平抛与圆周
高考物理一轮复习专题热点平抛运动与圆周运动的综合问题讲义
专题热点四 平抛运动与圆周运动的综合问题一、水平面内圆周运动与平抛运动的综合问题1.命题角度此类问题往往是物体先做水平面内的匀速圆周运动,后做平抛运动,有时还要结合能量关系分析求解,多以选择题或计算题形式考查.2.解题关键(1)明确水平面内匀速圆周运动的向心力来源,根据牛顿第二定律和向心力公式列方程.(2)平抛运动一般是沿水平方向和竖直方向分解速度或位移.(3)速度是联系前后两个过程的关键物理量,前一个过程的末速度是后一个过程的初速度.【例1】 地面上有一个半径为R 的圆形跑道,高为h的平台边缘上的P 点在地面上P ′点的正上方,P ′与跑道圆心O 的距离为L (L>R),如图4-1所示,跑道上停有一辆小车,现从P 点水平抛出小沙袋,使其落入小车中(沙袋所受空气阻力不计).问:图4-1(1)当小车分别位于A 点和B 点时(∠A OB=90°),沙袋被抛出时的初速度各为多大?(2)若小车在跑道上运动,则沙袋被抛出时的初速度在什么范围内?(3)若小车沿跑道顺时针运动,当小车恰好经过A 点时,将沙袋抛出,为使沙袋能在B 处落入小车中,小车的速率v 应满足什么条件?【解析】 (1)沙袋从P点被抛出后做平抛运动,设它的落地时间为t,则h =12gt 2,解得t=错误! 当小车位于A 点时.有x A =v At =L -R可得v A =(L -R )错误!当小车位于B点时,有x B =v B t =L 2+R 2可得v B =错误!(2)若小车在跑道上运动,要使沙袋落入小车,最小的抛出速度为v 0min =v A =(L-R )\r(\f(g,2h ))若当小车经过C 点时沙袋刚好落入,抛出时的初速度最大,有x C =v0m ax t =L +R可得v 0max =(L+R )错误!所以沙袋被抛出时的初速度范围为(L -R )错误!≤v0≤(L +R )错误!(3)要使沙袋能在B 处落入小车中,小车运动的时间应与沙袋下落的时间相同t AB =(n+14)2πRv (n =0,1,2,3,…) t AB =t =错误!得v =错误!错误!(n=0,1,2,3,…)【答案】 (1)(L -R )错误! 错误!(2)(L -R)\r(\f (g,2h ))≤v 0≤(L +R)\f(g,2h )(3)\f(4n +1πR ,2)错误!(n =0,1,2,3,…)二、竖直面内圆周运动与平抛运动的综合问题1.命题角度此类问题有时物体先做竖直面内的变速圆周运动,后做平抛运动,有时物体先做平抛运动,后做竖直面内的变速圆周运动,往往要结合能量关系求解,多以计算题形式考查.2.解题关键(1)竖直面内的圆周运动首先要明确是“轻杆模型”还是“轻绳模型”,然后分析物体能够到达圆周最高点的临界条件.(2)速度也是联系前后两个过程的关键物理量.图4-2【例2】 如图4-2所示,一不可伸长的轻绳上端悬挂于O 点,下端系一质量m =1.0 k g的小球.现将小球拉到A点(保持绳绷直)由静止释放,当它经过B 点时绳恰好被拉断,小球平抛后落在水平地面上的C 点,地面上的D 点与OB 在同一竖直线上,已知绳长L =1.0 m,B 点离地高度H =1.0 m ,A 、B 两点的高度差h =0.5 m,重力加速度g 取10 m/s 2,不计空气影响,求:(1)地面上DC 两点间的距离s ;(2)轻绳所受的最大拉力大小.【解析】 分段研究小球的运动过程,A到B 过程中小球在竖直面内做圆周运动,机械能守恒;B 到C 过程中小球做平抛运动,根据平抛运动的分解求解.注意隐含条件:恰好被拉断时,轻绳达到最大张力.(1)小球从A 到B 过程机械能守恒,有m gh =12mv 错误!①小球从B到C做平抛运动,在竖直方向上有H=\f(1,2)gt2②在水平方向上有s=v B t③由①②③式解得s≈1.41 m④(2)小球下摆到达B点时,绳的拉力和重力的合力提供向心力,有F-mg=m错误!⑤由①⑤式解得F=20 N根据牛顿第三定律F′=-F轻绳所受的最大拉力为20 N.【答案】 (1)1.41 m (2)20N。
4.平抛与圆周运动组合问题
4. 平抛与圆周运动组合问题一、基础知识平抛+圆周运动往往涉及多个运动过程和功能关系,解题的关键是做好两点分析:1.临界点分析:对于物体在临界点相关的多个物理量,需要区分哪些物理量能够突变,哪些物理量不能突变,而不能突变的物理量(一般指线速度)往往是解决问题的突破口.2.运动过程分析:对于物体参与的多个运动过程,要仔细分析每个运动过程做何种运动.若为圆周运动,应明确是水平面的匀速圆周运动,还是竖直平面的变速圆周运动,机械能是否守恒;若为抛体运动,应明确是平抛运动,还是类平抛运动,垂直于初速度方向的力是哪个力.二、典型例题[例1] 如图所示为竖直放置的四分之一光滑圆弧轨道,O 点是其圆心,半径R =0.8 m ,OA 水平、OB 竖直.轨道底端距水平地面的高度h =0.8 m .从轨道顶端A 由静止释放一个质量m 1=0.1 kg 小球,小球到达轨道底端B 时,恰好与静止在B 点的另一个小球m 2发生碰撞,碰后它们粘在一起水平飞出,落地点C 与B 点之间的水平距离x =0.4 m .忽略空气阻力,重力加速度g =10 m/s 2.求:(1)碰撞前瞬间入射小球的速度大小v 1;(2)两球从B 点飞出时的速度大小v 2;(3)碰后瞬间两小球对轨道压力的大小.解析 (1)从A 点运动的小球向下运动的过程中机械能守恒,得:mgR =12mv 21 代入数据得:v 1=4 m/s(2)两球做平抛运动,根据平抛运动规律得:竖直方向上有:h =12gt 2 代入数据解得:t =0.4 s水平方向上有:x =v 2t代入数据解得:v 2=1 m/s(3)两球碰撞,规定向左为正方向,根据动量守恒定律得:m 1v 1=(m 1+m 2)v 2解得:m 2=3m 1=3×0.1=0.3 kg碰撞后两个小球受到的合外力提供向心力,则:F N -(m 1+m 2)g =(m 1+m 2)v 22R代入数据得:F N =4.5 N由牛顿第三定律可知,小球对轨道的压力也是4.5 N ,方向竖直向下.答案 (1)4 m/s (2)1 m/s (3)4.5 N二、针对训练1.固定在竖直平面内的光滑圆弧轨道ABCD ,其A 点与圆心等高,D 点为轨道的最高点,DB 为竖直线,AC 为水平线,AE 为水平面,如图所示.今使小球自A 点正上方某处由静止释放,且从A 点进入圆弧轨道运动,只要适当调节释放点的高度,总能使球通过最高点D ,则小球通过D 点后( )A .一定会落到水平面AE 上B .一定会再次落到圆弧轨道上C .可能会再次落到圆弧轨道上D .不能确定解析:选A.如果小球恰能通过最高点D ,根据mg =m v 2D R,得v D =gR , 知小球在最高点的最小速度为gR .根据R =12gt 2得:t =2R g. 则平抛运动的水平位移为:x =gR ·2R g =2R .知小球一定落在水平面AE 上.故A 正确,B 、C 、D 错误.2.如图所示,从A 点以v 0=4 m/s 的水平速度抛出一质量m =1 kg 的小物块(可视为质点),当物块运动至B 点时,恰好沿切线方向进入光滑圆弧轨道BC ,经圆弧轨道后滑上与C 点等高、静止在粗糙水平面的长木板上,圆弧轨道C 端切线水平,已知长木板的质量M =4 kg ,A 、B 两点距C 点的高度分别为H =0.6 m 、h =0.15 m ,R =0.75 m ,物块与长木板之间的动摩擦因数μ1=0.5,长木板与地面间的动摩擦因数μ2=0.2,g 取10 m/s 2.求:(1)小物块运动至B 点时的速度大小和方向;(2)小物块滑动至C 点时,对圆弧轨道C 点的压力;。
平抛运动与竖直面内圆周运动
一、平抛运动1、定义:平抛运动是指物体只在作用下,以一定初速度开始的运动。
2、运动性质:尽管其速度大小和方向时刻在改变,但其运动的加速度却恒为重力加速度g,因而平抛运动是一个运动。
ga=3、研究平抛运动的方法:通常,可以把平抛运动看作为两个分运动的合动动:一个是水平方向(垂直于恒力方向)的运动,一个是竖直方向(沿着恒力方向)的运动。
4、平抛运动的规律①水平速度:,竖直速度:合速度(实际速度)的大小:合速度用下落高度与初速度表示物体的合速度v与x轴之间的夹角为:②水平位移:,竖直位移;飞行时间水平射程用初速度和下落高度表示合位移(实际位移)的大小:物体的合位移s与x轴之间的夹角为:合速度、合位移与水平方向夹角正切值关系推论:合速度反向延长线经过二、竖直面内圆周运动1.如图所示细绳系着的小球或在圆轨道内侧运动的小球,当它们通过最高点的条件(1)时,物体恰好通过轨道最高点,绳或轨道与物体间无作用力。
(2) 时,物体不能达到最高点(3)时,方程,速度增大时压力,绳或轨道对物体产生向下的作用力。
2.在轻杆或管的约束下的圆周运动:杆和管对物体能产生拉力,也能产生支持力当物体能通过最高点时的条件(1)当0v=时,,杆中表现为支持力。
(物体到达最高点的速度为0。
)(2)当时,方程,速度增大压力,杆或轨道产生对物体向上的支持力。
(3)当时,方程,FN=0,杆或轨道对物体无作用力。
(4)当时,方程,速度增大压力,杆或轨道对物体产生向下的作用力。
VyxSOxx2/V yV0V x=V0P()x y,θα。
平抛运动与圆周运动的综合问题探究
张 秀 亮
平 抛抛 运动 与 圆周 运 动结 合 的 问题 , 应 守恒 有 : 1 用运 动 的合 成 与分解 的思想 , 化 曲为直 . 这 两 了 + 尺+ +K …c o s O) m vA m v c2+mgt 种运 动 联 系 的 纽 带— — 物 体 的 速 度 , 是 解 题 的关 键 . 得 c = √ 7 m / S 小球 做 圆周 运 动 , 则 平 抛 运 动 与 竖 直 面 内 的 圆 周
( 3 )小球 到 达 圆弧 最 高 点 C 时 对 轨 道 道 的 压 力 大 小 ; ( 3 ) 平 台末 端 0 点 到 A 点 的 竖 直 高 的 压 力.
解析
( 1 )小
照 H.
球 到 A点 的 速 度 如 图 2 所示 , 由图可 知
o
=
解析
,
( 1 )小 球恰 通过 C点 , 则m g
:
一
、
2
,
运 动
Nc+ m g=m 得Ⅳ c: 8 N
竖 直平 面 内 圆周运 动 的最 高点 和最 低 点 由牛顿 第 三 定 律 可 知 球 对 轨 道 的 压 力 的速 度 常用 动 能 定 理 来 建 立 关 系 , 然 后 结 合 N 。 = N。= 8 N, 方 向竖 直 向上. 牛顿 第 二定 律运 用 动力 学来 求 解.
运 动
拉住 线 的另 一 端 , 使 小球 在 光 滑 的 水 平 桌 面
上做 匀速 圆周运 动 , 使 小球 的 转速 很 缓 慢 地 增加 , 当小球 的 转速 增加 到 开 始 时转 速 的 3
. 5 m 的 圆截 去 了左上 角 1 2 7 。 的 圆弧 , C B为 0 . 3 m, 0 =6 0 。 , 小球 到 达 A 点 时 的 速 度 = 2 其 竖直 直径 , ( s i n 5 3 。 = 0 . 8 , C O S 5 3 。 =0 . 6, 重 4 m / s . ( 取 g=1 0 m/ s ) 求: 力加 速度 g=1 0 m/ s ) 求: ( 1 )小球 做 平抛 运动 的初 速 度 。 ; ( 1 )小球 经过 C点 的速度 大小; ( 2 )P 点 与 A 点 的 水 平 距 离 和 竖 直 ( 2 )小球 运 动 到 轨 道 最低 点 B 时 对轨 高度 ;
曲线运动(平抛运动、圆周运动)
曲线运动(平抛运动、圆周运动)曲线运动及其特点(1)物体作曲线运动的条件:运动质点所受的合外力(或加速度)的方向跟它的速度方向不在同一直线(2)曲线运动的特点:质点在某一点的速度方向,就是通过该点的曲线的切线方向。
质点的速度方向时刻在改变,所以曲线运动一定是变速运动。
(3)曲线运动的轨迹:做曲线运动的物体,其轨迹向合外力所指一方弯曲,若已知物体的运动轨迹,可判断出物体所受合外力的大致方向,如平抛运动的轨迹向下弯曲,圆周运动的轨迹总向圆心弯曲等。
★★★平抛运动(1)特点:①具有水平方向的初速度;②只受重力作用,是加速度为重力加速度g的匀变速曲线运动。
(2)运动规律:平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动。
①建立直角坐标系(一般以抛出点为坐标原点O,以初速度vo方向为x轴正方向,竖直向下为y轴正方向);②由两个分运动规律来处理(如右图)。
★★★圆周运动(1)描述圆周运动的物理量①线速度:描述质点做圆周运动的快慢,大小v=s/t(s是t时间内通过弧长),方向为质点在圆弧某点的线速度方向沿圆弧该点的切线方向②角速度:描述质点绕圆心转动的快慢,大小ω=φ/t(单位rad/s),φ是连接质点和圆心的半径在t时间内转过的角度。
其方向在中学阶段不研究。
③周期T,频率f---------做圆周运动的物体运动一周所用的时间叫做周期。
做圆周运动的物体单位时间内沿圆周绕圆心转过的圈数叫做频率。
④向心力:总是指向圆心,产生向心加速度,向心力只改变线速度的方向,不改变速度的大小。
大小[注意]向心力是根据力的效果命名的。
在分析做圆周运动的质点受力情况时,千万不可在物体受力之外再添加一个向心力。
(2)匀速圆周运动:线速度的大小恒定,角速度、周期和频率都是恒定不变的,向心加速度和向心力的大小也都是恒定不变的,是速度大小不变而速度方向时刻在变的变速曲线运动。
(3)变速圆周运动:速度大小方向都发生变化,不仅存在着向心加速度(改变速度的方向),而且还存在着切向加速度(方向沿着轨道的切线方向,用来改变速度的大小)。
平抛、圆周运动
四、平抛运动当物体初速度水平且仅受重力作用时的运动,被称为平抛运动。
其轨迹为抛物线,性质为匀变速运动。
平抛运动可分解为水平方向的匀速运动和竖直方向的自由落体运动这两个分运动。
广义地说,当物体所受的合外力恒定且与初速度垂直时,做类平抛运动。
1、 (合成与分解的角度)平抛运动基本规律① 速度:0v v x =,gt v y = 合速度 22yx v v v += 方向 :tan θ=oxy v gt v v =②位移x =v o t y =221gt 合位移大小:s =22y x + 方向:tan α=t v g x y o ⋅=2 ③时间由y =221gt 得t =x y 2(由下落的高度y 决定) 竖直方向自由落体运动,匀变速直线运动的一切规律在竖直方向上都成立。
④一个有用的推论平抛物体任意时刻瞬时时速度方向的反向延长线与初速度延长线的交点到抛出点的距离都等于水平位移的一半。
证明:设时间t 内物体的水平位移为s ,竖直位移为h ,则末速度的水平分量v x =v 0=s/t ,而竖直分量v y =2h/t , s hv v 2tan x y ==α,所以有2tan s h s =='α 2、平抛运动是匀变速曲线运动3、平抛中能量守恒注意:两个分解(位移和速度)和两个物理量(角度和时间)4.应用举例【例5】 已知网高H ,半场长L ,扣球点高h ,扣球点离网水平距离s 、求:水平扣球速度v 的取值范围。
解析:假设运动员用速度v max 扣球时,球刚好不会出界,用速度v min 扣球时,球刚好不触网,从图中数量关系可得:()hgs L g h s L v 2)(2/max +=+=; )(2)(2/min H h gsg H h s v -=-= hH s LvOAθ v v 0v yA OB D C实际扣球速度应在这两个值之间。
例6、如图8在倾角为θ的斜面顶端A 处以速度V 0水平抛出一小球,落在斜面上的某一点B 处,设空气阻力不计,求(1)小球从A 运动到B 处所需的时间;(2)从抛出开始计时,经过多长时间小球离斜面的距离达到最大?分析与解:(1)小球做平抛运动,同时受到斜面体的限制,设从小球从A 运动到B 处所需的时间为t,则: 水平位移为x=V 0t 竖直位移为y=221gt 数学关系得到:gV t t V gt θθtan 2,tan )(21002== (2)从抛出开始计时,经过t 1时间小球离斜面的距离达到最大,当小球的速度与斜面平行时,小球离斜面的距离达到最大。
匀变速直线运动、平抛、圆周、机械能公式
一、匀变速直线运动:
1、加速度定义式,决定式
2、末速度公式
3、平均速度公式
4、中间时刻瞬时速度公式
5、位移公式、、
6、相邻的相等时间间隔的位移差
7、若初速度为零,
则:第一秒末、第二秒末、第三秒末……的速度比
前一秒、前两秒、前三秒……的位移比
第一秒内、第二秒内、第三秒内……的位移比
第一个X、第二个X、第三个X ……所用时间比
8、自由落体的加速度末速度高度
二、平抛运动的运动规律
平抛运动:具有速度的物体,只受力作用。
变速曲线运动
1、水平方向的运动规律
(1)受力情况:
(2)初速度情况:
(3)结论:平抛运动在水平方向的分运动为运动
2、竖直方向的运动规律
(1)受力情况:
(2)初速度情况:
(3)结论:平抛运动在竖直方向上的分运动是运动。
3、速度
4、位移
水平x= ,竖直y=
t
时间内小球合位移是:
若设s与+x方向(即速度方向)的夹角为θ,如图,则其正切值为
三、圆周运动
1、线速度公式
2、角速度公式
4、线速度与角速度的关系
5、周期、频率和转速ω= T=
6、向心加速度公式
7、向心力公式
向心力计算用减去
四、功率和功
1、功的公式
2、功率公式
3、机车启动问题:功率的表达式加速度的求解式
4、重力做功公式
5、重力势能公式
6、动能公式
7、动能定理表达式
动能定理内容
8、机械能守恒定律表达式
机械能守恒的条件
机械能守恒常见类型。
圆周运动与平抛运动的综合问题精讲
长为L的细绳,绳的下端挂一个质量为m
的小球,已知绳能承受的最大拉力为2mg,
小球在水平面内做圆周运动,当速度逐渐
增大到绳断裂后,小球恰好以速度v2= 7gL 落到墙脚边。求: (1)绳断裂瞬间的速度v1; (2)圆柱形房屋的高度H和半径。
【解析】(1)小球在绳断前瞬间受力如图所示: 由牛顿第二定律得: 竖直方向:FTmcosθ-mg=0
d;
(3)若选手摆到最低点时松手,小明认为绳越长,在浮台上的落
点距岸边越远;小阳认为绳越短,落点距岸边越远,请通过推算
说明你的观点。
【解析】(1)选手下摆的过程由动能定理得: mgl(1-cosα)=
1 mv 2 2
2 v 选手在最低点由牛顿第二定律得: F′-mg= m l
解得:F′=(3-2cosα)mg=1 080 N 由牛顿第三定律得选手对绳的拉力: F=F′=1 080 N (2)由动能定理得:mg(H-lcosα+d)-(f1+f2)d=0 解得:d=
2.解题关键:
(1)明确水平面内匀速圆周运动的向心力来源,根据牛顿第二定
律和向心力公式列方程。
(2)平抛运动一般是沿水平方向和竖直方向分解速度或位移。 (3)速度是联系前后两个过程的关键物理量,前一个过程的末速 度是后一个过程的初速度。
【例证1】(2013·台州模拟)如图所示, 在圆柱形房屋天花板中心O点悬挂一根
1 2 1 2 2 得: mvM mvD mgR
2 v 在M点,设轨道对物块的压力为FN,则:FN+mg= m M R
2
2
2
联立以上两式,解得:FN=(1-
2 )mg<0
即物块不能到达M点
答案:(1)2.5 m (2)不能到达M点
2020高考物理重难点04 平抛运动与圆周运动(解析版)
重难点04 平抛运动与圆周运动【知识梳理】考点一 平抛运动基本规律的理解 1.飞行时间:由ght 2=知,时间取决于下落高度h ,与初速度v 0无关. 2.水平射程:x =v 0t =v 0gh2,即水平射程由初速度v 0和下落高度h 共同决定,与其他因素无关. 3.落地速度:gh v v v v x y x 2222+=+=,以θ表示落地速度与x 轴正方向的夹角,有2tan v ghv v xy ==θ,所以落地速度也只与初速度v 0和下落高度h 有关. 4.速度改变量:因为平抛运动的加速度为恒定的重力加速度g ,所以做平抛运动的物体在任意相等时间间隔Δt 内的速度改变量Δv =g Δt ;相同,方向恒为竖直向下,如图所示.5.两个重要推论(1)做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图中A 点和B 点所示.(2)做平抛(或类平抛)运动的物体在任意时刻任一位置处,设其末速度方向与水平方向的夹角为α,位移与水平方向的夹角为θ,则tan α=2tan θ. 【重点归纳】1.在研究平抛运动问题时,根据运动效果的等效性,利用运动分解的方法,将其转化为我们所熟悉的两个方向上的直线运动,即水平方向的匀速直线运动和竖直方向的自由落体运动.再运用运动合成的方法求出平抛运动的规律.这种处理问题的方法可以变曲线运动为直线运动,变复杂运动为简单运动,是处理曲线运动问题的一种重要的思想方法.2.常见平抛运动模型的运动时间的计算方法 (1)在水平地面上空h 处平抛: 由221gt h =知ght 2=,即t 由高度h 决定. (2)在半圆内的平抛运动(如图),由半径和几何关系制约时间t :221gt h =t v h R R 022=-+联立两方程可求t . (3)斜面上的平抛问题: ①顺着斜面平抛(如图)方法:分解位移 x =v 0t221gt y =x y=θtan可求得gv t θtan 20=②对着斜面平抛(如图)方法:分解速度 v x =v 0 v y =gttan v gt v v xy ==θ 可求得gv t θtan 0=(4)对着竖直墙壁平抛(如图)水平初速度v 0不同时,虽然落点不同,但水平位移相同.vd t =3.求解多体平抛问题的三点注意(1)若两物体同时从同一高度(或同一点)抛出,则两物体始终在同一高度,二者间距只取决于两物体的水平分运动.(2)若两物体同时从不同高度抛出,则两物体高度差始终与抛出点高度差相同,二者间距由两物体的水平分运动和竖直高度差决定.(3)若两物体从同一点先后抛出,两物体竖直高度差随时间均匀增大,二者间距取决于两物体的水平分运动和竖直分运动.考点二圆周运动中的运动学分析描述圆周运动的物理量主要有线速度、角速度、周期、频率、转速、向心加速度、向心力等,现比较如下表:1.传动装置(1)高中阶段所接触的传动主要有:①皮带传动(线速度大小相等);②同轴传动(角速度相等);③齿轮传动(线速度大小相等);④摩擦传动(线速度大小相等).(2)传动装置的特点:(1)同轴传动:固定在一起共轴转动的物体上各点角速度相同;(2)皮带传动、齿轮传动和摩擦传动:皮带(或齿轮)传动和不打滑的摩擦传动的两轮边缘上各点线速度大小相等.2.圆周运动各物理量间的关系(1)对公式v =ωr 的理解 当r 一定时,v 与ω成正比. 当ω一定时,v 与r 成正比. 当v 一定时,ω与r 成反比.(2)对a =rv 2=ω2r =ωv 的理解在v 一定时,a 与r 成反比;在ω一定时,a 与r 成正比. 考点三 竖直平面内圆周运动的绳模型与杆模型问题1.在竖直平面内做圆周运动的物体,按运动到轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接、沿内轨道运动的过山车等),称为“绳(环)约束模型”,二是有支撑(如球与杆连接、在弯管内的运动等),称为“杆(管道)约束模型”. 2.绳、杆模型涉及的临界问题竖直面内圆周运动的求解思路(1)定模型:首先判断是轻绳模型还是轻杆模型,两种模型过最高点的临界条件不同. (2)确定临界点:gr v =临,对轻绳模型来说是能否通过最高点的临界点,而对轻杆模型来说是F N表现为支持力还是拉力的临界点.(3)研究状态:通常情况下竖直平面内的圆周运动只涉及最高点和最低点的运动情况.(4)受力分析:对物体在最高点或最低点时进行受力分析,根据牛顿第二定律列出方程,F 合=F 向. (5)过程分析:应用动能定理或机械能守恒定律将初、末两个状态联系起来列方程. 【限时检测】(建议用时:30分钟)1.(2019·新课标全国Ⅱ卷)如图(a ),在跳台滑雪比赛中,运动员在空中滑翔时身体的姿态会影响其下落的速度和滑翔的距离。
热点专题系列4 圆周运动与平抛运动的综合问题
热点专题系列(四)圆周运动与平抛运动的综合问题热点概述:圆周运动与平抛运动的综合问题,是高考的热点,也是高考的重点。
此类综合问题主要是水平面内的圆周运动与平抛运动的综合考查和竖直面内圆周运动与平抛运动的综合考查。
[热点透析]水平面内的圆周运动与平抛运动的综合问题1.此类问题有时是一个物体做水平面上的圆周运动,另一个物体做平抛运动,特定条件下相遇,有时是一个物体先做水平面内的匀速圆周运动,后做平抛运动,有时还要结合能量关系分析求解,多以选择题或计算题考查。
2.解题关键(1)明确水平面内匀速圆周运动的向心力来源,根据牛顿第二定律和向心力公式列方程。
(2)平抛运动一般是沿水平方向和竖直方向分解速度或位移。
(3)速度是联系前后两个过程的关键物理量,前一个过程的末速度是后一个过程的初速度。
如图所示,M是水平放置的半径足够大的圆盘,绕过其圆心的竖直轴OO′匀速转动,规定经过圆心O且水平向右为x轴正方向。
在O点正上方距盘面高为h=5 m处有一个可间断滴水的容器,从t=0时刻开始,容器沿水平轨道向x轴正方向做初速度为零的匀加速直线运动。
已知t=0时刻滴下第一滴水,以后每当前一滴水刚好落到盘面时再滴下一滴水。
(取g=10 m/s2)(1)每一滴水离开容器后经过多长时间滴落到盘面上?(2)要使每一滴水在盘面上的落点都位于同一直线上,圆盘的角速度ω应为多大?(3)当圆盘的角速度为1.5π rad/s 时,第二滴水与第三滴水在盘面上落点间的距离为2 m ,求容器的加速度a 。
[答案] (1)1 s (2)k π rad/s(k =1,2,3,…) (3)47373 m/s 2[解析] (1)离开容器后,每一滴水在竖直方向上做自由落体运动,有h =12gt 2,则每一滴水滴落到盘面上所用时间t = 2hg =1 s 。
(2)要使每一滴水在盘面上的落点都位于同一直线,则圆盘在t =1 s 内转过的弧度为k π,k 为正整数由ωt =k π得ω=k π rad/s ,其中k =1,2,3,…。
曲线运动--平抛和圆周运动专题
曲线运动曲线运动包括平抛运动、类平抛运动,圆周运动等知识。
主干知识整合一、曲线运动(曲线运动的速度方向一定改变,所以是变速运动.) 1.物体做曲线运动的条件: F 合与v 不在同一直线上。
2.做曲线运动的物体受的合力总是指向曲线凹的一侧。
(或表述为轨迹必须夹在力和速度的夹角)二、抛体运动1.平抛运动:以一定的水平初速度将物体抛出,在只受重力的情况下,物体所做的运动。
平抛运动的规律:平抛运动的处理方法是将其分解为水平方向和竖直方向的两个分运动。
(1)水平方向:做匀速直线运动,v x = v 0,x = v o t ,(2)竖直方向:做自由落体运动,v y = gt ,y = 12gt 2 (3)任意时刻位移22yx x +=2tan υθgt x y==(4)任意时刻速度:22022)(gt v v v v yx+=+=tan y xv gtv υα==2.平抛运动的两个重要推论(1)做平抛(或类平抛)运动的物体任意时刻的瞬时速度的反向延长线一定通过此时水平位移的中点;(2)做平抛或类平抛运动的物体在任意时刻、任意位置处设其瞬时速度与水平方向的夹角为θ、位移与水平方向的夹角为φ,则有tan θ=2tan φ。
3.类平抛运动:以一定的初速度将物体抛出,如果物体受的合力恒定且与初速度方向垂直,则物体所做的运动为类平抛运动。
类平抛运动的公式:三、圆周运动物理量 大小方向 物理意义 线速度 v =x t =2πr T 圆弧上各点的切线方向 描述质点沿圆周运动的快慢角速度 ω=φt =2πT中学不研究其方向周期、频率 T =1f =2πr v无方向向心加速度 a = = 时刻指向圆心描述线速度方向改变的快慢相互关系a = = = =同一转轴物体上各点的角速度相等,皮带传动轮子边缘各点的线速度相等。
2、圆周运动及其临界问题竖直面内圆周运动的两种临界问题的比较(v=gr ------------------称为临界速度)最高点无支撑最高点有支撑实例球与绳连接、水流星、翻滚过山车球与杆连接、车过拱桥、球过竖直管道、套在圆环上的物体等图示在最高 点受力重力、弹力F 弹向下或等于零,mg +F 弹= m v 2R重力、弹力F 弹向下、向上或等于零,mg ± F 弹 = m v 2R恰好过 最高点F 弹=0,mg = m v 2R,v =Rg 即在最高点速度不能为零v =0,mg = F 弹在最高点速度可为零3、向心力来源:向心力可以由重力、弹力、摩擦力等各种性质的力提供,也可以是各力的合力或某力的分力提供。
平抛运动、圆周运动及万有引力
圆周运动是常见的运动形式之一,其运动轨迹是一个圆或椭 圆。物体做圆周运动时,其速度方向始终与运动轨迹相切, 而加速度方向始终指向圆心。
圆周运动的公式和定理
总结词 圆周运动的公式和定理包括周期、 转速、向心加速度、线速度等。
3. 线速度 线速度的大小为 v = 2πr/T,方 向始终沿着圆周运动的切线方向。
详细描述
万有引力公式是描述两物体之间相互吸引的力的数学表达式。这个公式表明,两 个物体之间的万有引力与它们的质量成正比,与它们之间的距离的平方成反比。 这个公式是牛顿万有引力定律的基础。
万有引力的实例和应用
总结词
万有引力的实例包括地球对物体的吸引力、 行星之间的相互吸引以及黑洞之间的相互作 用等。万有引力在科学研究、天文学、航天 工程等领域有着广泛的应用。
04
3. 离心机
离心机利用离心力的原理,将物体从 旋转轴上分离出来。在机械制造、制 药等领域中广泛应用。
06
5. 洗衣机
洗衣机中的脱水机利用圆周运动原理,通过快 速旋转将衣物中的水分甩出。
03 万有引力
万有引力的定义
总结词
万有引力是指任何两个物体之间相互吸引的力,其大小与两个物体的质量成正比,与物体之间的距离的平方成反 比。
平抛运动与万有引力的关系
平抛运动
物体在不受其他外力的作用下, 以一定的初速度沿水平方向抛出,
仅受重力作用而做的曲线运动。
万有引力
任何两个物体间都存在相互吸引的 力,这种力与两个物体的质量成正 比,与它们之间的距离的平方成反 比。
总结
平抛运动中,物体受到的重力(即 万有引力)使物体沿着抛物线的轨 迹运动。
三者之间的关系表明,万有引力是物体运动的基本规律之一,它决定了物体的运动轨迹和状 态。无论是平抛运动、圆周运动还是其他形式的运动,都受到万有引力的影响和制约。
平抛运动圆周运动
C
处理圆周运动问题的一般步骤: (1)明确研究对象,确定圆周运动的平面和圆心位置,从而 确定向心力 方向;
(2)进行受力分析,画出受力分析图; (3)求出在半径方向的合力,即向心力; (4)根据向心力公式结合牛顿第二定律列方程求解。
(2014 年新课标一卷.20)如图,两个质量均为 m 的小木块a和 b(可视为质点) 放在水平圆盘上,a与转轴OO’的距离为 l,b 与转轴 的距离为 2l。木块与圆盘的 最大静摩擦力为木块所受重力的 k倍,重力加 速大小为 g。若圆盘从静止开始绕轴 缓慢地加速转动,用表示圆盘转动的 角速度,下列说法正确的是
右图为一种早期的自行车,这种不带 链条传动的自行车前轮的 直径很大, 这样的设计在当时主要是为了
A.提高速度 B.提高稳定性 C.骑行方便 D.减小阻力
A
如图5-26 所示,O1皮带传动装置的主动轮的轴心,轮的半 径为 r1;O2为从动轮 的轴心,轮的半径为 r2;r3为与从动轮固定在一起 的大轮的半径.已知 r2= 1.5r1,r3=2r1.A、B、C 分别是三个轮边缘上的 点,那么质点 A、B、C 的线速度 之比是_____,角速度之比是_______, 向心加速度之比是__________ ,周期之比 是_________.
C
(2012 年广东卷.17)图4 是滑道压力测试的示意图,光滑圆弧轨 道与光滑斜面相切 ,滑道底部 B 处安装一个压力传感器,其示数 N表示该 处所受压力的大小。某滑块 从斜面上不同高度 h 处由静止下滑,通过 B 时, 下列表述正确的有
A.N小于滑块重力 B.N大于滑块重力 C.N越大表明h 越大 D.N越大表明h 越小
A 的速度比B 的大 B. A 与B 的向心加速度大小相等 C. 悬挂A、B 的缆绳与竖直方向的夹角相等 D. 悬挂A 的缆绳所受的拉力比悬挂 B 的小
运动学中的平抛运动与圆周运动
运动学中的平抛运动与圆周运动运动学是物理学中研究物体的运动规律和基本运动情况的学科。
在运动学中有许多重要的运动形式,其中包括平抛运动和圆周运动。
本文将重点介绍这两种运动形式,并探讨它们的特点和应用。
一、平抛运动平抛运动,顾名思义,是指物体在水平方向上以一定的初速度被抛出后,在竖直方向上受到重力的作用而运动的过程。
平抛运动中,物体的加速度只有垂直向下的重力加速度,并且速度沿着抛出的方向保持不变。
在平抛运动中,物体的轨迹呈抛物线形状。
这是因为在水平方向上,物体的速度始终保持不变;而在竖直方向上,物体受到重力作用逐渐加速向下运动。
因此,物体的运动轨迹是在垂直方向上平均变化的。
平抛运动具有一些重要的特点。
首先,抛出的物体在沿着水平方向上的运动速度始终保持不变。
其次,抛出物体在竖直方向上的运动满足自由落体运动的规律,即竖直方向上的位移随时间的平方增加。
最后,平抛运动的时间是由物体在竖直方向上运动到最高点再下落到原点的时间所决定的。
平抛运动在实际中有着广泛的应用。
例如,投掷运动中的铁饼、标枪和投球等都属于平抛运动。
此外,在工程领域中,人们常常需要计算投射物体的飞行轨迹以及抛出物体的最远距离等,这都离不开平抛运动的基本原理。
二、圆周运动圆周运动是指物体围绕圆心做运动的过程。
在圆周运动中,物体沿着一个圆周路径运动,它的速度和加速度的方向始终朝着圆心,而速度大小保持不变。
圆周运动具有一些重要的特点。
首先,物体在圆周运动中的加速度是向心加速度,它的方向指向圆心,大小与速度大小和半径的乘积成正比。
其次,物体的速度大小在圆周运动中保持不变,但速度的方向在每一个时刻都发生变化。
最后,圆周运动的周期是物体沿着圆周路径运动一周所需要的时间。
圆周运动在日常生活和自然界中都有着广泛的应用。
例如,地球绕太阳的公转和月球绕地球的运动都是典型的圆周运动。
此外,许多机械运动,如旋转的轮车、风扇叶片以及地球上的旋转木马等,也都属于圆周运动的范畴。
曲线运动专题二 平抛运动与圆周运动相结合的问题
曲线运动专题二 平抛运动与圆周运动相结合的问题说明:1. 平抛运动与圆周运动的组合题,用平抛运动的规律求解平抛运动问题,用牛顿定律求解圆周运动问题,关键是找到两者的速度关系.若先做圆周运动后做平抛运动,则圆周运动的末速度等于平抛运动的水平初速度;若物体平抛后进人圆轨道,圆周运动的初速度等于平抛末速度在圆切线方向的分速度。
2. 分析多解原因:匀速圆周运动具有周期性,使得前一个周期中发生的事件在后一个周期中同样可能发生,这就要求我们在确定做匀速圆周运动物体的运动时间时,必须把各种可能都考虑进去. 3. 确定处理方法:(1)抓住联系点:明确两个物体参与运动的性质和求解的问题,两个物体参与的两个运动虽然独立进行,但一定有联系点,其联系点一般是时间或位移等,抓住两运动的联系点是解题关键。
(2)先特殊后一般:分析问题时可暂时不考虑周期性,表示出一个周期的情况,再根据运动的周期性,在转过的角度θ上再加上 2πr,具体π的取值应视情况而定。
练习题1.(多选)水平光滑直轨道ab 与半径为R 的竖直半圆形光滑轨道bc 相切,一小球以初速度v 0沿直轨道向右运动.如图所示,小球进入圆形轨道后刚好能通过c 点,然后小球做平抛运动落在直轨道上的d 点,则( )A .小球到达c 点的速度为gRB .小球到达b 点进入圆形轨道时对轨道的压力为mgC .小球在直轨道上的落点d 与b 点距离为RD .小球从c 点落到d 点所需时间为2Rg2.如图为俯视图,利用该装置可以测子弹速度大小。
直径为d 的小纸筒,以恒定角速度ω绕O 轴逆时针转动,一颗子弹沿直径水平快速穿过圆纸筒,先后留下a 、b 两个弹孔,且Oa 、Ob 间的夹角为α.不计空气阻力,则子弹的速度为多少?3.(单选)如图所示,一位同学做飞镖游戏,已知圆盘的直径为d ,飞镖距圆盘为L ,且对准圆盘上边缘的A 点水平抛出,初速度为v 0,飞镖抛出的同时,圆盘以垂直圆盘过盘心O 的水平轴匀速运动,角速度为ω.若飞镖恰好击中A 点,则下列关系正确的是( )A .02dv ω=B .ωL =π(1+2n )v 0,(n =0,1,2,3,…)C.2dv02=L2gD.dω2=gπ2(1+2n)2,(n=0,1,2, 3,…)4.一半径为R、边缘距地高h的雨伞绕伞柄以角速度ω匀速旋转时(如图所示),雨滴沿伞边缘的切线方向飞出.则:⑴雨滴离开伞时的速度v多大?⑵甩出的雨滴在落地过程中发生的水平位移多大?⑶甩出的雨滴在地面上形成一个圆,求此圆的半径r为多少?5.如图,置于圆形水平转台边缘的小物块随转台加速转动,当转速达到某一数值时,物块恰好滑离转台开始做平抛运动.现测得转台半径R=0.5m,离水平地面的高度H=0.8m,物块平抛落地过程水平位移的大小s=0.4m.设物块所受的最大静摩擦力等于滑动摩擦力,取重力加速度g=10m/s2求:(1)物块做平抛运动的初速度大小v0;(2)物块与转台间的动摩擦因数μ.6.小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m的小球,甩动手腕,使球在竖直平面内做圆周运动.当球某次运动到最低点时,绳突然断掉,球飞行水平距离d后落地,如图所示.已d,重力加速度为g.忽略手的运动半径和空气阻力.知握绳的手离地面高度为d,手与球之间的绳长为34(1)求绳断开时球的速度大小v1(2)问绳能承受的最大拉力多大?(3)改变绳长,使球重复上述运动,若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少?7.如图为一个简易的冲击式水轮机的模型,水流自水平的水管流出,水流轨迹与下边放置的轮子边缘相切,水冲击轮子边缘上安装的挡水板,可使轮子连续转动.当该装置工作稳定时,可近似认为水到达轮子边缘时的速度与轮子边缘的线速度相同.调整轮轴O的位置,使水流与轮边缘切点对应的半径与水平方向成θ=37°角.测得水从管口流出速度v0=3 m/s,轮子半径R=0.1 m.不计挡水板的大小,不计空气阻力.取重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8.求:(1)轮子转动角速度ω;(2)水管出水口距轮轴O的水平距离l和竖直距离h.题目点评:1、抓住刚好能通过c 点(无支撑)得条件,到达b 点进入圆形轨道时,有竖直向上的向心加速度,超重状态,对轨道的压力大于mg 。
高一物理必修二:平抛运动与圆周运动知识总结
高一物理必修二:平抛运动与圆周运动知识总结全文共5篇示例,供读者参考高一物理必修二:平抛运动与圆周运动知识总结11、“绳模型”如上图所示,小球在竖直平面内做圆周运动过点情况。
(注意:绳对小球只能产生拉力)(1)小球能过点的临界条件:绳子和轨道对小球刚好没有力的作用(2)小球能过点条件:v≥(当v>时,绳对球产生拉力,轨道对球产生压力)(3)不能过点条件:v<(实际上球还没有到点时,就脱离了轨道)2、“杆模型”,小球在竖直平面内做圆周运动过点情况(注意:轻杆和细线不同,轻杆对小球既能产生拉力,又能产生推力。
)(1)小球能过点的临界条件:v=0,f=mg(f为支持力)(2)当0f>0(f为支持力)(3)当v=时,f=0(4)当v>时,f随v增大而增大,且f>0(f为拉力)高一物理必修二:平抛运动与圆周运动知识总结2线速度v=s/t=2πr/t2.角速度ω=φ/t=2π/t=2πf向心加速度a=v^2/r=ω^2r=(2π/t)^2r4.向心力f心=mv^2/r=mω^2_=m(2π/t)^2_周期与频率t=1/f6.角速度与线速度的关系v=ωr角速度与转速的关系ω=2πn(此处频率与转速意义相同)主要物理量及单位:弧长(s):米(m)角度(φ):弧度(rad)频率(f):赫(hz)周期(t):秒(s)转速(n):r/s半径(r):米(m)线速度(v):m/s角速度(ω):rad/s向心加速度:m/s2注:(1)向心力可以由具体某个力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直。
(2)做匀速度圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,但动量不断改变。
高一物理必修二:平抛运动与圆周运动知识总结3第一节认识运动机械运动:物体在空间中所处位置发生变化,这样的运动叫做机械运动。
运动的特性:普遍性,永恒性,多样性参考系1.任何运动都是相对于某个参照物而言的,这个参照物称为参考系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题四应用力学两大观点分析平抛与圆周组合问题
考纲解读 1.掌握平抛运动、圆周运动问题的分析方法.2.能利用动能定理、功能关系、能量守恒定律分析平抛运动和圆周运动组合问题.
解题步骤:1、选取研究对象; 2、分析:受力情况、运动情况。
3、选择规律列方程,得出结果。
考点一用运动学公式和牛顿运动定律分析平抛与直线的组合运动
1.平抛运动可以分为水平方向的匀速直线运动和竖直方向的自由落体运动,两分运动具有等时性.
2.当物体做直线运动时,分析物体受力是解题的关键.正确分析物体受力,求出物体的加速度,然后运用运动学公式确定物体的运动规律.
3.平抛运动与直线运动的衔接点的速度是联系两个运动的桥梁,因此解题时要正确分析衔接点速度的大小和方向.
例1第三问部分同学有问题,是不是还有别的解法,让学生板书。
考点二用动力学和功能观点分析平抛与圆周的组合运动
1.物体的圆周运动主要是竖直面内的圆周运动,通常应用动能定理和牛顿第二定律进行分析,有的题目需要注意物体能否通过圆周的最高点.
2.平抛运动与圆周运动的衔接点的速度是解题的关键.
例2第三问部分同学有问题,让学生板书,给学生时间受力分析列式子解方程。
突破训练1第三问部分同学有问题,应判断是否运动,没有摩擦又如何求。
总结:直线、平抛和圆周组合运动模型的分析
1.模型特点:物体在整个运动过程中,经历直线运动、圆周运动和平抛运动或三种运动两两组合.
2.表现形式:(1)直线运动:水平面上的直线运动、斜面上的直线运动、传送带上的直线运动.(2)圆周运动:绳模型圆周运动、杆模型圆周运动、拱形桥模型圆周运动.(3)平抛运动:与斜面相关的平抛运动、与圆轨道相关的平抛运动.
3.应对策略:这类模型一般不难,各阶段的运动过程具有独立性,只要对不同过程分别选用相应规律即可,两个相邻的过程连接点的速度是联系两过程的纽带.很多情况下平抛运动末速度的方向是解决问题的重要突破口.
例3第三问部分同学有问题, 给学生时间受力分析列式子解方程。
突破训练2第二问部分同学有问题,学生自己能解决。
板书:解题步骤:1、选取研究对象; 2、分析:受力情况、运动情况。
3、选择规律列方程,得出结果。
解题关键:正确分析衔接点速度的大小和方向.。