初三数学第一学期期末考试试卷
2022-2023学年人教版九年级数学第一学期期末测试卷含答案

第1页,共4页 第2页,共4页………○…………○…………内…………○…………装…………○…………订…………○…………线…………○………………○…………○…………外…………○…………装…………○…………订…………○…………线…………○………考点考场考号姓 名座位号2022-2023学年第一学期期末质量监测试卷九年级 数学学科(考试时间:120分钟 考试分值:150分)一、选择题(每题5分,共45分)1.(5分)下列新冠疫情防控标识图案中,中心对称图形是( )A.B.C.D.2.(5分)下列为一元二次方程的是( )A.02=+-c bx axB.0232=-+x x C.01322=+-x x D.0222=+y x3.(5分)已知关于x 的一元二次方程x m x 442=-有两个不相等的实数根,则m 的取值范围是( )A.1->mB.2<mC.0≥mD.0<m4.(5分)方程0)3)(2(=+-x x 的解是( )A.2=xB.3-=xC.3,221==x xD.3,221-==x x 5.(5分)如图,AB 是☉O 的弦,点C 在圆上,已知∠AOB=100°,则∠C=( )A.40°B.50°C.60°D.80°6.(5分)抛物线2)4(32++=x y 的顶点坐标是( ) A.(2,4) B.(2,-4) C.(4,2) D.(-4,-2)7.(5分)目前我国已建立了比较完善的经济困难学生资助体系.某校前年发放给每个经济困难学生389元,今年发放了438元.设每年发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是( )A.438)13892=+x (B.389)14382=+x (C.438)21389=+x (D.389)21438=+x (8.(5分)对于二次函数2)1(2+-=x y 的图像,下列说法正确的是( ) A.开口向下B.对称轴是直线1-=xC.顶点坐标是(1,2)D.当1>x 时,y 随x 的增大而减小9.(5分)当0>ab 时,2ax y =与b ax y +=的图象大致是( )A. B. C. D.二、 填空题 (每题 5 分 ,共30分 )10.(5分)点A(-2,3)关于原点对称的点的坐标是________.11.(5分)已知关于x 的方程0322=++k x x 的一个根是-1,则k=________. 12.(5分)如图,四边形ABCD 为☉O 的内接四边形,已知∠BOD=100°,则∠BCD 的度数为____.13.(5分)一个不透明袋子中装有10个球,其中有5个红球,3个白球,2个黑球,这些球除颜色外无其它差别,从袋子中随机取出个球,则它是白球的概率是________.14.(5分)若562)1(--+=m m x m y 是二次函数,则m=________.第3页,共14页第4页,共14页装订线内不许答题15.(5分)如图,抛物线与x 轴交于点A(-1,0),顶点坐标(1,n),与y 轴的交点在(0,3),(0,4)之间(包含端点),则下列结论正确的有________.(填编号)①03<b a +;②134-≤≤-a ;③对于任意实数m ,bm am b a +≥+2恒成立;④关于x 的方程12+=++n c bx ax 有两个相等的实数根.三、 解答题 (本题共计 8 小题 ,共计75分 )16. (8分) 解方程:(1)033(=-+-x x x ); (2)0142=--x x . 17. (7分) 关于x 的方程0232=+-m x x 的一个根为-1,求方程的另一个根及m 的值.18. (8分) 如图所示,每个小正方形的边长为1个单位长度,作出△ABC 关于原点对称的图形△A 1B 1C 1,并写出A 1,B 1,C 1的坐标.19. (10分) 如图,某小区规划在一个长为40米、宽为26米的矩形场地ABCD 上修建三条同样宽度的马路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草.若使每一块草坪的面积都是144m 2,求马路的宽.第5页,共4页 第6页,共4页………○…………○…………内…………○…………装…………○…………订…………○…………线…………○………………○…………○…………外…………○…………装…………○…………订…………○…………线…………○………考点考场考号姓 名座位号20.(10分) 为了解长垣市民对全市创建全国文明城市工作的满意程度,某中学数学兴趣小组在某个小区内进行了调查统计.将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中的信息,解决下列问题: (1)此次调查中接受调查的人数为________人; (2)请你补全条形统计图;(3)扇形统计图中“满意”部分的圆心角为________度;(4)该兴趣小组准备从调查结果为“不满意”的4位市民中随机选择2位进行回访,已知这4位市民中有2位男性,2位女性.请用画树状图的方法求出选择回访的市民为“一男一女”的概率.21.(10分) 如图,在△ABC 中,点O 是AB 边上一点,OB=OC,∠B=30°,过点A 的 ☉O 切BC 于点D ,CO 平分∠ACB .(1)求证:AC 是☉O 的切线; (2)若BC=12,求☉O 的半径长;(3)在(2)的条件下,求阴影部分的面积.22. (10分) 某商人如果将进货价为8元的商品按每件10元出售,每天可销售100件.现采用提高售出价,减少进货量的办法增加利润,已知这种商品每涨价0.1元,其销售量就要减少1件,问涨价多少元时,才能使每天所赚的利润达到360元?23.(12分) 如图,在平面直角坐标系中,抛物线422++=ax ax y 与x 轴交于点 A(-4,0),B(2,0),与y 轴交于点C .经过点B 的直线b kx y +=与y 轴交于点D(0,2),与抛物线交于点E .(1)求抛物线的解析式及点C 的坐标;(2)若点P 为抛物线的对称轴上的动点,当△AEP 的周长最小时,求点P 的坐标; (3)若点M 是直线BE 上的动点,过M 作MN ∥y 轴交抛物线于点N ,判断是否存在点M ,使以点M 、N ,C ,D 为顶点的四边形是平行四边形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.第7页,共14页 第8页,共14页装订线内不许答题2022-2023学年第一学期期末质量监测试卷答案九年级 数学学科一、选择题(每题5分,共45分)1.A2.C3.A4.D5.B6.D7.A8.C9.D二、 填空题 (每题 5 分 ,共30分 )10.(2,-3) 11.2± 12.130° 13.10314. 7 15.①②③三、 解答题 (本题共计 8 小题 ,共计75分 )16.解:(1)0)3()3(=-+-x x x分解因式得:0)1)(3=+-x x (————————2分 可得03=-x 或01=+x解得:1,321-==x x ————————4分 (2)5142=--x x移项得:642=-x x ————————1分配方法得:10442=+-x x 即10)22=-x (————————2分 开方得:102±=-x解得:10210221-=+=x x , ————————4分 17.解:把 代入方程,得,解得,————————3分设方程的另一个根为,则,————————5分所以,即方程的另一个根为.————————7分18.解:关于原点的对称图形如图,————————5分根据图形可知:,,.————————8分19.解:设马路的宽为米 ————————1分依题意可列方程————————4分整理得 ————————6分 解得,(舍去) ————————9分答:马路的宽为2米.————————10分第9页,共4页第10页,共4页………○…………○…………内…………○…………装…………○…………订…………○…………线…………○………………○…………○…………外…………○…………装…………○…………订…………○…………线…………○………考点考场考号姓 名座位号20.(1)∵非常满意的有18人,占,∴此次调查中接受调查的人数:(人).故答案为:50 ————————2分 (2)此次调查中结果为满意的人数为:(人)补全条形统计图如下:————————4分(3)144 ————————6分 (4)画树状图:∵共有12种等可能的结果,选择回访市民为“一男一女”的有8种情况,∴选择回访的市民为“一男一女”的概率为:. ————————10分21.(1)证明:∵∴又∵ 平分∴ ∴∴∴是的切线. ————————3分(2)解:如图,连接,设交于点,设半径为r .∵ 切于点, ∴.又∵,, ∴AC=6,,由勾股定理得AB=36∴ 在直角三角形OCD 中,由勾股定理得 r 2+62=(36-r)2解得 r=32 ————————6分 (3)解:∵, ∴————————10分第11页,共14页 第12页,共14页装订线内不许答题22.解:设涨价元时,才能使每天所赚的利润达到元. ————————1分————————4分 ,, ————————7分 解得. ————————9分答:涨价元时,才能使每天所赚的利润达到元. ————————10分23.解:(1),点的坐标为————————4分(2)如图,由,可得对称轴为.∵ 的边是定长,∴ 当的值最小时,的周长最小.点关于的对称点为点,∴ 当点是与直线的交点时,的 值最小. ∵ 直线经过点∴ ’解得∴ 直线:令,得,∴ 当的周长最小时,点的坐标为————————8分(3)存在.点的坐标为或————————12分第13页,共4页 第14页,共4页…………○…………○…………内…………○…………装…………○…………订…………○…………线…………○………点场号名座位号。
九年级数学上册第一学期期末考试试卷-含答案-人教版试卷

20XX –20XX 学年度九年级(上)期末水平测试数学试题(含答案)一、单项选择题(每小题3分,满分15分)1、已知两圆的半径分别为2和3,圆心距为5,则这两圆的位置关系是 ( ) A. 外离 B. 外切 C. 相交 D. 内切2、单词NAME 的四个字母中,是中心对称图形的是 ()A. NB. AC.M D. E3、下列根式中,不是..最简二次根式的是 ( ) A.7B. 3C.21D. 24、下列事件中必然事件是 ( )A. 掷一枚硬币,着地时正面向上B. 明天会下雨C. 买一张福利彩票,开奖后会中奖D. 在标准大气压下,水加热到100℃会沸腾5、如图,⊙O 是△ABC 的外接圆,已知∠ABO =30º,则∠ACB 的大小为 ( )A. 60ºB. 30ºC. 45ºD. 50º二、填空题(每小题4分,满分20分) 6、计算:)13)(13(-+= . 7、方程0232=+-x x 的根是 _____ .8、已知关于x 的方程062=--kx x 的一个根为3=x ,则实数k 的值为 .9、△ABC 中,AB =10cm ,AC =8cm ,BC =6cm ,以点B 为圆心,6cm 为半径作⊙B ,则边AC所在的直线与⊙B 的位置关系是_________.10、已知圆锥的底面半径长为5,侧面展开后所得的扇形的圆心角为120º,则该圆锥的母线长等于 __ .三、解答题(共5个小题,每小题6分,满分30分) 11、(6分)计算:123127-+12、(6分)计算:6)273482(÷-13、(6分)解方程:0)3(2)3(2=-+-x x x14、(6分)解方程组⎩⎨⎧=++-=9322y x x y① ②15、(6分)如图,点O 、A 、B 的坐标分别为(0,0)、(3,0)、(3,-2),将△OAB 绕点O 按逆时针方向旋转90º得到△OA ' B '. (1)画出旋转后的△OA 'B ',并求点B '的坐标;(2)求旋转过程中点A 所经过的路径⌒AA' 的长度.(结果保留π)四、解答题(共4个小题,每小题7分,满分28分)16、(7分)如图,每个小方格都是边长为1的正方形,ABC △的顶点坐标均为整数,点P 的坐标为(-1,0),请按要求画图与作答:(1)把ABC △绕点P 旋转180º得C B A '''△; (2)把ABC △向右平移7个单位得C B A ''''''△;(3)C B A '''△与C B A ''''''△是否成中心对称,若是,画出对称中心P ',并写出其坐标.17、(7分)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,∠CDB =30º,⊙O 的半径为3cm , 求弦CD 的长.18、(7分)一个不透明的布袋里装有4个大小、质地均相同的乒乓球,每个球上面分别标有数字1,2,3,4. 小林先从布袋中随机抽取一个乒乓球(不放回去),再从剩下的3个球中随机抽取第二个乒乓球. (1)请你列出所有可能的结果;(2)求两次取得乒乓球的数字之积为奇数的概率.B19、(7分)关于x 的方程04)2(2=+++kx k kx 有两个不相等的实数根. (1)求实数k 的取值范围.(2)是否存在实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根?若存在,求出k 的值;若不存在,说明理由.五、解答题(共3个小题,每小题9分,满分27分) 20、(9分)市种子培育基地用A 、B 、C 三种型号的甜玉米种子共1500粒进行发芽试验,从中选出发芽率高的种子进行推广,通过试验知道,C 型号种子的发芽率为80%.根据试验数据绘制了下面两个不完整的统计图(图8、图9):(1)求C 型号种子的发芽数;(2)通过计算说明,应选哪种型号的种子进行推广?(3)如果将所有已发芽的种子放到一起,从中随机取出一粒,求取到C 型号发芽种子 的概率.图1 三种型号种子数百分比种子型号 图2 三种型号种子发芽数21、(9分)(1)用长120米的篱笆围成一个面积为500平方米的长方形花圃,求长方形的长和宽,(2)能不能用120米的篱笆围成一个面积为901平方米的长方形花圃?说明你的理由.22、(9分)如图所示,AB 是⊙O 的直径,OD ⊥弦BC 于点F ,且交⊙O 于点E ,若∠AEC =∠ODB .(1)判断直线BD 和⊙O 的位置关系,并给出证明; (2)当AB =10,BC =8时,求BD 的长.DBOAC E F九年级数学参考答案及评分建议一、1、B 2、A 3、C 4、D 5、A 二、6、2 7、1,2 8、1 9、 相切 10、15三、11、解:原式=12、解:原式=13、解:0)23)(3(=+--x x x 0)33)(3(=--x x 03=-x 或033=-x 即31=x 或12=x14、解:将①代入②化简得2260x x -=,解得1203x x ==,,分别将1203x x ==,代入①,得1230y y ==,∴原方程组的解为1103x y =⎧⎨=⎩ 2230x y =⎧⎨=⎩15、解:(1)如图OA B ''△为所示,……2分点B '的坐标为(23),;……3分(2)OAB △绕点O 逆时针旋转90°后得OA B ''△, 点A 所经过的路径⌒AA' 是圆心角为90°,半径为3 的扇形OAA '的弧长,所以13(2π3)π42l =⨯⨯=. 即点A 所经过的路径⌒AA' 的长度为3π2.……6分四、16、解:(1)略……2分 (2)略……2分(3)成中心对称,对称中心坐标为(2.50)P ',……3分 17、解:因为30CDB ∠=,所以60COB ∠=,………1分Rt CEO中,OE =,………3分32CE,………6分所以3CD=…………7分18、解:(1)根据题意列表如下:1 2 3 41 (1,2)(1,3)(1,4)2 (2,1)(2,3)(2,4)3 (3,1)(3,2)(3,4)4 (4,1)(4,2)(4,3)由以上表格可知:有12种可能结果…………4分(2)在(1)中的12种可能结果中,两个数字之积为奇数的只有2种,所以,P(两个数字之积是奇数)21126==.…………7分19、解:(1)由2(2)404kk k∆=+->·得:1k>-………… 2分又0k≠∴k的取值范围是1k>-且0k≠.………… 3分(2)设方程2(2)04kkx k x+++=的两根分别为1x,2x,由根与系数的关系有:1212214kx xkx x+⎧+=-⎪⎪⎨⎪=⎪⎩………… 4分则212kk+-=,43k∴=-………… 6分由(1)知,43k=-时0∆<,原方程无实数根,因此不存在符合条件的实数k.......7分五、20、解:(1)C型号种子数为:1 500×40%=600,发芽数=600×80%=480. (2)分(2)A型号种子数为:1 500×30%=450,发芽率=450420×100%≈93%. (4)分B型号种子数为:1 500×30%=450,发芽率=450370×100%≈82%. (6)分C型号种子发芽率是80%.∴选A型号种子进行推广.……7分(3)取到C型号发芽种子的概率=480370420480++=12748.……9分21、解:(1)设长为x,则宽为60-x,……1分依题意(60)500x x-=,……2分化简得2605000x x-+=,解方程得10x=,或50x=,………4分所以长方形长为50米,宽为10米.………5分(2)设长为x ,则宽为60-x ,依题意(60)901x x -=,………6分 化简得:2609010x x -+=………7分因为2(60)490140∆=--⨯=-<,方程无实数根,………8分所以不能用120米的篱笆围成一个面积为901平方米的长方形花圃 ………9分22、(1)直线BD 和O ⊙相切. …………1分证明:∵AEC ODB ∠=∠,AEC ABC ∠=∠,∴ABC ODB ∠=∠. …………2分 ∵OD ⊥BC ,∴90DBC ODB ∠+∠=°. …………3分 ∴90DBC ABC ∠+∠=°.即90DBO ∠=°. ∴直线BD 和O ⊙相切.………4分 (2)连接AC . …………5分∵AB 是直径, ∴90ACB ∠=°. 在Rt ABC △中,108AB BC ==,,∴6AC ==.…………6分∵直径10AB =, ∴5OB =.由(1),BD 和O ⊙相切, ∴90OBD ∠=°.∴90ACB OBD ∠=∠=°. 由(1)得ABC ODB ∠=∠, ∴ABC ODB △∽△. …………7分∴AC BCOB BD=. ∴685BD =,解得203BD =.DB O AC E F。
2024年北京密云区初三九年级上学期期末数学试题和答案

北京市密云区2023-2024学年第一学期期末考试九年级数学试卷2024.1考生须知1.本试卷共7页,共3道大题,28道小题,满分100分,考试时间120分钟.2.在试卷和答题卡上准确填写学校、班级、姓名和考号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效,作图必须使用......2.B .铅笔...4.考试结束,请将本试卷和答题纸一并交回.一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个..选项是符合题意的.1.二次函数y =3(x +1)2-4的最小值是()A .1B.-1C .4D .-42.已知⊙O 的半径为6,点P 在⊙O 内,则线段OP 的长度可以是()A .5B .6C .7D .83.中国瓷器,积淀了深厚的文化底蕴,是中国传统艺术文化的重要组成部分.瓷器上的图案设计精美,极富变化.下面瓷器图案中,既是轴对称图形又是中心对称图形的是()A .B .C .D .4.下列事件中,为必然事件的是()A .等腰三角形的三条边都相等;B .经过任意三点,可以画一个圆;C .在同圆或等圆中,相等的圆心角所对的弧相等;D .任意画一个三角形,其内角和为360°.5.在下列方程中,有一个方程有两个实数根,且它们互为相反数,这个方程是()A .x +2=0B .x 2-x =0C .x 2-4=0D .x 2+4=06.如图,四边形ABCD 内接于⊙O ,若∠A =60°,⊙O 的半径为3,则的长为()A .πB .2πC.3πD .6π7.如图,在正方形网格中,A ,B 两点在格点上,线段AB 绕某一点逆时针旋转一定角度后得到线段A'B',点A'与点A 对应,其旋转中心是()A .点B B .点GC .点ED .点F8.某种幼树在相同条件下进行移植试验,结果如下:移植总数n 400750150035007000900014000成活数m 364651133031746324807312620成活的频率0.9100.8680.8870.9070.9030.8970.901下列说法正确的是()A .由于移植总数最大时成活的频率是0.901,所以这种条件下幼树成活的概率为0.901;B .由于表格中成活的频率的平均数约为0.90,所以这种条件下幼树成活的概率为0.90;C .由于表格中移植总数为1500时成活数为1330,所以移植总数3000时成活数为2660;D .由于随着移植总数的增大,幼树移植成活的频率越来越稳定在0.90左右,所以估计幼树成活的概率为0.90.二、填空题(本题共16分,每小题2分)9.若关于x 的方程(k +3)x 2-6x +9=0是一元二次方程,则k 的取值范围是.10.将抛物线y=x 2向下平移1个单位长度,再向右平移2个单位长度后,得到抛物线的解析式为.11.用配方法解一元二次方程x 2-4x =1时,将原方程配方成(x -2)2=k 的形式,则k 的值为.12.如图,AB 、AC 为⊙O 的切线,B 、C 为切点,连接OC 并延长到D ,使CD =OC ,连接AD .若∠BAD =75°,则∠AOC 的度数为.mnB D13.若点A (-2,y1),B (-1,y 2),C (3,y 3)三点都在二次函数y =-3x 2的图象上,则y 1、y 2、y 3的大小关系是(按从小到大的顺序,用“<”连接).14.请写出一个常数a 的值,使得二次函数y =x 2+4x +a 的图象与x 轴没有交点,则a 的值可以是.15.如图,正六边形ABCDEF 内接于⊙O ,若⊙O 的半径为4,则正六边形ABCDEF 的面积为_________.16.在平面直角坐标系xOy 中,点A 、点B 的位置如图所示,抛物线y =ax 2-2ax 经过A 、B 两点,下列四个结论中:①抛物线的开口向上②抛物线的对称轴是x =1③A 、B 两点位于对称轴异侧④抛物线的顶点在第四象限所有不.正确..结论的序号是.三、解答题(本题共68分,其中17-22每题5分,23-26每题6分,27、28题每题7分)17.解方程:x 2+8x -20=0.18.下面是小宁设计的“作平行四边形的高”的尺规作图过程.已知:平行四边形ABCD .求作:AE ⊥BC ,垂足为E .作法:如图所示,①连接AC ,分别以点A 和点C 为圆心,大于的长为半径作弧,两弧相交于P ,Q 两点;②作直线PQ ,交AC 于点O ;③以点O 为圆心,OA 长为半径作圆,交线段BC 于点E (点E 不与点C 重合),连接AE .所以线段AE 就是所求作的高.12AC根据小宁设计的尺规作图过程,解决问题:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AP=CP,AQ=,∴点P、Q都在线段AC的垂直平分线上,∴直线PQ为线段AC的垂直平分线,∴O为AC中点.∵AC为直径,⊙O与线段BC交于点E,∴∠AEC=°.()(填推理的依据)∴AE⊥BC.19.已知:二次函数y=x2+bx-3的图象经过点A(2,5).(1)求二次函数的解析式;(2)求该函数的顶点坐标.20.二十四节气是中华民族农耕文明的智慧结晶,是专属中国人的独特时间美学,被国际气象界誉为“中国第五大发明”.如图,小文购买了四张形状、大小、质地均相同的“二十四节气”主题邮票,正面分别印有“立春”“立夏”“秋分”“大暑”四种不同的图案,背面完全相同,他将四张邮票洗匀后正面朝下放在桌面上.(1)小文从中随机抽取一张,抽出的邮票恰好是“大暑”的概率是___________;(2)若印有“立春”“立夏”“秋分”“大暑”四种不同图案的邮票分别用A,B,C,D 表示,小文从中随机抽取一张(不放回),再从中随机抽取一张,请用画树状图或列表的方法求小文抽到的两张邮票恰好是“立春”和“立夏”的概率.21.2023年10月,第三届“一带一路”国际合作高峰论坛在北京召开,回顾了十年来共建“一带一路”取得的丰硕成果.为促进经济繁荣,某市大力推动贸易发展,2021年进出口贸易总额为60000亿元,2023年进出口贸易总额为86400亿元.若该市这两年进出口贸易总额的年平均增长率相同,求这两年该市进出口贸易总额的年平均增长率.22.玉环为我国的传统玉器,通常为正中带圆孔的扁圆形器物.据《尔雅·释器》记载:“肉好若一,谓之环”,其中“肉”指玉质部分(边),“好”指中央的孔.结合图1,“肉好若一”的含义可以表示为:中孔直径d=2h.图2是一枚破损的汉代玉环,为修复原貌,需推算出该玉环的孔径尺寸.如图3,文物修复专家将破损玉环的外围边缘表示为弧AB,设弧AB所在圆的圆心为O,测得弧所对的弦长AB为6cm,半径OC⊥AB于点D,测得CD=1cm,连接OB,求该玉环的中孔半径的长.图1图2图323.已知关于x的一元二次方程x2-5x+m=0(m<0).(1)判断方程根的情况,并说明理由;(2)若方程的一个根为6,求m的值和方程的另一个根.24.如图,⊙O是△ABC的外接圆,∠ABC=45°,连接OC交AB于点E,过点A作OC的平行线交BC延长线于点D.(1)求证:AD是⊙O的切线;(2)若⊙O的半径为4,AD=6,求线段CD的长.25.某景观公园计划修建一个人工喷泉,从垂直于地面的喷水枪喷出的水流路径可以看作是抛物线的一部分.记喷出的水流距喷水枪的水平距离为x m,距地面的竖直高度为y m,获得数据如下:x(米)00.5 2.0 3.55y(米) 1.67 2.25 3.00 2.250小华根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小华的探究过程,请补充完整:(1)在平面直角坐标系xOy中,描出以表中各对对应值为坐标的点,并用平滑的曲线画出该函数的图象;(2)直接写出水流最高点距离地面的高度为米;(3)求该抛物线的表达式,并写出自变量的取值范围;(4)结合函数图象,解决问题:该景观公园准备在距喷水枪水平距离3m处修建一个大理石雕塑,使喷水枪喷出的水流刚好落在雕塑顶端,则大理石雕塑的高度约为m(结果精确到0.1m).26.在平面直角坐标系xOy中,点(2,m)和(5,n)在抛物线y=x2+2bx上,设抛物线的对称轴为x=t.(1)若m=0,求b的值;(2)若mn<0,求该抛物线的对称轴t的取值范围.27.如图,在Rt△ABC中,∠ACB=90°,AC=BC.点D为AB边上的一点,将线段CD绕点C逆时针旋转90°得到线段CE,连接AE、BE.(1)依据题意,补全图形;(2)直接写出∠ACE+∠BCD的度数;(3)若点F为BD中点,连接CF交AE于点P,用等式表示线段AE与CF之间的数量关系,并证明.28.在平面直角坐标系xOy中,已知⊙O的半径为1,点A的坐标为(-1,0).点B是⊙O上的一个动点(点B不与点A重合).若点P在射线AB上,且AP=2AB,则称点P 是点A关于⊙O的2倍关联点.(1)若点P是点A关于⊙O的2倍关联点,且点P在x轴上,则点P的坐标为_______;(2)直线l经过点A,与y轴交于点C,∠CAO=30°.点D在直线l上,且点D是点A关于⊙O的2倍关联点,求D点的坐标;(3)直线y=x+b与x轴交于点M,与y轴交于点N,若线段MN上存在点A关于⊙O的2倍关联点,直接写出b的取值范围.北京市密云区2023-2024学年第一学期期末考试九年级数学试卷参考答案及评分标准2024.1一、选择题(本题共16分,每小题2分)题号12345678选项D A B C C B C D二、填空题(本题共16分,每小题2分)9.k≠-3;10.y=(x-2)2-1;11.k=5;12.65°;13.y3<y1<y2;14.6;(答案不唯一,大于4均可)15.16.①④.三、解答题(本题共68分.其中17~22题每题5分,23~26题每题6分,27、28题每题7分)说明:与参考答案不同,但解答正确相应给分.17.解:x2+8x-20=0(x+10)(x-2)=0………………………………2分∴x+10=0或x-2=0………………………………3分∴x=-10或x=2………………………………4分∴x1=-10,x2=2………………………………5分18.(1)………………………………2分(2)CQ………………………………3分90°,直径所对的圆周角是直角.………………………………5分19.(1)解:将点A(2,5)代入y=x2+bx-3解析式4+2b-3=5………………………………1分2b=4b=2………………………………2分∴二次函数的解析式为y=x2+2x-3………………………………3分(2)解:y=x2+2x-3=(x+1)2-4………………………………4分∴该函数的顶点坐标是(-1,-4)………………………………5分20.(1)14………………………………1分(2)根据题意,可以画出如下树状图:………………………………3分由树状图可知,所有可能出现的结果共有12种,即AB,AC,AD,BA,BC,BD,CA,CB,CD,DA,DB,DC,并且它们出现的可能性相等.其中,恰好抽到的两张邮票是“立春”和“立夏”(记为事件A)的结果有2种,即AB或BA.………………………………4分∴()21 126P A==.………………………………5分21.解:设这两年该市进出口贸易总额的年平均增长率为x,则:………………………………1分60000(1+x)2=86400………………………………2分(1+x)2=36251+x=65±解得:x1=0.2,x2=-2.2………………………………4分经检验:x=-2.2不符实际意义,舍去∴x=0.2=20%答:这两年该市进出口贸易总额的年平均增长率为20%.………………………………5分22.解:∵OC是⊙O的半径,且OC⊥AB∴AD=BD∵AB=6∴BD=3………………………………1分设⊙O的半径为x,则OC=OB=x∵CD=1∴OD=x-1………………………………2分在Rt△ODB中∵OD2+BD2=OB2∴(x-1)2+32=x2………………………………3分x=5∴OB=5………………………………4分∵玉环的中孔直径d=2h∴玉环的中孔半径为2.5cm.………………………………5分23.(1)该方程有两个不相等的实数根,理由如下:………………………………1分解:△=(-5)2-4m………………………………2分=25-4m∵m<0∴-4m>0∴25-4m>0即△>0………………………………3分∴方程有两个不相等的实数根(2)解:将x=6代入原方程∴36-30+m=0∴m=-6………………………………4分原方程为x2-5x-6=0(x-6)(x+1)=0解得:x1=6,x2=-1………………………………5分∴方程的另一个根为-1.………………………………6分24.(1)证明:连接OA………………………………1分∵⊙O是△ABC的外接圆,且∠ABC=45°∴∠AOC=90°………………………………2分∵OC//AD∴∠AOC+∠OAD=180°∴∠OAD=90°∴AD是⊙O的切线………………………………3分(2)解:过点C作CF⊥AD于点F,∴∠AFC=90°∴∠AOC=∠OAD=∠AFC=90°∴四边形AOCF是矩形∵OC=OA∴矩形AOCF是正方形∵⊙O的半径为4∴AF=CF=OC=4………………………………4分∵AD=6∴FD=AD-AF=2………………………………5分在Rt△CFD中CD==∴线段CD的长为………………………………6分25.(1)………………………………1分(2)3;………………………………2分(3)解:设y=a(x-2)2+3(a<0)………………………………3分∵将(5,0)代入函数表达式,则9a+3=0a=∴………………………………4分自变量的取值范围为:0≤x≤5.………………………………5分(4)2.7m(误差均可)………………………………6分26.(1)解:当m=0时,将(2,0)代入y=x2+2bx∴4+4b=0………………………………1分4b=-4∴b=-1………………………………2分(2)解:由题意,抛物线经过点(2,m)和(5,n)∵a>0∴抛物线开口向上,且经过坐标原点(0,0)如果t≤0,那么当x≥t时,y随x的增大而增大∴m>0,n>0,与mn<0不符,舍去如果t≥5,那么当x≤t时,y随x的增大而减小∴m<0,n<0,与mn<0不符,舍去∴0<t<5∵mn<0∴函数图象示意图为:图1图213-21(2)33y x=--+0.1±由图1,当0<t <2时作(0,0)关于x=t 的对称点(x 0,0)∵抛物线为轴对称图形∴点(x 0,0)在抛物线上∴x 0=2t∵a >0∴x ≥t 时,y 随x 的增大而增大∵m <0<n ∴2<2t <5………………………………3分∴512t <<∴12t <<………………………………4分由图2,当2≤t <5时作(5,n )关于x=t 的对称点(x 1,n )∵抛物线为轴对称图形∴点(x 1,n )在抛物线上∴x 1=2t -5∵a >0∴x ≤t 时,y 随x 的增大而减小∵m <0<n ∴2t -5<0<2………………………………5分其中0<2恒成立,解2t -5<0得t <52∴522t ≤<综上所述,512t <<………………………………6分27.(1)………………………………1分(2)∠ACE+∠BCD=180°………………………………2分(3)AE与CF之间的数量关系为:AE=2CF………………………………3分证明:延长CF至H,使FH=CF∵点F为BD中点∴DF=BF∵∠DFH=∠CFB∴△DFH≅△CFB………………………………4分∴DH=BC,∠H=∠BCF∵AC=BC∴DH=AC∵∠H=∠BCF∴DH//BC∴∠DCB+∠CDH=180°∵∠DCB+∠ACE=180°∴∠CDH=∠ACE………………………………5分∵CD=CE∴△CDH≅△ECA………………………………6分∴CH=AE∵CH=2CF∴AE=2CF………………………………7分28.(1)(3,0)………………………………1分(2)解:当直线l 与y 轴正半轴交于点C 时∵点D 在直线l 上,且点D 是点A 关于⊙O 的2倍关联点,∴直线l 与⊙O 的另一个交点为点B ,点D 在射线AB 上,满足AD =2AB 过点O 作OE ⊥AB ∴AB =2AE………………………………2分在Rt △AOE 中,∠CAO =30°,OA=1∴OE =12∴2AE ==∴AB =2∵AD =2AB∴AD =………………………………3分过点D 作DF ⊥x 轴,交x 轴于点F ∵在Rt △AOE 中,∠CAO =30°∴DF ,3AF ==∴OF =2∴D (2)………………………………4分同理可证,当直线l 与y 轴负半轴交于点C 时,D (2,……………………5分综上所述,D 点坐标为(2,)或(2,)(3)1b -≤≤或11b <≤………………………………7分。
陕西省西安市交通大学附属中学2023-2024学年九年级上学期期末数学试题(含解析)

A .B . . . 2.我们常常在建筑中看到四边形的元素.如图,墙面上砌出的菱形窗户的边长为框宽度忽略不计),其中较小的内角为A .4B .3.一元二次方程的根的情况为(A .有两个不相等的实数根D .无法确定3223210x x --=A .25.如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.已知正三角形的边长为A .B .13A .10.点在二次函数A .最大值二.填空题(本大题共14.如图,在矩形段上移动,并与意一点,连接90︒(),A m n 4-ABCD EF EF ,AN CM三.解答题(本大题共1115.计算:(1);(2)18.已知:如图,点为对角线点,.求证:.19.为贯彻落实党的二十大精神,全面建设社会主义现代化国家、兴,某校团委举办以“无悔青春献祖国,接力奋斗新时代赛,九年级(2)班的王伟和孙莉两人文采相当,且都想代表班级参赛,于是班长制作了()0π3128-+--2cos30tan60sin45cos45︒-︒+︒O ABCD Y E F DE BF =21.西安丰庆公园是现代生态景观与历史文化景观融为一体的皇家园林,园内的最高建筑.某数学活动小组想测量怡心阁的高度心阁的高度:小明沿后退到F 恰好看到标杆顶端22.类比一次函数的研究思路,九年级“励志”行探究.下面是他们的探究过程,请补充完整:(1)列表:下表是与的几组对应值,则的值为01654210BD x y m x ⋅⋅⋅5-4-3-2-1-y ⋅⋅⋅m(3)函数的图象和直线的交点坐标是______.23.如图,四边形是的内接四边形,为直径,点为弧的中点,延长交于点,为的切线.(1)求证:;(2)若,求的长.24.如图,在平面直角坐标系中,点的坐标为,连接,将线段绕着点逆时针旋转,点的对应点为点.(1)求经过三点的抛物线的表达式;(2)将抛物线沿着轴平移到抛物线,在抛物线上是否存在点,使得以为顶点的四边形为正方形,若存在,求平移的方式.若不存在,说明理由.|1|y x =-2y =ABCD O e BD D AC AD BC 、E DF O e CDF EDF ∠=∠2DF EF ==AD A ()4,2OA OA O 90︒A B ,,B O A L L x L 'L 'D ,,,B O A D图2图3【详解】解:观察图形可得,其主视图是3.A【分析】本题考查了根的判别式,根据题意算出根的判别式即可得;掌握根的判别式即可得.【详解】解:,23210x x --=在Rt ACD中,tan C故选B.【点睛】本题考查了锐角三角比的意义.将角转化到直角三角形中是解答的关键.7.C【分析】根据二次函数的性质判断出【详解】解:∵抛物线开口向下,∴a<0,9.B【分析】本题主要考查了同弧所对的圆周角相等,∠的圆周角相等得到ADC=【点睛】本题主要考查了等边三角形的性质,每个内角都相等.13.48【分析】本题考查了反比例函数与几何的综合.1求得相似比为,利用相似比求得∵平行于轴,∴轴,∴,∵,∴,AC x BAC ∠BD x ⊥BAC BDO ∽△△2OC BC =13BC BA BO BD ==18.详见解析【分析】根据平行四边形的性质得出,再证明线段的差得出,即可得出结论.【详解】证明:∵四边形是平行四边形,OEA OFC ∠=∠AOE ≌△△AD AE BC CF -=-ABCD依题意,∴,∵,∴,∴,设,2, 1.5,EM FD MD EF MN ====3 1.5 1.5CM CD MD =-=-=CM AN ∥CME ANE V V ∽CM EM AN EN=AN x =;(3)解:把代入中得:,解得:或,∴函数的图象和直线的交点坐标是:23.(1)见详解(2)【分析】(1)由“直径所对的圆周角等于”和圆周角定理可得2y =|1|y x =-|1|2x -==1x -3x =|1|y x =-2y =390︒设与交于点,∵是等腰直角三角形,AB OD M (),D m n BOA △(2)如图所示,连接AC、(3)如图所示,过点D作DH⊥。
第一学期九年级期末考试数学试卷及答案(一)

第一学期九年级期末考试数学试卷(一)(时间:120分钟)一、填空题(每小题3分,共18分)1.如图∠DAB=∠CAE ,请补充一个条件:__________,使△ABC ≌△ADE .2.如图,AM 、AN 分别切⊙O 于M 、N 两点,点B 在⊙O 上,且∠MBN=70°,则∠A=________.3.如图,张华同学在学校某建筑物的C 点处测得旗杆顶部A 点的仰角为30°,旗杆底部8点的俯角为45°.若旗杆底部B 点到建筑物的水平距离BE=9米,旗杆台阶高l 米,则旗杆顶点A 离地面的高度为___________米(结果保留根号).4.若抛物线22--=x x y 经过点A (3,a )和点B (b ,0),连接AB ,那么线段AB 的长为___________.5.某服装厂制造某种产品,原来每件产品的成本是256元,由于不断改进生产设备,提高生产技术,连续两次降低成本,两次降低后的成本是196元,则平均每次降低成本的百分率是______________.6.已知二次函数c bx ax y ++=2的图象开口向上,图像经过点(-l ,2)和(1,0)且与y 轴交于负半轴.(从以下(1)、(2)两问中选答一问,若两问都答,则只以第(2)问计分) 第(1)问:给出四个结论:①0>a ;②0>b ;③0>c ; ④0=++c b a ,其中正确结论的序号是______________.第(2)问:给出四个结论:①0<abc ②02>+b a ;③1=+c a ;④1>a ,其中正确结论的序号是___________________.二、选择题:下列每小题的四个答案中有且只有一个是正确的,请将正确答案的字母代号填在题后括号内(每小题3分,共36分)7.生活处处皆学问,如图,眼镜镜片所在的两圆的位置关系是( ).A .外离B .外切C .内含D .内切8.关于x 的方程022=-+-k kx x 的根的情况是( ). A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根D .无法确定9.二次函数342++=x x y 的图像可以由二次函数2x y =的图像平移而得到,下列平移正确的是( ).A .先向左平移2个单位,再向上平移1个单位B .先向左平移2个单位,再向下平移1个单位C .先向右平移2个单位,再向上平移1个单位D .先向右平移2个单位,再向下平移1个单位10.如图,已知直角三角形ABC 中,斜边AB 的长为m ,∠B=40°,则直角边BC 的长是( ).A .msin40°B .mcos40°C .mtan40°D .︒40tan m11.已知实数x 满足01122=+++x x xx ,那么x x 1+的值是( ) A .1或-2B .-l 或2C .-2D .112.下列说法正确的有( ).(1)如图(a ),可以利用刻度尺和三角板测量圆形工件的直径;(2)如图(b ),可以利用直角曲尺检查工件是否为半圆形;(3)如图(c ),两次使用丁字尺(CD 所在直线垂直平分线段AB )可以找到圆形工件的圆心;(4)如图(d ),测倾器零刻度线和铅垂线的夹角,就是从P 点看A 点时仰角的度数.A .1个B .2个C .3个D .4个13.如图,在△ABC 中,DE ∥BC ,S △ADE =S 梯形DBCE ,下列关系正确的是( ).A .AD :DB=(2+1):1B .DE :BC=1:2C .AD :DB=2:1D .AD :DB=(2-l ):114.已知二次函数k x y +-=2)1(3的图象上有A (2,1y ),B (2,2y ),C (-5,3y )三个点,则1y 、2y 、3y 的大小关系是( ).A .1y >2y >3yB .2y >1y >3yC .3y >1y >2yD .3y >2y >1y 15.如图,已知AB 是⊙O 的直径,CD 是弦且CD ⊥AB ,BC=6,AC=8,则sin ∠ABD 的值是( ).A .34B .43C .53D .54 16.如图,在Rt △ABC 中,∠C=90°,∠A=30°,E 为AB 上一点,且AE :EB=4:1,EF ⊥AC 于F ,连结FB ,则tan ∠CFB 的值等于( ).A .33B .332 C .335D .3517.在正方形网格中,△ABC 的位置如图所示,则tan ∠BAC 等于( ).A .21B .31C .41 D .33 18.如图,⊙O 的半径OA=6,以A 为圆心,OA 为半径的弧交⊙O 于B 、C 点,则BC=( )A .63B .62C .33D .32三、解答题(本题共6小题,共64分。
2024年北京石景山初三九年级上学期期末数学试题和答案

石景山区2023-2024学年第一学期初三期末试卷数 学第一部分 选择题一、选择题(共16分,每题2分)第1- 8题均有四个选项,符合题意的选项只有一个. 1.若34(0)x y y ,则xy的值是(A)34 (B)43(C)74(D)732.如图,在Rt ACB △中,90C °,3AC BC ,则sin A 为(A) 13 (B)4 (C)10(D) 103.如图,四边形ABCD 内接于⊙O ,AB 是直径,D 是 AC的 中点.若40B °,则A 的大小为 (A) 50° (B) 60° (C) 70°(D) 80°4.将抛物线23y x 向左平移1个单位长度,平移后抛物线 的解析式为 (A) 23(1)y x(B) 23(1)y x(C) 231y x(D) 231y x5.若抛物线229y xmx 与x 轴只有一个交点,则m 的值为(A) 3(B) 3(C)(D) 3AB C6.如图1,“矩”在古代指两条边成直角的曲尺,它的两边长分别为a ,b .中国古老的天文和数学著作《周髀算经》中简明扼要地阐述了“矩”的功能:“平距以正绳,偃矩以望高,覆矩以测深,卧矩以知远,环矩以为圆,合矩以为方”.其中“偃矩以望高”的意思就是把“矩”仰立放可测物体的高度.如图2,从“矩”AFE 的一端A 望向树顶端的点C ,使视线通过“矩”的另一端E ,测得8m BD , 1.6m AB . 若“矩”的边30cm EF a ,边60cm AF b ,则树高CD 为 (A) 4m (B) 5.3m (C) 5.6m (D) 16m7.在平面直角坐标系xOy 中,若点1(4)y ,,2(6)y ,在抛物线2(3)1(0)y a x a 上,则下列结论正确的是 (A) 121y y(B) 211y y(C) 211y y(D) 121y y8.如图,在ABC △中,CD AB 于点D ,给出下面三个条件: ①A BCD ; ②A BCD ADC ; ③AD CD CD BD. 添加上述条件中的一个,即可证明ABC △是直角三角形的条件序号是 (A) ①②(B) ①③(C) ②③(D) ①②③第二部分 非选择题二、填空题(共16分,每题2分)9.如图,在矩形ABCD 中,E 是边AD 的中点,连接BE 交 对角线AC 于点F .若6AC ,则AF 的长为 . 10.在平面直角坐标系xOy 中,若点1(3)y ,,2(7)y ,在反比例函数(0)ky k x的图象上,则1y 2y (填“>”“=”或“<”). DABCE F DCBA第6题 图1 第6题 图2DCH11.如图,正六边形ABCDEF 内接于⊙O ,12AB ,则 AB 的长为 .12.如图,PA ,PB 分别与⊙O 相切于A ,B 两点,60P °,6PA ,则⊙O 的半径为 .13.如图,线段AB ,CD 分别表示甲、乙建筑物的高,两座建筑物间的距离BD 为30m .若在点A 处测得点D 的俯角 为30°,点C 的仰角 为45°,则乙建筑物的高CD 约为 m (结果精确到0.1m1.4141.732 ).14.如图,点A ,B 在⊙O 上,140AOB °.若C 为⊙O 上任一点(不与点A ,B 重合),则ACB 的大小为 .15.如图,E 是正方形ABCD 内一点,满足90AEB °,连接CE .若2AB ,则CE 长的最小值为 .16.在平面直角坐标系xOy 中,抛物线2(0)y ax bx c a的顶点为(1)P k ,,且经过点(30)A ,,其部分图象如图 所示,下面四个结论中, ①0a ; ②2b a ;③若点(2)M m ,在此抛物线上,则0m ; ④若点()N t n ,在此抛物线上且n c ,则0t . 所有正确结论的序号是 .A BCDENBDM第11题 第12题 第13题三、解答题(共68分,第17-21题,每题5分,第22题6分,第23题5分,第24-26题,每题6分,第27-28题,每题7分) 解答应写出文字说明、演算步骤或证明过程. 17.计算:20248sin 60(1)tan 45 °°.18.如图,在四边形ABCD 中,AC 平分BAD ,90ACD B °.(1)求证:ACD △∽ABC △; (2)若3AB ,4AD ,求AC 的长.19.已知二次函数223y x x .(1)将223y x x 化成2()(0)y a x h k a 的形式,并写出其图象的顶点坐标;(2)求此函数图象与x 轴交点的坐标;(3)在平面直角坐标系xOy 中,画出此函数的图象.20.如图,AB 是⊙O 的直径,弦CD AB 于点E ,6CD ,1BE .求⊙O 的半径.21.已知二次函数2y x bx c 的图象过点(10)A ,和(03)B ,. (1)求这个二次函数的解析式;(2)当14x 时,结合图象,直接写出函数值y 的取值范围.DABC22.如图,在四边形ABCD 中,AD ∥BC ,90B °,3cos 5C,10CD . 求AB 的长.23.已知某蓄电池的电压为定值,使用此电源时,用电器的电流I (单位:A )与电阻R (单位: )成反比例函数关系,即(0)kI k R ,其图象如图所示.(1)求k 的值;(2)若用电器的电阻R 为6 ,则电流I为 A ;(3)如果以此蓄电池为电源的用电器的电流I 不得超过10A ,那么用电器的电阻R应控制的范围是 .24.如图,在ABC △中,AB AC ,以AB 为直径的O 交BC 于点D ,交AC 于点E ,点F 在AC 的延长线上,12CBF BAC . (1)求证:BF 是O 的切线; (2)若5AB ,1tan 2CBF ,求CE 的长.I /AB CD25.投掷实心球是北京市初中学业水平考试体育现场考试的选考项目之一.实心球被投掷后的运动路线可以看作是抛物线的一部分.建立如图所示的平面直角坐标系, 实心球从出手(点A 处)到落地的过程中,其竖直高度y (单位:m )与水平距离x (单位:m )近似满足二次函数关系.小石进行了三次训练,每次实心球的出手点A 的竖直高度为2m .记实心球运动路线的最高点为P ,训练成绩(实心球落地点的水平距离)为d (单位:m ).训练情况如下:根据以上信息,(1)求第二次训练时满足的函数关系式; (2)小石第二次训练的成绩2d 为 m ; (3)直接写出训练成绩1d ,2d ,3d 的大小关系.2OA26.在平面直角坐标系xOy 中,抛物线2(0)y ax bx c a 经过点(33)A a c ,. (1)求该抛物线的对称轴;(2)点1(12)M a y ,,2(2)N a y ,在抛物线上.若12c y y ,求a 的取值范围.27.如图,在Rt ACB △中,90ACB °,60BAC °.D 是边BA 上一点(不与点B重合且12BD BA),将线段CD 绕点C 逆时针旋转60°得到线段CE ,连接DE ,AE . (1)求CAE 的度数;(2)F 是DE 的中点,连接AF 并延长,交CD 的延长线于点G ,依题意补全图形.若G ACE ,用等式表示线段FG ,AF ,AE 之间的数量关系,并证明.DABCE28.在平面直角坐标系xOy 中,⊙O 的半径为1.对于⊙O 的弦AB 和点C 给出如下定义:若点C 在弦AB 的垂直平分线上,且点C 关于直线AB 的对称点在⊙O 上,则称点C 是弦AB 的“关联点”. (1)如图,点1(22A ,,1(22B ,. 在点1(00)C ,,2(10)C ,,3(11)C ,,4(20)C ,中,弦AB 的“关联点”是 ;(2)若点1(0)2C ,是弦AB 的“关联点”,直接写出AB 的长; (3)已知点(02)M ,,(0)15N ,.对于线段MN 上一点S ,存在⊙O 的弦PQ ,使得点S 是弦PQ 的“关联点”.记PQ 的长为t ,当点S 在线段MN 上运动时,直接写出t 的取值范围.石景山区2023-2024学年第一学期初三期末数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可。
第一学期初三期末考试数学试卷及答案

A第一学期初三期末考试数学试卷一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个..是符合题意的.用铅笔把“答题卡”上 对应题目答案的相应字母处涂黑. 1. 已知:2:3,a b = 那么下列等式中成立的是A .32a b =B .23a b =C .52a b b += D .13a b b -= 2.如图,点A 、B 、C 都在O ⊙上,若∠AOB =72°,则∠ACB 的度数为 A .18°B .30°C .36°D .72°3. 已知⊙O 的半径为5,点P 到圆心O 的距离为8,那么点P 与⊙O 的位置关系是A .点P 在⊙O 上B .点P 在⊙O 内C .点P 在⊙O 外D .无法确定4. 如图,在△ABC 中,点D 、E 分别在AB 、AC 边上,DE ∥BC ,若AD =6,BD =2,AE =9,则EC 的长是A .8B .6C .4D .35. 如图,AB 是⊙O 的直径,C 、D 是⊙O 上的两点,若∠BAC =20°, AD DC=,则∠DAC 的度数是 A .30° B .35° C .45° D .70°6. 桌面上放有6张卡片(卡片除正面的颜色不同外,其余均相同),其中卡片正面的颜色3张是绿色,2张是红色,1张是黑色.现将这6张卡片洗匀后正面向下放在桌面上,从中随机抽取一张,抽出的卡片正面颜色是绿色的概率是 A .12 B .13 C .14 D . 167. 将抛物线23y x =先向左平移2个单位,再向下平移1个单位后得到新的抛物线,则AB DE新抛物线的解析式是A .23(2)1y x =++ B .23(2)1y x =+- C .23(2)1y x =-+ D .23(2)1y x =-- 8. 如图,在矩形ABCD 中,AB =4,BC =3,点P 在CD 边上运动,联结AP ,过点B 作BE ⊥AP ,垂足为E ,设AP =x , BE =y ,则能反映y 与x 之间函数关系的图象大致是A .B .C .D .二、填空题(共4道小题,每题4分,共16分)9. 如果两个相似三角形的相似比是1:2,那么这两个相似三角形的周长比是 . 10. 如图,在Rt △ABC 中,∠C =90°,AB = 5,AC = 4,则cos A = .11. 已知抛物线22y x x m =-+与x 轴有两个交点,则m 的取值范围是 . 12. 如图,把直角三角形ABC 的斜边AB 放在定直线l 上,按顺时针方向在l 上转动两次,使它转到△A B C ˝˝˝的 位置.若BC =1,AC =3,则顶点A 运动到点A ˝的 位置时,点A 经过的路线的长是 .三、解答题(共4 道小题,共20分)13. (本小题满分5分)计算: tan 60sin30tan 45cos60.︒-︒⨯︒+︒14. (本小题满分5分)已知:如图,在ABC △中,D 是AC 上一点,联结BD ,且∠ABD =∠ACB .A BCA BCDP E(1)求证:△ABD ∽△ACB ;(2)若AD =5,AB = 7,求AC 的长.15. (本小题满分5分)已知二次函数245y x x =-+.(1)将245y x x =-+化成y =a (x -h ) 2 + k 的形式; (2)指出该二次函数图象的对称轴和顶点坐标; (3)当x 取何值时,y 随x 的增大而增大?16.(本小题满分5分)已知:如图,AB 是⊙O 的直径,CD 是⊙O 的弦, 且AB ⊥CD ,垂足为E ,联结OC ,OC =5.(1)若CD =8,求BE 的长;(2)若∠AOC =150°, 求扇形OAC 的面积.四、解答题(共2道小题,共12分)17. (本小题满分6分)已知反比例函数ky x=的图象经过点A (1,3). (1)试确定此反比例函数的解析式; (2)当x =2时, 求y 的值;(3)当自变量x 从5增大到8时,函数值y 是怎样变化的?18.(本小题满分6分)已知二次函数2y x bx c =++的图象如图所示,它与x 轴的一个交点的坐标为(-1,0),与y 轴的交点坐标为(0,-3). (1)求此二次函数的解析式;(2)求此二次函数的图象与x 轴的另一个交点的坐标;(3)根据图象回答:当x 取何值时,y <0?五、解答题(共2道小题,共10分) 19. (本小题满分5分)已知:如图,在△ABC 中,∠A =30°, tan B =34,AC =18,求BC 、AB 的长.20. (本小题满分5分)如图,某同学在测量建筑物AB 的高度时,在地面的C 处测得点A 的仰角为30°,向前走60米到达D 处,在D 处测得点A 的仰角为45°,求建筑物AB 的高度.六、解答题(共2道小题,共8分)21.(本小题满分4分)甲口袋中装有2个小球,它们分别标有数字1、2,乙口袋中装有3个小球,它们分别标有数字3、4、5.现分别从甲、乙两个口袋中随机地各取出1个小球,请你用列举法(画树状图或列表的方法)求取出的两个小球上的数字之和为5的概率.22.(本小题满分4分)如图,已知每个小方格都是边长为1的正方形,我们称每个小正方形的顶点为格点,以格点为顶点的图形称为格点图形. 图中的△ABC 是一个格点三角形.(1)请你在第一象限内画出格点△AB 1C 1, 使得△AB 1C 1∽△ABC ,且△AB 1C 1与△ABC的相似比为3:1; (2)写出B 1、C 1两点的坐标.CBA A BCD45°30°PA BDCx七、解答题(本题满分7分)23. 如图,在△ABC 中,∠C =60°,BC =4,AC =P 在BC 边上运动,PD ∥AB ,交AC 于D . 设BP 的长为x ,△APD 的面积为y . (1)求AD 的长(用含x 的代数式表示);(2)求y 与x 之间的函数关系式,并回答当x 取何值时,y 的值最大?最大值是多少? (3)点P 是否存在这样的位置,使得△ADP 的面积是△ABP 面积的23?若存在,请求出BP 的长;若不存在,请说明理由.八、解答题(本题满分7分)24. 在平面直角坐标系xOy 中,反比例函数4y x=的图象与抛物线2(94)1y x m x m =+++-交于点A (3, n ).(1)求n 的值及抛物线的解析式;(2) 过点A 作直线BC ,交x 轴于点B ,交反比例函数4y x=(0x >)的图象于点C ,且AC =2AB ,求B 、C 两点的坐标;(3)在(2)的条件下,若点P 是抛物线对称轴上的一点,且点P 到x 轴和直线BC的距离相等,求点P 的坐标.x九、解答题(本题满分8分)25. 在平面直角坐标系xOy 中,已知抛物线2y ax bx c =++的对称轴是1x =,并且经过(-2,-5)和(5,-12)两点. (1)求此抛物线的解析式;(2)设此抛物线与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于C 点,D是线段BC 上一点(不与点B 、C 重合),若以B 、O 、D 为顶点的三角形与△BAC 相似,求点D 的坐标;(3)点P 在y 轴上,点M 在此抛物线上,若要使以点P 、M 、A 、B 为顶点的四边形是平行四边形,请你直接写出点M 的坐标.一、选择题(共8道小题,共32分)1. A2. C3. C4. D5. B6. A7. B8. D二、填空题(共4道小题,共16分)9. 1:2 10. 4511. m<112. 43π⎛+⎝⎭三、解答题(共4道小题,共20分)13. (本小题满分5分)解:tan60°-sin30°×tan45°+cos 60°11122=⨯+…………………………………………………………………4分=……………………………………………………………………5分14. (本小题满分5分)(1)证明:∵∠A=∠A,∠ABD =∠ACB, ………1分∴△ABD∽△ACB.…………………2分(2)解: ∵△ABD∽△ACB,∴AB ADAC AB=. ……………………………3分∴757AC=. ………………………………4分∴495AC=. ……………………………5分15. (本小题满分5分)解:(1)24445y x x=-+-+………………………………………………1分2(2)1x=-+. ………………………………………………………2分(2)对称轴为2=x,………………………………………………………3分顶点坐标为(2,1). ……………………………………………4分(3)当x>2时,y随x的增大而增大. ………………………………5分16. (本小题满分5分)证明:(1)∵AB为直径,AB⊥CD,∴∠AEC=90°,CE=DE. ……………………1分∵CD=8,∴118422CE CD==⨯=. ………………… 2分∵OC=5,∴OE3=. …………3分∴BE=OB-OE=5-3=2. …………………………………………………4分(2)21501255.36012OACSππ=⨯⨯=扇形………………………………………5分四、解答题(共2道小题,共12分)17. (本小题满分6分)解:(1)∵反比例函数kyx=的图象过点A(1,3),ADB31k ∴=. …………………………………………………………………1分 ∴k =3. ……………………………………………………………… 2分 ∴反比例函数的解析式为3y x=. ……………………………… 3分 (2) 当2x =时,32y =. .……………………………………………4分 (3) 在第一象限内,由于k =3 >0,所以y 随x 的增大而减小.当5x =时,35y =;当8x =时,38y =. 所以当自变量x 从5增大到8时,函数值y 从35减小到38.………6分 18.(本小题满分6分)解: (1)由二次函数2y x bx c =++的图象经过(-1,0)和(0,-3)两点,得 10,3.b c c -+=⎧⎨=-⎩ …………………………………………………… 1分解这个方程组,得2,3.b c =-⎧⎨=-⎩……………………………………… 2分∴抛物线的解析式为22 3.y x x =--…………………………………3分 (2)令0y =,得2230x x --=.解这个方程,得13x =,21x =-.∴此二次函数的图象与x 轴的另一个交点的坐标为(3,0). ………5分(3)当13x -<<时,y <0. ………………………………………… 6分五、解答题(共2道小题,共10分) 19. (本小题满分5分)解:过点C 作CD ⊥AB 于D .∴∠ADC =∠BDC =90°. ∵∠A =30°,AC =18,∴CD = 12 AC = 12 ×18=9. ……………………………………………………1分∴AD ===………………………………2分∵3tan ,4CD B BD ==∴39,4BD= ∴BD =12. ………………………………………………………………………3分D A C∴15.BC === …………………………………4分∴AB =AD +BD =9 3 +12. ………………………………………………5分 ∴BC =15, AB =9 3 +12.20. (本小题满分5分)解:设建筑物AB 的高度为x 米.在Rt △ABD 中,∠ADB =45°, ∴AB =DB =x .∴BC =DB +CD = x +60.在Rt △ABC 中,∠ACB =30°,∴tan ∠ACB =ABCB……………………………1分 ∴tan 3060x x ︒=+.………………………… 2分60x x =+. ……………………………3分 ∴x =30+30 3 . ……………………………4分 ∴建筑物AB 的高度为(30+30 3 )米. …5分六、解答题(共2道小题,共8分) 21. (本小题满分4分)解:正确画出树状图或列表 ………………………………………………………3分P (数字之和为5)= 1.3………………………………………………………4分22. (本小题满分4分)解:(1)正确画出△AB 1C 1………………………………………………………… 2分(2)点B 1(4,1), ………………………………………………………… 3分点C 1(7,7). ……………………………………………………… 4分七、解答题(本题满分7分) 23.解:(1)∵PD ∥AB ,∴.AD BPAC BC=…………………………1分 ∵BC =4,AC=BP 的长为x ,.4x = ∴.2AD x =……………………… 2分 (2)过点P 作PE ⊥AC 于E.∵sin ,PEACB PC∠=∠C =60°, ABCD45°30°ED B AP∴)sin 604.2PE PC x =⨯=-……………………………………3分∴21133).2282y AD PE x x x x =⋅⋅=-=-+ (4)分∴当2x =时,y 的值最大,最大值是3.2……………………………5分(3)点P 存在这样的位置. ∵△ADP 与△ABP 等高不等底,∴ΔΔ.ADP ABP S DPS AB= ∵△ADP 的面积是△ABP 面积的23,∴ΔΔ2.3ADP ABP SS =∴2.3DP AB = ∵PD ∥AB ,∴△CDP ∽△CAB . ∴.DP CPAB CB= ∴2.3CP CB = ∴42.43x -= ∴4.3x =∴4.3BP = …………………………………………………………… 7分八、解答题(本题满分7分)24. 解:(1)∵点A (3, n )在反比例函数4y x=的图象上,43n ∴=.……………………………………………………………………1分 ∴A (3,43).∵点A (3,43)在抛物线2(94)1y x m x m =+++-上,49(94)3 1.3m m ∴=++⨯+- ∴23m =- .∴抛物线的解析式为2523y x x =--. …………………………2分(2)分别过点A 、C 作x 轴的垂线,垂足分别为点D 、E ,∴AD ∥CE .∴△ABD ∽△CBE .∴AD ABCE CB=.∵AC=2AB,∴13 ABCB=.由题意,得AD=4 3 ,∴41 33 CE=.∴CE=4.……………………3分即点C的纵坐标为4.当y=4时,x=1,∴C(1,4) …………………4分∵1,3BD ABBE CB==DE=2,∴1.23 BDBD=+∴BD=1.∴B(4,0). ……………………………………………………………5分(3)∵抛物线25 23y x x=--的对称轴是1x=,∴P在直线CE 上.过点P作PF⊥BC于F.由题意,得PF=PE.∵∠PCF =∠BCE, ∠CFP =∠CEB =90°,∴△PCF∽△BCE.∴PF PCBE BC=.由题意,得BE=3,BC=5.①当点P在第一象限内时,设P(1,a) (a>0).则有4.35a a-=解得3.2a=∴点P的坐标为31,2⎛⎫⎪⎝⎭. ……………………………………………6分②当点P在第四象限内时,设P(1,a) (a<0)则有4.35a a--=解得 6.a=-∴点P的坐标为()1,6-.……………………………………………7分∴点P的坐标为31,2⎛⎫⎪⎝⎭或()1,6-.九、解答题(本题满分8分)25.解:(1)由题意,得1,2425,25512.ba abc a b c ⎧-=⎪⎪-+=-⎨⎪++=-⎪⎩解这个方程组,得1,2,3.a b c =-⎧⎪=⎨⎪=⎩…………………………………… 1分∴ 抛物线的解析式为y =-x 2+2x +3. ……………………………2分 (2)令0y =,得2230x x -++=.解这个方程,得1213x x =-=,. (10)(30)A B ∴-,,,. 令0x =,得3y =.(03)C ∴,.4345.AB OB OC OBC ∴===∠=,,BC ∴===过点D 作DE x ⊥轴于点E . ∵45OBC BE DE ∠=∴=,.要使BOD BAC △∽△或BDO BAC △∽△, 已有ABC OBD ∠=∠,则只需BD BO BC BA =或BO BD BC BA=成立. 若BD BOBC BA=成立,则有34BO BC BD BA ⨯⨯==在Rt BDE △22222BE DE BE BD +===∴94BE DE ==.93344OE OB BE ∴=-=-=∴点D 的坐标为3944⎛⎫⎪⎝⎭,. ……………………………………………4分若BO BDBC BA =成立,则有BO BA BD BC ⨯=== 在Rt BDE △中,由勾股定理,得222222BE DE BE BD +===.∴2BE DE ==.321OE OB BE ∴=-=-=.∴点D 的坐标为(12),. ……………………………………………5分 ∴点D 的坐标为3944⎛⎫⎪⎝⎭,或(12),. (3)点M 的坐标为()2,3或(45),-或(421)-,-. ……………………8分。
初三上册期末考试数学试卷含答案(新人教版)

人教版九年级(上册)期末考试数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)tan45°的值等于( )A .B .C .D .12.(3分)如图,在Rt △ABC 中,∠C=90°,AB=10,AC=8,则sinA 等于( )A .B .C .D .3.(3分)下列格点,在反比例函数y=图象上的是( )A .(3,﹣2)B .(﹣3,﹣2)C .(2,﹣3)D .(﹣2,3)4.(3分)如图,已知AB ∥CD ∥EF ,那么下列结论正确的是( )A . =B . =C . =D . =5.(3分)在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,下列结论正确的是( )A .b=a•sinAB .b=a•tanAC .c=a•sinAD .a=c•cosB6.(3分)已知反比例函数y=的图象在一、三象限,则一次函数y=kx ﹣k 的图象大致是( )A .B .C .D .7.(3分)菱形OABC在平面直角坐标系中的位置如图所示.∠AOC=45°,OC=,则点B的坐标为()A.(,1)B.(1,)C.(+1,1) D.(1,+1)8.(3分)抛物线y=(x﹣1)2+2的对称轴为()A.直线x=1 B.直线x=﹣1 C.直线x=2 D.直线x=﹣29.(3分)已知抛物线y═ax2+bx+c的图象如图,则下列结论正确的是()A.a>0,b>0,c>0 B.a>0,b>0,c=0 C.a>0,b<0,c=0 D.a<0,b<0,c<0 10.(3分)下列四个命题:①两个角分别相等的两个三角形相似;②两条边对应成比例的两个三角形相似;③相似三角形对应高的比等于相似比;④相似三角形周长的比等于相似比.其中是真命题的共有()A.1个 B.2个 C.3个 D.3个11.(3分)如图,D是△ABC的边AB上的一点,那么下列四个条件不能单独判定△ABC∽△ACD的是()A.∠B=∠ACD B.∠ADC=∠ACB C.D.AC2=AD•AB12.(3分)对于二次函数y=x2﹣2x﹣3,下列四个结论:①图象开口向上;②顶点坐标为(﹣1,﹣4);③当x>1时,y随x的增大而增大;④当﹣1<x<3时,y<0.其中正确的是()A.①③B.②④C.①②④D.①③④二、填空题:(每小题3分,共18分13.(3分)已知线段b是线段a,c的比例中项,若a=1,c=2,则b=.14.(3分)已知A、B两点之间的实际距离为100m,要把它画到比例尺为1:200的图纸上,应画线段AB=cm.15.(3分)抛物线y=x2﹣4x﹣5与x轴有个交点.16.(3分)已知点(﹣2,1)在反比例函数y=的图象上,则k=.17.(3分)比较大小:sin40°cos50°(填“>”、“<”或“=”)18.(3分)如图,▱ABCD中,E是边AB的中点,AC、DE相交于点F,若△AEF的面积为20cm2,则△CDF的面积是cm2.三、解答题:(共66分)19.(6分)计算:sin45°+cos45°.20.(6分)如图,在△ABC中,已知DE∥BC,AD=4,DB=8,DE=3.(1)求的值;(2)求BC的长.21.(6分)今年,我市中小学大力倡导中国传统文化教育,小敬同学积极响应,他计划在寒假里读一本96页的《弟子规》.设他读完这本书所用的天数是y(天),平均每天阅读的页数是x(页)(1)求y与x之间的函数关系式,并写出自变量的取值范围;(2)小敬为了腾出一定的时间复习功课,计划用12天读完,那么他平均每天应读多少页?22.(8分)如图,反比例函数y=的图象与一次函数y=ax+b的图象相交于点A(1,4)和点B(﹣2,n).(1)求反比例函数的解析式;(2)求n的值;(3)求一次函数的解析式.23.(8分)当前,我国的城镇建设稳步推进,高楼大厦不断增加.小敏在她家的房顶A处看一栋新建的高楼,测得这栋高楼顶部的仰角为60°,这栋高楼底部的俯角为30°,已知小敏家的楼房与这栋高楼的水平距离为30m,求这栋高楼的高度BC.(结果保留根号)24.(10分)某商人如果将进货价为8元的商品按每件10元出售,每天可销售100件.现采取提高售价,减少进货量的办法增加利润,已知这种商品每涨价1元,每天的销售量就要减少10件,设该商人将每件售价定为x元,每天获得的总利润为y元,回答下列问题:(1)提价后,销售每件商品可获利元,每天少销售件商品;(2)当每件售价x定为多少元时可使每天所获利润最大?并求出每天的最大利润.25.(10分)已知:如图,在矩形ABCD中,点E、F分别在边AD、DC上,且BE⊥EF(1)求证:△ABE∽△DEF;(2)若AB=6,AE=9,DE=2,求DF的长;(3)在(2)的条件下,连接BF,则tan∠EBF=(直接写出结果).26.(12分)如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C,点A的坐标为(2,0),点C的坐标为(0,4),它的对称轴是直线x=﹣1.(1)求这个二次函数的解析式.(2)连接BC,求线段BC的长.(3)若点P在x轴上,且△PBC为等腰三角形,请直接写出符合条件的所有点P的坐标.参考答案一、选择题1.D.2.A.3.B4.A5.D6.C7.C8.A.9.B10.C11.C12.D 二、填空题13..14.5015.两16.﹣1.17.=18.80.三、解答题:(共66分)19.【解答】解:原式=+=.20.【解答】解:(1)∵AD=4,DB=8∴AB=AD+DB=4+8=12∴=;(2)∵DE∥BC∴△ADE∽△ABC∴∵DE=3∴∴BC=9.21.【解答】解:(1)根据题意知y=(x>0,且x为整数);(2)当y=12时,x==8,答:他平均每天应读8页.22.【解答】解:(1)∵点A(1,4)在反比例函数y=上,∴k=4,∴反比例函数的解析式为y=.(2)∵B(﹣2,n)在y=上,∴n=﹣2.(3)设一次函数的解析式为y=kx+b,则有,解得,∴一次函数的解析式为y=2x+2.23.【解答】解:在Rt△ABD中,∠BDA=90°,∠BAD=60°,AD=30m,∴BD=ADtan60°=30×=30(m).在Rt△ACD中,∠ADC=90°,∠CAD=30°,∴CD=ADtan30°=30×=10(m).∴BC=BD+CD=30+10=40(m)答:这栋高楼的高度BC为40m.24.【解答】解:(1)由题意知提价后,销售每件商品可获利(x﹣8)元,每天少销售100﹣10(x ﹣10)=200﹣10x件商品,故答案为:x﹣8、200﹣10x;(2)y=(x﹣8)[100﹣10(x﹣10)]=﹣10(x﹣14)2+360(10≤a<20),∵a=﹣10<0∴当x=14时,y有最大值360答:他将售出价(x)定为14元时,才能使每天所赚的利润(y)最大,最大利润是360元.25.【解答】解:(1)∵四边形ABCD是矩形,∴∠A=∠D=90°,∴∠ABE+∠AEB=90°,∵BE⊥EF∴∠BEF=90°,∴∠AEB+∠DEF=90°,∴∠ABE=∠DEF,∵∠A=∠D,∴△ABE∽△DEF;(2)由(1)知,△ABE∽△DEF,∴,∵AB=6,AE=9,DE=2,∴,∴DF=3,(3)由(2)知,AB=6,AE=9,DE=2,DF=3,在Rt△ABE中,根据勾股定理得,BE==3,在Rt△DEF中,根据勾股定理得,EF==,在Rt△BEF中,tan∠EBF==.故答案为:.26.【解答】解:(1)根据题意得,,解得,,∴二次函数的解析式y=﹣x2﹣x+4;(2)∵点A的坐标为(2,0),对称轴是直线x=﹣1,∴B(﹣4,0),∵C(0,4),∴BC==4;(3)设P(m,0),∵B(﹣4,0),C(0,4),∴BP2=(m+4)2,CP2=m2+16,∵△PBC是等腰三角形,∴①当BP=CP时,∴(m+4)2=m2+16,∴m=0,∴P(0,0)②当BP=BC时,∴(m+4)2=32,∴m=﹣4±4,∴P(﹣4+4,0)或(﹣4﹣4,0)③当CP=BC时,m2+16=32,∴m=4或m=﹣4(舍),∴P(4,0),即:符合条件的所有点P的坐标为P(0,0)或(﹣4+4,0)或(﹣4﹣4,0)或(4,0).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学第一学期期末考试试卷-CAL-FENGHAI.-(YICAI)-Company One12初三数学第一学期期末考试试卷一.填空题:(每小题3分,共30分)1. 写出一个图象在二、四象限的反比例函数的解析式 .2.两圆半径分别为3和5,d 表示这两圆的圆心距,当82<<d 时,则这两圆的位置关系是 。
3.一次函数y=21x+2的图像与x 轴、y 轴围成三角形的面积S= 。
4.已知样本1x ,2x ……n x 的平均数为3,方差为2,则样本31x +2,32x +2……3n x +2的平均数和方差分别为 。
5. 如图,⊙O 的直径CD 与弦AB 交于点M ,添加一个条件 得到M 是AB 的中点.6. 若一个梯形内接于圆,有如下四个结论:①它是等腰梯形;②它是直角梯形;③它的对角线互相垂直;④它的对角互补.请写出所有你认为正确结论的序号 .7.如图AD∥BC,AD⊥BE,BD⊥CD,BD=CD,AD=AB=1,弧BD 是以A为圆心,AB为半径的圆弧,弧ED 是以B为圆心,BD为半径的圆弧.则阴影部分的面积S= 。
8.∆ABC AB cm BC cm AC cm A B C 中,,,,以、、===675为圆心的三个圆两两外切, 则⊙A 、⊙B 、⊙C 的半径分别为。
第5题第7题39. 小王以每千克0.8元的价格从批发市场购进若干千克桔子到市场销售,在销售了部分桔子之后,余下的每千克降价0.4元,全部销完,销售金额与卖桔子额千克数之间关系如图所示,则小王这次赚了 元。
10、学校要建一个由若干盆花组成的形如正六边形的花坛,每条边(包括两个顶点)有n(n>1)盆花,设这个花坛边上花盆的总数为S ,请观察下图的规律:按上规律推断,S 与n 的关系是 .二.选择题:(每小题3分,共30分)题号 11 12 13 14 15 16 17 18 19 20 答案11.函数x y 32-=的自变量x 的取值范围是A .3>x B .3≥x C .3<x D .3≤x 12.圆的两弦相交,一弦长为4㎝,且被交点平分,另一弦被交点分成1:4,则另一弦长是A .1㎝B .4㎝C .5㎝D .8㎝13.如图,AB 是⊙O 的直径,∠ACD=15°,则∠BAD 的度数为A 、75°B 、72°C 、70°D 、65°第9题n=2,n=3,n=4,第10题A BCDO第13题A B C D14.给出下列函数:(1)2y x=; (2)21y x=-+; (3)y=x2(x>0) ;(4)2y x=其中,y随x的增大而减小的函数是A、(1)(2)B、(2)(3) C、(3)(4) D 、(2)(3)(4)15.下列命题中的假命题有()个①设两圆半径分别为R和r,圆心距为d,那么两圆相交⇔<+d R r;②如果两圆相切,那么切点一定在连心线上;③相交两圆的连心线垂直平分公共弦;④两圆外切时,它们共有3条公切线。
A.1个B.2个C.3个D.4个16.反比例函数xky=和一次函数y=kx-k的图像在下图中正确的是17. 已知⊕是一个对于1和0的新运算符号且运算规则如下:1⊕1=0,1⊕0=1,0⊕1=1,0⊕0=0,则下列运算结果正确是A、(1⊕1)⊕0=1B、(1⊕0)⊕1=0C、(0⊕1)⊕1=1D、(1⊕1)⊕1=018.若⊙O1和⊙O2相交于A、B两点,⊙O1和⊙O2的半径分别为2和2,公共弦长为2,则∠O AO12的度数为A.15︒ B.10515︒︒或C.7515︒︒或 D.105︒4519.关于二次函数y =ax 2+bx+c 的图象有下列命题:①当C=0时,函数的图象经过原点;②当C >0且函数的图象开口向下时,ax 2+bx+c=0必有两个不等实根;③函数图象最高点的纵坐标是ab ac 442-;④当b=0时,函数的图象关于y 轴对称。
其中正确的个数是 A.1个 B 、2个 C 、3个 D. 4个20.如图,正方形ABCD 内接于⊙O,E 为 DC 的中点,直线BE 交⊙O 于点F ,若⊙O 的半径为2,则BF 的长为 A 、23 B 、22 C 、556 D 、554 三.解答题:21. 解方程133142+-=+-x x x22.已知一次函数y x k =-2的图象与反比例函数y k x=+5的图象相交,其中有一个交点的纵坐标为-4,求这两个函数的解析式。
23.已知抛物线y=ax 2+bx+c 经过A (-1,0)、B (3,0)、C (0,3)三点, (1) 求抛物线的解析式和顶点M 的坐标,并在给定的直角坐标系中画出这条抛物线。
(2) 若点(x 0,y 0)在抛物线上,且0≤x 0≤4,试写出y 0的取值范围。
第20题Oxy(月(月(3)设平行于y轴的直线x=t交线段BM于点P(点P能与点M重合,不能与点B重合)交x轴于点Q,四边形AQPC的面积为S。
①求S关于t的函数关系式以及自变量t的取值范围;②求S取得最大值时点P的坐标;③设四边形OBMC 的面积S/,判断是否存在点P,使得S=S/ ,若存在,求出点P的坐标;若不存在,请说明理由。
24.某公司为了评价甲、乙两位营销员去年的营销业绩,统计了这两人去年12个月的营销业绩(所推甲乙(1)利用图中信息,完成下表:6(2)假若你是公司主管,请你根据(1)中图表信息,应用所学的统计知识,对两人的营销业绩作出评价。
25.光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见下表:(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x间的函数关系式,并写出x的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分派方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提出一条合理建议.7826.阅读下面材料,并解答下列各题;在形如a b =N 的式中,我们已经研究过两种情形: ① 已知a 和b ,求N ,这是乘方运算; ② 已知b 和N ,求a ,这是开方运算;现在我们研究第三种情况:已知a 和N ,求b ,我们把这种运算叫做对数运算。
定义:如果a b =N (a>0,a ≠1,N>0),则b 叫做a 为底N 的对数,记作b=log N 。
例如:因为23=8,所以log 28=3;因为2-3=81,所以log 281=-3。
(1) 根据定义计算:①log 381= ; ②log 33= ; ③log 31= ; ④如果log x 16=4, ,那么x= .(2) 设a x =M , a y =N ,则log a M=x,log a N=y (a>0, a ≠1, M 、N 均为正数), ∵a x ·a y =a x+y ∴a x+y =M·N ∴log a MN=x+y即log a MN=log a M+log a N 这是对数运算的重要性质之一,进一步地,我们可以得出: log a M 1 M 2 M 3… M n =(其中M 1、M 2、M 3… M n 均为正数,a>0, a ≠1),9log aNM=_________________(M 、N 均为正数,a>0, a ≠1)。
27.如图25-1是某段河床横断面的示意图.查阅该河段的水文资料,得到下表中的数据:(1)请你以上表中的各对数据(x ,y在图25—2所示的坐标系中画出y 关于x 的函数图象;(2)①填写下表:②根据所填表中数据呈现的规律,猜想出用x 表示y 的二次函 数的表达式: .(3)当水面宽度为36米时,一艘吃水深度(船底部到水面的距 离)为1.8米的货船能否在这个河段安全通过为什么x (米)图25—2图25—11028.如图(1)⊙O 1和⊙O 2外切于点A ,BC 是两圆的公切线,B 、C 为切点。
①求证:AB ⊥AC②当⊙O 1向左运动,⊙O 2向右运动到如图(2)的位置时,BC 仍为两圆的公切线,O 1O 2交⊙O 1于点A ,交⊙O 2于点D ,BA 、CD 的延长线相交于点E ,请判断EB 与EC 是否垂直,证明你的结论。
③当⊙O 1向右运动,⊙O 2向左运动到如图(3)的位置时,两圆相交于A 、D 两点,BC 仍为两圆的公切线,若∠BDC=46°,试求∠BAC 的度数。
29. 已知一个二次函数的图象经过A(-1,0),B(0,3),C(4,-5)三点.(1)求这个函数的解析式及其顶点D的坐标; (2)这个函数的图象与x轴有两个交点,除点A外的另一个交点设为E,点O为坐标原点,在△AOB、△BOE、△ABE和△DBE这四个三角形中,是否有相似三角形?如果有,指出哪几对三角形相似,并加以证明;如果没有,请说明理由。
【参考答案】一、填空题: 1.y=x 1-等 2.相交 3.4 4.11,18 5. CD ⊥AB 等6.①④ 7.1 8. 2cm ,4cm , 3cm 9.36 10.)1(6-=n s二、选择题1.D2.C3.A4.B5.A6.C7.B8.B9.C 10.C三、解答题21. x 1=-1(增),x 2=422. 解:由题意⎪⎪⎩⎪⎪⎨⎧-=+=-=452y x k y k x y ∴k=1∴一次函数的解析式为y=2x -1 反比例函数解析式为y=x 6 23.解(1)由题意设此抛物线解析式为y=a 1(x+1)(x -3)∴a 1(0+1)(0-3)=3,∴a 1=-1,∴此抛物线解析式为y=-x 2+2x+3∴y=-(x 2-2x -3)=-(x -1)2+4 ∴顶点M 的坐标为(1,4)(2)∵当x 0=4时,y 0=-16+8+3=-5,而由图象可知,y 0≤4∴-5≤y 0≤4(3)不存在这样的点P24.(1)甲 7 7 3 乙 8 9 9(2)乙的平均数、中位数,众数都较甲高,且乙的波动小,所以乙好些。
25.解:(1)若派往A 地区的乙型收割机为x 台,则派往A 地区的甲型收割机为(30-x )台;派往B 地区的乙型收割机为(30-x )台,派往B 地区的甲型收割机为(x -10)台.∴y =1600x +1800(30-x )+1200(30-x )+1600(x -10)=200x +74000. x 的取值范围是:10≤x ≤30(x 是正整数).(2)由题意得200x +74000≥79600,解不等式得x ≥28.由于10≤x ≤30,∴x 取28,29,30这三个值,∴有3种不同分配方案.① 当x=28时,即派往A 地区甲型收割机2台,乙型收割机28台;派往B 地区甲型收割机18台,乙型收割机2台.② 当x=29时,即派往A 地区甲型收割机1台,乙型收割机29台;派往B 地区甲型收割机19台,乙型收割机1台.③ 当x=30时,即30台乙型收割机全部派往A 地区;20台甲型收割机全部派往B 地区.3)由于一次函数y =200x +74000的值y 是随着x 的增大而增大的,所以,当x =30时,y 取得最大值.如果要使农机租赁公司这50台联合收割机每天获得租金最高,只需x =30,此时,y =6000+74000=80000.建议农机租赁公司将30台乙型收割机全部派往A 地区;20地区,可使公司获得的租金最高. 26.(1) 4; 1; 0; 2 (2)log a M 1+log a M 2+log a M 3+…+log a M n ,log a M -log a N 27. (1)图象如图2所示. (2)①② 21.200y x = (3)当水面宽度为36米时,相应的x 为18,此时水面中心的2118 1.62.200y =⨯= 因为货船吃水深度为1.8m ,显然,1.62<1.8,所以当水面宽度为36米时,该货船不能通过这个河段.图228.①证明:作两圆的内公切线交BC 于点PPA 切⊙O 1于点A ⇒PB=PAPB 切⊙O 1于点B PC PB PA ==⇒ AC AB ABC Rt ⊥⇒∆⇒同理⇒PA=PC △ABC 中②EB ⊥EC③∠BAC=134°29.解:(1)1-=a ,2=b ,3=c ∴322++-=x x y D (1,4)(2)有一对三角形相似,△AOB ∽△DBE证明: 由(1)得图像另一交点 E (3,0)过D 分别作x 轴、y 轴的垂线,可计算出BD=2,DE=52, BE=32,而△DBE 满足 DE 2=BE 2+BD 2 ∴ △DBE 是直角三角形 又Rt △AOB 中,AO=1,BO=3, 且21=DB AO ,21233==EB BO ,即EB BO DB AO =,∠AOB=∠DBE=Rt ∠ ∴△AOB ∽△DBE。