机电传动控制实验1
机电传动控制实验报告
机电传动控制实验报告
本次实验主要学习了机电传动控制的基础知识和控制方法,通过实际的硬件实验,进一步加深了对于机电传动控制的了解。
实验一:单向行程控制系统
通过本次实验,我们学习了单向行程控制系统的构成和工作原理。
通过按下按钮控制气缸的伸缩,实现了单向行程的控制。
实验二:双向行程控制系统
通过本次实验,我们学习了双向行程控制系统的构成和工作原理。
通过按下按钮控制气缸的伸缩,实现了双向行程的控制。
实验三:速度控制系统
通过本次实验,我们学习了速度控制系统的构成和工作原理。
通过按下按钮控制电机的正反转,结合调节电位器实现了电机的速度控制。
实验四:位置控制系统
通过本次实验,我们学习了位置控制系统的构成和工作原理。
通过按下按钮控制步进电机的转动步数,实现了位置控制。
实验五:机械机构控制系统
通过本次实验,我们学习了机械机构控制系统的构成和工作原
理。
通过按下按钮控制三个气缸的伸缩和机械瓣的运动,实现了机械机构的控制。
实验总结:
通过本次实验,我们掌握了机电传动控制的基础知识和控制方法,了解了不同类型控制系统的工作原理和实现方式,同时也加深了对于控制硬件的认识。
在实验过程中,我们不仅解决了各种控制问题,还加强了团队协作和沟通能力,为我们未来的研究和实践打下了坚实的基础。
机电传动控制实验
停
实验四 PLC综合控制实验
控制要求之二:机械手动作的控制。 有一个将工件由A处传送到B处的机械手,上升/ 下降和左移/右移的执行用双线圈二位电磁阀推动 气缸完成。当某个电磁阀线圈通电,就一直保持 现有的机械动作,例如一旦下降的电磁阀线圈通 电,机械手下降,即使线圈再断电,仍保持现有 的下降动作状态,直到相反方向的线圈通电为止。 另外,夹紧/放松由单线圈二位电磁阀推动气缸完 成,线圈通电执行夹紧动作,线圈断电时执行放 松动作。
实验二 电动机联锁自动控制实验
实验装置
机电综合实验装置:D61电器控制实验挂箱(一) D62电器控制实验挂箱(二) D63电器控制实验挂箱(三) 鼠笼式异步电动机二台
实验方法与步骤
1、复习教材中有关内容; 2、设计控制线路(主电路、控制电路); 3、实际连线并检查线路; 4、接上电源,运行系统观察结果。
5).在线、程序下载: 点击 “在线工作”命令,梯形图变为绿色表明PC机与PLC已连上 点击 “传送到PLC”命令,就可将程序下载到PLC中, 在弹出的对话框中,将扩展函数前“√”去掉。
PLC编程软件CX-Programmer使用方法
6).运行程序: 点击”运行模式” 命令,使PLC处于运行的状态。 一般下载完毕后PLC会自动运行程序。 7).停止运行程序: 点击 “编程模式”命令使PLC进入编程模式, 停止程序运行。 8).再修改、编译程序: 进入编程模式(停止运行程序) 离线(再次点击 修改、编译。 9).再运行已修改的程序: 在线 下载 运行。 10).保存程序: 以工程文件“ *.CXP ”保存。
。
PLC编程软件CX-Programmer使用方法
3).编辑梯形图: 点击 “编程模式”命令进入编程模式,一般新建一个工程 文件后即进入编程模式。PLC的当前工作模式在窗口上方 有显示。在编程模式下直接放置元器件,左右母序”命令进行程序编译。左下方有编译结果信息, 选择一个错误,可使梯形图相关部分高亮。 反复编译、修改直至无语法错误为止。
机电传动控制实验指导书(最新)
机电传动控制实验指导书实验一、继电—接触器控制三相异步电动机一、实验目的1.熟悉继电—接触器断续控制系统的电路原理图、元件布局图和接线图的读图方式;2.掌握三相异步电动机主回路和控制回路的接线方法;3.了解继电—接触器断续控制电路的组成二、实验使用仪器、设备1.DB电工实验台;2.三相异步电动机二台;3.万用表一台;4.专用连接线一套。
三、实验要求实现三相异步电动机的正、反转、点动、互锁、连锁控制。
满足以下具体要求:(1) M1可以正、反向点动调整控制;(2) M1正向起动之后,才能起动M2;(3) 停车时,M2停止后,才能停M1;(4) 具有短路和过载保护;(5) 画出主电路和控制电路。
四、实验参考电路五、实验步骤1.按布局图要求将各元器件定位;2.按接线图要求,以正确的规格电线连接各器件;3.按接线图要求,连接电动机的定子线圈;4.自查并互查连接线;5.合上电源,调试电路;6.观察电动机的运行情况。
六、实验注意事项1.操作前切断总电源;2.接线完毕,必须检查接线情况,并做好记录;3.在指导老师认可后,方能接通电源。
七、思考题1.熔断器与热继电器可否省去其中任何一个?为什么?2.熔断器与热继电器的规格可否随意选择?为什么?3.连接电线的规格可否随意选择?为什么?4.交流接触器可否带直流负载?为什么?实验二、PLC控制三相异步电动机一、实验目的1.了解PLC——AC电动机断续控制系统的电路原理图、元件布局图和接线图的读图方式;2.掌握继电—接触器逻辑电路与PLC梯形图的转换方式;3.熟悉PLC控制系统的接线方法;3.了解PLC断续控制电路的组成。
二、实验使用仪器、设备1.PLC模拟实验台;2.三相异步电动机二台;3.万用表一台;4.专用连接线一套。
三、实验要求实现PLC对三相异步电动机的正、反转、点动、互锁、连锁控制。
满足以下具体要求:(1) M1可以正、反向点动调整控制;(2) M1正向起动之后,延时5分钟再可起动M2;(3) 停车时,M2停止后,延时2分钟再可停M1;(4) 主电路同实验一。
机电传动控制实验指导书
机电传动控制实验指导书实验1 三相异步电动机正反转控制一.实验目的1.熟悉常用电器的构造和工作原理。
2.掌握互锁触点在电路中的作用。
3.掌握三相异步电动机正反转的控制原理。
4.学会看懂电路图并按图接线的方法,培养分析、检查和排除电气故障的能力。
二.实验内容掌握三相异步电动机正反转的控制方法。
按图1(b)所示接好实验控制线路图,分别控制三相异步电动机正转、停止、反转运行,观察电器工作情况和电动机运行情况。
图1实验步骤正向起动控制:按下正向起动按钮FSB,使控制正向运转的接触器FKM得电并自锁,FKM的主触点接通电动机M的三相电源,电动机M正向起动并运转。
停止控制:按下停止按钮SB,FKM失电,电动机M脱离三相电源而停车。
反向起动控制:按下反向起动按钮RSB,使控制反向运转的接触器RKM得电并自锁,RKM的主触点接通电动机M的反相序三相电源,电动机M反向起动并运转。
三.实验设备器件自制电动机继电器-接触器控制接续板。
1.三相异步电动机1台2.交流接触器2个3.热继电器1个4.单控制按钮3个5.导线若干四.实验报告要求及注意事项1.画出三相异步电动机正反转控制的电气原理图。
2.简明写出正反转的操作步骤,并说明各电器工作情况和电动机运行情况。
3.认真弄清实验所用元器件的结构及电气原理图。
4.实验时使用电压比较高,特别要注意安全。
接线时,一定要断开电源进行;试车时,一定要经指导老师检查无误后再通电。
5.注意三相异步电动机的定子绕组接法,按规定要求接续。
五.思考题1.实验中如果发现按下正(或反)转按钮,电动机旋转方向不变,分析故障原因。
2.若电动机在运行中主电路有一相熔断器熔断,可能会发生什么情况?3.画出实验中出现故障现象的原理图,并分析故障原因及排除方法。
4.按图1(c)接续,电动机从正转到反转,需要不需要先使电动机停止?为什么?实验2 三相异步电动机Y-∆降压起动控制一.实验目的1.了解电动机Y-∆降压起动的意义。
(新)机电传动控实验报告(1)
实验一三相异步电动机启动控制实验一、实验目的1. 了解三联按钮,空气阻尼式时间继电器的结构、工作原理及使用方法。
2. 掌握三相异步电动机的正反转控制线路和星形-三角形减压启动控制线路的工作原理及接线方法。
3.掌握上述线路的故障分析及排除故障的方法。
二、实验原理(一)三相异步电动机的正反转控制正反转实现的方法:改变电源相序(两根火线对调)。
图1-1 电机“正-停-反”控制图1-2 电机“正-反-停”控制1、正反转基本控制电路:主电路:KM1主触点接通正相序电源—M正转。
KM2主触点接通反相序电源—M反转。
控制电路:SB1控制正转,SB2控制反转,SB3用于停止控制。
KM的常闭触点用于互锁控制,即使在接触器故障情况下,也可以保证不发生主电路短路现象。
2、按钮联锁功能图1-1的电气操作只能按正、停、反或反、停、正的方式进行操作。
电路不能正反、反正操作控制,给设备的操作带来诸多不便。
图1-2使用按钮连锁,首先使用和常开触点联动的常闭触点的断开对方支路线圈电流,再利用常开触点的闭合接通通电线圈电流。
可以很方便地使电动机由正转进入反转,或由反转进入正转。
(二)三相异步电动机星形-三角形减压启动控制1.降压原理:起动时,电动机定子绕组Y连接,运行时△连接。
图1-3为Y 型、△型线圈绕阻接法。
图1-3 Y型、△型线圈绕阻接法2.主电路分析:KM1、KM3——Y起动,KM1、KM2——△运行。
讨论:KM1、KM2、KM3容量关系。
图1-4星形-三角形减压启动控制线路3.Y-△降压起动过程分析:按下起动按钮SB2—>KM1线圈通电自锁—>KM3线圈通电--M作Y接起动;—>KT线圈通电延时—>KM3线圈断电->KM2线圈通电自锁----M作△接行。
—>KT线圈断电复位。
三、主要仪器及耗材三相异步电动机2台,交流接触器5只,热继电器2只,时间继电器1只,按钮开关5只,指示灯6只,AC380V5OHZ三相动力电源,AC220V5OHZ二次回路控制电源(所用元器件、电源实验台均配备,请自行选用),实验导线若干。
【免费下载】机电传动控制实验指导书
机电传动控制实验指导书华北电力大学实验一电动机基本控制实验1.实验目的认识常用控制电器,熟悉常用控制电器的工作原理及使用,掌握利用继电器、接触器等电器实现对电动机的基本控制方法。
2.实验内容与要求利用继电器、接触器等电器实现对电动机启停、正反转、正反转均能独立点动等基本控制。
设计控制线路(主电路、控制电路)并实际连线,运行系统观察结果是否符合控制要求。
3.实验装置机电综合实验装置:D61继电接触器控制实验挂箱(一)、D62继电接触器控制实验挂箱(二)、 D63继电接触器控制实验挂箱(三)。
4.实验方法与步骤①阅读实验指导书,复习教材中有关内容。
②设计控制线路(主电路、控制电路)。
③实际连线并检查线路。
④接上电源,运行系统观察结果。
5.实验报告要求画出控制线路(主电路、控制电路),分析实验过程中出现的问题、原因及解决方法。
实验二电动机联锁自动控制实验1.实验目的熟悉时间继电器的工作原理及使用,掌握利用继电器、接触器等电器实现对多台电动机的按某种联锁制约关系的联锁控制。
2.实验内容与要求利用继电器、接触器等电器实现对二台电动机的顺序启停联锁控制。
具体控制要求为:M1启动后延时一段时间M2自行启动, M2启动后,M1立即停车,M1、 M2均能点动。
设计控制线路(主电路、控制电路)并实际连线,运行系统观察结果是否符合控制要求。
3.实验装置机电综合实验装置:D61继电接触器控制实验挂箱(一)、D62继电接触器控制实验挂箱(二)、 D63继电接触器控制实验挂箱(三)。
4.实验方法与步骤①阅读实验指导书,复习教材中有关内容。
②设计控制线路(主电路、控制电路)。
③实际连线并检查线路。
④接上电源,运行系统观察结果5.实验报告要求画出控制线路(主电路、控制电路),分析实验过程中出现的问题、原因及解决方法。
实验三 PLC基本控制实验1.实验目的理解PLC基本组成、工作原理,熟悉PLC的基本指令功能及编程方法,熟悉PLC的I/O连接方法,掌握利用PLC实现对电动机的运行控制方法。
《机电传动与控制》实验指导书doc
1实验一 PLC 认识实验一、实验目的1)通过实验了解和熟悉PLC 的结构和外部接线方法; 2)熟悉编程软件的使用方法;3)掌握简单程序的写入、编辑、监视和模拟运行的方法,了解PLC 的基本指令。
二、实验装置1)FX1N 系列PLC 1台;2)装有编程软件的计算机1台(附连接电缆); 3)开关量输入电路板1块。
三、实验内容(1)PLC 外部接线 PLC 外部接线图如图3-1所示,用开关量输入电路板上的按钮或开关信号作为PLC 的输入,PLC 输出可不接,直接通过在PLC 输出指示灯上观察输出情况。
图3-1 PLC 的外部接线图 图3-2 简单梯形图程序(2)程序的写入、检查及修改 将装有编程软件的计算机接到PLC 上,并将PLC 上的“RUN ”开关拨到“STOP ”位置,接通PLC 的电源。
按编程软件的操作方法将PLC 用户程序存储器中的内容全部清除,并在编程软件编程环境下编辑如图3-2a 对应的梯形图或指令表程序,认真从第0步开始逐条检查程序,并及时修改程序,确认无误后,单击转换按钮,并将已创建的程序写入到PLC 中。
(3)程序模拟调试及监视 程序写入到PLC 中后,断开实验板上的全部输入开关,将“RUN ”开关拨到RUN 位置,写入的程序开始运行,同时“RUN ”的LED 灯亮。
按编程软件的操作方法进行PLC 的运行监视。
调试方法:按照表3-1所示操作X0-X2对应的钮子开关,通过PLC 上的LED 观察Y0和Y1的状态,并填入表3-1中。
表中0、1分别表示开关断开和接通。
四、实验报告1、说明实验中所用PLC的型号及其意义?2、说明PLC由几部分组成?输入电源规格为多少伏?3、如何利用编程软件检查PLC程序的对错?4、整理出模拟运行各程序及监视操作时所观察到的现象。
2实验二基本指令实验一、实验目的1.熟悉PLC编程软件及方法2.掌握与、或、非等指令3.熟悉SET置位、RST复位、PLS上升沿微分、PLF下降沿微分指令的编程及使用。
【机电传动控制】2016机电实验指导书
实验一直流他(并)励电动机机械特性实验一、实验目的1.熟悉直流电机实验中的电机、仪表等器件,掌握直流电机的工作原理及接线方式。
2.掌握直流电机启动时的要求及直流电机特性的测试原理。
3.在正转和反转两种情况下,调节电路参数使电机在额定条件下运行。
二、实验设备1. YLC-310型电机及电气技术实验装置2.DDSZ—1型电机及电气技术实验装置三、实验说明(一)YLC-310型电机及电气技术实验装置1.电机特性测试原理如图所示,由测功机来实现对被测电机的加载,通过调整测功机控制面板上的载荷调节旋钮来改变电机所带的负载,所加载荷由仪表显示,电机的转速由测速发电机进行测量,转速值也由仪表显示,进而可计算出电机的输出功率。
2. 被测电机参数U N=220V,I N=1.1A,n N=1600r/min,P N=185W,I fN<0.16A3. 接线图1)R1为启动电阻,Rf为励磁电阻,分别选用面板EM-07上的可调电阻100Ω、1.22A和3000Ω、200mA;2)根据面板上的标识,选用直流可调稳压电源和励磁电源;3)A1,A2分别为电流表,测量电枢回路和励磁回路中的电流大小,因为电机的额定电流为1.1A,所以A1可用直流电流表的5A量程档;额定励磁电流小于0.16A,故A2选用200mA量程档。
4.实验步骤:1)打开钥匙开关,主电源面板红灯亮,按下绿色按钮,红灯熄,绿灯亮,打开可调直流稳压电源开关,按复位键,调节“电压调节”旋钮,使其电压输出为220V,关掉稳压电源及主电源。
2)接线。
按上述接线图接线,并检查电流表的量程是否正确,经老师确认无误后,进行下一步。
3)将电阻R1调到最大,电阻Rf调到最小,将测功机面板上的选择开关打到转矩控制档位,将转矩设定旋钮转到最小,以免启动时因负载过大而无法启动。
4)打开主电源开关,打开A1,A2及测功机显示仪表开关,打开直流稳压电源及励磁电源开关,此时可看到电流表A2有励磁电流,并且其值小于0.16A。
《机电传动控制》实验1-直流电动机机械特性
《机电传动控制》实验1-直流电动机机械特性《机电传动控制》实验指导书实验⼀直流电动机的机械特性⼀、实验⽬的掌握⽤实验⽅法测取直流并励电动机的机械特性。
⼆、实验内容1、实验设备1)、电源控制屏、D31直流数字电压电流表(2件)、D42三相可调电阻器、D44可调电阻器,挂箱排列顺序见图1-1。
2)、DD03导轨、测速发电机及转速表DJ23校正直流测功机参数:I N=2.2A,P N=355W,n N=1500r/min,U fN=220A,R f=26Ω,R=2090ΩDJ15直流并励电动机参数:I N=1.2A,P N=185W,n N=1600r/min,U fN=220A,R f=57Ω,R=1387Ω转速表DJ23 DJ15 DJ15直流并励电动机电阻串联接法:旋钮在最⼤值时R=1800Ω电阻并联接法:旋钮在最⼤值时R=450Ω图1-1实验挂件及顺序D 42 D 31 (1) D 31 (2)D 44电源控制屏量程选择1000v量程选择200m A励磁电源电枢电源接线图2、实验步骤1)按上图接线。
图中直流电动机M⽤DJ15,其额定电压U N=220V,额定励磁电流I fN<0.16A。
校正直流测功机MG⽤DJ23,MG按他励发电机连接,在此作为直流电动机M的负载,⽤于测量电动机的转矩和输出功率。
R f1选⽤D44的1800Ω阻值,R f2选⽤D42的900Ω串联900Ω共1800Ω阻值,R1⽤D44的180Ω阻值,R2⽤D42的900Ω串联900Ω再加900Ω并联900Ω共2250Ω阻值。
接好线后,检查M、MG之间是否⽤联轴器直接联接好。
2)将直流并励电动机M的磁场调节电阻R f1调⾄最⼩值,电枢串联起动电阻R1调⾄最⼤值,接通控制屏下边右⽅的电枢电源开关使其启动,其旋转⽅向应符合转速表正向旋转的要求。
3)M启动正常后,将其电枢串联电阻R1调⾄零,调节电枢电源的电压为220V,调节校正直流测功机的励磁电流I f2为校正值(100mA),再调节其负载电阻R2和电动机的磁场调节电阻R f1,使电动机达到额定值:U=U N,I=I N,n=n N,此时M的励磁电流I f即为额定励磁电流I fN。
《机电传动控制》实验报告
《机电传动控制》实验报告本次实验是关于机电传动控制的,实验主要通过使用PLC编程,控制步进电机和气缸来实现控制目标。
本次实验中,我们学习了PLC编程的基本原理,学习了步进电机的工作原理,并使用PLC编程实现了步进电机的控制。
同时,我们还学习了气缸的工作原理,并使用PLC编程实现了气缸的控制。
实验一:步进电机控制实验本实验的目的是学习步进电机的工作原理,并实现步进电机的控制。
步进电机是一种能将电脉冲信号转换为机械角度运动的电动机。
步进电机的优点是,能够实现准确的位置控制和精细的运动控制。
在本实验中,我们使用连接在PLC输出模块上的步进电机来进行控制。
实验步骤1.将PLC程序下载进PLC控制器中,并将输出模块连接到步进电机。
2.在PLC编程软件中进行编程,设置电机的工作方式和实现的目标。
3.在PLC编程软件中进行调试,检查程序是否正确。
4.进行实验,观察步进电机的运动,并检查控制效果是否达到预期。
实验结果我们实现了通过PLC编程控制步进电机的目标,步进电机实现了预期的运动轨迹,并在程序执行的过程中能够准确地控制步进电机的转动速度和方向。
本实验的目的是学习气缸的工作原理,并实现气缸的控制。
气缸是一种利用压缩空气作为动力源的机械装置,通过压缩空气产生的动力驱动气缸的运动。
气缸广泛应用于自动化生产线上,能够实现快速、高效的控制目标。
总结本次实验学习了PLC编程的基本原理,并应用PLC编程实现了对步进电机和气缸的控制。
在实验过程中,我们遇到了一些问题和挑战,但通过团队合作和认真地解决问题,最终成功地完成了实验任务。
通过本次实验的学习,我们加深了对机电传动控制的理解和掌握,为今后的学习和研究打下了坚实的基础。
《机电传动控制》实验一
《机电传动控制》实验指导书实验一、锯齿波触发电路的调试一、实验目的1.熟悉锯齿波触发电路的工作原理,掌握各主要元件的作用并观察各主要点的波形。
2.掌握锯齿波触发电路的调试方法和同步定相方法。
锯齿波触发如下图所示。
二、实验线路及原理三、实验内容1)锯齿波同步移相触发电路的调试。
2)锯齿波同步移相触发电路各点波形的观察和分析。
四、实验方法1.按图实2-1接通各直流电源及同步电压,选定其中一块触发器(如1CF),检查RP1~RP3电位器当顺时针旋转时,相应的锯齿波斜率应上升,直流偏移电压U b的绝对值应增加,控制电压U c也应增加。
2.用双踪示波器检查各主要点波形1)同时观察同步电压和“1”点的电压波形,了解“1”点波形形成的原因。
2)观察“1”、“2”点的电压波形,了解锯齿波宽度和“1”点电压波形的关系。
3)调节电位器RP1,观测“2”点锯齿波斜率的变化。
4)观察“3”~“6”点电压波形和输出电压的波形,记下各波形的幅值与宽度,并比较“3”点电压U3和“6”点电压U6的对应关系。
5)调节触发脉冲的移相范围将控制电压Uct调至零(将电位器RP2顺时针旋到底),用示波器观察同步电压信号和“6”点U6的波形,调节偏移电压Ub(即调RP3电位器),使α=170°,其波形如下图所示。
锯齿波同步移相触发电路6)调节Uct(即电位器RP2)使α=60°,观察并记录U1~U6及输出“G、K”脉冲电压的波形,标出其幅值与宽度,并记录在下表中(可在示波器上直接读出,读数时应将示波器的“V/DIV”和“t/DIV”微调旋钮旋到校准位置)。
五、实验报告1)整理、描绘实验中记录的各点波形,并标出其幅值和宽度。
2)总结锯齿波同步移相触发电路移相范围的调试方法,如果要求在Uct=0的条件下,使α=90°,如何调整?3)讨论、分析实验中出现的各种现象。
三锯齿波排对图六、注意事项1)参见本教材实验一的注意事项。
【VIP专享】机电传动控制实验报告(10学时)
机电传动控制实验报告课程名称:机电传动控制实验项目:填写下面给出的实验名称实验时间:2016-12-13实验组号:实验地点:工程C-201实验一生产线组装与调试实训系统一、实验目的理解常用低压电器的结构组成及工作原理;准确分析电路原理图;查对PLC各I/O 地址;掌握新设备电路连线设计分析方法二、实验工具三、思考题1.阐述工作流程及原理?2.阐述上料与传送单元的工作过程,绘制PLC控制回路图3.电气部分由几部分组成?分别是什么?4.绘制整体连接图实验二液压回转工作台控制电路设计一、实验目的1. 了解电器元件的结构特点并合理选择电器元件;2. 掌握设计电气控制原理图的方法;3.熟练应用费斯通软件做电气设计二、实验工具三、思考题1. 绘制回转工作台工作时状态表,绘制主电路和控制电路图,2. 阐述工作工程。
实验三电气控制设计(可也自行选择液压设计题目)由两台电动机M1、M2分别驱动两个工作台A、B,机构示意图如图所示,控制要求如下1)按下启动按钮SB后,工作台A由SQl进至SQ2;2)然后工作台B由SQ3自动进至SQ4;3)然后工作台A由SQ2自动退至SQl;4) 然后工作台B由SQ4自动退至SQ3以上动作往复运行。
要停止时,按下总停止按钮SB1。
一、实验目的1. 了解电器元件的结构特点并合理选择电器元件;2. 掌握设计电气控制原理图的方法;3.熟练应用费斯通软件做电气设计二、实验工具三、思考题1. 绘制工作台工作时状态表,绘制主电路和控制电路图,2. 阐述工作工程。
实验四PLC编程(自选一题)1 采用PLC设计并编写程序,某皮带运输机由M1、M2、M3、M4四台电动机拖动,要求:启动时,按M1-M2-M3-M4顺序启动,间隔时间为3S;停止时,按M4-M3-M2-M1顺序停止,间隔时间为2S2 十字路口交通灯控制要求如下,采用PLC设计并编写程序。
(25分)(1)南北方向:红灯亮25秒,转到绿灯亮25秒,再按1秒一次的规律闪烁3次,然后转到黄灯亮2秒。
《机电传动控制》实验指导书
调节R1使电枢电流达到0.2A(如果电流太大,可能由于剩磁的作用使电机旋转,测量无法进行,如果此时电流太小,可能由于接触电阻产生较大的误差),改变电压表量程为20V,迅速测取电机电枢两端电压UM和电流Ia。将电机转子分别旋转三分之一和三分之二周,同样测取UM、Ia,填入表1-1。
六.注意事项
1.直流他励电动机起动时,须将励磁电源调到最大,先接通励磁电源,使励磁电流最大,同时必须将电枢电源调至最小,然后方可接通电源,使电动机正常起动,起动后,将电枢电源调至220V,使电机正常工作。
2.直流他励电机停机时,必须先切断电枢电源,然后断开励磁电源。同时,必须将电枢电源调回最小值,励磁电源调到最大值,给下次起动作好准备。
b.从数字转速表上观察电机旋转方向,若电机反转,可先停机,将直流电动机电枢或励磁两端接线对调,重新起动,则电机转向应符合正向旋转的要求。
d.调节电动机电枢电源至220V,再调节电动机励磁电流,使电动机(发电机)转速达到1600r/min(额定值),并在以后整个实验过程中始终保持此额定转速不变。
e.调节发电机励磁电流,使发电机空载电压达UO=1.2UN(240V)为止。
2.在控制屏上按次序悬挂NMEL-13C、NMEL-03/4组件,并检查NMEL-13C和M01直流电机测功机的连接。
3.用伏安法测电枢的直流电阻,接线原理图见图1-1。
R:可调电阻箱(NMEL-03/4)中的单相可调电阻R1。
V:直流电压表
A:直流安培表
(1)经检查接线无误后,直流电动机电枢电源调至最小,R1调至最大,直流电压表量程选为300V档,直流电流表量程选为2A档。
机电传动(控制)实验
实验一三相异步电动机点动、启动控制实验一.实验目的1.学习继电器、接触器实验的基本要求与安全操作注意事项。
2.认识实验中所用的继电器、接触器等组件及使用方法。
3.熟悉异步电动机的点动、起动控制接线方法。
二.预习要点1.如何正确选择使用继电器、接触器。
2.熟悉所用各中电气元件的图文符号。
3.掌握异步电动机的点动、起动控制接线方法。
三.实验项目1.三相异步电动机的点动控制。
2.三相异步电动机的起动控制。
四.实验设备及仪器综合实验台、接触器、开关、按钮、异步电动机以及引线等。
五.实验说明及操作步骤1.由实验指导老师讲解实验的基本要求,实验台各面板的布置及使用方法,注意事项。
2.点动控制接线原理图见图。
380VKM: 接触器SB:按钮M:三相异步电动机(1)经检查接线无误后,接通交流电源。
(2)按下按钮SB,接触器KM主触点吸合,电动机启动。
放开按钮SB,电动机停止运行。
⒊起动控制接线原理图见图。
KM: 接触器1SB、2SB:按钮M:三相异步电动机(1)经检查接线无误后,接通交流电源。
(2)按下按钮SB,接触器KM主触点吸合,电动机启动。
放开按钮SB,电动机继续运行。
六.注意事项1.接线时应断开电源。
2.电动机启动后,应注意旋转部件伤人。
七.实验报告按指导老师要求写出实验报告。
实验二三相异步电动机正反转、行程控制实验一.实验目的1.学习继电器、接触器实验的基本要求与安全操作注意事项。
2.认识实验中所用的继电器、接触器等组件及使用方法。
3.熟悉异步电动机的正反转及行程控制接线方法。
二.预习要点1.如何正确选择使用继电器、接触器。
2.熟悉所用各中电气元件的图文符号。
3.掌握异步电动机的正反转及行程控制接线方法。
三.实验项目1.三相异步电动机的正反转控制。
2.三相异步电动机的行程控制。
四.实验设备及仪器综合实验台、接触器、开关、按钮、行程开关、异步电动机以及引线等。
五.实验说明及操作步骤⒈三相异步电动机的正反转控制接线如图:FKM、RKM: 接触器FSB、RSB、SB:按钮M:三相异步电动机(1)经检查接线无误后,接通交流电源。
机电传动控制实验1
7.系统动态波形的观察
用二踪慢扫描示波器观察动态波形,用 光线示波器记录动态波形。在不同的调节器参 数下,观察,记录下列动态波形: (1)突加给定起动时,电动机电枢电流波形和 转速波形。 (2)突加额定负载时,电动机电枢电流波形和 转速波形。 (3)突降负载时,电动机电枢电流波形和转速 波形。
注:电动机电枢电流波形的观察可通过ACR的第 “1”端转速波形的观察可通过ASR的第“1”端
n(r/min) I(A)
注意:(1)先加励磁;
(2)密切注视电流表;
(3)零位是否准确;(4)起动时逐渐加给定。
6.系统特性测试 将ASR,ACR均接成PI调节器接入系统, 形成双闭环不可逆系统。 (a)反馈电位器RP3逆时针旋到底,使放大倍 数最小;
(b)“5”、“6”端接入MEL—11电容器,预置 5~7μF;
(c)调节RP1、RP2使输出限幅为±5V。
(1)机械特性n=f(Id)的测定
调节转速给定电压Ug,使电机空载转速至1500 r/min, 再调节发电机负载电阻Rg,在空载至额定负载范围 内分别记录7~8点,可测出系统静特性曲线n=f(Id)
n(r/min) I(A)
(2)闭环控制特性n=f(Ug)的测定 调节Ug,记录Ug和n,即可测出闭环控制特性 n=f(Ug)。
ACR接成比例积分(PI)
Ug接到调节器的输入端当加正给
定时,调整负限幅电位器RP2,使
之输出电压为零。
当调节器输入端加负给定时,调
整正限幅电位器RP1,用示波器观 察同步电压和对应的触发脉冲,使
α=10°左右。(确定移相控制电
压Uct的调节范围为0~Uctmax。)
把调节器ASR接成比例积分
五、 实验内容
机电传动控制实验报告
机电传动控制实验报告《机电传动控制》实验报告天津理⼯⼤学机械⼯程学院2014年9⽉实验⼀直流他励电动机调速实验⼀、实验⽬的1.深⼊了解直流他励电动机的调速性能;2.进⼀步学习PLC 控制系统硬件电路设计和程序设计、调试。
⼆、实验原理1.直流他励电动机的调速原理、调速⽅法电动机的调速就是在⼀定的负载条件下,⼈为地改变电动机的电路参数,以改变电动机的稳定转速。
从直流他励电动机机械特性⽅程式T K K R R K Un t e ad a e 2φφ+-=可知,改变串⼊电枢回路的电阻Rad ,电枢供电电压U 或主磁通Φ,都可以得到不同的⼈为机械特性,从⽽在负载不变时可以改变电动机的转速,以达到速度调节的要求,故直流电动机调速的⽅法有以下三种。
(1)改变电枢回路外串电阻Rad如图7.1所⽰为串电阻调速的特性曲线,从图中可看出,在⼀定的负载转矩T L 下,串⼊不同的电阻可以得到不同的转速,如在电阻分别为R a 、R 3、R 2、R 1的情况下,可以得到对应于A 、C 、D 和E 点的转速n A 、n C 、n D 和n E 。
在不考虑电枢回路的电感时,电动机调速时的机电过程(如降低转速)见图中沿A →B →C 的箭头⽅向所⽰,即从稳定转速n A 调⾄新的稳定转速n C 。
这种调速⽅法存在不少缺点,如机械特性较软,电阻愈⼤则特性愈软,稳定度愈低;在空载或轻载时,调速范围不⼤;实现⽆级调速困难;在调速电阻上消耗⼤量电能等。
图7.1 电枢回路串电阻调速的特性曲线(2)改变电动机电枢供电电压U改变电枢供电电压U可得到⼈为机械特性,如图7.2所⽰,从图中可看出,在⼀定负载转矩T L下,加上不同的电压U N、U1、U2、U3、…,可以得到不同的转速n a、n b、n c、n d、…,即改变电枢电压可以达到调速的⽬的。
这种调速⽅法的特点是:①当电源电压连续变化时,转速可平滑⽆级调节,⼀般只能在额定转速以下调节;②调速特性与固有特性互相平⾏,机械特性硬度不变,调速的稳定度较⾼,调速范围较⼤;③当T L=常数时,稳定运⾏状态下的电枢电流Ia与电压U⽆关,且Φ=ΦN,故电动机转矩T=KtΦN Ia不变,属于恒转矩调速,适合于对恒转矩型负载进⾏调速;④可以靠调节电枢电压来启动电动机,⽽不⽤其他启动设备。
机电传动控制实验指导书
机电传动控制实验指导书2022年3月-1-实验一他励直流电动机(2节)一、实验目的1、学习电机实验的基本要求与安全操作注意事项。
2、掌握他励直流电动机的接线方法,以及启动、换向、调速和制动的方法。
3、掌握使用相关仪器仪表测量他励直流电动机的工作特性和机械特性。
二、实验设备及仪器1、NMEL系列电机教学实验台的主控制屏(NMCL-II)。
2、电机导轨及涡流测功机、转矩/转速调节及测量组件(NMEL-13)。
3、可调直流稳压电源(NMEL-18,含直流电压、电流、毫安表)4、直流电压、毫安、安培表(NMEL-0010)。
5、直流他励电动机(M03)。
6、波形测试及开关板(NMEL-05)。
7、可调电阻箱(NMEL-03/4)三、实验内容及步骤实验电路图1-1M:他励直流电动机(M03)。
U1:可调直流稳压电源(NMEL-18/1),为电枢绕组供电。
Uf:可调直流稳压电源(NMEL-18/2),为励磁绕组供电。
R1:电枢调节电阻(NMEL-03/4)。
-2-+AR112SRLIaV2M-mA+RfIf+U1V1UfUa--GIRf:励磁调节电阻(NMEL-03/4)。
RL:能耗制动限流电阻(NMEL-03/4中的900Ω可变电阻)。
S:能耗制动开关(NMEL-05)。
V1:可调直流稳压电源自带直流电压表(NMEL-18/1)。
A:可调直流电源自带直流电流表(NMEL-18/1),或量程为2A的直流电流表(NMEL-0010)。
V2:量程300V的直流电压表(NMEL-0010)。
mA:可调直流电源自带直流毫安表(NMEL-18/2),或量程为200mA的直流电流表(NMEL-0010)。
G:涡流测功机,涡流测功机的转矩/转速调节(NMEL-13)。
按实验电路图1-1所示连接好实验设备和线路。
经检查无误后,按以下项目及步骤进行实验,测量实验数据。
根据数据计算分析后完成实验报告。
1、他励直流电动机的启动(先励磁通电,后电枢通电)(1)将R1调至最大,Rf调至最小,将MEL-13“转速控制/转矩控制”选择开关扳向“转矩控制”,“转矩设定”电位器逆时针旋到底(转矩最小)。
最新中南大学机电传动控制实验报告1
中南大学机电传动控制实验报告1机电传动控制实验报告姓名:学院:班级:学号:日期:一、实验台结构与工作原理本实验台的机械系统结构如图本实验台的安装平台保证了各机械装置的安装精度,各装置采用弹性联轴器连接,便于直、交流电机的互换和传动装置装卸。
链传动单元,链条松紧可调,便于对摩擦扭矩的调试。
实验台面板总共包含七大单元,分别为:1,变频器单元2,直流单元:包含直流调速器和直流接触器3,交流单元:包含热继电器和交流接触器4,控制单元:包含按钮,时间继电器,中间继电器5,电阻单元:10Ω/50W6,PLC单元:包含PLC模块,A/D模块和中间继电器7,电源单元:为整个实验台提供380V,220V,24V电源二、主要技术参数直流电机: 功率0.75Kw 扭矩 4.72Nm减速机交流电机: 功率 0.75Kw 扭矩 2.3Nm 减速机速比 1:3摆线针轮减速机: 减速比 1:9 扭矩 0-250Nm扭矩传感器: 量程 0-20Nm负载: 14kg砝码: 1kg 4块变频器: 0.75KW,380V,输出频率:0.1~400HzPLC模块: 西门子S7-200系列CPU224, A/D模块EM235模拟量模块: 西门子EM235扭矩转速传感器: 0-20N.m,转速输出:60脉冲/圈三、操作步骤1,断开实验台各电源开关2,打开电脑,运行机电传动软件,先选择实验项目,然后根据软件中显示的原理图,在实验台上接线3,确定接线无误后,合上电源开关,就可开始进行实验4,软件中点击<测试>--<运行>即可监测电机的扭矩和转速四、,注意事项1,在电机运转过程中,严禁用手触摸实验台的机械传动部分2,在面板上连线时,勿必先断开各电源开关,3,各接触器,中间继电器,时间继电器等的线圈电压均为直流24V,线圈的正负请勿接反4,在使用变频器,直流调速器前,勿必先熟悉各端口功能5,进行交流实验时,用交流面板上的接触器;进行直流实验时,用直流面板上的接触器,千万不能混用,否则会烧坏接触器五、产品基本配置六、软件使用说明本软件有两种操作模式,一种是面板控制模式,另一种是PC控制模式。
机电传动控制实验报告
机电传动控制实验报告实验⼀:机电控制系统与传动系统认知实验实验⽬的:认识直流电机,交流电机,步进电机,伺服电机及对应的驱动器与变频器,认识可编程控制器,理解机电系统基本组成及控制原理实验⼯具:电梯模型,柔性制造中⼼,机电装调实训台,三轴运动实训台,变频⽔泵系统。
实验内容:认识柔性制造单元:24V直流电机经过涡轮减速器减速后带动⽪带传送装置,传送被加⼯件;电磁吸和装置、步进电机、直流电机与丝杠及其他结构件构成了机械臂完成空间移动箱体的功能;直流电机、⽪带及槽轮机构完成放置箱体的功能;电机与⽓动装置配合完成给箱体加盖与插销的功能;喷漆装置与加热装置完成喷漆与烘⼲功能;转盘与摇臂装置完成传送物件的转弯功能;液压装置完成给箱体盖盖章功能;光电传感器、霍尔传感器、颜⾊传感器完成质检功能;最后通过伺服电机及丝杠传动完成合格品的⼊库功能;通过⽓动吸盘与三相异步电动机将不合格产品抛弃。
柔性制造系统共有13个单元及模块构成,各个单元通过可编程控制器进⾏控制,各个控制器之间通过以太⽹进⾏通信。
认识三轴运动实训系统:三轴运动实训系统通过步进电机与丝杠结构进⾏运动控制,步进电机是可编程控制器通过控制步进电机驱动器进⾏控制,利⽤此基本原理可实现3D打印,激光雕刻等功能。
认识电梯实训系统:电梯基本原理是通过可编程控制器控制三相异步交流电动机带动钢丝绳实现电梯的上下运动,通过位置传感器、接触开关来判断电梯位置,通过拉⼒传感器判断电梯是否过载,可编程控制器通过采集电梯按键数据以控制电梯上下运动。
认识机电装调实验台:机电装调试验台是通过可编程控制器对材料进⾏分拣,通过霍尔传感器判断材料是否⾦属,将⾦属材料分拣出来。
认识变频⽔泵系统:变频⽔泵系统通过压⼒传感器判断⽔位⾼低,通过可编程控制器控制变频器控制三相交流异步电动机转动带动⽔泵以调节⽔箱⽔位,使⽔箱保持恒定⽔位。
实验⼆:液压控制回路的搭建实验⽬的:认识液压控制系统,通过搭建液压控制回路理解控制的基本原理实验⼯具:液压试验台,电磁换向阀,液压缸,霍尔传感器实验内容:搭建液压顺序控制回路:利⽤霍尔传感器检测液压缸缸体运动位置,将位置信号传送回可编程控制器,可编程控制器依据接收到的位置信号控制两电磁阀的通断电,以完成下⼀步动作。
机电传动与控制实验指导书
实验一三相异步电动机点动控制、连续运转控制一、实验目的1.熟练掌握继电器,接触器等电器在实际电路中的正确使用。
2.掌握异步电动机点动控制、连续运转控制的实现。
3.初步掌握电气控制线路接线的方法及技巧。
二、实验器材继电器-接触器控制实验板;三相异步电动机;连接导线若干;连线工具。
三、实验原理:四、实验步骤1、连接主电路、控制电路,认真检查线路2、接通电源,进行实验;观察分析实验结果3、切断电源,整理好实验器材。
五、实验注意事项1.实验时使用电压比较高,特别要注意安全。
实验过程中,不得接触任何带电部位。
2.遇异常情况时,迅速拉下开关。
六、实验报告要求1.根据实验内容,完成实验报告。
2.画出三相异步电动机控制的电气原理图。
3.记录实验中,出现的故障及处理情况,实验收获。
U V W1.熟练掌握继电器,接触器等电器在实际电路中的正确使用。
2.掌握互锁触点在电路中的作用。
3.掌握三相异步电动机正反转的控制原理。
4.学会看懂电路图并按图接线的方法,培养分析、检查和排除电气故障的能力。
二、实验器材继电器-接触器控制实验板;三相异步电动机 ;连接导线若干;连线工具。
三、实验原理直接正-反转控制:1.连接主电路、控制电路,认真检查线路2.接通电源,进行实验;观察分析实验结果3.切断电源,整理好实验器材。
五、实验注意事项1.实验过程中,不得接触任何带电部位。
2.遇异常情况时,迅速拉下开关。
六、实验报告要求1.根据实验内容,完成实验报告。
2.画出三相异步电动机控制的电气原理图。
3.记录实验中,出现的故障及处理情况,实验收获。
1.熟练掌握继电器,接触器等电器在实际电路中的正确使用。
2.掌握由时间继电器实现的三相异步电动机自动控制。
3.初步掌握电气控制线路接线的方法及技巧。
4.学会看懂电路图并按图接线的方法,培养分析、检查和排除电气故障的能力。
二、实验器材继电器-接触器控制实验板;三相异步电动机;连接导线若干;连线工具。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一 双闭环晶闸管不可逆直流调速系统
实验二 正弦脉宽调制(SPWM)变频调速系统
实验一 双闭环晶闸管不可逆直流调速系统
一、实验目的
1.了解双闭环不可逆直流调速系统的原理,组成及各主要单 元部件的原理。 2.熟悉电力电子及教学实验台主控制屏的结构及调试方法。 3.熟悉MCL-18, MCL-33的结构及调试方法 4.掌握双闭环不可逆直流调速系统的调试步骤,方法及参数 的整定。
主电路的调试
直流电流表 B1
A
U V W
VT1
VT3
VT5
C
R
A1
F1
M 03
M
A2
接励磁 电源
F2
VT4
VT6Ug
+
U ct
+ Id Ud
M
-
-
Ug从0开始调
5.开环外特性的测定 (1)控制电压Uct由给定器Ug直接接入,直流发电机 所接负载电阻RG断开。 (2)使Ug=0,调节偏移电压电位器,使α稍大于 90°,合上主电路电源,逐渐增加给定电压Ug,使 电机起动、升速,调节Ug使电机空载转速 n0=1500r/min,再调节负载电阻RG,改变负载,在 直流电机空载至额定负载范围,测取7~8点,读取 电机转速n,电机电枢电流Id,即可测出系统的开环 外特性n=f (Id)。填入下表:
4、转速反馈系数的整定:
直接将给定电压Ug接入移相控制电压Uct的输入端 整流电路接直流电动机负载,(注意,慢慢增加给
定电压Ug
)
测量直流电动机的转速值和转速反馈电压值,调节
速度变换器(FBS)上转速反馈电位器RP1,使得
n=1500r/min时的转速反馈电压Un=-6V,这时的转
速反馈系数α=Un/n=0.004V/(r/min)。
图2 实验三接线图
1.移相触发电路的调试
① 观察脉冲相序 ② 零位调整: 调偏移电压 Uct=0时, a = 90°→
uT
= 90 uu
uv
uw
uu
Ud=0,n=0
1# 2# 3# 4# 5# 6#
如何调准90°?
2.电流及速度调节器(ACR、 ASR)的调试 按图接线,DZS(零速封锁器) 的扭子开关扳向“解除”。 把DZS的“3”端接至ACR的 “8”端(或ASR的“4”端), 使调节器解除封锁而正常工 作
五、 实验内容
1.移相触发电路的调试及开关设置(主电路未通电) (4)定初相 将给定器输出Ug接至NMCL-33面板的Uct端,调节偏 移电压Ub(调节偏移电压电位器RP),在Uct=0时 (可直接接地,或选择开关打到地,保证输入为 零),使=90°,Ud=0(因为电阻电感性负载时, Ud=2.34U2cosα )。 而由于电动机电枢电阻的差异,实际调试应该以 Uct=0时对应于整流电压Ud0=0的α 角作为触发角 的真实零位,此时晶闸管整流电路才可正常工作。
(1)打开NMCL-31的“低压控制电源”开关,这时 应有相应直流电压指示灯亮。 (2)调速电源选择开关“直流调速”。 (3)将面板上的Ublf接地,将桥式触发脉冲的六 个开关均拨到“接通”。用示波器通过NMCL-33的 “双脉冲观察孔”,观察6个双脉冲,应使其间隔 均匀(60°),幅值相同;观察每个晶闸管的控制 极、阴极电压波形,应有幅值为1V~2V的双脉冲。
a >60时( a =90) 阻感负载时的工作情况 与电阻负载时不同。
电阻负载时, u d 波形不会 出现负的部分。 阻感负载时, u d 波形会出 现负的部分。
带阻感负载时,三相桥式 全控整流电路的a角移相范 围为90 。
定量分析
当整流输出电压连续时(即带阻感负载时,或带电阻 负载a≤60时)的平均值为: 1 23 6U 2 sin td (t ) 2.34U 2 cos
二、实验内容 :
1.各控制单元调试 2.测定电流反馈系数。 3.测定开环 机械特性及闭环静特性 4.闭环控制特性的测定。 5.观察, 记录系统动态波形。
三、实验系统组成及工作原理
三、实验系统组成及工作原理
四、注意事项
1.三相主电源连线时需注意,不可换错相序。 2.电源开关闭合时,过流保护、过压保护的发光二极管可 能会亮,只需按下对应的复位开关SB1、SB2即可正常工作。 3.系统开环连接时,不允许突加给定信号Ug起动电机 4.起动电机时,需把MEL-13的测功机加载旋钮逆时针旋到 底,以免带负载起动。 5.改变接线时,必须先按下主控制屏总电源开关的“断开” 红色按钮,同时使系统的给定为零。 6.进行闭环调试时,若电机转速达最高速且不可调,注意 转速反馈的极性是否接错。 7.双踪示波器的两个探头地线通过示波器外壳短接,故在 使用时,必须使两探头的地线同电位(只用一根地线即 可),以免造成短路事故。
Ud
3 带电阻负载且a >60时,整流电压平均值为:
3
Ud
3
3
6U 2 sin td (t ) 2.34U 2 1 cos( ) 3
输出电流平均值为 :Id=Ud /R
五、 实验内容
1.移相触发电路的调试及开关设置(主电路未通电)
ACR接成比例积分(PI)
Ug接到调节器的输入端当加正给
定时,调整负限幅电位器RP2,使
之输出电压为零。
当调节器输入端加负给定时,调
整正限幅电位器RP1,用示波器观 察同步电压和对应的触发脉冲,使
α=10°左右。(确定移相控制电
压Uct的调节范围为0~Uctmax。)
把调节器ASR接成比例积分
(PI)调节器
将给定器输出Ug接到速度调
节器的输入端
当加正给定时,调整负限幅
电位器RP2,使之输出电压为 -6V;
当调节器输入端加负给定时,
调整正限幅电位器RP1,使正 限幅为零。
3、电流反馈系数的整定: 直接将给定电压Ug接入移相控制电压Uct的输入端 整流桥接电阻性负载(注意:将2组滑线电阻器电阻 并联使用,且调到电阻值最大。) 慢慢增加给定电压Ug,观察输出电压Ud到220V左右, 并同时观察负载电流Id ,适当调整滑线变阻器使 Id=1A。 用万用表测量电流反馈电压。方法是调节电流变换 器(FBC)上的电流反馈电位器RP1,使得负载电流 Id=1A时的电流反馈电压Ui=3.5~4V,这时的电流反馈 系数β=Ui/Id=3.5~4V/A。
双闭环调速系统调试原则 (1)先部件,后系统。即先将各单元的特性调 好,然后才能组成系统。 (2)先开环,后闭环,即使系统能正常开环运 行,然后在确定电流和转速均为负反馈时组 成闭环系统。 (3)先内环,后外环。即先调试电流内环,然 后调转速外环。
三相桥式整流电路回顾
带阻感性负载时
a =0
a =30