林初中华师大版初中数学竞赛辅导讲义及习题解答第13讲怎样求最值(附答案)
初中数学竞赛辅导讲义及习题解答 第13讲 怎样求最值
第十三讲 怎样求最值在生活实践中,人们经常面对带有“最”字的问题,如在一定的方案中,花费最低、消耗最少、产值最高、获利最大等;解数学题时,我们也常常碰到求某个变量的最大值或最小值之类的问题,这就是我们要讨论的最值问题,求最值问题的方法归纳起来有如下几点: 1.运用配方法求最值;2.构造一元二次方程,在方程有解的条件下,利用判别式求最值; 3.建立函数模型求最值;4.利用基本不等式或不等分析法求最值.注:数学中最大值、最小值问题,运用到社会实践、生活实际中所体现出来的就是最优化思 想,所谓最优,就是我们所期望的目标量能达到最大或最小.一次函数、反比例函数并无最值,但当自变量取值范围有条件限制的,最值在图象的端点处取得;定义在全体实数上的二次函数最值在抛物线的顶点处取-得.即: 对于c bx ax y ++=2(0≠a )(1)若a>0,则当a bx 2-=时,a b ac y 442-=最小值;(2)若a<0,则当abx 2-=时, a b ac y 442-=最大值.【例题求解】【例1】 设a 、b 为实数,那么b a b ab a 222--++的最小值是 .思路点拨 将原式整理成关于a 的二次多项式从配方法入手;亦可引入参数设t b a b ab a =--++222,将等式整理成关于a 的二次方程0)2()1(22=--+-+t b b a b a ,利用判别式求最小值.【例2】若32211-=+=-z y x ,则222z y x ++可取得的最小值为( ) A .3 B .1459 C .29D .6 思路点拨 设k z y x =-=+=-32211,则222z y x ++可用只含k 的代数式表示,通过配方求最小值.【例3】 设1x 、2x 是方程02324222=-++-m m mx x 的两个实根,当m 为何值时,2221x x +有最小值,并求这个最小值.思路点拨 由韦达定理知2221x x +是关于m 的二次函数,是否是在抛物线的顶点处取得最小值,就要看自变量m 的取值范围,从判别式入手.注:定义在某一区间的条件限制的二次函数最值问题,有下两种情形: (1)当抛物线的顶点在该区间内,顶点的纵坐标就是函数的最值;(2)当抛物线的顶点不在该区间内,二次函数的最值在区间内两端点处取得.【例4】 甲、乙两个蔬菜基地,分别向A 、B 、C 三个农贸市场提供同品种蔬菜,按签订的合同规定向A 提供45吨,向B 提供75吨,向C 提供40吨.甲基地可安排60吨,乙基地可安排100吨.甲、乙与A 、B 、C 的距离千米数如表,设运费为1元/(千米·吨).问如何安排使总运费最低?求出最小的总运费值.思路点拨 设乙基地向A 提供x 吨,向B 提供y 吨,这样总运费就可用含x ,y 的代数式表示;因为1000≤+≤y x 0,450≤≤x ,所以问题转化为在约束条件下求多元函数的最值.【例5】 某单位花50万元买回一台高科技设备,根据对这种型号设备的跟踪调查显示,该设备投入使用后,若将养护和维修的费用均摊到每一天,则有结论:第x 天应付的养护与维修费为[500)1(41+-x ]元.(1)如果将该设备从开始投入使用到报废共付的养护与维修费及购买该设备费用的和均摊到每一天,叫做每天的平均损耗,请你将每天的平均损耗y (元)表示为使用天数x (天)的函数; (2)按照此行业的技术和安全管理要求,当此设备的平均损耗达到最小值时,就应当报废,问该设备投入使用多少天应当报废?思路点拨 在解本题时可能要用到以下数学知识点:对于确定的正常数a 、b 以及在正实数范围内取值的变量x ,一定有b a xb ax b x x a 22=≥+,即当且仅当b x x a =时,bxx a +有最小值ba 2.注:不等式也是求最值的有效方法,常用的不等式有:(1)02≥a ; (2)ab b a 222≥+;(3)若0>a ,0>b ,则ab b a 2≥+; (4)若0>a ,0>b ,0>x ,则bab x x a 2≥+. 以上各式等号当且仅当b a = (或bxx a =)时成立.学历训练1.当x 变化时,分式12156322++++x x x x 的最小值为 .2.如图,用12米长的木方,做一个有一条横档的矩形窗子,为使透进的光线最多,选择窗子的长、宽各为 、 米.3.已知实数a 、b 、c 满足0=++c b a ,6222=++c b a ,则a 的最大值为 .4.已知x 、y 、z 为三个非负实数,且满足523=++z y x ,2=-+z y x ,若z y x s -+=2,则s 的最大值与最小值的和为( ) A .21 B .85C .1D .365.已知四边形ABCD 的对角线AC 与BD 相交于点O ,若S △AOB =4,S △COD =9,则四边形ABCD 的面积S 四边形ABCD 的最小值为( )A .2lB .25C .26D .36 6.正实数x 、y 满足1=xy ,那么44411y x +的最小值为( )A .21 B .85C .1D .45E .27.启明公司生产某种产品,每件产品成本是3元,售价是4元,年销售量为10万件.为了获得更好的效益,公司准备拿出一定的资金做广告.根据经验,每年投入的广告费是x (万元)时,产品的年销售量将是原销售量的y 倍,且107107102++-=x x y ,如果把利润看作是销售总额减去成本费和广告费:(1)试写出年利润S (万元)与广告费x (万元)的函数关系式,并计算广告费是多少万元时,公司获得的年利润最大,最大年利润是多少万元? (2)把(1)中的最大利润留出3万元作广告,其余的资金投资新项目,现有6个项目可供选择,各项目每股投资金额和预计年收益如下表:种符合要求的投资方式?写出每种投资方式所选的项目.8.某市20位下岗职工在近郊承包50亩土地办农场,这些地可种蔬菜、烟叶或小麦,种这几种农作物每亩地所需职工数和产值预测如下表:请你设计一个种植方案,使每亩地都种上农作物,20位职工都有工作,且使农作物预计总产值最多.9.如图,有长为24m 的篱笆,一面利用墙(墙的最大可用长度a 为l0m),围成中间隔有一道篱笆的长方形花圃,设花圃的宽为xm ,面积为sm 2.(1)求s 与x 的函数关系式;(2)如果要围成面积为45m 2的花圃,AB 的长是多少米?(3)能围成面积比45m 2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.10.设1x 、2x 是关于x 的一元二次方程22=++a ax x 的两个实数根,则)2)(2(1221x x x x --的最大值为 .11.若抛物线1)1(2----=k x k x y 与x 轴的交点为A 、B ,顶点为C ,则△ABC 的面积最小值为12.已知实数a 、b 满足122=++b ab a ,且22b a ab t --=,则t 的最大值为 ,最小值为 .13.如图,B 船在A 船的西偏北45°处,两船相距102km ,若A 船向西航行,B 船同时向南航行,且B 船的速度为A 船速度2倍,那么A 、B 两船的最近距离为 km .14.销售某种商品,如果单价上涨m %,则售出的数量就将减少150m,为了使该商品的销售金额最大,那么m 的值应该确定为 .15.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出;当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每 月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出 辆车(直接填写答案); (2)x 的代数式填空:16.甲、乙两种商品,经营销售这两种商品所能获得的利润依次是p (万元)和q (万元),它们与投入资金x (万元)的关系有经验公式x p 51=,x q 53=. 今有3万元资金投入经营甲、乙两种商品,为获得最大利润,对甲、乙两种商品的资金投入分别应为多少?能获得多大的利润? 链接17.如图,城市A 位于一条铁路线上,而附近的一小镇B 需从A 市购进大量生活、生产用品,如果铁路运费是公路运费的一半.问该如何从B 修筑一条公路到铁路边,使从A 到B 的运费最低?18.设1x ,2x ,…n x 是整数,并满足: (1)21≤≤-i x ,n i ,2,1=; (2)1921=+++n x x x ; (3)9922221=+++n x x x .求33231n x x x +++ 的最大值和最小值.参考答案。
华师大版八年级上册数学第13章 全等三角形含答案
华师大版八年级上册数学第13章全等三角形含答案一、单选题(共15题,共计45分)1、用反证法证明“在同一平面内,若a⊥b,a⊥c,则b∥c时,第一步应假设()A.b不平行cB.a不垂直cC.a不垂直bD.b∥c2、如图,M是线段AD、CD的垂直平分线交点,AB⊥BC,∠D=55°,则∠MAB+∠MCB的大小是()A.120°B.130°C.140°D.160°3、如图,在△ABC中,AB的中垂线交AB于点,交BC于点D,若△ADC的周长为17cm,AC=5cm,则BC的长为()A.7cmB.10cmC.12cmD.22cm4、如图,在△ABC中,BC=8,AB的垂直平分线交AB于点D,交AC于点E,△BCE的周长为18,则AC的长等于()A.6B.8C.10D.125、如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC=( )A.100°B.80°C.70°D.50°6、如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是()A.(5,2)B.(2,5)C.(2,﹣5)D.(5,﹣2)7、如图,Rt△ABC中,AD是∠BAC的平分线,DE⊥AB,垂足为E,若AB=10cm,AC=6cm,则BE的长度为( )A.10cmB.6cmC.4cmD.2cm8、如图所示,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=()A.40°B.50°C.45°D.60°9、PA,PB,CD是⊙O的切线,A,B,E是切点,CD分别交PA,PB于C,D两点,若∠APB=40°,则∠COD的度数是()A.50°B.60°C.70°D.75°10、如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E.若BC=3,则DE的长为()A.1B.2C.3D.411、如图,AD是的中线,E是AD上一点,连接BE并延长交AC于点F,若EF=AF,BE=7.5,CF=6,则EF=( ).A.2.5B.2C.1.5D.112、如图,AD=BC=BA,那么∠1与∠2之间的关系是()A.∠1=2∠2B.2∠1+∠2=180°C.∠1+3∠2=180° D.3∠1﹣∠2=180°13、下列说法中,错误的是()A.三角形任意两个角的平分线的交点在三角形的内部B.任意两个角的平分线的交点到三角形三个顶点的距离相等C.三角形两个角的平分线的交点到三边的距离相等D.三角形两个角的平分线的交点在第三个角的平分线上14、如图,在和中,,,,.连接、交于点M,连接.下列结论:①;②;③平分;④平分其中正确的结论个数有()个.A.4B.3C.2D.115、如图,∠A=50°,P是等腰△ABC内一点,且∠PBC=∠PCA,则∠BPC为()A.100°B.140°C.130°D.115°二、填空题(共10题,共计30分)16、如图,∠BAC=100°,MN、EF分别垂直平分AB、AC,则∠MAE的大小为________17、如图,在中,,,分别过点、作过点的直线的垂线、,若,,则________ .18、如果等腰三角形一个角是45°,那么另外两个角的度数为________19、如图,等腰△ABC中,AB=AC=13cm,BC=10cm,△ABC的面积=________.20、已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为________21、如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥CD交CD于点E,交CB于点F,则CF的长是________22、如图,等腰直角三角形BDC的顶点D在等边三角形ABC的内部,∠BDC=90°,连接AD,过点D作一条直线将△ABD分割成两个等腰三角形,则分割出的这两个等腰三角形的顶角分别是________度.23、如图,△ABC与△A'B'C'关于直线l对称,且∠A=105°,∠C'=30°,则∠B的度数为________24、如图,已知:,点、、在射线上,点、、在射线上,△、△、△均为等边三角形,若,则△的边长为________ .25、如图,AB=AC,点D在AB上,点E在AC上,DC、EB交于点F,△ADC≌△AEB,只需增加一个条件,这个条件可以是________.三、解答题(共5题,共计25分)26、如图所示,△ABC和△AEF为等边三角形,点E在△ABC内部,且E到点A,B,C的距离分别为3,4,5,求∠AEB的度数.27、如图,AB∥CD,AD和BC相交于点O,OB=OC.求证:OA=OD.28、已知,如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于点P,求证:BP=2PQ.29、如图,已知AB=AC,D是AB上一点,DE⊥BC于E,ED的延长线交CA 的延长线于F,△ADF是等腰三角形吗?请说明理由。
华师大版数学八年级上册第十三章全等三角形经典题目解析
第13章全等三角形一、选择题1.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等2.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SAS B.ASA C.AAS D.SSS3.数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是()A.B.C.D.4.如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,连接CD,下列结论错误的是()A.AD=BD B.BD=CD C.∠A=∠BED D.∠ECD=∠EDC5.如图,在平面直角坐标系中,以点O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P,若点P的坐标为(6a,2b﹣1),则a和b的数量关系为()A.6a﹣2b=1 B.6a+2b=1 C.6a﹣b=1 D.6a+b=16.如图,用尺规作图:“过点C作CN∥OA”,其作图依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角相等,两直线平行 D.同旁内角互补,两直线平行7.如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径画弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正确的是()A.①②③B.①②④C.①③④D.②③④8.如图,分别以线段AC的两个端点A,C为圆心,大于AC的长为半径画弧,两弧相交于B,D两点,连接BD,AB,BC,CD,DA,以下结论:①BD垂直平分AC;②AC平分∠BAD;③AC=BD;④四边形ABCD是中心对称图形.其中正确的有()A.①②③B.①③④C.①②④D.②③④9.观察图中尺规作图痕迹,下列结论错误的是()A.PQ为∠APB的平分线B.PA=PBC.点A、B到PQ的距离不相等 D.∠APQ=∠BPQ10.如图,下面是利用尺规作∠AOB的角平分线OC的作法,在用尺规作角平分线过程中,用到的三角形全等的判定方法是()作法:①以O为圆心,适当长为半径画弧,分别交OA,OB于点D,E;②分别以D,E为圆心,大于DE的长为半径画弧,两弧在∠AOB内交于一点C;③画射线OC,射线OC就是∠AOB的角平分线.A.ASA B.SAS C.SSS D.AAS二、填空题(共4小题)11.阅读下面材料:在数学课上,老师提出如下问题:小芸的作法如下:老师说:“小芸的作法正确.”请回答:小芸的作图依据是.12.如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于M,N两点;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为.13.如图,在△ABC中,AC=BC,∠B=70°,分别以点A、C为圆心,大于AC的长为半径作弧,两弧相交于点M、N,作直线MN,分别交AC、BC于点D、E,连结AE,则∠AED的度数是°.14.如图,△ABC和△FPQ均是等边三角形,点D、E、F分别是△ABC三边的中点,点P在AB边上,连接EF、QE.若AB=6,PB=1,则QE= .三、解答题(共16小题)15.课间,小明拿着老师的等腰三角板玩,不小心掉到两墙之间,如图.(1)求证:△ADC≌△CEB;(2)从三角板的刻度可知AC=25cm,请你帮小明求出砌墙砖块的厚度a的大小(每块砖的厚度相等).16.根据图中尺规作图的痕迹,先判断得出结论:,然后证明你的结论(不要求写已知、求证)17.如图,一块余料ABCD,AD∥BC,现进行如下操作:以点B为圆心,适当长为半径画弧,分别交BA,BC于点G,H;再分别以点G,H为圆心,大于GH的长为半径画弧,两弧在∠ABC内部相交于点O,画射线BO,交AD于点E.(1)求证:AB=AE;(2)若∠A=100°,求∠EBC的度数.18.如图,△ABC是等边三角形,D是BC的中点.(1)作图:①过B作AC的平行线BH;②过D作BH的垂线,分别交AC,BH,AB的延长线于E,F,G.(2)在图中找出一对全等的三角形,并证明你的结论.19.某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:①在河流的一条岸边B点,选对岸正对的一棵树A;②沿河岸直走20步有一树C,继续前行20步到达D处;③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长就是河宽AB.请你证明他们做法的正确性.20.如图,在△ABC中,∠C=60°,∠A=40°.(1)用尺规作图作AB的垂直平分线,交AC于点D,交AB于点E(保留作图痕迹,不要求写作法和证明);(2)求证:BD平分∠CBA.21.如图,BD是矩形ABCD的一条对角线.(1)作BD的垂直平分线EF,分别交AD、BC于点E、F,垂足为点O.(要求用尺规作图,保留作图痕迹,不要求写作法);(2)求证:DE=BF.22.如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).23.如图,在Rt△ABC中,∠ACB=90°.(1)用尺规在边BC上求作一点P,使PA=PB(不写作法,保留作图痕迹)(2)连接AP,当∠B为度时,AP平分∠CAB.24.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.25.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE ⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.26.一节数学课后,老师布置了一道课后练习题:如图,已知在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC于点O,点P、D分别在AO和BC上,PB=PD,DE⊥AC于点E,求证:△BPO≌△PDE.(1)理清思路,完成解答(2)本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写本题的证明过程.(2)特殊位置,证明结论若PB平分∠ABO,其余条件不变.求证:AP=CD.(3)知识迁移,探索新知若点P是一个动点,点P运动到OC的中点P′时,满足题中条件的点D也随之在直线BC上运动到点D′,请直接写出CD′与AP′的数量关系.(不必写解答过程)27.如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是.(2)猜想论证当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图4).若在射线BA上存在点F,使S△DCF =S△BDE,请直接写出相应的BF的长.28.已知,点P是直角三角形ABC斜边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为E,F,Q为斜边AB的中点.(1)如图1,当点P与点Q重合时,AE与BF的位置关系是,QE与QF的数量关系式;(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.29.如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=,求AD的长.30.已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作菱形ADEF(A、D、E、F按逆时针排列),使∠DAF=60°,连接CF.(1)如图1,当点D在边BC上时,求证:①BD=CF;②AC=CF+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边CB的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系.第13章全等三角形参考答案与试题解析一、选择题1.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等【考点】作图—基本作图;平行线的判定.【分析】由已知可知∠DPF=∠BAF,从而得出同位角相等,两直线平行.【解答】解:∵∠DPF=∠BAF,∴AB∥PD(同位角相等,两直线平行).故选:A.【点评】此题主要考查了基本作图与平行线的判定,正确理解题目的含义是解决本题的关键.2.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SAS B.ASA C.AAS D.SSS【考点】全等三角形的应用.【分析】在△ADC和△ABC中,由于AC为公共边,AB=AD,BC=DC,利用SSS定理可判定△ADC≌△ABC,进而得到∠DAC=∠BAC,即∠QAE=∠PAE.【解答】解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,即∠QAE=∠PAE.故选:D.【点评】本题考查了全等三角形的应用;这种设计,用SSS判断全等,再运用性质,是全等三角形判定及性质的综合运用,做题时要认真读题,充分理解题意.3.数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是()A.B.C.D.【考点】作图—基本作图.【分析】A、根据作法无法判定PQ⊥l;B、以P为圆心大于P到直线l的距离为半径画弧,交直线l,于两点,再以两点为圆心,大于它们的长为半径画弧,得出其交点,进而作出判断;C、根据直径所对的圆周角等于90°作出判断;D、根据全等三角形的判定和性质即可作出判断.【解答】解:根据分析可知,选项B、C、D都能够得到PQ⊥l于点Q;选项A不能够得到PQ⊥l于点Q.故选:A.【点评】此题主要考查了过直线外以及过直线上一点作已知直线的垂线,熟练掌握基本作图方法是解题关键.4.如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,连接CD,下列结论错误的是()A.AD=BD B.BD=CD C.∠A=∠BED D.∠ECD=∠EDC【考点】作图—基本作图;线段垂直平分线的性质;直角三角形斜边上的中线.【分析】由题意可知:MN为AB的垂直平分线,可以得出AD=BD;CD为直角三角形ABC斜边上的中线,得出CD=BD;利用三角形的内角和得出∠A=∠BED;因为∠A≠60°,得不出AC=AD,无法得出EC=ED,则∠ECD=∠EDC不成立;由此选择答案即可.【解答】解:∵MN为AB的垂直平分线,∴AD=BD,∠BDE=90°;∵∠ACB=90°,∴CD=BD;∵∠A+∠B=∠B+∠BED=90°,∴∠A=∠BED;∵∠A≠60°,AC≠AD,∴EC≠ED,∴∠ECD≠∠EDC.故选:D.【点评】此题考查了线段垂直平分线的性质以及直角三角形的性质.注意垂直平分线上任意一点,到线段两端点的距离相等.5.如图,在平面直角坐标系中,以点O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P,若点P的坐标为(6a,2b﹣1),则a和b的数量关系为()A.6a﹣2b=1 B.6a+2b=1 C.6a﹣b=1 D.6a+b=1【考点】作图—基本作图;坐标与图形性质.【分析】根据作图方法可得点P在第二象限的角平分线上,根据角平分线的性质和第二象限内点的坐标符号可得6a+2b﹣1=0,然后再整理可得答案.【解答】解:根据作图方法可得点P在第二象限角平分线上;点P到x轴、y轴的距离相等;点P的横纵坐标互为相反数,则P点横纵坐标的和为0,故6a+2b﹣1=0(或﹣6a=2b﹣1),整理得:6a+2b=1,故选B.【点评】此题主要考查了基本作图﹣角平分线的做法以及坐标与图形的性质:点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.6.如图,用尺规作图:“过点C作CN∥OA”,其作图依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角相等,两直线平行 D.同旁内角互补,两直线平行【考点】作图—基本作图;平行线的判定.【分析】根据两直线平行的判定方法得出其作图依据即可.【解答】解:如图所示:“过点C作CN∥OA”,其作图依据是:作出∠NCO=∠O,则CN∥AO,故作图依据是:内错角相等,两直线平行.故选:B.【点评】此题主要考查了基本作图以及平行线判定,正确掌握作图基本原理是解题关键.7.如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径画弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正确的是()A.①②③B.①②④C.①③④D.②③④【考点】作图—基本作图;线段垂直平分线的性质.【专题】几何图形问题.【分析】根据作图过程得到PB=PC,然后利用D为BC的中点,得到PD垂直平分BC,从而利用垂直平分线的性质对各选项进行判断即可.【解答】解:根据作图过程可知:PB=CP,∵D为BC的中点,∴PD垂直平分BC,∴①ED⊥BC正确;∵∠ABC=90°,∴PD∥AB,∴E为AC的中点,∴EC=EA,∵EB=EC,∴②∠A=∠EBA正确;③EB平分∠AED错误;④ED=AB正确,故正确的有①②④,故选:B.【点评】本题考查了基本作图的知识,解题的关键是了解如何作已知线段的垂直平分线,难度中等.8.如图,分别以线段AC的两个端点A,C为圆心,大于AC的长为半径画弧,两弧相交于B,D两点,连接BD,AB,BC,CD,DA,以下结论:①BD垂直平分AC;②AC平分∠BAD;③AC=BD;④四边形ABCD是中心对称图形.其中正确的有()A.①②③B.①③④C.①②④D.②③④【考点】作图—基本作图;线段垂直平分线的性质;中心对称图形.【分析】根据线段垂直平分线的作法及中心对称图形的性质进行逐一分析即可.【解答】解:①∵分别以线段AC的两个端点A,C为圆心,大于AC的长为半径画弧,∴AB=BC,∴BD垂直平分AC,故此小题正确;②在△ABC与△ADC中,∵,∴△ABC≌△ADC(SSS),∴AC平分∠BAD,故此小题正确;③只有当∠BAD=90°时,AC=BD,故本小题错误;④∵AB=BC=CD=AD,∴四边形ABCD是菱形,∴四边形ABCD是中心对称图形,故此小题正确.故选C.【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法是解答此题的关键.9.观察图中尺规作图痕迹,下列结论错误的是()A.PQ为∠APB的平分线B.PA=PBC.点A、B到PQ的距离不相等 D.∠APQ=∠BPQ【考点】作图—基本作图.【分析】根据角平分线的作法进行解答即可.【解答】解:∵由图可知,PQ是∠APB的平分线,∴A,B,D正确;∵PQ是∠APB的平分线,PA=PB,∴点A、B到PQ的距离相等,故C错误.故选C.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法及性质是解答此题的关键.10.如图,下面是利用尺规作∠AOB的角平分线OC的作法,在用尺规作角平分线过程中,用到的三角形全等的判定方法是()作法:①以O为圆心,适当长为半径画弧,分别交OA,OB于点D,E;②分别以D,E为圆心,大于DE的长为半径画弧,两弧在∠AOB内交于一点C;③画射线OC,射线OC就是∠AOB的角平分线.A.ASA B.SAS C.SSS D.AAS【考点】作图—基本作图;全等三角形的判定.【分析】根据作图的过程知道:OE=OD,OC=OC,CE=CD,所以由全等三角形的判定定理SSS可以证得△EOC≌△DOC.【解答】解:如图,连接EC、DC.根据作图的过程知,在△EOC与△DOC中,,△EOC≌△DOC(SSS).故选:C.【点评】本题考查了全等三角形的判定定理的应用,注意:三角形全等的判定定理有SAS,ASA,AAS,SSS,HL.二、填空题11.阅读下面材料:在数学课上,老师提出如下问题:小芸的作法如下:老师说:“小芸的作法正确.”请回答:小芸的作图依据是到线段两个端点距离相等的点在线段的垂直平分线上,两点确定一条直线..【考点】作图—基本作图.【专题】作图题;压轴题.【分析】通过作图得到CA=CB,DA=DB,则可根据线段垂直平分线定理的逆定理判断CD为线段AB的垂直平分线.【解答】解:∵CA=CB,DA=DB,∴CD垂直平分AB(到线段两个端点距离相等的点在线段的垂直平分线上,两点确定一条直线.)故答案为:到线段两个端点距离相等的点在线段的垂直平分线上,两点确定一条直线..【点评】本题考查了基本作图:基本作图有:作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线.12.如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于M,N两点;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为105°.【考点】作图—基本作图;线段垂直平分线的性质.【分析】首先根据题目中的作图方法确定MN是线段BC的垂直平分线,然后利用垂直平分线的性质解题即可.【解答】解:由题中作图方法知道MN为线段BC的垂直平分线,∴CD=BD,∵∠B=25°,∴∠DCB=∠B=25°,∴∠ADC=50°,∵CD=AC,∴∠A=∠ADC=50°,∴∠ACD=80°,∴∠ACB=∠ACD+∠BCD=80°+25°=105°,故答案为:105°.【点评】本题考查了基本作图中的垂直平分线的作法及线段的垂直平分线的性质,解题的关键是了解垂直平分线的做法.13.如图,在△ABC中,AC=BC,∠B=70°,分别以点A、C为圆心,大于AC的长为半径作弧,两弧相交于点M、N,作直线MN,分别交AC、BC于点D、E,连结AE,则∠AED的度数是50 °.【考点】作图—基本作图;等腰三角形的性质.【分析】由作图可知,MN是线段AC的垂直平分线,故可得出结论.【解答】解:∵由作图可知,MN是线段AC的垂直平分线,∴CE=AE,∴∠C=∠CAE,∵AC=BC,∠B=70°,∴∠C=40°,∴∠AED=50°,故答案为:50.【点评】本题考查的是线段垂直平分线的性质以及勾股定理的应用,熟知线段垂直平分线的性质是解答此题的关键.14.如图,△ABC和△FPQ均是等边三角形,点D、E、F分别是△ABC三边的中点,点P在AB边上,连接EF、QE.若AB=6,PB=1,则QE= 2 .【考点】全等三角形的判定与性质;等边三角形的性质.【专题】计算题;压轴题.【分析】连结FD,根据等边三角形的性质,由△ABC为等边三角形得到AC=AB=6,∠A=60°,再根据点D、E、F分别是等边△ABC三边的中点,则AD=BD=AF=3,DP=2,EF为△ABC的中位线,于是可判断△ADF为等边三角形,得到∠FDA=60°,利用三角形中位线的性质得EF∥AB,EF=AB=3,根据平行线性质得∠1+∠3=60°;又由于△PQF为等边三角形,则∠2+∠3=60°,FP=FQ,所以∠1=∠2,然后根据“SAS”判断△FDP≌△FEQ,所以DP=QE=2.【解答】解:连结FD,如,∵△ABC为等边三角形,∴AC=AB=6,∠A=60°,∵点D、E、F分别是等边△ABC三边的中点,AB=6,PB=1,∴AD=BD=AF=3,DP=DB﹣PB=3﹣1=2,EF为△ABC的中位线,∴EF∥AB,EF=AB=3,△ADF为等边三角形,∴∠FDA=60°,∴∠1+∠3=60°,∵△PQF为等边三角形,∴∠2+∠3=60°,FP=FQ,∴∠1=∠2,∵在△FDP和△FEQ中,∴△FDP≌△FEQ(SAS),∴DP=QE,∵DP=2,∴QE=2.故答案为:2.【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等边三角形的判定与性质.三、解答题15.课间,小明拿着老师的等腰三角板玩,不小心掉到两墙之间,如图.(1)求证:△ADC≌△CEB;(2)从三角板的刻度可知AC=25cm,请你帮小明求出砌墙砖块的厚度a的大小(每块砖的厚度相等).【考点】全等三角形的应用;勾股定理的应用.【专题】几何图形问题.【分析】(1)根据题意可得AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,进而得到∠ADC=∠CEB=90°,再根据等角的余角相等可得∠BCE=∠DAC,再证明△ADC≌△CEB即可.(2)由题意得:AD=4a,BE=3a,根据全等可得DC=BE=3a,根据勾股定理可得(4a)2+(3a)2=252,再解即可.【解答】(1)证明:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS);(2)解:由题意得:∵一块墙砖的厚度为a,∴AD=4a,BE=3a,由(1)得:△ADC≌△CEB,∴DC=BE=3a,在Rt△ACD中:AD2+CD2=AC2,∴(4a)2+(3a)2=252,∵a>0,解得a=5,答:砌墙砖块的厚度a为5cm.【点评】此题主要考查了全等三角形的应用,以及勾股定理的应用,关键是正确找出证明三角形全等的条件.16.根据图中尺规作图的痕迹,先判断得出结论:OM平分∠BOA ,然后证明你的结论(不要求写已知、求证)【考点】作图—基本作图;全等三角形的判定与性质.【专题】作图题.【分析】根据图中尺规作图的痕迹可知,OC=OD,CM=DM,根据全等三角形的判定和性质得到答案.【解答】解:结论:OM平分∠BOA,证明:由作图的痕迹可知,OC=OD,CM=DM,在△COM和△DOM中,,∴△COM≌△DOM,∴∠COM=∠DOM,∴OM平分∠BOA.【点评】本题考查的是角平分线的作法和全等三角形的判定和性质,掌握基本尺规作图的步骤和全等三角形的判定定理和性质定理是解题的关键.17.如图,一块余料ABCD,AD∥BC,现进行如下操作:以点B为圆心,适当长为半径画弧,分别交BA,BC于点G,H;再分别以点G,H为圆心,大于GH的长为半径画弧,两弧在∠ABC内部相交于点O,画射线BO,交AD于点E.(1)求证:AB=AE;(2)若∠A=100°,求∠EBC的度数.【考点】作图—基本作图;等腰三角形的判定与性质.【分析】(1)根据平行线的性质,可得∠AEB=∠EBC,根据角平分线的性质,可得∠EBC=∠ABE,根据等腰三角形的判定,可得答案;(2)根据三角形的内角和定理,可得∠AEB,根据平行线的性质,可得答案.【解答】(1)证明:∵AD∥BC,∴∠AEB=∠EBC.由BE是∠ABC的角平分线,∴∠EBC=∠ABE,∴∠AEB=∠ABE,∴AB=AE;(2)由∠A=100°,∠ABE=∠AEB,得∠ABE=∠AEB=40°.由AD∥BC,得∠EBC=∠AEB=40°.【点评】本题考查了等腰三角形的判定,利用了平行线的性质,角平分线的性质,等腰三角形的判定.18.如图,△ABC是等边三角形,D是BC的中点.(1)作图:①过B作AC的平行线BH;②过D作BH的垂线,分别交AC,BH,AB的延长线于E,F,G.(2)在图中找出一对全等的三角形,并证明你的结论.【考点】作图—基本作图;全等三角形的判定;等边三角形的性质.【分析】(1)根据平行线及垂线的作法画图即可;(2)根据ASA定理得出△DEC≌△DFB即可.【解答】解:(1)作图如下:①如图1;②如图2:(2)△DEC≌△DFB证明:∵BH∥AC,∴∠DCE=∠DBF,又∵D是BC中点,∴DC=DB.在△DEC与△DFB中,∵,∴△DEC≌△DFB(ASA).【点评】本题考查的是作图﹣基本作图,熟知等边三角形的性质是解答此题的关键.19.某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:①在河流的一条岸边B点,选对岸正对的一棵树A;②沿河岸直走20步有一树C,继续前行20步到达D处;③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长就是河宽AB.请你证明他们做法的正确性.【考点】全等三角形的应用.【分析】将题目中的实际问题转化为数学问题,然后利用全等三角形的判定方法证得两个三角形全等即可说明其做法的正确性.【解答】证明:如图,由做法知:在Rt△ABC和Rt△EDC中,∴Rt△ABC≌Rt△EDC(ASA)∴AB=ED即他们的做法是正确的.【点评】本题考查了全等三角形的应用,解题的关键是将实际问题转化为数学问题.20.如图,在△ABC中,∠C=60°,∠A=40°.(1)用尺规作图作AB的垂直平分线,交AC于点D,交AB于点E(保留作图痕迹,不要求写作法和证明);(2)求证:BD平分∠CBA.【考点】作图—基本作图;线段垂直平分线的性质.【专题】作图题.【分析】(1)分别以A、B两点为圆心,以大于AB长度为半径画弧,在AB两边分别相交于两点,然后过这两点作直线即为AB的垂直平分线;(2)根据线段垂直平分线的性质和三角形的内角和证明即可.【解答】解:(1)如图1所示:(2)连接BD,如图2所示:∵∠C=60°,∠A=40°,∴∠CBA=80°,∵DE是AB的垂直平分线,∴∠A=∠DBA=40°,∴∠DBA=∠CBA,∴BD平分∠CBA.【点评】本题考查了线段的垂直平分线的性质及三角形的内角和及基本作图,解题的关键是了解垂直平分线上的点到线段两端点的距离相等.21.如图,BD是矩形ABCD的一条对角线.(1)作BD的垂直平分线EF,分别交AD、BC于点E、F,垂足为点O.(要求用尺规作图,保留作图痕迹,不要求写作法);(2)求证:DE=BF.【考点】作图—基本作图;线段垂直平分线的性质;矩形的性质.【专题】作图题;证明题.【分析】(1)分别以B、D为圆心,以大于BD的长为半径四弧交于两点,过两点作直线即可得到线段BD的垂直平分线;(2)利用垂直平分线证得△DEO≌△BFO即可证得结论.【解答】解:(1)答题如图:(2)∵四边形ABCD为矩形,∴AD∥BC,∴∠ADB=∠CBD,∵EF垂直平分线段BD,∴BO=DO,在△DEO和三角形BFO中,,∴△DEO≌△BFO(ASA),∴DE=BF.【点评】本题考查了基本作图及全等三角形的判定与性质,了解基本作图是解答本题的关键,难度中等.22.如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).【考点】作图—基本作图;平行线的判定.【专题】作图题.【分析】(1)根据角平分线基本作图的作法作图即可;(2)根据角平分线的性质可得∠BDE=∠BDC,根据三角形内角与外角的性质可得∠A=∠BDC,再根据同位角相等两直线平行可得结论.【解答】解:(1)如图所示:(2)DE∥AC∵DE平分∠BDC,∴∠BDE=∠BDC,∵∠ACD=∠A,∠ACD+∠A=∠BDC,∴∠A=∠BDC,∴∠A=∠BDE,∴DE∥AC.【点评】此题主要考查了基本作图,以及平行线的判定,关键是正确画出图形,掌握同位角相等两直线平行.23.如图,在Rt△ABC中,∠ACB=90°.。
华师大版八年级上册数学第13章 全等三角形 含答案
华师大版八年级上册数学第13章全等三角形含答案一、单选题(共15题,共计45分)1、现给出四个命题:①等边三角形既是轴对称图形,又是中心对称图形;②相似三角形的面积比等于它们的相似比;③菱形的面积等于两条对角线的积;④一组数据2,5,4,3,3的中位数是4,众数是3,其中不正确的命题的个数是()A.1个B.2个C.3个D.4个2、在正五边形ABCDE中,对角线AD,AC与EB分别相交于点M,N.下列结论错误的是( )A.四边形EDCN是菱形B.四边形MNCD是等腰梯形C.△AEM与△CBN相似D.△AEN与△EDM全等3、如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是().A.∠M=∠NB.AM=CNC.AB=CDD.AM∥CN4、如图,已知AB=AD,∠BAD=∠CAE,则增加以下哪个条件仍不能判断△BAC≅△DAE的是()A.AC=AEB.BC=DEC.∠B=∠DD.∠C=∠E5、如图,AB是⊙O的直径,AC,BC分别与⊙O相交于点D,E,连接DE,现给出两个命题:①若AC=AB,则DE=CE;②若∠C=45°,记△CDE的面积为S1,四边形DABE的面积为S2,则S 1=S2,那么()A.①是真命题②是假命题B.①是假命题②是真命题C.①是假命题②是假命题 D.①是真命题②是真命题6、如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=()A.2B.2C.D.7、如图,AC⊥BD于点P,AP=CP,增加下列一个条件:①BP=DP;②AB=CD;③∠A=∠C.其中能判定△ABP≌△CDP的条件有 ( )A.0个B.1个C.2个D.3个8、△ABC中,AD是∠BAC的平分线,且AB=AC+CD.若∠BCA=60°,则∠ABC的大小为()A.30°B.60°C.80°D.100°9、如图,已知△ABC≌△DCB,AB=10,∠A=80°,∠ABC=60°,那么下列结论中错误的是()A.∠D=80°B.∠DBC=40°C.AC=DBD.BC=1010、如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC ≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠EB.BC=EC,AC=DCC.BC=DC,∠A=∠D D.AC=DC,∠A=∠D11、如图,在边长为2的正方形ABCD中,AE平分∠DAC,AE交CD于点F,CE ⊥AE,垂足为点E,EG⊥CD,垂足为点G,点H在边BC上,BH=DF,连接AH、FH,FH与AC交于点M.下面结论:①FH=2BH;②AC⊥FH;③DF=1;④ EG2=FG•DG.其中正确的个数为()A.1B.2C.3D.412、如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC 于点E,连接CD,下列结论错误的是()A.AD=BDB.BD=CDC.∠A=∠BEDD.∠ECD=∠EDC13、如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB 于E,若AB=9cm,则△DEB的周长是()A.6cmB.7cmC.8cmD.9 cm14、如图,在中,,,AD是的中线,AE是的角平分线,交AE的延长线于点F,则DF的长是A.2B.4C.5D.15、如图,在正方形ABCD中,点E为AB边的中点,点F在DE上,CF=CD,过点F作FG⊥FC交AD于点G.下列结论:①GF=GD:②AG>AE:③AF⊥DE;④DF=4EF.正确的是().A.①②B.①③C.①③④D.③④二、填空题(共10题,共计30分)16、如图所示,等边△ABC的边长为4,点D是BC边上一动点,且CE=BD,连接AD,BE,AD与BE相交于点P,连接PC.则线段PC的最小值等于________.17、如图:△ABE≌△ACD,AB=10cm,∠A=60°,∠B=30°,则AD=________cm,∠ADC=________.18、如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是________ 秒.19、如图,已知△OAB≌△OCD,∠A=30°,∠AOB=105°,则∠D=________°.20、已知如图,在△ABC中,BE平分∠ABC,过点E作DE∥BC交AB于点D,若AE=3cm,△ADE的周长为10cm,则AB= ________21、如图,中,,将绕点按顺时针方向旋转得到,则的度数为________ .22、如图,∠AOB是一角度为10°的钢架,要使钢架更加牢固,需在其内部添加一些钢管:EF、FG、GH…,且OE=EF=FG=GH…,在OA、OB足够长的情况下,最多能添加这样的钢管的根数为________.23、如图,已知△ABC的周长是21,0B、OC分别平分∠ABC和∠ACB,OD⊥BC 于D,且OD=4,△ABC的面积是________。
华师大版八年级上册数学第13章 全等三角形含答案(全国通用)
华师大版八年级上册数学第13章全等三角形含答案一、单选题(共15题,共计45分)1、有4张牌,每张牌的一面都写上一个英文字母,另一面都写上一个数字.规定:当牌的一面为字母R时,它的另一面必须写数字2.你的任务是:为了检验如图的4张牌是否有违反规定的写法,你翻看哪几张牌就够了?你的选择是()A.(a)B.(a)、(c)C.(a)、(d)D.非以上答案2、如图,已知AB∥CD , AE=CF ,则下列条件中不一定能使△ABE≌△CDF的是()A. AB= CDB. BE∥ DFC.∠ B=∠ DD. BE= DF3、角平分线的性质:角平分线上的点到这个角的两边距离相等,其理论依据是全等三角形判定定理()A.SASB.HLC.AASD.ASA4、2011•沈阳)如图,矩形ABCD中,AB<BC,对角线AC、BD相交于点O,则图中的等腰三角形有()A.2个B.4个C.6个D.8个5、某班有20位同学参加围棋、象棋比赛,甲说:“只参加一项的人数大于14人” ;乙说:“两项都参加的人数小于5人” .对于甲、乙两人的说法,有下列四个命题,其中真命题的是()A.若甲对,则乙对B..若乙对,则甲对C.若乙错,则甲错D.若甲错,则乙对6、如图,已知AB=AC,AD⊥BC,AE=AF,图中共有()对全等三角形.A.5B.6C.7D.87、如图,点是的外角平分线上一点,且满足,过点作于点,交的延长线于点,则下列结论:①;② ;③ ;④.其中正确的结论有()A.1个B.2个C.3个D.4个8、把边长相等的正五边形ABCDE和正方形ABFG,按照如图所示的方式叠合在一起,连结AD,则∠DAG=()A.18°B.20°C.28°D.30°9、一个等腰三角形的两边分别为2,3,则这个三角形的周长为()A.3+4B.6+2C.6+4D.3+4或6+210、下列语句不正确的是( )A.能够完全重合的两个图形全等B.两边和一角对应相等的两个三角形全等C.三角形的外角等于不相邻两个内角的和D.全等三角形对应边相等11、如图,在△ABC中,∠ACB=90°,CH⊥AB,垂足为点H,AD平分∠BAC,与CH相交于点D,过点D作DE∥BC,与边AB相交于点E,那么下列结论中一定正确的是()A.DA=DEB.AC=ECC.AH=EHD.CD=ED12、已知一个等腰三角形顶角与底角度数之比为1:4,则这个等腰三角形底角的度数为( )A.20°B.120°C.80°D.36°13、在△ABC中,∠B,∠C平分线的交点P恰好在BC边的高AD上,则△ABC 一定是()A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形14、如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,则∠D的度数为()A.50°B.30°C.80°D.100°15、如图,AB是⊙O的直径,点C在⊙O上,且不与A、B两点重合,过点C的切线交AB的延长线于点D,连接AC,BC,若∠ABC=53°,则∠D的度数是()A.16°B.18°C.26.5°D.37.5°二、填空题(共10题,共计30分)16、如图,⊙O的半径为2,点A、C在⊙O上,线段BD经过圆心O,∠ABD=∠CDB=90° ,AB=1,CD= ,则图中阴影部分的面积为________.17、如图,已知∠BAC=∠DAE=90°,AB=AD,要使△ABC≌△ADE,还需要添加的条件是________(只需添加一个条件即可)18、如图,在Rt△ABC中,∠C=90°,以点A为圆心,任意长为半径画弧,分别交AC、AB于点M、N,再分别以M、N为圆心,任意长为半径画弧,两弧交于点O,作射线AO交BC于点D,若CD=3,P为AB上一动点,则PD的最小值为________.19、如图,AB=AC,要使△ABE≌△ACD,应添加的条件是________(添加一个条件即可).20、在中,的垂直平分线交AB于点D,交AC于点E,已知的周长为30,则BC=________.21、一个等腰三角形的两条边分别是6厘米和8厘米,那么它的周长是________厘米.22、在中,平分交点E,平分交于点F,且,则的长为________.23、下列四个命题中:①对顶角相等;②同旁内角互补;③全等三角形的对应角相等;④两直线平行,同位角相等,其中假命题的有________(填序号)24、如图,在△ABC中,DE是AC的垂直平分线且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD的度数为________.25、等腰三角形的底角为15°,腰长为3a,则等腰三角形腰上的高是________.三、解答题(共5题,共计25分)26、如图在△ABC中,∠BAC=90°,AB=AC,AE是过点A的直线,CD⊥AE,BE⊥AE,若BE=2,CD=6,求DE的长度.27、如图,已知AB=AD,∠ABC=∠ADC.试判断AC与BD的位置关系,并说明理由.28、如图,直线AB、CD相交于点O,过点O作两条射线OM、ON,且∠AOM=∠CON=90°。
华师大版八年级上册数学第13章 全等三角形含答案
华师大版八年级上册数学第13章全等三角形含答案一、单选题(共15题,共计45分)1、下列命题正确的是()A.一组对边相等,另一组对边平行的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.对角线互相垂直平分且相等的四边形是正方形2、如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC,FC=2,则AB的长为()A.8B.8C.4D.63、如图所示的正方形网格中,网格线的交点称为格点.已知、是两格点,如果也是图中的格点,且使得为等腰三角形,则点的个数是()A.5B.6C.7D.84、如图,已知在△ABC中,AB=AC,给出下列条件,不能使BD=CE的是( )A.BD和CE分别为AC和AB边上的中线B.BD和CE分别为∠ABC和∠ACB 的平分线C.BD和CE分别为AC和AB边上的高D.∠ABD=∠BCE5、如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,∠ADC=30°,①四边形ACED是平行四边形;②△BCE是等腰三角形;③四边形ACEB的周长是10+2 ;④四边形ACEB的面积是16.则以上结论正确的个数是()A.1个B.2个C.3个D.4个6、在等腰△ABC中,AB=AC,O为不同于A的一点,且OB=OC,则直线AO与底边BC的关系为()A.平行B.垂直且平分C.斜交D.垂直不平分7、如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC等于()A.60°B.50°C.45°D.30°8、已知:如图,在△ABC中,AB=AC,BF=CD,BD=CE,∠FDE=α,则下列结论正确的是()A.2α+∠A=180°B.α+∠A=90°C.2α+∠A=90°D.α+∠A=180°9、用反证法证明“在直角三角形中,至少有一个锐角不大于45º”,应先假设这个直角三角形中()A.有一个锐角小于45ºB.每一个锐角都小于45ºC.有一个锐角大于45ºD.每一个锐角都大于45º10、如图,已知在正方形中,对角线与相交于点,,分别是与的平分线,的延长线与相交于点,则下列结论:①;②;③;④.其中正确的结论是()A.①②B.③④C.①②③D.①②③④11、等腰三角形的两边长是6cm和3cm,那么它的周长是( )A.9cmB.12 cmC.12 cm或15 cmD.15 cm12、如图,在△ABC中,AB=AC,∠A=50°,AB的垂直平分线MN交AC于D 点,则∠DBC的度数是()A.15°B.20°C.25°D.30°13、如图,在△ABC中,∠C=90°,∠B=30°,边AB的垂直平分线DE交AB于点E,交BC于点D,CD=3,则BC的长为()A.6B.9C.10D.1214、已知:如图,下列三角形中,,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的有()A.1个B.2个C.3个D.4个15、如图,已知点A,D,C,F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠FB.∠A=∠EDFC.BC∥EFD.∠B=∠E二、填空题(共10题,共计30分)16、在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF 与DC交于点F,若AB=9,DF=2FC,则BC=________.(结果保留根号)17、如图,在 3×3 的正方形网格中标出了∠1 和∠2,则∠2-∠1=________°18、如图,在△ABC中,∠C=90°,∠A=25°,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E,则的度数为________.19、如图,△ABC中,AB=AC,AB的垂直平分线分别交边AB,BC于D,E点,且AC=EC,则∠BAC=________.20、已知等腰中,,,,在线段上,是线段上的动点,的最小值是________.21、如图,内接于,C为弧的中点,若,则________ .22、如图,点A和动点P在直线l上,点P关于点A的对称点为Q,以AQ为边作 Rt△ABQ,使∠BAQ=90°,AQ:AB=3:4. 直线l上有一点C在点P右侧,PC=4cm,过点C作射线CD⊥l,点F为射线CD上的一个动点,连结AF.当△AFC与△ABQ全等时,AQ=________cm.23、如图,在矩形ABCD中,E、F分别是AD、CD的中点,沿着BE将△ABE折叠,点A刚好落在BF上,若AB=2,则AD=________.24、如图,已知点P是射线ON上一动点(即P可在射线ON上运动),∠AON=30°,当∠A=________时,△AOP为直角三角形;当∠A=________时,△AOP为等腰三角形.25、如图,在△ABC中,点D在边BC上,∠BAD=80°,AB= AD=DC,则∠C=________三、解答题(共5题,共计25分)26、如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,AB=6,FC=4,求线段DB的长.27、CD∥AB,OA=AB=BC,∠BCD=40°,求∠COD的度数28、有红、蓝、黄、白、紫五种颜色的珠子各一颗,用纸包好,在桌子上排成一排,五个人猜各包里珠子的颜色.甲猜:第二包是紫色,第三包是黄色;乙猜:第二包是蓝色,第四包是红色;丙猜:第一包是红色,第五包是白色;丁猜:第三包是蓝色,第四包是白色;戊猜:第二包是黄色,第五包是紫色;猜完后?打开纸包一看,每人都猜对了一种,并且每包都有一个人猜对.请你也猜一猜他们各猜中了哪一种颜色的珠子?29、如图,△ABC中,AB=AC,∠A=50°,DE是腰的垂直平分线.求∠DBC 的度数.30、如图所示,点O是矩形ABCD对角线AC的中点,过点O作EF⊥AC,交BC 交于点E,交AD于点F,连接AE、CF,求证:四边形AECF是菱形.参考答案一、单选题(共15题,共计45分)1、D2、D3、D4、D5、C6、B7、A8、A9、D10、C11、D12、A13、B14、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、三、解答题(共5题,共计25分)27、29、。
华师大版八年级上册数学第13章 全等三角形含答案(全优)
华师大版八年级上册数学第13章全等三角形含答案一、单选题(共15题,共计45分)1、如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CDB.∠BAC=∠DACC.∠BCA=∠DCAD.∠B=∠D=∠90°2、如图,在中,的平分线与的外角平分线交于点,连接,则的值是()A.1B.C.D.3、如图,直线y=-x+2分别交x轴、y轴于点A,B,点D在BA的延长线上,OD 的垂直平分线交线段AB于点C.若△OBC和△OAD的周长相等,则OD的长是( )A.2B.2C.D.44、如图所示,在四边形ABCD中,,AC=1,,直线MN为线段AD的垂直平分线,P为MN上的一个动点,则PC+PD的最小值为()A.1B.C.D.35、已知实数满足,则以的值为两边的等腰三角形的周长是()A.10B.8或10C.8D.以上都不对6、在下列各组条件中,不能说明的是()A.AB=DE,∠B=∠E,∠C=∠FB.AB=DE,∠A=∠D,∠B=∠E C.AC=DF,BC=EF,∠A=∠D D.AB=DE,BC=EF,AC=ED7、如图,⊙O的半径为2,点A的坐标为(2,2 ),直线AB为⊙O的切线,B 为切点,则B点的坐标为()A.(- )B.(- ,1)C.(- )D.(-1, )8、已知等腰三角形的周长为17 cm,其中一边长为5cm,则该等腰三角形的底边长为()A.6 cm或5cmB.7cm或5cmC.5cmD.7 cm9、如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE,下列结论一定正确的是()A. AC=ADB. AB⊥ EBC. BC=DED.∠ A=∠ EBC10、下列结论不正确的是()A.两个锐角对应相等的两个直角三角形全等B.一锐角和斜边对应相等的两个直角三角形角形全等C.一直角边和一锐角对应相等的两个直角三角形全等D.两条直角边对应相等的两个直角三角形全等11、如图,△ABC中,AB=AC,AD⊥BC,下列结论中不正确的是()A.D是BC中点B.AD平分∠BACC.AB=2BDD.∠B=∠C12、如图,点D、E分别是AB、AC上的点,BE交CD于点O,BO=CO,DO=EO,AB=AC,AD=AE则图中有___________对全等三角形( )A.2对B.3对C.4对D.5对13、如图,在Rt△ABC中,∠B=90°,BC=3,AB=4,点D,E分别是AB,AC 的中点,CF平分Rt△ABC的一个外角∠ACM,交DE的延长线于点F,则DF的长为()A.4B.5C.5.5D.614、如图,在□ABCD中,O是AC,BD的交点,过点O与AC垂直的直线交边AD于点E,若□ABCD的周长20厘米,则△CDE的周长为()A.6厘米B.8厘米C.10厘米D.12厘米15、如图,已知△ABC ,∠ABC=2∠C ,以B为圆心任意长为半径作弧,交BA、BC于点E、F ,分别以E、F为圆心,以大于EF的长为半径作弧,两弧交于点P ,作射线BP交AC于点,则下列说法不正确的是()A.∠ ADB=∠ ABCB. AB= BDC. AC= AD+ BDD.∠ ABD=∠ BCD二、填空题(共10题,共计30分)16、已知在△ABC中,AB=AC=8,∠BAC=30°,将△ABC绕点A旋转,使点B落在原△ABC的点C处,此时点C落在点D处,延长线段AD,交原△A BC的边BC 的延长线于点E,那么线段DE的长等于________ .17、如图所示,线段AB与直线a所夹锐角为30°,AB=,在直线a上有一动点C,当△ABC为等腰三角形时,则线段AC的长________ 。
华师大版八年级上册数学第13章 全等三角形含答案(必刷题)
华师大版八年级上册数学第13章全等三角形含答案一、单选题(共15题,共计45分)1、对于下列各组条件,不能判定的一组是()A. ∠A=∠A′,∠B=∠B′,AB=A′B′B. ∠A=∠A′,AB=A′B′,AC=A′C′C. ∠A=∠A′,AB=A′B′,BC=B′C′ D. AB=A′B′,AC=A′C′,BC=B′C′2、如图,OP平分∠BOA,∠BOA=45°,PC∥OA,PD⊥OA,若PC=4,则PD等于()A.4B.2C.2D.23、下列命题中,真命题的个数有()①如果直线a∥b,b∥c,那么a∥c;②相等的角是对顶角;③两条直线被第三条直线所截,同位角相等;④比正实数小的一定是负实数;⑤两条直线平行,同旁内角相等;⑥立方根等于它本身的数是﹣1,0,1.A.1个B.2个C.3个D.4个4、如图,是的直径,,是上的两点,且平分,分别与,相交于点,,则下列结论不一定成立的是()A. B. C. D.5、如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S=7,DE=2,△ABCAB=4,则AC长是()A.3B.4C.6D.56、如图,桌面上竖直放置一等腰直角三角板ABC,若测得斜边AB在桌面上的投影DE为8cm,且点B距离桌面的高度为3cm,则点A距离桌面的高度为()A.6.5cmB.5cmC.9.5cmD.11cm7、下列四个命题:①对角线互相垂直的平行四边形是正方形;②,则m≥1;③过弦的中点的直线必经过圆心;④圆的切线垂直于经过切点的半径;⑤圆的两条平行弦所夹的弧相等;其中正确的命题有()个.A.1B.2C.3D.48、如图所示,在△ABC中,∠BAC=130°,AB的垂直平分线ME交BC于点M,交AB于点E,AC的垂直平分线NF交BC于点N,交AC于点F,则∠MAN为()A.80°B.70°C.60°D.50°9、如图,在四边形ABCD中,∠A=90°,AD=4,BC=5,对角线BD平分∠ABC,则△BCD的面积为()A.10B.12C.20D.无法确定10、如图4,两个正六边形的边长均为1,其中一个正六边形的一边恰在另一个正六边形的对角线上,则这个图形(阴影部分)外轮廓线的周长是()A.7B.8C.9D.1011、如图,OD平分∠AOB,DE⊥AO于点E,DE=4,点F是射线OB上的任意一点,则DF的长度不可能是()A.3B.4C.5D.612、如图,有以下3个条件:①AC=AB,②AB∥CD,③∠1=∠2,从这3个条件中任选2个作为题设,另1个作为结论,则组成的命题是真命题的概率是()A.0B.C.D.113、用反证法证明“在直角三角形中,至少有一个锐角不大于45°”,应先假设这个直角三角形中()A.有一个锐角小于45°B.每一个锐角都小于45°C.有一个锐角大于45°D.每一个锐角都大于45°14、下列命题中,是真命题的是()A.长度相等的两条弧是等弧B.顺次连结平行四边形四边中点所组成的图形是菱形C.正八边形既是轴对称图形又是中心对称图形D.三角形的内心到这个三角形三个顶点的距离相等15、如图,已知,要得到△ABD≌△ACD,还需从下列条件中补选一个,则错误的选法是()A. B. C. D.二、填空题(共10题,共计30分)16、以下四个命题:①如果三角形一边的中点到其他两边距离相等,那么这个三角形一定是等腰三角形:②两条对角线互相垂直且相等的四边形是正方形:③一组数据2,4,6.4的方差是2;④△OAB与△OCD是以O为位似中心的位似图形,且位似比为1:4,已知∠OCD=90°,OC=CD.点A、C在第一象限.若点D坐标为(2, 0),则点A坐标为(,),其中正确命题有________ (填正确命题的序号即可)17、如图,正方形ABCD中,∠EAF=45°,连接对角线BD交AE于M,交AF于N,若DN=1,BM=2,那么MN=________.证明:DN2+BM2=MN2.18、如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=6cm,DE=2cm,则BC=________.19、已知:△ABC≌△A′B′C′,∠A=∠A′,∠B=∠B′,∠C=60° ,AB=16cm,则∠C′=________ °,A′B′=________cm.20、在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1, S2,S 3, S4,则S1+S2+S3+S4=________.21、已知△ABC≌△DEF,且△ABC的周长为12,若AB=3,EF=4,则AC=________22、如图,线段AC与BD交于点O,且OA=OC, 请添加一个条件,使△OAB△OCD,这个条件是________.23、如图,△ABC中,BA=BC,∠ABC=40°,∠ABC的平分线与BC的垂直平分线交于点O,E在BC边上,F在AC边上,将∠A沿直线EF翻折,使点A与点O恰好重合,则∠OEF的度数是________.24、如图,两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于 ________度。
初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页
初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页初中奥数辅导讲义培优计划(星空课堂)第一讲走进追问求根公式第二讲判别式——二次方程根的检测器第三讲充满活力的韦达定理第四讲明快简捷—构造方程的妙用第五讲一元二次方程的整数整数解第六讲转化—可化为一元二次方程的方程第七讲化归—解方程组的基本思想第八讲由常量数学到变量数学第九讲坐标平面上的直线第十讲抛物线第十一讲双曲线第十二讲方程与函数第十三讲怎样求最值第十四讲图表信息问题第十五讲统计的思想方法第十六讲锐角三角函数第十七讲解直角三角形第十八讲圆的基本性质第十九讲转化灵活的圆中角2第二十讲直线与圆第二十一讲从三角形的内切圆谈起第二十二讲园幂定理第二十三讲圆与圆第二十四讲几何的定值与最值第二十五讲辅助圆第二十六讲开放性问题评说第二十七讲动态几何问题透视第二十八讲避免漏解的奥秘第二十九讲由正难则反切入第三十讲从创新构造入手3第一讲走进追问求根公式形如a某2b某c0(a0)的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法。
而公式法是解一元二次方程的最普遍、最具有一般性的方法。
求根公式某1,2bb24ac内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了2a一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美。
降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决。
解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法。
【例题求解】【例1】满足(n2n1)n21的整数n有个。
思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程。
【例2】设某1、某2是二次方程某2某30的两个根,那么某134某2219的值等于()A、一4B、8C、6D、0思路点拨:求出某1、某2的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如某123某1,某223某2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十三讲 怎样求最值
在生活实践中,人们经常面对带有“最”字的问题,如在一定的方案中,花费最低、消耗最少、产值最高、获利最大等;解数学题时,我们也常常碰到求某个变量的最大值或最小值之类的问题,这就是我们要讨论的最值问题,求最值问题的方法归纳起来有如下几点: 1.运用配方法求最值;
2.构造一元二次方程,在方程有解的条件下,利用判别式求最值; 3.建立函数模型求最值;
4.利用基本不等式或不等分析法求最值.
注:数学中最大值、最小值问题,运用到社会实践、生活实际中所体现出来的就是最优化思 想,所谓最优,就是我们所期望的目标量能达到最大或最小.
一次函数、反比例函数并无最值,但当自变量取值范围有条件限制的,最值在图象的端点处取得;定义在全体实数上的二次函数最值在抛物线的顶点处取-得.即: 对于c bx ax y ++=2(0≠a )
(1)若a>0,则当a b
x 2-=时,a b ac y 442-=最小值;
(2)若a<0,则当a
b
x 2-=时, a b ac y 442-=最大值.
【例题求解】
【例1】 设a 、b 为实数,那么b a b ab a 222--++的最小值是 .
思路点拨 将原式整理成关于a 的二次多项式从配方法入手;亦可引入参数设
t b a b ab a =--++222,将等式整理成关于a 的二次方程0)2()1(22=--+-+t b b a b a ,利用
判别式求最小值.
【例2】若3
2
211-=
+=-z y x ,则222z y x ++可取得的最小值为( ) A .3 B .
1459 C .2
9
D .6 思路点拨 设k z y x =-=+=
-3
2
211,则222z y x ++可用只含k 的代数式表示,通过配方求最
小值.
【例3】 设1x 、2x 是方程02324222=-++-m m mx x 的两个实根,当m 为何值时,2221x x +有最小值,并求这个最小值.
思路点拨 由韦达定理知2221x x +是关于m 的二次函数,是否是在抛物线的顶点处取得最小值,就要看自变量m 的取值范围,从判别式入手.
注:定义在某一区间的条件限制的二次函数最值问题,有下两种情形: (1)当抛物线的顶点在该区间内,顶点的纵坐标就是函数的最值;
(2)当抛物线的顶点不在该区间内,二次函数的最值在区间内两端点处取得.
【例4】 甲、乙两个蔬菜基地,分别向A 、B 、C 三个农贸市场提供同品种蔬菜,按签订的合同规定向A 提供45吨,向B 提供75吨,向C 提供40吨.甲基地可安排60吨,乙基地可安排100吨.甲、乙与A 、B 、C 的距离千米数如表,设运费为1元/(千米·吨).问如何安排使总运费最低?求出最小的总运费值.
思路点拨 设乙基地向A 提供x 吨,向B 提供y 吨,这样总运费就可用含x ,y 的代数式表示;因为1000≤+≤y x 0,450≤≤x ,所以问题转化为在约束条件下求多元函数的最值.
【例5】 某单位花50万元买回一台高科技设备,根据对这种型号设备的跟踪调查显示,该设备投入使用后,若将养护和维修的费用均摊到每一天,则有结论:第x 天应付的养护与维修费为[500)1(4
1
+-x ]元.
(1)如果将该设备从开始投入使用到报废共付的养护与维修费及购买该设备费用的和均摊到每一天,叫做每天的平均损耗,请你将每天的平均损耗y (元)表示为使用天数x (天)的函数; (2)按照此行业的技术和安全管理要求,当此设备的平均损耗达到最小值时,就应当报废,问该设备投入使用多少天应当报废?
思路点拨 在解本题时可能要用到以下数学知识点:对于确定的正常数a 、b 以及在正实数范围内取值的变量x ,一定有
b a xb ax b x x a 22=≥+,即当且仅当b x x a =时,b
x x a +有最小值b
a
2.
注:不等式也是求最值的有效方法,常用的不等式有:
(1)02≥a ; (2)ab b a 222≥+;(3)若0>a ,0>b ,则ab b a 2≥+; (4)若0>a ,0>b ,0>x ,则
b
a
b x x a 2≥+. 以上各式等号当且仅当b a = (或b
x
x a =)时成立.
学历训练
1.当x 变化时,分式12
15
632
2++++x x x x 的最小值为 .
2.如图,用12米长的木方,做一个有一条横档的矩形窗子,为使透进的光线最多,选择窗子的长、宽各为 、 米.
3.已知实数a 、b 、c 满足0=++c b a ,6222=++c b a ,则a 的最大值为 .
4.已知x 、y 、z 为三个非负实数,且满足523=++z y x ,2=-+z y x ,若z y x s -+=2,则s 的最大值与最小值的和为( ) A .
21 B .8
5
C .1
D .36
5.已知四边形ABCD 的对角线AC 与BD 相交于点O ,若S △AOB =4,S △COD =9,则四边形ABCD 的面积S 四边形ABCD 的最小值为( )
A .2l
B .25
C .26
D .36 6.正实数x 、y 满足1=xy ,那么4
4
411y
x
+
的最小值为( )
A .
21 B .8
5
C .1
D .45
E .2
7.启明公司生产某种产品,每件产品成本是3元,售价是4元,年销售量为10万件.为了获得更好的效益,公司准备拿出一定的资金做广告.根据经验,每年投入的广告费是x (万
元)时,产品的年销售量将是原销售量的y 倍,且10
7
107102++-
=x x y ,如果把利润看作是销售总额减去成本费和广告费:
(1)试写出年利润S (万元)与广告费x (万元)的函数关系式,并计算广告费是多少万元时,公司获得的年利润最大,最大年利润是多少万元?
(2)把(1)中的最大利润留出3万元作广告,其余的资金投资新项目,现有6个项目可供选择,各项目每股投资金额和预计年收益如下表:
如果每个项目只能投一股,且要求所有投资项目的,收益总额不得低于1.6万元,问有几种符合要求的投资方式?写出每种投资方式所选的项目.
8.某市20位下岗职工在近郊承包50亩土地办农场,这些地可种蔬菜、烟叶或小麦,种这几种农作物每亩地所需职工数和产值预测如下表:
请你设计一个种植方案,使每亩地都种上农作物,20位职工都有工作,且使农作物预计总产值最多.
9.如图,有长为24m 的篱笆,一面利用墙(墙的最大可用长度a 为l0m),围成中间隔有一
道篱笆的长方形花圃,设花圃的宽为xm ,面积为sm 2. (1)求s 与x 的函数关系式;
(2)如果要围成面积为45m 2的花圃,AB 的长是多少米?
(3)能围成面积比45m 2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.
10.设1x 、2x 是关于x 的一元二次方程22=++a ax x 的两个实数根,则)2)(2(1221x x x x --的
最大值为 .
11.若抛物线1)1(2----=k x k x y 与x 轴的交点为A 、B ,顶点为C ,则△ABC 的面积最小值为
12.已知实数a 、b 满足122=++b ab a ,且22b a ab t --=,则t 的最大值为 ,最小值为 .
13.如图,B 船在A 船的西偏北45°处,两船相距102km ,若A 船向西航行,B 船同时向南航行,且B 船的速度为A 船速度2倍,那么A 、B 两船的最近距离为 km .
14.销售某种商品,如果单价上涨m %,则售出的数量就将减少150
m
,为了使该商品的销售金额最大,那么m 的值应该确定为 .
15.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出;当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每 月需要维护费150元,未租出的车每辆每月需要维护费50元.
(1)当每辆车的月租金定为3600元时,能租出 辆车(直接填写答案); (2)设每辆车的月租金为x(x ≥3000)元,用含x 的代数式填空:
16.甲、乙两种商品,经营销售这两种商品所能获得的利润依次是p (万元)和q (万元),它们与投入资金x (万元)的关系有经验公式x p 51=
,x q 5
3=. 今有3万元资金投入经营甲、乙两种商品,为获得最大利润,对甲、乙两种商品的资金投入分别应为多少?能获得多大的利润? 链接
17.如图,城市A 位于一条铁路线上,而附近的一小镇B 需从A 市购进大量生活、生产用品,如果铁路运费是公路运费的一半.问该如何从B 修筑一条公路到铁路边,使从A 到B 的运费
最低?
18.设1x ,2x ,…n x 是整数,并满足: (1)21≤≤-i x ,n i ,2,1=; (2)1921=+++n x x x ; (3)9922221=+++n x x x .
求33231n x x x +++ 的最大值和最小值.
参考答案。