2018年高考数学一轮复习第七章不等式7.2二元一次不等式(组)与简单的线性规划问题学案理
高考数学一轮复习目录
高考数学一轮复习目录一、集合与常用逻辑用语1.1集合的概念与运算1.2命题及其关系、充分条件与必要条件1.3简单的逻辑联结词、全称量词与存在量词二.函数1.1 函数及其表示2.2函数的单调性与最值2.3函数的奇偶性与周期性2.4一次函数、二次函数2.5指数与指数函数2.6对数与对数函数2.7幂函数2.8函数的图象及其变换2.9函数与方程2.10函数模型及其应用三、导数及其应用3.1导数、导数的计算3.2导数在函数单调性、极值中的应用3.3导数在函数最值及生活实际中的应用3.4微积分基本定理四、三角函数、解三角形4.1任意角和弧度制及任意角的三角函数4.2同角三角函数的基本关系及三角函数的诱导公式4.3三角函数的图象与性质4.4函数y=Asin(ωx+φ)的图象与性质4.5简单的三角恒等变换4.6正、余弦定理及其应用举例五、平面向量5.1平面向量的概念及其线性运算5.2平面向量的基本定理及坐标运算5.3平面向量的数量积及其应用六、数列6.1数列的概念与简单表示法6.2等差数列及其前n 项和6.3等比数列及其前n 项和6.4数列的通项与求和6.5数列的综合应用七、不等式7.1不等式的概念与性质7.2一元二次不等式及其解法7.3二元一次不等式组与简单的线性规划问题7.4基本不等式及其应用八.立体几何8.1空间几何体的结构及其三视图与直观图8.2空间几何体的表面积与体积8.3空间点、直线、平面之间的位置关系8.4直线、平面平行的判定及其性质8.5直线、平面垂直的判定及其性质8.6空间向量及其运算8.7空间向量的应用九、解析几何9.1直线及其方程9.2点与直线、直线与直线的位置关系9.3圆的方程9.4直线与圆、圆与圆的位置关系9.5椭圆9.6双曲线9.7抛物线9.8直线与圆锥曲线的位置关系9.9曲线与方程十.计数原理10.1分类加法计数原理与分步乘法计数原理10.2排列与组合10.3二项式定理十一、概率与统计11.1事件与概率11.2古典概型与几何概型11.3离散型随机变量及其分布列11.4二项分布及其应用11.5离散型随机变量的均值与方差、正态分布11.6随机抽样与用样本估计总体11.7变量间的相关关系十二、选修部分选修4-4 坐标系与参数方程选修4-5 不等式选讲十三、算法初步、推理与证明、复数12.1算法与程序框图12.2基本算法语句12.3合情推理与演绎推理12.4直接证明与间接证明12.5数学归纳法12.6数系的扩充与复数的引入。
二元一次不等式组知识点讲解及习题
第三节:二元一次不等式组与简单的线性规划1、二元一次不等式表示的区域:二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域。
注意:由于对直线同一侧的所有点(x,y),把它代入Ax+By+C,所得实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x0,y0) ,从Ax0+By0+C的正负可以判断出Ax+By+C>0表示哪一侧的区域(一般在C≠0时,取原点作为特殊点)2、二元一次不等式组表示的区域:二元一次不等式表示平面的部分区域,所以二元一次方程组表示各个区域的公共部分。
(二元一次不等式表示的区域)例1、画出不等式2x+y-6<0表示的平面区域。
(跟踪训练)画出不等式4x-3y≤12表示的平面区域。
(点的分布)例2、已知点P(x 0,y 0)与点A(1,2)在直线l:3x+2y-8=0的两侧,则( ) A 、3x 0+2y 0>0 B 、3x 0+2y 0<0 C 、3x 0+2y 0>8 D 、3x 0+2y 0<8(跟踪训练)已知点(3 ,1)和点(-4 ,6)在直线 3x –2y + m = 0 的两侧,则( ) A .m <-7或m >24 B .-7<m <24 C .m =-7或m =24D .-7≤m ≤ 24(二元一次不等式组表示的平面区域) 例3、画出不等式组表示的区域。
(1) (2)⎪⎩⎪⎨⎧-≥≤+<242y y x xy ⎪⎪⎩⎪⎪⎨⎧+<≥+≥<9362323x y y x x y x(已知区域求不等式)例4、求由三直线x-y=0;x+2y-4=0及y+2=0所围成的平面区域所表示的不等式。
(跟踪训练)下图所示的阴影区域用不等式组表示为(已知不等式组求围成图形的面积)例5、求不等式组3,0,20xx yx y≤⎧⎪+≥⎨⎪-+≥⎩表示的平面区域的面积(跟踪训练)在直角坐标系中,由不等式组230,2360,35150,x yx yx yy->⎧⎪+-<⎪⎨--<⎪⎪<⎩所确定的平面区域内整点个数(绝对值不等式的画法)例6、画出不等式|x|+|y|<1所表示的区域。
高考数学一轮复习第七章7.1二元一次不等式(组)与简单的线性规划问题课件文北师大版
1
m∈(0,2].
√2
,
2
考点2
求目标函数的最值问题 (多考向探究)
考向1 求线性目标函数的最值
2 + -2 ≤ 0,
【例 2】(1)(2020 全国 1,文 13)若 x,y 满足约束条件 --1 ≥ 0, 则 z=x+7y
+ 1 ≥ 0,
的最大值为
.
2 + -2 ≥ 0,
(2)(2020 福建福州模拟,理 13)设 x,y 满足约束条件 -2 + 4 ≥ 0,则 z=x-3y
(1)“直线定界,特殊点定域”,即先作直线,再取特殊点并代入不等式(组).若满足不
等式(组),则不等式(组)表示的平面区域为直线与特殊点同侧的那部分区域;否则
就表示直线与特殊点异侧的那部分区域.当不等式中带等号时,边界画为实线,不
带等号时,边界应画为虚线,特殊点常取原点.
(2)也常利用“同号上,异号下”判断二元一次不等式表示的平面区域:对于
(3)任何一个二元一次不等式组都表示平面上的一个区域.( × )
(4)线性目标函数取得最值的点一定在可行域的顶点或边界上.( √ )
(5)在目标函数z=ax+by(b≠0)中,z的几何意义是直线ax+by-z=0在y轴上的截
距.( × )
-3 + 6 < 0,
2.不等式组
表示的平面区域是(
- + 2 ≥ 0
.
思考如何利用可行域求非线性目标函数最值?
答案 (1)A
11
(2)
2
解析 (1)作不等式组表示的可行域,如图所示.
由于
又
+1
k= 表示动点
二元一次不等式(组)与简单的线性规划问题1
高三一轮复习数学学案二元一次不等式(组)与简单的线性规划问题一、考纲要求及重难点: 1、 考纲要求:(1) 会从实际情境中抽象出二元一次不等式(组)。
(2) 了解二元一次不等式(组)的几何意义,能用平面区域表示二元一次不等式(组)。
(3) 会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决。
2、 重难点:(1) 以考查线性目标函数的最值为重点,兼顾考查代数式的几何意义(如斜率、距离、面积)。
(2) 多在选择题、填空题中出现,有时也会在解答题中出现,常与实际问题相联系,列出线性约束条件,求出最优解。
二、课前自测:1、下列各点中,不在10x y +-≤表示的平面区域内的点是( ) A 、(0,0) B 、(1,1)- C 、(1,3)- D 、(2,3)-2、直线2x+y-10=0与不等式组0024320x y x y x y ≥⎧⎪≥⎪⎨-≥-⎪⎪+≤⎩表示的平面区域的公共点有( )A 、0个B 、1个C 、2个D 、无数个3.(2013山东)在平面直角坐标系xoy 中,M 为不等式组220,210,380,x y x y x y --≥⎧⎪+-≥⎨⎪+-≤⎩所表示的区域上一动点,则直线OM 斜率的最小值为( )A .2B .1C .13-D .12-4.实数x ,y 满足不等式组5003x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,那么目标函数24z x y =+的最小值是( )A 、6B 、-6C 、-2D 、45.完成一项装修工程需要木工和瓦工共同完成。
请木工需付工资每人50元,请瓦工需付工资每人40元,现有工人工资预算2000元,设木工x 人,瓦工y 人,请工人的约束条件是 。
三、知识梳理:1、二元一次不等式表示的平面区域 已知直线l :0Ax By C ++=(1)开半平面与闭半平面直线l 把坐标平面分成 部分,每个部分叫开半平面, 与 的并集叫做闭半平面。
(2)不等式表示的区域以不等式解 为坐标的所有点构成的集合,叫做不等式表示的区域或不等式的图象。
2025届高考数学一轮复习第7章不等式第2节二元一次不等式组及简单的线性规划问题课时跟踪检测理含解析
第七章 不等式其次节 二元一次不等式(组)及简洁的线性规划问题A 级·基础过关 |固根基|1.不等式(x -2y +1)(x +y -3)≤0在坐标平面内表示的区域(用阴影部分表示)应是( )A B C D解析:选C (x -2y +1)(x +y -3)≤0⇔⎩⎪⎨⎪⎧x -2y +1≥0,x +y -3≤0或⎩⎪⎨⎪⎧x -2y +1≤0,x +y -3≥0.结合图形可知选C .2.(2025届南昌一模)设不等式组⎩⎪⎨⎪⎧x +y -3≥0,x -y +1≥0,3x -y -5≤0表示的平面区域为M ,若直线y =kx 经过区域M 内的点,则实数k 的取值范围为( )A .⎝⎛⎦⎤12,2 B .⎣⎡⎦⎤12,43 C .⎣⎡⎦⎤12,2D .⎣⎡⎦⎤43,2解析:选C不等式组⎩⎪⎨⎪⎧x +y -3≥0,x -y +1≥0,3x -y -5≤0表示的平面区域如图中阴影部分所示,即三角形ABC (含边界),由⎩⎪⎨⎪⎧x +y -3=0,3x -y -5=0得点A (2,1),由⎩⎪⎨⎪⎧x +y -3=0,x -y +1=0得点C (1,2).又直线OA 的斜率为k OA =12,直线OC 的斜率为k OC =2,而直线y =kx 表示过原点O 的直线,因此依据题意可得k OA ≤k ≤k OC ,即12≤k ≤2.3.(2024年浙江卷)若实数x ,y 满意约束条件⎩⎪⎨⎪⎧x -3y +4≥0,3x -y -4≤0,x +y ≥0,则z =3x +2y 的最大值是( )A .-1B .1C .10D .12解析:选C 作出可行域如图中阴影部分所示,数形结合可知,当直线z =3x +2y 过点A (2,2)时,z 取得最大值,z max =6+4=10.故选C .4.(2025届贵阳摸底)已知实数x ,y 满意约束条件⎩⎪⎨⎪⎧y ≤2,x +y ≥4,x -y ≤1,则z =3x +y 的最小值为( )A .11B .9C .8D .3解析:选C 依据不等式组画出可行域如图中阴影部分所示,作出直线y =-3x 并平移,则当直线y =-3x +z 过点B 时,z 最小,由⎩⎪⎨⎪⎧x +y -4=0,y =2,得⎩⎪⎨⎪⎧x =2,y =2,即B (2,2),故z 的最小值为3×2+2=8.故选C .5.(2025届昆明市质检)若x ,y 满意约束条件⎩⎪⎨⎪⎧2x -y +1≥0,x -3y -3≤0,且z =x +2y ,则( )A .z 有最小值也有最大值B .z 无最小值也无最大值C .z 有最小值无最大值D .z 有最大值无最小值解析:选C 作出可行域如图中阴影部分所示,z =x +2y 可变形为y =-12x +z2,所以z的几何意义为直线y =-12x +z2的纵截距的两倍,结合图形可知,当直线z =x +2y 过A 点时,z 取最小值,无最大值.6.(2025届郑州市其次次质量预料)设变量x ,y 满意约束条件⎩⎪⎨⎪⎧y ≤2,x +y ≥1,x -y ≤1,则目标函数z =⎝⎛⎭⎫133x +y的最大值为( ) A .⎝⎛⎭⎫1311B .⎝⎛⎭⎫133C .3D .4解析:选C 可行域如图中阴影部分所示,目标函数z =⎝⎛⎭⎫133x +y,设u =3x +y ,欲求z=⎝⎛⎭⎫133x +y的最大值,等价于求u =3x +y 的最小值.u =3x +y 可化为y =-3x +u ,该直线的纵截距为u ,作出直线y =-3x 并平移,当直线y =-3x +u 经过点B (-1,2)时,纵截距u 取得最小值u min =3×(-1)+2=-1,所以z =⎝⎛⎭⎫133x +y 的最大值z max =⎝⎛⎭⎫13-1=3.故选C .7.设x ,y 满意约束条件⎩⎪⎨⎪⎧x ≥0,y ≥x ,4x +3y ≤12,则x +2y +3x +1的取值范围是( )A .[1,5]B .[2,6]C .[2,10]D .[3,11]解析:选D 设z =x +2y +3x +1=x +1+2(y +1)x +1=1+2·y +1x +1,设z ′=y +1x +1,则z ′的几何意义为动点P (x ,y )与定点D (-1,-1)连线的斜率.画出可行域如图中阴影部分所示,易知B (0,4),A ⎝⎛⎭⎫127,127,则z ′∈[k DA ,k DB ],又k DB =4+10+1=5,k DA =127+1127+1=1,∴z ′∈[1,5],所以z =1+2z ′∈[3,11].8.(2025届济南市高考模拟)已知变量x ,y 满意约束条件⎩⎪⎨⎪⎧x -y -4≤0,-2≤x <2,y ≤1,若z =2x -y ,则z 的取值范围是( )A .[-5,6)B .[-5,6]C .(2,9)D .[-5,9]解析:选A 作出可行域如图中阴影部分所示,由z =2x -y ,得y =2x -z ,作出直线y=2x ,并平移,可知当直线经过点A (-2,1)时,z 取得最小值,z min =2×(-2)-1=-5;当直线经过点B (2,-2)时,z 取得最大值,z max =2×2+2=6.由于点B 不在可行域内,所以z ∈[-5,6),故选A .9.已知实数x ,y 满意约束条件⎩⎪⎨⎪⎧y ≤2x +1,y ≥-x +4,x ≥3,则z =1-y -3x 的最大值为________.解析:作出可行域如图中阴影部分所示,由⎩⎪⎨⎪⎧y =-x +4,x =3,得⎩⎪⎨⎪⎧x =3,y =1,即B (3,1).由图可知,直线z =1-y -3x 经过点B (3,1)时,z 取得最大值,z max =1-1-3×3=-9.答案:-910.已知x ,y 满意⎩⎪⎨⎪⎧x -y +5≥0,x +y ≥0,x ≤3,若使得z =ax +y 取最大值的点(x ,y )有多数个,则a的值等于________.解析:先依据约束条件画出可行域,如图中阴影部分所示,当直线z =ax +y 能和直线AB 重合时,z 取得最大值的点(x ,y )有多数个,∴-a =k AB =1,∴a =-1.答案:-1B 级·素养提升 |练实力|11.(2025届成都摸底)若实数x ,y 满意约束条件⎩⎪⎨⎪⎧x +2y -2≤0,x -1≥0,y ≥0,则z =x -2y 的最小值为( )A .0B .2C .4D .6解析:选A 解法一:画出不等式组表示的平面区域,如图中阴影部分所示,由z =x -2y 得y =12x -12z ,作出y =12x 并平移,由图可知,当动直线y =12x -12z 经过点A 时,z 取得小值,由⎩⎪⎨⎪⎧x =1,x +2y -2=0,得A 1,12,即z min =1-2×12=0,故选A .解法二:由⎩⎪⎨⎪⎧x +2y -2=0,x -1=0,得⎩⎪⎨⎪⎧x =1,y =12,此时z =0;由⎩⎪⎨⎪⎧x +2y -2=0,y =0,得⎩⎪⎨⎪⎧x =2,y =0,此时z =2;由⎩⎪⎨⎪⎧x -1=0,y =0,得⎩⎪⎨⎪⎧x =1,y =0,此时z =1.综上所述,z 最小值为0,故选A . 12.(2025届南昌市重点中学测试)记不等式组⎩⎪⎨⎪⎧x ≥1,x +y -5≥0,x -2y +1≤0的解集为D ,若∀(x ,y )∈D ,不等式a ≤2x +y 恒成立,则a 的取值范围是( )A .(-∞,3]B .[3,+∞)C .(-∞,6]D .(-∞,8]解析:选C不等式组⎩⎪⎨⎪⎧x ≥1,x +y -5≥0,x -2y +1≤0表示的平面区域如图中阴影部分所示,设z =2x +y ,作出直线2x +y =0,并平移,由图知目标函数z =2x +y 取得最小值的最优解为A (1,4),所以目标函数z =2x +y 的最小值为6.因为∀(x ,y )∈D ,不等式a ≤2x +y 恒成立,所以a ≤6,故选C .13.(2025届江西五校联考)设点M 是⎩⎪⎨⎪⎧x +2≤0,x -2y +6≥0,x +2y +2≥0表示的区域Ω1内任一点,点N 是区域Ω1关于直线l :y =x 的对称区域Ω2内的任一点,则|MN |的最大值为( )A . 2B .2 2C .4 2D .5 2解析:选D不等式组⎩⎪⎨⎪⎧x +2≤0,x -2y +6≥0,x +2y +2≥0表示的区域Ω1如图中阴影部分所示,因为区域Ω1与区域Ω2关于直线y =x 对称,并且M 是区域Ω1内任一点,N 是区域Ω2内任一点,所以当点M 到直线y =x 的距离最大,并且点N 为M 关于直线y =x 的对称点时,|MN |最大,最大值为点M 到直线y =x 距离的2倍,因此转化为求区域Ω1内的点到直线y =x 的距离的最大值,由图可知点A (-4,1)到直线y =x 的距离最大,为522,所以|MN |的最大值为5 2.14.设实数x ,y 满意⎩⎪⎨⎪⎧x +y -3≤0,y -12x ≥0,x -1≥0,则u =y x -xy的取值范围为( )A .⎣⎡⎦⎤12,2 B .⎣⎡⎦⎤-23,2 C .⎣⎡⎦⎤-23,32 D .⎣⎡⎦⎤-32,32 解析:选D 作出不等式组所表示的平面区域如图中阴影部分所示,令yx =t ,由图可得k BO ≤t ≤k OA ,而12≤t ≤2,则u =t -1t 在⎣⎡⎦⎤12,2上明显是增函数,所以当t =12时,u min =-32;当t =2时,u max =32,因此u =y x -xy的取值范围为⎣⎡⎦⎤-32,32.15.设x ,y 满意约束条件⎩⎪⎨⎪⎧x ≥2,3x -y ≥1,y ≥x +1,若目标函数z =ax +by (a >0,b >0)的最小值为2,则ab 的最大值为( )A .1B .12C .14D .16解析:选D 作出不等式组所表示的平面区域如图中阴影部分所示,作出直线ax +by =0(a >0,b >0)并平移,可知在点A (2,3)处,目标函数z =ax +by (a >0,b >0)取得最小值2,故2a +3b =2≥22a ×3b ,当且仅当2a =3b ,即a =12,b =13时取等号,所以ab ≤16,故选D .16.(2025届河北五个一名校联盟模拟)某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的限量如表所示.假如生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得的最大利润为( )甲 乙 原料限量 A /吨 3 2 12 B /吨128A .16万元B .17万元C .18万元D .19万元解析:选C 设该企业每天生产x 吨甲产品,y 吨乙产品,可获得利润为z 万元,则z =3x +4y ,且x ,y 满意不等式组⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,作出不等式组表示的可行域如图中阴影部分所示,作出直线3x +4y =0并平移,可知当直线经过点A (2,3)时,z 取得最大值,z max =3×2+4×3=18(万元).故选C .。
高考数学第一轮知识点 第3课时 二元一次不等式组与简单的线性规划问题课时复习课件 理
作出可行域如图,让目标函数表示的直线 2.5x+4y=z 在可行域上平移,由此可知 z =2.5x+4y 在 B(4,3)处取得最小值. 因此,应当为该儿童预订 4 个单位的午餐和
3 个单位的晚餐,就可满足要求.
【变式训练】 3.某家具厂有方木料 90 m3,五合 板 600 m2,准备加工成书桌和书橱出售.已知生 产每张书桌需要方木料 0.1 m3,五合板 2 m2,生 产每个书橱需要方木料 0.2 m3、五合板 1 m2,出 售一张书桌可获利润 80 元,出售一个书橱可获利 润 120 元. (1)如果只安排生产书桌,可获利润多少? (2)如果只安排生产书橱,可获利润多少?
.D
恰为
AC
的中点,直线
y=x+2
将△
ABC 的面积平分.故选 A.
答案: A
【变式训练】 1.(2011·吉林延边州一模)若不
x-y+5≥0,
等式组y≥a, 0≤x≤3
表示的平面区域是一
个三角形,则 a 的取值范围是( )
A.a<5
B.a≥8
C.a<5 或 a≥8
D.5≤a<8
解析: 作出如图所示的可行域,要使该平面 区域表示三角形,需满足 5≤a<8.
答案: D
求目标函数的最值 1.求目标函数的最值,必须先准确地作出线 性可行域再作出目标函数对应的直线,据题 意确定取得最优解的点,进而求出目标函数 的最值. 2.线性目标函数 z=ax+by 取最大值时的最 优解与 b 的正负有关,当 b>0 时,最优解是将 直线 ax+by=0 在 2y-1=0
得 D(1,0),
∴kCD=0,kCA=1212-+01=13,∴z 的范围是0,31;
(3)z=
(江苏专版)高考数学一轮复习 第七章 不等式 7.2 线性规划讲义-人教版高三全册数学试题
§7.2线性规划考纲解读考点内容解读要求五年高考统计常考题型预测热度2013 2014 2015 2016 2017线性规划求目标函数最优解 A9题5分填空题★★☆分析解读考查线性规划的试题难度一般中等偏下,复习时试题难度不要拔高.五年高考考点线性规划1.(2017课标全国Ⅰ文改编,7,5分)设x,y满足约束条件则z=x+y的最大值为.答案 32.(2017课标全国Ⅲ文改编,5,5分)设x,y满足约束条件则z=x-y的取值X围是.答案[-3,2]3.(2016某某改编,4,5分)若变量x,y满足则x2+y2的最大值是.答案104.(2016课标全国Ⅱ,14,5分)若x,y满足约束条件则z=x-2y的最小值为.答案-55.(2016某某理改编,2,5分)设变量x,y满足约束条件则目标函数z=2x+5y的最小值为.答案 66.(2016课标全国Ⅰ,16,5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件产品B需要甲材料0.5 kg,乙材料0.3 kg,用3个工时.生产一件产品A的利润为2 100元,生产一件产品B的利润为900元.该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.答案216 0007.(2016某某理改编,3,5分)在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影.由区域中的点在直线x+y-2=0上的投影构成的线段记为AB,则|AB|=.答案38.(2016改编,7,5分)已知A(2,5),B(4,1).若点P(x,y)在线段AB上,则2x-y的最大值为.答案79.(2016课标全国Ⅲ,13,5分)设x,y满足约束条件则z=2x+3y-5的最小值为.答案-1010.(2015某某改编,6,5分)已知x,y满足约束条件若z=ax+y的最大值为4,则a=.答案 211.(2015课标Ⅰ,15,5分)若x,y满足约束条件则的最大值为.答案 312.(2015改编,2,5分)若x,y满足则z=x+2y的最大值为.答案 213.(2015某某改编,2,5分)设变量x,y满足约束条件则目标函数z=x+6y的最大值为.答案1814.(2015某某改编,4,5分)若变量x,y满足约束条件则z=3x-y的最小值为.答案-715.(2015某某,14,4分)若实数x,y满足x2+y2≤1,则|2x+y-2|+|6-x-3y|的最小值是.答案 316.(2014某某改编,3,5分)若变量x,y满足约束条件,且z=2x+y的最大值和最小值分别为m和n,则m-n=.答案 617.(2014某某改编,5,5分)x,y满足约束条件若z=y-ax取得最大值的最优解,则实数a的值为.答案2或-118.(2014某某,13,5分)当实数x,y满足时,1≤ax+y≤4恒成立,则实数a的取值X围是.答案19.(2014某某,14,5分)若变量x,y满足约束条件且z=2x+y的最小值为-6,则k=.答案-220.(2014课标Ⅰ改编,9,5分)不等式组的解集记为D.有下面四个命题:p1:∀(x,y)∈D,x+2y≥-2,p2:∃(x,y)∈D,x+2y≥2,p3:∀(x,y)∈D,x+2y≤3,p4:∃(x,y)∈D,x+2y≤-1.其中的真命题是.答案p1,p221.(2013某某,9,5分)抛物线y=x2在x=1处的切线与两坐标轴围成的三角形区域为D(包含三角形内部与边界).若点P(x,y)是区域D内的任意一点,则x+2y的取值X围是.答案教师用书专用(22—27)22.(2013某某理,13,5分)若点(x,y)位于曲线y=|x-1|与y=2所围成的封闭区域,则2x-y的最小值为.答案-423.(2013某某理,13,5分)给定区域D:令点集T={(x0,y0)∈D|x0,y0∈Z,(x0,y0)是z=x+y在D上取得最大值或最小值的点},则T中的点共确定条不同的直线.答案 624.(2013某某理改编,9,5分)在平面直角坐标系中,O是坐标原点,两定点A,B满足||=||=·=2,则点集{P|=λ+μ,|λ|+|μ|≤1,λ,μ∈R}所表示的区域的面积是.答案425.(2013某某理,13,4分)设z=kx+y,其中实数x,y满足若z的最大值为12,则实数k=.答案 226.(2013课标全国Ⅱ理改编,9,5分)已知a>0,x,y满足约束条件若z=2x+y的最小值为1,则a=.答案27.(2016某某,16,13分)某化肥厂生产甲、乙两种混某某料,需要A,B,C三种主要原料.生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:原料A B C肥料甲 4 8 3乙 5 5 10现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元.分别用x,y表示计划生产甲、乙两种肥料的车皮数.(1)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(2)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.解析(1)由已知,x,y满足的数学关系式为该二元一次不等式组所表示的平面区域如图1所示:图1(2)设利润为z万元,则目标函数为z=2x+3y.考虑z=2x+3y,将它变形为y=-x+,这是斜率为-,随z变化的一族平行直线.为直线在y轴上的截距,当取最大值时,z的值最大.又因为x,y满足约束条件,所以由图2可知,当直线z=2x+3y经过可行域上的点M时,截距最大,即z最大.图2解方程组得点M的坐标为(20,24).所以z max=2×20+3×24=112.答:生产甲种肥料20车皮、乙种肥料24车皮时利润最大,且最大利润为112万元.三年模拟A组2016—2018年模拟·基础题组考点线性规划1.(2018某某姜堰中学高三期中)已知x,y满足不等式组则(x+1)2+y2的最大值为.答案2.(2018某某某某高三期中检测)若变量x,y满足且x+2y≥a恒成立,则a的最大值为.答案-43.(2018某某如东高级中学高三学情检测)函数y=log2x的图象上存在点(x,y),满足约束条件则实数m的最大值为.答案 14.(2017某某某某师X大学附中期中,7)若实数x,y满足条件则z=3x-4y的最大值是.答案-15.(2017某某某某、某某一模,6)已知实数x,y满足则的最小值是.答案6.(2017某某某某期末,7)设不等式组表示的平面区域为M,若直线y=kx-2上存在M内的点,则实数k的取值X围是.答案[2,5]7.(2016某某清江中学周练,8)若不等式组表示的平面区域的面积为12,则实数a的值为.答案8B组2016—2018年模拟·提升题组(满分:15分时间:10分钟)填空题(每小题5分,共15分)1.(2017某某某某暑期调研,13)已知点P是△ABC内一点(不包括边界),且=m+n,m,n∈R,则(m-2)2+(n-2)2的取值X围是.答案2.(2017某某某某中学模拟,13)已知实数x,y满足若不等式a(x2+y2)≥(x+y)2恒成立,则实数a 的最小值是.答案3.(2017某某中学高三月考,9)已知点P(x,y)满足则点Q(x+y,y)构成的图形的面积为.答案 2C组2016—2018年模拟·方法题组方法1 二元一次不等式(组)表示的平面区域的判断方法及平面区域应用1.若不等式组所表示的平面区域被直线y=kx+分为面积相等的两部分,则k的值是.答案方法2 简单规划问题的求解方法及实际应用2.变量x,y满足(1)设z=,求z的最小值;(2)设z=x2+y2,求z的取值X围.解析由约束条件作出(x,y)的可行域如图所示.由解得A.由解得C(1,1).由解得B(5,2).(1)∵z==,∴z的值即是可行域中的点与原点O连线的斜率.观察图形可知z min=k OB=.(2)z=x2+y2的几何意义是可行域上的点到原点O的距离d的平方,结合图形可知,d min=|OC|=,d max=|OB|=. ∴2≤z≤29.。
高三数学考点-二元一次不等式(组)与简单的线性规划问题
7.3二元一次不等式(组)与简单的线性规划问题1.二元一次不等式表示的平面区域(1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的________.我们把直线画成虚线以表示区域________边界直线.当我们在坐标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应________边界直线,则把边界直线画成________.(2)由于对直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得的符号都________,所以只需在此直线的同一侧取一个特殊点(x0,y0)(如原点)作为测试点,由Ax0+By0+C的________即可判断Ax +By+C>0表示的是直线Ax+By+C=0哪一侧的平面区域.2.线性规划(1)不等式组是一组对变量x,y的约束条件,由于这组约束条件都是关于x,y的一次不等式,所以又可称其为线性约束条件.Z=Ax+By是要求最大值或最小值的函数,我们把它称为________.由于Z=Ax+By是关于x,y的一次解析式,所以又可叫做________.另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示.(2)一般地,求线性目标函数在线性约束条件下的________的问题,统称为线性规划问题.(3)满足线性约束条件的解(x,y)叫做________,由所有可行解组成的集合叫做________.其中,使目标函数取得最大值或最小值的可行解都叫做这个问题的________.线性目标函数的最值常在可行域的边界上,且通常在可行域的顶点处取得;而求最优整数解首先要看它是否在可行域内.(4)用图解法解决简单的线性规划问题的基本步骤:①首先,要根据_________________ (即画出不等式组所表示的公共区域).②设__________,画出直线l0.③观察、分析、平移直线l0,从而找到最优解.④最后求得目标函数的__________.(5)利用线性规划研究实际问题的解题思路:首先,应准确建立数学模型,即根据题意找出__________条件,确定__________函数.然后,用图解法求得数学模型的解,即__________,在可行域内求得使目标函数__________.自查自纠1.(1)平面区域不包括包括实线(2)相同符号2.(1)目标函数线性目标函数(2)最大值或最小值(3)可行解可行域最优解(4)①线性约束条件画出可行域②z=0④最大值或最小值(5)约束线性目标画出可行域取得最值的解(2016·济南模拟)已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为( ) A .(-24,7) B .(-7,24)C .(-∞,-7)∪(24,+∞)D .(-∞,-24)∪(7,+∞)解:根据题意知(-9+2-a )(12+12-a )<0,即(a +7)(a -24)<0,解得-7<a <24.故选B .(2017·全国卷Ⅲ)设x ,y 满足约束条件⎩⎪⎨⎪⎧3x +2y -6≤0,x ≥0,y ≥0,则z =x -y 的取值范围是( )A .[-3,0]B .[-3,2]C .[0,2]D .[0,3]解:绘制不等式组表示的可行域,结合目标函数的几何意义可得函数在点A (0,3) 处取得最小值z =0-3=-3. 在点B (2,0) 处取得最大值z =2-0=2.故选B .(2016·北京)若x ,y 满足⎩⎪⎨⎪⎧2x -y ≤0,x +y ≤3,x ≥0,则2x +y 的最大值为( )A .0B .3C .4D .5解:作出可行域如图中阴影部分所示,则当z =2x +y 经过点P (1,2)时,取最大值,z max =2×1+2=4.故选C .(2017·全国卷Ⅲ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y -2≤0,y ≥0,则z =3x -4y 的最小值为________.解:由题意,画出可行域如图,目标函数为z =3x -4y ,则直线y =34x -z4纵截距越大,z 值越小.由图可知,在A (1,1)处取最小值,故z min =3×1-4×1=-1.故填-1.(2017届云南四川贵州百校大联考)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -2≥0,2x +y -4≤0,4x -y +1≥0,则目标函数z =y -3x 的最大值是________.解:作可行域如图所示,由目标函数z=y-3x得直线y=3x+z,当直线y=3x+z平移经过点A⎝⎛⎭⎫12,3时,目标函数z=y-3x取得最大值为32.故填32.类型一二元一次不等式(组)表示的平面区域(2016·郑州模拟)在平面直角坐标系xOy中,满足不等式组⎩⎪⎨⎪⎧|x|≤|y|,|x|<1的点(x,y)的集合用阴影表示为下列图中的()解:|x|=|y|把平面分成四部分,|x|≤|y|表示含y轴的两个区域;|x|<1表示x=±1所夹含y轴的区域.故选C.【点拨】关于不等式组所表示的平面区域(可行域)的确定,可先由“直线定界”,再由“不等式定域”,定域的常用方法是“特殊点法”,且一般取坐标原点O(0,0)为特殊点.不等式组⎩⎪⎨⎪⎧x+y-2≥0,x+2y-4≤0,x+3y-2≥0表示的平面区域的面积为________.解:不等式组所表示的平面区域如图中阴影部分所示,易求得|BD|=2,C点坐标(8,-2),所以S△ABC=S△ABD+S△BCD=12×2×(2+2)=4.故填4.类型二利用线性规划求线性目标函数的最优解(2017·天津)设变量x,y满足约束条件⎩⎪⎨⎪⎧2x+y≥0,x+2y-2≥0,x≤0,y≤3,则目标函数z=x+y的最大值为()A.23 B .1 C.32D .3解:可行域为四边形ABCD 及其内部,所以直线z =x +y 过点B (0,3)时取最大值3.故选D .【点拨】线性规划问题有三类:(1)简单线性规划,包括画出可行域和考查截距型目标函数的最值,有时考查斜率型或距离型目标函数;(2)线性规划逆向思维问题,给出最值或最优解个数求参数取值范围;(3)线性规划的实际应用. 一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.(2017·北京)若x ,y 满足⎩⎪⎨⎪⎧x ≤3,x +y ≥2,y ≤x , 则x + 2y 的最大值为( )A .1B .3C .5D .9解:如图,画出可行域,z =x +2y 表示斜率为-12的一组平行线,当过点C (3,3)时,目标函数取得最大值z max=3+2×3=9.故选D .类型三 含参数的线性规划问题(1)(北京西城区2017届期末)实数x ,y 满足⎩⎪⎨⎪⎧x ≤3,x +y ≥0,x -y +6≥0. 若z =ax +y 的最大值为3a +9,最小值为3a-3,则a 的取值范围是( ) A .[-1,0] B .[0,1]C .[-1,1]D .(-∞,-1]∪[1,+∞)解:作出不等式组对应的平面区域如图,由z =ax +y 得y =-ax +z .因为z =ax +y 的最大值为3a +9,最小值为3a -3, 所以当直线y =-ax +z 经过点B (3,9)时直线截距最大, 当经过点A (3,-3)时,直线截距最小. 则直线y =-ax +z 的斜率-a 满足, -1≤-a ≤1,即-1≤a ≤1.故选C .(2)在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0,ax -y +1≥0 (a 为常数)所表示的平面区域的面积等于2,则a 的值为( )A .-5B .1C .2D .3解:如图可得阴影部分即为满足x -1≤0与x +y -1≥0的可行域,而直线ax -y +1=0恒过点(0,1),故看作直线绕点(0,1)旋转,若不等式组所表示的平面区域内的面积等于2,则它是三角形,设该三角形为△ABC ,因为△ABC 的点A 和B的坐标分别为A (0,1)和B (1,0),且S △ABC =2,设点C 的坐标为C (1,y ),则12×1×y =2⇒y =4,将点C (1,4)代入ax -y +1=0得a =3.故选D .【点拨】例3(1)考查了简单的线性规划中的斜率问题,通过y =-ax +z 得到参数-a 是动直线y =-ax +z 的斜率,z =ax +y 的最大值为3a +9,则动直线y =-ax +z 纵截距的最大值为3a +9,最优解在三个端点处取得;例3(2)中的ax -y +1=0,即为y =ax +1,其中a 为动直线的斜率,利用数形结合的方法求解.注意把握两点:①参数的几何意义;②条件的合理转化.(1)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤2,y ≥0. 若z =ax +y 的最大值为4,则a =( )A .3B .2C .-2D .-3解:画出不等式组所表示的可行域如图中阴影部分所示,因为目标函数z =ax +y 的最大值为4,即目标函数对应直线与可行域有公共点时,在y 轴上的截距的最大值为4,所以作出过点D (0,4)的直线,由图可知,目标函数在点B (2,0)处取得最大值,有a ×2+0=4,得a =2.故选B .(2)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤4,y ≥k ,且z =2x +y 的最小值为-6,则k =________.解:易得出约束条件中三条直线两两所成的交点(k ,k ),(4-k ,k ),(2,2),且可行域如图,则k ≤2.最小值在点(k ,k )处取得,3k =-6,得k =-2.故填-2.类型四 非线性目标函数的最优解问题(2016·江苏)已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +4≥0,2x +y -2≥0,3x -y -3≤0,则x 2+y 2的取值范围是________.解:可行域如图中阴影部分所示,x 2+y 2为可行域中任一点(x ,y )到原点(0,0)的距离的平方.由图可知,x 2+y 2的最小值为原点到直线AC 的距离的平方,即⎝ ⎛⎭⎪⎫|-2|52=45.易求得B (2,3),最大值为OB 2=22+32=13.故填⎣⎡⎦⎤45,13. 【点拨】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域,分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值或范围.即:一画,二移,三求.其关键是准确作出可行域,理解目标函数的意义.常见的目标函数有:(1)截距型:形如z =ax +by .求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-a b x +zb ,通过求直线的截距的最值间接求出z 的最值.(2)距离型:形如z =(x -a )2+(y -b )2 .(3)斜率型:形如z =y -bx -a ,本题属于距离形式.(2015·全国卷Ⅰ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -1≥0,x -y ≤0,x +y -4≤0,则yx的最大值为________.解:作出可行域如图中阴影部分所示,由斜率的意义知,yx是可行域内一点与原点连线的斜率,由图可知,点A (1,3)与原点连线的斜率最大,故yx的最大值为3.故填3.类型五 线性规划与整点问题设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +2y -5>0,2x +y -7>0,x ≥0,y ≥0, 若x ,y 为整数,则3x +4y 的最小值为( )A .14B .16C .17D .19解:画出可行域如图,令3x +4y =z ,y =-34x +z4,过x 轴上的整点(1,0),(2,0),(3,0),(4,0),(5,0)处作格子线,可知当y =-34x +z4过(4,1)时有最小值(对可疑点(3,2),(2,4),(4,1)逐个试验),此时z min =3×4+4=16.故选B .【点拨】求解整点问题,对作图精度要求较高,可行域内的整点要找准,最好使用“网点法”先作出可行域中的各整点.设不等式组⎩⎪⎨⎪⎧x >0,y >0,y ≤-nx +3n (n ∈N *) 所表示的平面区域为D n ,记D n 内的整点(即横坐标和纵坐标均为整数的点)个数为a n (a n ∈N *),则数列{a n }的通项公式为a n =______.解:直线y =-nx +3n =-n (x -3),过定点(3,0),由y =-nx +3n >0得x <3,又x >0,所以x =1或x =2.直线x =2交直线y =-nx +3n 于点(2,n ),直线x =1交直线y =-nx +3n 于点(1,2n ),所以整点个数a n =n +2n =3n .故填3n.类型六 线性规划在实际问题中的应用(2015·陕西)某企业生产甲、乙两种产品均需用A ,B 两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获得利润分别为3万元、4万元,则该企业每天可获得最大利润为( )甲 乙 原料限额 A (吨) 3 2 12 B (吨)128A.12万元 B .16万元 C .17万元 D .18万元解:设每天生产甲、乙两种产品分别为x 、y 吨,利润为z 元,则⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,目标函数为z =3x +4y .作出二元一次不等式组所表示的平面区域(阴影部分),即可行域.由z =3x +4y 得y =-34x +z 4,平移直线y =-34x 至经过点B 时,直线y =-34x +z4的纵截距最大,此时z 最大,解方程组⎩⎪⎨⎪⎧3x +2y =12,x +2y =8, 得⎩⎪⎨⎪⎧x =2,y =3, 即B (2,3).所以z max =3x +4y =6+12=18.即每天生产甲、乙两种产品分别为2吨、3吨,能够获得最大利润,最大的利润是18万元.故选D . 【点拨】对于此类有实际背景的线性规划问题,可行域通常是位于第一象限的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形在第一象限的某个顶点.(2016·全国卷Ⅰ)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.解:设某高科技企业生产产品A 和产品B 分别为x 件,y 件,生产产品A 、产品B 的利润之和为z 元,依题意得⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ∈N ,y ∈N , 即⎩⎪⎨⎪⎧3x +y ≤300,10x +3y ≤900,5x +3y ≤600,x ∈N ,y ∈N ,目标函数z =2 100x +900y .作出可行域如图所示.当直线z =2 100x +900y经过点M (60,100)时,z 取得最大值.z max =2 100×60+900×100=216 000.故生产产品A 、产品B 的利润之和的最大值为216 000元.故填216 000.1.解客观题可利用特殊点判断二元一次不等式(组)表示的平面区域所在位置,如果直线Ax +By +C =0不经过原点,则把原点代入Ax +By +C ,通过Ax +By +C 的正负和不等号的方向,来判断二元一次不等式(组)表示的平面区域所在的位置.2.求目标函数z =ax +by (ab ≠0)的最值,将函数z =ax +by 转化为直线的斜截式:y =-a b x +zb,通过求直线的截距z b 的最值间接求出z 的最值.最优解一般在顶点或边界取得.但要注意:①当b >0时,截距zb取最大值,z 也取最大值;截距z b 取最小值,z 也取最小值;②当b <0时,截距z b 取最大值,z 取最小值;截距zb 取最小值时,z 取最大值.3.如果可行域是一个多边形,那么一般在其顶点处目标函数取得最大值或最小值.最优解一般是多边形的某个顶点,到底是哪个顶点为最优解,有三种解决方法:第一种方法:将目标函数的直线平行移动,最先通过或最后通过可行域的一个便是. 第二种方法:利用围成可行域的直线斜率来判断.特别地,当线性目标函数的直线与可行域某条边重合时,其最优解可能有无数组.第三种方法:将可行域所在多边形的每一个顶点P i 逐一代入目标函数Z P i =mx +ny ,比较各个ZP i ,得最大值或最小值.1.(2015·烟台模拟)不等式组⎩⎪⎨⎪⎧y ≤-x +2,y ≤x -1,y ≥0所表示的平面区域的面积为( )A .1 B.12 C.13 D.14解:作出不等式组对应的区域为如图△BCD ,由题意知x B =1,x C =2.由⎩⎪⎨⎪⎧y =-x +2,y =x -1, 得y D =12,所以S △BCD =12×(x C -x B )×12=14.故选D . 2.(湖北孝感市2017届期中)已知实数x ,y 满足⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1, 则目标函数z =2x -y 的最大值为( )A .-3 B.12 C .5 D .6解:作出不等式组表示的平面区域,得到如图的△ABC 及其内部,其中A (-1,-1),B (2,-1),C (0.5,0.5),将直线2x -y =0进行平移,当其经过点B 时,目标函数z 达到最大值.所以z 最大值=5.故选C .3.(2016·天津)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,2x +3y -6≥0,3x +2y -9≤0.则目标函数z =2x +5y 的最小值为( )A .-4B .6C .10D .17解:可行域为一个三角形ABC 及其内部,其中A (0,2),B (3,0),C (1,3),根据目标函数的几何意义,可知当直线y =-25x +z5过点B (3,0)时,z 取得最小值2×3-5×0=6.故选B .4.(2017·浙江)若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +y -3≥0,x -2y ≤0,则z =x +2y 的取值范围是( )A .[0,6]B .[0,4]C .[6,+∞)D .[4,+∞)解:如图,可行域为一开放区域,所以直线过点(2,1)时取最小值4,无最大值.故选D .5.(2016·浙江)在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影.由区域⎩⎪⎨⎪⎧x -2≤0,x +y ≥0,x -3y +4≥0中的点在直线x +y -2=0上的投影构成的线段记为AB ,则|AB |=( ) A .2 2 B .4 C .3 2 D .6解:如图△PQR 为线性区域,区域内的点在直线x +y -2=0上的投影构成了线段AB .由⎩⎪⎨⎪⎧x -3y +4=0,x +y =0得Q (-1,1),由⎩⎪⎨⎪⎧x =2,x +y =0得R (2,-2),|AB |=|RQ |=(-1-2)2+(1+2)2=3 2.故选C .6.(2016·商丘模拟)已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =2x +y 的最小值为1,则a =( )A.14B.12C .1D .2解:作出可行域如图中阴影部分所示,当直线z =2x +y 通过A (1,-2a )时,z 取最小值,z min =2×1+(-2a )=1,所以a =12.故选B .7.(2016·全国卷Ⅲ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x -2y ≤0,x +2y -2≤0,则z =x +y 的最大值为________.解:画出可行域,如图所示阴影部分,易得A (0,1),B (-2,-1),C ⎝⎛⎭⎫1,12,可得z =x +y 在C 点处取得最大值为32.故填32.8.(山西四校2017届联考)已知y =-2x -z 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0, 若2x +y +k ≥0恒成立,则实数k的取值范围为________.解:可行域为一个三角形ABC 及其内部,其中A (2,0),B (-2,-2),C (0,2),直线z =-2x -y 过点B 时取最大值6,而2x +y +k ≥0恒成立等价于k ≥[-(2x +y )]max =6.故填[6,+∞).9.(2016·昆明模拟)已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥0,x -2y +2≥0,x -y ≤0,求z =2x -y 的最大值.解:作出可行域如图中阴影部分所示.当直线过点B (2,2)时,z =2x -y 取得最大值2.10.变量x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1.(1)假设z 1=4x -3y ,求z 1的最大值;(2)设z 2=yx ,求z 2的最小值;(3)设z 3=x 2+y 2,求z 3的取值范围.解:作出可行域如图中阴影部分,联立易得A ⎝⎛⎭⎫1,225,B (1,1),C (5,2). (1)z 1=4x -3y ⇔y =43x -z 13,易知平移y =43x 至过点C 时,z 1最大,且最大值为4×5-3×2=14.(2)z 2=y x 表示可行域内的点与原点连线的斜率大小,显然直线OC 斜率最小.故z 2的最小值为25.(3)z 3=x 2+y 2表示可行域内的点到原点距离的平方,而2=OB 2<OA 2<OC 2=29.故z 3∈[2,29].11.(2015·广东模拟)某工厂生产甲、乙两种产品,每种产品都有一部分是一等品,其余是二等品,已知甲产品为一等品的概率比乙产品为一等品的概率大0.25,甲产品为二等品的概率比乙产品为一等品的概率小0.05. (1)分别求甲、乙产品为一等品的概率P 甲,P 乙;(2)已知生产一件产品需要用的工人数和资金数如表所示,且该厂有工人32名,可用资金55万元.设x,y分工人(名)资金(万元)甲420乙85解:(1)依题意得⎩⎪⎨⎪⎧甲乙1-P甲=P乙-0.05,解得⎩⎪⎨⎪⎧P甲=0.65,P乙=0.4,故甲产品为一等品的概率P甲=0.65,乙产品为一等品的概率P乙=0.4.(2)依题意得x,y应满足的约束条件为⎩⎪⎨⎪⎧4x+8y≤32,20x+5y≤55,x≥0,y≥0,且z=0.65x+0.4y.作出以上不等式组所表示的平面区域(如图阴影部分),即可行域.作直线l:0.65x+0.4y=0即13x+8y=0,把直线l向上方平移到l1的位置时,直线经过可行域内的点M,且l1与原点的距离最大,此时z取最大值.解方程组⎩⎪⎨⎪⎧x+2y=8,4x+y=11,得⎩⎪⎨⎪⎧x=2,y=3.故M的坐标为(2,3),所以z的最大值为z max=0.65×2+0.4×3=2.5.当实数x,y满足⎩⎪⎨⎪⎧x+2y-4≤0,x-y-1≤0,x≥1时,1≤ax+y≤4恒成立,则实数a的取值范围是________.解:作出可行域为一三角形,且易求出三个顶点坐标分别为(1,0),⎝⎛⎭⎫1,32,(2,1),都代入1≤ax+y≤4得⎩⎪⎨⎪⎧1≤a≤4,1≤a+32≤4,1≤2a+1≤4.解不等式组可得1≤a≤32.故填⎣⎡⎦⎤1,32.项目用量产品。
核按钮(新课标)高考数学一轮复习第七章不等式7.2一元二次不等式及其解法习题理
核按钮(新课标)高考数学一轮复习第七章不等式7.2一元二次不等式及其解法习题理1.解不等式的有关理论(1)若两个不等式的解集相同,则称它们是;(2)一个不等式变形为另一个不等式时,若两个不等式是同解不等式,这种变形称为不等式的;(3)解不等式变形时应进行同解变形;解不等式的结果,一般用集合表示.2.一元一次不等式解法任何一个一元一次不等式经过不等式的同解变形后,都可以化为ax>b(a≠0)的形式.当a>0时,解集为;当a<0时,解集为.若关于x的不等式ax>b的解集是R,则实数a,b满足的条件是.3.一元二次不等式及其解法(1)我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为__________不等式.(2)使某个一元二次不等式成立的x的值叫做这个一元二次不等式的解,一元二次不等式所有的解组成的集合叫做一元二次不等式的________.(3)若一元二次不等式经过同解变形后,化为一元二次不等式ax2+bx+c>0(或ax2+bx +c<0)(其中a>0)的形式,其对应的方程ax2+bx+c=0有两个不相等的实根x1,x2,且x1<x2(此时Δ=b2-4ac>0),则可根据“大于号取,小于号取”求解集.函数、方程与不等式Δ>0Δ=0Δ<0二次函数y =ax 2+bx+c(a >0)的图象一元二次方程ax 2+bx +c =0(a >0)的根有两相异实根x 1,x 2(x 1<x 2)有两相等实根x 1=x 2=-b2a无实根ax 2+bx +c >0(a >0)的解集① ②Rax 2+bx +c <0(a >0)的解集 {x |x 1<x <x 2} ∅ ③4.分式不等式解法(1)化分式不等式为标准型.方法:移项,通分,右边化为0,左边化为f (x )g (x )的形式.(2)将分式不等式转化为整式不等式求解,如:f (x )g (x )>0 ⇔ f (x )g (x )>0; f (x )g (x )<0 ⇔ f (x )g (x )<0; f (x )g (x )≥0 ⇔ ⎩⎪⎨⎪⎧f (x )g (x )≥0,g (x )≠0; f (x )g (x )≤0 ⇔ ⎩⎪⎨⎪⎧f (x )g (x )≤0,g (x )≠0. 自查自纠1.(1)同解不等式 (2)同解变形 2.⎩⎨⎧⎭⎬⎫x |x >b a ⎩⎨⎧⎭⎬⎫x |x <b a a =0,b <03.(1)一元二次 (2)解集 (3)两边 中间 (4)①{}x |x <x 1或x >x 2 ②⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠-b 2a ③∅(2014·课标Ⅰ)已知集合A ={x |x 2-2x -3≥0},B ={x |-2≤x <2},则A ∩B =( )A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)解:∵A ={x |x ≥3或x ≤-1},B ={x |-2≤x <2},∴A ∩B ={x |-2≤x ≤-1}=[-2,-1].故选A .设f (x )=x 2+bx +1且f (-1)=f (3),则f (x )>0的解集为( ) A .{x |x ∈R } B .{x |x ≠1,x ∈R } C .{x |x ≥1}D .{x |x ≤1}解:f (-1)=1-b +1=2-b ,f (3)=9+3b +1=10+3b , 由f (-1)=f (3),得2-b =10+3b ,解出b =-2,代入原函数,f (x )>0即x 2-2x +1>0,x 的取值范围是x ≠1.故选B .已知-12<1x<2,则x 的取值范围是( )A .(-2,0)∪⎝ ⎛⎭⎪⎫0,12 B.⎝ ⎛⎭⎪⎫-12,2 C.⎝⎛⎭⎪⎫-∞,-12∪(2,+∞) D .(-∞,-2)∪⎝ ⎛⎭⎪⎫12,+∞ 解:当x >0时,x >12;当x <0时,x <-2.所以x 的取值范围是x <-2或x >12,故选D .不等式2x 2-x <4的解集为____________.解:由2x 2-x <4得x 2-x <2,解得-1<x <2,即不等式2x 2-x <4的解集为{x |-1<x <2}.故填{x|-1<x<2}.(2014·武汉调研)若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为________.解:显然k ≠0.则⎩⎪⎨⎪⎧2k <0,Δ<0, 解得k ∈(-3,0).故填(-3,0).类型一 一元一次不等式的解法已知关于x 的不等式(a +b )x +2a -3b <0的解集为⎝⎛⎭⎪⎫-∞,-13,则关于x 的不等式(a -3b )x +b -2a >0的解集为________.解:由(a +b )x <3b -2a 的解集为⎝⎛⎭⎪⎫-∞,-13, 得a +b >0,且3b -2a a +b =-13,从而a =2b ,则a +b =3b >0,即b >0, 将a =2b 代入(a -3b )x +b -2a >0,得-bx -3b >0,x <-3,故填{x|x <-3}.【点拨】一般地,一元一次不等式都可以化为ax >b (a ≠0)的形式.挖掘隐含条件a +b >0且3b -2a a +b =-13是解本题的关键.解关于x 的不等式:(m 2-4)x <m +2.解:(1)当m 2-4=0即m =-2或m =2时, ①当m =-2时,原不等式的解集为∅, ②当m =2时,原不等式的解集为R . (2)当m 2-4>0,即m <-2或m >2时,x <1m -2. (3)当m 2-4<0,即-2<m <2时,x >1m -2. 类型二 一元二次不等式的解法解下列不等式:(1)x 2-7x +12>0; (2)-x 2-2x +3≥0; (3)x 2-2x +1<0; (4)x 2-2x +2>0.解:(1)方程x 2-7x +12=0的解为x 1=3,x 2=4.而y =x 2-7x +12的图象开口向上,可得原不等式x 2-7x +12>0的解集是{x |x <3或x >4}.(2)不等式两边同乘以-1,原不等式可化为x 2+2x -3≤0. 方程x 2+2x -3=0的解为x 1=-3,x 2=1.而y =x 2+2x -3的图象开口向上,可得原不等式-x 2-2x +3≥0的解集是{x |-3≤x ≤1}.(3)方程x 2-2x +1=0有两个相同的解x 1=x 2=1.而y =x 2-2x +1的图象开口向上,可得原不等式x 2-2x +1<0的解集为∅.(4)因为Δ<0,所以方程x 2-2x +2=0无实数解,而y =x 2-2x +2的图象开口向上,可得原不等式x 2-2x +2>0的解集为R .【点拨】解一元二次不等式的步骤:(1)将二次项系数化为正数;(2)解相应的一元二次方程;(3)根据一元二次方程的根,结合不等号的方向画图;(4)写出不等式的解集.容易出现的错误有:①未将二次项系数化正,对应错标准形式;②解方程出错;③结果未按要求写成集合.(2015·贵州模拟)关于x 的不等式x 2-(a +1)x +a <0的解集中,恰有3个整数,则实数a 的取值范围是________.解:原不等式可化为(x -1)(x -a )<0,当a >1时,得1<x <a ,此时解集中的整数为2,3,4,则4<a ≤5;当a <1时,得a <x <1,此时解集中的整数为-2,-1,0.则-3≤a <-2,故a ∈[-3,-2)∪(4,5].故填[-3,-2)∪(4,5].类型三 二次不等式、二次函数及二次方程的关系(2015·贵州模拟)已知不等式ax 2+bx +2>0的解集为{x |-1<x <2},则不等式2x 2+bx +a <0的解集为( )A.⎩⎨⎧⎭⎬⎫x|x <-1或x >12B.⎩⎨⎧⎭⎬⎫x |-1<x <12C .{x |-2<x <1}D .{x |x <-2或x >1}解:由题意知x =-1,x =2是方程ax 2+bx +2=0的两根,且a <0.由韦达定理得⎩⎪⎨⎪⎧-1+2=-b a ,(-1)×2=2a⇒⎩⎪⎨⎪⎧a =-1,b =1.∴不等式2x 2+bx +a <0,即2x 2+x -1<0. 解得-1<x <12.故选B .【点拨】已知一元二次不等式的解集,就能够得到相应的一元二次方程的两根,由根与系数的关系,可以求出相应的系数.注意结合不等式解集的形式判断二次项系数的正负.已知不等式ax 2+bx +c >0的解集为{x |2<x <3},则不等式cx 2-bx +a >0的解集为________.解:∵不等式ax 2+bx +c >0的解集为{x |2<x <3},∴a <0,且2和3是方程ax 2+bx +c =0的两根,由根与系数的关系得⎩⎪⎨⎪⎧-ba=2+3,ca =2×3,a <0.即⎩⎪⎨⎪⎧b =-5a ,c =6a ,a <0.代入不等式cx 2-bx +a >0,得6ax 2+5ax +a >0(a <0).即6x 2+5x +1<0,解得-12<x <-13.故填⎩⎨⎧⎭⎬⎫x|-12<x <-13.类型四 含有参数的一元二次不等式解关于x 的不等式:mx 2-(m +1)x +1<0.解:(1)当m =0时,不等式为-(x -1)<0,得x -1>0,不等式的解集为{x |x >1};(2)当m ≠0时,不等式为m ⎝ ⎛⎭⎪⎫x -1m (x -1)<0.①当m <0,不等式为⎝ ⎛⎭⎪⎫x -1m (x -1)>0,∵1m<1,∴不等式的解集为⎩⎨⎧⎭⎬⎫x |x <1m或x >1.②当m >0,不等式为⎝⎛⎭⎪⎫x -1m (x -1)<0.(Ⅰ)若1m<1,即m >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x |1m<x <1;(Ⅱ)若1m>1,即0<m <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x |1<x <1m ; (Ⅲ)若1m=1,即m =1时,不等式的解集为∅.【点拨】当x 2的系数是参数时,首先对它是否为零进行讨论,确定其是一次不等式还是二次不等式,即对m ≠0与m =0进行讨论,这是第一层次;第二层次:x 2的系数正负(不等号方向)的不确定性,对m <0与m >0进行讨论;第三层次:1m与1大小的不确定性,对m<1、m >1与m =1进行讨论.解关于x 的不等式ax 2-2≥2x -ax (a ∈R ).解:不等式整理为ax 2+(a -2)x -2≥0, 当a =0时,解集为(-∞,-1].当a ≠0时,ax 2+(a -2)x -2=0的两根为-1,2a,所以当a >0时,解集为(-∞,-1]∪⎣⎢⎡⎭⎪⎫2a,+∞;当-2<a <0时,解集为⎣⎢⎡⎦⎥⎤2a,-1;当a =-2时,解集为{x |x =-1};当a <-2时,解集为⎣⎢⎡⎦⎥⎤-1,2a .类型五 分式不等式的解法(1)不等式x -12x +1≤1的解集为________.解:x -12x +1≤1 ⇔ x -12x +1-1≤0 ⇔ -x -22x +1≤0 ⇔ x +22x +1≥0.解法一:x +22x +1≥0 ⇔⎩⎪⎨⎪⎧(x +2)(2x +1)≥0,2x +1≠0.得{x|x >-12或x ≤-2}.解法二:x +22x +1≥0 ⇔⎩⎪⎨⎪⎧x +2≥0,2x +1>0 或 ⎩⎪⎨⎪⎧x +2≤0,2x +1<0.得{x |x >-12或x ≤-2}.故填{x|x >-12或x≤-2}.(2)不等式x -2x 2+3x +2>0的解集为 .解:x -2x 2+3x +2>0⇔x -2(x +2)(x +1)>0⇔(x -2)(x +2)(x +1)>0,数轴标根得{x |-2<x <-1或x >2}, 故填{x|-2<x <-1或x >2}.【点拨】分式不等式可以先转化为简单的高次不等式,再利用数轴标根法写出不等式的解集,如果该不等式有等号,则要注意分式的分母不能为零.※用“数轴标根法”解不等式的步骤:(1)移项:根据不等式的性质对不等式进行移项,使得右端为0,化为不等式的标准形式(注意:一定要保证x 的最高次幂的项的系数为正数).(2)求根:就是求出不等式所对应的方程的所有根.①若是整式不等式,将其分解因式,求出所有根;②若是分式不等式,用积和商的符号法则,将其转化为整式不等式,再求出所有根.(3)标根:在数轴上按从左到右(由小到大)依次标出各根(不需标出准确位置,只需标出相对位置即可).(4)画穿根线:从数轴“最右根”的右上方向左下方画线,穿过此根,再往左上方穿过“次右根”,一上一下依次穿过各根.但画线时遇偶重根不穿过(即线画至此根时,不穿过此根,而向左依次穿过其余的根),遇奇重根要穿过,可用口诀:“奇穿偶不穿”来记忆.(5)写出不等式的解集:若不等号为“>”,则取数轴上方穿根线以内的范围;若不等号为“<”,则取数轴下方穿根线以内的范围;若不等式中含有“=”号,就连根一同取,但若是分式不等式,写解集时要考虑分母不能为零.(1)若集合A ={x |-1≤2x +1≤3},B =⎩⎨⎧⎭⎬⎫x|x -2x ≤0,则A ∩B =( ) A .{x |-1≤x <0} B .{x |0<x ≤1} C .{x |0≤x ≤2}D .{x |0≤x ≤1}解:易知A ={x |-1≤x ≤1},B 集合就是不等式组⎩⎪⎨⎪⎧x (x -2)≤0,x ≠0 的解集,求出B ={}x |0<x ≤2,所以A ∩B ={x |0<x ≤1}.故选B .(2)不等式x -12x +1≤0的解集为( )A.⎝ ⎛⎦⎥⎤-12,1B.⎣⎢⎡⎦⎥⎤-12,1 C.⎝⎛⎭⎪⎫-∞,-12∪[1,+∞)D.⎝⎛⎦⎥⎤-∞,-12∪[1,+∞) 解:x -12x +1≤0⇔⎩⎪⎨⎪⎧(x -1)(2x +1)≤0,2x +1≠0得-12<x ≤1.故选A .类型六 和一元二次不等式有关的恒成立问题(1)若不等式x 2+ax +1≥0对于一切x ∈⎝ ⎛⎦⎥⎤0,12成立,则实数a 的最小值为( )A .0B .-2C .-52D .-3解法一:不等式可化为ax ≥-x 2-1,由于x ∈⎝ ⎛⎦⎥⎤0,12,∴a ≥-⎝ ⎛⎭⎪⎫x +1x .∵f (x )=x +1x 在⎝ ⎛⎦⎥⎤0,12上是减函数, ∴⎝⎛⎭⎪⎫-x -1x max =-52.∴a ≥-52. 解法二:令f (x )=x 2+ax +1,对称轴为x =-a2.①⎩⎪⎨⎪⎧-a 2≤0,f (0)≥0 ⇒a ≥0.(如图1) ②⎩⎪⎨⎪⎧0<-a 2<12,f ⎝ ⎛⎭⎪⎫-a 2≥0⇒-1<a <0.(如图2)③⎩⎪⎨⎪⎧-a 2≥12,f ⎝ ⎛⎭⎪⎫12≥0⇒-52≤a ≤-1.(如图3)图1图2图3综上 ①②③,a ≥-52.故选C .(2)已知对于任意的a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值总大于0,则x 的取值范围是( )A .1<x <3B .x <1或x >3C .1<x <2D .x <1或x >2解:记g (a )=(x -2)a +x 2-4x +4,a ∈[-1,1],依题意,只须⎩⎪⎨⎪⎧g (1)>0,g (-1)>0⇒⎩⎪⎨⎪⎧x 2-3x +2>0,x 2-5x +6>0⇒x <1或x >3,故选B .【点拨】(1)一元二次不等式恒成立问题,对于x 变化的情形,解法一利用参变量分离法,化成a >f (x )(a <f (x ))型恒成立问题,再利用a >f (x )max (a <f (x )min ),求出参数范围.解法二化归为二次函数,由于是轴动区间定,结合二次函数对称轴与定义域的位置关系、单调性等相关知识,求出参数范围.(2)对于参数变化的情形,大多利用参变量转换法,即参数转换为变量;变量转换为参数,把关于x 的二次不等式转换为关于a 的一次不等式,化繁为简,然后再利用一次函数的单调性,求出x 的取值范围.(1)(2015·甘肃模拟)若不等式a ·4x -2x+1>0对一切x ∈R 恒成立,则实数a的取值范围是________.解:不等式可变形为a >2x-14x =⎝ ⎛⎭⎪⎫12x -⎝ ⎛⎭⎪⎫14x ,令⎝ ⎛⎭⎪⎫12x =t ,则t >0.∴y =⎝ ⎛⎭⎪⎫12x -⎝ ⎛⎭⎪⎫14x =t -t2=-⎝ ⎛⎭⎪⎫t -122+14,因此当t =12时,y 取最大值14,故实数a 的取值范围是a >14.故填⎝ ⎛⎭⎪⎫14,+∞.(2)对于满足|a |≤2的所有实数a ,使不等式x 2+ax +1>2x +a 成立的x 的取值范围为________.解:原不等式转化为(x -1)a +x 2-2x +1>0,设f (a )=(x -1)a +x 2-2x +1,则f (a )在[-2,2]上恒大于0,故有:⎩⎪⎨⎪⎧f (-2)>0,f (2)>0 即⎩⎪⎨⎪⎧x 2-4x +3>0,x 2-1>0 解得⎩⎪⎨⎪⎧x >3或x <1,x >1或x <-1.∴x <-1或x >3.故填(-∞,-1)∪(3,+∞).类型七 二次方程根的讨论若方程2ax 2-x -1=0在(0,1)内有且仅有一解,则a 的取值范围是( ) A .(-∞,-1) B .(1,+∞) C .(-1,1)D .[0,1)解法一:令f (x )=2ax 2-x -1,则f (0)·f (1)<0,即-1×(2a -2)<0,解得a >1. 解法二:当a =0时,x =-1,不合题意,故排除C ,D ;当a =-2时,方程可化为4x 2+x +1=0,而Δ=1-16<0,无实根,故a =-2不适合,排除A.故选B .【点拨】本题考查一元二次方程的根的分布与系数的关系,画出相应函数的图象后“看图说话”,主要从以下四个方面分析:①开口方向;②判别式;③区间端点函数值的正负;④对称轴x =-b2a与区间端点的关系.本书2.4节有较详细的讨论,可参看.(2015·贵州模拟)已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为________.解:根据题意有f (-2)f (-1)<0,∴(6a +5)(2a +3)<0.∴-32<a <-56.又a ∈Z ,∴a =-1.检验知合要求.不等式f (x )>1即为-x 2-x +1>1,解得-1<x <0. ∴故填{x|-1<x <0}.类型八 一元二次不等式的应用(2013·上海)甲厂以x 千克/小时的速度匀速生产某种产品(生产条件要求1≤x ≤10),每小时可获得利润是100⎝ ⎛⎭⎪⎫5x +1-3x 元.(1)要使生产该产品2小时获得的利润不低于3 000元,求x 的取值范围;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润.解:(1)根据题意,200⎝ ⎛⎭⎪⎫5x +1-3x ≥3 000⇒5x -14-3x≥0⇒5x 2-14x -3≥0⇒(5x +1)(x-3)≥0,又1≤x ≤10,可解得3≤x ≤10.(2)设利润为y 元,则y =900x·100⎝ ⎛⎭⎪⎫5x +1-3x =9×104⎝ ⎛⎭⎪⎫-3x2+1x+5=9×104⎣⎢⎡⎦⎥⎤-3⎝ ⎛⎭⎪⎫1x -162+6112.故x =6时,y max =457 500元.【点拨】和一元二次不等式有关的实际应用题是高考考查的重点,这类题目往往与实际生活结合紧密,应予以重视.(2015·河南模拟)某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域; (2)若要求该商品一天营业额至少为10 260元,求x 的取值范围.解: (1)由题意得y =100⎝ ⎛⎭⎪⎫1-x 10·100⎝ ⎛⎭⎪⎫1+850x . ∵售价不能低于成本价,∴100⎝ ⎛⎭⎪⎫1-x 10-80≥0.∴y =f (x )=20(10-x )(50+8x ),定义域为[0,2].(2)由题意得20(10-x )(50+8x )≥10 260,化简得8x 2-30x +13≤0.解得12≤x ≤134.∴x 的取值范围是⎣⎢⎡⎦⎥⎤12,2.1.一元二次不等式ax 2+bx +c >0(或ax 2+bx +c <0)(a ≠0)的解集的确定,受二次项系数a 的符号及判别式Δ=b 2-4ac 的符号制约,且与相应的二次函数、一元二次方程有密切联系,可结合相应的函数y =ax 2+bx +c (a ≠0)的图象,数形结合求得不等式的解集;二次函数y =ax 2+bx +c 的值恒大于0的条件是a >0且Δ<0;若恒大于或等于0,则a >0且Δ≤0.若二次项系数中含参数且未指明该函数是二次函数时,必须考虑二次项系数为0这一特殊情形.2.解分式不等式要使一边为零;求解非严格分式不等式时,要注意分母不等于0,转化为不等式组.(注:形如f (x )g (x )≥0或f (x )g (x )≤0的不等式称为非严格分式不等式)3.解含参数的不等式的基本途径是分类讨论,能避免讨论的应设法避免讨论.对字母参数的逻辑划分要具体问题具体分析,必须注意分类不重、不漏、完全、准确.4.解不等式的过程,实质上是不等式等价转化的过程.因此保持同解变形是解不等式应遵循的基本原则.5.各类不等式最后一般都要化为一元一次不等式(组)或一元二次不等式(组)来解,这体现了转化与化归的数学思想.6.对给定的一元二次不等式,求解的程序框图是:1.不等式x -2x +1≤0的解集是( ) A .(-∞,-1)∪(-1,2] B .[-1,2]C .(-∞,-1)∪[2,+∞)D .(-1,2]解:x -2x +1≤0⇔()x +1()x -2≤0,且x ≠-1,即x ∈(-1,2],故选D .2.(2015·湖北模拟)不等式f (x )=ax 2-x -c >0的解集为{x |-2<x <1},则函数y =f (-x )的图象为( )解:由题意得⎩⎪⎨⎪⎧-2+1=1a ,-2×1=-c a ,解得⎩⎪⎨⎪⎧a =-1,c =-2.则f (x )=-x 2-x +2,∴f (-x )=-x2+x +2.故选C .3.(2013·安徽)已知一元二次不等式f (x )<0的解集为⎩⎨⎧⎭⎬⎫x |x <-1或x >12,则f (10x)>0的解集为( )A .{x |x <-1或x >lg2}B .{x |-1<x <lg2}C .{x |x >-lg2}D .{x |x <-lg2}解:可设f (x )=a (x +1)⎝ ⎛⎭⎪⎫x -12(a <0),由f (10x )>0可得(10x+1)⎝⎛⎭⎪⎫10x -12<0,从而10x <12,解得x <-lg2,故选D .4.(2013·陕西)在如图所示的锐角三角形空地中,欲建一个面积不小于300 m 2的内接矩形花园(阴影部分),则其边长x (单位:m)的取值范围是( ) A .[15,20] B .[12,25] C .[10,30]D .[20,30]解:设矩形的另一边为y m ,依题意得x 40=40-y40,即y =40-x ,所以x (40-x )≥300,解得10≤x ≤30.故选C .5.若关于x 的不等式2x 2-8x -4-a >0在(1,4)内有解,则实数a 的取值范围是( ) A .(-∞,-12) B .(-4,+∞) C .(-12,+∞)D .(-∞,-4)解:关于x 的不等式2x 2-8x -4-a >0在(1,4)内有解,即a <2x 2-8x -4在(1,4)内有解,令f (x )=2x 2-8x -4=2(x -2)2-12,当x =2时,f (x )取最小值f (2)=-12;当x =4时,f (4)=2(4-2)2-12=-4,所以在(1,4)上,-12≤f (x )<-4.要使a <f (x )有解,则a <-4.故选D .6.若关于x 的方程3x 2-5x +a =0的一个根大于-2且小于0,另一个根大于1且小于3,则实数a 的取值范围是( )A .(-∞,2)B .(-12,+∞)C .(-22,0)D .(-12,0)解:设f (x )=3x 2-5x +a ,则由题意有 ⎩⎪⎨⎪⎧f (-2)>0,f (0)<0,f (1)<0,f (3)>0.即⎩⎪⎨⎪⎧22+a >0,a <0,-2+a <0,12+a >0.解得-12<a <0.故选D .7.(2015·浙江模拟)不等式log 2⎝⎛⎭⎪⎫x +1x+6≤3的解集为________.解:log 2⎝⎛⎭⎪⎫x +1x+6≤3⇔log 2⎝⎛⎭⎪⎫x +1x+6≤log 28⇔0<x +1x +6≤8⇔-6<x +1x≤2.当x >0时,x +1x ≥2,此时x =1;当x <0时,x +1x ≤-2,此时x +1x>-6,解得-3-22<x<-3+2 2.故填(-3-22,-3+22)∪{1}.8.(2015·昆明模拟)已知a 为正的常数,若不等式1+x ≥1+x 2-x 2a对一切非负实数x恒成立,则a 的最大值是__________.解:原不等式可化为x 2a ≥1+x 2-1+x (*),令1+x =t ,t ≥1,则x =t 2-1,所以(*)即(t 2-1)2a ≥1+t 2-12-t =t 2-2t +12=(t -1)22,对t ≥1恒成立,所以(t +1)2a ≥12对t ≥1恒成立,又a 为正的常数,所以a ≤[2(t +1)2]min =8,故a 的最大值是8.故填8.9.若关于x 的不等式x 2-ax -a ≤-3的解集不是空集,求实数a 的取值范围. 解法一:设f (x )=x 2-ax -a .则关于x 的不等式x 2-ax -a ≤-3的解集不是空集⇔f (x )min ≤-3,即f ⎝ ⎛⎭⎪⎫a 2=-4a +a 24≤-3,解得a ≤-6或a ≥2.解法二:x 2-ax -a ≤-3的解集不是空集⇔x 2-ax -a +3=0的判别式Δ≥0,解得a ≤-6或a ≥2.10.汽车在行驶中,由于惯性的作用,刹车后还要继续向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素.在一个限速为40 km/h 的弯道上,甲、乙两辆车相向而行,发现情况不对,同时刹车,但还是相碰了.事后现场勘查测得甲车的刹车距离略超过12 m ,乙车的刹车距离略超过10 m ,又知甲、乙两种车型的刹车距离s (m)与车速x (km/h)之间分别有如下关系:s 甲=0.1x +0.01x 2, s 乙=0.05x +0.005x 2.问甲、乙两车有无超速现象?解:由题意知,对于甲车,有0.1x +0.01x 2>12, 即x 2+10x -1200>0,解得x >30或x <-40(舍去).这表明甲车的车速超过30 km/h ,又由甲车刹车距离略超12 m ,可判断甲车车速不会超过限速40 km/h.对于乙车有0.05x +0.005x 2>10,即x 2+10x -2000>0,解得x >40或x <-50(舍去). 这表明乙车超过40 km/h ,超过规定限速.11.已知二次函数f (x )的二次项系数为a ,且不等式f (x )>-2x 的解集为(1,3). (1)若方程f (x )+6a =0有两个相等的实根,求f (x )的解析式; (2)若f (x )的最大值为正数,求a 的取值范围. 解:(1)∵f (x )+2x >0的解集为(1,3), ∴f (x )+2x =a (x -1)(x -3),且a <0. 因而f (x )=a (x -1)(x -3)-2x =ax 2-(2+4a )x +3a .①由方程f (x )+6a =0得ax 2-(2+4a )x +9a =0.② 因为方程②有两个相等的实根,所以Δ=[-(2+4a )]2-4a ·9a =0,即5a 2-4a -1=0,解得a =1或a =-15.由于a <0,舍去a =1,将a =-15代入①得f (x )的解析式f (x )=-15x 2-65x -35.(2)由f (x )=ax 2-2(1+2a )x +3a =a ⎝ ⎛⎭⎪⎫x -1+2a a 2-a 2+4a +1a, 及a <0,可得f (x )的最大值为-a 2+4a +1a.由⎩⎪⎨⎪⎧-a 2+4a +1a >0,a <0,解得a <-2-3或-2+3<a <0.故当f (x )的最大值为正数时,实数a 的取值范围是 (-∞,-2-3)∪(-2+3,0).解关于x 的不等式:a (x -1)x -2>1(a <1).解:(x -2)[(a -1)x +2-a ]>0,当a <1时有(x -2)⎝ ⎛⎭⎪⎫x -a -2a -1<0,若a -2a -1>2,即0<a <1时,解集为{x |2<x <a -2a -1}; 若a -2a -1=2,即a =0时,解集为∅; 若a -2a -1<2,即a <0时,解集为{x |a -2a -1<x <2}.。
届高考数学一轮复习讲义课件:二元一次不等式与简单的线性规划问题(共59张PPT)
1.二元一次不等式表示平面区域 (1)一般地,二元一次不等式 Ax+By+C>0 在平面直角坐标系 中表示直线 Ax+By+C=0 某一侧所有点组成的平面区域.我们把 直线画成虚线,以表示区域不包括边界直线.当我们在坐标系中画 不等式 Ax+By+C≥0 所表示的平面区域时,此区域应包括边界直 线,则把边界直线画成实线. (2)用二元一次不等式表示平面区域,常有一定的规律性,大致 可分为以下四种情况(如图所示).
点评 线性目标函数的最优解一般在可行域的顶点或边界上取 得,具体方法是:将表示目标函数的直线平行移动,最先(或最后) 通过的区域内的点便是最优解.特别地,当表示线性目标函数的直 线与可行域的某边重合时,其最优解可能有无数个 .
变式迁移 2
设 z=2y-2x+4,式中 x、y 满足条件00≤≤xy≤ ≤21, , 2y-x≥1.
2.简单的线性规划问题 (1)求线性目标函数在约束条件下的最值问题的求解步骤是: ①作图:画出约束条件所确定的平面区域和目标函数所表示的 平行直线系中的任意一条直线 l. ②平移:将直线 l 平行移动,以确定最优解所对应的点的位置. ③求值:解有关的方程组求出最优解,再代入目标函数,求出 目标函数的最值. (2)关于线性规划的几点说明: ①最优解有时唯一,有时不唯一,甚至是无穷多. ②对于二元一次不等式组所表示的区域,如果存在使线性目标 函数达到最大或最小的点,那么最值一定是在该区域的顶点或边界 上达到.
所以,原不等式组表示的区域如图所示.
题型二 线性目标函数的最值问题
例 2.已知 x,y 满足条件
35xx+ +83yy+ -16≤ 5≥00,, 2x-5y+10≥0,
则 z=x-y 的取值范围是________.
解析 先画出约束条件的可行域,如图所示,
新课标高考数学一轮复习第七章不等式7.1不等关系与不等式课件理
A.-2<a-b<0
B.-2<a-b<-1
C.-1<a-b<0
D.-1<a-b<1
解:-1<a<1,-1<-b<1⇒-2<a-b <2.又 a<b,则-2<a-b<0.故选 A.
第五页,共26页。
(2016·四川成都模拟)若 a<b<0,则下
列不等式中一定成立的是( A.1a<1b
)
B.12a<12b
第三页,共26页。
自查自纠
1.>0 =0 <0
2 . (1)b<a (2)a>c (3)>
ac<bc (5)a+c>b+d (7)ac>bd (10)an>bn(n∈N 且 n≥2)
n (11)
n a>
Hale Waihona Puke b(n∈N且n≥2)
(4)ac>bc
第四页,共26页。
(教材题改编)若-1<a<b<1,则( )
解:a,b,c 是实数,若 a>b>c>0,不等式 a+b>c 成立;a,b,c 是实数,若 a>0>b>c, 不等式 a+b>c 成立;a,b,c 是实数,若 0>a>b >c,a+b=c,不等式 a+b>c 不成立,一组整 数 a,b,c 的值为负数,依次为-1,-2,-3. 故填-1,-2,-3.
第二十一页,共26页。
(2)(2016·云南模拟)若-1≤lgxy≤2,1≤lg(xy)≤4, 则 lgxy2的取值范围是________.
解:由 1≤lg(xy)≤4,-1≤lgxy≤2, 得 1≤lgx+lgy≤4,-1≤lgx-lgy≤2, 则 lgxy2=2lgx-lgy=12(lgx+lgy)+32(lgx-lgy), 所以-1≤lgxy2≤5.故填[-1,5].
二元一次不等式(组)与简单的线性规划问题
是
(C)
A.(0,0)
B.(-1,1)
C.(-1,3)
D.(2,-3)
2.若点(1,3)和(-4,-2)在直线2x+y+m=0的两侧,则m
的取值范围是 A.m<-5或m>10
(C )
B.m=-5或m=10
C.-5<m<10
D.-5≤m≤10
PPT学习交流
6
3.设A={(x,y)|x,y,1-x-y是三角形的三边长}, 则A所表示的平面区域(不含边界的阴影部分)是
PPT学习交流
10
y x=3 x-y+5=0
5
( 5 , 5 ) 22
(3,8)
x y5 0
x
y
0
x 3
-5
O
3
x
(3,-3)
(1)x[5,3],y[3,8]. 2
(2)平面区域内的整点共有
x+y=0 2+4+6+8+10+12=42个.
PPT学习交流
11
知能迁移1 如图△ABC中,A(0,1), B(-2,2),C(2,6),写出△ABC区域 所表示的二元一次不等式组.
17
[06广东高考]
x 0,
在约束条件
y y
0, x
s
下,当 3≤s≤5 时,
y 2 x 4
目标函数 z = 3x + 2y 的最大值的变化范围是 D
(A) [6,15]
(B) [7,15] y
(C) [6,8]
(D) [7,8]
4
C(0,s) B(4-s,2s-4)
y+ x= s
2024年高考数学总复习第七章不等式真题分类28二元一次不等式(组)与简单的线性规划问题
第13页
返回层目录 返回目录
真题分类28 二元一次不等式(组)与简单的线性规划问题
高考·数学
目标函数 z=x+2y,即 y=-12 x+2z ,画出直线 y=-12 x 并平移,当直线 y =-12 x+2z 经过点 A(2,1)时,z 取最小值,无最大值,zmin=2+2×1=4,所以 z 的取值范围为[4,+∞),故选 B.
第12页
返回层目录 返回目录
真题分类28 二元一次不等式(组)与简单的线性规划问题
高考·数学
4.(2020·浙江,3,4 分)若实数 x,y 满足约束条件xx+-y3-y+3≥1≤0,0, 则 z=x+2y
的取值范围是( )
A.(-∞,4]
B.[4,+∞)
C.[5,+∞)
D.(-∞,+∞)
答案:B 由 x,y 满足的约束条件画出可行域, 如图中阴影部分所示(包含边界).
的可行域,
2x+3y-1≤0
如图所示:
第11页
返回层目录 返回目录
真题分类28Leabharlann 二元一次不等式(组)与简单的线性规划问题
高考·数学
目标函数 z=x-12 y 化为 y=2x-2z, 由x2=x+-31y-,1=0, 解得xy==-1. 1, 设 A(-1,1),当直线 y=2x-2z 过 A 点时,z=x-12 y 取得最小值为-32 . 故选 B.
第9页
返回层目录 返回目录
真题分类28 二元一次不等式(组)与简单的线性规划问题
高考·数学
由xy+ =y3=4, 可得点 A(1,3), 转换目标函数 z=3x+y 为 y=-3x+z, 上下平移直线 y=-3x+z,数形结合可得当直线过点 A 时,z 取最小值, 此时 zmin=3×1+3=6. 故选 C.
2018届高三数学(理)一轮复习夯基提能作业本:第七章 不等式第三节 二元一次不等式(组)及简单的线性规
第三节二元一次不等式(组)及简单的线性规划问题A组基础题组1.不等式(x-2y+1)(x+y-3)≤0在坐标平面内表示的区域(用阴影部分表示)应是()2.(2016北京,7,5分)已知A(2,5),B(4,1).若点P(x,y)在线段AB上,则2x-y的最大值为()A.-1B.3C.7D.83.已知实数x,y满足则z=2x-2y-1的取值范围是()A. B.0,5] C. D.4.已知不等式组表示的平面区域的面积为4,则z=2x+y的最大值为()A.4B.6C.8D.125.某旅行社租用A、B两种型号的客车安排900名客人旅行,A、B两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且B型客车不多于A型客车7辆.则租金最少为()A.31200元B.36000元C.36800元D.38400元6.(2016云南昆明七校调研)已知实数x,y满足则z=x+3y的最小值为.7.(2016江苏,12,5分)已知实数x,y满足则x2+y2的取值范围是.8.(2016河南中原名校3月联考)设x,y满足不等式组若M=3x+y,N=-,则M-N 的最小值为.9.已知D是以点A(4,1),B(-1,-6),C(-3,2)为顶点的三角形区域(包括边界),如图所示.(1)写出表示区域D的不等式组;(2)设点B(-1,-6),C(-3,2)在直线4x-3y-a=0的异侧,求a的取值范围.10.(2014陕西,18,12分)在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),点P(x,y)在△ABC 三边围成的区域(含边界)上.(1)若++=0,求||;(2)设=m+n(m,n∈R),用x,y表示m-n,并求m-n的最大值.B组提升题组11.设z=x+y,其中实数x,y满足若z的最大值为12,则z的最小值为()A.-3B.-6C.3D.612.(2017黑龙江鸡西一中月考)已知变量x,y满足约束条件若z=x-2y的最大值与最小值分别为a,b,且方程x2-kx+1=0在区间(b,a)上有两个不同实数解,则实数k的取值范围是()A.(-6,-2)B.(-3,2)C.D.13.(2014浙江,13,4分)当实数x,y满足时,1≤ax+y≤4恒成立,则实数a的取值范围是.14.若实数x,y满足不等式组则z=|x+2y-4|的最大值为.15.(2016天津,16,13分)某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料.生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元.分别用x,y表示计划生产甲、乙两种肥料的车皮数.(1)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(2)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.答案全解全析A组基础题组1.C(x-2y+1)(x+y-3)≤0⇔或画图可知选C.2.C点P(x,y)在线段AB上且A(2,5),B(4,1),如图:设z=2x-y,则y=2x-z,当直线y=2x-z经过点B(4,1)时,z取得最大值,最大值为2×4-1=7.3.D画出不等式组所表示的区域,如图中阴影部分所示,可知2×-2×-1≤z<2×2-2×(-1)-1,即z的取值范围是.4.B如图,a>0,不等式组对应的平面区域为△OBC及其内部,其中B(a,a),C(a,-a),所以|BC|=2a,所以△OBC的面积为·a·2a=a2=4,所以a=2.由z=2x+y得y=-2x+z,平移直线y=-2x,由图象可知当直线y=-2x+z经过点B时,直线的截距最大,此时z也最大,把B(2,2)代入z=2x+y得z=2×2+2=6,∴z max=6.5.C设旅行社租用A型客车x辆,B型客车y辆,租金为z元,则约束条件为目标函数为z=1600x+2400y.可行解为图中阴影部分(包括边界)内的整点.当目标函数z=1600x+2400y对应的直线经过点A(5,12)时,z取得最小值,z min=1600×5+2400×12=36800.故租金最少为36800元,选C.6.答案-8解析依题意,在坐标平面内画出不等式组表示的平面区域(图略),当直线x+3y-z=0经过点(4,-4)时,目标函数z=x+3y取得最小值,为4+3×(-4)=-8.7.答案解析画出不等式组表示的可行域,如图:由x-2y+4=0及3x-y-3=0得A(2,3),由x2+y2表示可行域内的点(x,y)与点(0,0)的距离的平方可得(x2+y2)max=22+32=13,(x2+y2)min=d2==,其中d表示点(0,0)到直线2x+y-2=0的距离,所以x2+y2的取值范围为.8.答案解析作出不等式组所表示的平面区域,如图中阴影部分所示,易求得A(-1,2),B(3,2),当直线3x+y-M=0经过点A(-1,2)时,目标函数M=3x+y取得最小值-1.又由平面区域知-1≤x≤3,所以函数N=-在x=-1处取得最大值-,由此可得M-N的最小值为-1-=.9.解析(1)直线AB,AC,BC的方程分别为7x-5y-23=0,x+7y-11=0,4x+y+10=0.原点(0,0)在区域D内,故表示区域D的不等式组为(2)根据题意有4×(-1)-3×(-6)-a]4×(-3)-3×2-a]<0,即(14-a)(-18-a)<0,解得-18<a<14.故a的取值范围是(-18,14).10.解析(1)解法一:∵++=0,又++=(1-x,1-y)+(2-x,3-y)+(3-x,2-y)=(6-3x,6-3y),∴解得x=2,y=2,即=(2,2),故||=2.解法二:∵++=0,∴(-)+(-)+(-)=0,∴=(++)=(2,2),∴||=2.(2)∵=m+n,∴(x,y)=(m+2n,2m+n),∴两式相减得,m-n=y-x,令y-x=t,由图知,当直线y=x+t过点B(2,3)时,t取得最大值1,故m-n的最大值为1.B组提升题组11.B不等式组表示的可行域如图中阴影部分所示:由得A(k,k),易知目标函数z=x+y在点A处取最大值,则12=k+k,故k=6,所以B(-12,6),又目标函数z=x+y在点B处取最小值,∴z的最小值为-6,故选B.12.C作出可行域,如图中阴影部分所示,则目标函数z=x-2y在点(1,0)处取得最大值1,在点(-1,1)处取得最小值-3,∴a=1,b=-3,从而可知方程x2-kx+1=0在区间(-3,1)上有两个不同实数解.令f(x)=x2-kx+1,则⇒-<k<-2,故选C.13.答案解析不等式组表示的区域为以A(1,0),B,C(2,1)为顶点的三角形区域(包含边界),则1≤x≤2,所以1≤ax+y≤4恒成立可转化为≤-a≤恒成立.易知表示可行域内点(x,y)与定点(0,4)连线的斜率,其最大值为-;表示可行域内点(x,y)与定点(0,1)连线的斜率,其最小值为-1,故有-≤-a≤-1,即1≤a≤.14.答案21解析作出不等式组表示的平面区域,如图中阴影部分所示.z=|x+2y-4|=·的几何意义为阴影区域内的点到直线x+2y-4=0的距离的倍.由得B点坐标为(7,9),显然点B到直线x+2y-4=0的距离最大,易得z max=21.15.解析(1)由已知得,x,y满足的数学关系式为该二元一次不等式组所表示的平面区域为图1中的阴影部分:图1(2)设利润为z万元,则目标函数为z=2x+3y.考虑z=2x+3y,将它变形为y=-x+,这是斜率为-,随z变化的一族平行直线.为直线在y轴上的截距,当取最大值时,z的值最大.又因为x,y满足约束条件,所以由图2可知,当直线z=2x+3y经过可行域上的点M时,截距最大,即z最大.图2解方程组得点M的坐标为(20,24).所以z max=2×20+3×24=112.答:生产甲种肥料20车皮、乙种肥料24车皮时利润最大,且最大利润为112万元.。
高考数学一轮复习第七章不等式第三节二元一次不等式(组)与简单的线性规划问题课件理
(2)对于选项 A,当 m=-2 时,可行域如图①,直线 y=2x-z 的截矩可以无限小,z 不存在最大值,不符合题意,故 A 不正确;
对于选项 B,当 m=-1 时图②,直线 y=2x-z 的截矩可以无限小,z 不存在最大值,不 符合题意,故 B 不正确;
第十六页,共44页。
(3)
不等式组所表示的平面区域如图中阴影部分,当 a=0 时, 只有 4 个整点(1,1),(0,0),(1,0),(2,0);当 a=-1 时,正好增加 (-1,-1),(0,-1),(1,-1),(2,-1),(3,-1)共 5 个整点.
答案:(1)A (2)B (3)-1
第十八页,共44页。
线性规划问题是高考的重点,而线性规划问题具有代数和几何的
双重形式,多与函数、平面向量、数列、三角函数、概率、解析几何
等问题交叉渗透,自然地融合在一起,使数学问题的解答变得更加新
颖别致,且主要有以下几个命题角度:
角度一:转化为截距(形如:z=ax+by)
[典题 2]
(1)设 x,y 满足约束条件xx+-y3-y+7≤1≤0,0, 3x-y-5≥0,
解方程组xx=-3y+,5=0, 得 A 点的坐标为(3,8),代入 z=(x+ 1)2+y2,得 zmax=(3+1)2+82=80.
第二十八页,共44页。
(2)法一:作出不等式组表示的平面区域,如图中阴影部分所 示.z=|x+2y-4|=|x+2y5-4|· 5,即其几何含义为阴影区域内的 点到直线 x+2y-4=0 的距离的 5倍.
则 z=2x-y
的最大值为( )
A.10
B.8
C.3
D.2
第十九页,共44页。
x+y-2≤0, (2)(2015·新课标全国卷Ⅰ)若 x,y 满足约束条件x-2y+1≤0,
高考数学一轮复习 第七章 不等式、推理与证明7
高考数学一轮复习第七章不等式、推理与证明7.3二元一次不等式(组)与简单的线性规划问题考试要求 1.会从实际情境中抽象出二元一次不等式组.2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.3.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.知识梳理1.二元一次不等式(组)表示的平面区域不等式表示区域Ax+By+C>0 直线Ax+By+C=0某一侧所有点组成的平面区域不包括边界Ax+By+C≥0包括边界不等式组各个不等式表示的平面区域的公共部分2.线性规划中的基本概念名称意义约束条件由变量x,y组成的不等式(组)线性约束条件由x,y的一次不等式(或方程)组成的不等式组目标函数关于x,y的函数解析式,如z=2x+3y等线性目标函数关于x,y的一次解析式可行解满足线性约束条件的解(x,y)可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)二元一次不等式组所表示的平面区域是各个不等式所表示的平面区域的交集.( √ ) (2)不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方.( × ) (3)点(x 1,y 1),(x 2,y 2)在直线Ax +By +C =0同侧的充要条件是(Ax 1+By 1+C )(Ax 2+By 2+C )>0,在异侧的充要条件是(Ax 1+By 1+C )(Ax 2+By 2+C )<0.( √ )(4)目标函数z =ax +by (b ≠0)中,z 的几何意义是直线ax +by -z =0在y 轴上的截距.( × )教材改编题1.某校对高三美术生划定录取分数线,专业成绩x 不低于95分,文化课总分y 高于380分,体育成绩z 超过45分,用不等式表示就是( ) A.⎩⎪⎨⎪⎧ x ≥95,y ≥380,z >45 B.⎩⎪⎨⎪⎧ x ≥95,y >380,z ≥45 C.⎩⎪⎨⎪⎧x >95,y >380,z >45 D.⎩⎪⎨⎪⎧x ≥95,y >380,z >45答案 D解析 “不低于”即“≥”,“高于”即“>”,“超过”即“>”, ∴x ≥95,y >380,z >45.2.不等式组⎩⎪⎨⎪⎧x -y +1<0,x +y -3≥0表示的区域(阴影部分)是( )答案 D解析 将点(0,0)代入x -y +1<0不成立,则点(0,0)不在不等式x -y +1<0所表示的平面区域内, 将点(0,0)代入x +y -3≥0不成立,则点(0,0)不在不等式x +y -3≥0所表示的平面区域内, 所以表示的平面区域不包括原点,排除A ,C ;x -y +1<0不包括边界,用虚线表示,x +y -3≥0包括边界,用实线表示,故选D. 3.设变量x ,y 满足约束条件:⎩⎪⎨⎪⎧x +y -3≤0,x -y ≥0,y ≥0,则目标函数z =x +2y 的最大值为________.答案 92解析 根据不等式组作出可行域,如图中阴影部分(含边界)所示,当目标函数z =x +2y 经过点⎝⎛⎭⎫32,32时,z 取最大值为92.题型一 二元一次不等式(组)表示的平面区域 例1 (1)(2022·新乡模拟)不等式组⎩⎪⎨⎪⎧x +y ≤2,2x -y ≥1,y +1≥0表示的平面区域的面积为______.答案 3解析 画出可行域,如图中阴影部分(含边界)所示,联立⎩⎪⎨⎪⎧ x +y =2,2x -y =1,解得⎩⎪⎨⎪⎧x =1,y =1,即A (1,1), 联立⎩⎪⎨⎪⎧2x -y =1,y =-1,解得⎩⎪⎨⎪⎧x =0,y =-1,即B (0,-1), 联立⎩⎪⎨⎪⎧ x +y =2,y =-1, 解得⎩⎪⎨⎪⎧x =3,y =-1,即C (3,-1), S △ABC =12×|3-0|×|1-(-1)|=3.(2)已知不等式组⎩⎪⎨⎪⎧x -y +1≥0,2x -y -2≤0,x >m 表示的平面区域为三角形,则实数m 的取值范围为____________. 答案 (-∞,3)解析 根据题意,先作出不等式组⎩⎪⎨⎪⎧x -y +1≥0,2x -y -2≤0表示的平面区域,如图中阴影部分所示,由⎩⎪⎨⎪⎧y =2x -2,y =x +1,可得A (3,4), 要使不等式组表示的平面区域为三角形,只需m <3, 所以m 的取值范围为(-∞,3).教师备选已知点A (3,0),B (-3,2),若直线ax -y -1=0与线段AB 总有公共点,则a 的取值范围是( ) A.⎣⎡⎦⎤-1,13 B .(-∞,-1]∪⎣⎡⎭⎫13,+∞ C.⎣⎡⎦⎤-13,1 D.⎝⎛⎦⎤-∞,-13∪[1,+∞) 答案 B解析 因为直线ax -y -1=0与线段AB 总有公共点, 所以点A 和点B 不同在直线的一侧, 所以(3a -0-1)(-3a -2-1)≤0, 解得a ≤-1或a ≥13.即a 的取值范围是(-∞,-1]∪⎣⎡⎭⎫13,+∞. 思维升华 平面区域的形状问题主要有两种题型(1)确定平面区域的形状,求解时先作出满足条件的平面区域,然后判断其形状.(2)根据平面区域的形状求解参数问题,求解时通常先作出满足条件的平面区域,但要注意对参数进行必要的讨论.跟踪训练1 (2022·西安模拟)若不等式组⎩⎪⎨⎪⎧x ≥0,x +y ≥2,3x +y ≤5所表示的平面区域被直线y =kx +2分成面积相等的两个部分,则实数k 的值为( ) A .1 B .2 C .3 D .4 答案 A解析 作出不等式组对应的平面区域,如图中阴影部分(含边界)所示,B (0,5),因为直线y =kx +2过定点C (0,2), 所以C 点在可行域内,要使直线y =kx +2将可行域分成面积相等的两部分, 则直线y =kx +2必过线段AB 的中点D .由⎩⎪⎨⎪⎧x +y =2,3x +y =5,解得⎝⎛⎭⎫32,12,即A ⎝⎛⎭⎫32,12, 所以AB 的中点D ⎝⎛⎭⎫34,114,将D 的坐标代入直线y =kx +2,得114=34k +2,解得k =1.题型二 求目标函数的最值问题 命题点1 求线性目标函数的最值例2 (2021·浙江)若实数x ,y 满足约束条件⎩⎪⎨⎪⎧x +1≥0,x -y ≤0,2x +3y -1≤0,则z =x -12y 的最小值是( )A .-2B .-32C .-12 D.110答案 B解析 作出可行域如图中阴影部分(含边界)所示,作出直线y =2x 并平移,数形结合可知,当平移后的直线经过点A 时z 取得最小值.由⎩⎪⎨⎪⎧ 2x +3y -1=0,x +1=0,得⎩⎪⎨⎪⎧x =-1,y =1, 所以A (-1,1),z min =-1-12=-32.命题点2 求非线性目标函数的最值例3 (1)如果点P (x ,y )在平面区域⎩⎪⎨⎪⎧2x -y +2≥0,x -2y +1≤0,x +y -2≤0上,则y +1x -2的取值范围是( )A.⎣⎡⎦⎤-2,-13 B.⎣⎡⎦⎤-2,-32 C.⎣⎡⎦⎤-2,13 D.⎣⎡⎦⎤-13,2 答案 A解析 作出点P (x ,y )所在的平面区域,如图中阴影部分(含边界)所示,y +1x -2表示动点P 与定点Q (2,-1)连线的斜率. 联立⎩⎪⎨⎪⎧ x -2y +1=0,x +y -2=0,解得⎩⎪⎨⎪⎧x =1,y =1.于是k QE =1+11-2=-2,k QF =0+1-1-2=-13.因此-2≤y +1x -2≤-13.(2)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y ≤0,x +y -3≤0,x ≥0,则(x -1)2+y 2的最小值为( )A .1 B.45 C.255 D .2答案 B解析 结合题意作出不等式组对应的平面区域,如图中阴影部分(含边界)所示,而(x -1)2+y 2的几何意义是可行域内的点与(1,0)的距离的平方, 又(1,0)到直线2x -y =0的距离为25, 故(x -1)2+y 2的最小值为45.命题点3 求参数值或取值范围例4 已知k >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x -2≥0,x +y -3≤0,y ≥k x -3,若z =2x +y 的最小值为1,则k 等于( )A .3B .5 C.12 D.14答案 A解析 由不等式组知可行域只能是图中△ABC 内部阴影部分(含边界)所示,作直线l :2x +y =0,平移直线l ,只有当l 过点B 时,z =2x +y 取得最小值, 易知B (2,-k ), ∴4-k =1,解得k =3. 教师备选1.(2022·六安模拟)已知实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -1≥0,y -2≥0,x +y -5≤0,则z =2x +y 的最大值为( )A .4B .5C .8D .10 答案 C解析 不等式组表示的可行域,如图中阴影部分(含边界)所示,由z =2x +y ,得y =-2x +z , 作出直线y =-2x ,向上平移过点C 时,z =2x +y 取得最大值,由⎩⎪⎨⎪⎧ y -2=0,x +y -5=0,得⎩⎪⎨⎪⎧x =3,y =2,即C (3,2), 所以z =2x +y 的最大值为2×3+2=8. 2.已知实数x ,y 满足不等式⎩⎪⎨⎪⎧x -y +2≥0,2x +y -5≤0,y ≥1,则z =x 2+y 2的最大值为________.答案 10解析 根据约束条件⎩⎪⎨⎪⎧x -y +2≥0,2x +y -5≤0,y ≥1,画出可行域,如图中阴影部分(含边界)所示,z =x 2+y 2是指可行域内的动点(x ,y )与定点(0,0)之间的距离的平方, 由图可知,点P 到原点O 的距离的平方最大,又因为⎩⎪⎨⎪⎧x -y +2=0,2x +y -5=0,即⎩⎪⎨⎪⎧x =1,y =3,所以P (1,3), 故z max =12+32=10.3.设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a =________.答案 3解析 作出不等式组对应的平面区域,如图中阴影部分(含边界)所示,联立⎩⎪⎨⎪⎧x -y =-1,x +y =a ,解得⎩⎨⎧x =a -12,y =a +12,∴A ⎝⎛⎭⎫a -12,a +12.①当a =0时,A ⎝⎛⎭⎫-12,12,x =z 无最小值,不满足题意; ②当a <0时,由z =x +ay 得y =-1a x +za,要使z 最小,则直线y =-1a x +za 在y 轴上的截距最大,满足条件的最优解不存在;③当a >0时,由z =x +ay 得y =-1a x +za,由图可知,当直线过点A 时直线在y 轴上的截距最小,z 最小,此时,-1a ≥-1,即a ≥1,此时z =a -12+a ·a +12=a 2+2a -12=7.即a 2+2a -15=0, 解得a =3或a =-5(舍). 思维升华 常见的三类目标函数 (1)截距型:形如z =ax +by . (2)距离型:形如z =(x -a )2+(y -b )2. (3)斜率型:形如z =y -bx -a.跟踪训练2 (1)已知A (1,2),点B (x ,y )的坐标x ,y 满足⎩⎪⎨⎪⎧x +y ≤3,2x -y -2≤0,x ≥1,则OA →·OB →的取值范围是________. 答案 [1,5]解析 作不等式组⎩⎪⎨⎪⎧x +y ≤3,2x -y -2≤0,x ≥1的可行域,如图中阴影部分(含边界)所示.设z =OA →·OB →,则z =x +2y , 将z =x +2y 化为y =-12x +z 2,由图象可得,当直线y =-12x +z2过点A (1,2)时,z 取最大值,最大值为5.当直线y =-12x +z2过点C (1,0)时,z 取最小值,最小值为1.∴OA →·OB →的取值范围是[1,5].(2)(2022·平顶山模拟)若实数x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -5≤0,y -2≥0,x -1≥0,则z =x +2y +3x +1的最小值是______. 答案 52解析 作出可行域,如图中阴影部分(含边界)所示,z =x +2y +3x +1=1+2y +1x +1,其中k =y +1x +1表示可行域内点P (x ,y )与定点Q (-1,-1)连线的斜率,由⎩⎪⎨⎪⎧ x +y -5=0,y =2得⎩⎪⎨⎪⎧x =3,y =2,即C (3,2), 由图可得k min =k CQ =2+13+1=34, 所以z min =1+2×34=52.(3)(2022·金华模拟)已知x ,y 满足⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0,若z =y -ax 取得最大值的最优解不唯一,则a 的值为________. 答案 -1或2解析 作出可行域,如图中阴影部分(含边界)所示,作直线l :y -ax =0,在z =y -ax 中,y =ax +z ,a 是斜率,z 是纵截距,直线向上平移,z 增大,因此要使最大值的最优解不唯一,则直线l 与AB 或AC 平行, 所以a =-1或a =2.题型三 实际生活中的线性规划问题例5 (2022·新乡模拟)快递行业的高速发展极大地满足了人们的购物需求,也提供了大量的就业岗位,出现了大批快递员.某快递公司接到甲、乙两批快件,基本数据如下表:体积(立方分米/件)重量(千克/件)快递员工资(元/件)甲批快件 20108乙批快件102010快递员小马接受派送任务,小马的送货车载货的最大容积为350立方分米,最大载重量为250千克,小马一次送货可获得的最大工资额为( ) A .150元 B .170元 C .180元 D .200元答案 B解析 设一次派送甲批快件x 件、乙批快件y 件,则x ,y 满足⎩⎪⎨⎪⎧20x +10y ≤350,10x +20y ≤250,x ≥0,y ≥0,x ,y ∈N ,即⎩⎪⎨⎪⎧2x +y ≤35,x +2y ≤25,x ≥0,y ≥0,x ,y ∈N ,小马派送完毕获得的工资z =8x +10y (元), 画出可行域,如图中阴影部分(含边界)所示,由⎩⎪⎨⎪⎧2x +y =35,x +2y =25,解得x =15,y =5, 所以目标函数在点M (15,5)处取得最大值, 故z max =8×15+10×5=170(元).所以小马一次送货可获得的最大工资额为170元. 教师备选某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时,生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为( ) A .180 000元 B .216 000元 C .189 000元 D .256 000元答案 B解析 设生产产品A 为x 件,产品B 为y 件,获利z 元. ∴⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ∈N ,y ∈N ,目标函数z =2 100x +900y ,作出可行域,如图中阴影部分(含边界)所示.将z =2 100x +900y 化为y =-73x +z900,由图象可得,当直线y =-73x +z900过点M 时,在y 轴上的截距最大,即z 最大.联立⎩⎪⎨⎪⎧x +0.3y =90,5x +3y =600,得M (60,100),∴z max =2 100×60+900×100=216 000(元), ∴利润最大为216 000元.思维升华 解线性规划应用题的步骤(1)转化——设元,写出约束条件和目标函数,从而将实际问题转化为线性规划问题; (2)求解—— 解这个纯数学的线性规划问题;(3)作答——将线性规划问题的答案还原为实际问题的答案.跟踪训练3 某企业在“精准扶贫”行动中,决定帮助一贫困山区将水果运出销售.现有8辆甲型车和4辆乙型车,甲型车每次最多能运6吨且每天能运4次,乙型车每次最多能运10吨且每天能运3次,甲型车每天费用320元,乙型车每天费用504元.若需要一天内把180吨水果运输到火车站,则通过合理调配车辆,运送这批水果的费用最少为( ) A .2 400元 B .2 560元 C .2 816元 D .4 576元答案 B解析 设甲型车x 辆,乙型车y 辆,运送这批水果的费用为z 元, 则⎩⎪⎨⎪⎧0≤x ≤8,0≤y ≤4,24x +30y ≥180,x ∈N ,y ∈N目标函数z =320x +504y , 作出不等式组⎩⎪⎨⎪⎧x ∈N ,y ∈N ,0≤x ≤8,0≤y ≤4,24x +30y ≥180所表示的平面区域,如图所示的阴影部分(含边界).作直线320x +504y =0,并平移,结合实际情况分析可得当直线过整点(8,0)时,z 取得最小值, 即z min =8×320+0×504=2 560(元).课时精练1.将不等式组⎩⎪⎨⎪⎧x -2y +2≥0,x +y <0表示的平面区域记为F ,则属于F 的点是( )A .(1,1)B .(-1,1)C .(-1,-1)D .(1,-1)答案 C解析 将点(1,1)代入方程组得⎩⎪⎨⎪⎧1≥0,2>0,故不在区域F 内,将点(-1,1)代入方程组得⎩⎪⎨⎪⎧-1<0,0=0,故不在区域F 内,将点(-1,-1)代入方程组得⎩⎪⎨⎪⎧3≥0,-2<0,故在区域F 内,将点(1,-1)代入方程组得⎩⎪⎨⎪⎧5≥0,0=0,故不在区域F 内.2.(2022·合肥质检)不等式组⎩⎪⎨⎪⎧x -3≤0,x +y ≥0,x -y ≥0围成的封闭图形的面积是( )A .12B .6C .9D .15 答案 C解析 作出可行域,如图中阴影部分(含边界)所示,由⎩⎪⎨⎪⎧ x -3=0,x -y =0得A (3,3), 由⎩⎪⎨⎪⎧x -3=0,x +y =0得B (3,-3), 所以可行域的面积为12×3×6=9.3.(2021·全国乙卷)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥4,x -y ≤2,y ≤3,则z =3x +y 的最小值为( )A .18B .10C .6D .4 答案 C解析 方法一 (数形结合法)作出可行域,如图中阴影部分(含边界)所示,作出直线y =-3x ,并平移,数形结合可知,当平移后的直线经过点A 时,直线y =-3x +z 在y 轴上的截距最小,即z 最小.解方程组⎩⎪⎨⎪⎧ x +y =4,y =3得⎩⎪⎨⎪⎧x =1,y =3,即点A 的坐标为(1,3).从而z =3x +y 的最小值为3×1+3=6.方法二 (代点比较法)画图易知,题设不等式组对应的可行域是封闭的三角形区域,所以只需要比较三角形区域三个顶点处的z 的大小即可.易知直线x +y =4与y =3的交点坐标为(1,3),直线x +y =4与x -y =2的交点坐标为(3,1),直线x -y =2与y =3的交点坐标为(5,3),将这三个顶点的坐标分别代入z =3x +y 可得z 的值分别为6,10,18,所以比较可知z min =6.方法三 (巧用不等式的性质)因为x +y ≥4,所以3x +3y ≥12. ① 因为y ≤3,所以-2y ≥-6.②于是,由①+②可得3x +3y +(-2y )≥12+(-6),即3x +y ≥6,当且仅当x +y =4且y =3,即x =1,y =3时不等式取等号,易知此时不等式x -y ≤2成立. 4.不等式(x -2y +1)(x +y -3)≤0在直角坐标平面内表示的区域(用阴影部分表示),应是下列图形中的( )答案 C解析 (x -2y +1)(x +y -3)≤0等价于⎩⎪⎨⎪⎧ x -2y +1≥0,x +y -3≤0或⎩⎪⎨⎪⎧x -2y +1≤0,x +y -3≥0,即不等式表示的区域是同时在两直线的上方部分或同时在两直线的下方部分,只有选项C 符合题意.5.(2022·长沙模拟)若x ,y 满足⎩⎪⎨⎪⎧x +y ≥0,x -y ≥0,x ≤1,则z =2x -y 的取值范围是( )A .[0,3]B .[1,3]C .[-3,0]D .[-3,-1]答案 A解析 作出⎩⎪⎨⎪⎧x +y ≥0,x -y ≥0,x ≤1表示的可行域,如图中阴影部分(含边界)所示,联立⎩⎪⎨⎪⎧ x =1,x +y =0,解得⎩⎪⎨⎪⎧x =1,y =-1,即B (1,-1),化目标函数z =2x -y 为y =2x -z ,由图可知,当直线y =2x -z 过原点时,直线在y 轴上的截距最大,z 有最小值,为2×0-0=0;当直线y =2x -z 过点B 时,直线在y 轴上的截距最小,z 有最大值,为2×1-(-1)=3, ∴z =2x -y 的取值范围是[0,3].6.一小商贩准备用50元钱在某批发市场购买甲、乙两种小商品,甲每件进价4元,乙每件进价7元,甲商品每卖出去1件可赚1元,乙商品每卖出去1件可赚1.8元.该商贩若想获取最大收益,则购买甲、乙两种商品的件数应分别为( ) A .甲7件,乙3件 B .甲9件,乙2件 C .甲4件,乙5件 D .甲2件,乙6件答案 D解析 设购买甲、乙两种商品的件数应分别x ,y 件,利润为z 元,由题意⎩⎪⎨⎪⎧4x +7y ≤50,x ,y ∈N ,z =x +1.8y ,画出可行域,如图中阴影部分(含边界)所示,结合实际情况,显然当y =-59x +59z 经过整点A (2,6)时,z 最大.7.设x ,y 满足约束条件⎩⎪⎨⎪⎧x -6≤0,x +y -1≥0,2x -y +1≥0,则z =y -1x +1的最大值是( )A.127 B.12 C .1 D .2答案 A解析 作出约束条件表示的可行域,如图中阴影部分(含边界)所示,z =y -1x +1表示可行域中的点(x ,y )与点P (-1,1)的连线的斜率, 由图可知z =y -1x +1的最大值在A 点取得,由⎩⎪⎨⎪⎧x -6=0,2x -y +1=0, 得A (6,13), 所以z max =13-16+1=127.8.在某校冬季长跑活动中,学校要给获得一、二等奖的学生购买奖品,要求花费总额不得超过200元.已知一等奖和二等奖奖品的单价分别为20元、10元,一等奖人数与二等奖人数的比值不得高于13,且获得一等奖的人数不能少于2人,那么下列说法中错误的是( )A .最多可以购买4份一等奖奖品B .最多可以购买16份二等奖奖品C .购买奖品至少要花费100元D .共有20种不同的购买奖品方案 答案 D解析 设获得一等奖和二等奖的人数分别为x ,y (x ,y ∈N *),由题意得⎩⎪⎨⎪⎧20x +10y ≤200,3x ≤y ,x ≥2,作出该不等式组对应的平面区域,如图中阴影部分(含边界)所示,由图可知,2≤x ≤4,6≤y ≤16,故x 可取2,3,4,故最多可以购买4份一等奖奖品,最多可以购买16份二等奖奖品, 购买奖品至少要花费2×20+6×10=100(元),故A ,B ,C 正确; 当x =2时,y 可取6,7,8,9,10,11,12,13,14,15,16,共有11种, 当x =3时,y 可取9,10,11,12,13,14,共6种, 当x =4时,y 可取12,共1种, 故共有11+6+1=18(种),故D 不正确.9.已知点(1,1)在直线x +2y +b =0的下方,则实数b 的取值范围是________. 答案 (-∞,-3)解析 因为点(1,1)在直线x +2y +b =0的下方,所以1+2+b <0,解得b <-3. 10.已知实数x ,y 满足⎩⎪⎨⎪⎧x -y ≤0,x +y -2≥0,x -3y +6≥0,则2y4x 的最小值为________. 答案 18解析 画出可行域,如图中阴影部分(含边界)所示,2y 4x =2y -2x,若使2y -2x 最小,需y -2x 最小. 令z =y -2x ,则y =2x +z , z 表示直线在y 轴上的截距,根据平移知,当x =3,y =3时,z =y -2x 有最小值为-3, 则2y 4x 的最小值为2-3=18. 11.已知实数x ,y 满足⎩⎪⎨⎪⎧2x -y +4≥0,x +y -1≥0,x ≤1,若直线y =k (x -1)将可行域分成面积相等的两部分,则实数k 的值为________. 答案 -4解析 画出可行域,如图中阴影部分(含边界)所示,其中A (1,6),B (1,0),C (-1,2).由于直线y =k (x -1)过定点B (1,0)且将可行域分成面积相等的两部分,所以当直线y =k (x -1)过线段AC 的中点D (0,4)时,△ABD 和△BCD 的面积相等, 此时k =k BD =4-00-1=-4.12.现某小型服装厂锁边车间有锁边工10名,杂工15名,有7台电脑机,每台电脑机每天可给12件衣服锁边;有5台普通机,每台普通机每天可给10件衣服锁边.如果一天至少有100件衣服需要锁边,用电脑机每台需配锁边工1名,杂工2名,用普通机每台需要配锁边工1名,杂工1名,用电脑机给一件衣服锁边可获利8元,用普通机给一件衣服锁边可获利6元,则该服装厂锁边车间一天最多可获利________元. 答案 780解析 设每天安排电脑机和普通机各x ,y 台, 则一天可获利z =12×8x +10×6y =96x +60y , 线性约束条件为⎩⎪⎨⎪⎧x +y ≤10,2x +y ≤15,12x +10y ≥100,0<x ≤7,0<y ≤5,画出可行域(图略),可知当目标函数经过(5,5)时,z max =780.13.(2022·郑州模拟)已知M (x ,y )是不等式组⎩⎪⎨⎪⎧x -y -2≤0,x +y +2≥0,y ≤1所表示的平面区域内的任意一点,且M (x ,y )满足x 2+y 2≤a ,则a 的最小值为( ) A .3 B .4 C .9 D .10 答案 D解析 作出不等式组⎩⎪⎨⎪⎧x -y -2≤0,x +y +2≥0,y ≤1所表示的可行域,如图中的阴影部分(含边界)所示,联立⎩⎪⎨⎪⎧x +y +2=0,y =1,可得⎩⎪⎨⎪⎧x =-3,y =1,即点A (-3,1),同理可得B (3,1),C (0,-2), 且OA =OB =10,OC =2,x 2+y 2的几何意义为原点O 与可行域内的点M (x ,y )的距离的平方,由图可知,当点M 与点A 或点B 重合时,OM 取最大值,故x 2+y 2的最大值为10, ∴a ≥10,即a 的最小值为10.14.已知实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +y -2≤0,x ≥a ,x ≤y ,且z =2x -y 的最大值是最小值的2倍,则a 等于( ) A.34 B.56 C.65 D.43 答案 B解析 根据题中所给的约束条件,画出相应的可行域,如图中阴影部分(含边界)所示,作出直线l :y =2x ,平移直线l ,由图可知,当直线经过点D 时,直线在y 轴上的截距最小, 此时z =2x -y 取得最大值,由⎩⎪⎨⎪⎧x +y -2=0,x =y ,可得D (1,1), 所以z =2x -y 的最大值是1;当直线经过点B 时,直线在y 轴上的截距最大, 此时z =2x -y 取得最小值,由⎩⎪⎨⎪⎧x +y -2=0,x =a ,可得B (a ,2-a ), 所以z =2x -y 的最小值是3a -2, 因为z =2x -y 的最大值是最小值的2倍, 所以6a -4=1,解得a =56.15.实数对(x ,y )满足不等式组⎩⎪⎨⎪⎧x -y -2≤0,x +2y -5≥0,y -2≤0,且目标函数z =kx -y 当且仅当x =3,y =1时取最大值,则k 的取值范围为( ) A.⎝⎛⎭⎫-12,+∞ B.⎣⎡⎭⎫-12,1 C.⎝⎛⎭⎫-12,1 D .(-∞,1]答案 C解析 作出可行域,如图中阴影部分(含边界)所示,其中A (1,2),B (4,2),C (3,1),由z =kx -y ,将直线l :y =kx -z 进行平移可得直线在y 轴上的截距为-z , 因此直线在y 轴上截距最小时,目标函数z 达到最大值. 因为当且仅当l 经过点C (3,1)时,目标函数z 达到最大值, 所以直线l 的斜率应介于直线AC 的斜率与直线BC 的斜率之间, k AC =1-23-1=-12,k BC =2-14-3=1,所以k 的取值范围是⎝⎛⎭⎫-12,1. 16.(2022·宜春模拟)设实数x ,y 满足约束条件⎩⎪⎨⎪⎧2x +y -6≥0,x +2y -6≤0,y ≥0,则2y 2-xy x 2的最小值是________. 答案 -18解析 作出不等式组对应的平面区域如图中阴影部分(含边界)所示,k =yx 的几何意义为可行域内的点到原点的斜率, 由图象可知,OA 的斜率最大,由⎩⎪⎨⎪⎧2x +y -6=0,x +2y -6=0得A (2,2), ∴0≤k ≤1,∴2y 2-xy x 2=2⎝⎛⎭⎫y x 2-y x=2k 2-k =2⎝⎛⎭⎫k -142-18≥-18⎝⎛⎭⎫当且仅当k =14时,取到最小值.。
高考数学复习讲义:二元一次不等式(组) 与简单的线性规划问题
返回
[解析] (1)作出满足约束条 件的可行域如图中阴影部分所 示.由 z=3x+2y,得 y=-32x+2z.
作直线 l0:y=-32x. 平移直线 l0,当直线 y=-32x+2z过点(2,0)时, z 取最大值,zmax=3×2+2×0=6.
返回
(2)
由
条
件
得
x+1≤y, y≤2x,
即
x-y+1≤0, 2x-y≥0,
返回
[方法技巧]
解决求平面区域面积问题的方法步骤 (1)画出不等式组表示的平面区域; (2)判断平面区域的形状,并求得直线的交点坐标、图形 的边长、相关线段的长(三角形的高、四边形的高)等,若为规 则图形则利用图形的面积公式求解;若为不规则图形则利用 割补法求解. [提醒] 求面积时应考虑圆、平行四边形等图形的对称性.
x<2y 选项 B 所表示的区域,故选 B. 答案:B
返回
3x+y-6≥0, 2.(2019·河南豫北联考)关于 x,y 的不等式组x-y-2≤0,
x+y-4≤0
表示的平面区域的面积为
()
A.3
B.52
C.2
D.32
解析:平面区域为一个直角三角形 ABC,其中 A(3,1),
B(2,0),C(1,3),所以面积为12|AB|·|AC|=12× 2× 8=2,
-dc,-ba连线的斜率的ac倍的取值范围、最值等
返回
对形如 z=|Ax+By+C|型的目标函数,可先 点到直线 变形为 z= A2+B2·|Ax+A2B+y+B2C|的形式,将 距离型 问题化为求可行域内的点(x,y)到直线 Ax+
By+C=0 的距离的 A2+B2倍的最值
返回
考法三 线性规划中的参数问题
高中 二元一次不等式(组)与简单的线性规划 知识点+例题 全面
辅导讲义――二元一次不等式(组)与简单的线性规划[例4] 若点A (1,1),B (2,-1)位于直线0=-+a y x 的两侧,则a 的取值范围是___________.)2,1([巩固] 若点A (1,a )与原点在直线l :01=-+y x 的同侧,则实数a 的取值范围是_________.)0,(-∞[例5] 如图所示的平面区域(阴影部分)用不等式表示为_________________.033<--x y[巩固] 能表示图中阴影区域的二元一次不等式组是__________________.⎪⎩⎪⎨⎧-≥≤+≤11y y x x y[例6] 画出不等式组⎪⎩⎪⎨⎧≥>≤-+02042y y x y x 所表示的平面区域.[巩固] 画出不等式0)4)(12(<--++yxyx表示的平面区域.1.基本概念名称意义约束条件由变量x,y组成的不等式组线性约束条件由x,y的一次不等式(或方程)组成的不等式组目标函数关于x,y的解析式,如:22yxz+=线性目标函数关于x,y的一次解析式,如yxz+=2可行解满足线性约束条件的解(x,y)可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题求线性目标函数在线性约束条件下的最值问题注意:(1)对于实际背景的线性规划问题,可行域通常位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的定点;(2)对于线性规划问题,结果可能有唯一最优解,或是有无穷最优解,或是无最优解.2.应用利用线性规划求最值,一般用图解法求解,其步骤是(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值.[例1] 设yxz-=2,其中x,y满足⎪⎩⎪⎨⎧≤≥-+≥+-221xyxyx,则z的取值范围是_________________.]4,21[-知识模块2简单的线性规划精典例题透析[例4] 不等式组⎪⎩⎪⎨⎧≤--≥++≤020220x y y x x 表示的平面区域的面积为__________.3[巩固1] 若不等式组⎪⎩⎪⎨⎧<++>>a y x x y x 11所确定的平面区域的面积为0,则实数a 的取值范围是____________.]3,(-∞[巩固2] 在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≤≥+-≥+a x y x y x 040(a 为常数)表示的平面区域的面积是9,则实数._____=a 1[巩固3] 在平面直角坐标系中,若不等式组⎪⎪⎨⎧≤-≥-+0101x y x (a 为常数)所表示的平面区域内的面积等于2,则.___=a[例5] 已知x ,y 满足约束条件⎪⎩⎪⎨⎧≤+≥-+≥-18360202y x y x y x ,且y ax z +=取得最大值的最优解恰为)3,23(,则a 的取值范围是______.(-2,2)[巩固] 若直线4=+by ax 与不等式组⎪⎩⎪⎨⎧≥++≤-+≥+-0420420852y x y x y x 表示的平面区域无公共点,则b a +的取值范围是________.(-3,3)[例6] 某公司计划招聘男职工x 名,女职工y 名,要求女职工人数不能多于男职工,女职工的人数不得少于男职工的31,最少10名男职工,则该公司最少能招聘多少名职工.CO的排放量b及每万吨铁矿石的价格c如下表:[巩固] 铁矿石A和B的含铁率a,冶铁每万吨铁矿石的2a b(万吨)c(万吨)A50% 1 3B70% 5.0 6CO的排放量不超过2(万吨),求购买铁矿石的最少费用. 某冶铁厂至少要生产9.1(万吨)铁,若要求2知识模块3经典题型[例](1)若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是________.(2)如图阴影部分表示的区域可用二元一次不等式组表示为_____________.答案 (1) 73 (2)⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0解析 (1)不等式组表示的平面区域如图所示.由于直线y =kx +43过定点⎝⎛⎭⎫0,43.因此只有直线过AB 中点时,直线y =kx +43能平分平面区域. 因为A (1,1),B (0,4),所以AB 中点D ⎝⎛⎭⎫12,52.当y =kx +43过点⎝⎛⎭⎫12,52时,52=k 2+43,所以k =73. (2)两直线方程分别为x -2y +2=0与x +y -1=0. 由(0,0)点在直线x -2y +2=0右下方可知x -2y +2≥0, 又(0,0)点在直线x +y -1=0左下方可知x +y -1≥0,即⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0为所表示的可行域. [巩固](1)在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0,ax -y +1≥0(a 为常数)所表示的平面区域的面积等于4,则a=______.(2)如图所示的平面区域(阴影部分)满足不等式_______________.答案 (1) 7 (2)x +y -1>0解析 (1)直线ax -y +1=0过点(0,1),作出可行域如图知可行域由点A (1,0),B (1,a +1),C (0,1)组成的三角形的内部(包括边界), 且a >-1,则其面积等于12×(a +1)×1=4,解得a =7.(2)边界对应直线方程为x +y -1=0,且为虚线,区域中不含(0,0),由以上可知平面区域(阴影部分)满足x +y -1>0.题型二:求线性目标函数的最值(2)(2013·课标全国Ⅱ)已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =2x +y 的最小值为1,则a =________.答案 (1) 6 (2)12解析 (1)画出可行域,如图阴影部分所示. 由z =2x +y ,得y =-2x +z .由⎩⎪⎨⎪⎧ y =x ,y =-1,得⎩⎪⎨⎪⎧x =-1,y =-1, ∴A (-1,-1).由⎩⎪⎨⎪⎧ x +y =1,y =-1,得⎩⎪⎨⎪⎧x =2,y =-1,∴B (2,-1).当直线y =-2x +z 经过点A 时,z min =2×(-1)-1=-3=n .当直线y =-2x +z 经过点B 时,z max =2×2-1=3=m ,故m -n =6.(2)作出不等式组表示的可行域,如图(阴影部分). 易知直线z =2x +y 过交点A 时,z 取最小值,由⎩⎪⎨⎪⎧x =1,y =a (x -3), 得⎩⎪⎨⎪⎧x =1,y =-2a ,∴z min =2-2a =1, 解得a =12.[巩固](1)已知平面直角坐标系xOy 上的区域D 由不等式组⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y给定.若M (x ,y )为D 上的动点,点A的坐标为(2,1),则z =OM →·OA →的最大值为________.(2)(2014·北京)若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为_______.答案 (1) 4 (2) -12解析 (1)由线性约束条件⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y画出可行域如图阴影部分所示,目标函数z =OM →·OA →=2x +y ,将其化为y =-2x +z ,结合图形可知,目标函数的图象过点(2,2)时,z 最大,将点(2,2)代入z =2x +y 得z 的最大值为4.(2)作出可行域,如图中阴影部分所示,直线kx -y +2=0与x 轴的交点为A (-2k,0).∵z =y -x 的最小值为-4,∴2k =-4,解得k =-12,故选D.题型三:线性规划的实际应用[例] 某客运公司用A 、B 两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A 、B 两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1 600元/辆和2 400元/辆,公司拟组建一个不超过21辆车的客运车队,并要求B 型车不多于A 型车7辆.若每天运送人数不少于900,且使公司从甲地去乙地的营运成本最小,那么应配备A 型车、B 型车各多少辆?解 设A 型、B 型车辆分别为x 、y 辆,相应营运成本为z 元,则z =1 600x +2 400y .由题意,得x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤21,y ≤x +7,36x +60y ≥900,x ,y ≥0,x ,y ∈N .作可行域如图所示,可行域的三个顶点坐标分别为P (5,12),Q (7,14),R (15,6).由图可知,当直线z =1 600x +2 400y 经过可行域的点P 时,直线z =1 600x +2 400y 在y 轴上的截距z 2 400最小,即z 取得最小值.故应配备A 型车5辆、B 型车12辆,可以满足公司从甲地去乙地的营运成本最小. [巩固] 某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨、B 原料2吨;生产每吨乙产品要用A 原料1吨、B 原料3吨.销售每吨甲产品可获得利润5万元、每吨乙产品可获得利润3万元,该企业在一个生产周期内消耗A 原料不超过13吨、B 原料不超过18吨,那么该企业可获得的最大利润是________万元.答案 27解析 设生产甲产品x 吨、乙产品y 吨, 则获得的利润为z =5x +3y .由题意得⎩⎪⎨⎪⎧x ≥0,y ≥0,3x +y ≤13,2x +3y ≤18,可行域如图阴影所示.由图可知当x 、y 在A 点取值时,z 取得最大值,此时x =3,y =4,z =5×3+3×4=27(万元).1.在直角坐标平面内,不等式组⎩⎪⎨⎪⎧y ≤x +1,y ≥0,0≤x ≤t所表示的平面区域的面积为32,则t 的值为_______.答案 1夯实基础训练解析 不等式组⎩⎪⎨⎪⎧y ≤x +1,y ≥0,0≤x ≤t所表示的平面区域如图中阴影部分所示.由⎩⎪⎨⎪⎧y =x +1,x =t ,解得交点B (t ,t +1),在y =x +1中,令x =0得y =1,即直线y =x +1与y 轴的交点为C (0,1),由平面区域的面积S =(1+t +1)×t 2=32,得t 2+2t -3=0,解得t =1或t =-3(不合题意,舍去),故选C. 2.x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为____________.答案 2或-1解析 如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距, 故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2; 当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1. 3.(2014·课标全国Ⅱ)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z =2x -y 的最大值为_______.答案 8解析 画出可行域如图所示.由z =2x -y ,得y =2x -z ,欲求z 的最大值,可将直线y =2x 向下平移, 当经过区域内的点,且满足在y 轴上的截距-z 最小时, 即得z 的最大值,如图,可知当过点A 时z 最大,由⎩⎪⎨⎪⎧ x +y -7=0,x -3y +1=0,得⎩⎪⎨⎪⎧x =5,y =2,即A (5,2),则z max =2×5-2=8. 4.在平面直角坐标系中,不等式组⎩⎪⎨⎪⎧x +y -2≥0,x -y +2≥0,x ≤2表示的平面区域的面积为________.答案 4解析 作出可行域为△ABC (如图),则S △ABC =4.5.设z =2x +y ,其中x ,y 满足⎩⎪⎨⎪⎧x +y ≥0,x -y ≤0,0≤y ≤k ,若z 的最大值为6,则k 的值为________,z 的最小值为________.答案 2 -2解析 在坐标平面内画出题中的不等式组表示的平面区域及直线2x +y =z ,结合图形分析可知,要使z =2x +y 的最大值是6,直线y =k 必过直线2x +y =6与x -y =0的交点,即必过点(2,2),于是有k =2;平移直线2x +y =6,当平移到经过该平面区域内的点(-2,2)时,相应直线在y 轴上的截距达到最小,此时z =2x +y 取得最小值,最小值是z =2×(-2)+2=-2.6.在平面直角坐标系中画出不等式组⎩⎪⎨⎪⎧|x |≤|y |,|x |<1所表示的平面区域.解析 |x |=|y |把平面分成四部分,|x |≤|y |表示含y 轴的两个区域; |x |<1表示x =±1所夹含y 轴的带状区域.7.若直线x +my +m =0与以P (-1,-1)、Q (2,3)为端点的线段不相交,求m 的取值范围.解 直线x +my +m =0将坐标平面划分成两块区域,线段PQ 与直线x +my +m =0不相交,则点P 、Q 在同一区域内,于是,⎩⎪⎨⎪⎧ -1-m +m >0,2+3m +m >0,或⎩⎪⎨⎪⎧-1-m +m <0,2+3m +m <0,所以,m 的取值范围是m <-12.8.某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)试用每天生产的卫兵个数x 与骑兵个数y 表示每天的利润ω(元); (2)怎样分配生产任务才能使每天的利润最大,最大利润是多少? 解 (1)依题意每天生产的伞兵个数为100-x -y , 所以利润ω=5x +6y +3(100-x -y )=2x +3y +300. (2)约束条件为⎩⎪⎨⎪⎧5x +7y +4(100-x -y )≤600,100-x -y ≥0,x ≥0,y ≥0,x 、y ∈N .整理得⎩⎪⎨⎪⎧x +3y ≤200,x +y ≤100,x ≥0,y ≥0,x 、y ∈N .目标函数为ω=2x +3y +300,作出可行域,如图所示,作初始直线l 0:2x +3y =0,平移l 0,当l 0经过点A 时,ω有最大值,由⎩⎪⎨⎪⎧ x +3y =200,x +y =100,得⎩⎪⎨⎪⎧x =50,y =50.∴最优解为A (50,50),此时ωmax =550元.故每天生产卫兵50个,骑兵50个,伞兵0个时利润最大,且最大利润为550元.9.设变量x 、y 满足约束条件⎩⎪⎨⎪⎧x +y ≤a ,x +y ≥8,x ≥6,且不等式x +2y ≤14恒成立,则实数a 的取值范围是__________.答案 [8,10]解析 不等式组表示的平面区域如图中阴影部分所示,显然a ≥8,否则可行域无意义. 由图可知x +2y 在点(6,a -6)处取得最大值2a -6,由2a -6≤14得,a ≤10.10.(2014·课标全国Ⅰ)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a=________.答案 3解析 当a =-5时,作出不等式组表示的可行域,如图(1)(阴影部分).由⎩⎪⎨⎪⎧ x -y =-1,x +y =-5得交点A (-3,-2), 则目标函数z =x -5y 过A 点时取得最大值.z max =-3-5×(-2)=7,不满足题意,排除A ,C 选项. 当a =3时,作出不等式组表示的可行域,如图(2)(阴影部分). 由⎩⎪⎨⎪⎧x -y =-1,x +y =3得交点B (1,2),则目标函数z =x +3y 过B 点时取得最小值. z min =1+3×2=7,满足题意.11.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -3≤0,x +3y -3≥0,y -1≤0,若目标函数z =ax +y (其中a >0)仅在点(3,0)处取得最大值,则a 的取值范围是__________.答案 ⎝⎛⎭⎫12,+∞ 解析 画出x 、y 满足约束条件的可行域如图所示,要使目标函数z =ax +y 仅在点(3,0)处取得最大值,则直线y =-ax +z 的斜率应小于直线x +2y -3=0的斜率,即-a <-12,∴a >12.12.若函数y =log 2x 的图象上存在点(x ,y ),满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,2x -y +2≥0,y ≥m ,则实数m 的最大值为________.答案 1解析 如图,作出函数的可行域,当函数y =log 2x 过点(2,1)时,实数m 有最大值1.能力提升训练13.一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐4吨,硝酸盐18吨;生产1车皮乙种肥料需要的主要原料是磷酸盐1吨,硝酸盐15吨.现库存磷酸盐10吨,硝酸盐66吨,在此基础上生产这两种混合肥料.如果生产1车皮甲种肥料产生的利润为10 000元,生产1车皮乙种肥料产生的利润为5 000元,那么适当安排生产,可产生的最大利润是________元.答案 30 000解析 设生产甲种肥料x 车皮,生产乙种肥料y 车皮, 则z =10 000x +5 000y , ⎩⎪⎨⎪⎧4x +y ≤10,18x +15y ≤66,x ≥0,y ≥0,画出图形可知,目标函数在D (2,2)处有最大值, 且z max =10 000×2+5 000×2=30 000(元).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§7.2 二元一次不等式(组)与简单的线性规划问题考纲展示► 1.会从实际情境中抽象出二元一次不等式组.2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组. 3.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.考点1 二元一次不等式(组)表示平面区域二元一次不等式表示的平面区域(1)一般地,在平面直角坐标系中,二元一次不等式Ax +By +C >0表示直线Ax +By +C =0某一侧的所有点组成的平面区域(半平面)________边界直线,把边界直线画成虚线;不等式Ax +By +C ≥0所表示的平面区域(半平面)________边界直线,把边界直线画成实线.(2)对于直线Ax +By +C =0同一侧的所有点(x ,y ),使得Ax +By +C 的值符号相同,也就是位于同一半平面的点,如果其坐标满足Ax +By +C >0,则位于另一个半平面内的点,其坐标满足________.(3)可在直线Ax +By +C =0的同一侧任取一点,一般取特殊点(x 0,y 0),从Ax 0+By 0+C 的________就可以判断Ax +By +C >0(或Ax +By +C <0)所表示的区域.(4)由几个不等式组成的不等式组所表示的平面区域,是各个不等式所表示的平面区域的________.答案:(1)不包括 包括 (2)Ax +By +C <0 (3)符号 (4)公共部分(1)[教材习题改编]不等式组⎩⎪⎨⎪⎧x -3y +6<0,x -y +2≥0表示的平面区域是( )A BC D答案:C(2)[教材习题改编]已知x ,y 满足⎩⎪⎨⎪⎧-x +y -2≥0,x +y -4≤0,x -3y +3≤0,则z =-3x +y 的最小值为________.答案:0不等式表示平面区域的易错点:方程Ax +By +C =0中Ax +By +C 的符号与不等式表示的平面区域的关系.(1)不等式2x -y -3>0表示的平面区域是________. 答案:直线2x -y -3=0的右下方(不包括边界)解析:将原点(0,0)代入2x -y -3,得2×0-0-3=-3<0,所以不等式2x -y -3>0表示直线2x -y -3=0的右下方(不包括边界),如图所示.(2)不等式(x -2y +1)(x +y -3)≤0表示的平面区域是________.答案:直线x -2y +1=0与x +y -3=0之间的上、下两部分(包括边界) 解析:原不等式等价于⎩⎪⎨⎪⎧x -2y +1≥0,x +y -3≤0或⎩⎪⎨⎪⎧x -2y +1≤0,x +y -3≥0.在平面直角坐标系中作出不等式组⎩⎪⎨⎪⎧x -2y +1≥0,x +y -3≤0和⎩⎪⎨⎪⎧x -2y +1≤0,x +y -3≥0,所表示的平面区域.故不等式(x -2y +1)(x +y -3)≤0表示的平面区域如图中的阴影部分所示.[典题1] (1)[2017·山东青岛月考]若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y ≥-1,x +y ≥1,3x -y ≤3,则该约束条件所围成的平面区域的面积是( )A .3 B.52C .2D .2 2[答案] C[解析]因为直线x -y =-1与x +y =1互相垂直,所以如图所示的可行域为直角三角形, 易得A (0,1),B (1,0),C (2,3), 故|AB |=2,|AC |=22, 其面积为12×|AB |×|AC |=2.(2)若不等式组⎩⎪⎨⎪⎧x +y -2≤0,x +2y -2≥0,x -y +2m ≥0表示的平面区域为三角形,且其面积等于43,则m 的值为( )A .-3B .1 C.43 D .3[答案] B[解析] 如图,要使不等式组表示的平面区域为三角形,则-2m <2,则m >-1.由⎩⎪⎨⎪⎧x +y -2=0,x -y +2m =0,解得⎩⎪⎨⎪⎧x =1-m ,y =1+m ,即A (1-m,1+m ).由⎩⎪⎨⎪⎧x +2y -2=0,x -y +2m =0,解得⎩⎪⎨⎪⎧x =23-43m ,y =23+23m ,即B ⎝ ⎛⎭⎪⎫23-43m ,23+23m ,所围成的区域为△ABC ,则S △ABC =S △ADC -S △BDC =12(2+2m )(1+m )-12(2+2m )·23(1+m ) =13(1+m )2=43, 解得m =-3(舍去)或m =1.故选B.[点石成金] 确定二元一次不等式(组)表示的平面区域的方法(1)“直线定界,特殊点定域”,即先作直线,再取特殊点并代入不等式(组).若满足不等式(组),则不等式(组)表示的平面区域为直线与特殊点同侧的那部分区域;否则就对应与特殊点异侧的平面区域.(2)当不等式中带等号时,边界应画成实线;不带等号时,边界应画成虚线,特殊点常取原点.考点2 求目标函数的最值(1)[教材习题改编]已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤2,x +y ≥1,x -y ≤1,则z =3x +y 的最大值为________.答案:11解析:由约束条件作出可行域,如图中阴影部分所示,解方程组⎩⎪⎨⎪⎧x -y =1,y =2,得⎩⎪⎨⎪⎧x =3,y =2,即A (3,2).当直线y =-3x +z 经过点(3,2)时,z 取得最大值,即z max =3×3+2=11.(2)[教材习题改编]投资生产A 产品时,每生产100吨需要资金200万元,需场地200平方米;投资生产B 产品时,每生产100吨需要资金300万元,需场地100平方米.现某单位可使用资金1 400万元,场地900平方米,则上述要求可用不等式组表示为________.(用x ,y 分别表示生产A ,B 产品的吨数)答案:⎩⎪⎨⎪⎧2x +3y ≤1 400,2x +y ≤900,x ≥0,y ≥0解析:生产A 产品x 吨,生产B 产品y 吨, 则有⎩⎪⎨⎪⎧2x +3y ≤1 400,2x +y ≤900,x ≥0,y ≥0.[考情聚焦] 线性规划问题是高考的重点,而线性规划问题具有代数和几何的双重形式,多与函数、平面向量、数列、三角、概率、解析几何等问题交叉渗透,自然地融合在一起,使数学问题的解答变得更加新颖别致.主要有以下几个命题角度: 角度一转化为截距(形如z =ax +by )[典题2] [2017·山东荣成六中高三月考]若变量x ,y 满足条件⎩⎪⎨⎪⎧x +2y ≥1,x +4y ≤3,y ≥0,则z=x +y 的最大值是( )A .3B .2C .1D .0[答案] A[解析] 可行域为一个三角形ABC 及其内部,其中A (1,0),B (3,0),C (-1,1),所以直线z =x +y 过点B 时取最大值3,故选A.角度二转化为距离[形如z =(x -a )2+(y -b )2或z =|Ax +By +c |][典题3] [2017·河南开封模拟]设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≤1,x +y ≥2,y ≤2,则目标函数z =x 2+y 2的取值范围为( )A .[2,8]B .[4,13]C .[2,13] D.⎣⎢⎡⎦⎥⎤52,13[答案] C[解析] 作出可行域,如图中阴影部分所示,将目标函数看作是可行域内的点到原点的距离的平方, 从而可得z min =|OA |2=⎝⎛⎭⎪⎫|0+0-2|12+122=2, z max =|OB |2=32+22=13.故z 的取值范围为[2,13]. 角度三转化为斜率⎣⎢⎡⎦⎥⎤形如z =ay +bcx +d ac ≠0 [典题4] [2015·新课标全国卷Ⅰ]若x ,y 满足约束条件⎩⎪⎨⎪⎧x -1≥0,x -y ≤0,x +y -4≤0,则yx的最大值为________.[答案] 3[解析]画出可行域如图中阴影部分所示,∵ y x表示过点(x ,y )与原点(0,0)的直线的斜率, ∴ 点(x ,y )在点A 处时y x最大.由⎩⎪⎨⎪⎧x =1,x +y -4=0,得⎩⎪⎨⎪⎧x =1,y =3.∴ A (1,3).∴ yx的最大值为3. 角度四线性规划中的参数问题[典题5] (1)[2015·山东卷]已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤2,y ≥0.若z =ax +y 的最大值为4,则a =( )A .3B .2C .-2D .-3[答案] B[解析] 画出不等式组表示的平面区域如图中阴影部分所示,若z =ax +y 的最大值为4,则最优解为x =1,y =1或x =2,y =0,经检验知,x =2,y =0符合题意,∴2a +0=4,此时a =2,故选B.(2)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a =( )A.12或-1 B .2或12C .2或1D .2或-1[答案] D[解析] 由题中条件画出可行域如图中阴影部分所示,可知A (0,2),B (2,0),C (-2,-2), 则z A =2,z B =-2a ,z C =2a -2,要使目标函数取得最大值的最优解不唯一, 只要z A =z B >z C 或z A =z C >z B 或z B =z C >z A ,解得a =-1或a =2.[点石成金] 1.求目标函数最值的三个步骤(1)作图——画出约束条件所确定的平面区域和目标函数所表示的平行直线系中过原点的那一条直线l .(2)平移——将l 平行移动,以确定最优解的对应点的位置.(3)求值——解方程组求出对应点坐标(即最优解),代入目标函数,即可求出最值. 2.常见的三类目标函数 (1)截距型:形如z =ax +by .求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b,通过求直线的截距z b的最值间接求出z 的最值.(2)距离型:形如z =(x -a )2+(y -b )2. (3)斜率型:形如z =y -bx -a. [提醒] 注意转化的等价性及几何意义.考点3 线性规划的实际应用[典题6] [2016·新课标全国卷Ⅰ]某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时,生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.[答案] 216 000[解析] 由题意,设产品A 生产x 件,产品B 生产y 件,利润z =2 100x +900y ,线性约束条件为⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ≥0,y ≥0,作出不等式组表示的平面区域如图中阴影部分所示,又由x∈N,y∈N,可知取得最大值时的最优解为(60,100),所以z max=2 100×60 +900×100=216 000(元).[点石成金] 1.解线性规划应用题的三个步骤(1)转化——设元,写出约束条件和目标函数,从而将实际问题转化为线性规划问题.(2)求解——解这个纯数学的线性规划问题.(3)作答——将数学问题的答案还原为实际问题的答案.2.求解线性规划应用题的三个注意点(1)明确问题中的所有约束条件,并根据题意判断约束条件是否能够取到等号.(2)注意结合实际问题的实际意义,判断所设未知数x,y的取值范围,特别注意分析x,y是否是整数、是否是非负数等.(3)正确地写出目标函数,一般地,目标函数是等式的形式.某旅行社租用A,B两种型号的客车安排900名客人旅行,A,B两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B型车不多于A型车7辆,则租金最少为( )A.31 200元B.36 000元C.36 800元D.38 400元答案:C解析:设租用A型车x辆,B型车y辆,目标函数为z=1 600x+2 400y,则约束条件为⎩⎪⎨⎪⎧36x +60y ≥900,y -x ≤7,y +x ≤21,x ,y ∈N ,作出可行域,如图中阴影部分所示,可知目标函数过点(5,12)时,有最小值z min =36 800(元).[方法技巧] 1.解线性规划应用题,可先找出各变量之间的关系,最好列成表格,然后用字母表示变量,列出线性约束条件;写出要研究的函数,转化成线性规划问题.2.点P 1(x 1,y 1)和P 2(x 2,y 2)位于直线Ax +By +C =0的两侧的充要条件是(Ax 1+By 1+C )(Ax 2+By 2+C )<0;位于直线Ax +By +C =0同侧的充要条件是(Ax 1+By 1+C )(Ax 2+By 2+C )>0.[易错防范] 1.在画平面区域时,要注意实虚线.2.在通过求直线的截距zb 的最值间接求出z 的最值时,要注意:当b >0时,截距z b取最大值时,z 也取最大值,截距z b 取最小值时,z 也取最小值;当b <0时,截距z b取最大值时,z 取最小值,截距z b取最小值时,z 取最大值.真题演练集训1.[2016·山东卷]若变量x ,y 满足⎩⎪⎨⎪⎧x +y ≤2,2x -3y ≤9,x ≥0,则x 2+y 2的最大值是( )A .4B .9C .10D .12答案:C解析:作出不等式组所表示的平面区域如图中阴影部分所示,设P (x ,y )为平面区域内任意一点,则x 2+y 2表示|OP |2.显然,当点P 与点A 重合时,x 2+y 2取得最大值,由⎩⎪⎨⎪⎧x +y =2,2x -3y =9,解得⎩⎪⎨⎪⎧x =3,y =-1,故A (3,-1).所以x 2+y 2的最大值为32+(-1)2=10.故选C.2.[2016·北京卷]若x ,y 满足⎩⎪⎨⎪⎧2x -y ≤0,x +y ≤3,x ≥0,则2x +y 的最大值为( )A .0B .3C .4D .5答案:C解析:不等式组⎩⎪⎨⎪⎧2x -y ≤0,x +y ≤3,x ≥0表示的可行域如图中阴影部分所示,由⎩⎪⎨⎪⎧2x -y =0,x +y =3,解得⎩⎪⎨⎪⎧x =1,y =2,故当目标函数z =2x +y 经过点A (1,2)时,z 取得最大值,z max =2×1+2=4.故选C.3.[2015·陕西卷]某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )A.12万元 C .17万元 D .18万元答案:D解析:设每天生产甲、乙产品分别为x 吨、y 吨,每天所获利润为z 万元,则有 ⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,目标函数为z =3x +4y ,作出可行域如图中阴影部分所示,由图形可知,当直线z =3x +4y 经过点A (2,3)时,z 取最大值,最大值为3×2+4×3=18(万元).4.[2014·新课标全国卷Ⅰ]不等式组⎩⎪⎨⎪⎧x +y ≥1,x -2y ≤4的解集记为D ,有下面四个命题:p 1:∀(x ,y )∈D ,x +2y ≥-2; p 2:∃(x ,y )∈D ,x +2y ≥2; p 3:∀(x ,y )∈D ,x +2y ≤3; p 4:∃(x ,y )∈D ,x +2y ≤-1.其中的真命题是( ) A .p 2,p 3 B .p 1,p 4 C .p 1,p 2 D .p 1,p 3答案:C解析:作出不等式组表示的可行域,如图中阴影部分所示.由⎩⎪⎨⎪⎧x +y =1,x -2y =4,得交点A (2,-1).目标函数的斜率k =-12>-1,观察直线x +y =1与直线x +2y =0的倾斜程度,可知u =x +2y 过点A 时取得最小值0⎝ ⎛⎭⎪⎫y =-x 2+u 2,u2表示纵截距.结合题意知p 1,p 2正确.5.[2016·新课标全国卷Ⅲ]若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x -2y ≤0,x +2y -2≤0,则z =x +y 的最大值为________.答案:32解析:约束条件对应的平面区域是以点⎝ ⎛⎭⎪⎫1,12,(0,1)和(-2,-1)为顶点的三角形,当目标函数y =-x +z 经过点⎝ ⎛⎭⎪⎫1,12时,z 取得最大值32.课外拓展阅读 非线性目标函数最值的求解类型1 斜率型非线性规划问题的最值(值域) 目标函数形式一般为z =ay +bcx +d(ac ≠0),求解步骤为 (1)需先弄清其几何意义,z =a c ·y -⎝ ⎛⎭⎪⎫-b a x -⎝ ⎛⎭⎪⎫-d c 表示的是可行域内的点(x ,y )与点⎝ ⎛⎭⎪⎫-dc ,-b a 所连直线的斜率的a c倍.(2)数形结合,确定定点⎝ ⎛⎭⎪⎫-d c ,-b a ,观察可行域的范围.(3)确定可行域内的点(x ,y ),看(x ,y )取何值时,斜率最大(注意若可行域不含边界点,有可能取不到最大值);(x ,y )取何值时,斜率最小(注意若可行域不含边界点,有可能取不到最小值);通常在三角形或四边形的边界交点处取得最值.[典例1] 已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -4≥0,x -y +2≥0,2x -y -5≤0,则f (x ,y )=x +2y2x +y的取值范围是________.[思路分析][解析]作出不等式组表示的平面区域,如图中阴影部分所示,f (x ,y )=x +2y2x +y=1+2·y x2+y x.令y x =k ,则g (k )=1+2k 2+k =2-32+k. 而k =yx表示可行域内的点P (x ,y )与坐标原点O 的连线的斜率,观察图形可知,k OA ≤k ≤k OB , 而k OA =1-03-0=13,k OB =3-01-0=3,所以13≤k ≤3,即57≤f (x ,y )≤75. [答案] ⎣⎢⎡⎦⎥⎤57,75类型2 距离型非线性规划问题的最值(值域)1.目标函数形式为z =(x -a )2+(y -b )2时,求解步骤为: (1)其表示的是可行域内的点(x ,y )与点(a ,b )之间的距离的平方. (2)数形结合,确定定点(a ,b ),观察可行域的范围.(3)确定可行域内的点(x ,y ),看(x ,y )取何值时,距离最大(注意若可行域不含边界点,有可能取不到最大值);(x ,y )取何值时,距离最小(注意若可行域不含边界点,有可能取不到最小值);通常在三角形、四边形的边界交点处或定点(a ,b )到可行域边界直线的垂足处取得.2.目标函数形如z =|Ax +By +C |时,一般步骤为: (1)将z =|Ax +By +C |=A 2+B 2·|Ax +By +C |A 2+B 2,问题转化为求可行域内的点(x ,y )到直线Ax +By +C =0的距离的A 2+B 2倍的最值.(2)确定可行域,通过数形结合的方法求出所求的最值.[典例2] 设x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +5≥0,x +y ≥0,x ≤3,则z =(x +1)2+y 2的最大值为( )A .80B .4 5C .25 D.172[思路分析] 作出可行域→结合目标函数的几何意义:两点间距离的平方→数形结合,求得z 的最大值[解析] 作出不等式组⎩⎪⎨⎪⎧x -y +5≥0,x +y ≥0,x ≤3表示的平面区域,如图中阴影部分所示.(x +1)2+y 2可看作点(x ,y )到点P (-1,0)的距离的平方,由图可知,可行域内的点A 到点P (-1,0)的距离最大.解方程组⎩⎪⎨⎪⎧x =3,x -y +5=0,得点A 的坐标为(3,8),代入z =(x +1)2+y 2,得z max =(3+1)2+82=80. [答案] A[典例3]实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为________.[思路分析][解析] 解法一:作出不等式组表示的平面区域,如图中阴影部分所示.z =|x +2y -4|=|x +2y -4|5·5, 即其几何意义为阴影区域内的点到直线x +2y -4=0的距离的5倍.由⎩⎪⎨⎪⎧x -y +2=0,2x -y -5=0,得点B 的坐标为(7,9),显然点B 到直线x +2y -4=0的距离最大, 此时z max =21.解法二:由图可知,阴影区域内的点都在直线x +2y -4=0的上方,显然此时有x +2y -4>0,于是目标函数等价于z =x +2y -4,即转化为简单的线性规划问题,显然当直线经过点B 时,目标函数取得最大值,z max =21.[答案] 21 技巧点拨解决这类问题时,需充分把握好目标函数的几何意义,在几何意义的基础上加以处理.。