二元一次不等式组及平面区域

合集下载

课程资料:二元一次不等式(组)表示的平面区域

课程资料:二元一次不等式(组)表示的平面区域
图)分别为65xx++32yy≥≥4300,, x,y∈N.
3.点 P(1,-1)在直线y=ax+b的上方,则a,b满足的 关系式:( B ) A. a+b>-1 B. a+b<-1 C. a+b>1 D. a-b<-1
7.确定m的范围,使点(1,2)和点(1,1)在y 3x m 0
的异侧.
5.若不等式组
y

a,
表示的平面区域是一个三角
0 ≤ x ≤ 2
形,则 a 的取值范围是( C )
A. a 5
B. a≥7
C. 5≤a 7
D. a 5 或 a≥7
[例4] 画出不等式(x+2y+1)(x-y+4)>0表示 的区域.
[解] 原不等式等价于
①xx-+y2+y+4>1>0.0, 或
• §3.3.1二元一次不等式(组) 表示的平面区域
那么:x – y < 6或x – y形?
问题2
一条直线
直线将平面分成两部分,这与 x y ()6
有什么关联呢?
y
x –y =6
左上方区
O

x
右下方 区域
二元一次不等式x-y<6表示直 线x- y=6左上方的平面区域
2.有粮食和石油两种货物,可用轮船和飞机两种 方式运输,每天每艘轮船和每架飞机的运输量 如下表:
货物 轮船运输量 飞机运输量
粮食/t 300
150
石油/t 250
100
现在要在一天之内运输2 000 t粮食和1 500 t石
油,试用代数和几何两种方法表示运输工具和
运输数量满足的关系.
解:设需要 x 艘轮船,y 架飞机,代数关系式和几何描述(如
(3)

二元一次不等式(组)与平面区域 课件

二元一次不等式(组)与平面区域   课件

|AB|=|3×1+-32×-1+6|= 122.
∴S△ABC=12×
12 × 2
122=36.
(2)画出2x-3<y≤3表示的区域,并求所有的正整数解.
【思路分析】
原不等式等价于
y>2x-3 y≤3.
而求正整数解,则意味着x,y还有限制条件,即求:
xy> >00 y>2x-3,
y≤3
的整数解.
例3 画出不等式组2x+x+2yy--51≤>00 ,所表示的平面区域. y<x+2
【思路分析】 解决这种问题的关键在于正确地描绘出边 界直线,再根据不等号的方向,确定所表示的平面区域.
【解析】 先画直线x+2y-1=0,由于是大于号,从而将 直线画成虚线,∵0+0-1<0,∴原点在它的相反区域内.
如图中阴影部分中横坐标、纵坐标均为整数的点.
探究5 充分利用已知条件,找出不等关系,画出适合条件 的平面区域,然后在该平面区域内找出符合条件的点的坐 标.实际问题要注意实际意义对变量的限制.必要时可用表格 的形式列出限制条件.
思考题6 一工厂生产甲、乙两种产品,生产每吨产品的资
源需求如下表:
品种 电力/kW·h 煤/t 工人/人
(2)设直线l方程为Ax+By+C=0(A>0),则 ①Ax+By+C>0表示l右侧平面区域. ②Ax+By+C<0表示l左侧平面区域.
思考题1 (1)不等式x-2y≥0所表示的平面区域是下图中的 ()
【解析】
x-2y=0的斜率为
1 2
,排除C、D.又大于0表示直
线右侧,选B.
【答案】 B
(2)不等式x+3y-6<0表示的平面区域在直线x+3y-6=0的
【解析】 如图,在其区域内的整数解为(1,1)、(1,2)、 (1,3)、(2,2)、(2,3),共五组.

二元一次不等式(组)与平面区域

二元一次不等式(组)与平面区域
示的平面区域的面积等于 3 2 A. B. C.4 2 3 3 ( C D.3 4 )
解:
x 3 y 4 得交点A的坐标为(1,1). 由 , 3 x y 4
又B、C两点的坐标为(0,4), (0, 4 ).
故S ABC
1 4 4 (4 ) 1 . 2 3 3
则a的取值范围是 ( A.a<-7或a>24 C.a=-7或a=24
B)
B.-7<a<24 D.以上都不对
解析:点(3,1)和(-4,6)在直线3x-2y+a=0的两 侧,说明将这两点坐标代入3x-2y+a后,符号相反,
所以(9-2+a)(-12-12 0, 8. 不等式组 x 3 y 4, 所表 3 x y 4
练习1:
画出下列不等式表示的平面区域:
(1)2x+3y-6>0 (2)4x-3y≤12
Y Y
2
O
3
X
O
3 -4
X
(1)
(2)
二元一次不等式组表示平面区域
二元一次不等式组
表示平面区域
例2:画出不等式组
表示的平面区域
x y 5 0 x y 0 x 3
Y
x+y=0
3
x y 0 x 2 y 4 0 y 2 0
Y
x-y=0
x+2y-4=0 o
2
4
x -2 y+2=0
变式3、由直线
y20
, x 2 y-4 0 和
围成的三角形区域(包括边界)用不 等式可表示为 。
x-y 0
x y 0 x 2 y 4 0 y 2 0
方法总结:

高二数学 二元一次不等式(组)与平面区域 知识讲解

高二数学 二元一次不等式(组)与平面区域 知识讲解

二元一次不等式(组)与平面区域【要点梳理】要点一:二元一次不等式(组)的定义1.二元一次不等式:含有两个未知数,并且未知数的最高次数是1的不等式叫做二元一次不等式.2.二元一次不等式组:由几个二元一次不等式组成的不等式组称为二元一次不等式组.3.二元一次不等式(组)的解集:满足二元一次不等式(组)的x 和y 的取值构成有序实数对(,)x y ,所有这样的有序实数对(,)x y 构成的集合称为二元一次不等式(组)的解集.要点诠释:注意不等式(组)未知数的最高次数. 要点二:二元一次不等式(组)表示平面区域二元一次不等式(组)的解集与平面直角坐标系内的点之间的关系:二元一次不等式(组)的解集是有序实数对,而点的坐标也是有序实数对,因此,有序实数对就可以看成是平面内点的坐标,因此,二元一次不等式(组)的解集就可以看成是直角坐标系内的点构成的集合.二元一次不等式所表示的平面区域:在平面直角坐标系中,直线:0l Ax By C ++=将平面分成两部分,平面内的点分为三类: ①直线l 上的点(x ,y )的坐标满足:0=++C By Ax ;②直线l 一侧的平面区域内的点(x ,y )的坐标满足:0>++C By Ax ; ③直线l 另一侧的平面区域内的点(x ,y )的坐标满足:0Ax By C ++<.即二元一次不等式0Ax By C ++>或0Ax By C ++<在平面直角坐标系中表示直线0Ax By C ++=的某一侧所有点组成的平面区域,直线0Ax By C ++=叫做这两个区域的边界,(虚线表示区域不包括边界直线,实线表示区域包括边界直线).要点三:二元一次不等式表示哪个平面区域的确定 二元一次不等式表示的平面区域由于对在直线0Ax By C ++=同一侧的所有点(,)x y ,把它的坐标(,)x y 代入Ax By C ++,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点00(,)x y ,从00Ax By C ++的正负即可判断0Ax By C ++>表示直线哪一侧的平面区域.(特殊地,当0C ≠时,常把原点作为此特殊点)以上判定方法简称为“直线定界、特殊点定域”法. 不等式组所表示的平面区域由几个不等式组成的不等式组所表示的平面区域,是各个不等式所表示的平面区域的公共部分. 1. 判断二元一次不等式Ax+By+c>0(或<0)表示直线的哪一侧的方法:因为对在直线Ax+By+C =0同一侧的所有点(x ,y),数Ax+By+C 的符号相同,所以只需在此直线的某一侧任取一点(x 0, y 0)(若原点不在直线上,则取原点(0,0)最简便),它的坐标代入Ax+By+c ,由其值的符号即可判断二元一次不等式Ax+By+c>0(或<0)表示直线的哪一侧.2. 画二元一次不等式0(0)Ax By C ++>≥或0(0)Ax By C ++<≤表示的平面区域的基本步骤: ①画出直线:0l Ax By C ++=(有等号画实线,无等号画虚线);②当0≠C 时,取原点作为特殊点,判断原点所在的平面区域;当0C =时,另取一特殊点判断; ③确定要画不等式所表示的平面区域.要点诠释: “直线定界,特殊点定域”二元一次不等式(组)表示平面区域的重要方法. 【典型例题】类型一:二元一次不等式表示的平面区域 例1. 画出不等式240x y +->表示的平面区域. 【解析】先画直线240x y +-=(画成虚线). 取原点(0,0)代入24x y +-得200440⨯+-=-<, ∴原点不在240x y +->表示的平面区域内, 不等式240x y +->表示的区域如图:【总结升华】1. 画二元一次不等式表示的平面区域常采用“直线定界,特殊点定域”的方法.特殊地,当0≠C 时,常把原点作为此特殊点.2. 虚线表示区域不包括边界直线,实线表示区域包括边界直线 举一反三:【变式1】画出下列不等式所表示的平面区域 (1)4312x y +≤; (2)1≥x 【答案】(1)(2)【变式2】图中阴影(包括直线)表示的区域满足的不等式是()A.x-y-1≥0 B.x-y+1≥0 C.x-y-1≤0 D.x-y+1≤0【答案】直线对应的方程为x-y-1=0,对应的区域,在直线的下方,当x=0,y=0时,0-0-1<0,即原点在不等式x-y-1<0对应的区域内,则阴影(包括直线)表示的区域满足的不等式是x-y-1≥0,故选:A.【变式3】不等式3x+2y-6≤0表示的区域是()【答案】可判原点适合不等式3x+2y-6≤0,故不等式3x+2y-6≤0所表示的平面区域为直线3x+2y-6=0的左下方,故选D。

【数学】3.3《二元一次不等式(组)与平面区域》教案(新人教A版必修5)(5课时)

【数学】3.3《二元一次不等式(组)与平面区域》教案(新人教A版必修5)(5课时)

课题:§3.3.1二元一次不等式(组)与平面区域第1课时授课类型:新授课 【教学目标】1.知识与技能:了解二元一次不等式的几何意义,会用二元一次不等式组表示平面区域; 2.过程与方法:经历从实际情境中抽象出二元一次不等式组的过程,提高数学建模的能力; 3.情态与价值:通过本节课的学习,体会数学来源与生活,提高数学学习兴趣 【教学重点】用二元一次不等式(组)表示平面区域; 【教学难点】【教学过程】1.课题导入1.从实际问题中抽象出二元一次不等式(组)的数学模型 课本第91页的“银行信贷资金分配问题”教师引导学生思考、探究,让学生经历建立线性规划模型的过程。

在获得探究体验的基础上,通过交流形成共识:2.讲授新课1.建立二元一次不等式模型 把实际问题 转化 数学问题:设用于企业贷款的资金为x 元,用于个人贷款的资金为y 元。

(把文字语言 转化 符号语言)(资金总数为25 000 000元)⇒25000000x y +≤ (1) (预计企业贷款创收12%,个人贷款创收10%,共创收30 000元以上)⇒(12%)x +(10%)y 3≥ 即12103000000x y +≥ (2)(用于企业和个人贷款的资金数额都不能是负值)⇒0,0x y ≥≥ (3) 将(1)(2)(3)合在一起,得到分配资金应满足的条件:25000000121030000000,0x y x y x y +≤⎧⎪+≥⎨⎪≥≥⎩2.二元一次不等式和二元一次不等式组的定义(1)二元一次不等式:含有两个未知数,并且未知数的最高次数是1的不等式叫做二元一次不等式。

(2)二元一次不等式组:有几个二元一次不等式组成的不等式组称为二元一次不等式组。

(3)二元一次不等式(组)的解集:满足二元一次不等式(组)的x 和y 的取值构成有序实数对(x,y ),所有这样的有序实数对(x,y )构成的集合称为二元一次不等式(组)的解集。

(4)二元一次不等式(组)的解集与平面直角坐标系内的点之间的关系:二元一次不等式(组)的解集是有序实数对,而点的坐标也是有序实数对,因此,有序实数对就可以看成是平面内点的坐标,进而,二元一次不等式(组)的解集就可以看成是直角坐标系内的点构成的集合。

人教a版必修五课件:二元一次不等式(组)与平面区域(62页)

人教a版必修五课件:二元一次不等式(组)与平面区域(62页)

2.点(x0,y0)在直线Ax+By+C=0的右上方,则一定 有Ax0+By0+C>0吗?
提示:不一定.与系数B的符号有关.
3.若A(x1,y1),B(x2,y2)两点在直线Ax+By+C=0的 同侧或两侧应满足什么条件?
提示:同侧(Ax1+By1+C)(Ax2+By2+C)>0.异侧(Ax1+ By1+C)(Ax2+By2+C)<0.
新知初探
1.二元一次不等式及其解集的意义 (1)二元一次不等式 含有两 个未知数,并且含未知数的项的最高次数是 1 的不等式称为二元一次不等式. 二元一次不等式的一般形式是Ax+By+C>0,Ax+By +C<0,Ax+By+C≥0,Ax+By+C≤0,其中A,B不同 时为零.
(2)二元一次不等式组 由几个 二元一次不等式 组成的不等式组称为二元一次 不等式组. (3)二元一次不等式(组)的解集 满足二元一次不等式(组)的x和y的取值构成有序数对 (x,y),所以这样的有序数对(x,y)构成的集合称为二元一 次不等式(组)的解集.一个二元一次不等式,它的解是一些 数对(x,y),因此,它的解集不能用数轴上一个区间表示, 而应是平面上的一个区域.
By+C=0划分平面成两个半平面的区域,分别由不等式Ax +By+C>0与Ax+By+C<0决定.因此,如同前面所学平面 内的直线可以视为二元一次方程的几何表示一样,半平面 就是二元一次不等式的几何表示.
思考感悟
1.每一个二元一次不等式(组)都能表示平面上的一个 区域吗? 提示:不一定.当不等式组的解集为空集时,不等式 组不表示任何图形.
7 答案:4
类型三 [例3]
点与平面区域的关系 已知点P(1,-2)及其关于原点的对称点中有

必修5课件3.3.1二元一次不等式(组)与平面区域

必修5课件3.3.1二元一次不等式(组)与平面区域

二、新知探究:
(2)探究
特殊:二元一次不等式 x – y < 6 的解集所表示的图形。
作出x – y = 6的图像——一条直线,
直线把平面内所有点分成三类:
a)在直线x – y = 6上的点 b)在直线x – y = 6左上方区域内 c)在直线x – y = 6右下方区域内
y
6
O
左上方区域
-6
x
x–y=6
右下方区域
二、新知探究:
2、探究二元一次不等式(组)的解集表示的图形
(2)探究
验证:设点P(x,y 1)是直线x – y =
y
x–y=6 x
6上的点,选取点A(x,y 2),使它
的坐标满足不等式x – y < 6,请完成 下面的表格,
O
横坐标 x
–3
–2 -8
–1 -73 -3
3.3.1 二元一次不等 式(组)与平面区域
一、引入:
一家银行的信贷部计划年初投入25 000 000
元用于企业和个人贷款,希望这笔资金至少可带来
30000元的收益,其中从企业贷款中获益12%,从个
人贷款中获益10%.那么,信贷部应刻如何分配资
金呢?
问题:应该用什么不等式模型来刻画呢?
二、新知探究:
4 x x+4y―4=0
课堂练习1:
(1)画出不等式 4x―3y≤12 表示的平面区域
y
4x―3y-12=0 x x
(2)画出不等式x≥1 表示的平面区域
y
x=1
三、例题示范:
例2、用平面区域表示不等式组 y < -3x+12 的解集。 x<2y
y
0 x-2y=0

高一数学《二元一次不等式(组)与平面区域》教案

高一数学《二元一次不等式(组)与平面区域》教案

芯衣州星海市涌泉学校探究教学课例—二元一次不等式〔组〕与平面区域2、教学策略选择与设计讨论,从而加深对本节课教学内容的理解,使之形成理性认识.3、教学目的知识与技能:知道二元一次不等式〔组〕的几何意义——表示平面区域;会画二元一次不等式〔组〕表示的平面区域并能用平面区域表示二元一次不等式〔组〕.过程与方法:通过画二元一次不等式〔组〕表示的平面区域的过程体会不等式的几何意义;通过详细例子,引导学生会用)1,0(),0,1(),0,0(等特殊点检验不等式0(0)Ax By C ++><所表示的平面区域,由此归纳、猜想确定不等式所表示的平面区域在直线的哪一侧的一般方法,即“直线定界,特殊点定域〞的方法.情感、态度与价值观:通过画图的过程训练学生养成用直尺标准作图的良好习惯,认同事物是普遍联络的辩证唯物主义观点,体验一些事物在一定的条件下是可以互相转化的.4、教学内容简单的线性规划是应用数形结合思想解题的重要方法之一,应用线性规划解决“最优化〞问题是数学的一个重大应用.“二元一次不等式〔组〕所表示的平面区域〞是简单的线性规划的重要根底,因此本节课内容重点强调“平面区域〞与“不等式的〔组〕〞的对应关系.而建立这种对应关系的过程可以引导学生自主探究发现.本节课内容的难点在于寻求二元一次不等式〔组〕所表示的平面区域,打破难点的有效方法可以通过对详细例子探究、尝试获得结论,培养学生复杂问题简单化、普遍规律一般化的思维方式.同时探究不等式“定域〞方法时,可以鼓励学生发挥协作精神,采用探究的学习方法,充分调动学生的思维.5、教学重点和难点教学重点:二元一次不等式表示平面区域,体会数形结合思想;教学难点:把实际问题转化成线性规划问题,并给出解答。

解决难点的关键是根据实际问题中的条件,找出约束条件和目的函数,利用图解法求得最优解。

6、教学过程为了表达课改特色以及结合本节课内容的特点,将本节课设计为“思-疑-释-讲-练〞的教学形式,详细如下:①完成学案:明确课标对本节课的要求;设计预习导引问题;自主学习、解决部分问题;整理疑问、课上解决.②创设情境、导悟要点→生生互释、教师点拨→小组讨论、探究→魅力精讲、概括升华→理论、成就素能→课堂点评、目的反响.学案的精心设计,可以使学生把感悟时间是是置于课前,有利于培养学生的自学才能、质疑才能、探究才能,做到学生有准备的进入本节课的学习;教学过程中“导悟要点、生生互释、小组讨论、魅力精讲、理论〞的设计表达了“思-疑-释-讲-练〞的教学形式,唤起学生的主体意识,突出学生的主体地位,培养学生的自主学习、探究问题和勇于创新的才能.7、教学媒介本节课的教学内容设计目的在于通过二元一次不等式表示平面区域来让学生体会到数与形的结合,因此为了进步作图的快捷、图示的准确性和直观性,本节课将恰当使用多媒体进展教学辅助.同时多媒体的引入可直观演示本节课所设计问题及相关习题答案,大大节板书时间是是,进步课堂效率.二元一次不等式〔组〕所表示的平面区域〔导学案〕二、教学过程实录〔一〕创设情境、导悟要点【师生活动】一家银行的信贷部方案年初投入25000000元用于企业和个人贷款,希望这笔资金至少可带来30000元的收益,其中从企业贷款中获益12%,从个人贷款中获益10%,那么,信贷部应该如何分配资金呢?这个问题中存在一些不等关系,我们应该用什么不等式模型来刻画它们呢?同学们陆陆续续列出不等式。

二元一次不等式(组)与平面区域

二元一次不等式(组)与平面区域
二元一次不等式( 二元一次不等式(组)与 平面区域
兖州六中 徐洪艳
一家银行的信贷部计划年初 引例 : 投入25 000 000元用于企业和个人贷 投入 元用于企业和个人贷 希望这笔资金至少可带来30 000元 款,希望这笔资金至少可带来 希望这笔资金至少可带来 元 的收益,其中从企业贷款中获益 其中从企业贷款中获益12% 的收益 其中从企业贷款中获益 %,从 个人贷款中获10% 那么 那么, 个人贷款中获 %.那么,信贷部应该如 何分配资金呢? 何分配资金呢? 设用于企业贷款的资金为x元 设用于企业贷款的资金为 元,用于个人 贷款的资金为y元 贷款的资金为 元。则分配资金应该满足 的条件为: 的条件为:
盐类
肥料
磷酸盐 硝酸盐 (10t) (66t)
车皮数
甲种肥料 乙种肥料
4t 1t
18t 15t
x y
总吨数
4x+y 18x+15y
解:设x,y分别为计划生产甲乙两 设 分别为计划生产甲乙两 种肥料的车皮数,满足以下条件 满足以下条件: 种肥料的车皮数 满足以下条件
4 x + y ≤ 10 18 x + 15 y ≤ 66 x≥0 y≥0
x
2x+y=15
x+2y=18
例4.一个化肥厂生产甲乙两种混合化 一个化肥厂生产甲乙两种混合化 生产1车皮甲种肥料的主要原料是 肥,生产 车皮甲种肥料的主要原料是 生产 磷酸盐4t、硝酸盐18t;生产 车皮乙 生产1车皮乙 磷酸盐 、硝酸盐 生产 种肥料的主要原料是磷酸盐 磷酸盐1t、 种肥料的主要原料是磷酸盐 、硝 酸盐15t.现库存磷酸盐 、硝酸盐 现库存磷酸盐 酸盐 现库存磷酸盐10t、 66t,在此基础上生产这两种混合肥料 在此基础上生产这两种混合肥料 .列出满足生产条件的数学关系式 并 列出满足生产条件的数学关系式,并 列出满足生产条件的数学关系式 画出相应的平面区域. 画出相应的平面区域

第三章3.3 3.3.1二元一次不等式(组)与平面区域

第三章3.3  3.3.1二元一次不等式(组)与平面区域
3.3 二元一次不等式(组)与简单的线性规划问题 3.3.1 二元一次不等式(组)与平面区域 1.了解二元一次不等式表示的平面区域. 2.会画出二元一次不等式(组)表示 的平面区域.
1.二元一次不等式(组) (1)定义 ①二元一次不等式:含有两个未知数,并且未知数的次数是 1 的不等式. ②二元一次不等式组:由几个二元一次不等式组成的不等式组. (2)解集 ①定义:满足二元一次不等式(组)的 x 和 y 的取值构成有序数对(x,y),所有这样的有 序数对(x,y)构成的集合称为二元一次不等式(组)的解集. ②几何意义:可以看成直角坐标系内满足二元一次不等式(组)的 x 和 y 组成的点构成的 集合. 2.二元一次不等式表示的平面区域 二元一次不等式 Ax+By+C>0 二元一次不等式 Ax+By+C≥0 表示直线 Ax+By+C=0 某一侧所有点组成的平面区域, 我们把直线画成 虚线,以表示区域不包括边界 表示直线 Ax+By+C=0 某一侧所有点组成的平面区域, 我们把直线画成 实线,以表示区域包括边界 直线 Ax+By+C=0 同一侧的所有点,把它们的坐标(x,y)代入 依据 Ax+By+C 所得符号都相同 平面区域的确定 方法 在直线 Ax+By+C=0 的同一侧取某个特殊点(x0,y0)作为测试 点,由 Ax0+By0+C 的符号可以断定 Ax+By+C>0 表示的是直 线 Ax+By+C=0 哪一侧的平面区域
)
用平面区域来表示实际问题的基本方法 (1)根据问题的需要选取两个起关键作用的关联较多的量,用字母表示. (2)把问题中有关的量用这些字母表示. (3)把实际问题中有关的限制条件用不等式表示出来. (4)把这些不等式所组成的不等式组用平面区域表示出来. 3.配制 A、B 两种药品,需要甲、乙两种原料,已知配一剂 A 种药品需 甲料 3 mg,乙料 5 mg;配一剂 B 种药品需甲料 5 mg,乙料 4 mg.今有甲料 20 mg,乙料 25 mg,若 A、B 两种药品至少各配一剂,问共有多少种不同的配制方法? 解:设 A、B 两种药品分别配 x 剂、y 剂(x,y∈N*).由题意得, 甲料 A 药品/剂 B 药品/剂 共计 3 mg 5 mg 20 mg 乙料 5 mg 4 mg 25 mg

二元一次不等式(组)与平面区域 课件

二元一次不等式(组)与平面区域  课件
[提示] 一一对应.
4.二元一次不等式表示的平面区域及确定 (1)直线 l:ax+by+c=0 把直角坐标平面分成了三个部分: ①直线 l 上的点(x,y)的坐标满足 ax+by+c=0 . ②直线 l 一侧的平面区域内的点(x,y)的坐标满足 ax+by+c>0,另一侧 平面区域内的点(x,y)的坐标满足 ax+by+c<0 .
3.二元一次不等式(组)的解集概念 满足二元一次不等式(组)的 x 和 y 的取值构成一个有序数对(x,y),称为 二元一次不等式(组)的一个 解,所有这样的有序数对(x,y)构成的集合称为二 元一次不等式(组)的 解集 . 思考:把二元一次不等式的解看作有序数对,它与平面内的点之间有什 么关系?
同理得 B(-1,1),C(3,-1).
∴|AC|= 22+-42=2 5,
而点
B
到直线
2x+y-5=0
的距离为
d=|-2+51-5|=
6, 5
∴S△ABC=12|AC|·d=12×2 5× 65=6.
x>0 2.若将例题中的条件“y>0
4x+3y≤12
”变为“y|x≤|≤2y≤|x|+1 ”求所
标. (1)求区域面积时,要先确定好平面区域的形状,注意与坐标轴垂直的直 线及区域端点的坐标,这样易求底与高.必要时分割区域为特殊图形. (2)整点是横纵坐标都是整数的点,求整点坐标时要注意虚线上的点和靠 近直线的点,以免出现错误.
x+y>2, 2.不等式组x-y>0, 表示的区域是什么图形,你能求出它的面积吗?
x<4
该图形若是不规则图形,如何求其面积?
提示:不等式组表示的平面区域如图阴影部分 △ABC,该三角形的面积为 S△ABC=12×6×3=9.若 该图形不是规则的图形.我们可以采取“割补”的 方法,将平面区域分为几个规则图形求解.

4.1二元一次不等式(组)与平面区域

4.1二元一次不等式(组)与平面区域
§4 简单线性规划
-1-
4.1 二元一次不等式(组)与平面区域
-2-
目标导航
Z D 知识梳理 HISHISHULI
典例透析
IANLITOUXI
S随堂演练 UITANGYANLIAN
1.能从实际情境中抽象出二元一次不等式组,了解二元一次不等 式的几何意义.
2.能用平面区域表示二元一次不等式组,并能利用二元一次不等 式(组)所表示的平面区域解决简单的实际问题.
(2)将y≤-2x+3变形为2x+y-3≤0, 画出直线2x+y-3=0(画成实线),
取点(0,0),代入2x+y-3,得2×0+0-3=-3<0,
故y≤-2x+3表示的区域是直线2x+y-3=0及其左下方的平面区域,
如图②阴影部分所示.
-22-
目标导航
Z D 知识梳理 HISHISHULI
典例透析
S随堂演练 UITANGYANLIAN
题型一 画二元一次不等式表示的平面区域 【例1】 (1)画出不等式3x-4y-12≥0表示的平面区域; (2)画出不等式3x+2y<0表示的平面区域. 分析:(1)先画直线,再取原点分析;(2)先画直线,再取点(1,0)分析. 解:(1)先画直线3x-4y-12=0,取原点(0,0),代入3x-4y-12,得-12<0, 所以原点不在3x-4y-12≥0表示的平面区域内,
另外,还有x 0, y 0. 综上所述,x, y应满足以下不等式组
3x 5y 150 5x 2y 200
2x 8y 160,
3x 5y 150, 5x 2 y 200,
2x 8y 160

人教数学必修五33二元一次不等式组与平面区域

人教数学必修五33二元一次不等式组与平面区域

(B ) D.无数个
(5,0).
练一练·当堂检测、目标达成落实处
3.3.1
x+y≤1, 3.画出二元一次不等式组x≥0,
y≥0
表示的平面区域,则
1
本 讲
这个平面区域的面积为____2____.
栏 目
解析 平面区域如图所示.


练一练·当堂检测、目标达成落实处
3.3.1
4.根据下列平面区域,写出它们所对应的二元一次不等 式(组).
不等式表示为 x-y-6>0.
研一研·问题探究、课堂更高效
3.3.1
探究点一 二元一次不等式表示的平面区域
问题 在平面直角坐标系中,画出直线 x-y+2=0,并标出
本 讲
以下九点:O(0,0),A(0,2),B(-2,0),C(-1,1),D(1,0),
栏 目
E(0,-1),F(-3,0),G(-2,2),H(0,3).
3.3.1
3.二元一次不等式(组)表示平面区域的确定
(1)直线 Ax+By+C=0 同一侧的所有点的坐标(x,y)代入
Ax+By+C,所得的符号都 相同 .
(2)在直线 Ax+By+C=0 的同一侧取某个特殊点(x0,y0),

由 Ax0+By0+C 的符号就可以断定 Ax+By+C>0 表示
讲 栏
语言的理解和应用.
2.解决线性规划问题的基本方法是图解法,它的实质是数形
结合思想方法的具体体现.
填一填·知识要点、记下疑难点
3.3.1
1.二元一次不等式组是一组对变量 x、y 的约束条件,这组

约束条件都是关于 x、y 的 一次 不等式,所以又称为线性
讲 栏

《二元一次不等式组与平面区域》

《二元一次不等式组与平面区域》

(4)二元一次不等式(组)的解集与平面直角 坐标系内的点之间的关系:
二元一次不等式(组)的解集是有序实数对, 而点的坐标也是有序实数对,因此,有序 实数对就可以看成是平面内点的坐标, 进而,二元一次不等式(组)的解集就 可以看成是直角坐标系内的点构成的集合。
(5)探究二元一次不等式(组)的解集表示的 图形 (1)回忆、思考 回忆:初中一元一次不等式(组)的解 集 所表示的图形 思考:在直角坐标系内,二元一次不 等式(组)的解集表示什么图形?
3.3.1《二元一次不等式 (组)与平面区域》
二元一次不等式和二元一次不等式组的定义
(1)二元一次不等式:
含有两个未知数,并且未知数的最高次数是1的 不等式叫做二元一次不等式 ;
(2)二元一次不等式组:
由几个二元一次不等式组成的不等式组 称为二元一次不等式组。
(3)二元一次不等式(组)的解集:
满足二元一次不等式(组)的x和y的取 值构成有序实数对(x,y),所有这样的 有序实数(x,y)构成的集合称为二元一 次不等式(组)的解集。
归纳:不等式组表示的平面区域是各 个不等式所表示的平面点集的交集, 因而是各个不等式所表示的平面区域 的公共部分。
2.画出下列不等式组所表示的平面区域: (1)2 x y 1 0 解:(1)在同一个直角坐标系中,
x y 1≥ 0
作出直线2x-y+1=0(虚线),
x+y-1=0(实线)。 用例1的选点方法,分别作出不等式2x- y+1>0,x+y-1≥0所表示的平面区域,
则它们的交集就是已知不等式组所 表示的区域。
y 3 2 1 -1 O 2y+1=0 -1 -2 1 2 3 x-3=0 2x-3y+2=0

二元一次不等式(组)与平面区域nbsp课件1

二元一次不等式(组)与平面区域nbsp课件1

例3 、要将两种大小不同的钢板截成A.B.C三种规格,每张钢板可同时 截得三种规格的小钢板的块数如下表所示: 规格类型 钢板类型 第一种钢板 第二种钢板
A规格 2 1
B规格 1 2
C规格 1 3
今需要A.B.C三种规格的成品分别为15,18,27块,用数 学关系式和图形表示上述要求。
解:设需要截第一种钢板x张,第二种
2、画图时应非常准确,否则将得不到正确结果。 3、熟记“直线定界、特殊点定域”方法的内涵。
作业:
P93
A
1, 2.B1,2
平面区域的确定常采 用“直线定界,特殊 x 点定域”的方法。
x+4y<4
练习:
1、不等式x-2y+6>0表示的平面区域在直线的x -2y+6=0的( B ) A. 右上方 B. 右下方 C、左上方 D、左下方 3 -6 ) D y -3 图(1) y y
x
2、不等式3x+2y-6≤0表示的平面区域是( Y y
归纳:
对于直线Ax + By + C = O
(1)若A>0,B<0 (2)A>0,B>0 y y Ax+By+C<0在左上方 Ax +B y+ C>0在右上方
0 0 x Ax +B y+ C>0在右下方 Ax+By+C<0在左 下方
x
应该注意的几个问题:
1、若不等式中不含0,则边界应画成虚线,
否则应画成实线。
钢板y张,则
2x+y≥15 X+2y≥18 X+3y ≥27 x ≥0 y ≥0
18 16

二元一次不等式组与平面区域课件42张

二元一次不等式组与平面区域课件42张
二元一次不等式组与平面区域 课件42张
4 简单线性规划
4.1 二元一次不等式(组)与平面区域
1.一般地,直线l:ax+by+c=0把直角坐标平面分成 了三个部分:
(1)直线l上的点(x,y)的坐标满足____________; (2)直线l一侧的平面区域内的点(x,y)的坐标满足ax+by +c>0; (3)直线l另一侧的平面区域内的点(x,y)的坐标满足 ________________.
x+y≤3,即x+y-3≤0,表示直线x+y-3=0上及左下 方区域;
x≥0表示y轴及其右方区域; y≥0表示x轴及其上方区域.
综上知,不等式组(1)表示的区域如图①所示的阴影部 分.


(2)x-y≤2,即 x-y-2≤0,表示直线 x-y-2=0 上及 左上方区域;
2x+y≥1,即 2x+y-1≥0,表示直线 2x+y-1=0 右上 方区域;
解:设调配 A 型卡车 x 辆,B 型卡车 y 辆,由题意可知 x,y 应满足以下关系:
24x+30y≥180, 0≤x≤8, 0≤y≤4, 0<x+y≤10, x∈N,y∈N.
[易错警示] 虚实不分而致误 [典例] 画出不等式(x-y)(x+2y-2)>0所表示的平面区 域. [错解] 错解一:
只需在直线l的某一侧的平面区域内,任取一特殊点 (x0,y0),从ax0+by0+c值的正负,即可判断不等式表示的 平面区域.
2.二元一次不等式表示的平面区域 (1)设直线l为Ax+By+C=0,那么Ax+By+C>0表示直 线l某一侧的平面的区域,Ax+By+C≥0表示包括 __________的区域. (2)假设点P(x0,y0)与点P1(x1,y1)在l:Ax+By+C=0 的同侧,那么Ax0+By0+C与Ax1+By1+C__________.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一般地,把直线l:Ax+By+C=0画成实线,表示平面区 域_包__括__这一边界直线;若把直线画成虚线,则表示平面 区域__不__包__括__这一边界. 2.二元一次不等式组表示平面区域 不等式组表示的平面区域是各个不等式所表示平面点集的 _交__集__ ,因而是各个不等式所表示平面区域的公共部分. 想一想: 若A(x1,y1),B(x2,y2)两点在直线Ax+By+C= 0的同侧或两侧应满足什么条件? 提示 若直线l:Ax+By+C=0,记f(x,y)=Ax+By+ C,M(x1,y1),N(x2,y2),则
规律方法 (1)不等式组的解集是各不等式解集的交集,所 以不等式组表示的平面区域是各不等式所表示的平面区域 的公共部分.(2)特别要注意不等式是否取等号,虚线、实 线不要混淆.
【训练2】 本例中的三条直线交点设 为A,B,C,试用不等式表示如图 阴影部分所示的平面区域(直线 AC,BC为实线,AB为虚线).
解 结合本例中的直线方程知阴影部
§4 简单线性规划
4.1 二元一次不等式(组)与平面区域
【课标要求】 1.了解二元一次不等式的几何意义. 2.会画二元一次不等式表示的平面区域.
【核心扫描】 1.准确判断二元一次不等式表示的平面区域.(重点) 2.画出二元一次不等式表示的平面区域.(难点) 3.和直线方程、二元一次方程、不等式联系密切.
(2)将y≤-2x+3变形为2x+y-3≤0, 首先画出直线2x+y-3=0(画成实线), 取点(0,0),代入2x+y-3,有2×0+0-3=-3<0, ∴2x+y-3<0表示平面区域是直线2x+y-3=0的左下方 的平面区域. ∴2x+y-3≤0表示的区域是直线2x+y-3=0以及左下方 的平面区域.如图(2)所示.
2.平面区域的画法及判定方法 (1)画平面区域的步骤:①画线——画出不等式所对应的方程 所表示的直线(如果原不等式中带等号,则画成实线,否则, 画成虚线);
②定侧——将某个区域位置明显的特殊点的坐标代入不等式, 根据“同侧同号,异侧异号”的规律确定不等式所表示的平面区 域在直线的哪一侧,常用的特殊点(0,0)、(±1,0)、(0,±1). ③求“交”——如果平面区域是由不等式组决定的,则在确定了 各个不等式所表示的区域后,再求这些区域的公共部分,这个 公共部分就是不等式所表示的平面区域.俗称“直线定界,特 殊点定域”. (2)判定平面区域的方法: 一般地,直线Ax+By+C=0(A,B不同时为零)把平面分成三 部分,两个区域:Ax+By+C>0(B>0)和Ax+By+C<0(B< 0)表示直线上方的平面区域;Ax+By+C>0(B<0)和Ax+By+ C<0(B>0)表示直线下方的平面区域. 特别地,若直线为y=kx+b,(k≠0),则y>kx+b表示直线上方 的平面区域;y<kx+b表示直线下方的平面区域.
自学导引
1.二元一次不等式表示平面区域 一般地,直线l:Ax+By+C=0把直角坐标平面分成了三 个部分:(1)直线l上的点(x,y)的坐标满足Ax+By+C= 0;(2)直线l一侧的平面区域内的点(x,y)的坐标满足Ax+ By+C>0;(3)直线l另一侧的平面区域内的点(x,y)的坐标 满足Ax+By+C<0. 所以,只需在直线l的某一侧的平面区域内,任取一特殊点 (x0,y0),从_A__x_0+__B__y0_+__C__值的正负、即可判断不等式 _表__示__的__平__面__区__域__.
题型二 不等式组表示的区域
【例2】 画出不等式组x3-x+y+2y1-≥6≥0 0
① ②
表示式均含有等号;(2)直线x=3与 x轴垂直.解答本题可先分别画出不等式①②③表示的平 面区域,再找它们的公共部分.
解 如图所示.不等式①表示直线 x-y+1=0的右下方(包括直线)的 平面区域;不等式②表示直线3x+ 2y-6=0的右上方(包括直线)的平 面区域; 不等式③表示直线x-3=0左方(包 括直线)的平面区域. 所以原不等式组表示上述平面区域 的公共部分(阴影部分).
(2)设F(x,y)=y-2x, 画出直线y-2x=0, ∵F(1,0)=0-2×1=-2<0, ∴y-2x>0(即y>2x)表示的区域为不含(1,0)的一侧,因此 所求为如图阴影所示的区域,不包括边界.
规律方法 画二元一次不等式表示平面区域时,先画直 线,当不等式中含有等号时画成实线,不含等号时画成虚 线,然后把原点坐标代入不等式检验,成立时原点所在一 侧的半平面为所求平面区域,不成立时,另一侧的半个平 面为所求作的平面区域,当原点正好在所画直线上时,另 外选一个特殊点如(0,1)或(1,0)代入不等式检验即可,得到 的平面区域需要画成阴影表示.
【训练1】 画出下列不等式表示的平面区域 (1)2x+y-10<0; (2)y≤-2x+3. 解 (1)先画出直线2x+y-10=0(画成虚线),取点(0,0)代 入2x+y-10,有2×0+0-10=-10<0, ∴2x+y-10<0表示的区域是直线2x+y-10=0的左下方 的平面区域,如图(1)所示.
题型一 二元一次不等式表示的区域
【例1】 画出下面二元一次不等式表示的平面区域 (1)x-2y+4≥0; (2)y>2x
解 (1)设F(x,y)=x-2y+4,画出直线x-2y+4=0, ∵F(0,0)=0-2×0+4=4≥0, ∴x-2y+4≥0表示的区域为含(0,0)的一侧,因此所求为如 图阴影所示的区域,包括边界.
名师点睛
1.二元一次不等式表示平面区域需注意的问题 (1)平面内的直线可以视为二元一次方程的几何表示,二元一 次不等式表示的平面区域就是二元一次不等式的几何表示; (2)用二元一次不等式确定平面区域的方法是“线定界,点定 域”,定边界时需分清虚实,定区域时常选原点(C≠0时)验证. (3)二元一次不等式组表示的平面区域是各不等式表示平面区 域的公共部分.
相关文档
最新文档