平抛与圆周运动综合

合集下载

平抛运动与圆周运动的综合问题探究

平抛运动与圆周运动的综合问题探究
平抛 运 动 与 圆
张 秀 亮
平 抛抛 运动 与 圆周 运 动结 合 的 问题 , 应 守恒 有 : 1 用运 动 的合 成 与分解 的思想 , 化 曲为直 . 这 两 了 + 尺+ +K …c o s O) m vA m v c2+mgt 种运 动 联 系 的 纽 带— — 物 体 的 速 度 , 是 解 题 的关 键 . 得 c = √ 7 m / S 小球 做 圆周 运 动 , 则 平 抛 运 动 与 竖 直 面 内 的 圆 周
( 3 )小球 到 达 圆弧 最 高 点 C 时 对 轨 道 道 的 压 力 大 小 ; ( 3 ) 平 台末 端 0 点 到 A 点 的 竖 直 高 的 压 力.
解析
( 1 )小
照 H.
球 到 A点 的 速 度 如 图 2 所示 , 由图可 知


解析

( 1 )小 球恰 通过 C点 , 则m g





运 动
Nc+ m g=m 得Ⅳ c: 8 N
竖 直平 面 内 圆周运 动 的最 高点 和最 低 点 由牛顿 第 三 定 律 可 知 球 对 轨 道 的 压 力 的速 度 常用 动 能 定 理 来 建 立 关 系 , 然 后 结 合 N 。 = N。= 8 N, 方 向竖 直 向上. 牛顿 第 二定 律运 用 动力 学来 求 解.
运 动
拉住 线 的另 一 端 , 使 小球 在 光 滑 的 水 平 桌 面
上做 匀速 圆周运 动 , 使 小球 的 转速 很 缓 慢 地 增加 , 当小球 的 转速 增加 到 开 始 时转 速 的 3
. 5 m 的 圆截 去 了左上 角 1 2 7 。 的 圆弧 , C B为 0 . 3 m, 0 =6 0 。 , 小球 到 达 A 点 时 的 速 度 = 2 其 竖直 直径 , ( s i n 5 3 。 = 0 . 8 , C O S 5 3 。 =0 . 6, 重 4 m / s . ( 取 g=1 0 m/ s ) 求: 力加 速度 g=1 0 m/ s ) 求: ( 1 )小球 做 平抛 运动 的初 速 度 。 ; ( 1 )小球 经过 C点 的速度 大小; ( 2 )P 点 与 A 点 的 水 平 距 离 和 竖 直 ( 2 )小球 运 动 到 轨 道 最低 点 B 时 对轨 高度 ;

高三曲线运动综合汇编(平抛运动与圆周运动训练题)

高三曲线运动综合汇编(平抛运动与圆周运动训练题)

绝密★启用前平抛运动与圆周运动训练题第I卷(选择题)一、选择题(题型注释)1.船在静水中的速度为3.0 m/s,它要渡过宽度为30 m的河,河水的流速为2.0 m/s,则下列说法中正确的是A.船不能渡过河B.船渡河的速度一定为5.0 m/sC.船不能垂直到达对岸D.船到达对岸所需的最短时间为10 s2.2013年7月7日,温网女双决赛开打,“海峡组合”彭帅、谢淑薇击败澳大利亚组合夺得职业生涯首个大满贯冠军。

如图所示是比赛场地,已知底线到网的距离为L,彭帅在网前截击,若她在球网正上方距地面H处,将球以水平速度沿垂直球网的方向击出,球刚好落在底线上。

将球的运动视作平抛运动,重力加速度为g,则下列说法不正确...的是( )A.根据题目条件能求出球的水平速度vB.根据题目条件能求出球从击出至落地所用时间tC.球从击球点至落地点的位移等于LD.球从击球点至落地点的位移与球的质量无关3.关于平抛物体的运动,下列说法中正确的是A.平抛运动不是匀变速运动B.平抛运动的水平位移只与水平速度有关C.平抛运动的飞行时间只取决于初始位置的高度D.平抛运动的速度和加速度方向不断变化4.人在距地面高h、离靶面距离L处,将质量m的飞镖以速度v0水平投出,落在靶心正下方,如图6所示。

不考虑空气阻力,只改变m、h、L、v0四个量中的一个,可使飞镖投中靶心的是A.适当减小v0B.适当减小LC.适当减小m D.适当增大m5.(双选)关于匀速圆周运动的向心加速度,下列说法正确..的是()A.向心加速度是描述线速度变化的物理量B.向心加速度只改变线速度的方向,不改变线速度的大小C.向心加速度恒定D.向心加速度的方向时刻发生变化6.如图所示,用一根轻细线将一个有孔的小球悬挂起来,使其在水平面内做匀速圆周运动而成为圆锥摆,关于摆球A的受力情况,下列说法中正确的是A.摆球A受重力、拉力和向心力的作用B.摆球A受拉力和向心力的作用C.摆球A受拉力和重力的作用D.摆球A受重力和向心力的作用7.如图所示,在匀速转动的圆筒内壁上有一个小物体圆筒一起运动,小物体所需要的向心力由以下哪个力来提供A. 重力B. 弹力C.静摩擦力D. 滑动摩擦力8.(双选)质量相同的小球A和B分别悬挂在长为L和2L的不伸长绳上。

高考物理一轮复习专题应用力学两大观点分析平抛运动与圆周运动组合问题练含解析

高考物理一轮复习专题应用力学两大观点分析平抛运动与圆周运动组合问题练含解析

专题22 应用力学两大观点分析平抛运动与圆周运动组合问题(练)1.一个质量为m 的小铁块沿半径为R 的固定半圆轨道上边缘由静止滑下,到半圆底部时,小铁块所受向心力为铁块重力的1.5倍,则此过程中铁块损失的机械能为: ( )A .18mgRB .14mgR C .12mgR D .34mgR 【答案】B 【名师点睛】当滑到半球底部时,半圆轨道底部所受压力为铁块重力的1.5倍,根据牛顿第二定律可以求出铁块的速度;铁块下滑过程中,只有重力和摩擦力做功,重力做功不影响机械能的减小,损失的机械能等于克服摩擦力做的功,根据动能定理可以求出铁块克服摩擦力做的功。

2.如图所示,在水平桌面上的A 点有一个质量为m 的物体,以初速度v 0被抛出,不计空气阻力,当它到达B 点时,其动能为: ( )A .mgH mv +2021B .12021mgh mv +C .2mgh mgH -D .22021mgh mv +【答案】B【解析】不计空气阻力,只有重力做功,从A 到B 过程,由动能定理可得:E kB -12021mgh mv =,故E kB =12021mgh mv +,选项B 正确。

【名师点睛】以物体为研究对象,由动能定理或机械能守恒定律可以求出在B 点的动能.3.(多选)如图所示,半径为R 的光滑圆环固定在竖直平面内,AB 、CD 是圆环相互垂直的两条直径,C 、D 两点与圆心O 等高.一个质量为m 的光滑小球套在圆环上,一根轻质弹簧一端连在小球上,另一端固定在P 点,P 点在圆心O 的正下方2R 处.小球从最高点A 由静止开始沿逆时针方向下滑,已知弹簧的原长为R ,弹簧始终处于弹性限度内,重力加速度为g .下列说法正确的有: ( )A .弹簧长度等于R 时,小球的动能最大B .小球运动到B 点时的速度大小为gR 2C .小球在A 、B 两点时对圆环的压力差为4mgD .小球从A 到C 的过程中,弹簧对小球做的功等于小球机械能的增加量【答案】CD【名师点睛】此题是对功能关系的考查;解题时要认真分析小球的受力情况及运动情况;尤其要知道在最高点和最低点弹簧的伸长量等于压缩量,故在两位置的弹力相同,弹性势能也相同;同时要知道机械能的变化量等于除重力以外的其它力做功。

圆周运动与平抛运动的综合问题

圆周运动与平抛运动的综合问题

3.(2013·廊坊模拟)如图所示,一质量为M=5.0kg的平板车静止 在光滑水平地面上,平板车的上表面距离地面高h=0.8m,其右侧 足够远处有一固定障碍物A。另一质量为m=2.0kg可视为质点的 滑块,以v0=8m/s的水平初速度从左端滑上平板车,同时对平板 车施加一水平向右、大小为5N的恒力F。当滑块运动到平板车 的最右端时,两者恰好相对静止。此时撤去恒力F,当平板车碰 到障碍物A时立即停止运动,滑块水平飞离平板车后,恰能无碰 撞地沿圆弧切线从B点切入光滑竖直圆弧轨道,并沿轨道下滑。 已知滑块与平板车间的动摩擦因数μ=0.5,圆弧半径为R=1.0m, 圆弧所对的圆心角∠BOD=θ=106°。取 g=10m/s2,sin53°=0.8,cos53°=0.6。求:
【解析】选A。设伞边缘距地面的高度为h,伞边缘水滴的速
度v=ωR,水滴下落时间t= 2 h水, 滴平抛的水平位移x=
g
vt= R 2如h ,图所示。由几何关系,R2+x2=r2,可得:
g
h
g
r2 选R2项,A正确。
22R2
2.(2010·江苏高考)在游乐节目中,选手需要借助悬挂在高处 的绳飞越到水面的浮台上,小明和小阳观看后对此进行了讨论。 如图所示,他们将选手简化为质量m=60kg的质点,选手抓住绳由 静止开始摆动,此时绳与竖直方向夹角α=53°,绳的悬挂点O距 水面的高度为H=3m。不考虑空气阻力和绳的质量,浮台露出水 面的高度不计,水足够深,取重力加速度g=10m/s2,sin53° =0.8,cos53°=0.6。
解得:d=
mgHlcos
1.2 m
f1f2mg
(3)选手从最低点开始做平抛运动,则:x=vt
H-l=1
2
g t 2解得:x=

高一下学期物理人教版必修第二册习题课件6.4专题训练3平抛运动与圆周运动的综合问题

高一下学期物理人教版必修第二册习题课件6.4专题训练3平抛运动与圆周运动的综合问题

等高,且距离 P 专题训练3 平抛运动与圆周运动
专题训练3 平抛运动与圆周运动
点为
L.当飞镖以初速度
v0
专题训练3 平抛运动与圆周运动
垂直盘面瞄准 P 专题训练3 平抛运动与圆周运动
专题训练3 平抛运动与圆周运动
点抛出的同时,圆盘以经过盘心
O
点的水平轴
专题训练3 平抛运动与圆周运动
专专题题训 训在练练33竖平平直抛抛运运平动动与 与面圆圆周周内运运动动匀速转动.忽略空气阻力,重力加速度为 g,若飞
专题训练3 专题训练3
平 平1抛 抛.运 运动 动抓与与圆 圆住周 周运 运两动 动 种运动衔接点的速度是解题的关键.
专题训练3 平抛运动与圆周运动
专题训练3 专题训练3
平平2抛抛.运运动动沿与 与圆圆水周周运运平动动 方向和竖直方向建立平抛运动关系式.
专题训练3 平抛运动与圆周运动
专题训练3 专题训练3
5.如图所示,在链球运动中,运动员 使链球高速旋转,在水平面内做圆周运 动.然后突然松手,由于惯性,链球向远 处飞去.链球做圆周运动的半径为 R,链 球做圆周运动时离地高度为 h.设圆心在地面的投影点为 O,链球 的落地点为 P,OP 两点的距离即为运动员的成绩.若运动员某 次掷链球的成绩为 L,空气阻力不计,重力加速度为 g,则链球 从运动员手中脱开时的速度 v 为( )
专题训练3 平抛运动与圆周运动
专题训练3 平抛运动与圆周运动
专题训练3 专题训练3
2.(多选)如 平抛运动与圆周运动
平抛运动与圆周运动
图所
示,
一位

学玩
飞镖

专题训练3 平抛运动与圆周运动
戏.圆盘最上端有一 专题训练3 平抛运动与圆周运动

平抛运动与圆周运动的组合问题(含答案)

平抛运动与圆周运动的组合问题(含答案)

1平抛运动与圆周运动的组合问题1、如图所示,有一个可视为质点的质量为m =1 kg 的小物块,从光滑平台上的A 点以点以v 0=3 m/s 的初速度水平抛出,到达C 点时,恰好沿C 点的切线方向进入固定在水平地点的切线方向进入固定在水平地面上的光滑圆弧轨道,最后小物块滑上紧靠轨道末端D 点的质量为M =3 kg 的长木板.已知木板上表面与圆弧轨道末端切线相平,木板下表面与水平地面之间光滑接触,小物块与长木板间的动摩擦因数μ=0.3,圆弧轨道的半径为R =0.5 m ,C 点和圆弧的圆心连线与竖直方向的夹角θ=53°,不计空气阻力,取重力加速度g =10 m/s 2.求:求:(1)A 、C 两点的高度差;两点的高度差;(2)小物块刚要到达圆弧轨道末端D 点时对轨道的压力;点时对轨道的压力;(3)要使小物块不滑出长木板,木板的最小长度.(sin 53°=0.8,cos 53°=0.6) 解析 (1)小物块在C 点时的速度大小为v C =v 0cos 53°=5 m/s ,竖直分量为v Cy =4 m/s 下落高度h ==0.8 m (2)小物块由C 到D 的过程中,由动能定理得mgR (1-cos 53°cos 53°))=12m v 2D -12m v 2C解得v D =29 m/s小球在D 点时由牛顿第二定律得F N -mg =m v D 2R 代入数据解得F N =68 N由牛顿第三定律得F N ′=F N =68 N ,方向竖直向下(3)设小物块刚好滑到木板右端时与木板达到共同速度,设小物块刚好滑到木板右端时与木板达到共同速度,大小为大小为v ,小物块在木板上滑行 的过程中,小物块与长木板的加速度大小分别为 a 1=μg =3 m/s 2, a 2=μmg M=1 m/s 2 速度分别为v =v D -a 1t ,v =a 2t 对物块和木板系统,由能量守恒定律得μmgL =12m v 2D -12(m +M )v 2解得L =3.625 m ,即木板的长度至少是3.625 m 答案 (1)0.8 m (2)68 N (3)3.625 m方法点拨程序法在解题中的应用程序法在解题中的应用22cy g v所谓“程序法”是指根据题意按先后顺序分析发生的运动过程,是指根据题意按先后顺序分析发生的运动过程,并明确每一过程的受力并明确每一过程的受力情况、运动性质、满足的规律等等,还要注意前后过程的衔接点是具有相同的速度. 2、在我国南方农村地区有一种简易水轮机,如图所示,从悬崖上流出的水可看做连续做平抛运动的物体,抛运动的物体,水流轨道与下边放置的轮子边缘相切,水流轨道与下边放置的轮子边缘相切,水流轨道与下边放置的轮子边缘相切,水冲击轮子边缘上安装的挡水板,水冲击轮子边缘上安装的挡水板,水冲击轮子边缘上安装的挡水板,可可使轮子连续转动,使轮子连续转动,输出动力.输出动力.当该系统工作稳定时,当该系统工作稳定时,可近似认为水的末速度与轮子边缘的线可近似认为水的末速度与轮子边缘的线速度相同.设水的流出点比轮轴高h =5.6 m ,轮子半径R =1 m .调整轮轴O 的位置,使水流与轮边缘切点对应的半径与水平线成θ=37°角.(已知sin 37°=0.6,cos 37°=0.8,g =10 m/s 2)问:问:(1)水流的初速度v 0大小为多少?大小为多少?(2)若不计挡水板的大小,则轮子转动的角速度为多少?若不计挡水板的大小,则轮子转动的角速度为多少? 答案 (1)7.5 m/s (2)12.5 rad/s 解析 (1)水流做平抛运动,有h -R sin 37°=12gt 2解得t =2(h -R sin 37°)g=1 s所以v y =gt =10 m/s ,由图可知: v 0=v y tan 37°=7.5 m/s.(2)由图可知:v =v 0sin 37°=12.5 m/s , 根据ω=v R 可得ω=12.5 rad/s. 3、解析 (1)在C 点:mg =m Rv C 2(2分) 所以v C =5 m/s(1分) (2)由C 点到D 点过程:mg (2R -2r )=12m v 2D -12m v 2C (2分) 在D 点:mg +F N =m v D2r(2分)所以F N =333.3 N (1分) 由牛顿第三定律知小滑车对轨道的压力为333.3 N. (1分) (3)小滑车要能安全通过圆形轨道,在平台上速度至少为v 1,则12m v 2C +mg (2R )=12m v 21 (2分) 小滑车要能落到气垫上,在平台上速度至少为v 2,则 h =12gt 2 (1分) x =v 2t(1分) 解得v 2>v 1,所以只要mgH =12m v 22,即可满足题意.解得H =7.2 m(3分) 答案 (1)5 m/s (2)333.3 N (3)7.2 m技巧点拨1.对于多过程问题首先要搞清各运动过程的特点,然后选用相应规律.2.要特别注意运用有关规律建立两运动之间的联系,把转折点的速度作为分析重点. 4、水上滑梯可简化成如图所示的模型,斜槽AB 和光滑和光滑圆弧槽BC 平滑连接.斜槽AB 的竖直高度差H =6.0 m ,倾角,倾角 θ=37°;圆弧槽BC 的半径R =3.0 m ,末端C 点的切线水平;C 点与水面的距离h =0.80 m .人与AB 间的动摩擦因数μ=0.2,取 重力加速度g =10 m/s 2,cos 37°=0.8,sin 37°=0.6.一个质量m =30 kg 的小朋友从滑梯顶端A 点无初速度地自由滑下,不计空点无初速度地自由滑下,不计空 气阻力.求:气阻力.求:(1)小朋友沿斜槽AB 下滑时加速度a 的大小;的大小;(2)小朋友滑到C 点时速度v 的大小及滑到C 点时受到槽面的支持力F C 的大小;的大小; (3)在从C 点滑出至落到水面的过程中,小朋友在水平方向的位移x 的大小.的大小.答案 (1)4.4 m/s 2(2)10 m/s 1 300 N (3)4 m解析 (1)小朋友沿AB 下滑时,受力情况如图所示,根据牛 顿第二定律得:mg sin θ-F f =ma① 又F f =μF N ② F N =mg cos θ③ 联立①②③式解得:a =4.4 m/s 2④(2)小朋友从A 滑到C 的过程中,根据动能定理得:mgH -F f ·H sin θ+mgR (1-cos θ)=12m v 2-0⑤联立②③⑤式解得:v =10 m/s ⑥根据牛顿第二定律有:F C -mg =m v 2R ⑦联立⑥⑦式解得:F C =1 300 N .⑧(3)在从C 点滑出至落到水面的过程中,小朋友做平抛运动,设此过程经历的时间为t ,则:h =12gt 2 ⑨x =v t ⑩ 联立⑥⑨⑩式解得:x =4 m.5、(2012·福建理综·20)如图所示,置于圆形水平转台边缘的小物块随转台加速转动,当转速达到某一数值时,物块恰好滑离转台开始做平抛运动.现测得转台半径R =0.5 m ,离水平地面的高度H =0.8 m ,物块平抛落地过程水平位移的大小s =0.4 m .设物块所受的最大静摩擦力等于滑动摩擦力,取重力加速度g =10 m/s 2.求:求:(1)物块做平抛运动的初速度大小v 0; (2)物块与转台间的动摩擦因数μ. 答案 (1)1 m/s (2)0.2解析 (1)物块做平抛运动,在竖直方向上有H =12gt 2① 在水平方向上有s =v 0t ②由①②式解得v 0=sg2H 代入数据得v 0=1 m/s(2)物块离开转台时,由最大静摩擦力提供向心力,有f m =m v 02R③ f m =μN =μmg ④ 由③④式得μ=v 02gR代入数据得μ=0.26、(2010·重庆理综·24)小明站在水平地面上,手握不可伸长的轻绳一小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m 的小球,甩动手腕,使球在竖直平面的小球,甩动手腕,使球在竖直平面 内做圆周运动.当球某次运动到最低点时,绳突然断掉,球飞行水内做圆周运动.当球某次运动到最低点时,绳突然断掉,球飞行水 平距离d 后落地,如图所示.已知握绳的手离地面高度为d ,手与,手与球之间的绳长为34d ,重力加速度为g 忽略手的运动半径和空气阻力. (1)求绳断时球的速度大小v 1和球落地时的速度大小v 2. (2)问绳能承受的最大拉力多大?问绳能承受的最大拉力多大?(3)改变绳长,使球重复上述运动,若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少?平距离最大,绳长应为多少?最大水平距离为多少?答案 (1)2gd 52gd (2)(2)11113mg(3)d 2 2 33d解析 (1)设绳断后球飞行的时间为t ,由平抛运动规律有竖直方向:14d =12gt 2水平方向:d =v 1t 解得v 1=2gd由机械能守恒定律有12m v 32=12m v 21+mg (d -34d )解得v 2=52gd(2)设绳能承受的最大拉力大小为F max ,这也是球受到绳的最大拉力的大小.球做圆周运动的半径为R =34d由圆周运动向心力公式,有F max -mg =m v 12R 得F max =113mg(3)设绳长为l ,绳断时球的速度大小为v 3.绳承受的最大拉力不变,有F max -mg =m v 32l ,解得v 3=83gl绳断后球做平抛运动,竖直位移为d -l ,水平位移为x ,时间为t 1.由平抛运动规律有d -l =12gt 21,x =v 3t 1得x =4 l (d -l )3,当l =d 2时,x 有最大值x max =233d .7、如图所示,一质量为2m 的小球套在一“”滑杆上,小球与滑杆的动摩擦因数为μ=0.5,BC 段为半径为R 的半圆,静止于A 处的小球在大小为F =2mg ,方向与水平面成37°角的拉力F 作用下沿杆运动,到达B 点时立刻撤去F ,小球沿圆弧向上冲并越过C 点后落在D 点(图中未画出),已知D 点到B 点的距离为R ,且AB 的距离为s =10R .试求:试求:(1)小球在C 点对滑杆的压力;点对滑杆的压力;(2)小球在B 点的速度大小;点的速度大小;(3)BC 过程小球克服摩擦力所做的功.过程小球克服摩擦力所做的功.答案 (1)32mg ,方向竖直向下,方向竖直向下 (2)23gR (3)31mgR4解析 (1)小球越过C 点后做平抛运动,有竖直方向:2R =12gt 2①水平方向:R =v C t ② 解①②得v C =gR 2在C 点对小球由牛顿第二定律有:2mg -F N C =2m v C 2R解得F N C =3mg2由牛顿第三定律有,小球在C 点对滑杆的压力F N C ′=F N C =3mg2,方向竖直向下(2)在A 点对小球受力分析有:F N +F sin 37°=2mg③ 小球从A 到B 由动能定理有:F cos 37°cos 37°··s -μF N ·s =12·2m v 2B ④解③④得v B =23gR(3)BC 过程对小球由动能定理有:-2mg ·2R -W f =12×2m v 2C -12×2m v 2B解得W f =31mgR48、如图所示,质量为m =1 kg 的小物块由静止轻轻放在水平匀速运动的传送带上,从A 点随传送带运动到水平部分的最右端B 点,经半圆轨道C 点沿圆弧切线进入竖直光滑的半圆轨道,恰能做圆周运动.C 点在B 点的正上方,D 点为轨道的最低点.小物块离开D 点后,做平抛运动,恰好垂直于倾斜挡板打在挡板跟水平面相交的E 点.已知半圆轨道的半径R =0.9 m ,D 点距水平面的高度h =0.75 m ,取g =10 m/s 2,试求:,试求:(1)摩擦力对小物块做的功;摩擦力对小物块做的功;(2)小物块经过D 点时对轨道压力的大小;点时对轨道压力的大小; (3)倾斜挡板与水平面间的夹角θ.答案 (1)4.5 J (2)60 N ,方向竖直向下,方向竖直向下 (3)60°解析 (1)设小物块经过C 点时的速度大小为v 1,因为经过C 点恰能做圆周运动,所以,由牛顿第二定律得:mg =m v 12R解得:v 1=3 m/s小物块由A 到B 的过程中,设摩擦力对小物块做的功为W ,由动能定理得:W =12m v 21解得:W =4.5 J(2)设小物块经过D 点时的速度大小为v 2,对从C 点运动到D 点的过程,由机械能守恒 定律得: 12m v 21+mg ·2R =12m v 22 小物块经过D 点时,设轨道对它的支持力大小为F N ,由牛顿第二定律得:F N -mg =m v 22R联立解得:F N =60 N由牛顿第三定律可知,小物块经过D 点时对轨道的压力大小为: F N ′=F N =60 N ,方向竖直向下(3)小物块离开D 点后做平抛运动,设经时间t 打在E 点,由h =12gt 2得:t =1510 s设小物块打在E 点时速度的水平、竖直分量分别为v x 、v y ,速度跟竖直方向的夹角为α, 则: v x =v 2 v y =gt tan α=v x v y解得:tan α= 3 所以:α=60°由几何关系得:θ=α=60°60°. .9、水平光滑直轨道ab 与半径为R 的竖直半圆形光滑轨道bc 相切,相切,一小球以初速度v 0沿直轨道向右运动.沿直轨道向右运动.如图如图3所示,所示,小球进入圆小球进入圆小球进入圆 形轨道后刚好能通过c 点,然后小球做平抛运动落在直轨道上的点,然后小球做平抛运动落在直轨道上的 d 点,则点,则( ) A .小球到达c 点的速度为gRB .小球到达b 点时对轨道的压力为5mgC .小球在直轨道上的落点d 与b 点距离为2RD .小球从c 点落到d 点所需时间为2 Rg答案 ACD解析 小球在c 点时由牛顿第二定律得:mg =m v c 2R ,v c =gR ,A 项正确; 小球由b 到c 过程中,由机械能守恒定律得:12m v 2B =2mgR +12m v 2c 小球在b 点,由牛顿第二定律得:F N -mg =m v b 2R ,联立解得 F N=6mg ,B 项错误;小球由c 点平抛,在平抛运动过程中由运动学公式得:x =v c t,2R =12gt 2.解得t =2R g ,x =2R ,C 、D 项正确.1010、如图所示,、如图所示,P 是水平面上的圆弧凹槽.从高台边B 点以某速度点以某速度v 0水平飞出的小球,恰能从固定在某位置的凹槽的圆弧轨道的左水平飞出的小球,恰能从固定在某位置的凹槽的圆弧轨道的左 端A 点沿圆弧切线方向进入轨道.O 是圆弧的圆心,θ1是OA 与 竖直方向的夹角,θ2是BA 与竖直方向的夹角.则与竖直方向的夹角.则( )A .tan θ2tan θ1=2B .tan θ1·tan θ2=2C .1tan θ1·tan θ2=2 D .tan θ1tan θ2=2 答案 B解析 由题意可知:tan θ1=v y v x =gtv 0,tan θ2=x y =v 0t 12gt 2=2v 0gt,所以tan θ1·tan θ2=2,故B 正确.11、如图所示,在水平匀速运动的传送带的左端(P 点),轻放一质量为m =1 kg 的物块,物块随传送带运动到A 点后水平抛出,物块恰好无碰撞的沿圆弧切线从B 点进入竖直光滑圆弧轨道下滑.B 、D 为圆弧的两端点,其连线水平.已知圆弧半径R =1.0 m ,圆弧对应的圆心角θ=106°,轨道最低点为C ,A 点距水平面的高度h =0.8 m(g 取10 m/s 2,sin 53°=0.8,cos 53°=0.6)求:求:(1)物块离开A 点时水平初速度的大小;点时水平初速度的大小; (2)物块经过C 点时对轨道压力的大小;点时对轨道压力的大小;(3)设物块与传送带间的动摩擦因数为0.3,传送带的速度为5 m/s ,求P A 间的距离.间的距离. 答案 (1)3 m/s (2)43 N (3)1.5 m解析 (1)物块由A 到B 在竖直方向有v 2y =2ghv y =4 m/s在B 点:tan θ2=v yv A ,v A =3 m/s(2)物块从B 到C 由功能关系得mgR (1-cos θ2)=12m v 2C -12m v 2Bv B =v A 2+v y 2=5 m/s 解得v 2C =33 m 2/s 2 在C 点:F N -mg =m v C 2R由牛顿第三定律知,物块经过C 点时对轨道压力的大小为F N ′=F N =43 N(3)因物块到达A 点时的速度为3 m/s ,小于传送带速度,故物块在传送带上一直做匀加速直线运动 μmg =ma , a =3 m/s 2 P A 间的距离x P A =v A 22a=1.5 m. 1212、如图所示,半径、如图所示,半径R =1.0 m 的光滑圆弧轨道固定在竖直平面的光滑圆弧轨道固定在竖直平面内,轨道的一个端点B 和圆心O 的连线与水平方向间的夹角的连线与水平方向间的夹角θ= 37°,另一端点C 为轨道的最低点.C 点右侧的水平路面点右侧的水平路面 上紧挨C 点放置一木板,木板质量M =1 kg ,上表面与C 点 等高.质量m =1 kg 的物块(可视为质点)从空中A 点以点以v 0=1.2 m/s 的速度水平抛出,恰好从轨道的B 端沿切线方向进入轨道.端沿切线方向进入轨道.已知物块与木板间的动摩擦因数μ1=0.2,木板与路面间的动摩擦因数μ2=0.05,sin 37° =0.6,cos 37°=0.8,取g =10 m/s 2.试求:试求: (1)物块经过轨道上的C 点时对轨道的压力;点时对轨道的压力;(2)设木板受到的最大静摩擦力跟滑动摩擦力相等,则木板至少多长才能使物块不从木板上滑下?板上滑下?答案 (1)46 N (2)6 m解析 (1)设物块经过B 点时的速度为v B ,则 v B sin 37°=v 0设物块经过C 点的速度为v C ,由机械能守恒得: 12m v 2B +mg (R +R sin 37°sin 37°))=12m v 2C 物块经过C 点时,设轨道对物块的支持力为F C ,根据牛顿第二定律得:F C -mg =m v C 2R 联立解得:F C =46 N由牛顿第三定律可知,物块经过圆轨道上的C 点时对轨道的压力为46 N(2)物块在木板上滑动时,设物块和木板的加速度大小分别为a 1、a 2,得:μ1mg =ma 1 μ1mg -μ2(M +m )g =Ma 2设物块和木板经过时间t 达到共同速度v ,其位移分别为x 1、x 2,则:对物块有: v C -a 1t =v v 2-v 2C =-2a 1x 1 对木板有:a 2t =v v 2=2a 2x 2设木板长度至少为L ,由题意得:L ≥x 1-x 2 联立解得:L ≥6 m即木板长度至少6 m 才能使物块不从木板上滑下.1313、某校物理兴趣小组决定举行遥控赛车比赛.比赛路径如图、某校物理兴趣小组决定举行遥控赛车比赛.比赛路径如图7所示,示,赛车从起点赛车从起点A 出发,出发,沿水平直线轨道运动沿水平直线轨道运动L 后,由B 点进入点进入 半径为R 的光滑竖直圆轨道,离开竖直圆轨道后继续在光滑平直离开竖直圆轨道后继续在光滑平直 轨道上运动到C 点,并能越过壕沟.已知赛车质量m =0.1 kg ,通电后以额定功率P =1.5 W 工作,进入竖直轨道前受到的阻力工作,进入竖直轨道前受到的阻力 恒为0.3 N ,随后在运动中受到的阻力均可不计.图中L =10.00 m , R =0.32 m ,h =1.25 m ,x =1.50 m .问:要使赛车完成比赛,电动.问:要使赛车完成比赛,电动 机至少工作多长时间?(取g =10 m/s 2)答案 2.53 s解析 设赛车越过壕沟需要的最小速度为v 1,由平抛运动的规律x =v 1t ,h =12gt 2解得v 1=x g2h=3 m/s设赛车恰好越过圆轨道,对应圆轨道最高点的速度为v 2,最低点速度为v 3,由牛顿运动定律及机械能守恒定律得 mg =m v 22/R 12m v 23=12m v 22+mg (2R ) 解得v 3=5gR =4 m/s通过分析比较,赛车要完成比赛,在进入圆轨道前的速度最小应该是v min =4 m/s 设电动机工作时间至少为t ,根据功能关系,有Pt -F f L =12m v 2min ,由此解得t =2.53 s。

核心素养微专题2 “平抛运动+圆周运动”模型

核心素养微专题2  “平抛运动+圆周运动”模型
2
二轮 ·物理
2.突破方法 (1)分析临界点:对于物体在临界点相关的多个物理量,需要区分哪些物 理量能够突变,哪些物理量不能突变,而不能突变的物理量(一般指线 速度)往往是解决问题的突破口。 (2)分析运动过程:对于物体参与的多个运动过程,要仔细分析每个运动 过程做何种运动。若为圆周运动,应明确是水平面的匀速圆周运动,还 是竖直平面的变速圆周运动,机械能是否守恒;若为抛体运动,应明确 是平抛运动,还是类平抛运动,垂直于初速度方向的力是哪个力。
………………………………………………………………………………… (1)运动阶段的划分,如典例中分成三个阶段; (2)运动阶段的衔接,尤其注意速度方向,如典例中,小球运动到B点时 的速度方向; (3)两个运动阶段在时间和空间上的联系; (4)对于平抛运动或类平抛运动与圆周运动组合的问题,应用合成与分解 的思想分析,这两种运动转折点的速度是解题的关键。
为vy=gt=4 m/s;由小球恰好与倾角为45°的斜面垂直相碰可知,小球从 B点水平射出的速度v=vytan 45°=4 m/s,故小球在斜面上的相碰点C与 B点的水平距离为x=vt=1.6 m,小球在斜面上的相碰点C与B点的竖直
平滑地冲上粗糙斜面,已知小球与粗糙斜面间的动摩擦因数μ=0.6,g
取10 m/s2,则:
4
(1)小球从O点的正上方某处A点水平抛出 的初速度v0为多少?OA的距离为多少? (2)小球在圆管中运动时对圆管的压力是多 少? (3)小球在CD斜面上运动的最大位移是多 少?
5
二轮 ·物理
二轮 ·物理
[思路点拨] 解此题的关键是做好过程分析和受力分析。 (1)小球从A到B做平抛运动,vB为平抛运动与圆周运动的关联速度。 (2)小球从B到C做匀速圆周运动,所施加外力F与重力平衡,圆管对小球 的弹力提供向心力。 (3)小球由C点沿斜面匀减速上滑到最高点。

物理高考专题 平抛运动与圆周运动组合中的双临界问题(解析版)

物理高考专题 平抛运动与圆周运动组合中的双临界问题(解析版)

尖子生的自我修养系列(一)曲线运动中的一个难点——双临界问题(细化题型)平抛运动和圆周运动是两种典型的曲线运动模型,均是高考的重点,两者巧妙地结合对学生的推理能力提出更高要求,成为高考的难点。

双临界问题能有效地考查学生的分析能力和创新能力,从而成为高考命题的重要素材。

下面分三类情况进行分析。

[例1] [多选](2020·将一锅水烧开,拿一块面团放在锅旁边较高处,用刀片飞快地削下一片片很薄的面片儿,面片便水平飞向锅里,若面团到锅上沿的竖直距离为0.8 m ,面团离锅上沿最近的水平距离为0.4 m ,锅的直径为0.4 m 。

若削出的面片能落入锅中,则面片的水平初速度可能是(g =10 m/s 2)( )A .0.8 m/sB .1.2 m/sC .1.8 m/sD .3.0 m/s【解析】水平飞出的面片发生的运动可看成平抛运动,根据平抛运动规律,水平方向:x =v 0t ①,竖直方向:y =12gt 2 ②,其中水平位移大小的范围是0.4 m≤x ≤0.8 m ,联立①②代入数据解得1 m/s≤v 0≤2 m/s ,故B 、C 项正确。

【答案】BC[方法规律] 解决平抛运动中双临界问题的一般思路(1)从题意中提取出重要的临界条件,如“恰好”“不大于”等关键词,准确理解其含义。

(2)作出草图,确定物体的临界位置,标注速度、高度、位移等临界值。

(3)在图中画出临界轨迹,运用平抛运动的规律进行解答。

[集训冲关]1.(2020·济南模拟)套圈游戏是一项很受欢迎的群众运动,要求每次从同一位置水平抛出圆环,套住与圆环前端水平距离为3 m 的20 cm 高的竖直细杆,即为获胜。

一身高1.7 m 的人从距地面1 m 高度水平抛出圆环,圆环半径为8 cm ,要想套住细杆,他水平抛出圆环的速度可能为(g 取10 m/s 2)( ) A .7.4 m/s B .7.8 m/s C .8.2 m/s D .8.6 m/s 【解析】选B 根据h 1-h 2=12gt 2得,t =2(h 1-h 2)g=2×(1.0-0.2)10s =0.4 s 。

高考物理一轮复习 专题22 应用力学两大观点分析平抛运动与圆周运动组合问题(练)(含解析)-人教版高

高考物理一轮复习 专题22 应用力学两大观点分析平抛运动与圆周运动组合问题(练)(含解析)-人教版高

专题22 应用力学两大观点分析平抛运动与圆周运动组合问题1.如下列图,AB是倾角为30θ=︒的粗糙直轨道,BCD是光滑的圆弧轨道,AB恰好在B点与圆弧相切,圆弧的半径为R,一个质量为m的物体〔可以看做质点〕从直轨道上的P点由静止释放,结果它能在两轨道间做往返运动。

P点与圆弧的圆心O等高,物体与轨道AB间的动摩擦因数为μ。

求:〔1〕物体做往返运动的整个过程中在AB轨道上通过的总路程;〔2〕最终当物体通过圆弧轨道最低点E时,对圆弧轨道的压力;〔3〕为使物体能顺利到达圆弧轨道的最高点D,释放点距B点的距离L′至少多大。

【答案】〔1〕Rμ;〔2〕(33)mg-;〔3〕(33)13Rμ+-【解析】【名师点睛】此题综合应用了动能定理求摩擦力做的功、圆周运动与圆周运动中能过最高点的条件,对动能定理、圆周运动局部的内容考查的较全,是圆周运动局部的一个好题.①利用动能定理求摩擦力做的功;②对圆周运动条件的分析和应用;③圆周运动中能过最高点的条件.2.如下列图,足够长的光滑斜面与水平面的夹角为037θ=,斜面下端与半径0.50R m =的半圆形轨道平滑相连,连接点为C ,半圆形轨道最低点为B ,半圆形轨道最高点为A ,sin 0.637=,0cos 0.837=,当地的重力加速度为210/g m s =。

〔1〕假设将质量为0.10m kg =的小球从斜面上距离C 点为 2.0L m =的斜面上D 点由静止释放,如此小球到达半圆形轨道最低点B 时,对轨道的压力多大?〔2〕要使小球经过最高点A 时不能脱离轨道,如此小球经过A 点时速度大小应满足什么条件? 〔3〕当小球经过A 点处的速度大小为多大时,小球与斜面发生一次弹性碰撞后还能沿原来的运动轨迹返回A 点?【答案】〔1〕 6.2N N = 〔2〕 2/C v m s ≥ 〔3〕12/C v m s =如此x 轴方向的分加速度为37x a gsin =-°,y 轴方向的分加速度为37y a gcos =︒且有0x A v a t +=,2122y R a t =联立解得 12/C v m s =【名师点睛】解决此题的关键理清物块的运动过程,把握隐含的临界条件,明确小球到达A 点的临界条件是轨道对小球没有作用力,由重力的径向分力提供向心力.小球只有垂直撞上斜面,才能沿原路返回.对斜抛要灵活选择坐标系,使得以简化。

动能定理在平抛、圆周运动中的综合应用

动能定理在平抛、圆周运动中的综合应用

动能定理在平抛、圆周运动中的综合应用动能定理常与平抛运动、圆周运动相结合,解决这类问题要特别注意:(1)与平抛运动相结合时,要注意应用运动的合成与分解的方法,如分解位移或分解速度求平抛运动的有关物理量.(2)与竖直平面内的圆周运动相结合时,应特别注意隐藏的临界条件:①有支撑效果的竖直平面内的圆周运动,物体能通过最高点的临界条件为v min=0.①没有支撑效果的竖直平面内的圆周运动,物体能通过最高点的临界条件为v min=gR.【题型1】如图所示,质量m=0.1 kg的金属小球从距水平面高h=2.0 m的光滑斜面上由静止开始释放,运动到A点时无能量损耗,水平面AB是长2.0 m的粗糙平面,与半径为R=0.4 m的光滑的半圆形轨道BCD相切于B点,其中圆轨道在竖直平面内,D为轨道的最高点,小球恰能通过最高点D,求:(g=10 m/s2)(1)小球运动到A点时的速度大小;(2)小球从A运动到B时摩擦阻力所做的功;(3)小球从D点飞出后落点E与A的距离.【题型2】如图所示,一可以看成质点的质量为m=2 kg的小球以初速度v0沿光滑的水平桌面飞出后,恰好从A点沿切线方向进入圆弧轨道,其中B为轨道的最低点,C为最高点且与水平桌面等高,圆弧AB对应的圆心角θ=53°,轨道半径R=0.5 m.已知sin 53°=0.8,cos 53°=0.6,不计空气阻力,g取10 m/s2.(1)求小球的初速度v0的大小;(2)若小球恰好能通过最高点C,求在圆弧轨道上摩擦力对小球做的功.【题型3】如图所示是一种常见的圆桌,桌面中间嵌一半径为r=1.5 m、可绕中心轴转动的圆盘,桌面与圆盘面在同一水平面内且两者间缝隙可不考虑.已知桌面离地高度为h=0.8 m,将一可视为质点的小碟子放置在圆盘边缘,若缓慢增大圆盘的角速度,碟子将从圆盘上甩出并滑上桌面,再从桌面飞出,落地点与桌面飞出点的水平距离是0.4 m.已知碟子质量m=0.1 kg,碟子与圆盘间的最大静摩擦力F fmax=0.6 N,g取10 m/s2,求:(不计空气阻力)(1)碟子从桌面飞出时的速度大小;(2)碟子在桌面上运动时,桌面摩擦力对它做的功;(3)若碟子与桌面间的动摩擦因数为μ=0.225,要使碟子不滑出桌面,则桌面半径至少是多少?【题型4】如图所示,一质量为M=5.0 kg的平板车静止在光滑水平地面上,平板车的上表面距离地面高h=0.8 m,其右侧足够远处有一固定障碍物A.一质量为m=2.0 kg的滑块(可视为质点)以v0=8 m/s的水平初速度从左端滑上平板车,同时对平板车施加一水平向右、大小为5 N的恒力F.当滑块运动到平板车的最右端时,两者恰好相对静止.此时撤去恒力F.此后当平板车碰到障碍物A时立即停止运动,滑块水平飞离平板车后,恰能无碰撞地沿圆弧切线从B点进入光滑竖直圆弧轨道,并沿轨道下滑.已知滑块与平板车间的动摩擦因数μ=0.5,圆弧半径为R=1.0 m,圆弧所对的圆心角θ=106°,g取10 m/s2,sin53°=0.8,cos53°=0.6,不计空气阻力,求:(1)平板车的长度;(2)障碍物A与圆弧左端B的水平距离;(3)滑块运动到圆弧轨道最低点C时对轨道压力的大小.针对训练1.如图所示,水平长直轨道AB 与半径为R =0.8 m 的光滑14竖直圆轨道BC 相切于B ,轨道BC 与半径为r =0.4 m 的光滑14竖直圆轨道CD 相切于C ,质量m =1 kg 的小球静止在A 点,现用F =18 N 的水平恒力向右拉小球,在到达AB 中点时撤去拉力,小球恰能通过D 点.已知小球与水平面间的动摩擦因数μ=0.2,取g =10 m/s 2.求: (1)小球在D 点的速度v D 大小;(2)小球在B 点对圆轨道的压力F N B 大小; (3)A 、B 两点间的距离x .2.如图所示,一长L =0.45 m 、不可伸长的轻绳上端悬挂于M 点,下端系一质量m =1.0 kg 的小球,CDE 是一竖直固定的圆弧形轨道,半径R =0.50 m ,OC 与竖直方向的夹角θ=60°,现将小球拉到A 点(保持绳绷直且水平)由静止释放,当它经过B 点时绳恰好被拉断,小球平抛后,从圆弧轨道的C 点沿切线方向进入轨道,刚好能到达圆弧轨道的最高点E ,重力加速度g 取10 m/s 2,求:(1)小球到B 点时的速度大小; (2)轻绳所受的最大拉力大小;(3)小球在圆弧轨道上运动时克服阻力做的功.3.在游乐节目中,选手需借助悬挂在高处的绳飞越到水面的浮台上,如图所示。

【专题3】平抛运动与圆周运动(含答案)

【专题3】平抛运动与圆周运动(含答案)

高考定位平抛运动和圆周运动是典型的曲线运动,而处理平抛运动的方法主要是运动的合成与分解,因此运动的合成与分解、平抛运动、圆周运动是每年必考的知识点.复习中要注意理解合运动与分运动的关系,掌握平抛运动和圆周运动问题的分析方法,能运用平抛运动知识和圆周运动知识分析带电粒子在电场、磁场中的运动.考题1对运动的合成和分解的考查例1(单选)(2014·四川·4)有一条两岸平直、河水均匀流动、流速恒为v的大河.小明驾着小船渡河,去程时船头指向始终与河岸垂直,回程时行驶路线与河岸垂直.去程与回程所用时间的比值为k,船在静水中的速度大小相同,则小船在静水中的速度大小为()A.k vk2-1B.v1-k2C.k v1-k2D.vk2-1审题突破根据去程时船头指向始终与河岸垂直,结合运动学公式,可列出河宽与船速的关系式,当回程时路线与河岸垂直,可求出船过河的合速度,从而列出河宽与船速度的关系,进而即可求解.解析设大河宽度为d,小船在静水中的速度为v0,则去程渡河所用时间t1=dv0,回程渡河所用时间t 2=dv20-v2.由题知t1t2=k,联立以上各式得v0=v1-k2,选项B正确,选项A、C、D错误.答案 B1.(单选)如图1所示,细绳一端固定在天花板上的O点,另一端穿过一张CD光盘的中央小孔后拴着一个橡胶球,橡胶球静止时,竖直悬线刚好挨着水平桌面的边沿.现将CD光盘按在桌面上,并沿桌面边缘以速度v匀速移动,移动过程中,CD光盘中央小孔始终紧挨桌面边线,当悬线与竖直方向的夹角为θ时,小球上升的速度大小为()图1A.v sin θB.v cos θC.v tan θD.v cot θ答案 A解析由题意可知,线与光盘的交点参与两个运动,一是逆着线的方向运动,二是垂直线的方向运动,则合运动的速度大小为v,由数学三角函数关系,则有:v线=v sin θ;而沿线方向的速度大小,即为小球上升的速度大小,故A正确,B、C、D错误.2.(单选)质量为2 kg的质点在竖直平面内斜向下做曲线运动,它在竖直方向的速度图象和水平方向的位移图象如图2甲、乙所示.下列说法正确的是()图2A.前2 s内质点处于超重状态B.2 s末质点速度大小为4 m/sC.质点的加速度方向与初速度方向垂直D.质点向下运动的过程中机械能减小答案 D解析由题图甲知,质点在竖直方向向下加速运动,即加速度的方向向下,故处于失重状态,所以A错误;2 s末v y=4 m/s,水平方向匀速运动v x=43m/s,故此时质点的速度v=v2x+v2y=4103m/s,可得B错误;质点的加速度竖直向下,初速度斜向下,故不垂直,所以C错误;由题图甲可求加速度a =1 m/s 2,根据牛顿第二定律可得mg -F f =ma ,即质点在下落的过程中受竖直向上的力,该力做负功,所以质点的机械能减小,所以D 正确.1.分运动与合运动具有等时性和独立性.2.运动的合成与分解属矢量的合成分解,满足平行四边形、三角形和正交分解.3.分析运动的合成与分解问题,要注意运动的分解方向,一般情况按实际运动效果进行分解,切记不可按分解力的思路来分解运动.考题2 对平抛运动的考查例2 (2014·浙江·23)如图3所示,装甲车在水平地面上以速度v 0=20 m/s 沿直线前进,车上机枪的枪管水平,距地面高为h =1.8 m .在车正前方竖直立一块高为两米的长方形靶,其底边与地面接触.枪口与靶距离为L 时,机枪手正对靶射出第一发子弹,子弹相对于枪口的初速度为v =800 m/s.在子弹射出的同时,装甲车开始匀减速运动,行进s =90 m 后停下.装甲车停下后,机枪手以相同方式射出第二发子弹.(不计空气阻力,子弹看成质点,重力加速度g =10 m/s 2)图3(1)求装甲车匀减速运动时的加速度大小;(2)当L =410 m 时,求第一发子弹的弹孔离地的高度,并计算靶上两个弹孔之间的距离; (3)若靶上只有一个弹孔,求L 的范围.审题突破 (1)由匀变速直线运动规律求解.(2)子弹做平抛运动,选地面为参考系,求解第一发子弹的弹孔离地的高度;数学关系结合平抛规律求解靶上两个弹孔之间的距离;(3)若靶上只有一个弹孔,说明第一颗子弹没有击中靶,第二颗子弹能够击中靶,平抛运动规律求解L 的范围.解析 (1)装甲车的加速度a =v 202s =209 m/s 2(2)第一发子弹飞行时间t 1=Lv +v 0=0.5 s第一个弹孔离地高度h 1=h -12gt 21=0.55 m第二个弹孔离地的高度h 2=h -12g (L -sv )2=1.0 m两弹孔之间的距离Δh =h 2-h 1=0.45 m(3)若使第一发子弹恰好打到靶的下沿,装甲车离靶的距离为L 1L 1=(v 0+v ) 2hg =492 m若使第二发子弹恰好打到靶的下沿,装甲车离靶的距离为L 2L 2=v 2hg+s =570 m为使靶上只有一个弹孔,则此弹孔一定是第二发子弹在靶上留下的弹孔 故L 的范围为492 m<L ≤570 m答案 (1)209 m/s 2 (2)0.55 m 0.45 m(3)492 m<L ≤570 m3.(单选)如图4所示,可视为质点的小球位于半圆柱体左端点A 的正上方某处,以初速度v 0水平抛出,其运动轨迹恰好与半圆柱体相切于B 点,过B 点的半圆柱体半径与水平面夹角为30°,则半圆柱体的半径为(不计空气阻力,重力加速度为g )( )图4A.23v 203gB.23v 209gC.(43-6)v 20gD.(4-23)v 20g答案 C解析 在B 点,据题可知小球的速度方向与水平方向成60°角,由速度的分解可知,竖直分速度大小v y =v 0tan 60°=3v 0,v 0t =R +R cos 30°,v y =gt ,得R =(43-6)v 20g ,故选C.4.(单选)(2014·新课标Ⅱ·15)取水平地面为重力势能零点.一物块从某一高度水平抛出,在抛出点其动能与重力势能恰好相等.不计空气阻力.该物块落地时的速度方向与水平方向的夹角为( ) A.π6 B.π4 C.π3 D.5π12答案 B解析 设物块水平抛出的初速度为v 0,高度为h ,由题意知12m v 20=mgh ,得:v 0=2gh .物块在竖直方向上的运动是自由落体运动,落地时的竖直分速度v y =2gh =v x =v 0,则该物块落地时的速度方向与水平方向的夹角θ=π4,故选项B 正确,选项A 、C 、D 错误.5.(单选)如图5所示,某人向对面的山坡上水平抛出两个质量不等的石块,分别落到A 、B 两处.不计空气阻力,则落到B 处的石块( )图5A .初速度大,运动时间短B .初速度大,运动时间长C .初速度小,运动时间短D .初速度小,运动时间长 答案 A解析 由于B 点在A 点的右侧,说明水平方向上B 点的距离更远,而B 点距抛出点的高度较小,故运动时间较短,二者综合说明落在B 点的石块的初速度较大,故A 正确,B 、C 、D 错误.1.平抛运动、类平抛运动处理的方法都是采用运动分解的方法,即分解为沿初速度方向的匀速直线运动和垂直于初速度方向的初速度为零的匀加速直线运动. 2.在平抛(类平抛)运动中要注意两个推论,在解答选择题时常用到:(1)做平抛(类平抛)运动的物体任意时刻速度的反向延长线一定通过此时水平位移的中点,如图甲所示.(2)如图乙,设做平抛(类平抛)运动的物体在任意时刻、任意位置处瞬时速度与水平方向的夹角为θ,位移与水平方向的夹角为φ,则有tan θ=2tan φ.考题3 对圆周运动的考查例3 如图6所示,在竖直平面内有xOy 坐标系,长为l 的不可伸长细绳,一端固定在A 点,A 点的坐标为(0,l2),另一端系一质量为m 的小球.现在x 坐标轴上(x >0)固定一个小钉,拉小球使细绳绷直并呈水平位置,再让小球从静止释放,当细绳碰到钉子以后,小球可以绕钉子在竖直平面内做圆周运动.图6(1)当钉子在x =54l 的P 点时,小球经过最低点时细绳恰好不被拉断,求细绳能承受的最大拉力;(2)为使小球释放后能绕钉子在竖直平面内做圆周运动,而细绳又不被拉断,求钉子所在位置的范围.审题突破 (1)由数学知识求出小球做圆周运动的轨道半径,由机械能守恒定律求出小球到达最低点时的速度,然后由牛顿第二定律求出绳子的拉力.(2)由牛顿第二定律求出小球到达最高点的速度,由机械能守恒定律求出钉子的位置,然后确定钉子位置范围.解析 (1)当钉子在x =54l 的P 点时,小球绕钉子转动的半径为:R 1=l - (l2)2+x 2小球由静止到最低点的过程中机械能守恒:mg (l 2+R 1)=12m v 21在最低点细绳承受的拉力最大,有:F -mg =m v 21R 1联立求得最大拉力F =7mg .(2)小球绕钉子做圆周运动恰好到达最高点时,有:mg =m v 22R 2运动中机械能守恒:mg (l 2-R 2)=12m v 22钉子所在位置为x ′= (l -R 2)2-(l2)2联立解得x ′=76l 因此钉子所在位置的范围为76l ≤x ≤54l . 答案 (1)7mg (2)76l ≤x ≤54l6.(2014·新课标Ⅰ·20)如图7所示,两个质量均为m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ′的距离为l ,b 与转轴的距离为2l ,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是( )图7A .b 一定比a 先开始滑动B .a 、b 所受的摩擦力始终相等C .ω= kg2l 是b 开始滑动的临界角速度D .当ω= 2kg3l 时,a 所受摩擦力的大小为kmg答案 AC解析 小木块a 、b 做圆周运动时,由静摩擦力提供向心力,即f =mω2R .当角速度增加时,静摩擦力增大,当增大到最大静摩擦力时,发生相对滑动,对木块a :f a =mω2a l ,当f a =kmg 时,kmg =mω2a l ,ωa = kg l ;对木块b :f b =mω2b ·2l ,当f b =kmg 时,kmg =mω2b ·2l ,ωb= kg 2l ,所以b 先达到最大静摩擦力,选项A 正确;两木块滑动前转动的角速度相同,则f a =mω2l ,f b=mω2·2l ,f a <f b ,选项B 错误;当ω= kg 2l 时b 刚开始滑动,选项C 正确;当ω= 2kg3l时,a 没有滑动,则f a =mω2l =23kmg ,选项D 错误.7.(单选)(2014·新课标Ⅱ·17)如图8所示,一质量为M 的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m 的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g .当小环滑到大环的最低点时,大环对轻杆拉力的大小为( )图8A .Mg -5mgB .Mg +mgC .Mg +5mgD .Mg +10mg 答案 C解析 设大环半径为R ,质量为m 的小环下滑过程中遵守机械能守恒定律,所以12m v 2=mg ·2R .小环滑到大环的最低点时的速度为v =2gR ,根据牛顿第二定律得F N -mg =m v 2R,所以在最低点时大环对小环的支持力F N =mg +m v 2R =5mg .根据牛顿第三定律知,小环对大环的压力F N ′=F N =5mg ,方向向下.对大环,据平衡条件,轻杆对大环的拉力T =Mg +F N ′=Mg +5mg .根据牛顿第三定律,大环对轻杆拉力的大小为T ′=T =Mg +5mg ,故选项C 正确,选项A 、B 、D 错误.1.圆周运动的基本规律(1)向心力:F =mω2r =m v 2r =m (2πT )2r =m (2πf )2r =m (2πn )2r .(2)向心加速度①大小:a =ω2r =v 2r =(2πT)2r =(2πf )2r =(2πn )2r .②注意:当ω为常数时,a 与r 成正比;当v 为常数时,a 与r 成反比;若无特定条件,不能说a 与r 成正比还是成反比.考题4 平抛与圆周运动组合问题的综合分析例4 (17分)如图9所示,一小物块自平台上以速度v 0水平抛出,刚好落在邻近一倾角为α=53°的粗糙斜面AB 顶端,并恰好沿该斜面下滑,已知斜面顶端与平台的高度差h =0.032 m ,小物块与斜面间的动摩擦因数为μ=0.5,A 点离B 点所在平面的高度H =1.2 m .有一半径为R 的光滑圆轨道与斜面AB 在B 点相切连接,已知cos 53°=0.6,sin 53°=0.8,g 取10 m/s 2.求:图9(1)小物块水平抛出的初速度v 0是多少;(2)若小物块能够通过圆轨道最高点,圆轨道半径R 的最大值.解析 (1)小物块自平台做平抛运动,由平抛运动知识得:v y =2gh =2×10×0.032 m/s =0.8 m/s(2分)由于物块恰好沿斜面下滑,则tan 53°=v y v 0(3分)得v 0=0.6 m/s.(2分)(2)设小物块过圆轨道最高点的速度为v ,受到圆轨道的压力为F N .则由向心力公式得:F N +mg =m v 2R(2分)由动能定理得:mg (H +h )-μmgH cos 53°sin 53°-mg (R +R cos 53°)=12m v 2-12m v 20(5分)小物块能过圆轨道最高点,必有F N ≥0(1分) 联立以上各式并代入数据得:R ≤821 m ,即R 最大值为821m .(2分)答案 (1)0.6 m/s (2)821m(2014·福建·21)(19分)如图10所示为某游乐场内水上滑梯轨道示意图,整个轨道在同一竖直平面内,表面粗糙的AB 段轨道与四分之一光滑圆弧轨道BC 在B 点水平相切.点A 距水面的高度为H ,圆弧轨道BC 的半径为R ,圆心O 恰在水面.一质量为m 的游客(视为质点)可从轨道AB 的任意位置滑下,不计空气阻力.图10(1)若游客从A 点由静止开始滑下,到B 点时沿切线方向滑离轨道落在水面D 点,OD =2R ,求游客滑到B 点时的速度v B 大小及运动过程轨道摩擦力对其所做的功W f ;(2)某游客从AB 段某处滑下,恰好停在B 点,又因受到微小扰动,继续沿圆弧轨道滑到P 点后滑离轨道,求P 点离水面的高度h .(提示:在圆周运动过程中任一点,质点所受的向心力与其速率的关系为F 向=m v 2R)答案 (1)2gR -(mgH -2mgR ) (2)23R解析 (1)游客从B 点做平抛运动,有 2R =v B t ①R =12gt 2②由①②式得v B =2gR ③ 从A 到B ,根据动能定理,有mg (H -R )+W f =12m v 2B -0④由③④式得W f =-(mgH -2mgR )⑤(2)设OP 与OB 间夹角为θ,游客在P 点时的速度为v P ,受到的支持力为N ,从B 到P 由机械能守恒定律,有mg (R -R cos θ)=12m v 2P -0⑥过P 点时,根据向心力公式,有mg cos θ-N =m v 2PR ⑦N =0⑧cos θ=hR⑨由⑥⑦⑧⑨式解得h =23R ⑩知识专题练 训练3题组1 运动的合成和分解1.(单选)如图1所示的曲线是某个质点在恒力作用下的一段运动轨迹.质点从M 点出发经P 点到达N 点,已知弧长MP 大于弧长PN ,质点由M 点运动到P 点与从P 点运动到N 点所用的时间相等.则下列说法中正确的是( )图1A .质点从M 到N 过程中速度大小保持不变B .质点在这两段时间内的速度变化量大小相等,方向相同C .质点在这两段时间内的速度变化量大小不相等,但方向相同D .质点在M 、N 间的运动不是匀变速运动 答案 B解析 由题图知,质点在恒力作用下做一般曲线运动,不同地方弯曲程度不同,即曲率半径不同,所以速度大小在变,所以A 错误;因是在恒力作用下运动,根据牛顿第二定律F =ma ,所以加速度不变,根据Δv =a Δt 可得在相同时间内速度的变化量相同,故B 正确,C 错误;因加速度不变,故质点做匀变速运动,所以D 错误.2.(单选) 公交车是人们出行的重要交通工具,如图2所示是公交车内部座位示意图,其中座位 A 和 B 的边线和车前进的方向垂直,当车在某一站台由静止开始匀加速启动的同时,一个乘客从A 座位沿 AB 连线相对车以2 m/s 的速度匀速运动到 B ,则站在站台上的人看到该乘客( )图2A .运动轨迹为直线B .运动轨迹为抛物线C .因该乘客在车上匀速运动,所以乘客处于平衡状态D .当车速度为5 m/s 时,该乘客对地速度为7 m/s 答案 B解析 人相对地面参与了两个方向的运动,一个是垂直于车身方向的匀速运动,一个是沿车身方向的匀加速直线运动,类似于一个物体做平抛运动,所以运动轨迹是抛物线,故A 错误,B 正确;乘客受到沿车身方向的合外力,处于非平衡状态,C 错误;速度的合成遵循平行四边形定则,当车速为5 m/s 时,乘客对地速度为29 m/s ,D 错误. 题组2 平抛运动3.(单选)如图3所示,x 轴在水平地面上,y 轴竖直向上,在y 轴上的P 点分别沿x 轴正方向和y 轴正方向以相同大小的初速度抛出两个小球a 和b ,不计空气阻力,若b 上升的最大高度等于P 点离地的高度,则从抛出到落地,有( )图3A .a 的运动时间是b 的运动时间的2倍B .a 的位移大小是b 的位移大小的2倍C .a 、b 落地时的速度相同,因此动能一定相同D .a 、b 落地时的速度不同,但动能可能相同 答案 D解析 设P 点离地面高度为h ,两小球的初速度大小为v 0,则a 落地的时间t a =2hg,a 的位移x a =h 2+(v 0t a )2;对b 分段求时间t b =v 0g +4h g ,又有h =v 202g,解得t a =(2-1)t b ,b 的位移x b =h ,a 的位移x a =5h ,故x ax b=5,所以A 、B 错误.由机械能守恒可知,a 、b 落地时速度大小相等,方向不同,若a 、b 质量相等,则动能相等,选项C 错误,D 正确. 4.(单选)如图4所示,一小球从一半圆轨道左端A 点正上方某处开始做平抛运动(小球可视为质点),飞行过程中恰好与半圆轨道相切于B 点.O 为半圆轨道圆心,半圆轨道半径为R ,OB 与水平方向夹角为60°,重力加速度为g ,则小球抛出时的初速度为()图4A. 3gR2 B. 33gR2C.3gR2D. 3gR3答案 B解析 飞行过程中恰好与半圆轨道相切于B 点,知速度与水平方向的夹角为30°设位移与水平方向的夹角为θ,则tan θ=tan 30°2=36因为tan θ=y x =y 32R ,则竖直位移y =3R 4,v 2y =2gy =3gR2.所以tan 30°=v yv 0,v 0=3gR 233=33gR2,故B 正确,A 、C 、D 错误. 5.如图5所示,水平地面上有一个坑,其竖直截面为半圆,O 为圆心,AB 为沿水平方向的直径.若在A 点以初速度v 1沿AB 方向平抛一小球,小球将击中坑壁上的最低点D 点;若A 点小球抛出的同时,在C 点以初速度v 2沿BA 方向平抛另一相同质量的小球并也能击中D 点.已知∠COD =60°,且不计空气阻力,则( )图5A .两小球同时落到D 点B .两小球在此过程中动能的增加量相等C .在击中D 点前瞬间,重力对两小球做功的功率不相等 D .两小球初速度之比v 1∶v 2=6∶3 答案 CD解析 由于两球做平抛运动下落的高度不同,则知两球不可能同时到达D 点;重力做功不等,则动能的增加量不等;在击中D 点前瞬间,重力做功的功率为P =mg v y =mg ·gt ,t 不等;设半圆的半径为R .小球从A 点平抛,可得R =v 1t 1,R =12gt 21,小球从C 点平抛,可得R sin 60°=v 2t 2,R (1-cos 60°)=12gt 22,联立解得v 1v 2=63,故D 正确.6.(单选)静止的城市绿化洒水车,由横截面积为S 的水龙头喷嘴水平喷出水流,水流从射出喷嘴到落地经历的时间为t ,水流落地点与喷嘴连线与水平地面间的夹角为θ,忽略空气阻力,以下说法正确的是( )A .水流射出喷嘴的速度为gt tan θB .空中水柱的水量为Sgt 22tan θC .水流落地时位移大小为gt 22cos θD .水流落地时的速度为2gt cot θ 答案 B解析 由题意知,水做平抛运动,θ为总位移与水平方向的夹角,tan θ=y x =gt2v x,可得水流射出喷嘴的速度为v x =gt 2tan θ,故A 错误;下落的高度y =12gt 2,水流落地时位移s =y sin θ=gt 22sin θ,所以C 错误;空中水柱的体积V =S v x t =Sgt 22tan θ,所以B 正确;水流落地时的速度v =(gt )2+v 2x=gt 1+14tan 2θ,所以D 错误.7.(单选)如图6所示,位于同一高度的小球A 、B 分别以v 1和v 2的速度水平抛出,都落在了倾角为30°的斜面上的C 点,小球B 恰好垂直打到斜面上,则v 1、v 2之比为( )图6A .1∶1B .2∶1C .3∶2D .2∶3 答案 C解析 小球A 做平抛运动,根据分位移公式,有: x =v 1t ① y =12gt 2② 又tan 30°=yx③联立①②③得:v 1=32gt ④ 小球B 恰好垂直打到斜面上,则有:tan 30°=v 2v y =v 2gt ⑤则得v 2=33gt ⑥由④⑥得:v 1∶v 2=3∶2.8.如图7所示,ab 为竖直平面内的半圆环acb 的水平直径,c 为环上最低点,环半径为R .将一个小球从a 点以初速度v 0沿ab 方向抛出,设重力加速度为g ,不计空气阻力,则( )图7A .当小球的初速度v 0=2gR2时,掉到环上时的竖直分速度最大 B .当小球的初速度v 0<2gR2时,将撞击到环上的圆弧ac 段C .当v 0取适当值,小球可以垂直撞击圆环D .无论v 0取何值,小球都不可能垂直撞击圆环 答案 ABD解析 当下落的高度为R 时,竖直分速度最大,根据R =12gt 2得,t =2R g ,则v 0=R t =2gR 2,故A 、B 正确;设小球垂直击中环,则其速度反向沿长线必过圆心,设其速度与水平方向的夹角为θ,R sin θ=12gt 2,R (1+cos θ)=v 0t ,且tan θ=gtv 0,可解得θ=0,但这是不可能的,故C错误,D 正确,故选A 、B 、D. 题组3 圆周运动9.(单选)如图8所示,质量相同的钢球①、②分别放在A 、B 盘的边缘,A 、B 两盘的半径之比为2∶1,a 、b 分别是与A 盘、B 盘同轴的轮,a 、b 轮半径之比为1∶2.当a 、b 两轮在同一皮带带动下匀速转动时,钢球①、②受到的向心力大小之比为( )图8A .2∶1B .4∶1C .1∶4D .8∶1 答案 D解析 皮带传送,边缘上的点线速度大小相等,所以v a =v b ,因为a 轮、b 轮半径之比为1∶2,根据线速度公式v =ωr 得:ωa ωb =21,共轴的点,角速度相等,两个钢球的角速度分别与共轴轮子的角速度相等,则ω1ω2=21.根据向心加速度a =rω2,则a 1a 2=81,由F =ma 得F 1F 2=81,故D 正确,A 、B 、C 错误.10.(单选)利用双线可以稳固小球在竖直平面内做圆周运动而不易偏离竖直面,如图9所示,用两根长为L 的细线系一质量为m 的小球,两线上端系于水平横杆上的A 、B 两点,A 、B 两点相距也为L ,若小球恰能在竖直面内做完整的圆周运动,则小球运动到最低点时,每根线承受的张力为( )图9A .23mgB .3mgC .2.5mg D.73mg2答案 A解析 小球恰好过最高点时有:mg =m v 21R解得v 1=32gL ① 根据动能定理得:mg ·3L =12m v 22-12m v 21② 由牛顿第二定律得:3F T -mg =m v 2232L ③联立①②③得,F T =23mg 故A 正确,B 、C 、D 错误.11.(单选)(2014·安徽·19)如图10所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5 m 处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g 取10m/s 2.则ω的最大值是( )图10A. 5 rad/sB. 3 rad/s C .1.0 rad/s D .0.5 rad/s 答案 C解析 当小物体转动到最低点时为临界点,由牛顿第二定律知,μmg cos 30°-mg sin 30°=mω2r 解得ω=1.0 rad/s ,故选项C 正确.12.如图11所示,一块足够大的光滑平板放置在水平面上,能绕水平固定轴MN 调节其与水平面的倾角.板上一根长为l =0.6 m 的轻细绳,它的一端系住一质量为m 的小球P ,另一端固定在板上的O 点.当平板的倾角固定为α时,先将轻绳平行于水平轴MN 拉直,然后给小球一沿着平板并与轻绳垂直的初速度v 0=3 m/s.若小球能在板面内做圆周运动,倾角α的值应在什么范围内?(取重力加速度g =10 m/s 2)图11答案 α≤30°解析 小球在板面上运动时受绳子拉力、板面弹力、重力的作用.在垂直板面方向上合力为0,重力在沿板面方向的分量为mg sin α,小球在最高点时,由绳子的拉力和重力分力的合力提供向心力:F T +mg sin α=m v 21l①研究小球从释放到最高点的过程,据动能定理:-mgl sin α=12m v 21-12m v 20② 若恰好通过最高点绳子拉力F T =0,联立①②解得:sin α=v 203gl =323×10×0.6=12.故α最大值为30°,可知若小球能在板面内做圆周运动,倾角α的值应满足α≤30°. 题组4 平抛与圆周运动组合问题的综合13.(2014·天津·9(1))半径为R 的水平圆盘绕过圆心O 的竖直轴匀速转动,A 为圆盘边缘上一点.在O 的正上方有一个可视为质点的小球以初速度v 水平抛出时,半径OA 方向恰好与v的方向相同,如图12所示.若小球与圆盘只碰一次,且落在A 点,重力加速度为g ,则小球抛出时距O 的高度h =________,圆盘转动的角速度大小ω=________.图12答案gR 22v 2 2n πv R(n =1,2,3,…) 解析 小球做平抛运动,在竖直方向:h =12gt 2①在水平方向R =v t ②由①②两式可得h =gR 22v2③小球落在A 点的过程中,OA 转过的角度 θ=2n π=ωt (n =1,2,3,…)④由②④两式得ω=2n πvR(n =1,2,3,…)14.一长l =0.80 m 的轻绳一端固定在O 点,另一端连接一质量m =0.10 kg 的小球,悬点O 距离水平地面的高度H =1.00 m .开始时小球处于A 点,此时轻绳拉直处于水平方向上,如图13所示.让小球从静止释放,当小球运动到B 点时,轻绳碰到悬点O 正下方一个固定的钉子P 时立刻断裂.不计轻绳断裂的能量损失,取重力加速度g =10 m/s 2.求:图13(1)当小球运动到B 点时的速度大小;(2)绳断裂后球从B 点抛出并落在水平地面上的C 点,求C 点与B 点之间的水平距离; (3)若OP =0.6 m ,轻绳碰到钉子P 时绳中拉力达到所能承受的最大拉力断裂,求轻绳能承受的最大拉力.答案 (1)4 m/s (2)0.80 m (3)9 N解析 (1)设小球运动到B 点时的速度大小为v B ,由机械能守恒定律得 12m v 2B=mgl 解得小球运动到B 点时的速度大小v B =2gl =4 m/s(2)小球从B 点做平抛运动,由运动学规律得 x =v B t y =H -l =12gt 2解得C 点与B 点之间的水平距离x =v B 2(H -l )g=0.80 m(3)若轻绳碰到钉子时,轻绳拉力恰好达到最大值F m ,由牛顿定律得F m -mg =m v 2Brr =l -OP由以上各式解得F m =9 N。

平抛运动与圆周运动的组合问题(含答案)

平抛运动与圆周运动的组合问题(含答案)

平抛运动与圆周运动的组合问题1、如图所示,有一个可视为质点的质量为m =1 kg 的小物块,从光滑平台上的A 点以v 0=3 m/s 的初速度水平抛出,到达C 点时,恰好沿C 点的切线方向进入固定在水平地 面上的光滑圆弧轨道,最后小物块滑上紧靠轨道末端D 点的质量为M =3 kg 的长木板.已知木板上表面与圆弧轨道末端切线相平,木板下表面与水平地面之间光滑接触,小物块与长木板间的动摩擦因数μ=0.3,圆弧轨道的半径为R =0.5 m ,C 点和圆弧的圆心连线与竖直方向的夹角θ=53°,不计空气阻力,取重力加速度g =10 m/s 2.求:(1)A 、C 两点的高度差;(2)小物块刚要到达圆弧轨道末端D 点时对轨道的压力;(3)要使小物块不滑出长木板,木板的最小长度.(sin 53°=0.8,cos 53°=0.6) 解析 (1)小物块在C 点时的速度大小为v C =v 0cos 53°=5 m/s ,竖直分量为v Cy =4 m/s下落高度h = =0.8 m(2)小物块由C 到D 的过程中,由动能定理得mgR (1-cos 53°)=12m v 2D -12m v 2C解得v D =29 m/s小球在D 点时由牛顿第二定律得F N -mg =m v D 2R代入数据解得F N =68 N由牛顿第三定律得F N ′=F N =68 N ,方向竖直向下(3)设小物块刚好滑到木板右端时与木板达到共同速度,大小为v ,小物块在木板上滑行 的过程中,小物块与长木板的加速度大小分别为 a 1=μg =3 m/s 2,a 2=μmg M=1 m/s 2速度分别为v =v D -a 1t ,v =a 2t 对物块和木板系统,由能量守恒定律得μmgL =12m v 2D -12(m +M )v 2解得L =3.625 m ,即木板的长度至少是3.625 m 答案 (1)0.8 m (2)68 N (3)3.625 m方法点拨程序法在解题中的应用22cy g v所谓“程序法”是指根据题意按先后顺序分析发生的运动过程,并明确每一过程的受力情况、运动性质、满足的规律等等,还要注意前后过程的衔接点是具有相同的速度.2、在我国南方农村地区有一种简易水轮机,如图所示,从悬崖上流出的水可看做连续做平抛运动的物体,水流轨道与下边放置的轮子边缘相切,水冲击轮子边缘上安装的挡水板,可使轮子连续转动,输出动力.当该系统工作稳定时,可近似认为水的末速度与轮子边缘的线速度相同.设水的流出点比轮轴高h=5.6 m,轮子半径R=1 m.调整轮轴O的位置,使水流与轮边缘切点对应的半径与水平线成θ=37°角.(已知sin 37°=0.6,cos 37°=0.8,g=10 m/s2)问:(1)水流的初速度v0大小为多少?(2)若不计挡水板的大小,则轮子转动的角速度为多少?答案(1)7.5 m/s(2)12.5 rad/s解析(1)水流做平抛运动,有h-R sin 37°=1 2gt2解得t=2(h-R sin 37°)g=1 s所以v y=gt=10 m/s,由图可知:v0=v y tan 37°=7.5 m/s.(2)由图可知:v=v0sin 37°=12.5 m/s,根据ω=vR可得ω=12.5 rad/s. 3、解析 (1)在C 点:mg =m RvC 2(2分)所以v C =5 m/s (1分)(2)由C 点到D 点过程:mg (2R -2r )=12m v 2D -12m v 2C (2分)在D 点:mg +F N =m v D 2r (2分)所以F N =333.3 N (1分) 由牛顿第三定律知小滑车对轨道的压力为333.3 N. (1分) (3)小滑车要能安全通过圆形轨道,在平台上速度至少为v 1,则 12m v 2C +mg (2R )=12m v 21 (2分) 小滑车要能落到气垫上,在平台上速度至少为v 2,则 h =12gt 2 (1分) x =v 2t (1分)解得v 2>v 1,所以只要mgH =12m v 22,即可满足题意.解得H =7.2 m (3分) 答案 (1)5 m/s (2)333.3 N (3)7.2 m技巧点拨1.对于多过程问题首先要搞清各运动过程的特点,然后选用相应规律.2.要特别注意运用有关规律建立两运动之间的联系,把转折点的速度作为分析重点. 4、水上滑梯可简化成如图所示的模型,斜槽AB 和光滑圆弧槽BC 平滑连接.斜槽AB 的竖直高度差H =6.0 m ,倾角 θ=37°;圆弧槽BC 的半径R =3.0 m ,末端C 点的切线水平;C 点与水面的距离h =0.80 m .人与AB 间的动摩擦因数μ=0.2,取 重力加速度g =10 m/s 2,cos 37°=0.8,sin 37°=0.6.一个质量m=30 kg 的小朋友从滑梯顶端A 点无初速度地自由滑下,不计空 气阻力.求:(1)小朋友沿斜槽AB 下滑时加速度a 的大小;(2)小朋友滑到C 点时速度v 的大小及滑到C 点时受到槽面的支持力F C 的大小; (3)在从C 点滑出至落到水面的过程中,小朋友在水平方向的位移x 的大小. 答案 (1)4.4 m/s 2 (2)10 m/s 1 300 N (3)4 m解析 (1)小朋友沿AB 下滑时,受力情况如图所示,根据牛 顿第二定律得:mg sin θ-F f =ma ① 又F f =μF N ② F N =mg cos θ ③ 联立①②③式解得:a =4.4 m/s 2 ④ (2)小朋友从A 滑到C 的过程中,根据动能定理得:mgH -F f ·H sin θ+mgR (1-cos θ)=12m v 2-0 ⑤联立②③⑤式解得:v =10 m/s ⑥根据牛顿第二定律有:F C -mg =m v 2R ⑦联立⑥⑦式解得:F C =1 300 N . ⑧(3)在从C 点滑出至落到水面的过程中,小朋友做平抛运动,设此过程经历的时间为t ,则:h =12gt 2 ⑨x =v t ⑩ 联立⑥⑨⑩式解得:x =4 m.5、(2012·福建理综·20)如图所示,置于圆形水平转台边缘的小物块随转台加速转动,当转速达到某一数值时,物块恰好滑离转台开始做平抛运动.现测得转台半径R =0.5 m ,离水平地面的高度H =0.8 m ,物块平抛落地过程水平位移的大小s =0.4 m .设物块所受的最大静摩擦力等于滑动摩擦力,取重力加速度g =10 m/s 2.求:(1)物块做平抛运动的初速度大小v 0; (2)物块与转台间的动摩擦因数μ. 答案 (1)1 m/s (2)0.2解析 (1)物块做平抛运动,在竖直方向上有H =12gt 2 ①在水平方向上有s =v 0t ②由①②式解得v 0=s g2H代入数据得v 0=1 m/s(2)物块离开转台时,由最大静摩擦力提供向心力,有f m =m v 0 2R ③f m =μN =μmg ④由③④式得μ=v 0 2gR代入数据得μ=0.26、 (2010·重庆理综·24)小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m 的小球,甩动手腕,使球在竖直平面 内做圆周运动.当球某次运动到最低点时,绳突然断掉,球飞行水 平距离d 后落地,如图所示.已知握绳的手离地面高度为d ,手与球之间的绳长为34d ,重力加速度为g .忽略手的运动半径和空气阻力.(1)求绳断时球的速度大小v 1和球落地时的速度大小v 2. (2)问绳能承受的最大拉力多大?(3)改变绳长,使球重复上述运动,若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少?答案 (1)2gd 52gd (2)113mg (3)d 2 2 33d 解析 (1)设绳断后球飞行的时间为t ,由平抛运动规律有竖直方向:14d =12gt 2水平方向:d =v 1t 解得v 1=2gd由机械能守恒定律有12m v 32=12m v 21+mg (d -34d )解得v 2= 52gd(2)设绳能承受的最大拉力大小为F max ,这也是球受到绳的最大拉力的大小.球做圆周运动的半径为R =34d由圆周运动向心力公式,有F max -mg =m v 1 2R得F max =113mg(3)设绳长为l ,绳断时球的速度大小为v 3.绳承受的最大拉力不变,有F max -mg =m v 3 2l,解得v 3= 83gl绳断后球做平抛运动,竖直位移为d -l ,水平位移为x ,时间为t 1.由平抛运动规律有d -l =12gt 21,x =v 3t 1得x =4 l (d -l )3,当l =d 2时,x 有最大值x max =233d .7、如图所示,一质量为2m 的小球套在一“”滑杆上,小球与滑杆的动摩擦因数为μ=0.5,BC 段为半径为R 的半圆,静止于A 处的小球在大小为F =2mg ,方向与水平面成37°角的拉力F 作用下沿杆运动,到达B 点时立刻撤去F ,小球沿圆弧向上冲并越过C 点后落在D 点(图中未画出),已知D 点到B 点的距离为R ,且AB 的距离为s =10R .试求:(1)小球在C 点对滑杆的压力; (2)小球在B 点的速度大小;(3)BC 过程小球克服摩擦力所做的功. 答案 (1)32mg ,方向竖直向下 (2)23gR (3)31mgR4解析 (1)小球越过C 点后做平抛运动,有竖直方向:2R =12gt 2 ①水平方向:R =v C t ② 解①②得v C =gR 2在C 点对小球由牛顿第二定律有:2mg -F N C =2m v C 2R解得F N C =3mg2由牛顿第三定律有,小球在C 点对滑杆的压力F N C ′=F N C =3mg2,方向竖直向下(2)在A 点对小球受力分析有:F N +F sin 37°=2mg ③ 小球从A 到B 由动能定理有:F cos 37°·s -μF N ·s =12·2m v 2B ④解③④得v B =23gR(3)BC 过程对小球由动能定理有:-2mg ·2R -W f =12×2m v 2C -12×2m v 2B解得W f =31mgR48、如图所示,质量为m =1 kg 的小物块由静止轻轻放在水平匀速运动的传送带上,从A 点随传送带运动到水平部分的最右端B 点,经半圆轨道C 点沿圆弧切线进入竖直光滑的半圆轨道,恰能做圆周运动.C 点在B 点的正上方,D 点为轨道的最低点.小物块离开D 点后,做平抛运动,恰好垂直于倾斜挡板打在挡板跟水平面相交的E 点.已知半圆轨道的半径R =0.9 m ,D 点距水平面的高度h =0.75 m ,取g =10 m/s 2,试求:(1)摩擦力对小物块做的功;(2)小物块经过D 点时对轨道压力的大小; (3)倾斜挡板与水平面间的夹角θ.答案 (1)4.5 J (2)60 N ,方向竖直向下 (3)60°解析 (1)设小物块经过C 点时的速度大小为v 1,因为经过C 点恰能做圆周运动,所以,由牛顿第二定律得:mg =m v 1 2R解得:v 1=3 m/s小物块由A 到B 的过程中,设摩擦力对小物块做的功为W ,由动能定理得:W =12m v 21解得:W =4.5 J(2)设小物块经过D 点时的速度大小为v 2,对从C 点运动到D 点的过程,由机械能守恒 定律得: 12m v 21+mg ·2R =12m v 22 小物块经过D 点时,设轨道对它的支持力大小为F N ,由牛顿第二定律得:F N -mg =m v 2 2R联立解得:F N =60 N由牛顿第三定律可知,小物块经过D 点时对轨道的压力大小为: F N ′=F N =60 N ,方向竖直向下(3)小物块离开D 点后做平抛运动,设经时间t 打在E 点,由h =12gt 2得:t =1510s 设小物块打在E 点时速度的水平、竖直分量分别为v x 、v y ,速度跟竖直方向的夹角为α, 则: v x =v 2 v y =gt tan α=v x v y解得:tan α=3 所以:α=60°由几何关系得:θ=α=60°.9、 水平光滑直轨道ab 与半径为R 的竖直半圆形光滑轨道bc 相切,一小球以初速度v 0沿直轨道向右运动.如图3所示,小球进入圆 形轨道后刚好能通过c 点,然后小球做平抛运动落在直轨道上的 d 点,则 ( ) A .小球到达c 点的速度为gR B .小球到达b 点时对轨道的压力为5mg C .小球在直轨道上的落点d 与b 点距离为2RD .小球从c 点落到d 点所需时间为2 Rg答案 ACD解析 小球在c 点时由牛顿第二定律得:mg =m v c 2R ,v c =gR ,A 项正确;小球由b 到c 过程中,由机械能守恒定律得: 12m v 2B =2mgR +12m v 2c 小球在b 点,由牛顿第二定律得:F N -mg =m v b 2R ,联立解得F N =6mg ,B 项错误;小球由c 点平抛,在平抛运动过程中由运动学公式得:x =v c t,2R =12gt 2.解得t =2 Rg ,x =2R ,C 、D 项正确.10、 如图所示,P 是水平面上的圆弧凹槽.从高台边B 点以某速度v 0水平飞出的小球,恰能从固定在某位置的凹槽的圆弧轨道的左 端A 点沿圆弧切线方向进入轨道.O 是圆弧的圆心,θ1是OA 与 竖直方向的夹角,θ2是BA 与竖直方向的夹角.则 ( )A .tan θ2tan θ1=2 B .tan θ1·tan θ2=2C .1tan θ1·tan θ2=2D .tan θ1tan θ2=2答案 B解析 由题意可知:tan θ1=v y v x =gt v 0,tan θ2=x y =v 0t 12gt 2=2v 0gt,所以tan θ1·tan θ2=2,故B正确.11、如图所示,在水平匀速运动的传送带的左端(P 点),轻放一质量为m =1 kg 的物块,物块随传送带运动到A 点后水平抛出,物块恰好无碰撞的沿圆弧切线从B 点进入竖直光滑圆弧轨道下滑.B 、D 为圆弧的两端点,其连线水平.已知圆弧半径R =1.0 m ,圆弧对应的圆心角θ=106°,轨道最低点为C ,A 点距水平面的高度h =0.8 m(g 取10 m/s 2,sin 53°=0.8,cos 53°=0.6)求:(1)物块离开A 点时水平初速度的大小; (2)物块经过C 点时对轨道压力的大小;(3)设物块与传送带间的动摩擦因数为0.3,传送带的速度为5 m/s ,求P A 间的距离. 答案 (1)3 m/s (2)43 N (3)1.5 m解析 (1)物块由A 到B 在竖直方向有v 2y =2gh v y =4 m/s在B 点:tan θ2=v yv A ,v A =3 m/s(2)物块从B 到C 由功能关系得mgR (1-cos θ2)=12m v 2C -12m v 2Bv B =v A 2+v y 2=5 m/s 解得v 2C =33 m 2/s 2 在C 点:F N -mg =m v C 2R由牛顿第三定律知,物块经过C 点时对轨道压力的大小为F N ′=F N =43 N(3)因物块到达A 点时的速度为3 m/s ,小于传送带速度,故物块在传送带上一直做匀加速直线运动 μmg =ma , a =3 m/s 2P A 间的距离x P A =v A 22a=1.5 m.12、如图所示,半径R =1.0 m 的光滑圆弧轨道固定在竖直平面内,轨道的一个端点B 和圆心O 的连线与水平方向间的夹角θ= 37°,另一端点C 为轨道的最低点.C 点右侧的水平路面 上紧挨C 点放置一木板,木板质量M =1 kg ,上表面与C 点 等高.质量m =1 kg 的物块(可视为质点)从空中A 点以v 0=1.2 m/s 的速度水平抛出,恰好从轨道的B 端沿切线方向进入轨道. 已知物块与木板间的动摩擦因数μ1=0.2,木板与路面间的动摩擦因数μ2=0.05,sin 37° =0.6,cos 37°=0.8,取g =10 m/s 2.试求: (1)物块经过轨道上的C 点时对轨道的压力;(2)设木板受到的最大静摩擦力跟滑动摩擦力相等,则木板至少多长才能使物块不从木板上滑下?答案 (1)46 N (2)6 m解析 (1)设物块经过B 点时的速度为v B ,则 v B sin 37°=v 0设物块经过C 点的速度为v C ,由机械能守恒得: 12m v 2B +mg (R +R sin 37°)=12m v 2C 物块经过C 点时,设轨道对物块的支持力为F C ,根据牛顿第二定律得:F C -mg =m v C 2R联立解得:F C =46 N由牛顿第三定律可知,物块经过圆轨道上的C 点时对轨道的压力为46 N(2)物块在木板上滑动时,设物块和木板的加速度大小分别为a 1、a 2,得:μ1mg =ma 1 μ1mg -μ2(M +m )g =Ma 2设物块和木板经过时间t 达到共同速度v ,其位移分别为x 1、x 2,则:对物块有: v C -a 1t =v v 2-v 2C =-2a 1x 1 对木板有:a 2t =v v 2=2a 2x 2设木板长度至少为L ,由题意得:L ≥x 1-x 2 联立解得:L ≥6 m即木板长度至少6 m 才能使物块不从木板上滑下.13、 某校物理兴趣小组决定举行遥控赛车比赛.比赛路径如图7所示,赛车从起点A 出发,沿水平直线轨道运动L 后,由B 点进入 半径为R 的光滑竖直圆轨道,离开竖直圆轨道后继续在光滑平直 轨道上运动到C 点,并能越过壕沟.已知赛车质量m =0.1 kg , 通电后以额定功率P =1.5 W 工作,进入竖直轨道前受到的阻力 恒为0.3 N ,随后在运动中受到的阻力均可不计.图中L =10.00 m , R =0.32 m ,h =1.25 m ,x =1.50 m .问:要使赛车完成比赛,电动 机至少工作多长时间?(取g =10 m/s 2)答案 2.53 s解析 设赛车越过壕沟需要的最小速度为v 1,由平抛运动的规律x =v 1t ,h =12gt 2解得v 1=x g2h=3 m/s设赛车恰好越过圆轨道,对应圆轨道最高点的速度为v 2,最低点速度为v 3,由牛顿运动定律及机械能守恒定律得mg =m v 22/R 12m v 23=12m v 22+mg (2R ) 解得v 3=5gR =4 m/s通过分析比较,赛车要完成比赛,在进入圆轨道前的速度最小应该是v min =4 m/s 设电动机工作时间至少为t ,根据功能关系,有Pt -F f L =12m v 2m in ,由此解得t =2.53 s。

平抛运动与圆周运动的综合应用教学设计

平抛运动与圆周运动的综合应用教学设计

平抛运动与圆周运动的综合应用教学设计收稿日期:2016-11-03基金项目:全国教育科学“十二五”规划2013年度单位资助教育部规划课题“少数民族地区新课标背景下高效课堂教学研究”(FHB130507)作者简介:肖有福(1968-),男(壮族),广西乐业人,本科,中学高级(广西特级教师),研究方向:高中物理教学。

一、教学背景:新课程标准:(1)通过事例让学生认识平抛物体的运动,并结合运动的合成和分解分析平抛物体的运动。

(2)通过生活中的事例分析圆周运动和匀速圆周运动,并引入线速度、角速度等相关概念。

(3)通过实例分析向心加速度的相关因素,并在此让学生学会利用向心力的公式解决相关的问题。

(4)通过对生活中的圆周运动的事例分析,让学生理解理论联系实际的观点,提高学生利用所学物理知识分析问题和解决问题的能力。

考点:(1)抛体运动(Ⅱ);(2)匀速圆周运动、角速度、线速度(Ⅰ);(3)向心加速度(Ⅰ);(4)向心力(Ⅱ)。

教学目标:(1)能求平抛运动的速度和位移,会用运动的合成和分解的方法处理平抛运动。

(2)知道描述匀速圆周运动的各物理量之间的关系,会用它们之间的关系进行简单的计算。

(3)知道向心力的大小和那些因素有关,理解向心力的公式。

(4)了解变速圆周运动和平抛运动的分析方法,能分析生活中的圆周运动的向心力的来源。

(5)会用平抛运动的规律和向心加速度、向心力的公式对具体问题进行计算,能分析生活中的一些常见平抛运动和圆周运动的综合问题。

教学重难点:(1)理解掌握抛体运动的规律。

(2)对向心加速度和向心力公式的理解和应用。

(3)能利用平抛运动和圆周运动的规律来分析、解决一些简单物理现象。

教学方法:根据班级学生人数进行分组,每组4位同学左右,分成若干小组,学生先自主探究,然后小组讨论,小组展示结果,教师点评,总结提高,当堂检测,利用知识拓展激发学生学习积极性和创新潜能。

二、教学过程(一)课题导入(3分钟)1.平抛运动的规律和计算公式?2.圆周运动的规律及向心加速度和向心力的公式?提示:生活中经常遇到有平抛运动又有圆周运动的现象,如何解决?教师活动:教师用媒体展示问题、提出问题。

2020-2021【名校提分专用】年高考物理一轮复习 专题4.10 平抛运动与圆周运动综合问题千题精练

2020-2021【名校提分专用】年高考物理一轮复习 专题4.10 平抛运动与圆周运动综合问题千题精练

专题4.10 平抛运动与圆周运动综合问题一.选择题1. (2018徐州期中)如图所示,链球上面安有链子和把手。

运动员两手握着链球的把手,人和球同时快速旋转,最后运动员松开把手,链球沿斜向上方向飞出,不计空气阻力。

关于链球的运动, 下列说法正确的有A.链球脱手后做匀变速曲线运动B.链球脱手时沿金属链方向飞出C.链球抛出角度一定时,脱手时的速率越大,则飞得越远D.链球脱手时的速率一定时,抛出角度越小,一定飞得越远 【参考答案】AC2(2018湖北荆州第一次质检)如图所示,一位同学玩飞镖游戏。

圆盘最上端有一P 点,飞镖抛出时与P 等高,且距离P 点为L 。

当飞镖以初速度v 0垂直盘面瞄准P 点抛出的同时,圆盘以经过盘心O 点的水平轴在竖直平面内匀速转动。

忽略空气阻力,重力加速度为g ,若飞镖恰好击中P 点,则v 0可能为 ( )A .2LωπB .2L ωπC .3L ωπD .4L ωπ.【参考答案】C3. 如图所示,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,从B 点脱离后做平抛运动,经过0.3 s 后又恰好垂直与倾角为45°的斜面相碰。

已知半圆形管道的半径R =1 m ,小球可看做质点且其质量为m =1 kg ,g 取10 m/s 2。

则( )A.小球在斜面上的相碰点C 与B 点的水平距离是0.9 mB.小球在斜面上的相碰点C 与B 点的水平距离是1.9 mC.小球经过管道的B 点时,受到管道的作用力F N B 的大小是1 ND.小球经过管道的B 点时,受到管道的作用力F N B 的大小是2 N 【参考答案】AC【名师解析】根据平抛运动的规律,小球在C 点的竖直分速度v y =gt =3 m/s ,水平分速度v x =v y tan 45°=3 m/s ,则B 点与C 点的水平距离为x =v x t =0.9 m ,选项A 正确,B 错误;在B 点设管道对小球的作用力方向向下,根据牛顿第二定律,有F N B +mg =m v 2BR,v B =v x =3 m/s ,解得F N B =-1 N ,负号表示管道对小球的作用力方向向上,选项C 正确,D 错误。

41.平抛运动与圆周运动综合问题(基础篇)(解析版)2021年高考物理100考点模拟题

41.平抛运动与圆周运动综合问题(基础篇)(解析版)2021年高考物理100考点模拟题

2021年高考物理100考点最新模拟题千题精练第四部分曲线运动专题4.21平抛运动与圆周运动综合问题(基础篇)一.选择题1. (2018徐州期中)如图所示,链球上面安有链子和把手。

运动员两手握着链球的把手,人和球同时快速旋转,最后运动员松开把手,链球沿斜向上方向飞出,不计空气阻力。

关于链球的运动, 下列说法正确的有()A. 链球脱手后做匀变速曲线运动B. 链球脱手时沿金属链方向飞出C. 链球抛出角度一定时,脱手时的速率越大,则飞得越远D. 链球脱手时的速率一定时,抛出角度越小,一定飞得越远【参考答案】.AC【名师解析】链球脱手后只受重力,沿圆周的切线方向飞出,做匀变速曲线运动,选项A正确B错误;根据斜抛运动规律,链球抛出角度一定时,脱手时的速率越大,则飞得越远,选项C正确;链球脱手时的速率一定时,抛出角度越小,不一定飞得越远,选项D错误。

2.(2018湖北荆州第一次质检)如图所示,一位同学玩飞镖游戏。

圆盘最上端有一P点,飞镖抛出时与P 等高,且距离P点为L。

当飞镖以初速度v0垂直盘面瞄准P点抛出的同时,圆盘以经过盘心O点的水平轴在竖直平面内匀速转动。

忽略空气阻力,重力加速度为g,若飞镖恰好击中P点,则v0可能为()A.2L ωπB.2LωπC .3Lωπ D .4Lωπ. 【参考答案】.C【名师解析】设圆盘的直径为d ,飞镖恰好击中P 点,根据平抛运动规律,d=12gt 2,L=v 0t ,根据匀速圆周运动规律,t=πω+2n πω= ()21n πω+,联立解得:v 0=()21Ln ωπ+,n=0,1,2,3,···。

选项C 正确。

3. 如图所示,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,从B 点脱离后做平抛运动,经过0.3 s 后又恰好垂直与倾角为45°的斜面相碰。

已知半圆形管道的半径R =1 m ,小球可看做质点且其质量为m =1 kg ,g 取10 m/s 2。

专题22 平抛运动的图像问题、相遇问题、临界问题、与圆周运动结合问题(解析版)

专题22 平抛运动的图像问题、相遇问题、临界问题、与圆周运动结合问题(解析版)

2023届高三物理一轮复习重点热点难点专题特训专题22 平抛运动的图像问题、相遇问题、临界问题、与圆周运动结合问题特训目标特训内容目标1 平抛运动的图像问题(1T—4T)目标2 平抛运动的相遇问题(5T—8T)目标3 平抛运动的临界问题(9T—12T)目标4 平抛运动与周期性圆周运动相结合问题(13T—16T)一、平抛运动的图像问题1.如图,在倾角为 的斜面顶端,将小球以v0的初速度水平向左抛出,经过一定时间小球发生第一次撞击。

自小球抛出至第一次撞击过程中小球水平方向的位移为x,忽略空气阻力,则下列图像正确的是()A.B.C .D .【答案】D【详解】如果小球落在斜面上,小球位移方向与水平方向夹角为α,则有0tan 2y gt x v α==则水平位移200002tan v x v t v v gα==∝小球落水平面上,小球飞行时间恒定,水平位移正比于0v ,故D 正确,ABC 错误。

故选D 。

2.如图甲所示,挡板OA 与水平面的夹角为θ,小球从O 点的正上方高度为H 的P 点以水平速度0v 水平抛出,落到斜面时,小球的位移与斜面垂直;让挡板绕定的O 点转动,改变挡板的倾角θ,小球平抛运动的初速度0v 也改变,每次平抛运动,使小球的位移与斜面总垂直,22011tan v θ-函数关系图像如图乙所示,重力加速度210m/s g =,下列说法正确的是( )A .图乙的函数关系图像对应的方程式220111tan 2gH v θ=⨯+ B .图乙中a 的数值2-C .当图乙中1b =,H 的值为0.1mD .当45θ=︒,图乙中1b =2【答案】D 【详解】A .设平抛运动的时间为t ,如图所示把平抛运动的位移分别沿水平和竖直方向分解,由几何关系02tan 12v tgt θ=解得0an 2t v t g θ=根据几何关系有201tan 2H gt v t θ-=⨯联立整理220111tan 2gH v θ=⨯-故A 错误; B .结合图乙22011tan v θ-函数关系图像可得1a =-故B 错误; C .由图乙可得22011tan v θ-函数关系图像的斜率2a gH kb =-=又有1a =-,1b =可得0.2m H =故C 错误;D .当45θ︒=,0.2m H =根据220111tan 2gH v θ=⨯-解得02v =根据0an 2t v t g θ=解得2t =故D 正确。

曲线运动专题二 平抛运动与圆周运动相结合的问题

曲线运动专题二   平抛运动与圆周运动相结合的问题

曲线运动专题二 平抛运动与圆周运动相结合的问题说明:1. 平抛运动与圆周运动的组合题,用平抛运动的规律求解平抛运动问题,用牛顿定律求解圆周运动问题,关键是找到两者的速度关系.若先做圆周运动后做平抛运动,则圆周运动的末速度等于平抛运动的水平初速度;若物体平抛后进人圆轨道,圆周运动的初速度等于平抛末速度在圆切线方向的分速度。

2. 分析多解原因:匀速圆周运动具有周期性,使得前一个周期中发生的事件在后一个周期中同样可能发生,这就要求我们在确定做匀速圆周运动物体的运动时间时,必须把各种可能都考虑进去. 3. 确定处理方法:(1)抓住联系点:明确两个物体参与运动的性质和求解的问题,两个物体参与的两个运动虽然独立进行,但一定有联系点,其联系点一般是时间或位移等,抓住两运动的联系点是解题关键。

(2)先特殊后一般:分析问题时可暂时不考虑周期性,表示出一个周期的情况,再根据运动的周期性,在转过的角度θ上再加上 2πr,具体π的取值应视情况而定。

练习题1.(多选)水平光滑直轨道ab 与半径为R 的竖直半圆形光滑轨道bc 相切,一小球以初速度v 0沿直轨道向右运动.如图所示,小球进入圆形轨道后刚好能通过c 点,然后小球做平抛运动落在直轨道上的d 点,则( )A .小球到达c 点的速度为gRB .小球到达b 点进入圆形轨道时对轨道的压力为mgC .小球在直轨道上的落点d 与b 点距离为RD .小球从c 点落到d 点所需时间为2Rg2.如图为俯视图,利用该装置可以测子弹速度大小。

直径为d 的小纸筒,以恒定角速度ω绕O 轴逆时针转动,一颗子弹沿直径水平快速穿过圆纸筒,先后留下a 、b 两个弹孔,且Oa 、Ob 间的夹角为α.不计空气阻力,则子弹的速度为多少?3.(单选)如图所示,一位同学做飞镖游戏,已知圆盘的直径为d ,飞镖距圆盘为L ,且对准圆盘上边缘的A 点水平抛出,初速度为v 0,飞镖抛出的同时,圆盘以垂直圆盘过盘心O 的水平轴匀速运动,角速度为ω.若飞镖恰好击中A 点,则下列关系正确的是( )A .02dv ω=B .ωL =π(1+2n )v 0,(n =0,1,2,3,…)C.2dv02=L2gD.dω2=gπ2(1+2n)2,(n=0,1,2, 3,…)4.一半径为R、边缘距地高h的雨伞绕伞柄以角速度ω匀速旋转时(如图所示),雨滴沿伞边缘的切线方向飞出.则:⑴雨滴离开伞时的速度v多大?⑵甩出的雨滴在落地过程中发生的水平位移多大?⑶甩出的雨滴在地面上形成一个圆,求此圆的半径r为多少?5.如图,置于圆形水平转台边缘的小物块随转台加速转动,当转速达到某一数值时,物块恰好滑离转台开始做平抛运动.现测得转台半径R=0.5m,离水平地面的高度H=0.8m,物块平抛落地过程水平位移的大小s=0.4m.设物块所受的最大静摩擦力等于滑动摩擦力,取重力加速度g=10m/s2求:(1)物块做平抛运动的初速度大小v0;(2)物块与转台间的动摩擦因数μ.6.小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m的小球,甩动手腕,使球在竖直平面内做圆周运动.当球某次运动到最低点时,绳突然断掉,球飞行水平距离d后落地,如图所示.已d,重力加速度为g.忽略手的运动半径和空气阻力.知握绳的手离地面高度为d,手与球之间的绳长为34(1)求绳断开时球的速度大小v1(2)问绳能承受的最大拉力多大?(3)改变绳长,使球重复上述运动,若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少?7.如图为一个简易的冲击式水轮机的模型,水流自水平的水管流出,水流轨迹与下边放置的轮子边缘相切,水冲击轮子边缘上安装的挡水板,可使轮子连续转动.当该装置工作稳定时,可近似认为水到达轮子边缘时的速度与轮子边缘的线速度相同.调整轮轴O的位置,使水流与轮边缘切点对应的半径与水平方向成θ=37°角.测得水从管口流出速度v0=3 m/s,轮子半径R=0.1 m.不计挡水板的大小,不计空气阻力.取重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8.求:(1)轮子转动角速度ω;(2)水管出水口距轮轴O的水平距离l和竖直距离h.题目点评:1、抓住刚好能通过c 点(无支撑)得条件,到达b 点进入圆形轨道时,有竖直向上的向心加速度,超重状态,对轨道的压力大于mg 。

高二学考专题11平抛运动与圆周运动组合问题

高二学考专题11平抛运动与圆周运动组合问题

高二学考专题11平抛运动与圆周运动组合问题考点一平抛运动与直线运动的组合问题1.平抛运动可以分为水平方向的匀速直线运动和竖直方向的自由落体运动,两分运动具有等时性.2.当物体做直线运动时,分析物体受力是解题的关键.正确分析物体受力,求出物体的加速度,然后运用运动学公式确定物体的运动规律.3.平抛运动与直线运动的衔接点的速度是联系两个运动的桥梁,因此解题时要正确分析衔接点速度的大小和方向.★典型例题★如图甲所示,在高h =0.8m的平台上放置一质量为M=1kg的小木块(视为质点),小木块距平台右边缘d =2m。

现给小木块一水平向右的初速度v0,其在平台上运动的v2-x关系如图乙所示。

小木块最终从平台边缘滑出落在距平台右侧水平距离s =0.8m的地面上,g取10m/s2,求:(1)小木块滑出时的速度v;(2)小木块在水平面滑动的时间t;(3)小木块在滑动过程中产生的热量Q。

★针对练习1★如图所示,滑板运动员以速度v0从离地高度为h的平台末端水平飞出,落在水平地面上。

忽略空气阻力,运动员和滑板可视为质点,下列表述正确的是:()A.v0越大,运动员在空中运动时间越长B.B.v0越大,运动员落地时重力的瞬时功率越大C.v0越大,运动员落地时机械能越大D.v0越大,运动员落地时偏离水平水平方向的夹角越大考点二平抛运动与圆周运动的组合问题1.物体的圆周运动主要是竖直面内的圆周运动,通常应用动能定理和牛顿第二定律进行分析,有的题目需要注意物体能否通过圆周的最高点.2.平抛运动与圆周运动的衔接点的速度是解题的关键.★典型例题★如图所示为圆弧形固定光滑轨道,a点切线方向与水平方向夹角53o,b点切线方向水平。

一小球以水平初速度6m/s做平抛运动刚好能沿轨道切线方向进入轨道,已知轨道半径1m ,小球质量1kg 。

(sin53o =0.8,cos53o =0.6,g =10m/s 2)求 (1)小球做平抛运动的飞行时间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平抛与圆周运动综合
【方法归纳】所谓平抛与圆周运动综合是指物体先做圆周运动后做平抛运动或先做平抛运动后做竖直面内的圆周运动。

解答此类题的策略是:根据物体的运动过程,分别利用平抛运动的规律和圆周运动的规律列方程解得。

例34.(2010重庆理综)晓明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m 的小球,甩动手腕,使球在竖直平面内做圆周运动,当
球某次运动到最低点时,绳突然断掉。

球飞离水平距离d 后
落地,如图9所示,已知握绳的手离地面高度为d ,手与球
之间的绳长为3d/4,重力加速度为g ,忽略手的运动半径和
空气阻力。

(1) 求绳断时球的速度大小v 1,和球落地时的速度大小
v 2。

(2) 问绳能承受的最大拉力多大?
(3) 改变绳长,使球重复上述运动。

若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少?
【解析】(1)设绳断后球飞行时间为t ,由平抛运动规律,有
竖直方向 41d=2
1gt 2
水平方向d=v 1t ,
联立解得v 1=gd 2。

由机械能守恒定律,有
21mv 22=2
1mv 12+mg (d -3d /4) 解得v 2=gd 25。

(2) 设绳能承受的拉力大小为T ,这也是球受到绳的最大拉力。

球做圆周运动的半径为R =3d/4
对小球运动到最低点,由牛顿第二定律和向心力公式有T-mg=m v 12/R , 联立解得T=3
11mg 。

(3) 设绳长为L ,绳断时球的速度大小为v 3,绳承受的最大拉力不变,有 T-mg=m v 32/L
解得v 3=L g 3
8。

绳断后球做平抛运动,竖直位移为d-L ,水平位移为x ,飞行时间为t 1,根据
平抛运动规律有d-L =2
1gt 12,x = v 3 t 1 联立解得x =4()3
L d L -. 当L=d /2时,x 有极大值,最大水平距离为x max =
332d . 【点评】此题将竖直面内的圆周运动和平抛运动有机结合,涉及的知识点由平抛运动规律、牛顿运动定律、机械能守恒定律、极值问题等,考查综合运用知识能力。

衍生题1.如图所示,一质量为M =5.0kg 的平板车静止在光滑水平地面上,平板车的上表面距离地面高h =0.8m ,其右侧足够远处有一固定障碍物A 。

另一质量为m =2.0kg 可视为质点的滑块,以v 0=8m/s 的水平初速度从左端滑上平板车,同时对平板车施加一水平向右、大小为5N 的恒力F 。

当滑块运动到平板车的最右端时,两者恰好相对静止。

此时车去恒力F 。

当平板车碰到障碍物A 时立即停止运动,滑块水平飞离平板车后,恰能无碰撞地沿圆弧切线从B 点切入光滑竖直圆弧轨道,并沿轨道下滑。

已知滑块与平板车间的动摩擦因数μ=0.5,圆弧半径为R =1.0m ,圆弧所对的圆心角∠BOD =θ=106°,取g =10m/s 2,sin53°=0.8,cos53°=0.6,求:
(1)平板车的长度。

(2)障碍物A 与圆弧左端B 的水平距离。

(3)滑块运动圆弧轨道最低点C 时对轨道压力的大小。

【解析】(1)滑块与平板车间的滑动摩擦力f=μmg ,
对滑块,由牛顿第二定律得 a 1=f/m =μg =5m/s 2;
对平板车,由牛顿第二定律得a 2=(F+f)/M =3m/s 2;
设经过时间t 1,滑块与平板车相对静止,共同速度为v ,则v = v 0-a 1t 1= a 2t 2 解得 t 1=1s (1分) v =3m/s
(2)设滑块从平板车上滑出后做平抛运动的时间为t 2
则h=12gt 22,x AB =vt 2,
障碍物A 与圆弧左端B 的水平距离x AB =1.2m 。

(3)对小物块,从离开平板车到C 点,由动能定理得
2210611(1cos )=222C mgh mgR mv mv +--o
在C 点由牛顿第二定律得F N -mg=m 2C v R
联立得 F N =86N 。

由牛顿第三定律得滑块运动到圆弧轨道最低点C 时对轨道压力的大小为86N 。

【点评】此题考查牛顿运动定律、平抛运动、动能定理、竖直面内的圆周运动等知识点。

衍生题2.如图所示,一根长0.1m 的细线,一
端系着一个质量为0.18kg 的小球,拉住线的
另一端,使小球在光滑的水平桌面上做匀速
圆周运动,使小球的转速很缓慢地增加,当
小球的转速增加到开始时转速的3倍时,细
线断开,细线断开前的瞬间细线受到的拉力比开始时大40N ,求:
(1) 细线断开前的瞬间,细线受到的拉力大小;
(2) 细线断开的瞬间,小球运动的线速度;
(3) 如果小球离开桌面时,速度方向与桌边线的夹角为60°,桌面高出地
面0.8m ,则小球飞出后的落地点距桌边线的水平距离。

【点评】此题综合考查水平面内的匀速圆周运动和平抛运动,要注意区分落地点距桌边线的水平距离和落地点距飞出桌边点的水平距离。

衍生题3. (2010山东理综第24题)如图所示,四分之一圆轨道OA与水平轨道AB相切,它们与另一水平轨道CD在同一竖直面内,圆轨道OA的半径
R=0.45m,水平轨道AB长s1=3m, OA与AB均光滑。

一滑块从O点由静止释放,当滑块经过A点时,静止在CD上的小车在F=1.6N的水平恒力作用下启动,运动一段时间后撤去力F。

当小车在CD上运动了s2=3.28m时速度v=2.4m/s,此时滑块恰好落入小车中。

已知小车质量M=0.2kg,与CD间的动摩擦因数
μ=0.4。

(取g=10m/2s)求
(1)恒力F的作用时间t。

(2)AB与CD的高度差h。

【解析】:(1)设小车在恒力F 作用下的位移为l ,由动能定理得
222
1Mv Mgs Fl =-μ 由牛顿第二定律得 Ma Mg F =-μ
由运动学公式得 22
1at l = 联立以上三式,带入数据得 2/4s m a =
s a
l t 12== (2)滑块由O 滑至A 的过程中机械能守恒,即 221A mv mgR =
AB 段运动时间为s gR s v s t A 1211===
故滑块离开B 后平抛时间与小车撤掉恒力F 后运动时间相同。

由牛顿第二定律得 a M Mg '=μ
由运动学公式得 t a at v ''-=
由平抛规律得 22
1t g h '=
代人数据得 h=0.8m 。

【点评】此题综合考查机械能守恒定律、动能定理、平抛运动、圆周运动、牛顿运动定律等知识点。

衍生题4(2008山东理综卷第24题)某兴趣小组设计了如图所示的玩具轨道,其中“2008”,四个等高数字用内壁光滑的薄壁细圆管弯成,固定在竖直平面内(所有数宇均由圆或半圆组成,圆半径比细管的内径大得多),底端与水平地面相切。

弹射装置将一个小物体(可视为质点)以v=5m/s 的水平初速度由a 点弹
出,从b 点进人轨道,依次经过“8002 ”后从p 点水平抛出。

小物体与地面ab段间的动摩擦因数μ=0.3 ,不计其它机械能损失。

已知ab段长L=1 . 5m,数字“0”的半径R=0.2m,小物体质量m=0 .0lkg ,g=10m/s2。

求:
( l )小物体从p 点抛出后的水平射程。

( 2 )小物体经过数字“0”的最高点时管道对小物体作用力的大小和方向。

【点评】此题综合考查动能定理、平抛运动、圆周运动、牛顿运动定律等知识点。

相关文档
最新文档