ) A .第一象限 B .第二象限C .第三象限D .第四象限2.已知⊙O 的半径是4,圆心O 到直线l 的距离d =6.则直线l 与⊙O 的位置关系是( ) A .相离 B .相切C .相交D .无法判断3.如图,已知正五边形ABCDE 内接于O ,连结,BD CE 相交于点F ,则BFC ∠的度数是( )A .60︒B .70︒C .72︒D .90︒4.下列说法中,不正确的是( ) A .圆既是轴对称图形又是中心对称图形 B .圆有无数条对称轴 C .圆的每一条直径都是它的对称轴 D .圆的对称中心是它的圆心5.小华同学某体育项目7次测试成绩如下(单位:分):9,7,10,8,10,9,10.这组数据的中位数和众数分别为( ) A .8,10B .10,9C .8,9D .9,106.某篮球队14名队员的年龄如表: 年龄(岁) 18 19 20 21 人数5432则这14名队员年龄的众数和中位数分别是( ) A .18,19 B .19,19 C .18,4 D .5,4 7.一个扇形的半径为4,弧长为2π,其圆心角度数是( )A .45B .60C .90D .1808.如图示,二次函数2y x mx =-+的图像与x 轴交于坐标原点和()4,0,若关于x 的方程20x mx t -+=(t 为实数)在15x <<的范围内有解,则t 的取值范围是( )A .53t -<<B .5t >-C .34t <≤D .54t -<≤9.抛物线y =x 2先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是( )A .y =(x+1)2+3B .y =(x+1)2﹣3C .y =(x ﹣1)2﹣3D .y =(x ﹣1)2+310.我国传统文化中的“福禄寿喜”图(如图)由四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是( )A .B .C .D .11.若关于x 的一元二次方程240kx x -+=有实数根,则k 的取值范围是( ) A .16k ≤B .116k ≤C .1,16k ≤且0k ≠ D .16,k ≤ 且0k ≠ 12.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A .6B .8C .10D .12二、填空题13.如图,点A 、B 、C 是⊙O 上的点,且∠ACB =40°,阴影部分的面积为2π,则此扇形的半径为______.14.圆锥的母线长为5cm ,高为4cm ,则该圆锥的全面积为_______cm 2.15.将抛物线y =-5x 2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.16.数据2,3,5,5,4的众数是____.17.若关于x的一元二次方程12x2﹣2kx+1-4k=0有两个相等的实数根,则代数式(k-2)2+2k(1-k)的值为______.18.已知扇形的圆心角为90°,弧长等于一个半径为5cm的圆的周长,用这个扇形恰好围成一个圆锥的侧面(接缝忽略不计).则该圆锥的高为__________cm.19.如图,直线l经过⊙O的圆心O,与⊙O交于A、B两点,点C在⊙O上,∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于点Q,且PQ=OQ,则满足条件的∠OCP的大小为_______.20.如图,△A BC的顶点A、B、C都在边长为1的正方形网格的格点上,则sinA的值为________.21.已知圆锥的底面半径是3cm,母线长是5cm,则圆锥的侧面积为_____cm2.(结果保留π)22.如图,港口A在观测站 O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达 B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船与观测站之间的距离(即OB的长)为 _____km.23.设二次函数y=x2﹣2x﹣3与x轴的交点为A,B,其顶点坐标为C,则△ABC的面积为_____.24.如图,点O为正六边形ABCDEF的中心,点M为AF中点,以点O为圆心,以OM的长为半径画弧得到扇形MON,点N在BC上;以点E为圆心,以DE的长为半径画弧得到扇形DEF,把扇形MON的两条半径OM,ON重合,围成圆锥,将此圆锥的底面半径记为r1;将扇形DEF以同样方法围成的圆锥的底面半径记为r2,则r1:r2=_____.三、解答题25.某商场以每件42元的价格购进一种服装,由试销知,每天的销量t (件)与每件的销售价x (元)之间的函数关系为t=204-3x.(1)试写出每天销售这种服装的毛利润y (元)与每件售价x (元)之间的函数关系式(毛利润=销售价-进货价);(2)每件销售价为多少元,才能使每天的毛利润最大?最大毛利润是多少? 26.如图,在ABC ∆中,AB AC =,AD 为BC 边上的中线,DE AB ⊥于点E.(1)求证:BDE CAD ∆∆∽;(2)若13AB =,10BC =,求线段DE 的长. 27.如图,AB 为O 的直径,PD 切O 于点C ,交AB 的延长线于点D ,且2D A ∠=∠.(1)求D ∠的度数. (2)若O 的半径为2,求BD 的长.28.将矩形ABCD 绕点A 顺时针旋转α(0°<α<360°),得到矩形AEFG .(1)如图,当点E 在BD 上时.求证:FD =CD ; (2)当α为何值时,GC =GB ?画出图形,并说明理由. 29.如图,四边形 ABCD 为矩形.(1)如图1,E 为CD 上一定点,在AD 上找一点F ,使得矩形沿着EF 折叠后,点D 落在 BC 边上(尺规作图,保留作图痕迹);(2)如图2,在AD 和CD 边上分别找点M ,N ,使得矩形沿着MN 折叠后BC 的对应边B' C'恰好经过点D ,且满足B' C' ⊥BD(尺规作图,保留作图痕迹); (3)在(2)的条件下,若AB =2,BC =4,则CN = .30.如图1,水平放置一个三角板和一个量角器,三角板的边AB 和量角器的直径DE 在一条直线上,∠ACB=90°,∠BAC=30°,OD=3cm ,开始的时候BD=1cm ,现在三角板以2cm/s 的速度向右移动.(1)当点B 于点O 重合的时候,求三角板运动的时间;(2)三角板继续向右运动,当B 点和E 点重合时,AC 与半圆相切于点F ,连接EF ,如图2所示.①求证:EF 平分∠AEC ; ②求EF 的长.31.如图,在Rt ABC ∆中,90C =∠,矩形DEFG 的顶点G 、F 分别在边AC 、BC 上,D 、E 在边AB 上.(1)求证:ADG ∆∽FEB ∆;(2)若2AD GD =,则ADG ∆面积与BEF ∆面积的比为 .32.表是2019年天气预报显示宿迁市连续5天的天气气温情况.利用方差判断这5天的日最高气温波动大还是日最低气温波动大.12月17日 12月18日 12月19日 12月20日 12月21日 最高气温106789【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据题目信息可知当y=0时,20a 21x x =+-,此时0<,可以求出a 的取值范围,从而可以确定抛物线顶点坐标的符号,继而可以确定顶点所在的象限. 【详解】解:∵抛物线2y a 21x x =+-与x 轴没有交点,∴2a 210x x +-=时无实数根; 即,24440b ac a =-=+<, 解得,a 1<-,又∵2y a 21x x =+-的顶点的横坐标为:2102a a-=->; 纵坐标为:()414104a a aa⨯----=<; 故抛物线的顶点在第四象限. 故答案为:D. 【点睛】本题考查的知识点是抛物线与坐标轴的交点问题,解题的关键是根据抛物线与x 轴无交点得出2a 210x x +-=时无实数根,再利用根的判别式求解a 的取值范围.2.A解析:A 【解析】 【分析】根据直线和圆的位置关系的判定方法,即圆心到直线的距离大于半径,则直线与圆相离进行判断.【详解】解:∵圆心O 到直线l 的距离d=6,⊙O 的半径R=4, ∴d>R , ∴直线和圆相离. 故选:A . 【点睛】本题考查直线与圆位置关系的判定.掌握半径和圆心到直线的距离之间的数量关系是解答此题的关键..3.C解析:C 【解析】 【分析】连接OA 、OB 、OC 、OD 、OE ,如图,则由正多边形的性质易求得∠COD 和∠BOE 的度数,然后根据圆周角定理可得∠DBC 和∠BCF 的度数,再根据三角形的内角和定理求解即可. 【详解】解:连接OA 、OB 、OC 、OD 、OE ,如图,则∠COD =∠AOB =∠AOE =360725︒=︒, ∴∠BOE =144°, ∴1362DBC COD ∠=∠=︒,1722BCE BOE ∠=∠=︒, ∴18072BFC DBC BCF ∠=︒-∠-∠=︒. 故选:C.【点睛】本题考查了正多边形和圆、圆周角定理和三角形的内角和定理,属于基本题型,熟练掌握基本知识是解题关键.4.C解析:C 【解析】 【分析】圆有无数条对称轴,但圆的对称轴是直线,故C 圆的每一条直线都是它的对称轴的说法是错误的 【详解】本题不正确的选C ,理由:圆有无数条对称轴,其对称轴都是直线,故任何一条直径都是它的对称轴的说法是错误的,正确的说法应该是圆有无数条对称轴,任何一条直径所在的直线都是它的对称轴故选C【点睛】此题主要考察对称轴图形和中心对称图形,难度不大5.D解析:D【解析】试题分析:把这组数据从小到大排列:7,8,9,9,10,10,10,最中间的数是9,则中位数是9;10出现了3次,出现的次数最多,则众数是10;故选D.考点:众数;中位数.6.A解析:A【解析】【分析】根据众数和中位数的定义求解可得.【详解】∵这组数据中最多的数是18,∴这14名队员年龄的众数是18岁,∵这组数据中间的两个数是19、19,∴中位数是19192+=19(岁),故选:A.【点睛】本题考查众数和中位数,将一组数据从小到大的顺序排列,如果数据的个数是奇数,则处于中间位置的数称为这组数据的中位数;如果数据的个数是偶数,则中间两个数的平均数称为这组数据的中位数;一组数据中出现次数最多的数据称为这组数据的众数;熟练掌握定义是解题关键.7.C解析:C【解析】【分析】根据弧长公式即可求出圆心角的度数.【详解】解:∵扇形的半径为4,弧长为2π,∴4 2180nππ⨯=解得:90n =,即其圆心角度数是90︒ 故选C . 【点睛】此题考查的是根据弧长和半径求圆心角的度数,掌握弧长公式是解决此题的关键.8.D解析:D 【解析】 【分析】首先将()4,0代入二次函数,求出m ,然后利用根的判别式和求根公式即可判定t 的取值范围. 【详解】将()4,0代入二次函数,得2440m -+=∴4m =∴方程为240x x t -+=∴x =∵15x << ∴54t -<≤ 故答案为D . 【点睛】此题主要考查二次函数与一元二次方程的综合应用,熟练掌握,即可解题.9.D解析:D 【解析】 【分析】按“左加右减,上加下减”的规律平移即可得出所求函数的解析式. 【详解】抛物线y =x 2先向右平移1个单位得y =(x ﹣1)2,再向上平移3个单位得y =(x ﹣1)2+3.故选D. 【点睛】本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a (x -h )2+k (a ,b ,c 为常数,a ≠0),确定其顶点坐标(h ,k ),在原有函数的基础上“h 值正右移,负左移; k 值正上移,负下移”.10.B解析:B【解析】试题分析:根据轴对称图形与中心对称图形的概念求解.解:A、不是轴对称图形,也不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、是轴对称图形,不是中心对称图形.故错误;D、不是轴对称图形,也不是中心对称图形.故错误.故选B.点睛:掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.11.C解析:C【解析】【分析】一元二次方程有实数根,则根的判别式∆≥0,且k≠0,据此列不等式求解.【详解】根据题意,得:∆=1-16k≥0且k≠0,解得:116k≤且k≠0.故选:C.【点睛】本题考查一元二次方程根的判别式与实数根的情况,注意k≠0.12.D解析:D【解析】【分析】连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.二、填空题13.3【解析】【分析】根据圆周角定理可求出∠AOB的度数,设扇形半径为x,从而列出关于x的方程,求出答案.【详解】由题意可知:∠AOB=2∠ACB=2×40°=80°,设扇形半径为x,故阴解析:3【解析】【分析】根据圆周角定理可求出∠AOB的度数,设扇形半径为x,从而列出关于x的方程,求出答案.【详解】由题意可知:∠AOB=2∠ACB=2×40°=80°,设扇形半径为x,故阴影部分的面积为πx2×80360=29×πx2=2π,故解得:x1=3,x2=-3(不合题意,舍去),故答案为3.【点睛】本题主要考查了圆周角定理以及扇形的面积求解,解本题的要点在于根据题意列出关于x 的方程,从而得到答案.14.24π【解析】【分析】利用圆锥的母线长和圆锥的高求得圆锥的底面半径,表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【详解】解:∵圆锥母线长为5cm,圆锥的高为4cm,∴底解析:24π【解析】【分析】利用圆锥的母线长和圆锥的高求得圆锥的底面半径,表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【详解】解:∵圆锥母线长为5cm,圆锥的高为4cm,∴底面圆的半径为3,则底面周长=6π,∴侧面面积=12×6π×5=15π;∴底面积为=9π,∴全面积为:15π+9π=24π.故答案为24π.【点睛】本题利用了圆的周长公式和扇形面积公式求解.15.y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再解析:y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(-2,-3),∴所得到的新的抛物线的解析式为y=-5(x+2)2-3.故答案为:y=-5(x+2)2-3.【点睛】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.16.5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案解析:5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案为:5.【点睛】本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.17.【解析】【分析】根据题意可得一元二次方程根的判别式为0,列出含k的等式,再将所求代数进行变形后整体代入求值即可.【详解】解:∵一元二次方程x2﹣2kx+1-4k=0有两个相等的实数根,∴解析:7 2【解析】【分析】根据题意可得一元二次方程根的判别式为0,列出含k的等式,再将所求代数进行变形后整体代入求值即可.【详解】解:∵一元二次方程12x 2﹣2kx+1-4k=0有两个相等的实数根, ∴2214241402b ac k k ,整理得,22410k k , ∴21+22k k 2221k k k 224k k224k k当21+22k k 时, 224k k142=-+ 72= 故答案为:72. 【点睛】本题考查一元二次方程根的判别式与根个数之间的关系,根据根的个数确定根的判别式的符号是解答此题的关键.18.【解析】【分析】利用弧长公式求该扇形的半径,圆锥的轴截面为等腰三角形,其中底边为10,腰为母线即扇形的半径,根据勾股定理求圆锥的高.【详解】 解:设扇形半径为R ,根据弧长公式得,∴R解析:【解析】【分析】利用弧长公式求该扇形的半径,圆锥的轴截面为等腰三角形,其中底边为10,腰为母线即扇形的半径,根据勾股定理求圆锥的高.【详解】解:设扇形半径为R ,根据弧长公式得, 90=25180R∴R=20, 225515 .故答案为:【点睛】 本题考查弧长公式,及圆锥的高与母线、底面半径之间的关系,底面周长等于扇形的弧长这个等量关系和勾股定理是解答此题的关键.19.40°【解析】:在△QOC 中,OC=OQ ,∴∠OQC=∠OCQ ,在△OPQ 中,QP=QO ,∴∠QOP=∠QPO ,又∵∠QPO=∠OCQ+∠AOC ,∠AOC=30°,∠QOP+∠QPO+∠解析:40°【解析】:在△QOC 中,OC=OQ ,∴∠OQC=∠OCQ ,在△OPQ 中,QP=QO ,∴∠QOP=∠QPO ,又∵∠QPO=∠OCQ+∠AOC ,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,∴3∠OCP=120°,∴∠OCP=40°20.【解析】如图,由题意可知∠ADB=90°,BD=,AB=,∴sinA=.【解析】如图,由题意可知∠ADB=90°,,∴sinA=BD AB ==.21.15π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2.【详解】解:底面圆的半径为3cm,则底面周长=6πcm,侧面面积=×6π×5=15πcm2.故答案为:15π.【点睛】本题考解析:15π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2.【详解】解:底面圆的半径为3cm,则底面周长=6πcm,侧面面积=12×6π×5=15πcm2.故答案为:15π.【点睛】本题考查的知识点圆锥的侧面积公式,牢记公式是解此题的关键.22.2+2【解析】【分析】作AD⊥OB于点D,根据题目条件得出∠OAD=60°、∠DAB=45°、OA=4km,再分别求出AD、OD、BD的长,从而得出答案.【详解】如图所示,过点A作AD⊥O解析:32【解析】【分析】作AD⊥OB于点D,根据题目条件得出∠OAD=60°、∠DAB=45°、OA=4km,再分别求出AD、OD、BD的长,从而得出答案.【详解】如图所示,过点A作AD⊥OB于点D,由题意知,∠AOD=30°,OA=4km,则∠OAD=60°,∴∠DAB=45°,在Rt△OAD中,AD=OAsin∠AOD=4×sin30°=4×12=2(km),OD=OAcos∠AOD=4×cos30°=433km),在Rt△ABD中,BD=AD=2km,∴OB=OD+BD=32(km),故答案为:32.【点睛】本题主要考查解直角三角形的应用−方向角问题,解题的关键是构建合适的直角三角形,并熟练运用三角函数进行求解.23.8【解析】【分析】首先求出A、B的坐标,然后根据坐标求出AB、CD的长,再根据三角形面积公式计算即可.【详解】解:∵y=x2﹣2x﹣3,设y=0,∴0=x2﹣2x﹣3,解得:x1=3,解析:8【解析】【分析】首先求出A、B的坐标,然后根据坐标求出AB、CD的长,再根据三角形面积公式计算即可.【详解】解:∵y=x2﹣2x﹣3,设y=0,∴0=x2﹣2x﹣3,解得:x1=3,x2=﹣1,即A点的坐标是(﹣1,0),B点的坐标是(3,0),∵y=x2﹣2x﹣3,=(x﹣1)2﹣4,∴顶点C的坐标是(1,﹣4),∴△ABC的面积=12×4×4=8,故答案为8.【点睛】本题考查了抛物线与x轴的交点,二次函数的性质,二次函数的三种形式的应用,主要考查学生运用性质进行计算的能力,题目比较典型,难度适中.24.【解析】分析:根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.详解:连OA由已知,M为AF中点,则OM⊥AF∵六边形ABCDEF为正六边形∴解析:3:2【解析】分析:根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.详解:连OA由已知,M为AF中点,则OM⊥AF∵六边形ABCDEF为正六边形∴∠AOM=30°设AM=a∴AB=AO=2a,3a∵正六边形中心角为60°∴∠MON=120°∴扇形MON 的弧长为:1201803a π⋅=则r 1 同理:扇形DEF 的弧长为:120241803a a ππ⋅⋅= 则r 2=23ar 1:r 2点睛:本题考查了正六边形的性质和扇形面积及圆锥计算.解答时注意表示出两个扇形的半径.三、解答题25.(1)y= -3x 2+330x-8568;(2)每件销售价为55元时,能使每天毛利润最大,最大毛利润为507元.【解析】【分析】(1)根据毛利润=销售价−进货价可得y 关于x 的函数解析式;(2)将(1)中函数关系式配方可得最值情况.【详解】(1)根据题意,y=(x-42)(204-3x)= -3x 2+330x-8568;(2)y=-3x 2+330x-8568= -3(x-55)2+507因为-3<0,所以x=55时,y 有最大值为507.答:每件销售价为55元时,能使每天毛利润最大,最大毛利润为507元.【点睛】本题主要考查二次函数的应用,理解题意根据相等关系列出函数关系式,并熟练掌握二次函数的性质是解题的关键.26.(1)见解析;(2)6013DE =. 【解析】【分析】对于(1),由已知条件可以得到∠B=∠C ,△ABC 是等腰三角形,利用等腰三角形的性质易得AD ⊥BC ,∠ADC=90°;接下来不难得到∠ADC=∠BED ,至此问题不难证明; 对于(2),利用勾股定理求出AD ,利用相似比,即可求出DE.【详解】解:(1)证明:∵AB AC =,∴B C ∠=∠.又∵AD 为BC 边上的中线,∴AD BC ⊥.∵DE AB ⊥,∴90BED CDA ︒∠=∠=,∴BDE CAD ∆∆∽.(2)∵10BC =,∴5BD =.在Rt ABD ∆中,根据勾股定理,得12AD ==. 由(1)得BDE CAD ∆∆∽,∴BD DE CA AD =, 即51312DE =, ∴6013DE =. 【点睛】 此题考查相似三角形的判定与性质,解题关键在于掌握判定定理.27.(1)45D ∠=︒;(2)2BD =.【解析】【分析】(1)根据等腰三角形性质和三角形外角性质求出∠COD=2∠A ,求出∠D=∠COD ,根据切线性质求出∠OCD=90°,即可求出答案;(2)由题意O 的半径为2,求出OC=CD=2,根据勾股定理求出BD 即可. 【详解】解:(1)∵OA=OC ,∴∠A=∠ACO ,∴∠COD=∠A+∠ACO=2∠A ,∵∠D=2∠A ,∴∠D=∠COD ,∵PD 切⊙O 于C ,∴∠OCD=90°,∴∠D=∠COD=45°;(2)∵∠D=∠COD ,O 的半径为2, ∴OC=OB=CD=2,在Rt △OCD 中,由勾股定理得:22+22=(2+BD )2,解得:2BD =.【点睛】本题考查切线的性质,勾股定理,等腰三角形性质,三角形的外角性质的应用,主要考查学生的推理能力,熟练掌握切线的性质,勾股定理,等腰三角形性质,三角形的外角性质是解题关键.28.(1)见解析;(2)见解析.【解析】【分析】(1)先运用SAS判定△AED≌△FDE,可得DF=AE,再根据AE=AB=CD,即可得出CD=DF;(2)当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论,依据∠DAG=60°,即可得到旋转角α的度数.【详解】(1)由旋转可得,AE=AB,∠AEF=∠ABC=∠DAB=90°,EF=BC=AD,∴∠AEB=∠ABE,又∵∠ABE+∠EDA=90°=∠AEB+∠DEF,∴∠EDA=∠DEF,又∵DE=ED,∴△AED≌△FDE(SAS),∴DF=AE,又∵AE=AB=CD,∴CD=DF;(2)如图,当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:①当点G在AD右侧时,取BC的中点H,连接GH交AD于M,∵GC=GB,∴GH⊥BC,∴四边形ABHM是矩形,∴AM=BH=12AD=12AG,∴GM垂直平分AD,∴GD=GA=DA,∴△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=60°;②当点G在AD左侧时,同理可得△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=360°﹣60°=300°.【点睛】本题考查旋转的性质、全等三角形的判定(SAS)与性质的运用,解题关键是掌握旋转的性质、全等三角形的判定(SAS)与性质的运用.29.(1)图见解析(2)图见解析(3)51【解析】【分析】(1)以点E为圆心,以DE长为半径画弧,交BC于点D′,连接DD′,作DD′的垂直平分线交AD于点F即可;(2)先作射线BD,然后过点D作BD的垂线与BC的延长线交于点H,作∠BHD的角平分线交CD于点N,交AD于点M,在HD上截取HC′=HC,然后在射线C′D上截取C′B′=BC,此时的M、N即为满足条件的点;(3)在(2)的条件下,根据AB=2,BC=4,即可求出CN的长.【详解】(1)如图,点F为所求;(2)如图,折痕MN、矩形A’B’C’D’为所求;(3)在(2)的条件下,∵AB=2,BC=4,∴BD=5∵BD⊥B′C′,∴BD⊥A′D′,得矩形DGD′C′.∴DG=C′D′=2,∴BG=5设CN的长为x,CD′=y.则C′N=x,D′N=2−x,BD′=4−y,∴(4−y)2=y2+(5)2,解得y5.(2−x)2=x25)2解得x=512.51-.【点睛】本题考查了作图−复杂作图、矩形的性质、翻折变换,解决本题的关键是掌握矩形的性质.30.(1)2s(2)①证明见解析,②33√【解析】试题分析:(1)由当点B于点O重合的时候,BO=OD+BD=4cm,又由三角板以2cm/s的速度向右移动,即可求得三角板运动的时间;(2)①连接OF,由AC与半圆相切于点F,易得OF⊥AC,然后由∠ACB=90°,易得OF ∥CE ,继而证得EF 平分∠AEC ;②由△AFO 是直角三角形,∠BAC=30°,OF=OD=3cm ,可求得AF 的长,由EF 平分∠AEC ,易证得△AFE 是等腰三角形,且AF=EF ,则可求得答案. 试题解析:(1)∵当点B 于点O 重合的时候,BO=OD+BD=4cm ,∴t=42=2(s);∴三角板运动的时间为:2s ;(2)①证明:连接O 与切点F ,则OF ⊥AC ,∵∠ACE=90°,∴EC ⊥AC ,∴OF ∥CE ,∴∠OFE=∠CEF ,∵OF=OE , ∴∠OFE=∠OEF ,∴∠OEF=∠CEF ,即EF 平分∠AEC ;②由①知:OF ⊥AC ,∴△AFO 是直角三角形,∵∠BAC=30°,OF=OD=3cm ,∴tan30°=3AF ,∴3,由①知:EF 平分∠AEC ,∴∠AEF=∠CEF=12∠AEC=30°, ∴∠AEF=∠EAF ,∴△AFE 是等腰三角形,且AF=EF ,∴331.(1)见解析;(2)4.【解析】【分析】(1)先证∠AGD=∠B ,再根据∠ADG=∠BEF=90°,即可证明;(2)由(1)得ADG ∆∽FEB ∆,则△ADG 面积与△BEF 面积的比=2AD EF ⎛⎫ ⎪⎝⎭=4. 【详解】(1)证:在矩形DEFG 中,GDE FED ∠=∠=90°∴GDA FEB ∠=∠=90°∵C GDA ∠=∠=90°∴A AGD A B ∠+∠=∠+∠=90°∴AGD B ∠=∠在ADG ∆和FEB ∆中∵AGD B ∠=∠,GDA FEB ∠=∠=90°∴ADG ∆∽FEB ∆(2)解:∵四边形DEFG 为矩形,∴GD=EF ,∵△ADG ∽△FEB , ∴224ADG BEF S AD AD S EF GD ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭故答案为4.【点睛】本题考查了相似三角形的判定与性质,根据题意证得△ADG ∽△FEB 是解答本题的关键.32.见解析【解析】 【分析】根据题意,先算出各组数据的平均数,再利用方差公式计算求出各组数据的方差比较大小即可. 【详解】∵x 高=()110+6+7+8+9=85⨯(℃), x 低 =()11+01+0+3=0.65⨯-(℃), 2S 高=()()()()()222221108687888985⎡⎤⨯-+-+-+-+-⎣⎦=2(℃2)2S 低=()()()()()22222110.600.610.600.630.65⎡⎤⨯-+-+--+-+-⎣⎦=1.84(℃2) ∴2S 高>2S 低∴这5天的日最高气温波动大.【点睛】本题考查方差的应用,解题的关键是熟练掌握方差公式:S 2=()()()()22123221...n x x x x x x x x n ⎡⎤-+-+-++-⎢⎥⎣⎦.。

人教版九年级数学上册 期末培优提升卷(含答案)

人教版九年级数学上册 期末培优提升卷(含答案)

人教版九年级数学上册期末培优提升卷时间:120分钟满分:150分一、选择题(共48分)1.下列手机软件图标中,是中心对称图形的是()2.若关于x的一元二次方程(k-1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k<5且k≠1C.k≤5且k≠1 D.k>53.如图,在正方形ABCD中,AC为对角线,点E在AB边上,EF⊥AC于点F,连接EC,AF=3,△EFC的周长为12,则EC的长为( )A.722B.3 2 C.5 D.6第3题图第4题图4.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E.若AB=12,BM=5,则DE的长为()A.18 B.1095 C.965 D.2535.方程(x+1)(x-2)=x+1的解是()A.2 B.3 C.-1,2 D.-1,36.如图,直线AB是⊙O的切线,C为切点,OD∥AB交⊙O于点D,点E在⊙O 上,连接OC ,EC ,ED ,则∠CED 的度数为( )A .30°B .35°C .40°D .45°第6题图 第8题图 第9题图7.将二次函数y =2x 2的图象向左平移2个单位长度,再向上平移3个单位长度所得的图象解析式为( )A .y =(x -2)2+3B .y =(x +2)2+3C .y =2(x -2)2-3D .y =2(x +2)2+38.如图,△ABC 是等腰直角三角形,BC 是斜边,将△ABP 绕点A 逆时针旋转后,能与△ACP ′重合,已知AP =3,则PP ′的长度是( )A .3B .3 2C .5 2D .49.如图,已知AB 是⊙O 的直径,AD 切⊙O 于点A ,点C 是EB ︵的中点,则下列结论不成立的是( )A .OC ∥AEB .EC =BC C .∠DAE =∠ABED .AC ⊥OD 10.正方形ABCD 的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD 内投一粒米,则米粒落在阴影部分的概率为( )A.π-22B.π-24C.π-28D.π-216第10题图第11题图11.如图,抛物线y =ax 2+bx +c 与x 轴交于点A (-1,0),顶点坐标为(1,n ),与y 轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①3a +b <0;②-1≤a ≤-23;③对于任意实数m ,a +b ≥am 2+bm 总成立;④关于x 的方程ax 2+bx +c =n -1有两个不相等的实数根.其中正确结论的个数为( )A .1B .2C .3D .4 12.如图所示,抛物线y 1=a(x +2)2-3与y 2=12(x -3)2+1交于点A(1,3),过点A 作x 轴的平行线,分别交两条抛物线于点B ,C ,则以下结论:①无论x 取何值,y 2的值总是正数;②a =1;③当x =0时,y 2-y 1=4;④2AB =3AC.其中正确结论是( )第12题图A .①②B .②③C .③④D .①④二、填空题(共30分)13.(1)关于x 的一元二次方程x 2-mx +2m -1=0的两个实数根分别是x 1,x 2,x 21+x 22=7,则(x 1-x 2)2的值是____.(2)若α,β为方程2x 2-5x -1=0的两个实数根,则2α2+3αβ+5β的值为 .14.若从-1,1,2这三个数中,任取两个分别作为点M 的横、纵坐标,则点M 在第二象限的概率是 .15.某广场中心有高低不同的各种喷泉,其中一支高度为32米的喷水管喷水最大高度为4米,此时喷水水平距离为12米,在如图所示的坐标系中,这支喷泉的函数解析式是 .第15题图第16题图 第17题图16.如图,正方形ABCD 的边长为1,点A 与原点重合,点B 在y 轴的正半轴上,点D 在x 轴的负半轴上.将正方形ABCD 绕点A 逆时针旋转30°至正方形AB ′C ′D ′,B ′C ′与CD 相交于点M ,则点M 的坐标为 .17.如图,在Rt △ABC 中,∠B =90°,∠C =30°,O 为AC 上一点,OA =2,以点O 为圆心,以OA 长为半径的圆与CB 相切于点E ,与AB 相交于点F ,连接OE ,OF ,则图中阴影部分的面积是 .18.如图,在平面直角坐标系xOy 中,▱ABCO 的顶点A ,B 的坐标分别是A (3,0),B (0,2).动点P 在直线y =32x 上运动,以点P 为圆心,PB 长为半径的⊙P 随点P 运动,当⊙P 与▱ABCO 的边相切时,P 点的坐标为 .三、解答题(共72分)19.解方程:(1)x2-4x-8=0;(2)3x-6=x(x-2).20.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,2),请解答下列问题;(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1的坐标;(2)画出△ABC绕点B逆时针旋转90°后得到的△A2BC2,并写出A2的坐标;(3)画出和△A2BC2关于原点O成中心对称的△A3B3C3,并写出A3的坐标.21.如图为二次函数y =-x 2+bx +c 图象的一部分,它与x 轴的一个交点坐标为A (-1,0),与y 轴的交点坐标为B (0,3).(1)求这个二次函数的解析式;(2)将此抛物线向左平移3个单位,再向下平移1个单位,求平移后的抛物线的解析式.22.已知AB 是⊙O 的直径,弦CD 与AB 相交,∠BAC =38°.(1)如图①,若D 为AB ︵的中点,连接BC ,BD .求∠ABC 和∠ABD 的大小;(2)如图②,过点D 作⊙O 的切线,与AB 的延长线交于点P ,连接OC .若DP ∥AC ,求∠OCD 的大小.23.图①是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字1,2,3,4,图②是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏,规则是:将这枚骰子掷出后,看骰子向上三个面(除底面外)的数字之和是几,就从图②中的A点开始沿着顺时针方向连续跳动几个顶点,第二次从第一次的终点处开始,按第一次的方法跳动.(1)随机掷一次骰子,则棋子跳动到点C处的概率是;(2)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点C处的概率.24.鹏鹏童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销,该店决定降价销售,经市场调查反映:每降价1元,每星期可多卖10件.已知该款童装每件成本30元.设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式(不求自变量的取值范围);(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少?(3)①当每件童装售价定为多少元时,该店一星期可获得3 910元的利润?②若该店每星期想要获得不低于3 910元的利润,则每星期至少要销售该款童装多少件?25.如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(-1,0),B(4,0),C(0,-4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P 点坐标;若不存在,请说明理由;(3)动点P运动到什么位置时,△PBC面积最大.求出此时P点坐标和△PBC 的最大面积.人教版九年级数学上册期末培优提升卷及答案一、选择题(本大题共10小题,每小题3分,共30分)1.下列手机软件图标中,是中心对称图形的是(C)2.若关于x的一元二次方程(k-1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是(B)A.k<5 B.k<5且k≠1C.k≤5且k≠1 D.k>53.如图,在正方形ABCD中,AC为对角线,点E在AB边上,EF⊥AC于点F,连接EC,AF=3,△EFC的周长为12,则EC的长为( C)A.722B.3 2 C.5 D.6第3题图 第4题图4.如图,正方形ABCD 中,M 为BC 上一点,ME ⊥AM ,ME 交AD 的延长线于点E .若AB =12,BM =5,则DE 的长为( B )A .18 B.1095 C.965 D.2535.方程(x +1)(x -2)=x +1的解是( D )A .2B .3C .-1,2D .-1,36.如图,直线AB 是⊙O 的切线,C 为切点,OD ∥AB 交⊙O 于点D ,点E 在⊙O 上,连接OC ,EC ,ED ,则∠CED 的度数为( D )A .30°B .35°C .40°D .45°第6题图 第8题图 第9题图7.将二次函数y =2x 2的图象向左平移2个单位长度,再向上平移3个单位长度所得的图象解析式为( D )A .y =(x -2)2+3B .y =(x +2)2+3C .y =2(x -2)2-3D .y =2(x +2)2+38.如图,△ABC 是等腰直角三角形,BC 是斜边,将△ABP 绕点A 逆时针旋转后,能与△ACP ′重合,已知AP =3,则PP ′的长度是( B )A .3B .3 2C .5 2D .49.如图,已知AB 是⊙O 的直径,AD 切⊙O 于点A ,点C 是EB ︵的中点,则下列结论不成立的是( D )A .OC ∥AEB .EC =BCC .∠DAE =∠ABED .AC ⊥OD10.正方形ABCD 的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD 内投一粒米,则米粒落在阴影部分的概率为( A )A.π-22B.π-24C.π-28D.π-216第10题图第10题图11.如图,抛物线y =ax 2+bx +c 与x 轴交于点A (-1,0),顶点坐标为(1,n ),与y 轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①3a +b <0;②-1≤a ≤-23;③对于任意实数m ,a +b ≥am 2+bm 总成立;④关于x 的方程ax 2+bx +c =n -1有两个不相等的实数根.其中正确结论的个数为( C )A .1B .2C .3D .412.如图所示,抛物线y 1=a(x +2)2-3与y 2=12(x -3)2+1交于点A(1,3),过点A 作x 轴的平行线,分别交两条抛物线于点B ,C ,则以下结论:①无论x 取何值,y 2的值总是正数;②a =1;③当x =0时,y 2-y 1=4;④2AB =3AC.其中正确结论是( D )第12题图A .①②B .②③C .③④D .①④二、填空题13.(1)关于x 的一元二次方程x 2-mx +2m -1=0的两个实数根分别是x 1,x 2,x 21+x 22=7,则(x 1-x 2)2的值是__13__.(2)若α,β为方程2x 2-5x -1=0的两个实数根,则2α2+3αβ+5β的值为 12 .14.若从-1,1,2这三个数中,任取两个分别作为点M 的横、纵坐标,则点M 在第二象限的概率是 13.15.某广场中心有高低不同的各种喷泉,其中一支高度为32米的喷水管喷水最大高度为4米,此时喷水水平距离为12米,在如图所示的坐标系中,这支喷泉的函数解析式是y =-10⎝ ⎛⎭⎪⎫x -122+4.第15题图第16题图第17题图16.如图,正方形ABCD 的边长为1,点A 与原点重合,点B 在y 轴的正半轴上,点D 在x 轴的负半轴上.将正方形ABCD 绕点A 逆时针旋转30°至正方形AB ′C ′D ′,B ′C ′与CD 相交于点M ,则点M的坐标为⎝⎛⎭⎪⎫-1,33.17.如图,在Rt △ABC 中,∠B =90°,∠C =30°,O 为AC 上一点,OA =2,以点O 为圆心,以OA 长为半径的圆与CB 相切于点E ,与AB 相交于点F ,连接OE ,OF ,则图中阴影部分的面积是723-43π.18.如图,在平面直角坐标系xOy 中,▱ABCO 的顶点A ,B 的坐标分别是A (3,0),B (0,2).动点P 在直线y =32x 上运动,以点P 为圆心,PB 长为半径的⊙P 随点P 运动,当⊙P 与▱ABCO 的边相切时,P 点的坐标为(0,0)或⎝ ⎛⎭⎪⎫23,1或⎝⎛⎭⎪⎫3-5,9-352 .三、解答题19.(6分)解方程: (1)x 2-4x -8=0; 解:x 2-4x +4=4+8, (x -2)2=12, ∴x -2=±23,∴x 1=2+23,x 2=2-2 3.(2)3x -6=x (x -2). 解:3(x -2)=x (x -2), ∴(x -2)(x -3)=0,∴x-2=0或x-3=0,∴x1=2,x2=3.20.(8分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A 的坐标为(2,2),请解答下列问题;(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1的坐标;(2)画出△ABC绕点B逆时针旋转90°后得到的△A2BC2,并写出A2的坐标;(3)画出和△A2BC2关于原点O成中心对称的△A3B3C3,并写出A3的坐标.解:(1)画出△A1B1C1如图,A1(-2,2).(2)画出△A2BC2如图,A2(4,0).(3)画出△A3B3C3如图,A3(-4,0).21.(10分)如图为二次函数y=-x2+bx+c图象的一部分,它与x轴的一个交点坐标为A(-1,0),与y轴的交点坐标为B(0,3).(1)求这个二次函数的解析式;(2)将此抛物线向左平移3个单位,再向下平移1个单位,求平移后的抛物线的解析式.解:(1)∵二次函数经过A (-1,0),B (0,3)两点,∴⎩⎪⎨⎪⎧-1-b +c =0,c =3,解得⎩⎪⎨⎪⎧b =2,c =3.∴二次函数的解析式为y =-x 2+2x +3. (2)∵y =-x 2+2x +3可化为y =-(x -1)2+4, ∴抛物线y =-x 2+2x +3的顶点坐标为(1,4).又∵此抛物线向左平移3个单位,再向下平移1个单位, ∴平移后的抛物线的顶点坐标为(-2,3).∴平移后的抛物线的解析式为y =-(x +2)2+3=-x 2-4x -1.22.(10分)(2018·天津)已知AB 是⊙O 的直径,弦CD 与AB 相交,∠BAC =38°.(1)如图①,若D 为AB ︵的中点,连接BC ,BD .求∠ABC 和∠ABD 的大小; (2)如图②,过点D 作⊙O 的切线,与AB 的延长线交于点P ,连接OC .若DP ∥AC ,求∠OCD 的大小.解:(1)∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠BAC +∠ABC =90°.又∵∠BAC =38°,∴∠ABC =90°-38°=52°.由D 为AB ︵的中点,得AD ︵=BD ︵,∴∠ABD=∠BCD=12∠ACB=45°.(2)如图,连接OD.∵DP切⊙O于点D,∴OD⊥DP,即∠ODP=90°.由DP∥AC,又∠BAC=38°,∴∠P=∠BAC=38°.∵∠AOD是△ODP的外角,∴∠AOD=∠ODP+∠P=128°,∴∠ACD=12∠AOD=64°.又OA=OC,得∠ACO=∠A=38°.∴∠OCD=∠ACD-∠ACO=64°-38°=26°.23.(10分)(2018·贵阳)图①是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字1,2,3,4,图②是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏,规则是:将这枚骰子掷出后,看骰子向上三个面(除底面外)的数字之和是几,就从图②中的A点开始沿着顺时针方向连续跳动几个顶点,第二次从第一次的终点处开始,按第一次的方法跳动.(1)随机掷一次骰子,则棋子跳动到点C处的概率是14;(2)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点C处的概率.解:列表得共有16种等可能结果,和为14可以到达点C,有3种结果,所以棋子最终跳动到点C处的概率为3 16.24.(10分)(2018·盘锦)鹏鹏童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销,该店决定降价销售,经市场调查反映:每降价1元,每星期可多卖10件.已知该款童装每件成本30元.设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式(不求自变量的取值范围);(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少?(3)①当每件童装售价定为多少元时,该店一星期可获得3 910元的利润?②若该店每星期想要获得不低于3 910元的利润,则每星期至少要销售该款童装多少件?解:(1)y=100+10(60-x)=-10x+700.(2)设每星期的销售利润为W元,W=(x-30)(-10x+700)=-10(x-50)2+4 000.∴当x=50时,W最大=4 000.∴每件售价定为50元时,每星期的销售利润最大,最大利润为4 000元.(3)①由题意得-10(x-50)2+4 000=3 910,解得x=53或47,∴当每件童装售价定为53元或47元时,该店一星期可获得3 910元的利润.②由(1)知抛物线y=-10(x-50)2+4 000过点(53,3 910),(47,3 910),当y>3 910时,x的取值范围为47≤x≤53,∵y=-10x+700.∴170≤y≤230,∴每星期至少要销售该款童装170件.25.(12分)如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(-1,0),B(4,0),C(0,-4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P 点坐标;若不存在,请说明理由;(3)动点P运动到什么位置时,△PBC面积最大.求出此时P点坐标和△PBC 的最大面积.解:(1)由于抛物线与x轴交于点A(-1,0),B(4,0),可设抛物线解析式为y=a(x+1)(x-4),将点C(0,-4)代入得a(0+1)(0-4)=-4.解得a=1,所求抛物线解析式为y=(x+1)(x-4),即y=x2-3x-4.(2)存在.如解图①,取OC 的中点D (0,-2),过D 作PD ⊥y 轴,交抛物线点P ,且点P 在第四象限,则点P 的纵坐标为-2,∴x 2-3x -4=-2,解得x =3±172(负值舍去),满足条件的P点的坐标为⎝⎛⎭⎪⎫3+172,-2;(3)∵点B (4,0),点C (0,-4), ∴直线BC 的解析式为y =x -4, 设点P 的坐标为(t ,t 2-3t -4),如解图②,过P 作PQ ∥y 轴交BC 于Q ,则点Q 的坐标为(t ,t -4), ∴|PQ |=t -4-(t 2-3t -4)=-t 2+4t = -(t -2)2+4,∴当t =2时,PQ 取最大值,最大值为4, ∵S △PBC =S △PCQ +S △PBQ =12PQ ·x B =PQ ·4=2PQ ,∴当PQ最大时,S△PBC最大,最大值为8. 此时点P的坐标为(2,-6).。

2024年最新人教版初三数学(上册)期末考卷及答案(各版本)

2024年最新人教版初三数学(上册)期末考卷及答案(各版本)

2024年最新人教版初三数学(上册)期末考卷一、选择题(每题3分,共30分)1. 若一个数的立方根等于它的平方根,则这个数是()A. 0B. 1C. 1D. ±12. 若一个数是它自己的倒数,则这个数是()A. 0B. 1C. 1D. ±13. 若一个数的绝对值等于它本身,则这个数是()A. 正数B. 负数C. 0D. 正数或04. 若一个数的绝对值等于它的相反数,则这个数是()A. 正数B. 负数C. 0D. 正数或05. 若一个数的平方等于它本身,则这个数是()A. 0B. 1C. 1D. 0或16. 若一个数的立方等于它本身,则这个数是()A. 0B. 1C. 1D. 0或17. 若一个数的平方根是它自己的倒数,则这个数是()A. 0B. 1C. 1D. ±18. 若一个数的立方根是它自己的相反数,则这个数是()A. 0B. 1C. 1D. ±19. 若一个数的绝对值等于它的立方,则这个数是()A. 正数B. 负数C. 0D. 正数或010. 若一个数的绝对值等于它的平方,则这个数是()A. 正数B. 负数C. 0D. 正数或0二、填空题(每题3分,共30分)11. 若一个数的平方根是它自己的倒数,则这个数是______。

12. 若一个数的立方根是它自己的相反数,则这个数是______。

13. 若一个数的绝对值等于它的立方,则这个数是______。

14. 若一个数的绝对值等于它的平方,则这个数是______。

15. 若一个数的平方等于它本身,则这个数是______。

16. 若一个数的立方等于它本身,则这个数是______。

17. 若一个数的平方根是它自己的倒数,则这个数是______。

18. 若一个数的立方根是它自己的相反数,则这个数是______。

19. 若一个数的绝对值等于它的立方,则这个数是______。

20. 若一个数的绝对值等于它的平方,则这个数是______。

人教版九年级数学第一学期期末质量检测试题含答案

人教版九年级数学第一学期期末质量检测试题含答案

人教版九年级数学第一学期期末质量检测试题第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1.反比例函数y=−3在平面直角坐标系中的图象可能是( )xA. B.C. D.2.如果两个相似三角形的面积之比为9:4,那么这两个三角形对应边上的高之比为( )A. 9:4B. 3:2C. 2:3D. 81:163.某中学为了解九年级学生数学学习情况,在一次考试中,从全校500名学生中随机抽取了100名学生的数学成绩进行统计分析,统计结果这100名学生的数学平均分为91分,由此推测全校九年级学生的数学平均分( )A. 等于91分B. 大于91分C. 小于91分D. 约为91分4.用配方法解方程x2−2x−3=0时,可变形为( )A. (x−1)2=2B. (x−1)2=4C. (x−2)2=2D. (x−2)2=45.某商品经过两次连续降价,每件售价由原来的60元降到了48.6元,设平均每次降价的百分率为x,则下列方程正确的是( )A. 60(1+x)2=48.6B. 48.6(1+x)2=60C. 60(1−x)2=48.6D. 48.6(1−x)2=606.若关于x的一元二次方程kx2−2x−1=0有两个实数根,则k的取值范围是( )A. k≠0B. k≥−1C. k≥−1且k≠0D. k>−1且k≠07.已知点A(m,1)和B(n,3)在反比例函数y=k(k>0)的图象上,则( )xA. m<nB. m>nC. m=nD. m与n大小关系无法确8.在△ABC中,若|tanA−1|+(2cosB−√2)2=0,则△ABC是( )A. 等腰三角形B. 等腰直角三角形C. 直角三角形D. 一般锐角三角形9.下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与如图的三角形相似的是( )第2页,共21页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………A. B. C. D.10. 如图,正比例函数y 1=k 1x 和反比例函数y 2=k2x的图象交于A(−1,2)、B(1,−2)两点,若y 1<y 2,则x 的取值范围是( )A. x <−1或x >1B. x <−1或0<x <1C. −1<x <0或0<x <1D. −1<x <0或x >111. 如图,在矩形ABCD 中,AB =2,AD =3,点E 是CD 的中点,点F 在BC 上,且FC =2BF ,连接AE ,EF ,则cos ∠AEF 的值是( )A. 12B. 1C. √22D. √3212. 如图,在正方形ABCD 中,△ABP 是等边三角形,AP 、BP 的延长线分别交CD 于点E 、F ,连接AC 、CP ,AC 与BF 相交于点H.有下列结论: ①AE =2DE ; ②tan∠CPE =1; ③△CFP ∽△APH ; ④CP 2=PH ⋅PB . 其中正确的有( )A. ①②③B. ①②④C. ①③④D. ①②③④第II 卷(非选择题)二、填空题(本大题共6小题,共18.0分)13. 某人沿着坡度i =1:√3的山坡走了50米,则他离地面的高度上升了______米.14. 甲、乙两台机床在相同的条件下,同时生产一种直径为10mm 的滚珠.现在从中各抽测100个进行检测,结果这两台机床生产的滚珠平均直径均为10mm ,但S 甲2=0.288,S 乙2=0.024,则______机床生产这种滚珠的质量更稳定.15. 如图,在△ABC 中点D 、E 分别在边AB 、AC 上,请添加一个条件:______ ,使△ABC∽△AED .16. 若m ,n 是一元二次方程x 2−4x −7=0的两个实数根,则1m +1n =______.17. 如图,在△ABC 中,sinB =13,tanC =√22,AB =3,则AC 的长为______.18. 如图,菱形ABCD 顶点A 在函数y =3x (x >0)的图象上,函数y =kx(k >3,x >0)的图象关于直线AC 对称,且经过点B 、D 两点,若AB =2,∠BAD =30°,则k =______.三、解答题(本大题共8小题,共66.0分。

【期末测试AB卷】人教版数学九年级上册-B培优测试试题试卷含答案

【期末测试AB卷】人教版数学九年级上册-B培优测试试题试卷含答案

【期末测试AB卷】人教版九年级上学期数学·B培优测试一、选择题(共12小题,满分24分,每小题2分)1.(2分)(2022秋•碑林区校级期中)如图所示,几何体的俯视图是( )A.B.C.D.2.(2分)(2022秋•朝阳区校级期中)下列图形既是轴对称图形又是中心对称图形的是( )A.B.C.D.3.(2分)(2022秋•雨花区期中)下列说法中,正确的是( )A.对顶角相等B.“太阳东升西落”是不可能事件C.矩形的对角线互相垂直D.投掷一枚质地均匀的硬币26次,正面朝上的次数一定是13次4.(2分)(2022秋•思明区校级期中)设a,b是方程x2+x﹣30=0的两个实数根,则a+b+ab的值为( )A.29B.﹣29C.31D.﹣315.(2分)(2022秋•工业园区校级期中)若抛物线y =x 2﹣bx +8的顶点在x 轴上,则b =( )A .±B .﹣C .﹣D .±6.(2分)(2022秋•鹿城区校级期中)已知点A (3,a ),B (﹣3,b )均在二次函数y =﹣(x ﹣2)2+1的图象上,则a ,b ,1的大小关系正确的是( )A .1<a <bB .1<b <aC .b <a <1D .a <b <17.(2分)(2022春•沙坪坝区校级月考)如图,正五边形ABCDE 内接于⊙O ,PD 与⊙O 相切于点D ,连接OE 并延长,交PD 于点P ,则∠P 的度数是( )A .36°B .28°C .20°D .18°8.(2分)(2021•朝阳一模)如图,在平面直角坐标系中,矩形ABCO 的两边OA ,OC 落在坐标轴上,反比例函数y =k x 的图象分别交BC ,OB 于点D ,点E ,且BD CD =54,若S △AOE =12,则k 的值为( )A .﹣12B .―403C .﹣16D .﹣9.(2分)(2022秋•邗江区校级月考)如图,O 是位似中心,点A ,B 的对应点分别为点D 、E ,相似比为2:1,若AB =8,则DE 的长为( )A.8B.10C.12D.1610.(2分)(2022•赤峰模拟)一个几何体的三视图如图所示,则这个几何体的表面积是( )A.18πB.20πC.16πD.14π11.(2分)(2022秋•乳山市期中)上午9时,一条船从A处出发,以每小时40海里的速度向正东方向航行,10时到达B处(如图).从A,B两处分别测得小岛M在北偏东45°和北偏东15°方向,那么船在B处时与小岛M的距离为( )A.B.C.40海里D.12.(2分)(2022秋•瑞安市校级期中)已知(x1,y1),(x2,y2),(x3,y3)为双曲线y 上的三个点,且x1<x2<x3,则以下判断正确的是( )=―3xA.若x1x3>0,则y2y3<0B.若x1x2>0,则y2y3>0C.若x1x3<0,则y2y3>0D.若x1x2<0,则y1y3<0二、填空题(共6小题,满分18分,每小题3分)13.(3分)(2022秋•西峡县期中)如图,已知菱形ABCD的边长为2,∠ABC=60°,点E是CD边的中点,F为BE的中点,AE与DF相交于点G,则GF的长等于 .14.(3分)(2022秋•金牛区校级月考)从2,0,﹣1,﹣2,﹣3这五个数中,随机抽取一个数作为m的值,则使函数y=(m+3)x的图象经过第一、三象限,且使关于x 的一元二次方程(m﹣1)x2﹣(2m﹣1)x+m+2=0有实数根的概率是 .15.(3分)(2022秋•乾安县期中)若点(0,a),(4,b)都在二次函数y=(x﹣2)2的图象上,则a与b的大小关系是a b.(填“>”或“<”或“=”)16.(3分)(2022秋•惠安县校级月考)已知关于x的一元二次方程ax2+bx=0(a≠0)的一个根为x=2022,则关于x的方程a(x﹣1)2+bx=b(a≠0)的两个根为 .17.(3分)(2022秋•兰考县月考)关于x的方程ax2+bx+c=0有两个不相等的实根x1,x2,若x2=2x1,则4b﹣3ac的最大值是 .18.(3分)(2022秋•建华区校级期中)如图,△ABC中,∠ACB=90°,∠BAC=30°,AC=3,将△ABC绕点C按顺时针旋转135°得到△EDC,则图中阴影部分的面积为 .三、解答题(共9小题,满分78分)19.(8分)(2022秋•临武县期中)阅读下面的材料,回答问题:解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0(1),解得y1=1,y2=4,当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.在由原方程得到方程(1)的过程中,利用换元法达到降次的目的,体现了数学的转化思想.(1)试用上述方法解方程:x4﹣2x2﹣3=0,得原方程的解为 .(2)解方程(x2+2x)2+3(x2+2x)+2=0.20.(8分)(2022秋•市中区期中)北京时间2022年6月5日10时44分,搭载神舟十四号载人飞船的长征二号F遥十四运载火箭在酒泉卫星发射中心点火发射,约577秒后,神舟十四号载人飞船与火箭成功分离,进入预定轨道,顺利将陈东、蔡旭哲、刘洋3名航天员送人太空.如图是模拟的火箭发射装置示意图,一枚运载火箭从地面L处发射,当火箭到达A点时,从位于地面R处的雷达站测得AR的距离是5km,仰角为39°;约1.5s后火箭到达B点,此时测得仰角为45°(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.8).(1)求地面雷达站R到发射处L的水平距离.(2)求这枚火箭从A到B的平均速度是多少千米/秒?21.(8分)(2022秋•宝山区期中)学习了相似三角形知识后,小丽同学准备用自制的直角三角形纸板测量校园内一棵古树的高度.已知三角形纸板的斜边长为0.5米,较短的直角边长为0.3米.(1)小丽先调整自己的位置至点P,将直角三角形纸板的三个顶点位置记为A、B、C(如图①),斜边AB平行于地面MN(点M、P、E、N在一直线上),且点D在边AC(较长直角边)的延长线上,此时测得边AB距离地面的高度EF为1.5米,小丽与古树的距离AF为16米,求古树的高度DE;(2)为了尝试不同的思路,小丽又向前移动自己的位置至点Q,将直角三角形纸板的三个顶点的新位置记为A′、B′、C′(如图②),使直角边B′C′(较短直角边)平行于地面MN(点M、Q、E、N在一直线上),点D在斜边B′A′的延长线上,且测得此时边B′C′距离地面的高度依然是1.5米,那么小丽向前移动了多少米?22.(9分)(2022秋•宝山区期中)某工厂有甲、乙两个车间,甲车间生产A产品,乙车间生产B产品,去年两个车间生产产品的数量相同且全部售出.已知A产品的销售单价比B产品的销售单价高100元,1件A产品与1件B产品售价和为500元.(1)A、B两种产品的销售单价分别是多少元?(2)随着5G时代的到来,工业互联网进入了快速发展时期.今年,该工厂计划依托工业互联网将乙车间改造为专供用户定制B产品的生产车间.预计A产品在售价不变的情况下产量将在去年的基础上增加a%;B产品产量将在去年的基础上减少a%,但B产品的销售单价将提高3a%.则今年A、B两种产品全部售出后总销售额将在去a%.求a的值.年的基础上增加292523.(9分)(2022秋•常州期中)如图,⊙O是△ABC的外接圆,∠ABC=45°,延长BC 到D,连接AD,使AD∥OC.AB交OC于E.(1)求证:AD与⊙O相切;(2)若AE=CE=2.求⊙O的半径.24.(9分)(2022秋•西湖区校级期中)初三年级“黄金分割项目活动”展示,为了解全体初三年级同学的活动成绩,抽取了部分参加活动的同学的成绩进行统计后,分为“优秀”,“良好”,“一般”,“较差”四个等级,并根据成绩绘制成如图两幅不完整的统计图,请结合统计图中的信息,回答下列问题:(1)扇形统计图中“优秀”所对应扇形的圆心角为 度,并将条形统计图补充完整.(2)如果学校初三年级共有340名学生,则参加“黄金分割项目活动”比赛成绩良好的学生有 人.(3)此次活动中有四名同学获得满分,分别是甲,乙,丙,丁,现从这四名同学中挑选两名同学参加校外举行的“黄金分割项目活动”展示,请用列表法或画树状图法,求出选中的两名同学恰好是甲、丁的概率.25.(9分)(2022秋•红花岗区期中)某公司在2022年国庆长假期间,举行了商品打折促销活动,经市场调查发现,某种商品的周销售量y(件)是关于售价x(元/件)的一次函数,如表仅列出了该商品的售价x元/件),周销售量y(件),周销售利润w (元)的三组对应值数据.x(元/件)405090y(件)18015030w(元)360045002100(1)求y关于x的函数解析式(不要求写出自变量的取值范围);(2)若该商品进价a(元/件),售价x为多少时,周销售利润w最大?并求出此时的最大利润;(3)因疫情期间,该商品进价提高了m(元/件)(m>0),公司为回馈消费者,规定该商品售价x不得超过56(元/件),且该商品在今后的销售中,周销售量与售价仍满足(1)中的函数关系,若周销售最大利润是3960元,求m的值.26.(9分)(2022秋•禹会区校级月考)如图在平面直角坐标系xOy中,直线AB:y=x﹣2与反比例函数y =k x 的图象交于A 、B 两点与x 轴相交于点C ,已知点A ,B 的坐标分别为(3n ,n )和(m ,﹣3).(1)求反比例函数的解析式;(2)请直接写出不等式x ﹣2>k x 的解集;(3)点P 为反比例函数y =k x 图象的任意一点,若S △POC =3S △AOC ,求点P 的坐标.27.(9分)(2022秋•文登区期中)在平整的地面上,有若干个完全相同的棱长为2cm 的小正方体堆成一个几何体,如图所示:(1)这个几何体是由 个小正方体组成,请画出这个几何体从三个方向看的图形;(2)如果在这个几何体露在外面的表面喷上红色的漆,每平方厘米用2克,则共需 克漆;(3)若你手头还有一些相同的小正方体,如果保持从上面看和从左面看到的图形不变,最多可再添加 个小正方体.参考答案一、选择题(共12小题,满分24分,每小题2分)1.D;2.C;3.A;4.D;5.A;6.C;7.D;8.C;9.D;10.A;11.D;12.D;二、填空题(共6小题,满分18分,每小题3分)13.14.15.=16.x1=1,x2=202317.618.;三、解答题(共9小题,满分78分)19.解:(1)设x2=m,则原方程变为m2﹣2m﹣3=0,解得m1=3,m2=﹣1.当m1=3时,x2=3,解得x当m2=﹣1,x2=﹣1,方程无解.故原方程的解为x1=x2=―故答案为:x1=x2=―(2)设x2+2x=n,则原方程变为n2+3n+2=0解得n1=﹣1,n2=﹣2.当n1=﹣1时,x2+2x=﹣1,解得x=﹣1.当n=﹣2,x2+2x=﹣2,即x2+2x+2=0,Δ=22﹣4×1×2=﹣6<0,则方程无解.故原方程的解为x=﹣1.20.解:(1)在Rt△ARL中,RL=AR•cos39°≈5×0.78=3.90(km),答:雷达站到发射处的水平距离为3.90km;(2)在Rt△ARL中,AL=AR•sin39°≈5×0.63=3.15(km),在Rt△BRL中,BL=RL≈3.90(km),∴AB=BL﹣AL=3.90﹣3.15≈0.75(km),∴速度为0.75÷1.5=0.5(km/s),答:这枚火箭从A到B的平均速度为0.5km/s.21.解:(1)∵∠DFA=∠ACB=90°,∠DAF=∠CAB,∴△DFA∽△BCA,∴DFBC =AFCA,在Rt△ABC中,∵AB=0.5m,BC=0.3m,由勾股定理得AC==0.4(m),∵AF=16m,∴DF0.3=160.4,∴DF=12(m),∴DE=DF+EF=12+1.5=13.5(m),答:古树的高度DE为13.5米;(2)∵∠D′FB′=∠A′C′B′=90°,∠D′B′F=∠A′B′C′,∴△D′FB′∽△A′C′B′,∴B′FB′C′=D′FA′C′,∴B′F0.3=120.4,∴B′F=9(m),∴16﹣9=7(m),答:小丽向前移动了7米.22.解:(1)设A产品的销售单价为x元,B产品的销售单价为y元,依题意得:x=y+100 x+y=500,解得:x=300 y=200,答:A产品的销售单价为300元,B产品的销售单价为200元.(2)设去年每个车间生产产品的数量为t件,a%),依题意得:300(1+a%)t+200(1+3a%)(1﹣a%)t=500t(1+2925设a%=m,则原方程可化简为5m2﹣m=0,,m2=0(不合题意,舍去),解得:m1=15∴a=20.答:a的值为20.23.(1)证明:连接OA,∵∠ABC=45°,∴∠AOC=2∠ABC=90°,∴OA⊥OC;又∵AD∥OC,∴OA⊥AD,∵OA是半径,∴AD是⊙O的切线;(2)解:设⊙O的半径为R,则OA=R,OE=R﹣2,AE=在Rt△OAE中,∵AO2+OE2=AE2,∴R2+(R﹣2)2=(2,解得R=4,∴⊙O的半径为4.24.解:(1)抽取的学生人数为:18÷15%=120(人),∴扇形统计图中“优秀”所对应扇形的圆心角为:360°×24=72°,120∴“良好”等级的人数为120×40%=48(人),故答案为:72,把条形统计图补充完整如下:(2)320×40%=128(人),∴参加“黄金分割项目活动”比赛成绩良好的学生有128人;故答案为:128;(3)画树状图如下:共有12种等可能的结果,其中选中的两名同学恰好是甲、丁的结果有2种,∴选中的两名同学恰好是甲、丁的概率=212=16.25.解:(1)设y=kx+b,由题意有:40k+b=18070k+b=90,解得k=―3b=300,∴y关于x的函数解析式为y=﹣3x+300;(2)由x=40,y=180,w=3600可得商品进价为40﹣3600÷180=20(元),∴a=20,由题意可得w=(﹣3x+300)(x﹣20)=﹣3x2+360x﹣6000=﹣3(x﹣60)2+4800,∵﹣3<0.∴当x=60时,w最大,最大值为4800,∴售价为60元时,周销售利润W最大,最大利润为4800元;(3)由题意w′=(﹣3x+300)(x﹣20﹣m)=﹣3x2+(360+3m)x﹣6000﹣300m,对称轴x=60+m>60,2∵该商品售价x不得超过56元/件,∴x≤56,∵当售价为56元/件时,周销售利润最大,∴﹣3×562+(360+3m)×56﹣6000﹣300m=3960,解得:m=6.∴m的值为6.26.解:(1)把点A(3n,n)代入直线y=x﹣2得:n=3n﹣2,解得:n=1,∴点A的坐标为:(3,1),∵反比例函数y=k的图象过点A,x∴k=3×1=3,即反比例函数的解析式为y=3,x(2)把点B(m,﹣3)代入直线y=x﹣2得,﹣3=m﹣2,解得m=﹣1,∴B(﹣1,﹣3),观察函数图象,发现:当﹣1<x<0或x>3时,一次函数图象在反比例函数图象的上方,的解集为﹣1<x<0或x>3;∴不等式x﹣2>kx(3)把y=0代入y=x﹣2得:x﹣2=0,解得:x=2,即点C的坐标为:(2,0),∴S△AOC =12×2×1=1,∵S△POC =3S△AOC,∴S△POC =12OC•|y P|=3,即12×2×|y P|=3,∴|y P|=3,当点P的纵坐标为3时,则3=3x,解得x=1,当点P的纵坐标为﹣3时,则﹣3=3x,解得x=﹣1,∴点P的坐标为(1,3)或(﹣1,﹣3).27.解:(1)这个几何体是由10个小正方体组成,三视图如图所示;故答案为:10;(2)这个几何体的表面有38个正方形,去掉地面上的6个,32个面需要喷上红色的漆,∴表面积为32cm2,32×2=64(克),∴共需64克漆.故答案为:64.(3)如果保持俯视图和左视图不变,最多可以再添加1+2+1=4个.故答案为:4.。

人教版数学九年级上册期末培优复习题(一)(解析版)

人教版数学九年级上册期末培优复习题(一)(解析版)

九年级上册期末培优复习题(一)一.选择题1.张老师出示方程x 2﹣4=0,四位同学给出了以下答案:小丽:x =2;子航:x =﹣2;一帆:x 1=2,x 2=﹣2;萱萱:x =±4.你认为谁的答案正确?你的选择是( )A .小丽B .子航C .一帆D .萱萱2.下列关于防范“新冠肺炎”的标志中既是轴对称图形,又是中心对称图形的是( )A .戴口罩讲卫生B .勤洗手勤通风C .有症状早就医D .少出门少聚集3.下列事件为必然事件的是( )A .射击一次,中靶B .12人中至少有2人的生日在同一个月C .画一个三角形,其内角和是180°D .掷一枚质地均匀的硬币,正面朝上4.已知二次函数y =x 2﹣4x +5的顶点坐标为( )A .(2,1)B .(﹣2,﹣1)C .(2,﹣1)D .(﹣2,1)5.上蔡县是古蔡国所在地,有着悠久的历史,拥有很多重点古迹.某中学九年级历史爱好者小组成员小华和小玲两人计划在寒假期间从“蔡国故城、白圭庙、伏羲画卦亭”三个古迹景点随机选择其中一个去参观,两人恰好选择同一古迹景点的概率是( )A .B .C .D .6.如图,PA ,PB 切⊙O 于A ,B 两点,CD 切⊙于点E ,交PA 、PB 于C 、D ,若△PCD 的周长等于4,则线段PA 的长是( )A.4 B.8 C.2 D.17.如图,在Rt△ABC中,∠ACB=90°,∠ABC=25°.将△ABC绕点C顺时针旋转α角(0°<α<180°)至△A'B'C使得点A′恰好落在AB边上,则α等于()A.55°B.50°C.65°D.60°8.用一个半径为15、圆心角为120°的扇形围成一个圆锥,则这个圆锥的底面半径是()A.5 B.10 C.5πD.10π9.已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m =0的解为()A.﹣1,0 B.﹣1,1 C.1,3 D.﹣1,310.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,分析下列四个结论:①abc<0;②b2﹣4ac>0;③2a﹣b=0;④a+b+c<0.其中正确的结论有()A.1个B.2个C.3个D.4个二.填空题11.已知点A(x﹣2,3)与B(x+4,y﹣5)关于原点对称,则xy的值是.12.有一人患了流感,假如平均一个人传染了x个人,经过两轮感染后共有121人患了流感,依题意可列方程为.13.在半径为5cm的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深度为2cm,则油槽面宽AB=cm.14.若代数式x2+4x﹣1的值比3x2﹣2x的值大3,则x的值为.15.设m、n是方程x2+x﹣1001=0的两个实数根,则m2+2m+n的值为.16.如图,等边三角形ABC的边长为4,点O是△ABC的中心,∠FOG=120°,绕点O旋转∠FOG,分别交线段AB、BC于D、E两点,连接DE,给出下列四个结论:①OD=OE;②S△ODE =S△BDE;③四边形ODBE的面积始终等于;④△BDE周长的最小值为6.上述结论中不正确的有.三.解答题17.解方程:(1)(x﹣3)2=16(2)x2﹣2x﹣4=018.建立直角坐标系,解决以下问题:(1)画出下列各点,并把各点依次连接成封闭图形.A(﹣2,3),B(2,3),C(5,0),D(2,﹣3),E(﹣2,﹣3),F(﹣5,0).(2)指出上面各点所在的象限或坐标轴.(3)分别写出上面各点关于x 轴,y 轴和原点的对称点.19.在一个暗箱中装有红、黄、白三种颜色的乒乓球(除颜色外其余均相同),其中白球2个、黄球1个,若从中任意摸出一个球是白球的概率是,(1)求暗箱中红球的个数;(2)先从暗箱中任意摸出一个球记下颜色后放回,再从暗箱中任意摸出一个球,求两次摸到的球颜色不同的概率.(用树形图或列表法求解)20.已知关于x 的一元二次方程x 2﹣4x ﹣2k +8=0有两个实数根x 1,x 2.(1)求k 的取值范围;(2)若x 13x 2+x 1x 23=24,求k 的值.21.如图,AB 是⊙O 的直径,弦EF ⊥AB 于点C ,点D 是AB 延长线上一点,∠A =30°,∠D =30°.(1)求证:FD 是⊙O 的切线;(2)取BE 的中点M ,连接MF ,若⊙O 的半径为2,求MF 的长.22.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)当销售单价为70元时,每天的销售利润是多少?(2)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式,并求出自变量x的取值范围;(3)如果该企业每天的总成本不超过7000元,那么销售单价为多少元时,每天的销售利润最大?最大利润是多少?(每天的总成本=每件的成本×每天的销售量)23.如图所示,二次函数y=k(x﹣1)2+2的图象与一次函数y=kx﹣k+2的图象交于A、B 两点,点B在点A的右侧,直线AB分别与x、y轴交于C、D两点,其中k<0.(1)求A、B两点的横坐标;(2)若△OAB是以OA为腰的等腰三角形,求k的值;(3)二次函数图象的对称轴与x轴交于点E,是否存在实数k,使得∠ODC=2∠BEC,若存在,求出k的值;若不存在,说明理由.答案与解析一.选择题1.解:当x=2时,x2﹣4=0;当x=﹣2时,x2﹣4=0,所以方程的解为x1=2,x2=﹣2.故选:C.2.解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、不是轴对称图形,也不是中心对称图形,故此选项不合题意;C、既是中心对称图形也是轴对称图形,故此选项符合题意;D、不是轴对称图形,也不是中心对称图形,故此选项不合题意;故选:C.3.解:A.射击一次,中靶是随机事件;B.12人中至少有2人的生日在同一个月是随机事件;C.画一个三角形,其内角和是180°是必然事件;D.掷一枚质地均匀的硬币,正面朝上是随机事件;故选:C.4.解:∵二次函数y=x2﹣4x+5=(x﹣2)2+1,∴该函数的顶点坐标为(2,1),故选:A.5.解:把“蔡国故城、白圭庙、伏羲画卦亭”分别用A、B、C表示,用列表法表示所有可能出现的结果如下:共有9种可能出现的结果数,其中,两人选同一景点的有3种,∴两人恰好选择同一古迹景点的概率是=;故选:A.6.解:∵PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D,∴AC=EC,DE=DB,PA=PB∵△PCD的周长等于4,∴PC+CD+PD=4,∴PA +PB =4,∴PA =2.故选:C .7.解:∵∠ACB =90°,∠ABC =25°,∴∠A =90°﹣∠B =65°,由旋转的性质得:CA =CA ′,∴∠A =∠CA ′A =65°,∴α=∠ACA ′=180°﹣2×65°=50°,故选:B .8.解:设该圆锥底面圆的半径为r ,根据题意得2πr =,解得r =5,即该圆锥底面圆的半径为5.故选:A .9.解:由图象可知,该函数的对称轴是直线x =1,与x 的轴的一个交点是(3,0),则该函数与x 轴的另一个交点是(﹣1,0),即当y =0时,0=﹣x 2+2x +m 时x 1=3,x 2=﹣1,故关于x 的一元二次方程﹣x 2+2x +m =0的解为x 1=3,x 2=﹣1,故选:D .10.解:①∵二次函数图象开口向下,对称轴在y 轴左侧,与y 轴交于正半轴, ∴a <0,﹣<0,c >0, ∴b <0,∴abc >0,结论①错误;②∵二次函数图象与x 轴有两个交点,∴b 2﹣4ac >0,结论②正确;③∵﹣>﹣1,a <0, ∴b >2a ,∴2a ﹣b <0,结论③错误;④∵当x =1时,y <0;∴a+b+c<0,结论④正确.故选:B.二.填空题(共6小题)11.解:∵点A(x﹣2,3)与B(x+4,y﹣5)关于原点对称,∴x﹣2+x+4=0,3+y﹣5=0,解得:x=﹣1,y=2,则xy的值是:﹣2.故答案为:﹣2.12.解:依题意,得:1+x+x(1+x)=121或(1+x)2=121.故答案为:1+x+x(1+x)=121或(1+x)2=121.13.解:连接OA,过O作OD⊥AB于D,交⊙O于D,∴AB=2AD,OD=OA﹣2=3,在Rt△AOD中,OA2=AD2+OD2,∴52﹣32=16,∴AD=4,∴AB=8,故答案为:8.14.解:根据题意得:x2+4x﹣1﹣3x2+2x=3,即x2﹣3x+2=0,分解因式得:(x﹣1)(x﹣2)=0,解得:x1=1,x2=2,故答案为:1或215.解:∵m、n是方程x2+x﹣1001=0的两个实数根,∴m+n=﹣1,并且m2+m﹣1001=0,∴m2+m=1001,∴m2+2m+n=m2+m+m+n=1001﹣1=1000.故答案为:1000.16.解:连接OB、OC,如图,∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,∵点O是△ABC的中心,∴OB=OC,OB、OC分别平分∠ABC和∠ACB,∴∠ABO=∠OBC=∠OCB=30°,∴∠BOC=120°,即∠BOE+∠COE=120°,而∠DOE=120°,即∠BOE+∠BOD=120°,∴∠BOD=∠COE,在△BOD和△COE中,,∴△BOD≌△COE(ASA),∴BD=CE,OD=OE,∴①正确;∵△BOD≌△COE,∴S△BOD =S△COE,∴四边形ODBE的面积=S△OBC ═S△ABC==,故③正确;作OH⊥DE,如图,则DH=EH,∵∠DOE=120°,∴∠ODE=∠OEH=30°,∴OH=OE,HE=OH=OE,∴DE=OE,∴S△ODE=OE OE=OE2,即S△ODE随OE的变化而变化,而四边形ODBE的面积为定值,∴S△ODE ≠S△BDE;故②错误;∵BD=CE,∴△BDE的周长=BD+BE+DE=CE+BE+DE=BC+DE=4+DE=4+OE,当OE⊥BC时,OE最小,△BDE的周长最小,此时OE=,∴△BDE周长的最小值=4+2=6,∴④正确.故答案为:②.三.解答题(共7小题)17.解:(1)∵(x﹣3)2=16,∴x﹣3=±4,∴x=﹣1或x=7;∴x1=﹣1,x2=7.(2)∵x2﹣2x﹣4=0,∴x2﹣2x+1=5,∴(x﹣1)2=5,∴x=1±,∴x1=1+,x2=1﹣.18.解:(1)如图所示;(2)A(﹣2,3)在第二象限,B(2,3)在第一象限,C(5,0)在x轴的正半轴上,D(2,﹣3)在第四象限,E(﹣2,﹣3)在第三象限,F(﹣5,0)在x轴的负半轴上;(3)A(﹣2,3),B(2,3),C(5,0),D(2,﹣3),E(﹣2,﹣3),F(﹣5,0)关于x轴的对称点分别为:(﹣2,﹣3),(2,﹣3),(5,0),(2,3),(﹣2,3),(﹣5,0);A(﹣2,3),B(2,3),C(5,0),D(2,﹣3),E(﹣2,﹣3),F(﹣5,0)关于y轴的对称点分别为:(2,3),(﹣2,3),(﹣5,0),(﹣2,﹣3),(2,﹣3),(5,0);A(﹣2,3),B(2,3),C(5,0),D(2,﹣3),E(﹣2,﹣3),F(﹣5,0)关于原点的对称点分别为:(2,﹣3),(﹣2,﹣3),(﹣5,0),(﹣2,3),(2,3),(5,0);19.解:(1)设红球有x个,由题意得:,∴x=1即暗箱中红球个数为1个;(2)画树状图如图:共有16种等可能情况,其中两次颜色不同有10种情况,∴P(两次颜色不同)=.20.解:(1)由题意可知,△=(﹣4)2﹣4×1×(﹣2k+8)≥0,整理得:16+8k﹣32≥0,解得:k≥2,∴k的取值范围是:k≥2.故答案为:k≥2.(2)由题意得:,由韦达定理可知:x1+x2=4,x1x2=﹣2k+8,故有:(﹣2k+8)[42﹣2(﹣2k+8)]=24,整理得:k2﹣4k+3=0,解得:k1=3,k2=1,又由(1)中可知k≥2,∴k的值为k=3.故答案为:k=3.21.解:(1)连接OE,OF,如图1所示:∵EF⊥AB,AB是⊙O的直径,∴,∴∠DOF=∠DOE,∵∠DOE=2∠A,∠A=30°,∴∠DOF=60°,∵∠D=30°,∴∠OFD=90°.∴OF⊥FD.∴FD为⊙O的切线;(2)连接OM.如图2所示:∵O是AB中点,M是BE中点,∴OM∥AE.∴∠MOB=∠A=30°.∵OM过圆心,M是BE中点,∴OM⊥BE.∴,.∵∠DOF=60°,∴∠MOF=90°.∴MF===.22.解:(1)当销售单价为70元时,每天的销售利润=(70﹣50)×[50+5×(100﹣70)]=4000元;(2)由题得y=(x﹣50)[50+5(100﹣x)]=﹣5x2+800x﹣27500(x≥50).∵销售单价不得低于成本,∴50≤x.且销量>0,5(100﹣x)+50≥0,解得x≤110,∴50≤x≤100.(3)∵该企业每天的总成本不超过7000元∴50×[50+5(100﹣x)]≤7000(8分)解得x≥82.由(2)可知y=(x﹣50)[50+5(100﹣x)]=﹣5x2+800x﹣27500∵抛物线的对称轴为x=80且a=﹣5<0∴抛物线开口向下,在对称轴右侧,y随x增大而减小.∴当x=82时,y有最大,最大值=4480,即销售单价为82元时,每天的销售利润最大,最大利润为4480元.23.解:(1)将二次函数与一次函数联立得:k(x﹣1)2+2=kx﹣k+2,解得:x=1和2,故点A、B的坐标横坐标分别为1和2;(2)OA==,①当OA=AB时,即:1+k2=5,解得:k=±2(舍去2);②当OA=OB时,4+(k+2)2=5,解得:k=﹣1或﹣3;故k的值为:﹣1或﹣2或﹣3;(3)存在,理由:①当点B在x轴上方时,过点B作BH⊥AE于点H,将△AHB的图形放大见右侧图形,过点A作∠HAB的角平分线交BH于点M,过点M作MN⊥AB于点N,过点B作BK⊥x轴于点K,图中:点A(1,2)、点B(2,k+2),则AH=﹣k,HB=1,设:HM=m=MN,则BM=1﹣m,则AN=AH=﹣k,AB=,NB=AB﹣AN,由勾股定理得:MB2=NB2+MN2,即:(1﹣m)2=m2+(+k)2,解得:m=﹣k2﹣k,在△AHM中,==k+==k+2,解得:k=,此时k+2>0,则﹣2<k<0,故:舍去正值,故k=﹣;②当点B在x轴下方时,同理可得:==k+==﹣(k+2),解得:k=或,此时k+2<0,k<﹣2,故舍去,故k的值为:﹣或.亲爱的读者:纸上得来终觉浅,绝知此事要躬行!+读书不觉已春深,一寸光阴一寸金;少壮不努力,老大徒伤悲。

数学九年级上册 期末试卷(培优篇)(Word版 含解析)

数学九年级上册 期末试卷(培优篇)(Word版 含解析)

数学九年级上册 期末试卷(培优篇)(Word 版 含解析)一、选择题1.若x=2y ,则xy的值为( ) A .2B .1C .12D .132.小华同学某体育项目7次测试成绩如下(单位:分):9,7,10,8,10,9,10.这组数据的中位数和众数分别为( ) A .8,10 B .10,9 C .8,9 D .9,10 3.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( ) A .m≥1B .m≤1C .m >1D .m <14.关于2,6,1,10,6这组数据,下列说法正确的是( ) A .这组数据的平均数是6 B .这组数据的中位数是1 C .这组数据的众数是6D .这组数据的方差是10.25.如图,ABC △内接于⊙O ,30BAC ∠=︒,8BC = ,则⊙O 半径为( )A .4B .6C .8D .126.在一个不透明的口袋中装有3个红球和2个白球,它们除颜色不同外,其余均相同.把它们搅匀后从中任意摸出1个球,则摸到红球的概率是( ) A .14B .34C .15D .357.如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,∠BAC=50°,则∠ADC 为( )A .40°B .50°C .80°D .100°8.一元二次方程x 2=-3x 的解是( )A .x =0B .x =3C .x 1=0,x 2=3D .x 1=0,x 2=-3 9.若二次函数y =x 2﹣2x +c 的图象与坐标轴只有两个公共点,则c 应满足的条件是( ) A .c =0B .c =1C .c =0或c =1D .c =0或c =﹣110.已知在△ABC 中,∠ACB =90°,AC =6cm ,BC =8cm ,CM 是它的中线,以C 为圆心,5cm 为半径作⊙C ,则点M 与⊙C 的位置关系为( ) A .点M 在⊙C 上B .点M 在⊙C 内C .点M 在⊙C 外D .点M 不在⊙C 内11.若二次函数y =x 2+4x +n 的图象与x 轴只有一个公共点,则实数n 的值是( )A .1B .3C .4D .612.将抛物线23y x =先向左平移一个单位,再向上平移两个单位,两次平移后得到的抛物线解析式为( )A .23(1)2y x =++B .23(1)2y x =+-C .23(1)2y x =-+D .23(1)2=--y x二、填空题13.已知矩形ABCD ,AB=3,AD=5,以点A 为圆心,4为半径作圆,则点C 与圆A 的位置关系为 __________.14.已知小明身高1.8m ,在某一时刻测得他站立在阳光下的影长为0.6m .若当他把手臂竖直举起时,测得影长为0.78m ,则小明举起的手臂超出头顶______m .15.关于x 的方程(m ﹣2)x 2﹣2x +1=0是一元二次方程,则m 满足的条件是_____. 16.如图,AB 是半圆O 的直径,AB=10,过点A 的直线交半圆于点C ,且sin ∠CAB=45,连结BC ,点D 为BC 的中点.已知点E 在射线AC 上,△CDE 与△ACB 相似,则线段AE 的长为________;17.如图,四边形ABCD 内接于⊙O ,若∠BOD=140°,则∠BCD=_____.18.把抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是__________.19.二次函数2y ax bx c =++的图象如图所示,若点()11,A y ,()23,B y 是图象上的两点,则1y ____2y (填“>”、“<”、“=”).20.如图,ABO 三个顶点的坐标分别为(24),(60),(00)A B ,,,,以原点O 为位似中心,把这个三角形缩小为原来的12,可以得到A B O ''△,已知点B '的坐标是30(,),则点A '的坐标是______.21.某小区2019年的绿化面积为3000m 2,计划2021年的绿化面积为4320m 2,如果每年绿化面积的增长率相同,设增长率为x ,则可列方程为______. 22.如图,点G 为△ABC 的重心,GE ∥AC ,若DE =2,则DC =_____.23.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径2r cm =,扇形的圆心角120θ=,则该圆锥的母线长l 为___cm .24.如图,在ABC ∆中,3AB =,4AC =,6BC =,D 是BC 上一点,2CD =,过点D 的直线l 将ABC ∆分成两部分,使其所分成的三角形与ABC ∆相似,若直线l 与ABC ∆另一边的交点为点P ,则DP =__________.三、解答题25.如图1,AB 、CD 是圆O 的两条弦,交点为P .连接AD 、BC .OM ⊥ AD ,ON ⊥BC ,垂足分别为M 、N.连接PM 、PN.图1 图2 (1)求证:△ADP ∽△CBP ;(2)当AB ⊥CD 时,探究∠PMO 与∠PNO 的数量关系,并说明理由; (3)当AB ⊥CD 时,如图2,AD=8,BC=6, ∠MON=120°,求四边形PMON 的面积. 26.二次函数y =ax 2+bx +c 中的x ,y 满足下表 x … -1 0 1 3 … y…31…不求关系式,仅观察上表,直接写出该函数三条不同类型的性质: (1) ; (2) ; (3) .27.如图①,BC 是⊙O 的直径,点A 在⊙O 上,AD ⊥BC 垂足为D ,弧AE =弧AB ,BE 分别交AD 、AC 于点F 、G .(1)判断△FAG 的形状,并说明理由;(2)如图②若点E 与点A 在直径BC 的两侧,BE 、AC 的延长线交于点G ,AD 的延长线交BE 于点F ,其余条件不变(1)中的结论还成立吗?请说明理由. (3)在(2)的条件下,若BG =26,DF =5,求⊙O 的直径BC .28.如图,⊙O 为ABC ∆的外接圆,9012ACB AB ∠=︒=,,过点C 的切线与AB 的延长线交于点D ,OE 交AC 于点F ,CAB E ∠=∠.(1)判断OE 与BC 的位置关系,并说明理由; (2)若3tan 4BCD ∠=,求EF 的长. 29.甲、乙、丙三人进行乒乓球比赛.他们通过摸球的方式决定首场比赛的两个选手:在一个不透明的口袋中放入两个红球和一个白球,这些球除颜色外其他都相同,将它们搅匀,三人从中各摸出一个球,摸到红球的两人即为首场比赛选手.求甲、丙两人成为比赛选手的概率.(请用画树状图或列表等方法写出分析过程并给出结果.)30.如图,四边形ABCD 内接于⊙O ,AC 为⊙O 的直径,D 为AC 的中点,过点D 作DE ∥AC ,交BC 的延长线于点E .(1)判断DE 与⊙O 的位置关系,并说明理由; (2)若CE =163,AB =6,求⊙O 的半径.31.已知二次函数y =a 2x −4x +c 的图象过点(−1,0)和点(2,−9), (1)求该二次函数的解析式并写出其对称轴;(2)当x 满足什么条件时,函数值大于0?(不写求解过程), 32.数学概念若点P 在ABC ∆的内部,且APB ∠、BPC ∠和CPA ∠中有两个角相等,则称P 是ABC ∆的“等角点”,特别地,若这三个角都相等,则称P 是ABC ∆的“强等角点”. 理解概念(1)若点P 是ABC ∆的等角点,且100APB ∠=,则BPC ∠的度数是 . (2)已知点D 在ABC ∆的外部,且与点A 在BC 的异侧,并满足180BDC BAC ∠+∠<,作BCD ∆的外接圆O ,连接AD ,交圆O 于点P .当BCD ∆的边满足下面的条件时,求证:P 是ABC ∆的等角点.(要求:只选择其中一道题进行证明!)①如图①,DB DC = ②如图②,BC BD =深入思考(3)如图③,在ABC ∆中,A ∠、B 、C ∠均小于120,用直尺和圆规作它的强等角点Q .(不写作法,保留作图痕迹)(4)下列关于“等角点”、“强等角点”的说法: ①直角三角形的内心是它的等角点; ②等腰三角形的内心和外心都是它的等角点; ③正三角形的中心是它的强等角点;④若一个三角形存在强等角点,则该点到三角形三个顶点的距离相等;⑤若一个三角形存在强等角点,则该点是三角形内部到三个顶点距离之和最小的点,其中正确的有 .(填序号)【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】将x=2y 代入xy中化简后即可得到答案.【详解】 将x=2y 代入x y得: 22x yy y ==, 故选:A. 【点睛】此题考查代数式代入求值,正确计算即可.2.D【解析】试题分析:把这组数据从小到大排列:7,8,9,9,10,10,10, 最中间的数是9,则中位数是9;10出现了3次,出现的次数最多,则众数是10; 故选D .考点:众数;中位数.3.D解析:D 【解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.详解:∵方程2x 2x m 0-+=有两个不相同的实数根, ∴()2240m =-->, 解得:m <1. 故选D .点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.4.C解析:C 【解析】 【分析】先把数据从小到大排列,然后根据算术平均数,中位数,众数的定义得出这组数据的平均数、中位数、众数,再利用求方差的计算公式求出这组数据的方差,再逐项判定即可. 【详解】解:数据从小到大排列为:1,2,6,6,10, 中位数为:6; 众数为:6;平均数为:()112661055⨯++++=;方差为:()()()()()2222211525656510510.45⎡⎤⨯-+-+-+-+-=⎣⎦. 故选:C . 【点睛】本题考查的知识点是平均数,中位数,众数,方差的概念定义,熟记定义以及方差公式是解此题的关键.5.C解析:C【分析】连接OB,OC,根据圆周角定理求出∠BOC的度数,再由OB=OC判断出△OBC是等边三角形,由此可得出结论.【详解】解:连接OB,OC,∵∠BAC=30°,∴∠BOC=60°.∵OB=OC,BC=8,∴△OBC是等边三角形,∴OB=BC=8.故选:C.【点睛】本题考查的是圆周角定理以及等边三角形的判定和性质,根据题意作出辅助线,构造出等边三角形是解答此题的关键.6.D解析:D【解析】【分析】根据题意即从5个球中摸出一个球,概率为3 5 .【详解】摸到红球的概率=33 235=+,故选:D.【点睛】此题考查事件的简单概率的求法,正确理解题意,明确可能发生的总次数及所求事件发生的次数是求概率的关键.7.A解析:A【解析】试题分析:先根据圆周角定理的推论得到∠ACB=90°,再利用互余计算出∠B=40°,然后根据圆周角定理求解.解:连结BC,如图,∵AB为⊙O的直径,∴∠ACB=90°,∵∠BAC=50°,∴∠B=90°﹣50°=40°,∴∠ADC=∠B=40°.故选A.考点:圆周角定理.8.D解析:D【解析】【分析】先移项,然后利用因式分解法求解.【详解】解:(1)x2=-3x,x2+3x=0,x(x+3)=0,解得:x1=0,x2=-3.故选:D.【点睛】本题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解题的关键.9.C解析:C【解析】【分析】根据二次函数y=x2﹣2x+c的图象与坐标轴只有两个公共点,可知二次函数y=x2﹣2x+c的图象与x轴只有一个公共点或者与x轴有两个公共点,其中一个为原点两种情况,然后分别计算出c的值即可解答本题.【详解】解:∵二次函数y=x2﹣2x+c的图象与坐标轴只有两个公共点,∴二次函数y=x2﹣2x+c的图象与x轴只有一个公共点或者与x轴有两个公共点,其中一个为原点,当二次函数y=x2﹣2x+c的图象与x轴只有一个公共点时,(﹣2)2﹣4×1×c=0,得c=1;当二次函数y=x2﹣2x+c的图象与轴有两个公共点,其中一个为原点时,则c=0,y=x2﹣2x=x(x﹣2),与x轴两个交点,坐标分别为(0,0),(2,0);由上可得,c 的值是1或0, 故选:C . 【点睛】本题考查了二次函数与坐标的交点问题,掌握解二次函数的方法是解题的关键.10.A解析:A 【解析】 【分析】根据题意可求得CM 的长,再根据点和圆的位置关系判断即可. 【详解】 如图,∵由勾股定理得2268+, ∵CM 是AB 的中线, ∴CM=5cm , ∴d=r ,所以点M 在⊙C 上, 故选A . 【点睛】本题考查了点和圆的位置关系,解决的根据是点在圆上⇔圆心到点的距离=圆的半径.11.C解析:C 【解析】 【分析】二次函数y =x 2+4x +n 的图象与x 轴只有一个公共点,则240b ac =-=⊿,据此即可求得. 【详解】∵1a =,4b =,c n =,根据题意得:2244410b ac n =-=⨯⨯=⊿﹣, 解得:n =4, 故选:C . 【点睛】本题考查了抛物线与x 轴的交点,二次函数2y ax bx c =++(a ,b ,c 是常数,a ≠0)的交点与一元二次方程20ax bx c ++=根之间的关系.24b ac =-⊿决定抛物线与x 轴的交点个数.⊿>0时,抛物线与x 轴有2个交点;0=⊿时,抛物线与x 轴有1个交点;⊿<0时,抛物线与x 轴没有交点.12.A解析:A【解析】【分析】按照“左加右减,上加下减”的规律,进而得出平移后抛物线的解析式即可.【详解】抛物线23y x =先向左平移1个单位得到解析式:()231y x =+,再向上平移2个单位得到抛物线的解析式为:()2312y x =++.故选:A .【点睛】此题考查了抛物线的平移变换以及抛物线解析式的变化规律:左加右减,上加下减. 二、填空题13.点C 在圆外【解析】【分析】由r 和CA ,AB 、DA 的大小关系即可判断各点与⊙A 的位置关系.【详解】解:∵AB=3厘米,AD =5厘米,∴AC=厘米,∵半径为4厘米,∴点C 在圆A 外【点解析:点C 在圆外【解析】【分析】由r 和CA ,AB 、DA 的大小关系即可判断各点与⊙A 的位置关系.【详解】解:∵AB =3厘米,AD =5厘米,∴AC∵半径为4厘米,∴点C 在圆A 外【点睛】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r ,点到圆心的距离为d ,则有:当d >r 时,点在圆外;当d =r 时,点在圆上,当d <r 时,点在圆内.14.54【解析】【分析】在同一时刻,物体的高度和影长成比例,根据此规律列方程求解.【详解】解:设小明举起的手臂超出头顶xm,根据题意得,,解得x=0.54即举起的手臂超出头顶0.54m解析:54【解析】【分析】在同一时刻,物体的高度和影长成比例,根据此规律列方程求解.【详解】解:设小明举起的手臂超出头顶xm,根据题意得,1.8 1.80.60.78x , 解得x=0.54即举起的手臂超出头顶0.54m.故答案为:0.54.【点睛】本题考查同一时刻物体的高度和影长成比例的投影规律,根据规律列比例式求解是解答此题的关键.,15.【解析】【分析】根据一元二次方程的定义ax2+bx+c=0(a≠0),列含m 的不等式求解即可.【详解】解:∵关于x 的方程(m ﹣2)x2﹣2x+1=0是一元二次方程,∴m -2≠0,解析:2m≠【解析】【分析】根据一元二次方程的定义ax2+bx+c=0(a≠0),列含m的不等式求解即可.【详解】解:∵关于x的方程(m﹣2)x2﹣2x+1=0是一元二次方程,∴m-2≠0,∴m≠2.故答案为:m≠2.【点睛】本题考查了一元二次方程的概念,满足二次项系数不为0是解答此题的关键.16.3或9 或或【解析】【分析】先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.【详解】∵AB是半圆O的直径,∴∠ACB=90,∵sin∠C解析:3或9 或23或343【解析】【分析】先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.【详解】∵AB是半圆O的直径,∴∠ACB=90︒,∵sin∠CAB=45,∴45 BCAB=,∵AB=10,∴BC=8,∴6 AC===,∵点D为BC的中点,∵∠ACB=∠DCE=90︒,①当∠CDE1=∠ABC时,△ACB∽△E1CD,如图∴1AC BCCE CD=,即1684CE=,∴CE1=3,∵点E1在射线AC上,∴AE1=6+3=9,同理:AE2=6-3=3.②当∠CE3D=∠ABC时,△ABC∽△DE3C,如图∴3AC BCCD CE=,即3684CE=,∴CE3=163,∴AE3=6+163=343,同理:AE4=6-163=23.故答案为:3或9 或23或343.【点睛】此题考查相似三角形的判定及性质,当三角形的相似关系不是用相似符号连接时,一定要分情况来确定两个三角形的对应关系,这是解此题容易错误的地方.17.110°.【解析】【分析】由圆周角定理,同弧所对的圆心角是圆周角的2倍.可求∠A=∠BOD=70°,再根据圆内接四边形对角互补,可得∠C=180-∠A=110°【详解】∵∠BOD=140°解析:110°.【分析】由圆周角定理,同弧所对的圆心角是圆周角的2倍.可求∠A=12∠BOD=70°,再根据圆内接四边形对角互补,可得∠C=180-∠A=110°【详解】∵∠BOD=140°∴∠A=12∠BOD=70° ∴∠C=180°-∠A=110°,故答案为:110°.【点睛】此题考查圆周角定理,解题的关键在于利用圆内接四边形的性质求角度.18.【解析】【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是即故答案为:.【点睛】本题主要考查二次函解析:22(1)2y x =+-【解析】【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是 22(12)13y x =-++-即22(1)2y x =+-故答案为:22(1)2y x =+-.【点睛】本题主要考查二次函数的平移,掌握平移规律“左加右减,上加下减”是解题的关键. 19.>【分析】利用函数图象可判断点,都在对称轴右侧的抛物线上,然后根据二次函数的性质可判断与的大小.【详解】解:∵抛物线的对称轴在y 轴的左侧,且开口向下,∴点,都在对称轴右侧的抛物线解析:>【解析】【分析】利用函数图象可判断点()11,A y ,()23,B y 都在对称轴右侧的抛物线上,然后根据二次函数的性质可判断1y 与2y 的大小.【详解】解:∵抛物线的对称轴在y 轴的左侧,且开口向下,∴点()11,A y ,()23,B y 都在对称轴右侧的抛物线上,∴1y >2y .故答案为>.【点睛】本题考查二次函数图象上点的坐标特征,二次函数的性质.解决本题的关键是判断点A 和点B 都在对称轴的右侧.20.(1,2)【解析】解:∵点A 的坐标为(2,4),以原点O 为位似中心,把这个三角形缩小为原来的,∴点A′的坐标是(2×,4×),即(1,2).故答案为(1,2). 解析:(1,2)【解析】解:∵点A 的坐标为(2,4),以原点O 为位似中心,把这个三角形缩小为原来的12,∴点A ′的坐标是(2×12,4×12),即(1,2).故答案为(1,2). 21.3000(1+ x)2=4320【解析】【分析】设增长率为x ,则2010年绿化面积为3000(1+x )m2,则2021年的绿化面积为3000(1+x )(1+x )m2,然后可得方程.【详解】解析:3000(1+ x)2=4320【解析】【分析】设增长率为x,则2010年绿化面积为3000(1+x)m2,则2021年的绿化面积为3000(1+x)(1+x)m2,然后可得方程.【详解】解:设增长率为x,由题意得:3000(1+x)2=4320,故答案为:3000(1+x)2=4320.【点睛】本题考查了由实际问题抽象出一元二次方程,关键是正确理解题意,找出题目中的等量关系.22.【解析】【分析】根据重心的性质可得AG:DG=2:1,然后根据平行线分线段成比例定理可得==2,从而求出CE,即可求出结论.【详解】∵点G为△ABC的重心,∴AG:DG=2:1,∵GE解析:【解析】【分析】根据重心的性质可得AG:DG=2:1,然后根据平行线分线段成比例定理可得CEDE=AGDG=2,从而求出CE,即可求出结论.【详解】∵点G为△ABC的重心,∴AG:DG=2:1,∵GE∥AC,∴CEDE=AGDG=2,∴CE=2DE=2×2=4,∴CD=DE+CE=2+4=6.故答案为:6.【点睛】此题考查的是重心的性质和平行线分线段成比例定理,掌握重心的性质和平行线分线段成比例定理是解决此题的关键.23.【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长cm ,设圆锥的母线长为,则: ,解得,故答案为.【点睛】本解析:【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长224ππ=⨯=cm ,设圆锥的母线长为R ,则:1204180R ππ⨯=, 解得6R =,故答案为6.【点睛】本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为: 180n r π. 24.1,,【解析】【分析】根据P 的不同位置,分三种情况讨论,即可解答.【详解】解:如图:当DP∥AB 时∴△DCP∽△BCA∴即,解得DP=1如图:当P 在AB 上,即DP∥AC∴△DC解析:1,83,32 【解析】【分析】 根据P 的不同位置,分三种情况讨论,即可解答. 【详解】解:如图:当DP ∥AB 时∴△DCP ∽△BCA∴DC DP BC AB =即263DP =,解得DP=1 如图:当P 在AB 上,即DP ∥AC∴△DCP ∽△BCA∴BD DP BC AC =即6264DP -=,解得DP=83 如图,当∠CPD=∠B ,且∠C=∠C 时,∴△DCP ∽△ACB∴PD CD AB AC =即243DP =,解得DP=32故答案为1,83,32. 【点睛】本题考查了相似三角形的判定和性质,掌握分类讨论思想并全部找到不同位置的P 点是解答本题的关键.三、解答题25.(1)证明见解析;(2)∠PMO=∠PNO,理由见解析;(3)S平行四边形PMON=63【解析】【分析】(1)利用同弧所对的圆周角相等即可证明相似,(2)由OM⊥ AD,ON⊥BC得到M、N为AB、CD的中点,再由直角三角形斜边中线等于斜边一半即可解题,(3)由三角形中位线性质得∠QBC=90°,进而证明∠QCB=∠PBD,得到四边形MONP为平行四边形即可解题.【详解】(1)因为同弧所对的圆周角相等,所以∠A=∠C, ∠D=∠B,所以△ADP∽△CBP.(2)∠PMO=∠PNO因为OM⊥ AD,ON⊥BC,所以点M、N为AB、CD的中点,又AB⊥CD,所以PM=12AD,PN=12BC,所以,∠A=∠APM,∠C=∠CPN,所以∠AMP=∠CNP,得到∠PMO与∠PNO. (3)连接CO并延长交圆O于点Q,连接BD.因为AB⊥CD,AM=12AD,CN=12BC,所以PM=12AD,PN=12BC.由三角形中位线性质得,ON=1BQ 2.因为CQ为圆O直径,所以∠QBC=90°,则∠Q+∠QCB=90°,由∠DPB=90°,得∠PDB+∠PBD=90°,而∠PDB=∠Q,所以∠QCB=∠PBD,所以BQ=AD,所以PM=ON.同理可得,PN=OM.所以四边形MONP为平行四边形. S平行四边形3【点睛】本题考查了相似三角形的判定和性质,圆的基本知识,圆周角的性质,直角三角形的性质,平行四边形的判定,综合性强,熟悉圆周角的性质是求解(1)的关键,利用斜边中线等于斜边一半这一性质是求解(2)的关键,证明四边形MONP为平行四边形是求解(3)的关键. 26.(1)抛物线与x轴交于点(-1,0)和(3,0);与y轴交于点(0,3);(2)抛物线的对称轴为直线x=1;(3)当x<1时,y随x的增大而增大【解析】【分析】根据表格中数据,可得抛物线与x轴交点坐标,与y轴交点坐标,抛物线的对称轴直线以及抛物线在对称轴左侧的增减性,从而进行解答.【详解】解:由表格数据可知:当x=0时,y=3;当y=0时,x=-1或3∴该函数三条不同的性质为:(1)抛物线与x轴交于点(-1,0)和(3,0);与y轴交于点(0,3);(2)抛物线的对称轴为直线x=1;(3)当x<1时,y随x的增大而增大【点睛】本题考查二次函数性质,数形结合思想解题是本题的解题关键.27.(1)△FAG是等腰三角形,理由见解析;(2)成立,理由见解析;(3)BC=523.【解析】【分析】(1)首先根据圆周角定理及垂直的定义得到∠BAD+∠CAD=90°,∠C+∠CAD=90°,从而得到∠BAD=∠C,然后利用等弧对等角等知识得到AF=BF,从而证得FA=FG,判定等腰三角形;(2)成立,同(1)的证明方法即可得答案;(3)由(2)知∠DAC=∠AGB,推出∠BAD=∠ABG,得到F为BG的中点根据直角三角形的性质得到AF=BF=12BG=13,求得AD=AF﹣DF=13﹣5=8,根据勾股定理得到BD=12,AB=ABC=∠ABD,∠BAC=∠ADB=90°可证明△ABC∽△DBA,根据相似三角形的性质即可得到结论.【详解】(1)△FAG等腰三角形;理由如下:∵BC为直径,∴∠BAC=90°,∴∠ABE+∠AGB=90°,∵AD⊥BC,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∵AE AB,∴∠ABE=∠ACD,∴∠DAC=∠AGB,∴FA=FG,∴△FAG是等腰三角形.(2)成立,理由如下:∵BC为直径,∴∠BAC=90°,∴∠ABE+∠AGB=90°,∵AD⊥BC,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∵AE AB=,∴∠ABE=∠ACD,∴∠DAC=∠AGB,∴FA=FG,∴△FAG是等腰三角形.(3)由(2)知∠DAC=∠AGB,且∠BAD+∠DAC=90°,∠ABG+∠AGB=90°,∴∠BAD=∠ABG,∴AF=BF,∵AF=FG,∴BF=GF,即F为BG的中点,∵△BAG为直角三角形,∴AF=BF=12BG=13,∵DF=5,∴AD=AF﹣DF=13﹣5=8,∴在Rt△BDF中,BD12,∴在Rt△BDA中,AB=∵∠ABC=∠ABD,∠BAC=∠ADB=90°,∴△ABC∽△DBA,∴BCBA=ABDB,∴BC=523,∴⊙O的直径BC=523.【点睛】本题考查圆周角定理、相似三角形的判定与性质及勾股定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;熟练掌握相似三角形的判定定理是解题关键.28.(1)OE ∥BC .理由见解析;(2)125【解析】【分析】(1)连接OC ,根据已知条件可推出E ACO ∠∠=,进一步得出AFO EFC 90ACB ∠∠∠==︒=结论得以证明;(2)根据(1)的结论可得出∠E =∠BCD ,对应的正切值相等,可得出CE 的值,进一步计算出OE 的值,在Rt △AFO 中,设OF =3x ,则AF =4x ,解出x 的值,继而得出OF 的值,从而可得出答案.【详解】解:(1) OE ∥BC .理由如下:连接OC ,∵CD 是⊙O 的切线,∴OC ⊥CD ,∴∠OCE =90︒ ,∴∠OCA +∠ECF =90︒,∵OC =OA ,∴∠OCA =∠CAB .又∵∠CAB =∠E ,∴∠OCA =∠E ,∴∠E +∠ECF =90︒,∴∠EFC =180O -(∠E +∠ECF ) =90︒.∴∠EFC =∠ACB=90︒ ,∴OE ∥BC .(2)由(1)知,OE ∥BC ,∴∠E =∠BCD .在Rt △OCE 中,∵AB =12,∴OC =6,∵tan E =tan ∠BCD =OC CE , ∴468tan 3OC CE DCB ==⨯=∠. ∴OE 2=O C 2+CE 2=62+82,∴OE =10又由(1)知∠EFC =90︒,∴∠AFO=90︒.在Rt△AFO中,∵tan A =tan E=34,∴设OF=3x,则AF=4x.∵OA2=OF2+AF2,即62=(3x)2+(4x)2,解得:65 x=∴185 OF=,∴18321055 EF OE OF=-=-=.【点睛】本题是一道关于圆的综合题目,涉及到的知识点有切线的性质,平行线的判定定理,三角形内角和定理,正切的定义,勾股定理等,熟练掌握以上知识点是解此题的关键.29.1 3 .【解析】【分析】先画树状图得到所有等可能的情况,然后找出符合条件的情况数,利用概率公式求解即可.【详解】画树状图为:由树状图知,共有6种等可能的结果数,其中甲、丙两人成为比赛选手的结果有2种,所以甲、丙两人成为比赛选手的概率为26=13.【点睛】本题考查了列表法或树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.30.(1)DE与⊙O相切;理由见解析;(2)4.【解析】【分析】(1)连接OD,由D为AC的中点,得到AD CD=,进而得到AD=CD,根据平行线的性质得到∠DOA=∠ODE=90°,求得OD⊥DE,于是得到结论;(2)连接BD,根据四边形对角互补得到∠DAB=∠DCE,由AD CD=得到∠DAC=∠DCA =45°,求得△ABD∽△CDE,根据相似三角形的性质即可得到结论.【详解】(1)解:DE与⊙O相切证:连接OD,在⊙O中∵D为AC的中点∴AD CD=∴AD=DC∵AD=DC,点O是AC的中点∴OD⊥AC∴∠DOA=∠DOC=90°∵DE∥AC∴∠DOA=∠ODE=90°∵∠ODE=90°∴OD⊥DE∵OD⊥DE,DE经过半径OD的外端点D∴DE与⊙O相切.(2)解:连接BD∵四边形ABCD是⊙O的内接四边形∴∠DAB+∠DCB=180°又∵∠DCE+∠DCB=180°∴∠DAB=∠DCE∵AC为⊙O的直径,点D、B在⊙O上,∴∠ADC=∠ABC=90°∵AD CD =, ∴∠ABD=∠CBD =45°∵AD =DC ,∠ADC =90°∴∠DAC =∠DCA =45°∵DE ∥AC∴∠DCA =∠CDE =45°在△ABD 和△CDE 中∵∠DAB =∠DCE ,∠ABD =∠CDE =45°∴△ABD ∽△CDE∴AB CD =AD CE∴6CD =163AD ∴AD =DC =42, CE =163,AB =6, 在Rt △ADC 中,∠ADC =90°,AD =DC =42,∴AC =22AD DC +=8∴⊙O 的半径为4.【点睛】本题考查了直线与圆的位置关系,等腰直角三角形的性质,圆周角定理,相似三角形的判定和性质,正确的识别图形是解题的关键.31.(1)245y x x =--,2x =;(2)当x <1-或x >5时,函数值大于0.【解析】【分析】(1)把(-1,0)和点(2,-9)代入y=ax 2-4x+c ,得到一个二元一次方程组,求出方程组的解,即可得到该二次函数的解析式,然后求出对称轴;(2)求得抛物线与x 轴的交点坐标后即可确定正确的答案.【详解】解:(1)∵二次函数24y ax x c =-+的图象过点(−1,0)和点(2,−9), ∴40449a c a c ++=⎧⎨-+=-⎩,解得:15a c =⎧⎨=-⎩, ∴245y x x =--;∴对称轴为:4222b x a -=-=-=; (2)令2450x y x --==,解得:11x =-,25x =,如图:∴点A 的坐标为(1-,0),点B 的坐标为(5,0);∴结合图象得到,当x <1-或x >5时,函数值大于0.【点睛】本题主要考查对用待定系数法求二次函数的解析式及抛物线与x 轴的交点坐标的知识,解题的关键是正确的求得抛物线的解析式.32.(1)100、130或160;(2)选择①或②,理由见解析;(3)见解析;(4)③⑤【解析】【分析】(1)根据“等角点”的定义,分类讨论即可;(2)①根据在同圆中,弧和弦的关系和同弧所对的圆周角相等即可证明;②弧和弦的关系和圆的内接四边形的性质即可得出结论;(3)根据垂直平分线的性质、等边三角形的性质、弧和弦的关系和同弧所对的圆周角相等作图即可;(4)根据“等角点”和“强等角点”的定义,逐一分析判断即可.【详解】(1)(i )若APB ∠=BPC ∠时,∴BPC ∠=APB ∠=100°(ii )若BPC CPA ∠=∠时,∴12BPC CPA ∠=∠=(360°-APB ∠)=130°; (iii )若APB ∠=CPA ∠时,BPC ∠=360°-APB ∠-CPA ∠=160°, 综上所述:BPC ∠=100°、130°或160°故答案为:100、130或160.(2)选择①:连接,PB PC∵DB DC =∴=DB DC∴BPD CPD ∠=∠∵180APB BPD ∠+∠=,180APC CPD ∠+∠=∴APB APC ∠=∠∴P 是ABC ∆的等角点.选择②连接,PB PC∵BC BD =∴BC BD =∴BDC BPD ∠=∠∵四边形PBDC 是圆O 的内接四边形,∴180BDC BPC ∠+∠=∵180BPD APB ∠+∠=∴BPC APB ∠=∠∴P 是ABC ∆的等角点(3)作BC 的中垂线MN ,以C 为圆心,BC 的长为半径作弧交MN 与点D ,连接BD , 根据垂直平分线的性质和作图方法可得:BD=CD=BC∴△BCD 为等边三角形∴∠BDC=∠BCD=∠DBC=60°作CD 的垂直平分线交MN 于点O以O 为圆心OB 为半径作圆,交AD 于点Q ,圆O 即为△BCD 的外接圆∴∠BQC=180°-∠BDC=120°∵BD=CD∴∠BQD=∠CQD∴∠BQA=∠CQA=12(360°-∠BQC )=120° ∴∠BQA=∠CQA=∠BQC如图③,点Q 即为所求. (4)③⑤.①如下图所示,在RtABC 中,∠ABC=90°,O 为△ABC 的内心假设∠BAC=60°,∠ACB=30°∵点O 是△ABC 的内心∴∠BAO=∠CAO=12∠BAC=30°,∠ABO=∠CBO=12∠ABC=45°,∠ACO=∠BCO=12∠ACB=15° ∴∠AOC=180°-∠CAO -∠ACO=135°,∠AOB=180°-∠BAO -∠ABO=105°,∠BOC=180°-∠CBO -∠BCO=120°显然∠AOC ≠∠AOB ≠∠BOC ,故①错误;②对于钝角等腰三角形,它的外心在三角形的外部,不符合等角点的定义,故②错误; ③正三角形的每个中心角都为:360°÷3=120°,满足强等角点的定义,所以正三角形的中心是它的强等角点,故③正确;④由(3)可知,点Q 为△ABC 的强等角,但Q 不在BC 的中垂线上,故QB ≠QC ,故④错误;⑤由(3)可知,当ABC ∆的三个内角都小于120时,ABC ∆必存在强等角点Q .如图④,在三个内角都小于120的ABC ∆内任取一点'Q ,连接'Q A 、'Q B 、'Q C ,将'Q AC ∆绕点A 逆时针旋转60到MAD ∆,连接'Q M ,∵由旋转得'Q A MA =,'Q C MD =,'60Q AM ∠=∴'AQ M ∆是等边三角形.∴''Q M Q A =∴'''''Q A Q B Q C Q M Q B MD ++=++∵B 、D 是定点,∴当B 、'Q 、M 、D 四点共线时,''Q M Q B MD ++最小,即'''Q A Q B Q C ++最小.而当'Q 为ABC ∆的强等角点时,'''120AQ B BQ C CQ A AMD ∠=∠=∠==∠,。

人教版九年级上册数学期末检测试卷(含答案)

人教版九年级上册数学期末检测试卷(含答案)

人教版九年级上册数学期末检测试卷一、选择题(每题3分,共24分) 1. 已知⊙O 的半径为6cm ,点O 到直线l 的距离为7cm ,则直线l 与O 的位置关系是( ) A. 相交 B. 相离 C. 相切 D. 无法确定2. 线段2cm ,8cm 的比例中项为 cm 。

( ) A. 4 B. 4.5 C. ±4 D. ±83. 如图,已知直线a //b//c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E 、B 、D 、F 、AC=3,CE=6,BD=2,DF= ( ) A. 4 B.4.5 C. 3 D. 3.54. 张华同学的身高为1.6米,某一时刻他在阳光下的影长为2米,与他邻近的一棵树的影长为6米,则这棵树的高为 米. ( ) A. 3.2 B. 4.8 C.5.2 D. 5.6第3题图 第8题图5. 把抛物线y =2x ²向左平移2个单位,则平移后抛物线对应的函数表达式是 ( ) A. y=2x ²+2 B. y=2(x-2)² C. y=2x ²+2 D. y=2(x+2)²6. 在△ABC 中,若|21sinA -|+(cosB 22-)²=0,则∠C 的度数是 ( ) A. 45° B. 75° C. 105° D. 120°7. 如下图,小正方形的边长均为1,则下图中的三角形(阴影部分)与△ABC 相似的为( )8. 如图,矩形ABCD 的四个顶点分别在直线l3,l4,l2,l1上。

若直线l1∥l2∥l3∥l4且间距相等,AB =5,BC =3,则tan α的值为 ( ) A. 103 B. 53C. 126D. 25二、填空题(每题3分,共24分)9. 二次函数y=(x-1)²+2的顶点坐标为 。

10. 已知扇形的圆心角为120°,半径为2厘米,则这个扇形的弧长为 厘米。

九年级数学上册期末试卷(培优篇)(Word版 含解析)

九年级数学上册期末试卷(培优篇)(Word版 含解析)

九年级数学上册期末试卷(培优篇)(Word 版 含解析) 一、选择题 1.已知一元二次方程2330p p --=,2330q q --=,则p q +的值为( ) A .3- B .3 C .3- D .32.关于x 的一元一次方程122a x m -+=的解为1x =,则a m -的值为( ) A .5B .4C .3D .2 3.已知3sin 2α=,则α∠的度数是( ) A .30° B .45° C .60° D .90°4.在△ABC 中,若|sinA ﹣12|+(22﹣cosB )2=0,则∠C 的度数是( ) A .45° B .75°C .105°D .120° 5.如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,点M 是AB 上的一点,点N 是CB 上的一点,43=BM CN ,当∠CAN 与△CMB 中的一个角相等时,则BM 的值为( )A .3或4B .83或4C .83或6D .4或66.如图1,S 是矩形ABCD 的AD 边上一点,点E 以每秒k cm 的速度沿折线BS -SD -DC 匀速运动,同时点F 从点C 出发点,以每秒1cm 的速度沿边CB 匀速运动.已知点F 运动到点B 时,点E 也恰好运动到点C ,此时动点E ,F 同时停止运动.设点E ,F 出发t 秒时,△EBF 的面积为2ycm .已知y 与t 的函数图像如图2所示.其中曲线OM ,NP 为两段抛物线,MN 为线段.则下列说法:①点E 运动到点S 时,用了2.5秒,运动到点D 时共用了4秒;②矩形ABCD 的两邻边长为BC =6cm ,CD =4cm ;③sin ∠ABS 3 ④点E 的运动速度为每秒2cm .其中正确的是( )A .①②③B .①③④C .①②④D .②③④7.已知52x y =,则x y y-的值是( ) A .12 B .2 C .32 D .238.如图,点P 为⊙O 外一点,PA 为⊙O 的切线,A 为切点,PO 交⊙O 于点B ,∠P=30°,OB=3,则线段BP 的长为( )A .3B .33C .6D .99.已知反比例函数k y x =的图象经过点(m ,3m ),则此反比例函数的图象在( ) A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限 10.如图,AB 是O 的直径,AC 切O 于点A ,若70C ∠=︒,则AOD ∠的度数为( )A .40°B .45°C .60°D .70°11.下列方程中,关于x 的一元二次方程是( )A .2x ﹣3=xB .2x +3y =5C .2x ﹣x 2=1D .17x x+= 12.已知1x =是方程220x ax ++=的一个根,则方程的另一个根为( )A .-2B .2C .-3D .3二、填空题13.如图,某数学兴趣小组将边长为4的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为__________ .14.若一三角形的三边长分别为5、12、13,则此三角形的内切圆半径为______.15.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是____________.16.抛物线y =3(x+2)2+5的顶点坐标是_____.17.当a≤x≤a+1时,函数y=x 2﹣2x+1的最小值为1,则a 的值为_____.18.如图,ABC ∆是O 的内接三角形,45BAC ∠=︒,BC 的长是54π,则O 的半径是__________.19.数据8,8,10,6,7的众数是__________.20.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶的高度为________m .21.抛物线()2322y x =+-的顶点坐标是______.22.如图,在边长为1的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点O ,则tan ∠AOD=________.23.甲、乙两人在100米短跑训练中,某5次的平均成绩相等,甲的方差是0.12,乙的方差是0.05,这5次短跑训练成绩较稳定的是_____.(填“甲”或“乙”)24.已知关于x 的一元二次方程ax 2+bx +5a =0有两个正的相等的实数根,则这两个相等实数根的和为_____.三、解答题25.习总书记在2020新年贺词中讲到“垃圾分类引领新时尚”为积极响应号召,普及垃圾分类知识,某社区工作人员在一个小区随机抽取了若干名居民,开展垃圾分类知识有奖问答,并用得到的数据绘制了如图所示条形统计图.请根据图中信息,解答下列问题:(1)本次调查一共抽取了______名居民(2)求本次调查获取的样本数据的平均数______:中位数______;(3)杜区决定对该小区2000名居民开展这项有奖问答活动,得10分者设为一等奖.根据调查结果,估计社区工作人员需准备多少份一等奖奖品?26.已知关于x的方程x2+ax+a﹣2=0.(1)求证:不论a取何实数,该方程都有两个不相等的实数根;(2)若该方程的一个根为1,求a的值及该方程的另一根.27.解方程(1)x2-6x-7=0;(2) (2x-1)2=9.28.已知二次函数y=2x2+bx﹣6的图象经过点(2,﹣6),若这个二次函数与x轴交于A.B 两点,与y轴交于点C,求出△ABC的面积.29.如图,某数学兴趣小组为测量一棵古树BH和教学楼CG的高,先在点A处用高1.5米∠为45︒,此时教学楼顶端点G恰好在视线DH 的测角仪测得古树顶端点H的仰角HDE∠为60︒,点A、上,再向前走7米到达点B处,又测得教学楼顶端点G的仰角GEFB、C点在同一水平线上.(1)计算古树BH的高度;≈).(2)计算教学楼CG的高度.(结果精确到0.12 1.4≈3 1.7 30.如图,小明家窗外有一堵围墙AB,由于围墙的遮挡,清晨太阳光恰好从窗户的最高点C射进房间的地板F处,中午太阳光恰好能从窗户的最低点D射进房间的地板E处,小明测得窗子距地面的高度OD=1m,窗高CD=1.5m,并测得OE=1m,OF=5m,求围墙AB 的高度.31.如图,扇形OAB的半径OA=4,圆心角∠AOB=90°,点C是弧AB上异于A、B的一点,过点C作CD⊥OA于点D,作CE⊥OB于点E,连结DE,过点C作弧AB所在圆的切线CG交OA的延长线于点G.(1)求证:∠CGO=∠CDE;(2)若∠CGD=60°,求图中阴影部分的面积.32.(1)如图①,AB为⊙O的直径,点P在⊙O上,过点P作PQ⊥AB,垂足为点Q.说明△APQ∽△ABP;(2)如图②,⊙O的半径为7,点P在⊙O上,点Q在⊙O内,且PQ=4,过点Q作PQ 的垂线交⊙O于点A、B.设PA=x,PB=y,求y与x的函数表达式.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】x x-=的两根,再利用韦达定理即可求解.根据题干可以明确得到p,q是方程2330【详解】x-=的两根,解:由题可知p,q是方程230∴,故选B.【点睛】本题考查了一元二次方程的概念,韦达定理的应用,熟悉韦达定理的内容是解题关键.2.D解析:D【解析】【分析】满足题意的有两点,一是此方程为一元一次方程,即未知数x的次数为1;二是方程的解为x=1,即1使等式成立,根据两点列式求解.【详解】解:根据题意得,a-1=1,2+m=2,解得,a=2,m=0,∴a-m=2.故选:D.【点睛】本题考查一元一次方程的定义及方程解的定义,对定义的理解是解答此题的关键.3.C解析:C【解析】【分析】根据特殊角三角函数值,可得答案.【详解】α=,得α=60°,解:由sin2故选:C.【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.4.C解析:C【解析】【分析】根据非负数的性质列出关系式,根据特殊角的三角函数值求出∠A、∠B的度数,根据三角形内角和定理计算即可.【详解】由题意得,sinA-12=0,22-cosB=0, 即sinA=12,2=cosB , 解得,∠A=30°,∠B=45°,∴∠C=180°-∠A-∠B=105°,故选C .【点睛】本题考查的是非负数的性质的应用、特殊角的三角函数值的计算和三角形内角和定理的应用,熟记特殊角的三角函数值是解题的关键.5.D解析:D【解析】【分析】分两种情形:当CAN B ∠=∠时,CAN CBA ∆∆∽,设3CN k =,4BM k =,可得CN AC AC CB=,解出k 值即可;当CAN MCB ∠=∠时,过点M 作MH CB ⊥,可得CAN BAC ∆∆∽,得出125MH k =,165BH k =,则1685CH k =-,证明ACN CHM ∆∆∽,得出方程求解即可.【详解】解:在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,∴CMB CAB CAN ∠>∠>∠,AB=10,CAN CAB ∴∠≠∠,设3CN k =,4BM k =,①当CAN B ∠=∠时,可得CAN CBA ∆∆∽,∴CN AC AC CB=, ∴3668k =, 32k ∴=, 6BM ∴=.②当CAN MCB ∠=∠时,如图2中,过点M 作MH CB ⊥,可得BMH BAC ∆∆∽,∴BM MH BH BA AC BC ==, ∴41068k MH BH ==, 125MH k ∴=,165BH k =, 1685CH k ∴=-, MCB CAN ∠=∠,90CHM ACN ∠=∠=︒,ACN CHM ∴∆∆∽, ∴CN MH AC CH=, ∴123516685k k k =-, 1k ∴=,4BM ∴=.综上所述,4BM =或6.故选:D .【点睛】本题考相似三角形的判定和性质,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造相似三角形解决问题.6.C解析:C【解析】【分析】①根据函数图像的拐点是运动规律的变化点由图象即可判断.②设AB CD acm ==,BC AD bcm ==,由函数图像利用△EBF 面积列出方程组即可解决问题.③由 2.5BS k =,1.5SD k =,得53BS SD =,设3SD x =,5BS x =,在RT ABS ∆中,由222AB AS BS +=列出方程求出x ,即可判断.④求出BS 即可解决问题.【详解】解:函数图像的拐点时点运动的变化点根据由图象可知点E 运动到点S 时用了2.5秒,运动到点D 时共用了4秒.故①正确.设AB CD acm ==,BC AD bcm ==, 由题意,1··( 2.5)721·(4)42a b a b ⎧-=⎪⎪⎨⎪-=⎪⎩解得46a b =⎧⎨=⎩, 所以4AB CD cm ==,6BC AD cm ==,故②正确,2.5BS k =, 1.5SD k =, ∴53BS SD =,设3SD x =,5BS x =, 在Rt ABS ∆中,222AB AS BS +=,2224(63)(5)x x ∴+-=,解得1x =或134-(舍), 5BS ∴=,3SD =,3AS =,3sin 5AS ABS BS ∴∠==故③错误, 5BS =, 5 2.5k ∴=,2/k cm s ∴=,故④正确,故选:C .【点睛】本题考查二次函数综合题、锐角三角函数、勾股定理、三角形面积、函数图象问题等知识,读懂图象信息是解决问题的关键,学会设未知数列方程组解决问题,把问题转化为方程去思考,是数形结合的好题目,属于中考选择题中的压轴题.7.C解析:C【解析】【分析】设x=5k (k ≠0),y=2k (k ≠0),代入求值即可.【详解】 解:∵52x y = ∴x=5k (k ≠0),y=2k (k ≠0) ∴52322x y k k y k --== 故选:C .【点睛】本题考查分式的性质及化简求值,根据题意,正确计算是解题关键.8.A解析:A【解析】【分析】直接利用切线的性质得出∠OAP=90°,进而利用直角三角形的性质得出OP的长.【详解】连接OA,∵PA为⊙O的切线,∴∠OAP=90°,∵∠P=30°,OB=3,∴AO=3,则OP=6,故BP=6-3=3.故选A.【点睛】此题主要考查了切线的性质以及圆周角定理,正确作出辅助线是解题关键.9.B解析:B【解析】【分析】【详解】解:将点(m,3m)代入反比例函数kyx得,k=m•3m=3m2>0;故函数在第一、三象限,故选B.10.A解析:A【解析】【分析】先依据切线的性质求得∠CAB的度数,然后依据直角三角形两锐角互余的性质得到∠CBA 的度数,然后由圆周角定理可求得∠AOD的度数.【详解】解:∵AC是圆O的切线,AB是圆O的直径,∴AB⊥AC,∴∠CAB=90°,又∵∠C=70°,∴∠CBA=20°,∴∠AOD=40°.故选:A.本题主要考查的是切线的性质、圆周角定理、直角三角形的性质,求得∠CBA=20°是解题的关键.11.C解析:C【解析】【分析】利用一元二次方程的定义判断即可.【详解】A、方程2x﹣3=x为一元一次方程,不符合题意;B、方程2x+3y=5是二元一次方程,不符合题意;C、方程2x﹣x2=1是一元二次方程,符合题意;D、方程x+1x=7是分式方程,不符合题意,故选:C.【点睛】本题考查了一元一次方程的问题,掌握一元一次方程的定义是解题的关键.12.B解析:B【解析】【分析】根据一元二次方程根与系数的关系求解.【详解】设另一根为m,则1•m=2,解得m=2.故选B.【点睛】考查了一元二次方程根与系数的关系.根与系数的关系为:x1+x2=-ba,x1•x2=ca.要求熟练运用此公式解题.二、填空题13.【解析】【分析】【详解】设扇形的圆心角为n°,则根据扇形的弧长公式有:,解得所以解析:16【分析】【详解】设扇形的圆心角为n °,则根据扇形的弧长公式有:π·4=8180n ,解得360πn = 所以22360S ==16360360扇形π4πr π=n 14.【解析】【详解】∵,由勾股定理逆定理可知此三角形为直角三角形,∴它的内切圆半径,解析:【解析】【详解】∵22251213+=,由勾股定理逆定理可知此三角形为直角三角形, ∴它的内切圆半径5121322r +-==, 15.15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解析:15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】解:根据题意得圆锥的底面圆的半径为3,母线长为5,所以这个圆锥的侧面积=12×5×2π×3=15π. 【点睛】本题考查圆锥侧面积的计算,掌握公式,准确计算是本题的解题关键. 16.(﹣2,5)【分析】已知抛物线的顶点式,可直接写出顶点坐标.【详解】解:由y=3(x+2)2+5,根据顶点式的坐标特点可知,顶点坐标为(﹣2,5).故答案为:(﹣2,5).【点解析:(﹣2,5)【解析】【分析】已知抛物线的顶点式,可直接写出顶点坐标.【详解】解:由y=3(x+2)2+5,根据顶点式的坐标特点可知,顶点坐标为(﹣2,5).故答案为:(﹣2,5).【点睛】本题考查二次函数的性质,熟知二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,顶点坐标为(h,k),对称轴为x=h.17.2或﹣1【解析】【分析】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a≤x≤a+1时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.【详解】当y=1时,有x解析:2或﹣1【解析】【分析】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a≤x≤a+1时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.【详解】当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=﹣1,故答案为:2或﹣1.【点睛】本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y=1时x 的值是解题的关键.18.【解析】【分析】连接OB 、OC ,如图,由圆周角定理可得∠BOC 的度数,然后根据弧长公式即可求出半径.【详解】解:连接OB 、OC ,如图,∵,∴∠BOC=90°,∵的长是,∴,解得:解析:52【解析】【分析】连接OB 、OC ,如图,由圆周角定理可得∠BOC 的度数,然后根据弧长公式即可求出半径.【详解】解:连接OB 、OC ,如图,∵45BAC ∠=︒,∴∠BOC =90°,∵BC 的长是54π, ∴9051804OB ππ⋅=, 解得:52OB =. 故答案为:52.【点睛】本题考查了圆周角定理和弧长公式,属于基本题型,熟练掌握上述基本知识是解答的关键.19.8【解析】【分析】根据众数的概念即可得出答案.【详解】众数是指一组数据中出现次数最多的数,题中的8出现次数最多,所以众数是8 故答案为:8.【点睛】本题主要考查众数,掌握众数的概念是解解析:8【解析】【分析】根据众数的概念即可得出答案.【详解】众数是指一组数据中出现次数最多的数,题中的8出现次数最多,所以众数是8故答案为:8.【点睛】本题主要考查众数,掌握众数的概念是解题的关键.20.5【解析】【分析】根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题.【详解】解:设举起手臂之后的身高为x由题可得:1.7:0.85=x:1.1,解得x=2.2,解析:5【解析】【分析】根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题.【详解】解:设举起手臂之后的身高为x由题可得:1.7:0.85=x:1.1,解得x=2.2,则小刚举起的手臂超出头顶的高度为2.2-1.7=0.5m【点睛】本题考查了比例尺的实际应用,属于简单题,明确同一时刻的升高和影长是成比例的是解题关键.21.【解析】【分析】根据题意已知抛物线的顶点式,可据此直接写出顶点坐标.【详解】解:由,根据顶点式的坐标特点可知,顶点坐标为.故答案为:.【点睛】本题考查抛物线的顶点坐标公式,将解析式化解析:()2,2--【解析】【分析】根据题意已知抛物线的顶点式,可据此直接写出顶点坐标.【详解】解:由()2322y x =+-,根据顶点式的坐标特点可知,顶点坐标为()2,2--. 故答案为:()2,2--.【点睛】本题考查抛物线的顶点坐标公式,将解析式化为顶点式y=a (x-h )2+k ,顶点坐标是(h ,k ),对称轴是x=h .22.2【解析】【分析】首先连接BE ,由题意易得BF=CF ,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO :CO=1:3,即可得OF :CF=OF :BF=1:2,在Rt△OBF 中,即可求解析:2【解析】【分析】首先连接BE ,由题意易得BF=CF ,△ACO ∽△BKO ,然后由相似三角形的对应边成比例,易得KO :CO=1:3,即可得OF :CF=OF :BF=1:2,在Rt △OBF 中,即可求得tan ∠BOF 的值,继而求得答案.【详解】如图,连接BE ,∵四边形BCEK 是正方形,∴KF=CF=12CK,BF=12BE,CK=BE,BE⊥CK,∴BF=CF,根据题意得:AC∥BK,∴△ACO∽△BKO,∴KO:CO=BK:AC=1:3,∴KO:KF=1:2,∴KO=OF=12CF=12BF,在Rt△PBF中,tan∠BOF=BFOF=2,∵∠AOD=∠BOF,∴tan∠AOD=2.故答案为2【点睛】此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.23.乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的方差为0解析:乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的方差为0.14,乙的方差为0.06,∴S甲2>S乙2,∴成绩较为稳定的是乙;故答案为:乙.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.24.2【解析】【分析】根据根的判别式,令,可得,解方程求出b =﹣2a ,再把b 代入原方程,根据韦达定理:即可.【详解】当关于x 的一元二次方程ax2+bx+5a =0有两个正的相等的实数根时, ,即解析:【解析】【分析】根据根的判别式,令=0∆,可得2220=0b a -,解方程求出b =﹣,再把b 代入原方程,根据韦达定理:12b x x a+=-即可. 【详解】当关于x 的一元二次方程ax 2+bx +5a =0有两个正的相等的实数根时, =0∆,即2220=0b a -,解得b =﹣a 或b =(舍去),原方程可化为ax 2﹣+5a =0,则这两个相等实数根的和为故答案为:【点睛】本题考查一元二次方程根的判别式和韦达定理,解题的关键是熟练掌握根的判别式和韦达定理。

数学九年级上册 期末试卷(培优篇)(Word版 含解析)

数学九年级上册 期末试卷(培优篇)(Word版 含解析)

数学九年级上册 期末试卷(培优篇)(Word 版 含解析)一、选择题1.一组数据0、-1、3、2、1的极差是( ) A .4B .3C .2D .12.若关于x 的方程 ()2m 110x mx -+-= 是一元二次方程,则m 的取值范围是( ) A .m 1≠. B .m 1=. C .m 1≥ D . m 0≠.3.已知⊙O 的半径是4,圆心O 到直线l 的距离d =6.则直线l 与⊙O 的位置关系是( ) A .相离 B .相切C .相交D .无法判断4.已知2x =3y (x ≠0,y ≠0),则下面结论成立的是( )A .23x y =B .32=y xC .23x y =D .23=y x5.下列图形,是轴对称图形,但不是中心对称图形的是( )A .B .C .D .6.10件产品中有2件次品,从中任意抽取1件,恰好抽到次品的概率是( ) A .12B .13C .14D .157.已知⊙O 的半径为1,点P 到圆心的距离为d ,若关于x 的方程x 2-2x+d=0有实数根,则点P ( )A .在⊙O 的内部B .在⊙O 的外部C .在⊙O 上D .在⊙O 上或⊙O 内部8.二次函数22y x x =-+在下列( )范围内,y 随着x 的增大而增大. A .2x < B .2x >C .0x <D .0x >9.把函数212y x =-的图象,经过怎样的平移变换以后,可以得到函数()21112y x =--+的图象( ) A .向左平移1个单位,再向下平移1个单位 B .向左平移1个单位,再向上平移1个单位 C .向右平移1个单位,再向上平移1个单位 D .向右平移1个单位,再向下平移1个单位 10.学校“校园之声”广播站要选拔一名英语主持人,小莹参加选拔的各项成绩如下: 姓名 读 听 写 小莹928090若把读、听、写的成绩按5:3:2的比例计入个人的总分,则小莹的个人总分为()A.86 B.87 C.88 D.8911.如图,∠1=∠2,要使△ABC∽△ADE,只需要添加一个条件即可,这个条件不可能是()A.∠B=∠D B.∠C=∠E C.AD ABAE AC=D.AC BCAE DE=12.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,下列结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若B(﹣5,y1)、C(﹣1,y2)为函数图象上的两点,则y1<y2.其中正确结论是()A.②④B.①③④C.①④D.②③二、填空题13.如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O 分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…,若点A(53,0)、B(0,4),则点B2020的横坐标为_____.14.若a bb-=23,则ab的值为________.15.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)的图像上部分点的横坐标x和纵坐标y的对应值如下表x…-10123…y…-3-3-139…关于x的方程ax2+bx+c=0一个负数解x1满足k<x1<k+1(k为整数),则k=________.16.数据2,3,5,5,4的众数是____.17.若扇形的半径长为3,圆心角为60°,则该扇形的弧长为___.18.关于x的方程(m﹣2)x2﹣2x+1=0是一元二次方程,则m满足的条件是_____.19.如图,AB是半圆O的直径,AB=10,过点A的直线交半圆于点C,且sin∠CAB=45,连结BC,点D为BC的中点.已知点E在射线AC上,△CDE与△ACB相似,则线段AE的长为________;20.如图,由边长为1的小正方形组成的网格中,点,,,A B C D为格点(即小正方形的顶点),AB与CD相交于点O,则AO的长为_________.21.已知⊙O半径为4,点,A B在⊙O上,21390,sin13BAC B∠=∠=,则线段OC的最大值为_____.22.一元二次方程x2﹣3x+2=0的两根为x1,x2,则x1+x2﹣x1x2=______.23.如图,∠XOY=45°,一把直角三角尺△ABC的两个顶点A、B分别在OX,OY上移动,其中AB=10,那么点O到顶点A的距离的最大值为_____.24.如图,已知PA,PB是⊙O的两条切线,A,B为切点.C是⊙O上一个动点.且不与A,B重合.若∠PAC=α,∠ABC=β,则α与β的关系是_______.三、解答题25.如图,在Rt△ABC中,∠C=90°,矩形DEFG的顶点G、F分别在边AC、BC上,D、E 在边AB上.(1)求证:△ADG∽△FEB;(2)若AD=2GD,则△ADG面积与△BEF面积的比为.26.经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,求两辆车经过这个十字路口时,下列事件的概率:(1)两辆车中恰有一辆车向左转;(2)两辆车行驶方向相同.27.在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的顶点A(-3,0),与y轴交于点B (0,4),在第一象限内有一点P(m,n),且满足4m+3n=12.(1)求二次函数解析式.(2)若以点P为圆心的圆与直线AB、x轴相切,求点P的坐标.(3)若点A关于y轴的对称点为点A′,点C在对称轴上,且2∠CBA+∠PA′O=90◦.求点C的坐标.28.从甲、乙两台包装机包装的质量为300g的袋装食品中各抽取10袋,测得其实际质量如下(单位:g)甲:301,300,305,302,303,302,300,300,298,299乙:305,302,300,300,300,300,298,299,301,305(1)分别计算甲、乙这两个样本的平均数和方差;(2)比较这两台包装机包装质量的稳定性.29.某市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了四次测试,测试成绩如表(单位:环):第一次第二次第三次第四次甲9887乙 10 6 7 9(1)根据表格中的数据,分别计算甲、乙两名运动员的平均成绩;(2)分别计算甲、乙两人四次测试成绩的方差;根据计算的结果,你认为推荐谁参加省比赛更合适?请说明理由.30.在矩形ABCD 中,3AB =,5AD =,E 是射线DC 上的点,连接AE ,将ADE ∆沿直线AE 翻折得AFE ∆.(1)如图①,点F 恰好在BC 上,求证:ABF ∆∽FCE ∆;(2)如图②,点F 在矩形ABCD 内,连接CF ,若1DE =,求EFC ∆的面积; (3)若以点E 、F 、C 为顶点的三角形是直角三角形,则DE 的长为 . 31.已知关于x 的一元二次方程()222140x m x m +++-=.(1)当m 为何值时,方程有两个不相等的实数根?(2)设方程两根分别为1x 、2x ,且21x 、22x 分别是边长为5的菱形的两条对角线,求m 的值.32.(1)如图①,AB 为⊙O 的直径,点P 在⊙O 上,过点P 作PQ ⊥AB ,垂足为点Q .说明△APQ ∽△ABP ;(2)如图②,⊙O 的半径为7,点P 在⊙O 上,点Q 在⊙O 内,且PQ =4,过点Q 作PQ 的垂线交⊙O 于点A 、B .设PA =x ,PB =y ,求y 与x 的函数表达式.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据极差的概念最大值减去最小值即可求解.【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4.故选A.【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.2.A解析:A【解析】【分析】根据一元二次方程的定义可得m﹣1≠0,再解即可.【详解】由题意得:m﹣1≠0,解得:m≠1,故选A.【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.3.A解析:A【解析】【分析】根据直线和圆的位置关系的判定方法,即圆心到直线的距离大于半径,则直线与圆相离进行判断.【详解】解:∵圆心O到直线l的距离d=6,⊙O的半径R=4,∴d>R,∴直线和圆相离.故选:A.【点睛】本题考查直线与圆位置关系的判定.掌握半径和圆心到直线的距离之间的数量关系是解答此题的关键..4.D解析:D【解析】根据比例的性质,把等积式写成比例式即可得出结论. 【详解】A.由内项之积等于外项之积,得x :3=y :2,即32x y=,故该选项不符合题意, B.由内项之积等于外项之积,得x :3=y :2,即32x y=,故该选项不符合题意, C.由内项之积等于外项之积,得x :y =3:2,即32x y =,故该选项不符合题意, D.由内项之积等于外项之积,得2:y =3:x ,即23=y x,故D 符合题意; 故选:D . 【点睛】本题考查比例的性质,熟练掌握比例内项之积等于外项之积的性质是解题关键.5.A解析:A 【解析】 【分析】根据轴对称图形与中心对称图形的概念求解. 【详解】解:A.是轴对称图形,不是中心对称图形,符合题意; B.不是轴对称图形,是中心对称图形,不符合题意; C. 是轴对称图形,是中心对称图形,不符合题意; D. 是轴对称图形,是中心对称图形,不符合题意; 故选:A . 【点睛】本题考查的知识点是识别轴对称图形与中心对称图形,需要注意的是轴对称图形是关于对称轴成轴对称;中心对称图形是关于某个点成中心对称.6.D解析:D 【解析】 【分析】由于10件产品中有2件次品,所以从10件产品中任意抽取1件,抽中次品的概率是21105=. 【详解】解:()21P 105==次品 . 故选:D .本题考查的知识点是用概率公式求事件的概率,根据题目找出全部情况的总数以及符合条件的情况数目是解此题的关键.7.D解析:D【解析】【分析】先根据条件x 2 -2x+d=0有实根得出判别式大于或等于0,求出d的范围,进而得出d与r 的数量关系,即可判断点P和⊙O的关系..【详解】解:∵关于x的方程x 2 -2x+d=0有实根,∴根的判别式△=(-2) 2 -4×d≥0,解得d≤1,∵⊙O的半径为r=1,∴d≤r∴点P在圆内或在圆上.故选:D.【点睛】本题考查了点和圆的位置关系,由点到圆心的距离和半径的数量关系对点和圆的位置关系作出判断是解答此题的重要途径,即当d>r时,点在圆外,当d=r时,点在圆上,当d<r 时,点在圆内.8.C解析:C【解析】【分析】先求函数的对称轴,再根据开口方向确定x的取值范围.【详解】22=-+=--+,2(1)1y x x x<,∵图像的对称轴为x=1,a=-10<时,y随着x的增大而增大,∴当x1故选:C.【点睛】<时,对称轴左增右减,当>时,对称轴左减右增.此题考查二次函数的性质,当a0a09.C解析:C【解析】【分析】根据抛物线顶点的变换规律作出正确的选项.抛物线212y x =-的顶点坐标是00(,),抛物线线()21112y x =--+的顶点坐标是11(,), 所以将顶点00(,)向右平移1个单位,再向上平移1个单位得到顶点11(,), 即将函数212y x =-的图象向右平移1个单位,再向上平移1个单位得到函数()21112y x =--+的图象. 故选:C . 【点睛】 主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.10.C解析:C 【解析】 【分析】利用加权平均数按照比例进一步计算出个人总分即可. 【详解】 根据题意得:92580390288532⨯+⨯+⨯=++(分),∴小莹的个人总分为88分; 故选:C . 【点睛】本题主要考查了加权平均数的求取,熟练掌握相关公式是解题关键.11.D解析:D 【解析】 【分析】先求出∠DAE =∠BAC ,再根据相似三角形的判定方法分析判断即可. 【详解】 ∵∠1=∠2,∴∠1+∠BAE =∠2+∠BAE , ∴∠DAE =∠BAC ,A 、添加∠B =∠D 可利用两角法:有两组角对应相等的两个三角形相似可得△ABC ∽△ADE ,故此选项不合题意;B 、添加∠C =∠E 可利用两角法:有两组角对应相等的两个三角形相似可得△ABC ∽△ADE ,故此选项不合题意;C 、添加AD ABAE AC=可利用两边及其夹角法:两组边对应成比例且夹角相等的两个三角形相似,故此选项不合题意;D 、添加AC BCAE DE=不能证明△ABC ∽△ADE ,故此选项符合题意; 故选:D . 【点睛】本题考查相似三角形的判定,解题的关键是掌握相似三角形判定方法:两角法、两边及其夹角法、三边法、平行线法.12.C解析:C 【解析】 【分析】根据抛物线与x 轴有两个交点可得△=b 2﹣4ac>0,可对①进行判断;由抛物线的对称轴可得﹣2ba=﹣1,可对②进行判断;根据对称轴方程及点A 坐标可求出抛物线与x 轴的另一个交点坐标,可对③进行判断;根据对称轴及二次函数的增减性可对④进行判断;综上即可得答案. 【详解】∵抛物线与x 轴有两个交点,∴b 2﹣4ac >0,即:b 2>4ac ,故①正确, ∵二次函数y =ax 2+bx+c 的对称轴为直线x =﹣1, ∴﹣2ba=﹣1, ∴2a =b ,即:2a ﹣b =0,故②错误.∵二次函数y =ax 2+bx+c 图象的一部分,图象过点A (﹣3,0),对称轴为直线x =﹣1, ∴二次函数与x 轴的另一个交点的坐标为(1,0), ∴当x =1时,有a+b+c =0,故结论③错误; ④∵抛物线的开口向下,对称轴x =﹣1, ∴当x <﹣1时,函数值y 随着x 的增大而增大, ∵﹣5<﹣1则y 1<y 2,则结论④正确 故选:C . 【点睛】本题主要考查二次函数图象与系数的关系,对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左侧;当a 与b 异号时(即ab <0),对称轴在y 轴右侧;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△=b 2-4ac 决定:△>0时,抛物线与x 轴有2个交点;△= 0时,抛物线与x 轴有1个交点;△<0时,抛物线与x轴没有交点.二、填空题13.10100【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差10个单位长度,根据这个规律可以求解.【详解】由图象可知点B2020在第一象限解析:10100【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差10个单位长度,根据这个规律可以求解.【详解】由图象可知点B2020在第一象限,∵OA=53,OB=4,∠AOB=90°,∴AB133===,∴OA+AB1+B1C2=53+133+4=10,∴B2的横坐标为:10,同理:B4的横坐标为:2×10=20,B6的横坐标为:3×10=30,∴点B2020横坐标为:2020102⨯=10100.故答案为:10100.【点睛】本题考查了点的坐标规律变换,通过图形旋转,找到所有B点之间的关系是本题的关键.题目难易程度适中,可以考察学生观察、发现问题的能力.14.【解析】【分析】根据条件可知a与b的数量关系,然后代入原式即可求出答案.【详解】∵=,∴b=a,∴=,故答案为:.【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.解析:5 3【解析】【分析】根据条件可知a与b的数量关系,然后代入原式即可求出答案.【详解】∵a bb-=23,∴b=35 a,∴ab=5335aa=,故答案为:5 3 .【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.15.-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1 的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3解析:-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3代入y=ax2+bx+c得3 1 3ca b c a b c-=⎧⎪-=++⎨⎪-=-+⎩,解得113abc=⎧⎪=⎨⎪=-⎩,∴y=x²+x-3,∵△=b2-4ac=12-4×1×(-3)=13,∴==−1±2,∵1x<0,∴1x=−1-2<0,∵-4≤-3,∴3222 -≤-≤-,∴-≤ 2.5 -,∵整数k满足k<x1<k+1,∴k=-3,故答案为:-3.【点睛】本题考查了二次函数的图象和性质,解题的关键是求出二次函数的解析式.16.5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案解析:5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案为:5.本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.17.【解析】【分析】根据弧长的公式列式计算即可.【详解】∵一个扇形的半径长为3,且圆心角为60°,∴此扇形的弧长为=π.故答案为:π.【点睛】此题考查弧长公式,熟记公式是解题关键.解析:π【解析】【分析】根据弧长的公式列式计算即可.【详解】∵一个扇形的半径长为3,且圆心角为60°,∴此扇形的弧长为603 180π⨯=π.故答案为:π.【点睛】此题考查弧长公式,熟记公式是解题关键.18.【解析】【分析】根据一元二次方程的定义ax2+bx+c=0(a≠0),列含m的不等式求解即可. 【详解】解:∵关于x的方程(m﹣2)x2﹣2x+1=0是一元二次方程,∴m-2≠0,∴m≠解析:2m≠【解析】【分析】根据一元二次方程的定义ax2+bx+c=0(a≠0),列含m的不等式求解即可.【详解】解:∵关于x的方程(m﹣2)x2﹣2x+1=0是一元二次方程,∴m-2≠0,故答案为:m ≠2.【点睛】本题考查了一元二次方程的概念,满足二次项系数不为0是解答此题的关键.19.3或9 或或【解析】【分析】先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.【详解】∵AB 是半圆O 的直径,∴∠ACB=90,∵sin ∠C解析:3或9 或23或343 【解析】【分析】先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.【详解】∵AB 是半圆O 的直径,∴∠ACB=90︒,∵sin ∠CAB=45, ∴45BC AB =, ∵AB=10,∴BC=8,∴6AC ===,∵点D 为BC 的中点,∴CD=4.∵∠ACB=∠DCE=90︒, ①当∠CDE 1=∠ABC 时,△ACB ∽△E 1CD,如图 ∴1AC BC CE CD =,即1684CE =, ∴CE 1=3,∵点E 1在射线AC 上,∴AE 1=6+3=9,同理:AE 2=6-3=3.②当∠CE 3D=∠ABC 时,△ABC ∽△DE 3C ,如图∴3AC BC CD CE =,即3684CE =, ∴CE 3=163, ∴AE 3=6+163=343, 同理:AE 4=6-163=23. 故答案为:3或9 或23或343. 【点睛】此题考查相似三角形的判定及性质,当三角形的相似关系不是用相似符号连接时,一定要分情况来确定两个三角形的对应关系,这是解此题容易错误的地方.20.【解析】【分析】如图所示,由网格的特点易得△CEF ≌△DBF ,从而可得BF 的长,易证△BOF ∽△AOD ,从而可得AO 与AB 的关系,然后根据勾股定理可求出AB 的长,进而可得答案.【详解】解:817 【解析】【分析】如图所示,由网格的特点易得△CEF ≌△DBF ,从而可得BF 的长,易证△BOF ∽△AOD ,从而可得AO 与AB 的关系,然后根据勾股定理可求出AB 的长,进而可得答案.【详解】解:如图所示,∵∠CEB =∠DBF =90°,∠CFE =∠DFB ,CE=DB =1,∴△CEF ≌△DBF ,∴BF =EF =12BE =12, ∵BF ∥AD ,∴△BOF ∽△AOD , ∴11248BO BF AO AD ===, ∴89AO AB =, ∵221417AB =+=, ∴817AO =. 故答案为:817【点睛】本题以网格为载体,考查了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理等知识,属于常考题型,熟练掌握上述基本知识是解答的关键.21.【解析】【分析】过点A 作AE ⊥AO,并使∠AEO =∠ABC,先证明,由三角函数可得出,进而求得,再通过证明,可得出,根据三角形三边关系可得:,由勾股定理可得,求出BE 的最大值,则答案即可求出.41383+ 【解析】【分析】过点A 作AE ⊥AO,并使∠AEO =∠ABC,先证明ABC AEO ∆∆,由三角函数可得出23AO AE =,进而求得6AE =,再通过证明AEB AOC ∆∆,可得出23OC BE =,根据三角形三边关系可得:BE OE OB ≤+,由勾股定理可得213OE =,求出BE 的最大值,则答案即可求出.【详解】解:过点A 作AE ⊥AO,并使∠AEO =∠ABC,∵OAE BAC AEO ABC ∠=∠⎧⎨∠=∠⎩, ∴ABC AEO ∆∆, ∴tan AC AO B AB AE ∠==, ∵13sin 13B ∠=, ∴2213313cos 11313B ⎛⎫∠=-= ⎪ ⎪⎝⎭, ∴213sin 213tan cos 3313B B n B ∠∠===∠, ∴23AO AE =, 又∵4AO =,∴6AE =,∵90,90EAB BAO OAC BAO ∠+∠=︒∠+∠=︒, ∴ =EAB OAC ∠∠, 又∵AC AO AB AE=, ∴AEB AOC ∆∆, ∴23OC AC BE AB ==, ∴23OC BE =, 在△OEB 中,根据三角形三边关系可得:BE OE OB ≤+, ∵222264213OE AE AO =+=+=, ∴2134OE OB +=,∴BE 的最大值为:2134,∴OC 的最大值为:()28433=. 【点睛】 本题主要考查了三角形相似的判定和性质、三角函数、勾股定理及三角形三边关系,解题的关键是构造直角三角形.22.1【解析】【分析】利用根与系数的关系得到x1+x2=3,x1x2=2,然后利用整体代入的方法计算.【详解】解:根据题意得:x1+x2=3,x1x2=2,所以x1+x2-x1x2=3-2=解析:1【解析】【分析】利用根与系数的关系得到x 1+x 2=3,x 1x 2=2,然后利用整体代入的方法计算.【详解】解:根据题意得:x 1+x 2=3,x 1x 2=2,所以x 1+x 2-x 1x 2=3-2=1.故答案为:1.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=-b a ,x 1x 2=c a. 23.10【解析】【分析】当∠ABO=90°时,点O 到顶点A 的距离的最大,则△ABC 是等腰直角三角形,据此即可求解.【详解】解:∵∴当∠ABO=90°时,点O 到顶点A 的距离最大.则OA解析:【解析】【分析】当∠ABO=90°时,点O 到顶点A 的距离的最大,则△ABC 是等腰直角三角形,据此即可求解.【详解】 解:∵sin 45sin AB AO ABO=∠ ∴当∠ABO=90°时,点O 到顶点A 的距离最大.则.故答案是:.【点睛】本题主要考查了等腰直角三角形的性质,正确确定点O 到顶点A 的距离的最大的条件是解题关键.24.或【解析】【分析】分点C 在优弧AB 上和劣弧AB 上两种情况讨论,根据切线的性质得到∠OAC 的度数,再根据圆周角定理得到∠AOC 的度数,再利用三角形内角和定理得出α与β的关系.【详解】解:当点解析:αβ=或180αβ+︒=【解析】【分析】分点C 在优弧AB 上和劣弧AB 上两种情况讨论,根据切线的性质得到∠OAC 的度数,再根据圆周角定理得到∠AOC 的度数,再利用三角形内角和定理得出α与β的关系.【详解】解:当点C 在优弧AB 上时,如图,连接OA 、OB 、OC ,∵PA 是⊙O 的切线,∴∠PAO=90°,∴∠OAC=α-90°=∠OCA ,∵∠AOC=2∠ABC=2β,∴2(α-90°)+2β=180°,∴180αβ+︒=;当点C 在劣弧AB 上时,如图, ∵PA 是⊙O 的切线, ∴∠PAO=90°, ∴∠OAC= 90°-α=∠OCA , ∵∠AOC=2∠ABC=2β, ∴2(90°-α)+2β=180°, ∴αβ=.综上:α与β的关系是180αβ+︒=或αβ=. 故答案为:αβ=或180αβ+︒=. 【点睛】本题考查了切线的性质,圆周角定理,三角形内角和定理,等腰三角形的性质,利用圆周角定理是解题的关键,同时注意分类讨论.三、解答题25.(1)证明见解析;(2)4. 【解析】 【分析】(1)易证∠AGD=∠B ,根据∠ADG=∠BEF=90°,即可证明△ADG ∽△FEB ; (2)相似三角形的性质解答即可. 【详解】(1)证明:∵∠C=90°, ∴∠A+∠B=90°, ∵四边形DEFG 是矩形, ∴∠GDE=∠FED=90°,∴∠GDA+∠FEB=90°, ∴∠A+∠AGD=90°, ∴∠B=∠AGD , 且∠GDA=∠FEB=90°, ∴△ADG ∽△FEB . (2)解:∵△ADG ∽△FEB ,∴AD EFDG BE =, ∵AD =2GD,∴2ADDG =, ∴224ADGFEBS S ==. 【点睛】本题考查了相似三角形的判定与性质,求证△ADG ∽△FEB 是解题的关键. 26.(1)49;(2)13【解析】 【分析】此题可以采用列表法求解.可以得到一共有9种情况,两辆车中恰有一辆车向左转的有4种情况,两辆车行驶方向相同有3种情况,根据概率公式求解即可. 【详解】 解:列表得:相同有3种情况(1)P (两辆车中恰有一辆车向左转)=49; (2)P (两辆车行驶方向相同)=3193=. 【点睛】列表法可以不重不漏的列举出所有可能发生的情况,列举法适合于两步完成的事件,树状图法适合于两步或两步以上完成的事件.解题时注意看清题目的要求,要按要求解题.概率=所求情况数与总情况数之比.27.(1)24(3)9y x =+;(2)P(1511,2411);(3)C(-3,-5)或 (-3,2513) 【解析】 【分析】(1)设顶点式,将B 点代入即可求;(2)根据4m+3n=12确定点P 所在直线的解析式,再根据内切线的性质可知P 点在∠BAO 的角平分线上,求两线交点坐标即为P 点坐标;(3)根据角之间的关系确定C 在∠DBA 的角平分线与对称轴的交点或∠ABO 的角平分线与对称轴的交点,通过求角平分线的解析式即可求. 【详解】(1)∵抛物线的顶点坐标为A(-3,0), 设二次函数解析式为y=a(x+3)2, 将B (0,4)代入得,4=9a ∴a=49∴24(3)9y x =+ (2)如图∵P (m,n),且满足4m+3n=12 ∴443n m =-+ ∴点P 在第一象限的443y x =-+上, ∵以点P 为圆心的圆与直线AB 、x 轴相切, ∴点P 在∠BAO 的角平分线上, ∠BAO 的角平分线:y=1322x +, ∴134=4223x x +-+, ∴x=1511,∴y=2411 ∴P(1511,2411)(3)C(-3,-5)或 (-3,2513)理由如下:如图,A´(3,0),可得直线L A´B的表达式为443y x=-+,∴P点在直线A´B上,∵∠PA´O=∠ABO=∠BAG, 2∠CBA+∠PA′O=90°,∴2∠CBA=90°-∠PA′O=∠GAB,在对称轴上取点D,使∠DBA=∠DAB,作BE⊥AG于G点,设D点坐标为(-3,t)则有(4-t)2+32=t2t=25 8,∴D(-3,25 8),作∠DBA的角平分线交AG于点C即为所求点,设为C1∠DBA的角平分线BC1的解析式为y=913x+4,∴C1的坐标为 (-3, 25 13);同理作∠ABO的角平分线交AG于点C即为所求,设为C2,∠ABO的角平分线BC2的解析式为y=3x+4,∴C2的坐标为(-3,-5).综上所述,点C的坐标为(-3, 2513)或(-3,-5).【点睛】本题考查了二次函数与图形的结合,涉及的知识点角平分线的解析式的确定,切线的性质,勾股定理及图象的交点问题,涉及知识点较多,综合性较强,根据条件,结合图形找准对应知识点是解答此题的关键.28.(1)甲平均数301,乙平均数301,甲方差3.2,乙方差4.2;(2)甲包装机包装质量的稳定性好,见解析【解析】【分析】(1)根据平均数就是对每组数求和后除以数的个数;根据方差公式计算即可;(2)方差大说明这组数据波动大,方差小则波动小,就比较稳定.依此判断即可.【详解】解:(1)x甲=110(1+0+5+2+3+2+0+0﹣2﹣1)+300=301,x乙=110(5+2+0+0+0+0﹣2﹣1+1+5)+300=301,2 s甲=110[(301﹣301)2+(301﹣300)2+(301﹣305)2+(301﹣302)2+(301﹣303)2+(301﹣302)2+(301﹣300)2+(301﹣300)2+(301﹣298)2+(301﹣299)2]=3.2;2 s乙=110[(301﹣305)2+(301﹣302)2+(301﹣300)2+(301﹣300)2+(301﹣300)2+(301﹣300)2+(301﹣298)2+(301﹣299)2+(301﹣301)2+(301﹣305)2]=4.2;(2)∵2s甲<2s 乙,∴甲包装机包装质量的稳定性好. 【点睛】本题考查了平均数和方差,正确掌握平均数及方差的求解公式是解题的关键.29.(1)甲的平均成绩是8,乙的平均成绩是8,(2)推荐甲参加省比赛更合适.理由见解析. 【解析】 【分析】(1)根据平均数的计算公式即可得甲、乙两名运动员的平均成绩;(2)根据方差公式即可求出甲、乙两名运动员的方差,进而判断出荐谁参加省比赛更合适. 【详解】(1)甲的平均成绩是: (9+8+8+7)÷4=8, 乙的平均成绩是: (10+6+7+9)÷4=8, (2)甲的方差是:()()()()22229-8+8-8+8-8+7-148⎡⎤⨯⎣⎦=12,乙的方差是:()()()()2222-8+6-8+7-8+9-814⎡⎤⨯⎣⎦10=52.所以推荐甲参加省比赛更合适.理由如下: 两人的平均成绩相等,说明实力相当;但是甲的四次测试成绩的方差比乙小,说明甲发挥较为稳定, 故推荐甲参加省比赛更合适. 【点睛】本题考查了方差、算术平均数,解决本题的关键是掌握方差、算术平均数的计算公式.30.(1)见解析;(2)EFC ∆的面积为513;(3)53、5、15【解析】 【分析】(1)先说明∠CEF=∠AFB 和90B C ∠=∠=,即可证明ABF ∆∽FCE ∆;(2)过点F 作FG DC ⊥交DC 与点G ,交AB 于点H ,则90EGF AHF ∠=∠=;再结合矩形的性质,证得△FGE ∽△AHF ,得到AH=5GF ;然后运用勾股定理求得GF 的长,最后运用三角形的面积公式解答即可;(3)分点E 在线段CD 上和DC 的延长线上两种情况,然后分别再利用勾股定进行解答即可. 【详解】(1)解:∵矩形ABCD 中, ∴90B C D ∠=∠=∠= 由折叠可得90D EFA ∠=∠= ∵90EFA C ∠=∠=∴90CEF CFE CFE AFB ∠+∠=∠+∠= ∴CEF AFB ∠=∠ 在ABF ∆和FCE ∆中∵AFB CEF ∠=∠,90B C ∠=∠= ∴ABF ∆∽FCE ∆(2)解:过点F 作FG DC ⊥交DC 与点G ,交AB 于点H ,则90EGF AHF ∠=∠= ∵矩形ABCD 中, ∴90D ∠=由折叠可得:90D EFA ∠=∠=,1DE EF ==,5AD AF == ∵90EGF EFA ∠=∠=∴90GEF GFE AFH GFE ∠+∠=∠+∠= ∴GEF AFH ∠=∠ 在FGE ∆和AHF ∆中∵,90GEF AFH EGF FHA ∠=∠∠=∠= ∴FGE ∆∽AHF ∆∴EF GFFA AH = ∴15GF AH = ∴5AH GF =在Rt AHF ∆中,90AHF ∠= ∵222AH FH AF += ∴222(5)(5)5GF GF +-= ∴513GF =∴EFC ∆的面积为155221313⨯⨯= (3)设DE=x ,以点E 、F 、C 为顶点的三角形是直角三角形,则: ①当点E 在线段CD 上时,∠DAE<45°,∴∠AED>45°,由折叠性质得:∠AEF=∠AED>45°, ∴∠DEF=∠AED+∠AEF>90°, ∴∠CEF<90°,∴只有∠EFC=90°或∠ECF=90°,a,当∠EFC=90°时,如图所示:由折叠性质可知,∠AFE=∠D=90°,∴∠AFE+∠EFC=90°,∴点A,F,C在同一条线上,即:点F在矩形的对角线AC上,在Rt△ACD中,AD=5,CD=AB=3,根据勾股定理得,AC=34,由折叠可知知,EF=DE=x,AF=AD=5,∴CF=AC-AF=34-5,在Rt△ECF中,EF2+CF2=CE2,∴x2+(34-5)2=(3-x)2,解得x=5(345)-即:DE=5(345)-b,当∠ECF=90°时,如图所示: 点F在BC上,由折叠知,EF=DE=x,AF=AD=5,在Rt△ABF中,根据勾股定理得,22AF AB-,∴CF=BC-BF=1,在Rt△ECF中,根据勾股定理得,CE2+CF2=EF2,(3-x)2+12=x2,解得x=53,即:DE=53;②当点E在DC延长线上时,CF在∠AFE内部,而∠AFE=90°,∴∠CFE<90°,∴只有∠CEF=90°或∠ECF=90°,a、当∠CEF=90°时,如图所示由折叠知,AD=AF=5,∠AFE=90°=∠D=∠CEF,∴四边形AFED是正方形,∴DE=AF=5;b、当∠ECF=90°时,如图所示:∵∠ABC=∠BCD=90°,∴点F在CB的延长线上,∴∠ABF=90°,由折叠知,EF=DE=x,AF=AD=5,在Rt△ABF中,根据勾股定理得,22-,AF AB∴CF=BC+BF=9,在Rt△ECF中,根据勾股定理得,CE2+CF2=EF2,∴(x-3)2+92=x2,解得x=15,即DE=15,-55(345)、5、15.3【点睛】本题属于相似形综合题,主要考查了相似三角形的判定和性质、折叠的性质、勾股定理等知识点,正确作出辅助线构造相似三角形和直角三角形是解答本题的关键. 31.(1)174m >-;(2)4m =- 【解析】 【分析】(1)由根的判别式2=40b ac ∆->即可求解;(2)根据菱形对角线互相垂直且平分,由勾股定理得222125x x +=,又由一元二次方程根与系数的关系1212, b c x x x x a a+=-=,所以有()2221212122x x x x x x +-=+,据此列出关于m 的方程求解. 【详解】(1)∵方程有两个不相等的实数根, ∴()()22=2144=417m m m ∆+--+>0解得:174m >- ∴当174m >-时,方程有两个不相等的实数根; (2)由题意得: 2221212212521?4x x x x m x x m ⎧+=⎪+=--⎨⎪=-⎩ ∴()()()222222121212=2212424925x x x x x x m m m m ++-=----=++=解得:2m =或4m =-∵21x 、22x 分别是边长为5的菱形的两条对角线 ∴122 1 0x x m +=-->,即12m <- ∴4m =- 【点睛】本题考查一元二次方程根的判别式、结合菱形的性质考查勾股定理和韦达定理,熟知一元二次方程根与系数的关系是解题关键. 32.(1)见解析;(2)56y x= 【解析】 【分析】(1)根据圆周角定理可证∠APB =90°,再根据相似三角形的判定方法:两角对应相等,两个三角形相似即可求证结论;。

数学九年级上册 期末试卷(培优篇)(Word版 含解析)

数学九年级上册 期末试卷(培优篇)(Word版 含解析)

数学九年级上册 期末试卷(培优篇)(Word 版 含解析)一、选择题1.sin 30°的值为( ) A .3B .32C .12D .222.已知二次函数y =ax 2+bx +c 的图像如图所示,则下列结论正确的个数有( ) ①c >0;②b 2-4ac <0;③ a -b +c >0;④当x >-1时,y 随x 的增大而减小.A .4个B .3个C .2个D .1个 3.两个相似三角形的面积比是9:16,则这两个三角形的相似比是( )A .9︰16B .3︰4C .9︰4D .3︰164.某班7名女生的体重(单位:kg )分别是35、37、38、40、42、42、74,这组数据的众数是( ) A .74B .44C .42D .405.下列图形,是轴对称图形,但不是中心对称图形的是( )A .B .C .D .6.10件产品中有2件次品,从中任意抽取1件,恰好抽到次品的概率是( ) A .12B .13C .14D .157.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是A .B .C .D .8.13名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前6名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这13名同学成绩的( ) A .方差B .众数C .平均数D .中位数9.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )A .3π+B .3π-C .23π-D .223π- 10.有一组数据:4,6,6,6,8,9,12,13,这组数据的中位数为( ) A .6B .7C .8D .911.如图,点A 、B 、C 在⊙O 上,∠ACB =130°,则∠AOB 的度数为( )A .50°B .80°C .100°D .110° 12.一组数据10,9,10,12,9的平均数是( )A .11B .12C .9D .10二、填空题13.若方程2410x x -+=的两根12,x x ,则122(1)x x x 的值为__________. 14.如图是测量河宽的示意图,AE 与BC 相交于点D ,∠B=∠C=90°,测得BD=120m ,DC=60m ,EC=50m ,求得河宽AB=______m .15.如图,点A 、B 分别在y 轴和x 轴正半轴上滑动,且保持线段AB =4,点D 坐标为(4,3),点A 关于点D 的对称点为点C ,连接BC ,则BC 的最小值为_____.16.如图,AB 是半圆O 的直径,AB=10,过点A 的直线交半圆于点C ,且sin ∠CAB=45,连结BC ,点D 为BC 的中点.已知点E 在射线AC 上,△CDE 与△ACB 相似,则线段AE 的长为________;17.如图,∠C=∠E=90°,AC=3,BC=4,AE=2,则AD=_________ .18.把抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是__________.19.如图,五边形 ABCDE 是⊙O 的内接正五边形, AF 是⊙O 的直径,则∠ BDF 的度数是___________°.20.已知正方形ABCD 边长为4,点P 为其所在平面内一点,PD 5,∠BPD =90°,则点A 到BP 的距离等于_____.21.在Rt△ABC中,两直角边的长分别为6和8,则这个三角形的外接圆半径长为_____.22.如图,一块飞镖游戏板由大小相等的小正方形构成,向游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),击中黑色区域的概率是_____.x+=x这样的方程,可以通过方程两边平方把它转化为2x+3=x2,解得x1=23.像233,x2=﹣1.但由于两边平方,可能产生增根,所以需要检验,经检验,当x1=3时,9=3满足题意;当x2=﹣1时,1=﹣1不符合题意;所以原方程的解是x=3.运用以上x+=1的解为_____.经验,则方程x+524.若圆弧所在圆的半径为12,所对的圆心角为60°,则这条弧的长为_____.三、解答题25.某校九年级(2)班A、B、C、D四位同学参加了校篮球队选拔.(1)若从这四人中随杋选取一人,恰好选中B参加校篮球队的概率是______;(2)若从这四人中随机选取两人,请用列表或画树状图的方法求恰好选中B、C两位同学参加校篮球队的概率.26.某校举行秋季运动会,甲、乙两人报名参加100 m比赛,预赛分A、B、C三组进行,运动员通过抽签决定分组.(1)甲分到A组的概率为;(2)求甲、乙恰好分到同一组的概率.27.对于代数式ax2+bx+c,若存在实数n,当x=n时,代数式的值也等于n,则称n为这个代数式的不变值.例如:对于代数式x2,当x=0时,代数式等于0;当x=1时,代数式等于1,我们就称0和1都是这个代数式的不变值.在代数式存在不变值时,该代数式的最大不变值与最小不变值的差记作A.特别地,当代数式只有一个不变值时,则A=0.(1)代数式x2﹣2的不变值是,A=.(2)说明代数式3x2+1没有不变值;(3)已知代数式x2﹣bx+1,若A=0,求b的值.28.如图,已知直线l切⊙O于点A,B为⊙O上一点,过点B作BC⊥l,垂足为点C,连接AB、OB.(1)求证:∠ABC=∠ABO;(2)若AB=10,AC=1,求⊙O的半径.29.如图,在正方形ABCD中,AB=4,动点P从点A出发,以每秒2个单位的速度,沿线段AB方向匀速运动,到达点B停止.连接DP交AC于点E,以DP为直径作⊙O交AC于点F,连接DF、PF.(1)求证:△DPF为等腰直角三角形;(2)若点P的运动时间t秒.①当t为何值时,点E恰好为AC的一个三等分点;②将△EFP沿PF翻折,得到△QFP,当点Q恰好落在BC上时,求t的值.30.九(3)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表:甲789710109101010乙10879810109109(1)计算乙队的平均成绩和方差;(2)已知甲队成绩的方差是1.4分2,则成绩较为整齐的是哪个队?31.已知二次函数y=a2x−4x+c的图象过点(−1,0)和点(2,−9),(1)求该二次函数的解析式并写出其对称轴;(2)当x满足什么条件时,函数值大于0?(不写求解过程),32.如图甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果点P由点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为1cm/s.连接PQ,设运动时间为t(s)(0<t<4),解答下列问题:(1)设△APQ的面积为S,当t为何值时,S取得最大值,S的最大值是多少;(2)如图乙,连接PC,将△PQC沿QC翻折,得到四边形PQP′C,当四边形PQP′C为菱形时,求t的值;(3)当t为何值时,△APQ是等腰三角形.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:sin 30°=1 2故选C【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键.2.C解析:C【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:由图象可知,a<0,c>0,故①正确;抛物线与x轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0,故③正确;由图象可知,图象开口向下,对称轴x>-1,在对称轴右侧, y随x的增大而减小,而在对称轴左侧和-1之间,是y随x的增大而减小,故④错误.故选:C.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a 共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.3.B解析:B【解析】试题分析:根据相似三角形中,面积比等于相似比的平方,即可得到结果.因为面积比是9:16,则相似比是3︰4,故选B. 考点:本题主要考查了相似三角形的性质点评:解答本题的关键是掌握相似三角形面积的比等于相似比的平方4.C解析:C 【解析】试题分析:众数是这组数据中出现次数最多的数据,在这组数据中42出现次数最多,故选C. 考点:众数.5.A解析:A 【解析】 【分析】根据轴对称图形与中心对称图形的概念求解. 【详解】解:A.是轴对称图形,不是中心对称图形,符合题意; B.不是轴对称图形,是中心对称图形,不符合题意; C. 是轴对称图形,是中心对称图形,不符合题意; D. 是轴对称图形,是中心对称图形,不符合题意; 故选:A . 【点睛】本题考查的知识点是识别轴对称图形与中心对称图形,需要注意的是轴对称图形是关于对称轴成轴对称;中心对称图形是关于某个点成中心对称.6.D解析:D 【解析】 【分析】由于10件产品中有2件次品,所以从10件产品中任意抽取1件,抽中次品的概率是21105=. 【详解】解:()21P 105==次品 . 故选:D . 【点睛】本题考查的知识点是用概率公式求事件的概率,根据题目找出全部情况的总数以及符合条件的情况数目是解此题的关键.7.C解析:C【分析】x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.【详解】x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选C.8.D解析:D【解析】【分析】由于有13名同学参加歌咏比赛,要取前6名参加决赛,故应考虑中位数的大小.【详解】共有13名学生参加比赛,取前6名,所以小红需要知道自己的成绩是否进入前六.我们把所有同学的成绩按大小顺序排列,第7名学生的成绩是这组数据的中位数,所以小红知道这组数据的中位数,才能知道自己是否进入决赛.故选D.【点睛】本题考查了用中位数的意义解决实际问题.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9.D解析:D【解析】【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【详解】过A作AD⊥BC于D,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∴BD=CD=1,AD=3BD=3, ∴△ABC 的面积为12BC•AD=1232⨯⨯=3, S 扇形BAC =2602360π⨯=23π,∴莱洛三角形的面积S=3×23π﹣2×3=2π﹣23, 故选D .【点睛】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.10.B解析:B 【解析】 【分析】先把这组数据按顺序排列:4,6,6,6,8,9,12,13,根据中位数的定义可知:这组数据的中位数是6,8的平均数. 【详解】∵一组数据:4,6,6,6,8,9,12,13, ∴这组数据的中位数是()6821427+÷÷==, 故选:B . 【点睛】本题考查中位数的计算,解题的关键是熟练掌握中位数的求解方法:先将数据按大小顺序排列,当数据个数为奇数时,最中间的那个数据是中位数,当数据个数为偶数时,居于中间的两个数据的平均数才是中位数.11.C解析:C 【解析】 【分析】根据圆内接四边形的性质和圆周角定理即可得到结论. 【详解】在优弧AB 上任意找一点D ,连接AD ,BD .∵∠D =180°﹣∠ACB =50°, ∴∠AOB =2∠D =100°, 故选:C . 【点睛】本题考查了圆周角定理,圆内接四边形的性质,正确的作出辅助线是解题的关键.12.D解析:D 【解析】 【分析】利用平均数的求法求解即可. 【详解】这组数据10,9,10,12,9的平均数是1(10910129)105++++= 故选:D . 【点睛】本题主要考查平均数,掌握平均数的求法是解题的关键.二、填空题 13.5 【解析】 【分析】根据根与系数的关系求出,代入即可求解. 【详解】 ∵是方程的两根 ∴=-=4,==1 ∴===4+1=5, 故答案为:5. 【点睛】此题主要考查根与系数的关系,解题的关键是解析:5 【解析】 【分析】根据根与系数的关系求出12x x +,12x x ⋅代入即可求解. 【详解】∵12,x x 是方程2410x x -+=的两根 ∴12x x +=-b a =4,12x x ⋅=c a=1∴122(1)x x x =1122x x x x ++=1212x x x x ++=4+1=5,故答案为:5.【点睛】此题主要考查根与系数的关系,解题的关键是熟知12x x +=-b a ,12x x ⋅=c a的运用. 14.100【解析】【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB 的长.【详解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△E解析:100【解析】【分析】由两角对应相等可得△BAD ∽△CED ,利用对应边成比例即可得两岸间的大致距离AB 的长.【详解】解:∵∠ADB=∠EDC ,∠ABC=∠ECD=90°,∴△ABD ∽△ECD , ∴AB BD EC CD=, 即BD EC AB CD ⨯=, 解得:AB=1205060⨯ =100(米). 故答案为100.【点睛】 本题主要考查了相似三角形的应用,用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.15.6【解析】【分析】取AB 的中点E ,连接OE ,DE ,OD ,依据三角形中位线定理即可得到BC=2DE ,再根据O ,E ,D 在同一直线上时,DE 的最小值等于OD-OE=3,即可得到BC 的最小值等于6.解析:6【解析】【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于6.【详解】解:如图所示,取AB的中点E,连接OE,DE,OD,由题可得,D是AC的中点,∴DE是△ABC的中位线,∴BC=2DE,∵点D坐标为(4,3),∴OD22345,∵Rt△ABO中,OE=12AB=12×4=2,∴当O,E,D在同一直线上时,DE的最小值等于OD﹣OE=3,∴BC的最小值等于6,故答案为:6.【点睛】本题主要考查了勾股定理,三角形三条边的关系,直角三角形斜边上中线的性质以及三角形中位线定理的运用,解决问题的关键是掌握直角三角形斜边上中线的性质以及三角形中位线定理.16.3或9 或或【解析】【分析】先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.【详解】∵AB是半圆O的直径,∴∠ACB=90,∵sin∠C解析:3或9 或23或343【解析】【分析】 先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.【详解】 ∵AB 是半圆O 的直径,∴∠ACB=90︒,∵sin ∠CAB=45, ∴45BC AB =, ∵AB=10,∴BC=8,∴22221086AC AB BC =-=-=,∵点D 为BC 的中点,∴CD=4.∵∠ACB=∠DCE=90︒, ①当∠CDE 1=∠ABC 时,△ACB ∽△E 1CD,如图∴1AC BC CE CD =,即1684CE =, ∴CE 1=3,∵点E 1在射线AC 上,∴AE 1=6+3=9,同理:AE 2=6-3=3.②当∠CE 3D=∠ABC 时,△ABC ∽△DE 3C ,如图∴3AC BC CD CE =,即3684CE =, ∴CE 3=163,∴AE3=6+163=343,同理:AE4=6-163=23.故答案为:3或9 或23或343.【点睛】此题考查相似三角形的判定及性质,当三角形的相似关系不是用相似符号连接时,一定要分情况来确定两个三角形的对应关系,这是解此题容易错误的地方.17..【解析】试题分析:由∠C=∠E=90°,∠BAC=∠DAE可得△ABC∽△ADE,根据相似三角形的对应边的比相等就可求出AD的长.试题解析:∵∠C=∠E=90°,∠BAC=∠DAE∴△AB解析:10 3.【解析】试题分析:由∠C=∠E=90°,∠BAC=∠DAE可得△ABC∽△ADE,根据相似三角形的对应边的比相等就可求出AD的长.试题解析:∵∠C=∠E=90°,∠BAC=∠DAE∴△ABC∽△ADE∴AC:AE=BC:DE∴DE=83∴103AD=考点: 1.相似三角形的判定与性质;2.勾股定理.18.【解析】【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是即故答案为:.【点睛】本题主要考查二次函解析:22(1)2y x =+-【解析】【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是 22(12)13y x =-++-即22(1)2y x =+-故答案为:22(1)2y x =+-.【点睛】本题主要考查二次函数的平移,掌握平移规律“左加右减,上加下减”是解题的关键. 19.54【解析】【分析】连接AD ,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C=108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=1解析:54【解析】【分析】连接AD ,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C=108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=18°,于是得到结论.【详解】连接AD ,∵AF 是⊙O 的直径,∴∠ADF=90°,∵五边形ABCDE 是⊙O 的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为54.【点睛】本题考查正多边形与圆,圆周角定理等知识,解题的关键灵活运用所学知识解决问题.20.或【解析】【分析】由题意可得点P在以D为圆心,为半径的圆上,同时点P也在以BD为直径的圆上,即点P是两圆的交点,分两种情况讨论,由勾股定理可求BP,AH的长,即可求点A到BP的距离.【详解】解析:335+或335-【解析】【分析】由题意可得点P在以D为圆心,5为半径的圆上,同时点P也在以BD为直径的圆上,即点P是两圆的交点,分两种情况讨论,由勾股定理可求BP,AH的长,即可求点A到BP 的距离.【详解】∵点P满足PD=5,∴点P在以D为圆心,5为半径的圆上,∵∠BPD=90°,∴点P在以BD为直径的圆上,∴如图,点P是两圆的交点,若点P在AD上方,连接AP,过点A作AH⊥BP,∵CD=4=BC,∠BCD=90°,∴BD =∵∠BPD =90°,∴BP ,∵∠BPD =90°=∠BAD ,∴点A ,点B ,点D ,点P 四点共圆,∴∠APB =∠ADB =45°,且AH ⊥BP ,∴∠HAP =∠APH =45°,∴AH =HP ,在Rt △AHB 中,AB 2=AH 2+BH 2,∴16=AH 2+(AH )2,∴AH =2(不合题意),或AH =2, 若点P 在CD 的右侧,同理可得AH =2,综上所述:AH =2或2. 【点睛】本题是正方形与圆的综合题,正确确定点P 是以D BD 为直径的圆的交点是解决问题的关键.21.5【解析】【分析】根据直角三角形外接圆的直径是斜边的长进行求解即可.【详解】由勾股定理得:AB ==10,∵∠ACB=90°,∴AB 是⊙O 的直径,∴这个三角形的外接圆直径是10;∴这解析:5【解析】【分析】根据直角三角形外接圆的直径是斜边的长进行求解即可.【详解】由勾股定理得:AB =10,∵∠ACB=90°,∴AB是⊙O的直径,∴这个三角形的外接圆直径是10;∴这个三角形的外接圆半径长为5,故答案为5.【点睛】本题考查了90度的圆周角所对的弦是直径,熟练掌握是解题的关键.22.【解析】【分析】根据几何概率的求解公式即可求解.【详解】解:∵总面积为9个小正方形的面积,其中阴影部分面积为3个小正方形的面积∴飞镖落在阴影部分的概率是,故答案为.【点睛】此题主要解析:1 3【解析】【分析】根据几何概率的求解公式即可求解.【详解】解:∵总面积为9个小正方形的面积,其中阴影部分面积为3个小正方形的面积∴飞镖落在阴影部分的概率是31 93 ,故答案为13.【点睛】此题主要考查概率的求解,解题的关键是熟知几何概率的公式. 23.x=﹣1【解析】根据等式的性质将x移到等号右边,再平方,可得一元二次方程,根据解一元二次方程,可得答案.【详解】解:将x移到等号右边得到:=1﹣x,两边平方,得x+5=1﹣2x解析:x=﹣1【解析】【分析】根据等式的性质将x移到等号右边,再平方,可得一元二次方程,根据解一元二次方程,可得答案.【详解】解:将x1﹣x,两边平方,得x+5=1﹣2x+x2,解得x1=4,x2=﹣1,检验:x=4时,=5,左边≠右边,∴x=4不是原方程的解,当x=﹣1时,﹣1+2=1,左边=右边,∴x=﹣1是原方程的解,∴原方程的解是x=﹣1,故答案为:x=﹣1.【点睛】本题主要考查解无理方程的知识点,去掉根号把无理式化成有理方程是解题的关键,注意观察方程的结构特点,把无理方程转化成一元二次方程的形式进行解答,需要同学们仔细掌握.24.4π【解析】【分析】直接利用弧长公式计算即可求解.【详解】l==4π,故答案为:4π.【点睛】本题考查弧长计算公式,解题的关键是掌握:弧长l=(n是弧所对应的圆心角度数)解析:4π【解析】直接利用弧长公式计算即可求解. 【详解】 l =6012180π⨯=4π, 故答案为:4π.【点睛】 本题考查弧长计算公式,解题的关键是掌握:弧长l =180n r π(n 是弧所对应的圆心角度数) 三、解答题25.(1)14;(2)P (BC 两位同学参加篮球队)16= 【解析】【分析】(1)根据概率公式P m n=(n 次试验中,事件A 出现m 次)计算即可 (2)用列表法求得全部情况的总数与符合条件的情况数目,二者的比值就是其发生的概率.【详解】解:(1)()1P B 4= 恰好选中B 参加校篮球队的概率是14. (2)列表格如下:∴P (BC 两位同学参加篮球队)21126== 【点睛】 本题考查的是用列表法或树状图法求事件的概率问题,通过题目找出全部情况的总数与符合条件的情况数目与熟记概率公式是解题的关键.26.(1)13;(2)13【解析】【分析】(1)直接利用概率公式求出甲分到A组的概率;(2)将所有情况列出,找出满足条件:甲、乙恰好分到同一组的情况有几种,计算出概率.【详解】解:(1)1 3(2)甲乙两人抽签分组所有可能出现的结果有:(A,A)、(A,B)、(A,C)、(B,A)、(B,B)、(B,C)、(C,A)、(C,B)、(C,C)共有9种,它们出现的可能性相同.所有的结果中,满足“甲乙分到同一组”(记为事件A)的结果有3种,所以P(A)=13.【点睛】此题主要考查了树状图法求概率,正确利用列举出所有可能并熟练掌握概率公式是解题关键.27.(1)﹣1和2;3;(2)见解析;(3)﹣3或1【解析】【分析】(1)根据不变值的定义可得出关于x的一元二次方程,解之即可求出x的值,再做差后可求出A的值;(2)由方程的系数结合根的判别式可得出方程3x2﹣x+1=0没有实数根,进而可得出代数式3x2+1没有不变值;(3)由A=0可得出方程x2﹣(b+1)x+1=0有两个相等的实数根,进而可得出△=0,解之即可得出结论.【详解】解:(1)依题意,得:x2﹣2=x,即x2﹣x﹣2=0,解得:x1=﹣1,x2=2,∴A=2﹣(﹣1)=3.故答案为﹣1和2;3.(2)依题意,得:3x2 +1=x,∴3x2﹣x+1=0,∵△=(﹣1)2﹣4×3×1=﹣11<0,∴该方程无解,即代数式3x2+1没有不变值.(3)依题意,得:方程x2﹣bx+1= x即x2﹣(b+1)x+1=0有两个相等的实数根,∴△=[﹣(b+1)]2﹣4×1×1=0,∴b1=﹣3,b2=1.答:b的值为﹣3或1.【点睛】本题考查了一元二次方程的应用以及根的判别式,根据不变值的定义,求出一元二次方程的解是解题的关键.28.(1)详见解析;(2)⊙O 的半径是132. 【解析】【分析】(1)连接OA ,求出OA ∥BC ,根据平行线的性质和等腰三角形的性质得出∠OBA =∠OAB ,∠OBA =∠ABC ,即可得出答案;(2)根据矩形的性质求出OD =AC =1,根据勾股定理求出BC ,根据垂径定理求出BD ,再根据勾股定理求出OB 即可.【详解】(1)证明:连接OA ,∵OB =OA ,∴∠OBA =∠OAB ,∵AC 切⊙O 于A ,∴OA ⊥AC ,∵BC ⊥AC ,∴OA ∥BC , ∴∠OBA =∠ABC ,∴∠ABC =∠ABO ;(2)解:过O 作OD ⊥BC 于D ,∵OD ⊥BC ,BC ⊥AC ,OA ⊥AC ,∴∠ODC =∠DCA =∠OAC =90°,∴OD =AC =1,在Rt △ACB 中,AB 10AC =1,由勾股定理得:BC ()22101-=3,∵OD ⊥BC ,OD 过O ,∴BD=DC=12BC=132⨯=1.5,在Rt△ODB中,由勾股定理得:OB2=,即⊙O的半径是2.【点睛】此题主要考查切线的性质及判定,解题的关键熟知等腰三角形的性质、垂径定理及切线的性质.29.(1)详见解析;(2)①1;1.【解析】【分析】(1)要证明三角形△DPF为等腰直角三角形,只要证明∠DFP=90°,∠DPF=∠PDF=45°即可,根据直径所对的圆周角是90°和同弧所对的圆周角相等,可以证明∠DFP=90°,∠DPF=∠PDF=45°,从而可以证明结论成立;(2)①根据题意,可知分两种情况,然后利用分类讨论的方法,分别计算出相应的t的值即可,注意点P从A出发到B停止,t≤4÷2=2;②根据题意,画出相应的图形,然后利用三角形相似,勾股定理,即可求得t的值.【详解】证明:(1)∵四边形ABCD是正方形,AC是对角线,∴∠DAC=45°,∵在⊙O中,DF所对的圆周角是∠DAF和∠DPF,∴∠DAF=∠DPF,∴∠DPF=45°,又∵DP是⊙O的直径,∴∠DFP=90°,∴∠FDP=∠DPF=45°,∴△DFP是等腰直角三角形;(2)①当AE:EC=1:2时,∵AB∥CD,∴∠DCE=∠PAE,∠CDE=∠APE,∴△DCE∽△PAE,∴DC CEPA AE=,∴4221t=,解得,t=1;当AE:EC=2:1时,∵AB∥CD,∴∠DCE =∠PAE ,∠CDE =∠APE ,∴△DCE ∽△PAE , ∴DC CE PA AE =, ∴4122t =, 解得,t =4,∵点P 从点A 到B ,t 的最大值是4÷2=2,∴当t =4时不合题意,舍去;由上可得,当t 为1时,点E 恰好为AC 的一个三等分点;②如右图所示,∵∠DPF =90°,∠DPF =∠OPF ,∴∠OPF =90°,∴∠DPA +∠QPB =90°,∵∠DPA +∠PDA =90°,∴∠PDA =∠QPB ,∵点Q 落在BC 上,∴∠DAP =∠B =90°,∴△DAP ∽△PBQ , ∴DA DP PB PQ=, ∵DA =AB =4,AP =2t ,∠DAP =90°,∴DP=PB =4﹣2t ,设PQ =a ,则PE =a ,DE =DP ﹣a =a ,∵△AEP ∽△CED , ∴AP PE CD DE =,即24t = 解得,a=22t+, ∴PQ,∴4422t t=-+,解得,t 11(舍去),t 21,即t 的值是5﹣1.【点睛】此题主要考查四边形综合,解题的关键是熟知正方形的性质、圆周角定理、相似三角形的判定与性质.30.(1)9,1;(2)乙【解析】【分析】(1)根据平均数与方差的定义即可求解;(2)根据方差的性质即可判断乙队整齐.【详解】(1)乙队的平均成绩是:1(10482793)10⨯⨯+⨯++⨯=9 方差是:222214(109)2(89)(79)3(99)110⎡⎤⨯⨯-+⨯-+-+⨯-=⎣⎦ (2)∵乙队的方差<甲队的方差∴成绩较为整齐的是乙队.【点睛】此题主要考查平均数与方差,解题的关键是熟知平均数与方差的求解公式及方差的性质.31.(1)245y x x =--,2x =;(2)当x <1-或x >5时,函数值大于0.【解析】【分析】(1)把(-1,0)和点(2,-9)代入y=ax 2-4x+c ,得到一个二元一次方程组,求出方程组的解,即可得到该二次函数的解析式,然后求出对称轴;(2)求得抛物线与x 轴的交点坐标后即可确定正确的答案.【详解】解:(1)∵二次函数24y ax x c =-+的图象过点(−1,0)和点(2,−9), ∴40449a c a c ++=⎧⎨-+=-⎩, 解得:15a c =⎧⎨=-⎩, ∴245y x x =--;∴对称轴为:4222b x a -=-=-=;(2)令2450x y x --==,解得:11x =-,25x =,如图:∴点A 的坐标为(1-,0),点B 的坐标为(5,0);∴结合图象得到,当x <1-或x >5时,函数值大于0. 【点睛】本题主要考查对用待定系数法求二次函数的解析式及抛物线与x 轴的交点坐标的知识,解题的关键是正确的求得抛物线的解析式.32.(1)当t 为52秒时,S 最大值为185;(2)2013; (3)52或2513或4013. 【解析】【分析】(1)过点P 作PH ⊥AC 于H ,由△APH ∽△ABC ,得出=PH AP BC AB ,从而求出AB ,再根据535PH t -,得出PH=3﹣35t ,则△AQP 的面积为:12AQ•PH=12t (3﹣35t ),最后进行整理即可得出答案;(2)连接PP′交QC 于E ,当四边形PQP′C 为菱形时,得出△APE ∽△ABC ,=AE AP AC AB ,求出AE=﹣45t+4,再根据QE=AE ﹣AQ ,QE=12QC 得出﹣95t+4=﹣12t+2,再求t 即可; (3)由(1)知,PD=﹣35t+3,与(2)同理得:QD=﹣95t+4,从而求出218t 18t 255-+△APQ 中,分三种情况讨论:①当AQ=AP ,即t=5﹣t ,②当PQ=AQ 218t 18t 255-+,③当PQ=AP 218t 18t 255-+﹣t ,再分别计算即可.【详解】解:(1)如图甲,过点P 作PH ⊥AC 于H ,∵∠C=90°,∴AC ⊥BC ,∴PH ∥BC ,∴△APH ∽△ABC , ∴=PH AP BC AB, ∵AC=4cm ,BC=3cm ,∴AB=5cm , ∴5=35PH t -, ∴PH=3﹣35t , ∴△AQP 的面积为: S=12×AQ×PH=12×t×(3﹣35t )=﹣310(t ﹣52)2+185, ∴当t 为52秒时,S 最大值为185cm2. (2)如图乙,连接PP′,PP′交QC 于E ,当四边形PQP′C 为菱形时,PE 垂直平分QC ,即PE ⊥AC ,QE=EC , ∴△APE ∽△ABC , ∴=AE AP AC AB, ∴AE=(5)4=5AP AC t AB ⋅-⨯=﹣45t+4 QE=AE ﹣AQ ═﹣45t+4﹣t=﹣95t+4, QE=12QC=12(4﹣t )=﹣12t+2, ∴﹣95t+4=﹣12t+2, 解得:t=2013, ∵0<2013<4, ∴当四边形PQP′C 为菱形时,t 的值是2013s ; (3)由(1)知,PD=﹣35t+3,与(2)同理得:QD=AD ﹣AQ=﹣95t+4∴,在△APQ 中, ①当AQ=AP ,即t=5﹣t 时,解得:t 1=52; ②当PQ=AQ ,即218t 18t 255-+=t 时,解得:t 2=2513,t 3=5; ③当PQ=AP ,即218t 18t 255-+=5﹣t 时,解得:t 4=0,t 5=4013; ∵0<t <4,∴t 3=5,t 4=0不合题意,舍去,∴当t 为52s 或2513s 或4013s 时,△APQ 是等腰三角形.【点睛】本题考查相似形综合题.。

九年级数学上册期末试卷(培优篇)(Word版 含解析)

九年级数学上册期末试卷(培优篇)(Word版 含解析)

九年级数学上册期末试卷(培优篇)(Word 版 含解析)一、选择题1.入冬以来气温变化异常,在校学生患流感人数明显增多,若某校某日九年级8个班因病缺课人数分别为2、6、4、6、10、4、6、2,则这组数据的众数是( ) A .5人 B .6人C .4人D .8人2.已知⊙O 的半径是4,圆心O 到直线l 的距离d =6.则直线l 与⊙O 的位置关系是( ) A .相离B .相切C .相交D .无法判断3.如图,四边形ABCD 内接于⊙O ,已知∠A =80°,则∠C 的度数是( )A .40°B .80°C .100°D .120°4.二次函数2(1)3y x =-+图象的顶点坐标是( ) A .(1,3)B .(1,3)-C .(1,3)-D .(1,3)--5.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,一年中获得利润y 与月份n 之间的函数关系式是y =-n 2+15n -36,那么该 企业一年中应停产的月份是( ) A .1月,2月 B .1月,2月,3月 C .3月,12月D .1月,2月,3月,12月6.一个不透明的袋子中装有20个红球,2个黑球,1个白球,它们除颜色外都相同,若从中任意摸出1个球,则( ) A .摸出黑球的可能性最小 B .不可能摸出白球 C .一定能摸出红球 D .摸出红球的可能性最大 7.已知一组数据2,3,4,x ,1,4,3有唯一的众数4,则这组数据的中位数是( ) A .2B .3C .4D .58.如图1,在菱形ABCD 中,∠A =120°,点E 是BC 边的中点,点P 是对角线BD 上一动点,设PD 的长度为x ,PE 与PC 的长度和为y ,图2是y 关于x 的函数图象,其中H 是图象上的最低点,则a +b 的值为( )A .3B .234C 1433D 22339.O的半径为5,圆心O到直线l的距离为3,则直线l与O的位置关系是() A.相交B.相切C.相离D.无法确定10.将二次函数y=x2的图象沿y轴向上平移2个单位长度,再沿x轴向左平移3个单位长度,所得图象对应的函数表达式为()A.y=(x+3)2+2B.y=(x﹣3)2+2C.y=(x+2)2+3D.y=(x﹣2)2+3 11.小明同学发现自己一本书的宽与长之比是黄金比约为0.618.已知这本书的长为20cm,则它的宽约为()A.12.36cm B.13.6cm C.32.386cm D.7.64cm12.如图,□ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:2二、填空题13.如图,点A、B、C是⊙O上的点,且∠ACB=40°,阴影部分的面积为2π,则此扇形的半径为______.14.如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E 点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为_____.15.如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB=______m.16.如图,为了测量某棵树的高度,小明用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m,与树相距15m ,则树的高度为_________m.17.将二次函数y=2x 2的图像沿x 轴向左平移2个单位,再向下平移3个单位后,所得函数图像的函数关系式为______________.18.已知点P 是线段AB 的黄金分割点,PA >PB ,AB =4 cm ,则PA =____cm . 19.二次函数y=x 2−4x+5的图象的顶点坐标为 .20.已知线段a 、b 、c ,其中c 是a 、b 的比例中项,若a =2cm ,b =8cm ,则线段c =_____cm . 21.若32x y =,则x y y+的值为_____. 22.已知关于x 的一元二次方程2230x x k -+=有两个不相等的实数根,则k 的取值范围是________.23.在Rt △ABC 中,两直角边的长分别为6和8,则这个三角形的外接圆半径长为_____. 24.已知二次函数2(0)y ax bx c a =++≠,y 与x 的部分对应值如下表所示:x… -1 0 1 2 3 4 … y…61-2-3-2m…下面有四个论断:①抛物线2(0)y ax bx c a =++≠的顶点为(23)-,; ②240b ac -=;③关于x 的方程2=2ax bx c ++-的解为12=13x x =,; ④=3m -.其中,正确的有___________________.三、解答题25.已知二次函数22y =x mx --.(1)求证:不论m 取何值,该函数图像与x 轴一定有两个交点;(2)若该函数图像与x 轴的两个交点为A 、B ,与y 轴交于点C ,且点A 坐标(2,0),求△ABC 面积.26.某商店经销的某种商品,每件成本为30元.经市场调查,当售价为每件70元时,可销售20件.假设在一定范围内,售价每降低2元,销售量平均增加4件.如果降价后商店销售这批商品获利1200元,问这种商品每件售价是多少元?27.如图1,矩形OABC的顶点A的坐标为(4,0),O为坐标原点,点B在第一象限,连接AC, tan∠ACO=2,D是BC的中点,(1)求点D的坐标;(2)如图2,M是线段OC上的点,OM=23OC,点P是线段OM上的一个动点,经过P、D、B三点的抛物线交x轴的正半轴于点E,连接DE交AB于点F.①将△DBF沿DE所在的直线翻折,若点B恰好落在AC上,求此时点P的坐标;②以线段DF为边,在DF所在直线的右上方作等边△DFG,当动点P从点O运动到点M 时,点G也随之运动,请直接写出点G运动的路径的长.28.如图,AB是⊙O的直径,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF,交AF 的延长线于点D,交AB的延长线于点C.(1)求证:CD是⊙O的切线;(2)∠C=45°,⊙O的半径为2,求阴影部分面积.29.某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),并按测试成绩(单位:分)分成四类:A类(12≤m≤15),B类(9≤m≤11),C类(6≤m≤8),D类(m≤5)绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:(1)本次抽取样本容量为,扇形统计图中A类所对的圆心角是度;(2)请补全统计图;(3)若该校九年级男生有300名,请估计该校九年级男生“引体向上”项目成绩为C类的有多少名?30.如图,⊙O 为ABC ∆的外接圆,9012ACB AB ∠=︒=,,过点C 的切线与AB 的延长线交于点D ,OE 交AC 于点F ,CAB E ∠=∠.(1)判断OE 与BC 的位置关系,并说明理由; (2)若3tan 4BCD ∠=,求EF 的长. 31.解方程:3x 2﹣4x +1=0.(用配方法解)32.一个四边形被一条对角线分割成两个三角形,如果被分割的两个三角形相似,我们被称为该对角线为相似对角线.(1)如图1,正方形ABCD 的边长为4,E 为AD 的中点,1AF =,连结CE .CP ,求证:EF 为四边形AECF 的相似对角线.(2)在四边形ABCD 中,120BAD ︒∠=,3AB =,6AC =,AC 平分BAD ∠,且AC 是四边形ABCD 的相似对角线,求BD 的长.(3)如图2,在矩形ABCD 中,6AB =,4BC =,点E 是线段AB (不取端点A .B )上的一个动点,点F 是射线AD 上的一个动点,若EF 是四边形AECF 的相似对角线,求BE 的长.(直接写出答案)【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】找出这组数据出现次数最多的那个数据即为众数.【详解】解:∵数据2、6、4、6、10、4、6、2,中数据6出现次数最多为3次,∴这组数据的众数是6.故选:B.【点睛】本题考查众数的概念,出现次数最多的数据为这组数的众数.2.A解析:A【解析】【分析】根据直线和圆的位置关系的判定方法,即圆心到直线的距离大于半径,则直线与圆相离进行判断.【详解】解:∵圆心O到直线l的距离d=6,⊙O的半径R=4,∴d>R,∴直线和圆相离.故选:A.【点睛】本题考查直线与圆位置关系的判定.掌握半径和圆心到直线的距离之间的数量关系是解答此题的关键..3.C解析:C【解析】【分析】根据圆内接四边形的性质得出∠C+∠A=180°,代入求出即可.【详解】解:∵四边形ABCD内接于⊙O,∴∠C+∠A=180°,∵∠A=80°,∴∠C=100°,故选:C.本题考查了圆内接四边形的性质的应用.熟记圆内接四边形对角互补是解决此题的关键.4.A解析:A 【解析】 【分析】根据二次函数顶点式即可得出顶点坐标. 【详解】∵2(1)3y x =-+,∴二次函数图像顶点坐标为:(1,3). 故答案为A. 【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a (x-h )2+k 中,对称轴为x=h ,顶点坐标为(h ,k ).5.D解析:D 【解析】 【分析】 【详解】当-n 2+15n -36≤0时该企业应停产,即n 2-15n+36≥0,n 2-15n+36=0的两个解是3或者12,根据函数图象当n ≥12或n ≤3时n 2-15n+36≥0,所以1月,2月,3月,12月应停产. 故选D6.D解析:D 【解析】 【分析】根据概率公式先分别求出摸出黑球、白球和红球的概率,再进行比较,即可得出答案. 【详解】解:∵不透明的袋子中装有20个红球,2个黑球,1个白球,共有23个球, ∴摸出黑球的概率是223, 摸出白球的概率是123, 摸出红球的概率是2023, ∵123<223<2023, ∴从中任意摸出1个球,摸出红球的可能性最大;【点睛】本题考查了可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.7.B解析:B【解析】【分析】根据题意由有唯一的众数4,可知x=4,然后根据中位数的定义求解即可.【详解】∵这组数据有唯一的众数4,∴x=4,∵将数据从小到大排列为:1,2,3,3,4,4,4,∴中位数为:3.故选B.【点睛】本题考查了众数、中位数的定义,属于基础题,掌握基本定义是关键.众数是一组数据中出现次数最多的那个数.当有奇数个数时,中位数是从小到大排列顺序后位于中间位置的数;当有偶数个数时,中位数是从小到大排列顺序后位于中间位置两个数的平均数. 8.C解析:C【解析】【分析】由A、C关于BD对称,推出PA=PC,推出PC+PE=PA+PE,推出当A、P、E共线时,PE+PC的值最小,观察图象可知,当点P与B重合时,PE+PC=6,推出BE=CE=2,AB=BC=4,分别求出PE+PC的最小值,PD的长即可解决问题.【详解】解:∵在菱形ABCD中,∠A=120°,点E是BC边的中点,∴易证AE⊥BC,∵A、C关于BD对称,∴PA=PC,∴PC+PE=PA+PE,∴当A、P、E共线时,PE+PC的值最小,即AE的长.观察图象可知,当点P与B重合时,PE+PC=6,∴BE=CE=2,AB=BC=4,∴在Rt△AEB中,BE=∴PC+PE的最小值为∴点H的纵坐标a=∴AD PDBE PB= =2,∵BD =∴PD =233⨯=∴点H 的横坐标b =3,∴a +b ==; 故选C . 【点睛】本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.9.A解析:A 【解析】 【分析】根据直线和圆的位置关系可知,圆的半径大于直线到圆距离,则直线l 与O 的位置关系是相交. 【详解】∵⊙O 的半径为5,圆心O 到直线的距离为3,∴直线l 与⊙O 的位置关系是相交. 故选A . 【点睛】本题考查了直线和圆的位置关系,直接根据直线和圆的位置关系解答即可.10.A解析:A 【解析】 【分析】直接利用二次函数的平移规律,左加右减,上加下减,进而得出答案. 【详解】解:将二次函数y =x 2的图象沿y 轴向上平移2个单位长度,得到:y =x 2+2, 再沿x 轴向左平移3个单位长度得到:y =(x+3)2+2. 故选:A . 【点睛】解决本题的关键是得到平移函数解析式的一般规律:上下平移,直接在函数解析式的后面上加,下减平移的单位;左右平移,比例系数不变,在自变量后左加右减平移的单位.11.A解析:A 【解析】 【分析】根据黄金分割的比值约为0.618列式进行计算即可得解. 【详解】解:∵书的宽与长之比为黄金比,书的长为20cm , ∴书的宽约为20×0.618=12.36cm . 故选:A . 【点睛】本题考查了黄金比例的应用,掌握黄金比例的比值是解题的关键.12.D解析:D 【解析】 【分析】根据题意得出△DEF ∽△BCF ,进而得出=DE EFBC FC,利用点E 是边AD 的中点得出答案即可. 【详解】解:∵▱ABCD ,故AD ∥BC , ∴△DEF ∽△BCF , ∴=DE EFBC FC, ∵点E 是边AD 的中点, ∴AE=DE=12AD , ∴12EF FC . 故选D .二、填空题 13.3 【解析】 【分析】根据圆周角定理可求出∠AOB 的度数,设扇形半径为x ,从而列出关于x 的方程,求出答案. 【详解】由题意可知:∠AOB=2∠ACB=2×40°=80°, 设扇形半径为x ,故阴解析:3【解析】【分析】根据圆周角定理可求出∠AOB的度数,设扇形半径为x,从而列出关于x的方程,求出答案.【详解】由题意可知:∠AOB=2∠ACB=2×40°=80°,设扇形半径为x,故阴影部分的面积为πx2×80360=29×πx2=2π,故解得:x1=3,x2=-3(不合题意,舍去),故答案为3.【点睛】本题主要考查了圆周角定理以及扇形的面积求解,解本题的要点在于根据题意列出关于x 的方程,从而得到答案.14.12【解析】【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG 为△E解析:12【解析】【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出AF ABGF GD==2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△EAB的中位线,再利用三角形中位线的性质可求出AE的长度,此题得解.【详解】∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴AF ABGF GD==2,∴AF=2GF=4,∴AG=6.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=12.故答案为:12.【点睛】本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF的长度是解题的关键.15.100【解析】【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.【详解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△E解析:100【解析】【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.【详解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴AB BD EC CD=,即BD EC ABCD⨯=,解得:AB=1205060⨯=100(米).故答案为100.【点睛】本题主要考查了相似三角形的应用,用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.16.7【解析】设树的高度为m,由相似可得,解得,所以树的高度为7m解析:7【解析】设树的高度为x m,由相似可得6157262x+==,解得7x=,所以树的高度为7m17.y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y=2x2的图象向左平移2个单位,再向下平移解析:y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y=2x2的图象向左平移2个单位,再向下平移3个单位后得到的图象表达式为y=2(x+2)2-3【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.18.2-2【解析】【分析】根据黄金分割点的定义,知AP是较长线段;则AP=AB,代入运算即可.【详解】解:由于P为线段AB=4的黄金分割点,且AP是较长线段;则AP=4×=cm,故答案为解析:2【解析】【分析】根据黄金分割点的定义,知AP是较长线段;则AB,代入运算即可.【详解】解:由于P 为线段AB=4的黄金分割点,且AP 是较长线段;则AP=4×12=)21cm ,故答案为:(2)cm.【点睛】此题考查了黄金分割的定义,应该识记黄金分割的公式:较短的线段=,难度一般.19.(2,1)【解析】【分析】将二次函数解析式化为顶点式,即可得到顶点坐标.【详解】将二次函数配方得则顶点坐标为(2,1)考点:二次函数的图象和性质.解析:(2,1)【解析】【分析】将二次函数解析式化为顶点式,即可得到顶点坐标.【详解】将二次函数245y x x =-+配方得22()1y x =-+则顶点坐标为(2,1)考点:二次函数的图象和性质.20.4【解析】【分析】根据比例中项的定义,列出比例式即可求解.【详解】∵线段c 是a 、b 的比例中项,线段a =2cm ,b =8cm ,∴=,∴c2=ab =2×8=16,∴c1=4,c2=﹣4(舍解析:4【解析】【分析】根据比例中项的定义,列出比例式即可求解.【详解】∵线段c是a、b的比例中项,线段a=2cm,b=8cm,∴ac=cb,∴c2=ab=2×8=16,∴c1=4,c2=﹣4(舍去),∴线段c=4cm.故答案为:4【点睛】本题考查了比例中项的概念:当两个比例内项相同时,就叫比例中项.这里注意线段不能是负数.21..【解析】【分析】根据比例的合比性质变形得:【详解】∵,∴故答案为:.【点睛】本题主要考查了合比性质,对比例的性质的记忆是解题的关键.解析:52.【解析】【分析】根据比例的合比性质变形得:325.22 x yy++==【详解】∵32xy=,∴325.22 x yy++==故答案为:5 2 .【点睛】本题主要考查了合比性质,对比例的性质的记忆是解题的关键.22.【解析】【分析】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围. ,,方程有两个不相等的实数k<解析:3【解析】【分析】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.=方程有两个不相等的实数根,a,b=-,c k1241240∴∆=-=->,b ac kk∴<.3k<.故答案为:3【点睛】本题考查了根的判别式.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.23.5【解析】【分析】根据直角三角形外接圆的直径是斜边的长进行求解即可.【详解】由勾股定理得:AB==10,∵∠ACB=90°,∴AB是⊙O的直径,∴这个三角形的外接圆直径是10;∴这解析:5【解析】【分析】根据直角三角形外接圆的直径是斜边的长进行求解即可.由勾股定理得:AB=22+=10,68∵∠ACB=90°,∴AB是⊙O的直径,∴这个三角形的外接圆直径是10;∴这个三角形的外接圆半径长为5,故答案为5.【点睛】本题考查了90度的圆周角所对的弦是直径,熟练掌握是解题的关键.24.①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可. 【详解】由二次函数y=ax2+bx+c(a≠0),y与x的部分对应值可知:该函数图象是开口向上的抛解析:①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数y=ax2+bx+c(a≠0),y与x的部分对应值可知:该函数图象是开口向上的抛物线,对称轴是直线x=2,顶点坐标为(2,-3);与x轴有两个交点,一个在0与1之间,另一个在3与4之间;当y=-2时,x=1或x=3;由抛物线的对称性可知,m=1;∴①抛物线y=ax2+bx+c(a≠0)的顶点为(2,-3),结论正确;②b2﹣4ac=0,结论错误,应该是b2﹣4ac>0;③关于x的方程ax2+bx+c=﹣2的解为x1=1,x2=3,结论正确;④m=﹣3,结论错误,∴其中,正确的有. ①③故答案为:①③本题考查了二次函数的图像,结合图表信息是解题的关键.三、解答题25.(1)见解析;(2)10【解析】【分析】(1)令y =0得到关于x 的二元一次方程,然后证明△=b 2−4ac >0即可;(2)令y=0求出抛物线与x 轴的交点坐标,根据坐标的特点即可解题.【详解】(1)因为224()4(4)b ac m -=--⨯-=216m +,且20m ≥,所以2160m +>.所以该函数的图像与x 轴一定有两个交点.(2)将A (-1,0)代入函数关系式,得,2(1)40m -+-=,解得m=3,求得点B 、C 坐标分别为(4,0)、(0,-4).所以△ABC 面积=[4-(-1)]×4×0.5=10【点睛】本题主要考查的是抛物线与x 轴的交点、二次函数的性质,将函数问题转化为方程问题是解答问题(1)的关键,求出抛物线与x 轴的交点坐标是解答问题(2)的关键.26.每件商品售价60元或50元时,该商店销售利润达到1200元.【解析】【分析】根据题意得出,(售价-成本)⨯(原来的销量+2⨯降低的价格)=1200,据此列方程求解即可.【详解】解:设每件商品应降价x 元时,该商店销售利润为1200元.根据题意,得()()70302021200x x --+=整理得:2302000x x -+=,解这个方程得:110x =,220x =.所以,7060x -=或50答:每件商品售价60元或50元时,该商店销售利润达到1200元.【点睛】本题考查的知识点是生活中常见的商品打折销售问题,弄清题目中的关键概念,找出题目中隐含的等量关系式是解决问题的关键.27.(1)D (2,2);(2)①P (0,0);②13 【解析】【分析】(1)根据三角函数求出OC 的长度,再根据中点的性质求出CD 的长度,即可求出D 点的坐标;(2)①证明在该种情况下DE 为△ABC 的中位线,由此可得F 为AB 的中点,结合三角形全等即可求得E点坐标,结合二次函数的性质可设二次函数表达式(此表达式为交点式的变形,利用了二次函数的平移的特点),将E点代入即可求得二次函数的表达式,根据表达式的特征可知P点坐标;②可得G点的运动轨迹为'GG,证明△DFF'≌△FGG',可得GG'=FF',求得P点运动到M 点时的解析式即可求出F'的坐标,结合①可求得FF'即GG'的长度.【详解】解:(1)∵四边形OABC为矩形,∴BC=OA=4,∠AOC=90°,∵在Rt△ACO中,tan∠ACO=OAOC=2,∴OC=2,又∵D为CB中点,∴CD=2,∴D(2,2);(2)①如下图所示,若点B恰好落在AC上的'B时,根据折叠的性质1'','2BDF B DF BDB BD B D∠=∠=∠=,∵D为BC的中点,∴CD=BD,∴'CD B D=,∴1''2BCA DB C BDB∠=∠=∠,∴BCA BDF∠=∠,∴//DF AC,DF为△ABC的中位线,∴AF=BF,∵四边形ABCD为矩形∴∠ABC=∠BAE=90°在△BDF和△AEF中,∵ABC BAEBF AFBFD AFE∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BDF≌△AEF,∴AE=BD=2,∴E(6,0),设(2)(4)2y a x x,将E(6,0)带入,8a+2=0∴a=14-,则二次函数解析式为21342y x x=-+,此时P(0,0);②如图,当动点P从点O运动到点M时,点F运动到点F',点G 也随之运动到G'.连接GG'.当点P向点M运动时,抛物线开口变大,F点向上线性移动,所以G也是线性移动.∵OM=23OC=43∴4(0,)3M,当P点运动到M点时,设此时二次函数表达式为1(2)(4)2y a x x,将4(0,)3M代入得14823a,解得1112a,所以抛物线解析式为1(2)(4)212y x x,整理得21141223y x x=-++.当y=0时,21141223x x-++=,解得x=8(已舍去负值),所以此时(8,0)E,设此时直线'DF的解析式为y=kx+b,将D(2,2),E(8,0)代入2208k bk b=+⎧⎨=+⎩解得1383kb⎧=-⎪⎪⎨⎪=⎪⎩,所以1833y x=-+,当x=4时,43y=,所以4'3AF=,由①得112AF AB==,所以1''3FF AF AF=-=,∵△DFG、△DF'G'为等边三角形,∴∠GDF=∠G'DF'=60°,DG=DF,DG'=DF',∴∠GDF﹣∠GDF'=∠G'DF'﹣∠GDF',即∠G'DG=∠F'DF,在△DFF'与△FGG'中,''''DF DGF DFG DGDF DG=⎧⎪∠=∠⎨⎪=⎩,∴△DFF'≌△FGG'(SAS),∴GG'=FF',即G运动路径的长为13.【点睛】本题考查二次函数综合,解直角三角形,全等三角形的性质与判定,三角形中位线定理,一次函数的应用,折叠问题.(1)中能根据正切求得OC的长度是解决此问的关键;(2)①熟练掌握折叠前后对应边相等,对应角相等是解题关键;②中能通过分析得出G点的运动轨迹为线段GG',它的长度等于FF',是解题关键.28.(1)见解析;(2)2-2π【解析】【分析】(1)若要证明CD是⊙O的切线,只需证明CD与半径垂直,故连接OE,证明OE∥AD即可;(2)根据等腰直角三角形的性质和扇形的面积公式即可得到结论.【详解】解:(1)连接OE.∵OA=OE,∴∠OAE=∠OEA,又∵∠DAE=∠OAE,∴∠OEA=∠DAE,∴OE∥AD,∴∠ADC=∠OEC,∵AD⊥CD,∴∠ADC=90°,故∠OEC=90°.∴OE⊥CD,∴CD是⊙O的切线;(2)∵∠C=45°,∴△OCE是等腰直角三角形,∴CE=OE=2,∠COE=45°,∴阴影部分面积=S△OCE﹣S扇形OBE=12⨯2×2﹣2452360π⨯=2﹣2π.【点睛】本题综合考查了圆与三角形,涉及了切线的判定、等腰三角形的性质、扇形的面积,灵活的将图形与已知条件相结合是解题的关键.29.(1)50,72;(2)作图见解析;(3)90.【解析】【分析】(1)用A类学生的人数除以A类学生的人数所占的百分比即可得到抽查的学生数,从而可以求得样本容量,由扇形统计图可以求得扇形圆心角的度数;(2)根据统计图可以求得C类学生数和C类与D类所占的百分比,从而可以将统计图补充完整;(3)用该校九年级男生的人数乘以该校九年级男生“引体向上”项目成绩为C类的的学生所占得百分比即可得答案.【详解】(1)由题意可得,抽取的学生数为:10÷20%=50,扇形统计图中A类所对的圆心角是:360°×20%=72°,(2)C类学生数为:50﹣10﹣22﹣3=15,C类占抽取样本的百分比为:15÷50×100%=30%,D类占抽取样本的百分比为:3÷50×100%=6%,补全的统计图如所示,(3)300×30%=90(名)即该校九年级男生“引体向上”项目成绩为C类的有90名.【点睛】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.30.(1)OE ∥BC .理由见解析;(2)125【解析】【分析】(1)连接OC ,根据已知条件可推出E ACO ∠∠=,进一步得出AFO EFC 90ACB ∠∠∠==︒=结论得以证明;(2)根据(1)的结论可得出∠E =∠BCD ,对应的正切值相等,可得出CE 的值,进一步计算出OE 的值,在Rt △AFO 中,设OF =3x ,则AF =4x ,解出x 的值,继而得出OF 的值,从而可得出答案.【详解】解:(1) OE ∥BC .理由如下:连接OC ,∵CD 是⊙O 的切线,∴OC ⊥CD ,∴∠OCE =90︒ ,∴∠OCA +∠ECF =90︒,∵OC =OA ,∴∠OCA =∠CAB .又∵∠CAB =∠E ,∴∠OCA =∠E ,∴∠E +∠ECF =90︒,∴∠EFC =180O -(∠E +∠ECF ) =90︒.∴∠EFC =∠ACB=90︒ ,∴OE ∥BC .(2)由(1)知,OE ∥BC ,∴∠E =∠BCD .在Rt △OCE 中,∵AB =12,∴OC =6,∵tan E =tan ∠BCD =OC CE , ∴468tan 3OC CE DCB ==⨯=∠. ∴OE 2=O C 2+CE 2=62+82,∴OE =10又由(1)知∠EFC =90︒,∴∠AFO =90︒.在Rt△AFO中,∵tan A =tan E=34,∴设OF=3x,则AF=4x.∵OA2=OF2+AF2,即62=(3x)2+(4x)2,解得:65 x=∴185 OF=,∴18321055 EF OE OF=-=-=.【点睛】本题是一道关于圆的综合题目,涉及到的知识点有切线的性质,平行线的判定定理,三角形内角和定理,正切的定义,勾股定理等,熟练掌握以上知识点是解此题的关键.31.x1=1,x2=1 3【解析】【分析】首先把系数化为1,移项,把常数项移到等号的右侧,然后在方程的左右两边同时加上一次项系数的一半,即可使左边是完全平方公式,右边是常数项,即可求解.【详解】3x2﹣4x+1=03(x2﹣43x)+1=0(x﹣23)2=19∴x﹣23=±13∴x1=1,x2=1 3【点睛】本题考查解一元二次方程的方法,解题的关键是熟练掌握用配方法解一元二次方程的一般步骤.32.(1)见解析(2)33193)53或163或3【解析】【分析】(1)根据已知中相似对角线的定义,只要证明△AEF ∽△ECF 即可;(2)AC 是四边形ABCD 的相似对角线,分两种情形:△ACB ~△ACD 或△ACB ~△ADC ,分别求解即可;(3)分三种情况①当△AEF 和△CEF 关于EF 对称时,EF 是四边形AECF 的相似对角线.②取AD 中点F ,连接CF ,将△CFD 沿CF 翻折得到△CFD′,延长CD′交AB 于E ,则可得出 EF 是四边形AECF 的相似对角线.③取AB 的中点E ,连接CE ,作EF ⊥AD 于F ,延长CB 交FE 的延长线于M ,则可证出EF 是四边形AECF 的相似对角线.此时BE=3;【详解】解:(1)∵四边形ABCD 是正方形,∴AB=BC=CD=AD=4,∵E 为AD 的中点,1AF=,∴AE=DE=2, 12∴==AF AE DE CD ∵∠A=∠D=90°,∴△AEF ∽△DCE ,∴∠AEF=∠DCE ,12==EF AF CE DE ∵∠DCE+∠CED=90°,∴∠AEF+∠CED=90°,∴∠FEC=∠A=90°, 12==AF EF AE EC ∴△AEF ∽△ECF ,∴EF 为四边形AECF 的相似对角线.(2)∵AC 平分BAD ∠,∴∠BAC=∠DAC =60°∵AC 是四边形ABCD 的相似对角线,∴△ACB ~△ACD 或△ACB ~△ADC①如图2,当△ACB ~△ACD 时,此时,△ACB ≌△ACD∴AB=AD=3,BC=CD ,∴AC 垂直平分DB ,在Rt △AOB 中,∵AB=3,∠ABO=30°,33cos302233︒∴=⋅=∴==BO ABBD OB②当△ACB~△ADC时,如图3∴∠ABC=∠ACD∴AC2=AB•AD,∵6AC=,3AB=∴6=3AD,∴AD=2,过点D作DHAB于H在Rt△ADH中,∵∠HAD=60°,AD=2,11,332∴====AH AD DH AH在Rt△BDH中,2222419(3)=+=+=BD DH BH综上所述,BD的长为:33或19(3)①如图4,当△AEF和△CEF关于EF对称时,EF是四边形AECF的相似对角线,设AE=EC=x,在Rt△BCE中,∵EC2=BE2+BC2,∴x2=(6-x)2+42,解得x=133,∴BE=AB-AE=6-133=53.②如图5中,如图取AD中点F,连接CF,将△CFD沿CF翻折得到△CFD′,延长CD′交AB于E ,则 EF是四边形AECF 的相似对角线.∵△AEF ∽△DFC ,∴=AE AF DF DC22623163∴=∴=∴=-=AE AE BE AB AE③如图6,取AB 的中点E ,连接CE ,作EF ⊥AD 于F ,延长CB 交FE 的延长线于M ,则EF 是四边形AECF 的相似对角线.则 BE=3.综上所述,满足条件的BE 的值为53或163或3. 【点睛】 本题主要考查了相似形的综合题、相似三角形的判定和性质、矩形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版九年级数学上册期末培优检测卷(时间:120分钟满分:120分)一、选择题(本大题共10小题,每小题3分,共30分)1.下列手机软件图标中,是中心对称图形的是()2.下列一元二次方程中有两个不相等的实数根的方程是()A.(x-1)2=0 B.x2+2x-19=0C.x2+4=0 D.x2+x+1=03.(2018·北部湾)从-2,-1,2这三个数中任取两个不同的数相乘,积为正数的概率是( )A.23B.12C.13D.144.在矩形ABCD中,AB=16,按如图所示裁出一扇形ABE,将扇形围成一个圆锥(AB和AE重合),则此圆锥的底面圆的半径为()A .4B .16C .4 2D .8第4题图 第5题图 第6题图5.如图,在▱ABCD 中,AE ⊥BC 于点E ,AE =EB =EC =a ,且a 是一元二次方程x 2+2x -3=0的根,则▱ABCD 的周长为( )A .4+2 2B .12+6 2C .2+2 2D .2+2或12+6 26.如图,△ABC 是⊙O 的内接三角形,AB =AC ,∠BCA =65°,作CD ∥AB ,并与⊙O 相交于点D ,连接BD ,则∠DBC 的大小为( )A .15°B .25°C .35°D .45°7.已知平面直角坐标系中的三个点O (0,0),A (-1,1),B (-1,0),将△ABO 绕点O 按顺时针方向旋转45°,则点A 的对应点A 1的坐标为( )A .(2,0)B.⎝ ⎛⎭⎪⎫22,0C.⎝ ⎛⎭⎪⎫0,22 D .(0,2)8.抛物线y =ax 2+bx +c (a ≠0)过点(-1,0)和点(0,-3),且顶点在第四象限,设p =a +b +c ,则p 的取值范围是( )A .-3<p <-1B .-6<p <0C .-3<p <0D .-6<p <-39.如图,在▱ABCD 中,AB 为⊙O 的直径,⊙O 与CD 相切于点E ,与AD 相交于点F ,已知AB =12,∠C =60°,则EF ︵的长为( )A .π3B .π2C .πD .2π第9题图第10题图 10.如图所示,抛物线y 1=a(x +2)2-3与y 2=12(x -3)2+1交于点A(1,3),过点A 作x 轴的平行线,分别交两条抛物线于点B ,C ,则以下结论:①无论x 取何值,y 2的值总是正数;②a =1;③当x =0时,y 2-y 1=4;④2AB =3AC.其中正确结论是( )A .①②B .②③C .③④D .①④二、填空题(本大题共8小题,每小题3分,共24分)11.点P (-2,5)关于原点对称的点的坐标为 .12.若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.请写出两个为“同簇二次函数”的函数.13.若α,β是方程x2-2x-3=0的两个实数根,则α2+β2=.14.如图,⊙O内切于△ABC,切点分别为D,E,F,已知∠C=60°,∠B=50°,连接OD,OF,DE,EF,那么∠DEF等于°.第14题图第17题图第18题图15.已知一个口袋中装有7个只有颜色不同的球,其中三个白球,四个黑球.若往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是14,则y与x之间的函数关系式为.16.(2018·安顺)已知⊙O的直径CD=10 cm,AB是⊙O的弦,AB⊥CD,垂足为点M,且AB=8 cm,则AC的长为.17.如图,把抛物线y=12x2平移得到抛物线m.抛物线m经过点A(-6,0)和原点(0,0),它的顶点为P,它的对称轴与抛物线y=12x2交于点Q,则图中阴影部分的面积为.18.如图,在平面直角坐标系中,已知点A(1,0),B(1-a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是.三、解答题(本大题共7小题,共66分)19.(8分)(1)解方程:(x-2)(x-5)=-2;(2)求抛物线y=-x2+4x+3的顶点坐标.20.(8分)(2018·安顺)某地2015年为做好“精准扶贫”,投入资金1 280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1 600万元.(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1 000户(含第1 000户)每户每天奖励8元,1 000户以后每户每天奖励5元,按租房400天计算,求2017年该地至少有多少户享受到优先搬迁租房奖励.21.(8分)(2018·陕西)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标数字“1”的扇形的圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止).(1)转动转盘一次,求转出的数字是-2的概率;(2)转动转盘两次,用画树状图法或列表法求这两次分别转出的数字之积为正数的概率.22.(10分)如图,已知∠BAC=90°,△ABC绕点A逆时针旋转得到△ADE,恰好D在BC上,连接CE.(1)∠BAE与∠DAC有何关系?并说明理由;(2)线段BC与CE在位置上有何关系?为什么?23.(10分)(2018·荆门)随着龙虾节的火热举办,某龙虾养殖大户为了发挥技术优势,一次性收购了10 000 kg 小龙虾,计划养殖一段时间后再出售.已知每天养殖龙虾的成本相同,放养10天的总成本为166 000元,放养30天的总成本为178 000元.设这批小龙虾放养t 天后的质量为a kg ,销售单价为y 元,根据往年的行情预测,a 与t 的函数关系式为a =⎩⎪⎨⎪⎧10 000(0≤t ≤20),100t +8 000(20<t ≤50),y 与t 的函数关系如图所示.(1)设每天的养殖成本为m 元,收购成本为n 元,求m 与n 的值;(2)求y 与t 的函数关系式;(3)如果将这批小龙虾放养t 天后一次性出售所得利润为W 元.问该龙虾养殖大户将这批小龙虾放养多少天后一次性出售所得利润最大?最大利润是多少?(总成本=放养总费用+收购成本;利润=销售总额-总成本)24.(10分)(2018·齐齐哈尔)如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积.25.(12分)如图,直线y=-43x+n交x轴于点A,交y轴于点C(0,4),抛物线y=23x2+bx+c经过点A,交y轴于点B(0,-2),点P为抛物线上一个动点,过点P作x轴的垂线PD,过点B作BD⊥PD于点D,连接PB,设点P的横坐标为m.(1)求抛物线的解析式;(2)当△BDP为等腰直角三角形时,求线段PD的长.人教版九年级数学上册期末培优检测卷及答案(时间:120分钟满分:120分)一、选择题(本大题共10小题,每小题3分,共30分)1.下列手机软件图标中,是中心对称图形的是(C)2.下列一元二次方程中有两个不相等的实数根的方程是(B)A.(x-1)2=0 B.x2+2x-19=0C.x2+4=0 D.x2+x+1=03.(2018·北部湾)从-2,-1,2这三个数中任取两个不同的数相乘,积为正数的概率是( C)A.23B.12C.13D.144.在矩形ABCD中,AB=16,按如图所示裁出一扇形ABE,将扇形围成一个圆锥(AB和AE重合),则此圆锥的底面圆的半径为( A )A .4B .16C .4 2D .8第4题图第5题图第6题图5.如图,在▱ABCD 中,AE ⊥BC 于点E ,AE =EB =EC =a ,且a 是一元二次方程x 2+2x -3=0的根,则▱ABCD 的周长为( A )A .4+2 2B .12+6 2C .2+2 2D .2+2或12+6 26.如图,△ABC 是⊙O 的内接三角形,AB =AC ,∠BCA =65°,作CD ∥AB ,并与⊙O 相交于点D ,连接BD ,则∠DBC 的大小为( A )A .15°B .25°C .35°D .45°7.已知平面直角坐标系中的三个点O (0,0),A (-1,1),B (-1,0),将△ABO 绕点O 按顺时针方向旋转45°,则点A 的对应点A 1的坐标为( D )A .(2,0) B.⎝⎛⎭⎪⎫22,0 C.⎝⎛⎭⎪⎫0,22 D .(0,2)8.抛物线y =ax 2+bx +c (a ≠0)过点(-1,0)和点(0,-3),且顶点在第四象限,设p =a +b +c ,则p 的取值范围是( B )A .-3<p <-1B .-6<p <0C .-3<p <0D .-6<p <-39.如图,在▱ABCD 中,AB 为⊙O 的直径,⊙O 与CD 相切于点E ,与AD 相交于点F ,已知AB =12,∠C =60°,则EF ︵的长为( C )A .π3B .π2C .πD .2π第9题图第10题图10.如图所示,抛物线y 1=a(x +2)2-3与y 2=12(x -3)2+1交于点A(1,3),过点A 作x 轴的平行线,分别交两条抛物线于点B ,C ,则以下结论:①无论x 取何值,y 2的值总是正数;②a =1;③当x =0时,y 2-y 1=4;④2AB =3AC.其中正确结论是( D )A .①②B .②③C .③④D .①④二、填空题(本大题共8小题,每小题3分,共24分) 11.点P (-2,5)关于原点对称的点的坐标为 (2,-5) . 12.若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.请写出两个为“同簇二次函数”的函数y=2(x-3)2+4与y=3(x-3)2+4(答案不唯一) .13.若α,β是方程x2-2x-3=0的两个实数根,则α2+β2=10 .14.如图,⊙O内切于△ABC,切点分别为D,E,F,已知∠C=60°,∠B=50°,连接OD,OF,DE,EF,那么∠DEF等于55 °.第14题图第17题图第18题图15.已知一个口袋中装有7个只有颜色不同的球,其中三个白球,四个黑球.若往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是14,则y与x之间的函数关系式为y=3x+5.16.(2018·安顺)已知⊙O的直径CD=10 cm,AB是⊙O的弦,AB⊥CD,垂足为点M,且AB=8 cm,则AC的长为17.如图,把抛物线y=12x2平移得到抛物线m.抛物线m经过点A(-6,0)和原点(0,0),它的顶点为P,它的对称轴与抛物线y=12x2交于点Q,则图中阴影部分的面积为13.5 .18.如图,在平面直角坐标系中,已知点A(1,0),B(1-a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是 6 .三、解答题(本大题共7小题,共66分)19.(8分)(1)解方程:(x-2)(x-5)=-2;解:原方程整理得x2-7x+12=0,∵a=1,b=-7,c=12,∴Δ=b2-4ac=(-7)2-4× 1× 12=1>0,∴x=7±12,∴x1=3,x2=4;(2)求抛物线y=-x2+4x+3的顶点坐标.解:y=-x2+4x+3可化为顶点式y=-(x-2)2+7,∴顶点坐标为(2,7).20.(8分)(2018·安顺)某地2015年为做好“精准扶贫”,投入资金1 280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1 600万元.(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1 000户(含第1 000户)每户每天奖励8元,1 000户以后每户每天奖励5元,按租房400天计算,求2017年该地至少有多少户享受到优先搬迁租房奖励.解:(1)设该地投入异地安置资金的年平均增长率为x,根据题意得1 280(1+x)2=1 280+1 600,解得x=0.5或x=-2.5(舍).答:从2015年到2017年,该地投入异地安置资金的年平均增长率为50%.(2)设2017年该地有a户享受到优先搬迁租房奖励,根据题意得,8×1 000×400=3 200 000<5 000 000,∴a>1 000,1 000×8×400+(a-1 000)×5×400≥5 000 000,解得a≥1 900.答:2017年该地至少有1 900户享受到优先搬迁租房奖励.21.(8分)(2018·陕西)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标数字“1”的扇形的圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止).(1)转动转盘一次,求转出的数字是-2的概率;(2)转动转盘两次,用画树状图法或列表法求这两次分别转出的数字之积为正数的概率.解:(1)转动转盘一次,共有3种等可能的结果,其中转出的数字是-2的结果有1种,∴P (转出的数字是-2)=13.(2)由题意,列表如下:由表格可知,共有9种等可能的结果,其中这两次分别转出的数字之积为正数的结果有5种,∴P(这两次分别转出的数字之积为正数)=59.22.(10分)如图,已知∠BAC=90°,△ABC绕点A逆时针旋转得到△ADE,恰好D在BC上,连接CE.(1)∠BAE与∠DAC有何关系?并说明理由;(2)线段BC与CE在位置上有何关系?为什么?解:(1)∠BAE与∠DAC互补.理由:∵△ABC绕点A逆时针旋转得到△ADE,∴△ADE≌△ABC,∴∠DAE=∠BAC=90°,∴∠BAC+∠DAE=180°,即∠BAD+∠DAC+∠DAC+∠CAE=180°,∴∠BAE+∠DAC=180°.∴∠BAE与∠DAC互补.(2)线段BC⊥CE.∵∠CAE=∠BAD,∴∠ACE=180°-∠BAD2.又∵∠BCA =90°-∠ABD ,∠ABD =180°-∠BAD2,∴∠BCA =90°-180°-∠BAD 2=∠BAD2.∴∠ACE +∠BCA =180°-∠BAD 2+∠BAD2=90°,即∠BCE =90°,∴BC ⊥CE.23.(10分)(2018·荆门)随着龙虾节的火热举办,某龙虾养殖大户为了发挥技术优势,一次性收购了10 000 kg 小龙虾,计划养殖一段时间后再出售.已知每天养殖龙虾的成本相同,放养10天的总成本为166 000元,放养30天的总成本为178 000元.设这批小龙虾放养t 天后的质量为a kg ,销售单价为y 元,根据往年的行情预测,a 与t 的函数关系式为a =⎩⎪⎨⎪⎧10 000(0≤t ≤20),100t +8 000(20<t ≤50),y 与t 的函数关系如图所示.(1)设每天的养殖成本为m 元,收购成本为n 元,求m 与n 的值;(2)求y 与t 的函数关系式;(3)如果将这批小龙虾放养t 天后一次性出售所得利润为W 元.问该龙虾养殖大户将这批小龙虾放养多少天后一次性出售所得利润最大?最大利润是多少?(总成本=放养总费用+收购成本;利润=销售总额-总成本)解:(1)依题意,得⎩⎪⎨⎪⎧10m +n =166 000,30m +n =178 000,解得⎩⎪⎨⎪⎧m =600,n =160 000.(2)当0≤t ≤20时,设y =k 1t +b 1,由图象得⎩⎪⎨⎪⎧b 1=16,20k 1+b 1=28,解得⎩⎪⎨⎪⎧k 1=35,b 1=16,∴y =35t +16.当20<t ≤50时,设y =k 2t +b 2,由图象得⎩⎪⎨⎪⎧20k 2+b 2=28,50k 2+b 2=22,解得⎩⎪⎨⎪⎧k 2=-15,b 2=32,∴y =-15t +32.综上所述,y =⎩⎨⎧35t +16(0≤t ≤20),-15t +32(20<t ≤50).(3)由题可知W =ya -mt -n .当0≤t ≤20时,W =10 000⎝ ⎛⎭⎪⎫35t +16-600t -160 000=5 400t , ∵5 400>0,∴当t =20时,W 最大=5 400×20=108 000. 当20<t ≤50时,W =⎝ ⎛⎭⎪⎫-15t +32(100t +8 000)-600t -160 000=-20(t -25)2+108 500.∵-20<0,抛物线开口向下,∴当t =25,W 最大=108 500.∵108 500>108 000,∴当t =25时,W 取得最大值,该最大值为108 500元.24.(10分)(2018·齐齐哈尔)如图,以△ABC 的边AB 为直径画⊙O ,交AC 于点D ,半径OE ∥BD ,连接BE ,DE ,BD ,设BE 交AC 于点F ,若∠DEB =∠DBC .(1)求证:BC 是⊙O 的切线;(2)若BF =BC =2,求图中阴影部分的面积.(1)证明:∵AB 是⊙O 的直径,∴∠ADB =90°,∴∠A +∠ABD =90°.又∵∠A =∠DEB ,∠DEB =∠DBC ,∴∠A =∠DBC ,∴∠DBC +∠ABD =90°,即∠ABC =90°,∴BC 是⊙O 的切线;(2)解:∵BF =BC =2且∠ADB =90°,∴∠CBD =∠FBD .又∵OE ∥BD ,∴∠FBD =∠OEB .∵OE=OB ,∴∠OEB =∠OBE ,∴∠CBD =∠OEB =∠OBE =13∠ABC =13×90°=30°,∴∠A =30°,∴AC =2CB =4,∴由勾股定理求得AB =AC 2-BC 2=23,∴⊙O 的半径为3,连接OD ,∴阴影部分面积为S 扇形OBD -S △OBD =π2-334.25.(12分)如图,直线y =-43x +n 交x 轴于点A ,交y 轴于点C (0,4),抛物线y =23x 2+bx +c 经过点A ,交y 轴于点B (0,-2),点P 为抛物线上一个动点,过点P 作x 轴的垂线PD ,过点B 作BD ⊥PD 于点D ,连接PB ,设点P 的横坐标为m .(1)求抛物线的解析式;(2)当△BDP 为等腰直角三角形时,求线段PD 的长.解:(1)由直线y =-43x +n 过点C(0,4),得n =4,∴y =-43x +4.令y =0时,-43x +4=0,解得x =3.∴A(3,0).∵抛物线y =23x 2+bx +c 经过点A(3,0),B(0,-2), ∴⎩⎪⎨⎪⎧0=23× 32+3b +c ,-2=c ,∴⎩⎪⎨⎪⎧b =-43,c =-2.∴抛物线的解析式为y =23x 2-43x -2. (2)∵点P 的横坐标为m ,∴P ⎝ ⎛⎭⎪⎫m ,23m 2-43m -2,D(m ,-2). 若△BDP 为等腰三角形,则PD =BD.①当点P 在直线BD 上方时,PD =23m 2-43m. (ⅰ)若点P 在y 轴左侧,则m < 0,BD =-m.∴23m 2-43m =-m ,∴m 1=0(舍去),m 2=12(舍去). (ⅱ)若点P 在y 轴右侧,则m > 0,BD =m.∴23m 2-43m =m ,∴m 3=0(舍去),m 4=72. ②当点P 在直线BD 下方时,m > 0,BD =m ,PD =-23m 2+43m.∴-23m 2+43m =m ,∴m 5=0(舍去),m 6=12. 综上所述,当m =72或12,△BDP 为等腰直角三角形,此时7 2或12.PD的长为。

相关文档
最新文档