2章-化学反应的方向、速率和限度

合集下载

化学反应的方向速率和限度

化学反应的方向速率和限度

等温等压的封闭体系内,不作非体积功的前提下,
任何自发过程总是朝着吉布斯自由能( G=H-
TS衡),减小的方向进行,rGm
=0 时,反应达平
体系的 G 降低到最小值,此式为著名的吉布斯最
小自由能原理。
(五)热化学反应方向的判断
1 、标准状态下,反应方向的判断
标准态下,rG吉m 布斯r公H m式变T 为
0K 时,任何纯净的完整晶态物质的熵值 规定为 0 ,即 So=0.
若一纯晶体从 过程的熵变S量
0K→TK :
其熵值为
ST
,则此
S =ST-S0=ST-0=ST—— 即该纯物质在 TK 时的熵。
在 TK ,标准态下,某单位物质的量纯物质的熵值,
称为标准摩尔熵 Sm ,单位为“ J·mol-1·K-1” 。
1878 年美国著名物理化学家吉布斯提出摩尔吉布斯自 由能变量(简称自由能量)rGm :
在等温、等压条件下, rGm= r Hm -T r Sm —— 吉布斯公式 + +( 吸热 ) -( 熵减 ) 自发过程,反应正向进

-
进行
-( 放热 ) +( 熵增 ) 非自发过程,反应逆向
0
平衡状态
分析 NH4Cl ( s )常温下的溶解, CaCO 3 ( s )在 850℃ 下的分解均有体系混乱程 度增大的过程发生,及可能还有温度的影 响。
(三)化学反应的熵变
熵——描述物质或体系混乱程 度(粒子运动)大小的物理量(热力学中)。 符号为“ S” ,它也是体系自身的属性,所以 熵也是状态函数,物质(或体系)的混乱度 越大,熵值越大。
/ ( J·mol-1·K-1 ) 92.6
39.75 213.7

化学反应的方向、限度和速率

化学反应的方向、限度和速率

第2章化学反应的方向、限度和速率一、在温度、压强一定的条件下,化学反应方向的判据为:,反应能自发进行;,反应达到平衡状态;,反应不能自发进行。

二、化学平衡1.化学平衡常数(1)对于化学反应:aA+bB cC+dD,化学平衡常数K=,浓度商Q=。

(2)Q>K,;Q=K,;Q<K,。

2.对于化学反应:aA+bB cC+dD,反应物A的平衡转化率α(A)=。

3.反应条件对化学平衡的影响(温度、浓度、压强)三、化学反应速率1.化学反应速率v=。

对于反应aA+bB === dD+eE:v====2.影响因素(浓度、温度、催化剂)考点一:化学反应的方向1.已知反应3O2(g)===2O3(g)的ΔH<0,ΔS>0,下列对此反应的叙述正确的是()A.该反应在任何情况下均能自发进行B.该反应在任何情况下均不能自发进行C.该反应在一定条件下能自发进行D.条件不足,无法判断考点二:化学平衡的移动1.对某一可逆反应来说,使用催化剂的作用是()A.提高反应物的平衡转化率B.以同等程度改变正逆反应的速率C.改变平衡混合物的组成D.增大正反应速率,减小逆反应速率2.增大压强,对已达到平衡的反应3P(g)+ Q(g)2R(g)+ 2G(s)产生的影响是()A.正反应速率增大,逆反应速率减小,平衡向正反应方向移动B.正反应速率减小,逆反应速率增大,平衡向逆反应方向移动C.正、逆反应速率都不变,平衡不发生移动D.正逆反应速率都增大,平衡向正反应方向移动3.下列各反应达到平衡后,加压或降温都能使化学平衡向逆反应方向移动的是()A.2NO2N2O4(正反应为放热反应)B.C(s)+ CO22CO(正反应为吸热反应)C.N2 + 3H22NH3(正反应为放热反应)D.H2S H2 + S(s)(正反应为吸热反应)4.在一定条件下,在体积可变的容器中建立以下平衡:2NO2(g)N2O4(g)(正反应为放热反应)保持其它条件不变,只改变下列中的一个条件时,混合气体的颜色肯定加深的是()A.降低温度B.使用适当催化剂C.容器体积扩大至原来的2倍D.容器体积缩小至原来的1/2 5.可逆反应a X(g)+ b Y(g) c Z(g)在一定条件下达到化学平衡,c(Z)=2 mol/L。

化学反应的方向速率和限度1

化学反应的方向速率和限度1

(5) 同一物质的不同聚集态中, 气态>液态>固态
课堂练习: ⒈ 从以下各对物质中选出有较大混乱度的物质(均为 1mol)。除 已注明条件外, 每对物质都具有相同的温 度和压力 。 ⑴ Br2(l) 、Br2(g) ⑵ Ar(0.1kPa) 、Ar(0.01kPa) ⑶ HF(g) 、HCl(g) ⑷ CH4(g) 、C2H6(g) ⑸ NH4Cl(s)、NH4I(s) ⑹ HCl(g,298K) 、HCl(g,1000K) ⒉ 试判断下列过程的△S是正还是负。 ⑴ 冰融化成水 (+) ⑵炸药爆炸 (+) ⑶ 丙烷燃烧 C3H8(g) +5O2(g) =3CO2(g) + 4H2O(g) (+) ⑷合成氨反应 N2(g) +3H2 (g)= 2NH3(g) (﹣) ⑸从溶液中析出结晶 (﹣)
热是决定过程方向的重要因素。
但是在现实中有不少吸热过程也是自发过程。
例如 NH4Cl(s) = NH3(g) +HCl (g) △rHm = 176.91kJ· mol-1 H2O(s) = H2O(l) △rHm = 6.01kJ· mol-1
热不是决定过程方向的唯一因素。
⑵反应方向与系统的混乱度
化学反应是否自发的判据
△rG m 摩尔吉布斯自由能变 △rG m 标准摩尔吉布斯自由能变 单位:J/mol,kJ/mol △rG m<0 △rG m >0 △rG m =0 化学反应正向自发进行 化学反应正向非自发 系统处于平衡
标准摩尔生成吉布斯自由能(△fG m)
定义: 在指定温度T 和100 kPa下, 由最稳定单质 生成1摩尔指定化合物时的自由能变。 例如,298K时
m
m
f m f m

无机化学第二章 化学反应的方向、速率和限度--

无机化学第二章 化学反应的方向、速率和限度--

3. 298 .15K,标准状态下化学反应吉布 斯自由能变的计算
(1) 利用标准摩尔生成吉布斯自由能ΔfGm计算 ΔrGm(298.15 K)= iΔfGm(生成物,298.15 K) +
iΔfGm(反应物,298.15 K)
① ② ③ ΔrGm (298.15K) < 0, 反应正向自发进行; ΔrGm (298.15K) > 0, 反应逆过程自发; ΔrGm (298.15K)= 0 系统处于平衡状态。
为什么有些吸热过程亦能自发进行呢?
例如 1.NH4Cl(s) → NH4+(aq) + Cl-(aq) rHm = 14.7 kJ· -1 mol
NH4Cl晶体中NH4+ 和Cl- 的排列是整齐有 序的。NH4C1晶体进入水中后,形成水合 离子(以aq表示)并在水中扩散。在NH4Cl 溶液中,无论是NH4+(aq)、Cl-(aq)还是水 分子,它们的分布情况比 NH4C1 溶解前 要混乱得多。
第二章 化学反应的方向、 速率和限度
本章教学要求
1、了解标准摩尔熵、标准摩尔生成吉布斯自由能的概念, 掌握反应的标准摩尔熵变、标准摩尔吉布斯自由能变的简单 计算。 2、掌握ΔrGm 与ΔrHm 和ΔrSm 的关系,学会用ΔrGm 判断 标准状态下反应进行的方向。 3、理解反应速率、基元反应和反应级数的概念及速率方程 式的表达,掌握活化能、活化分子的概念并能用其说明浓度、 温度、催化剂对反应速率的影响。 4、掌握可逆反应与化学平衡的概念、标准平衡常数和平衡 组成的有关计算,熟悉标准平衡常数和标准吉布斯自由能变 的关系。 5、熟悉反应商判据和吕·查德里原理,掌握浓度、压力、 温度对化学平衡移动的影响及其有关计算。
ΔrHm(T K)≈ΔrHm(298.15K)

第二章化学反应的方向速率和限度

第二章化学反应的方向速率和限度
解: (1)解法
ΔrGm={ΔfGm(CaO)+ΔfGm(CO2)}-ΔfGm(CaCO3) ={(-604.03)+(-394.359)-(-1128.79)} kJ· mol-1 =130.40 kJ· mol-1>0
在298.15K、标准态下, 分解不能自发进行。
(2)解法
ΔfHm/(kJ· mol-1) -1206.92 -635.09 -393.509 Sm/(J· mol-1· K-1) 92.9 39.75 213.74 ΔrHm=[ΔfHm(CaO)+ΔfHm(CO2)]-ΔfHm(CaCO3) ={[(-635.09)+(-393.509)]-(-1206.92)} kJ· mol-1 =178.32 kJ· mol-1 ΔrSm=[Sm(CaO)+Sm(CO2)]-Sm(CaCO3) =[(39.75+213.74) - 92.9] J· mol-1· K-1 =106.6 J· mol-1· K-1 ΔrGm(298.15K)=ΔrHm(298.15K)-TΔrSm(298.15K) ΔrGm=[178.32-298.15×106.6×10-3] kJ· mol-1 =130.4 kJ· mol-1>0
熵是描述物质混乱度大小的物理量。
物质(或体系) 混乱度越大,对应的熵值越大 符号:S 单位: JK-1
在0K时,一个纯物质的完美晶体, 其组分粒子(原子、分 子或离子)都处于完全有序的排列状态, 混乱度最小, 熵 值最小。——热力学第三定律。 把任何纯物质的完美晶体在0K时的熵值规定为零 S0(完整晶体,0K)=0
ΔrGm(T) = ΔrHm(T)- TΔrSm(T) ≈ ΔrHm(298.15K)- TΔrSm(298.15K)

化学反应的速率和限度知识点总结

化学反应的速率和限度知识点总结

《第二章第三节化学反应的速率和限度》1.化学反应速率的含义:通常用单位时间内反应物浓度的减少或生成物浓度的增加(均取正值)来表示。

浓度的变化——△C 时间的变化——△t表达式:v=△C/△t 单位:mol/(L•s)或mol/(L•min)注意:(1)在同一反应中用不同物质来表示时,其反应速率的数值可以不同,但都表同一反应的速率。

(必须标明用哪种物质来做标准) (2)起始浓度与化学计量数比无关,但是变化浓度一定与化学计量数成比例。

(3)同一反应各物质的反应速率之比等于化学计量数之比。

例如: 2A(g)+3B (g)C(g)+4D(g)ν(A):ν(B):ν(C):ν(D) = 2:3:1:4(3)化学反应速率均用正值来表示,且表示的是平均速率而不是瞬时速率(4)一般不用纯液体或固体来表示化学反应速率(5)改变压强对无气体参与的反应的化学反应速率无影响。

【例1】某一反应物的初始浓度是2摩尔/升,经过两分钟的反应,它的浓度变成了摩尔/升,求该反应的反应速率。

[ mol/(L•min) ]【例2】某温度时,2L容器中X、Y、Z三种物质的量随时间的变化如图所示。

由图中数据分析,该反应的化学方程式为 3X +Y == 2Z ;反应开始至2min ,Z的平均反应速率为:mol/(L•min)【例3】在2A + B = 3C + 4D的反应中, 下列表示该反应的化反速率最快的是---------------( B )A. V(A) = mol/(L·s)B. V(B) = mol/(L·s)C. V(C) = mol/(L·s)D. V(D) = 1 mol/(L·s)【总结】对于同一反应,比较用不同反应物或生成物表示的反应速率大小时,要换算成同一物质表示的速率,才能比较。

3.影响化学反应速率的因素内因:由参加反应的物质的性质决定。

影响反应速率的因素有外因:浓度、温度、压强、催化剂、其它因素。

化学反应方向、限度与速率

化学反应方向、限度与速率

化学反应速率1、化学反应速率v= = 。

2、对于反应a A(g)+b B(g)c C(g)+d D(g),速率v= = = = ,但通常用单位时间内某种物质浓度的变化来表示该化学反应的速率。

3、影响一个化学反应速率的根本因素是反应物本身的性质,但外界条件的改变也会对速率产生不同程度的影响。

4、温度:升温反应速率加快(v(正)、v(逆))(改变了k)。

压强:加压对于气体反应反应速率加快(v(正)、v(逆))。

浓度:增大反应物浓度,正反应速率比原速率加快,逆反应速率逐渐加快。

催化剂:同等程度加快正逆反应速率(改变了k,降低了Ea)。

固体:颗粒越小,相同质量时表面积越大,反应速率越快。

5、压强改变时,只有与反应相关的物质浓度发生变化,速率才会变化。

6、比较外界条件对反应速率的影响时要找准参照点。

必须保证只有唯一条件发生变化时,才能说明该条件对速率的影响。

(唯一变量、对照实验)化学平衡状态(g)+3H2(g) 2NH3(g)(固定体积容器),下列说法可作平衡标志:1. 对于合成氨反应:Nv(正)= v(逆)①3v(N2)正= v(H2)逆2v(H2)正= 3v(NH3)逆②生成1mol N2的同时生成2mol NH3③生成1mol N2的同时有3mol H2参加反应④断开1mol N≡N的同时断开6mol N-H某“变量”保持不变⑤N2(或H2或NH3)的物质的量(或质量或浓度或体积分数或质量分数)不在变化⑥N2、H2、NH3的物质的量(或质量或浓度)不在变化⑦混合气体的总物质的量不再变化⑧混合体系的压强不再变化⑨混合气体的平均相对分子质量不再变化⑩绝热情况下体系温度不再变化对于2NO2N2O4(固定体积容器)混合体系颜色不再变化O (g) CO(g)+H2 (g) (固定体积容器)对于C(s)+H混合气体的质量(或密度)不再变化(g)+I2(g)2HI(g)(固定体积容器),下列说法不能用作平衡标志:2. 对于H①混合气体的总物质的量不再变化②混合体系的压强不再变化③混合气体的平均相对分子质量不再变化④混合气体的质量(或密度)不再变化3. 任何情况下:某物质的浓度是 xx mol/L或某与某的浓度比是x∶y 不能做平衡标志。

化学反应原理第2章

化学反应原理第2章

若各物质的浓度为c时,定温下反应的吉布斯能变
△G = △Gc + RTlnQc =-RTlnKc + RTlnQc = RTlnQc /Kc Qc = [(cG/c)g (cH/c)h]/[(cD/c)d(cE/c)e)]
同理,反应的 Qc < Kc ,可以自发; Qc = Kc,平衡; Qc > Kc, 非自发
式中,Qp—反应体系中物质的压强商,其大小由始终态时反应物质的压强 决定;必需用标准平衡常数K 。 Qp = [(pG/p)g (pH/p)h]/[(pD/p)d/ (pB/p)e]非平衡 • 等T、p,不做非体积功,可由△G(<0;=0;>0)判断反应方向:
Qp< K ,可以自发; Qp = K ,平衡; Qp > K , 非自发
第2章 化学反应的方向、限度与速率 第1节 化学反应的方向
二、反应熵变与反应方向 Clausius 1850年提出,将可逆热温商命名为熵: dS = Q可/T
S = Q可/T= Q可/T
过程的熵变S只取决于始终态,定义一个新的热力学函数熵S。 • S与体系混乱度的关系;体系达到平衡状态时熵值最大;许多常见自发过
随温度T变化,△H(T)和△S(T)的变化率是不同的!
• 若设△rCp=0,则△H、△S与T无关,可近似估算反应的转折温度: △H -T△S =0 ; T =T转折时,反应达到平衡,得 T转折= △H/△S;
若T > T转折时, △H -T△S < 0, 反应可以进行。
而T < T转折时, △H -T△S > 0, 反应正向不能进行。 以上判断的前提是:等温、等压、不做非体积功。
第2章 化学反应的方向、限度与速率 第1节 化学反应的方向

化学反应的方向、速度和限度

化学反应的方向、速度和限度

增加来表 示 。 aA + bB → cC + dD
t1时的浓度 c(A)1 c(B)1 c(C)1 c(D)1
t2时的浓度 c(A)2 c(B)2 c(C)2 c(D)2
∆t=t2-t1、∆c=c2-c1 则平均速率为
(A) =
-
∆c(A) ∆t
(B) =
-
∆c(B) ∆t
(C) =
∆c(C) ∆t
2.2.2 化学反应的活化能
1 活化分子
p 分子碰撞理论认为:
反应物分子 (或原子、离子) 之间必须相互碰撞,才有可能发生化 学反应。
但反应物分子之间并不是每一次碰撞都能发生反应。绝大多数碰 撞是无效的弹性碰撞,不能发生反应。
对一般反应来说,事实上只有少数或极少数分子碰撞时能发生反 应。
第二章 化学反应的方向、速率和限度 1 活化分子
开始浓度/(mol·L-1) 2.10
00
100秒浓度/(mol·L-1) 1.95 300秒浓度/(mol·L-1) 1.70 700秒浓度/(mol·L-1) 1.31
0.30 0.075 0.80 0.20 1.58 0.395
随着反应的 进行,速率 逐渐减小
υ(N2O5)1=
-
∆c(N2O5) ∆t
能量(E)之差。 Ea = E* - E

N2O5

2NO2
+
1 2
O2
325K时 E*=106.13kJ·mol-1, E=4.03kJ·mol-1
Ea=E*-E=(106.13-4.03)kJ·mol-1=102.10kJ·mol-1
p 大部分分子的能量接近E值,能量大于E分子只占少数。 p 非活化分子要吸收足够的能量才能转变为活化分子。

第二章 化学反应的方向、限度与速率_知识汇总

第二章 化学反应的方向、限度与速率_知识汇总

第2章化学反应的方向、限度与速率目录一、反应焓变、熵变与反应方向 (1)二、用焓变与熵变综合判断反应方向 (2)三、平衡转化率的概念及表达式 (2)四、平衡转化率与化学平衡常数的计算 (3)五、压强平衡常数及应用 (4)六、化学平衡移动 (5)七、温度对化学平衡的影响 (5)八、浓度对化学平衡的影响 (6)九、压强对化学平衡的影响 (6)十、平衡移动原理(勒.夏特列原理) (7)十一、化学反应是有历程的 (7)十二、化学反应速率 (8)十三、化学反应速率的测定 (9)十四、浓度、压强对化学反应速率的影响 (10)十五、温度对化学反应速率的影响 (11)十六、催化剂对化学反应速率的影响 (11)十七、合成氨反应的限度与速率 (13)十八、合成氨生产的适宜条件 (14)十九、化学反应速率和化学平衡在化工生产中的调控作用 (14)一、反应焓变、熵变与反应方向1.反应焓变与反应方向(1)自发反应:在一定条件(温度、压强)下,具有自动发生倾向的化学反应。

(2)自发反应与吸热反应、放热反应的关系①多数能自发进行的化学反应是放热反应。

4Fe(OH)2(s)+2H2O(l)+O2(g)===4Fe(OH)3(s)ΔH=-444.3 kJ·mol-1②有些吸热反应也能自发进行。

NH4HCO3(s)+CH3COOH(aq)===CO2(g)+CH3COONH4(aq)+H2O(l)ΔH=+37.30 kJ·mol-1上述反应均能自发进行。

结论:不能仅用反应焓变来判断反应能否自发进行。

2.反应熵变与反应方向(1)熵、熵变的概念(2)影响熵值大小的因素①体系的熵值:体系的无序程度越大,体系的熵值就越大。

②纯物质的熵值纯物质熵值的大小与物质的种类、数量、聚集状态以及温度、压强等因素有关。

例如对同一物质来说,S(g)>S(l)>S(s)。

在同一条件下,不同物质的熵不同。

(3)熵变与反应方向①熵增加有利于反应的自发进行。

化学反应的方向、限度与速率

化学反应的方向、限度与速率

第二章化学反应的方向、限度与速率本部分知识网络(一)化学反应的方向1、化学反应方向与反应热效应的关系多数能自发进行的化学反应为放热反应,但很多放热反应也需要加热或点燃才能使反应发生。

同时有不少吸热反应能自发进行。

2、焓变与熵变对反应方向的影响ΔH-TΔS<0 反应能自发进行;ΔH-TΔS=0 反应达到平衡状态;ΔH-TΔS>0 反应不能自发进行。

结论:在温度、压强一定的条件下,自发反应总是向ΔH-TΔS<0的方向进行,直至达到平衡状态。

(二)化学反应的限度1、化学反应平衡常数化学反应:aA+bB cC+dD平衡常数(1)平衡常数的大小表示反应的限度:K越大,反应进行得越完全。

(2)根据平衡常数可判断反应是否达到平衡状态。

2、化学平衡(1)化学平衡的概念化学平衡状态是指在一定条件下的可逆反应里正反应速率和逆反应速率相等,反应混合物中各组分的浓度保持不变的状态。

(2)化学平衡的特征①逆:研究的对象是可逆反应②等:正反应速率等于逆反应速率③动:化学平衡是动态平衡,当反应达到平衡时,正反应和逆反应都仍在继续进行④定:反应混合物中,各组分的浓度不变⑤变:化学平衡状态是有条件的,暂时的、相对的,改变影响平衡的条件,平衡就会被破坏,并逐步达到新的平衡。

(3)化学平衡的移动影响化学平衡的条件①浓度:增大反应物(或减小生成物)浓度,平衡向正反应方向移动。

具体是比较平衡常数K c和浓度商Q c的关系。

②压强:增大(或减小)压强,平衡向气体体积减小(或扩大)的方向移动。

③温度:升高(或降低)温度,平衡向吸热(或放热)方向移动,温度对平衡移动的影响,原因是改变了化学平衡常数。

④催化剂:对化学平衡状态无影响总结:平衡移动原理①平衡移动原理(勒夏特列原理):如果改变影响平衡的一个条件(如浓度、压强或温度),平衡就向能够减弱这种改变的方向移动。

②注意事项:a、此原理使用的前提是已达平衡的体系;b、平衡移动的结果是“减弱”影响,而非“清除”影响;c、当同时改变几个影响平衡的条件时,勒夏特列原理对每个条件来说仍适用,但实际移动方向是多个条件综合影响的结果。

南华大学《无机化学》第2章——化学反应的速率、方向和限度

南华大学《无机化学》第2章——化学反应的速率、方向和限度
Ag(s) 0 0 42.55
AgCl(s)
AgBr(s) AgI(s)
-127.068
-100.37 -61.84
-109.789
-96.90 -66.19
96.2
107.1 115.5
Ag2O(s)
Al(s) Al2O3(α,刚玉) Br2(l) Br2(g) HBr(g)
-31.0
0 -1675.7 0 30.907 -36.4
熵值大小规律:
⑴ ⑵ ⑶ ⑷ 同一物质:S气> S液> S固
同一物态:S(复杂分子) > S(简单分子) S(高温)> S(低温) S(低压气体) > S(高压气体)
第2章 化学反应的方向、速率和限度
2. 化学反应的熵变 (1)标准摩尔熵的确定
0K时,一个完整无损的纯净晶体,其组分粒子(原 子、分子或离子)都处于完全有序的排列状态,因此, 可以认为:纯物质完整有序晶体在0 K时的熵值为 零。即 S0(完整晶体)= 0
CaCO3(s) → CaO(s) + CO2(g) -1128.79 -604.03 -394.359
f H
-1206.92 -635.09 -393.509
92.9 39.75 213.74
Sθ mol-1· K-1) m /(J·
r Gm [ f Gm (CaO) f Gm (CO2 ) f Gm (CaCO3 )
吉布斯自由能降低是
第2章 化学反应的方向、速率和限度
△rSm

△rHm

△rGm= △rHm- T△rSm
△rGm < 0
反应情况
任何温度下均为自发过程 任何温度下均为非自发过程 高温自发过程 低温自发过程

第2章化学反应的方向、速率限度

第2章化学反应的方向、速率限度

分析:标准状态下、常温反应的自发性判断,求出DrGm;
方法一:由物质的标准生成自由能计算 方法二:由Gibbs公式DrGm = DrHm – TDrSm 计算
解题步骤:1、写出反应方程式(注明状态); 2、由书附录查出相应物质的标准生成自由能、 标准生成焓以及标准熵。
注意点:1、注意物质的状态
• 定义:在热力学标准态下,由稳定单质生 成1 mol 纯物质时反应的自由能变化叫该物 质的标准生成自由能,用符号DfGm,单 位:kJ.mol-1。
在热力学标准态下,稳定单质的生成自由能 为零。即 DfGm = 0
25
例1 298.15K、标准压力下,石灰石(CaCO3)能否分 解为氧化钙和二氧化碳?P31
例如:H2O(s)=H2O(l); 在101.325KPa和温度高于零度的情况下冰就 可以自发地变为水。
NH4Cl(s) =NH4+(aq)+Cl-(aq); Δr HmΘ=14.7 kJ.mol-1
8
有些吸热非自发反应在改变条件后 可以自发进行的!!
一个非常明显的例子:
石灰石(CaCO3)煅烧分解反应为吸热反应, CaCO3(s)=CaO(s)+CO2(g) Δr HmΘ=178.32 kJ.mol-1 在常温、标准态下反应为非自发的;但在温度升高
较复杂(内部微观粒子较多)的物质的标准熵大于分子或晶
体结构较简单(内部微观粒子较少)的物质的标准熵.
298.15K
C2H4与CH4
15
• 例 1 试计算石灰石(CaCO3)热分解的反应的DrH
(298.15K) 和DrS(298.15K)并初步分析该反应的
自发性。 • 1)写出化学式 • 2)从书后面的附录中查出反应物与生成物的标准熵

化学反应的方向、限度和速率

化学反应的方向、限度和速率

二、化学反应的限度
1、化学平衡的判断依据 V正=V逆 同一种物质的生成速率与消失速率相等。
平衡混 合物组 成确定
物质的量、浓度、百分含量、 转化率不变
2、化学平衡常数
(1)、化学平衡常数的数学表达式 (2)、化学平衡常数的书写: (3)、化学平衡常数的影响因素: 反应物性质和 温度 (4)、化学平衡常数的意义: (5)、化学平衡常数应用: (6)、化学平衡常数、速率与转化率的计算 ——三段式
一、化学反应的方向 判断依据:△H-T△S <0 正向自发
=0 平衡
>0 逆向自发 焓判据 一般来说,△H<0的反应可自发。故放热熵 减小的反应可自发,是只看焓判据。 熵判据 一般来说,△S>0的反应可自发。故吸热熵 增加的反应可自发,是只看熵判据。
计算: △H-T△S=0 只能确定反应的方向,不能确定反应是否发生、反 应程度、反应速率。
6、影响因素 (1)决定因素 反应物本身的性质
(2)影响因素 浓度、温度、压强、催化剂、固体表面积、原电池
5、化学反应速率大小比较
压强 催化剂>温度> 浓度 固体表面积、原电池
四、工业合成氨 1、反应特点 考虑催化剂催化活性, 兼顾化学速率与平衡
700K
2、生 产条件
200—500KPa 考虑生产成本,兼顾化 学反应速率与化学平衡 铁触媒 考虑化学反应速率
1、浓度
反应mA+nB = pC;△H<0
K不变,Q改变
增大A浓度,B转化率增大,A转化率减小。
2、温度 3、压强
ห้องสมุดไป่ตู้
K变,Q不变 B转化率减小,A转化率减小。 K不变,Q改变
若m+n>p,增大压强,B转化率增大,A转化率增大。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

查表求出:
△rHθ(298.15) =178.32 kJ.mol-1。 △rSmθ(298)=160.6 J.mol-1.K-1
热力学分解温度:
T=△rHθ(298) / △rSθ(298)=1110K
2、非标准状态吉布斯自由能变 r Gm 的计 算和反应方向的判断:
化学反应的△rG: a、标准状态下: △rGmθ(T)=△rHmθ(T) -T△rSmθ(T) b、非标准状态下: 范特霍夫等温方程: △rGm(T)= △rGmθ(T) +RTlnJ
求 2AgCl(s)=2Ag(s)+Cl2(g)的△rGmθ=?
解: △rGmθ=2 △fGmθ(Ag,s)+ △fGmθ(Cl2,g)-2 △fGmθ(AgCl,S)
= -2 △fGmθ(AgCl,S)
②利用吉布斯-亥姆霍兹公式求 △rGmø
△rGmθ =△rHmθ -T△rSmθ
例2.2:试判断下列反应进行的方向(298.15K)
因此,我们说焓变是反应自发过 程的一种驱动力,但不是唯一的.
必然存在着另一种驱动力!
冰的融化 体系趋向于向混乱度增加的方向自发进行 建筑物的倒塌
体系有趋向于最大混乱度的倾向,体 系混乱度增大有利于反应自发地进行。
2. 化学反应的熵变
(1) 混乱度:在一定条件下,宏观物质的
分子可能实现的微观状态数。
CaCO3(s)→CaO(s)+CO2(g)
解: △rHmθ=∑[υB△fHmθ(B)] .
=178.32 kJ.mol-1。 △rSmθ(T)=∑[υBSmθ(B)] =160.6 J.mol-1.K-1
△rGmθ =△rHmθ -T△rSmθ
=178.32-(298.15×160.6)/1000 =130.4 kJ.mol-1 >0 故常温下反应为非自发。
2.1.2 影响化学反应方向的因素 1. 化学反应的焓变和自发变化
SO3 (g) + H2O(l) H2SO4(l) Hø = -545.6 kJmol-1
2Na(s) + 2H2O(l) 2NaOH(aq) + H2(g) Hø = -282.3 kJmol-1
反应焓变小于零是自发反应的重要因素。
解: 2SO2(g) + O2(g) →2SO3(g) ΔrHm=2ΔfHm(SO3)-[2ΔfHm(SO2)]+ΔfHm(O2)]
=[2×(-395.72)-2×(-296.83)] kJ· -1 mol =-197.78 kJ· -1 mol ΔrSm=2Sm(SO3)-[2Sm(SO2)]+Sm(O2)] ={2(256.76)-[2(248.22)+205.138]} J· -1· mol K =-188.06 J· -1· -1 mol K
对化学反应,很多放热反应在298.15K, 标 准态下是自发的。
认为在等温等压条件下,当 ΔrHm < 0时: 化学反应自发进行 ΔrHm > 0时: 化学反应不能自发进行

但是有些吸热反应能自发进行 NH4HCO3(s) NH3 (g) + H2O(l) + CO2(g) Hø = 125.8 kJmol-1 吸热反应,常温下仍能进行
{c(Mn2+)/c }{p(Cl2)/p } =ΔrGm+RT ln —————————— {c(H+)/c }4 {c(Cl-)/c }2
[例2.3] 计算723K、非标准态下,下列反 应的ΔrGm,并判断反应自发进行的方向。 2SO2(g) + O2(g) →2SO3(g) 分压/Pa 1.0×104 1.0×104 1.0×108
J (反应商)的定义: ①反应式各物质都是气体时:
J=∏(pi/pθ)υi
例:aA(g) + bB(g) = dD(g) + eE(g) 气相反应
J

pi p
i


pD d p pE p pA a p pB p
b
e
③ 热温商
熵的定义:可逆过程热效应与温度的商。
S=QR/T
(reversible)
QR:可逆过程热效应。 (3) 热力学第三定律和标准熵: ① 热力学第三定律: 在绝对零度(0K)时,任何纯物质的 完整晶体的熵等于零。 S0 (完整晶体,0 K) = 0 K 稍大于0
0K
② 标准摩尔熵 纯物质完整有序晶体温度变化 0K T K △S = ST - S 0 = ST ST — 规定熵(绝对熵) 标准熵: 在标准压力下,1mol纯物质的熵值.
较大的熵值. 如S(O3) > S(O2) > S(O)
d.结构相似的物质,相对分子质量大的熵值大.
F2(g) 203 Cl2(g) 223 Br2(g) 245 I2(g) 261
e. 相对分子质量相同,分子构型复杂,熵值大, S(CH3CH2OH) > S(CH3OCH3) f. S(混合物) > S(纯物质)
rGm只给出了某温度、压力条件下( 而且要求始态 各物质温度、压力和终态相等)反应的可能性, 未必 能说明其它温度、压力条件下反应的可能性。 例如:2SO2(g) + O2(g) → 2SO3(g) 298.15K、标准态下, rGmθ < 0, 反应自发向右进行 723K, p(SO2) = p(O2) = 1.0×104 Pa、
第2章 化学反应的方向、速率和限度
[基本要求]
1、 掌握标准摩尔吉布斯自由能变的计算;学 会用自由能变判断化学反应自发性。 2、了解化学反应速率的概念及表示方法。 3、掌握活化能概念、初步掌握反应速率理论 以及影响反应速率的因素。 4、掌握化学平衡常数、标准平衡常数,掌握 一般的化学平衡的计算。 5、掌握浓度、压力、温度对化学平衡移动的 影响 。
p(SO3)=1.0×108 Pa 的非标准态下, rGm(723K) > 0, 反应不能自发向右进行。
rGm< 0的反应与反应速率大小是两回事 例如: H2(g) +1/2O2(g) → H2O(l)
rGmθ(298.15K) = -237.13 kJ· -1 < 0 mol
例:FeO(s)+C(s)=Fe(s)+CO(g), △rHmθ >0,
试判断反应方向.
2.1.3 热化学反应方向的判断 1、rGmø的计算和反应方向的判断 (1) 标准摩尔生成自由能
在热力学标准态下,由指定单质生成
1mol纯物质时反应的自由能变化。用
fGm 表示,单位:kJ· -1 mol 规定: fGm (指定单质)= 0;
水溶液中,规定:
△fGθ(H+,aq)=0
(2) 反应自由能△rGmø的计算
① 利用△fGmθ求 △rGmθ
r G vi f G
θ m
θ m (P)
if G
θ m (R)
或 △rGmθ=∑[υB△fGmθ(B)]
例:已知△fGmθ(AgCl,S)= -110kJ· -1, mol
③ 求任意温度时的△rGmθ(T) 通常△rHmθ(298) ≈ △rHmθ( T) △rSmθ(298) ≈ △rSmθ( T) ∴△rGmθ(T)=△rHmθ(298)-T△rSmθ(298)
例:求1200K时,CaCO3分解反应的自由能变。
解:△rGmθ(1200)=△rHmθ(298)-T△rSmθ(298)
Sm
单位:J· -1ห้องสมุดไป่ตู้· -1 mol K
Sm > 0,
Sm (0K)= 0
熵的绝对值可求。
指定单质的标准(摩尔)熵不等于零!
③ 决定熵值大小的因素
a.体系的温度、压力:高温时的熵值大于低温时
的熵值,气体物质的熵值随压力的增大而减小。 b.同一物质,298.15K时:S气态>S液态>S固态
c.聚集状态相同,结构复杂分子比简单分子有
≈178.32 -(1200×160.6)/1000 =-14.4kJ.mol-1<0 高温下反应自发进行。
④ 热力学分解温度 在标准态下:
rG (T) ≈ rH ( 298K) TrS (298K)≤ 0
T ≥ rH ( 298K)/ rS (298K)
例 :试计算碳酸钙在热力学标态下分解的温度. 解: CaCO3(s)→CaO(s)+CO2(g)
(2) 熵和热力学第二定律
① 熵:体系内部质点混乱度的度量。
S的单位:J.mol-1.K-1
体系熵越大,微观状态数越多,微观
粒子混乱度越大。
即体系的混乱度愈大,熵愈大。
熵的特点:
①状态函数
②广度性质
③绝对值可求.但熵不是能量。 ② 熵增加原理(热力学第二定律) 熵增加原理:孤立体系内自发过程 的方向总是趋于体系混乱度(熵)最大。 孤立体系过程自发进行的判据:熵 增大
⑷ 化学反应的熵变
反应熵: △rSmθ(T)
△rSmθ(T)的求算:
对于化学反应:
aA+ bB = mC+ nD △rSθm = ΣνiS θ m (P)+ΣνiS θm(R)
△rSmθ(T)=∑[υBSmθ(B)]
[例2.1] P.26
3、化学反应的吉布斯自由能变 ──热化学反应方向的判据 ⑴ 吉布斯自由能 G = H – TS
2.1 化学反应的方向和吉布斯自由能变 1 化学反应的自发过程 2.1.1 化学反应的自发性 2 影响化学反应方向的因素 自发反应(过程):在一定条件下, 3 化学反应方向的判断 不需要外界作功,一经引发就能自动 进行的反应或过程。 注意 :能自发进行的反应,并不意味着其 反应速率一定很大。 自发过程一般都朝着能量降低的方向 进行。能量越低,体系的状态就越稳定。
相关文档
最新文档