苏教版八班级数学全等三角形试卷
苏教版八年级数学上册 第一章《全等三角形》检测卷(含答案)
第一章检测卷总分100分 时间90分钟 一、选择题(每小题2分,共20分)1.在ABC ∆中,C B ∠=∠,与ABC ∆全等的三角形有一个角是100°,那么ABC ∆中与这 个角对应的角是( )A. B ∠B. A ∠C. C ∠D. B ∠或C ∠ 2.如图,//,EA DF AE DF =,要使AEC DFB ∆≅∆,可增加条件( )A. AB CD =B. EC BF =C. A D ∠=∠D. AB BC =3.如图,①AB AD =,②B D ∠=∠,③BAC DAC ∠=∠, ④BC DC =,以上 4个等式中 的2个等式不能作为依据来证明ABC ADC ∆≅∆的是( )A.①②B.①③C.①④D.②③ 4.如图,给出下列四个条件,,,AB DE BC EF C F ==∠=∠,从中任选三个条件能使 ABC DEF ∆≅∆的共有( )A. 1组B. 2组C. 3组D. 4组 5.如图,,CE AB DF AB ⊥⊥,垂足分别为,,//E F AC DB ,且AC BD =,那么 Rt AEC Rt BFD ∆≅∆的理由是( )A. SSSB. AASC. SASD. HL6.如图,已知CD AB ⊥于点,D BE AC ⊥于点,,E CD BE 交于点O ,且AO 平分BAC ∠, 则图中的全等三角形共有( )A. 1对B. 2对C. 3对D. 4对 7.如图,BE AC ⊥于点D ,且,AD CD BD ED ==,若54ABC ∠=︒,则E ∠= A. 25° B. 27° C. 30° D. 45°8.根据下列已知条件,能够画出唯一ABC ∆的是( )A. 5,6,70AB BC A ==∠=︒B. 5,6,13AB BC AC ===C. 50,80,8A B AB ∠=︒∠=︒=D. 40,50,90A B C ∠=︒∠=︒∠=︒ 9.如图,,OA OB A B =∠=∠,有下列3个结论: ①AOD BOC ∆≅∆,②ACE BDE ∆≅∆, ③点E 在O ∠的平分线上,其中正确的结论是( )A.①B.②C.①②D.①②③10.如图,AE AB ⊥,且,AE AB BC CD =⊥,且BC CD =,请按照图中所标注的数据 计算图中实线所围成的图形的面积S 是( )A. 30B. 50C. 60D. 80 二、填空题(每小题3分,共24分)11.如图,在ABC ∆中,D 在BC 上,且12∠=∠,请你在空白处填一个适当的条件:当 时,ABD ACD ∆≅∆.12.人工人师傅常用角尺平分一个任意角.做法如下:如图,AOB ∠是一个任意角,在边 ,OA OB 上分别取OM ON =,移动角尺,使角尺两边相同的刻度分别与,M N 重合,过 角尺顶点C 的射线OC 即是AOB ∠的平分线.这种做法的依据是 .13.如图,C 为BE 上一点,,,AB AC BE CD B ACD ==∠=∠,若40BAC ∠=︒,则 DCE ∠= .14.如图,在ABC ∆中,90C ∠=︒,点D 为边AB 上一点,且,BD BC ED AB =⊥,垂足 为D ,如果10AC =,那么AE DE += .15.如图,课间小明拿着老师的等腰三角板玩,不小心掉到两条凳子之间(凳子与地面垂直). 已知,DC a CE b ==,则两条凳子的高度之和为 .16.如图,点,C E 分别为ABD ∆的边,BD AB 上两点,且,,70AE AD CE CD D ==∠=︒, 150ECD ∠=︒,则B ∠的度数是 .17.如图,在ABC ∆中,,,B C BF CD BD CE ∠=∠==,若FDE α∠=,则A ∠= . (用含α的式子表示)18.如图,已知12AB =米,MA AB ⊥于点,6A MA =米,射线BD AB ⊥于点,B P 点从点 B 向点A 运动,每秒移动1米,点Q 从点B 向点D 运动,每秒移动2米,点,P Q 同时 从点B 出发,点P 到达点A 时点Q 停止运动,则出发 秒后,在线段MA 上存在 一点C ,使CAP ∆与PBQ ∆全等. 三、解答题(共56分)19.(6分)如图,点,,,A D C B 在同一条直线上,,,AD BC AE BF CE DF ===,求证: //AE BF .20.( 8分)如图,在Rt ABC ∆中,90,30,ACB B AD ∠=︒∠=︒平分CAB ∠. (1)求CAD ∠的度数;(2)延长AC 至E ,使CE AC =,求证: DA DE =.21.(8分)如图, ,,AB CD EF 交于点,O CD 分别交,AEBF 于点,C D ,且,AC BD = //AE BF .求证: O 是EF 的中点.22.(8分)如图,在四边形ABDC 中,90,ABD ACD BD CD ∠=∠=︒=,求证: AD BC ⊥.23.(8分)如图,点,E F 分别为线段AC 上的两个点,且DE AC ⊥于点,E BF AC ⊥于点F ,若,,AB CD AF CE BD ==交AC 于点M .求证:线段EF 与BD 互相平分.24.(8分)已知:△ABC ≌△EDC .(1)若DE ∥BC (如图1),判断△ABC 的形状并说明理由.(2)连结BE ,交AC 于F ,点H 是CE 上的点,且CH =CF ,连结DH 交BE 于K (如图2).求证:∠DKF =∠ACB25.(10分)如图①,AD 平分,180BAC B C ∠∠+∠=︒,90B ∠=︒,易知: DB DC =. (1)如图②, AD 平分,180BAC ABD ACD ∠∠+∠=︒,90ABD ∠<︒.求证: DB DC =; (2)如图③,在四边形ABDC 中,60,120,2B C DB DC ∠=︒∠=︒==,求AB AC -的 值.参考答案1-5 BAACB 6-10 DBCDB 11.答案不唯一,如B C ∠=∠. 12. SSS 13. 40° 14. 10 15. a b + 16. 40°17. 1802a ︒- 18. 419. 提示ACE BDF ∆≅∆ 20. (1)CAD ∠=30°(2) 提示ACD ECD ∆≅∆. 21. 提示COE DEF ∆≅∆. 22. 提示ABE ACE ∆≅∆. 23. 提示BFM DEM ∆≅∆. 24. (1)∵△ABC ≌△EDC ,∴∠ABC =∠EDC ,∠ACB =∠ECD , ∵DE ∥BC , ∴∠EDC =∠ACB , ∴∠ABC =∠ACB , ∴AB =AC ,即△ABC 是等腰三角形. (2)∵△ABC ≌△EDC , ∴BC =CD ,∠ACB =∠DCE , 在△BCF 和△DCH 中,∴△BCF ≌△DCH , ∴∠FBC =∠HDC , 在△FBC 和△FDK 中,∵∠FBC =∠HDC ,∠BFC =∠DFK , ∴∠DKF =∠ACB .25. (1) 提示DFC DEB ∆≅∆; (2) AB AC -=2.1、Be honest rather clever 20.7.317.31.202022:5322:53:24Jul-2022:532、By reading we enrich the mind; by conversation we polish it.二〇二〇年七月三十一日2020年7月31日星期五3、All things are difficult before they areeasy.22:537.31.202022:537.31.202022:5322:53:247.31.202022:537.31.20204、By other's faults, wise men correct theirown.7.31.20207.31.202022:5322:5322:53:2422:53:24 5、Our destiny offers not the cup of despair, but the chalice of opportunity. So let us seize it, not in fear, but in gladness. Friday, July 31, 2020July 20Friday, July 31, 20207/31/20206、I have no trouble being taken seriously as a woman and a diplomat [in Ghana].。
苏科版八年级上册数学第一章 全等三角形 含答案
苏科版八年级上册数学第一章全等三角形含答案一、单选题(共15题,共计45分)1、如图,在平面直角坐标系中,一次函数的图象与x轴、y轴分别相交于点B,点A,以线段AB为边作正方形,且点C在反比例函数的图象上,则k的值为()A.-12B.-42C.42D.-212、已知图中的两个三角形全等,则∠度数是()A.72°B.60°C.58°D.50°3、如图所示,在∠AOB的两边截取AO=BO,CO=DO,连结AD、BC交于点P,考察下列结论:①△AOD≌△BOC ②△APC≌△BPD ③PC=PD.其中正确的是()A.①②③B.只有①②C.只有②D.只有①4、如图,,,垂足分别为点,点,、相交于点O,,则图中全等三角形共有()A.2对B.3对C.4对D.5对5、如图,在矩形ABCD中,AD= AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①△ABE ≌△ADH;②HE=CE;③H是BF的中点;④AB=HF;其中正确的有()A.1个B.2个C.3个D.4个6、已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是()A.2<AD<8B.2<AD<4C.1<AD<4D.1<AD<87、已知,如图,为线段上一动点(不与点,重合),在同侧分别作等边三角形和等边三角形,与交于点,与交于点,与交于点,连结,,,以下四个结论:①;②三角形是等边三角形;③;④平分,其中正确的结论是()A.①②B.③④C.①②③D.①②④8、如图是用尺规作一个角的角平分线的示意图,其根据是构造两个三角形全等.由作法知,能判定△MOC≌△NOC的依据是()A.SASB.SSSC.ASAD.AAS9、如图,在△ABC中,∠ABC=45°,AC=5,H是高BD和CE的交点,则BH的长为()A.3B.4C.5D.610、在△ABC和△A′B′C′中,已知∠A=∠A′,AB=A′B′,则添加下列条件后不能判定两个三角形全等的是()A.AC=A'C'B.BC=B'C'C.∠B=∠B'D.∠C=∠C'11、如图,已知AB=AC,BE⊥AC于点E,CF⊥AB于点F,BE与CF交于点D,则下列结论中错误的是()A.△ABE≌△ACFB.△BDF≌△CDEC.点D是BE的中点D.点D 在∠BAC的平分线上12、如图已知,AC=AD,BC=BD,便能知道∠ABC=∠ABD.这是根据什么理由得到的,小芳想了想,马上得出了正确的答案.你猜想小芳说的依据是()A.SASB.SSAC.ASAD.SSS13、如图,已知△ABC的六个元素,则下列甲、乙、丙三个三角形中一定和△ABC全等的是( )A.甲、乙B.甲、丙C.乙、丙D.乙14、如图,已知AB=AC , BD=CD ,那么下列结论中不正确的是()A. △ ABD ≌△ ACDB. ∠ ADB=90°C. ∠ BAD是∠ B的一半D. AD平分∠ BAC15、如图,△ABC的面积为9cm2, BP平分∠ABC,AP⊥BP于P,连接PC,则△PBC的面积为()A.3cm 2B.4cm 2C.4.5cm 2D.5cm 2二、填空题(共10题,共计30分)16、如图,△ABC与△A'B'C'关于直线l对称,且∠A=105°,∠C'=30°,则∠B的度数为________17、如图,在菱形中,是的中点,连接,,将沿直线翻折,使得点落在上的点处,连接并延长交于点,则的值为________.18、一个三角形的三条边的长分别是3,5,7,另一个三角形的三条边的长分别是3,3x﹣2y,x+2y,若这两个三角形全等,则x+y的值是________.19、如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥CD交CD于点E,交CB于点F,则CF的长是________20、如图,已知∠ACD=∠BCE,AC=DC,如果要得到△ACB≌△DCE,那么还需要添加的条件是________.(填写一个即可,不得添加辅助线和字母)21、如图,△ABD≌△ACE,AD=8cm,AB=3cm,则BE=________cm22、如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2cm,BE=0.5cm,则DE=________cm.23、如图,已知,D是BC的中点,E是AD的中点,则AF:FC=________.24、如图,在中,,,平分交于点,于点.若,则的周长为________cm.25、从同一张底片上冲出来的两张五寸照片________ 全等图形,从同一张底片上冲出来的一张一寸照片和一张两寸照片________ 全等图形(填“是”或“不是”).三、解答题(共5题,共计25分)26、如图,已知AB=AD,且AC平分∠BAD,求证:BC=DC27、如图,点A,F,E,D在一条直线上,AB=CD,AF=DE,∠BAE=∠CDF.求证:BE=CF.28、如图,点B,C分别在的两边上,点D是内一点,,,垂足分别为E,F,且,求证:.29、如图,在△ABC与△FDE中,点D在AB上,点B在DF上,∠C=∠E,AC∥FE,AD=FB.求证:△ABC≌△FDE.30、如图,已知:AB=AC,BD=CD,点P是AD延长线上的一点.求证:PB=PC.参考答案一、单选题(共15题,共计45分)1、D2、D3、A5、C6、C7、D8、B9、C10、B11、C12、D13、C14、C15、C二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、。
苏科版八年级数学上册《第一章全等三角形》单元检测卷-带答案
苏科版八年级数学上册《第一章全等三角形》单元检测卷-带答案一、单选题(共10小题,满分40分)1.如图,已知//AB CF ,E 为DF 的中点.若12cm 7cm AB CF ==,,则BD 的长为( )A .5cmB .6cmC .7cmD .4.5cm2.下列条件不能确定两个三角形全等的是( )A .三条边对应相等B .两条边及其中一边所对的角对应相等C .两边及其夹角对应相等D .两个角及其中一角所对的边对应相等3.如图,在ABC 和DCB △中ACB DBC ∠=∠ ,添加一个条件,不能..证明ABC 和DCB △全等的是( )A .ABC DCB ∠=∠B .AB DC = C .AC DB =D .A D ∠=∠4.如图,将一副三角板按如图所示放置90CAB DAE ∠=∠=︒,45C ∠=︒和30E ∠=︒,则下列结论中:①13∠=∠;①若//BC AE ,则有AD 平分CAB ∠;①若322∠=∠,则4C ∠=∠;其中结论正确的选项有( )A .①①B .①①C .①①D .①①①5.下列说法中,正确的是( )A .腰相等的两个等腰直角三角形全等B .底边相等的两个等腰三角形全等C .顶角相等的两个等腰三角形全等D .含有60︒的两个直角三角形全等6.如图,已知AEC ADB △≌△,若5AB =,AD=3,则BE 的长为( )A .5B .4C .3D .27.下列几种说法:①全等三角形的对应边相等;①面积相等的两个三角形全等;①周长相等的两个三角形全等;①全等的两个三角形一定重合.其中正确的是( ).A .①①B .①①C .①①D .①①8.如图,OP 为AOB ∠的角平分线PC OA ⊥,PD OB ⊥垂足分别是C ,D ,则下列结论错误的是( )A .PC PD =B .CPO DOP ∠=∠C .CPO DPO ∠=∠D .OC OD =9.如图,在Rt ABC △中90,BAC ABC ∠=︒∠的平分线交AC 于点,D DE BC ⊥于点E ,若ABC 与CDE 的周长分别为13和3,则AB 的长为( )A .10B .8C .6D .510.如图,AB =AD ,①BAC =①DAC =25°,80D ∠=︒则①BCA 的度数为( )A .25°B .50°C .65°D .75°二、填空题(共8小题,满分32分)11.如图,已知12,34∠=∠∠=∠,则下列结论正确的个数为①AD 平分BAF ∠; ①AF 平分DAC ∠;①AE 平分DAF ∠; ①AE 平分BAC ∠.12.在Rt ABC △中,①ACB =90°,BC =2cm ,CD ①AB ,在AC 上取一点E ,使EC =BC ,过点E 作EF ①AC 交CD 的延长线于点F ,若EF =5cm ,则AE = cm .13.如图,在四边形ABCD 中,AB=AD ,180B ADC ∠+∠=︒点E ,F 分别是,BC CD 上的点,且EF BE FD =+,连接AE AF ,.延长FD 到点G ,使DG BE =,连接AG .若55EAF ∠=︒,则FAG ∠的度数为 °.14.如图,D 为等腰Rt①ABC 的斜边AB 的中点,E 为BC 边上一点,连接ED 并延长交CA 的延长线于点F,过D 作DH①EF 交AC 于G 、交BC 的延长线于H,则以下结论:①DE=DG;①BE=CG;①DF=DB;(①BH=CF.其中正确的是15.如图,为了测量池塘两端点A ,B 间的距离,小亮先在平地上取一个可以直接到达点A 和点B 的点C ,连接AC 并延长到点D ,使CD =CA ,连接BC 并延长到点E ,使CE =CB ,连接DE .现测得DE =30米,则AB 两点间的距离为 米.16.如图,在①ABC 中,①A =90°,AB =AC ,①ABC 的平分线BD 交AC 于点D ,CE①BD ,交BD 的延长线于点E ,若BD =10,则CE = .17.如图,ABC 中,AB=AC ,AD 是BC 边上的中线,ABC ∠的平分线交AD 于点E ,EF AB ⊥于点F ,若3EF =,则ED 的长度为 .18.如图,在长方形ABCD 中26AD AB ==,E 为BC 边上一点,且2CE =,连接DE ,动点P 从点B 出发,以每秒1个单位的速度沿着BC CD DA --运动,到达点A 立即停止,运动时间记为t 秒,当ABP 与DCE △全等时,t 的值为 .三、解答题(共6小题,每题8分,满分48分)19.如图已知AE BD =,BC=EF(1)添加下列条件:①F C ∠=∠;①EF BC ∥;①AC FD =;①AC FD ∥.其中能证明ABC 与DEF 全等的有______(直接填序号);(2)在(1)中选择一个进行证明.20.综合实践:如图,四边形ABCD ,CEFG 都是正方形,点E 在BC 延长线上,且CE C B <,连接AF ,点H 为AF 中点,连接HD ,HG ,试探究HD ,HG 的数量关系?同学们经过思考后,交流了自己的想法:小琪:“通过观察和度量,可以发现线段HD ,HG 存在某种数量关系;”小伟:“探究HD ,HG 的数量关系,可以延长HG ,构造与HGF △全等的三角形,经过进一步推理再证明.”(1)猜想:HD 与HG 的数量关系,并说明理由;(2)将正方形CEFG 沿CD 翻折到如图位置(点E 在BC 上),此时(1)中的结论还成立吗?请说明理由.21.如图,点B 、F 、C 、E 在直线l 上(F 、C 之间不能直接测量),点A 、D 在l 异侧,测得AC DF = AB DE ∥A D ∠=∠求证:ABC DEF ≌△△.22.在①ABC中,AB=AC,CD为AB边上的高(1) 如图1,求证:①BAC=2①BCD(2) 如图2,①ACD的平分线CE交AB于E,过E作EF①BC于F,EF与CD交于点G.若ED=m,BD =n,请用含有m、n的代数式表示①EGC的面积23.如图,在ABC中,BC=5,AD是BC边上的高,BE是AC边上的高,AD、BE相交于点O,2 3BD CD=且AE BE=.(1)线段CD的长度等于___________.(2)求证:AOE BCE△≌△.(3)动点P从点O出发,沿线段OA以每秒1个单位长度的速度向终点A运动,动点Q从点B出发沿射线BC以每秒4个单位长度的速度运动,P、Q两点同时出发,当点P到达A点时,P、Q两点同时停止运动.设点P 的运动时间为t秒,点F是直线AC上的一点且CF BO=.是否存在t值,使以点B、O、P为顶点的三角形与以点F、C、Q为顶点的三角形全等?若存在,请求出符合条件的t值;若不存在,请说明理由.24.如图,①ACF①①DBE,其中点A、B、C、D在一条直线上.(1)若BE①AD,①F=62°,求①A的大小.(2)若AD=9cm,BC=5cm,求AB的长.参考答案1.A2.B3.B4.D5.A6.D7.D8.B9.D10.D11.2个12.313.5514.①①①①15.3016.517.318.2或13/13或219.(1)①①;(2)略20.(1)猜想HD HG;(2)结论成立21.略22.(1)11;(2)12(m+n)m.23.(1)3(2)22(3)53t=或1t=时,使以点B、O、P为顶点的三角形与以点F、C、Q为顶点的三角形全等24.(1)①A=28°;(2)AB =2 cm.。
苏教版 八年级数学上册全等三角形测试题
新起点教育 八年级上学期数学测试试卷 1 / 3全等三角形一、选择题(每小题4分,共20分)1、如图1,△ABC ≌△DCB ,A 、B 的对应顶点分别为点D 、C ,如果AB =7cm ,BC =12cm ,AC =9cm ,那么BD 的长是( )。
A 、7cmB 、9cmC 、12cmD 、无法确定 2、已知,如图2,AC=BC ,AD=BD ,下列结论,不.正确的是( )。
A 、CO=DO B 、AO=BO C 、AB ⊥CD D 、△ACO ≌△BCO 3、能使两个直角三角形全等的条件( )A 、两直角边对应相等B 、一锐角对应相等C 、两锐角对应相等D 、 斜边相等 4、在⊿ABC 和⊿A ′B ′C ′中,AB=A ′B ′,∠A=∠A ′,若证⊿ABC ≌⊿A ′B ′C ′还要从下列条件中补选一个,错误的选法是( )。
A. ∠B=∠B ′B. ∠C=∠C ′C. BC=B ′C ′D. AC=A ′C ′ 5、如图3,AB=CD ,AD=BC ,则图中全等三角形共有( )。
A 、 7对B 、 6对C 、5对D 、 4对二、填空题(每小题4分,共20分)6、如图4,已知△ABC ≌△ADE ,∠BAE=120°,∠BAD=40°,则∠DAC= .7、如图5,已知AO=OB ,若增加一个条件 ,则有ΔAOC ≌ΔBOC 。
8、如图6,△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E ,且AB =6cm ,则△DEB 的周长为 。
9、如图7,在△ABC 中,AD=DE ,AB=BE ,∠A=92°,则∠CED= . 10、在数学活动课上,小明提出这样一个问题:∠B=∠C=900,E 是BC 的中点,DE 平分∠ADC ,∠CED=350,如图8,则∠EAB 是 .三、解答题(一)(每小题7788分,共30分)图2O DC B A O DC B A 图1 图3CB AEDDCBAEAB CDE图4 图6 图5 图7 图8新起点教育 八年级上学期数学测试试卷 2 / 311、如图,AB =AD ,∠BAD =∠C AE ,AC=AE ,求证:BC=DE 12、如图,AF=DB ,BC=EF ,AC=DE ,求证:BC ∥EF 。
苏科版八年级数学上册《第一章 全等三角形》单元检测卷(带答案)
苏科版八年级数学上册《第一章全等三角形》单元检测卷(带答案)一、选择题1.已知图中的两个三角形全等,则∠α的度数为A. 1050B. 750C. 600D. 4502.根据下列已知条件,能唯一画出△ABC的是( )A. AB=3,BC=4,CA=8B. ∠A=60°C. AB=4,BC=3,∠A=30°D. ∠C=90°3.小明同学有一块玻璃的三角板,不小心掉到地上碎成了三块,现要去文具店买一块同样的三角板,最省事的是( )A. 带②去B. 带①去C. 带③去D. 三块都带去4.如图,已知AB=AC,点D、E分别在线段AB、AC上,BE与CD相交于点O,添加以下哪个条件仍不能判定△ABE≌△ACD( )A. ∠B=∠CB. AE=ADC. BD=CED. BE=CD5.工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M、N重合,过角尺顶点C作射线OC,由此作法便可得△NOC≌△MOC其依据是( )A. SSSB. SASC. ASAD. AAS6.如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,BC=EF,∠B=∠E;③∠B=∠E,∠C=∠F,BC=EF;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有A. 1组B. 2组C. 3组D. 4组7.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是( )A. 50B. 62C. 65D. 688.尺规作图作∠AOB的平分线方法如下:如图,以点O为圆心,任意长为半径画弧分别交OA,OB于点C,D再CD长为半径画弧,两弧交于点P,作射线OP,由作法得△OCP≌△ODP的根分别以点C,D为圆心,以大于12据是( )A. SASB. ASAC. AASD. SSS9.如图,由四个全等的直角三角形拼成的图形,设CE=a,HG=b则斜边BD的长是( )A. √ a2−b22B. √a2+b22C. a+bD. a−b二、填空题10.如图,已知AB=DE,∠B=∠E,请你添加一个适当的条件(填写一个即可),使得△ABC≌△DEC.11.如图△ABC≌△ADE,若∠B=70°,∠C=30°,∠DAC=35°,则∠EAC的度数为______.12.如图,已知∠ABC=∠DCB,添加下列条件中的一个:①∠A=∠D②AC=DB③AB=DC其中不能确定△ABC≌△DCB的是_____(只填序号).13.如图,在△ABC中D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C是____度.14.如图,课间小明拿着老师的等腰三角板玩,不小心掉到两条凳子之间(凳子与地面垂直).已知DC=3,CE=4.则两条凳子的高度之和为___________.15.如图,两根旗杆间相距20米,某人从点B沿BA走向点A,一段时间后他到达点M,此时他分别仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM.已知旗杆BD的高为12米,该人的运动速度为2米/秒,则这个人运动到点M所用时间是秒.三、解答题16.已知:如图,E是BC上一点AB=EC,AB//CD,BC=CD求证:AC=ED.17.如图AB=AC,AD=AE,∠BAC=∠DAE.(1)求证:△ABD≌△ACE;(2)若∠1=25°,∠2=30°,求∠3的度数.18.如图,已知∠A=∠D=90°,E,F在线段BC上,DE与AF交于点O,且AB=CD,BE=CF求证:△ABF≌△DCE.19.如图,在△ABC中AC=BC,直线l经过顶点C,过A,B两点分别作l的垂线AE,BF,E,F为垂足AE=CF,求证:∠ACB=90°.20.如图(1)AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm点P在线段AB上以1cm/s的速度由点A向点B 运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.答案和解析1.【答案】B【解析】【分析】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.根据全等三角形对应角相等可得∠D=∠A=60°,再根据三角形内角和定理可得答案.【解答】解:∵△ABC≌△DEF∴∠D=∠A=60°∴∠α=180°−60°−45°=75°故选:B.2.【答案】B【解析】解:A、错误∵3+4<8,不能构成三角形;B、正确.已知两角夹边,三角形就确定了;C、错误.边边角不能确定三角形;D、错误.一角一边不能确定三角形.故选:B.分析:根据三角形的三边关系以及确定三角形的条件有SAS、AAS、ASA、SSS、HL,即可判断.本题考查全等三角形的判定和性质、三角形的三边关系等知识,解题的关键是灵活运用所学知识解决问题,属于基础题.3.【答案】C【解析】解:带③去,符合“角边角”可以配一块同样大小的三角板.故选:C.根据全等三角形的判定方法ASA即可得出结果.本题考查了全等三角形判定的应用,熟练掌握三角形全等的判定方法是解决问题的关键.4.【答案】D【解析】解:A、当∠B=∠C时,利用ASA定理可以判定△ABE≌△ACD;B、当AE=AD时,利用SAS定理可以判定△ABE≌△ACD;C、当BD=CE时,得到AD=AE,利用SAS定理可以判定△ABE≌△ACD;D、当BE=CD时,不能判定△ABE≌△ACD;故选:D.根据全等三角形的判定定理判断.本题考查的是全等三角形的判定,掌握全等三角形的判定定理是解题的关键.5.【答案】A【解析】【分析】此题主要考查学生对全等三角形判定定理的理解和掌握此题难度不大属于基础题.利用全等三角形判定定理AAS SAS ASA SSS对△MOC和△NOC进行分析即可作出正确选择.【解答】解:由题意可知OM=ON在△MOC和△NOC中{OM=ON CM=CN OC=OC,∴△MOC≌△NOC(SSS).故选A.6.【答案】C【解析】【分析】本题考查了全等三角形的判定熟记全等三角形的判定是解题关键.根据全等三角形判定的条件可得答案.【解答】解:①AB=DE BC=EF AC=DF;②AB=DE BC=EF∠B=∠E;③∠B=∠E∠C=∠F BC=EF;故选C.7.【答案】A【解析】【分析】本题考查的是全等三角形的判定的相关知识由AE⊥AB EF⊥FH BG⊥AG可以得到∠EAF=∠ABG而AE=AB∠EFA=∠AGB由此可以证明△EFA≌△ABG所以AF=BG AG=EF;同理证得△BGC≌△DHC GC=DH CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16然后利用面积的割补法和面积公式即可求出图形的面积.【解答】解:∵AE⊥AB且AE=AB EF⊥FH∠EAF+∠BAG=90°∴AE=AB∠EFA=∠AGB∠EAF=∠ABG⇒△EFA≌△ABG∴AF=BG AG=EF.同理证得△BGC≌△DHC得GC=DH CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16故S=12(6+4)×16−3×4−6×3=50.故选A.8.【答案】D【解析】【分析】本题考查三角形全等的判定方法判定两个三角形全等的一般方法有:SSS SAS ASA AAS HL.注意:AAA SSA不能判定两个三角形全等判定两个三角形全等时必须有边的参与若有两边一角对应相等时角必须是两边的夹角.认真阅读作法从角平分线的作法得出△OCP与△ODP的两边分别相等加上公共边相等于是两个三角形符合SSS判定方法要求的条件答案可得.【解答】解:∵以O为圆心任意长为半径画弧交OA OB于C D即OC=OD;以点C D为圆心以大于12CD长为半径画弧两弧交于点P即CP=DP;∴在△OCP和△ODP中{C=ODOP=OPCP=DP,∴△OCP≌△ODP(SSS).故选D.9.【答案】B【解析】【分析】本题主要考查正方形的面积公式以及全等三角形的判定和性质深入理解题意是解决问题的关键.过A作AN⊥CB交CB的延长线于N作AM⊥EF交EF的延长线于M过D作DR⊥BH交BH于R延长FG 交DR 于Q 则四边形CEMN 是正方形 四边形QGHR 是正方形 四边形ABDF 是正方形 利用这三个正方形之间的面积关系即可求出BD 2 进一步可求BD 的长.【解答】解:如图所示 过A 作AN ⊥CB 交CB 的延长线于N作AM ⊥EF 交EF 的延长线于M 过D 作DR ⊥BH 交BH 于R 延长FG 交DR 于Q∴△ABH △BCD △DEF △AGF 是四个全等的直角三角形∴四边形CEMN 是正方形 四边形QGHR 是正方形 四边形ABDF 是正方形∵CE =a HG =b∴正方形CEMN 的面积为a 2 正方形QGHR 的面积为b 2 正方形ABDF 的面积为BD 2故S △ABH +S △BDR +S △DFQ +S AGF =BD 2−b 2又a 2−b 2=2(S △ABH +S △BDR +S △DFQ +S AGF )即a 2−b 2=2(BD 2−b 2)得BD 2=a 2+b 22∴BD =√ a 2+b 22. 故选B10.【答案】BC =EC 或∠ACB =∠DCE 或∠A =∠D(本题答案不唯一)【解析】【分析】此题主要考查学生对全等三角形的判定这一知识点的理解和掌握 此题难度不大 属于基础题.本题要判定△ABC≌△DEC 已知AB =DE ∠B =∠E 具备了一组对边和一组对角对应相等 利用SAS 或者AAS 或ASA 即可判定两三角形全等了.【解答】解:①添加条件是:BC=EC在△ABC与△DEC中∴△ABC≌△DEC(SAS).故答案为BC=EC.②添加条件是:∠ACB=∠DCE在△ABC与△DEC中∴△ABC≌△DEC(AAS).故答案为∠ACB=∠DCE.③添加条件是:∠A=∠D在△ABC与△DEC中∴△ABC≌△DEC(ASA).故答案为∠A=∠D..故答案为:BC=ECE或∠ACB=∠DCE或∠A=∠D(本题答案不唯一三个答案任选一个) 11.【答案】45°【解析】解:∵∠B=70°∴∠BAC=180°−∠B−∠C=180°−70°−30°=80°∵△ABC≌△ADE∴∠EAD=∠BAC=80°∴∠EAC=∠EAD−∠DAC=80°−35°=45°故答案为:45°由全等三角形的性质可得到∠BAC=∠EAD在△ABC中可求得∠BAC则可求得∠EAC.本题主要考查全等三角形的性质掌握全等三角形的对应边相等对应角相等是解题的关键.12.【答案】②【解析】解:∵已知∠ABC=∠DCB且BC=CB∴若添加①∠A=∠D则可由AAS判定△ABC≌△DCB;若添加②AC=DB则属于边边角的顺序不能判定△ABC≌△DCB;若添加③AB=DC则属于边角边的顺序可以判定△ABC≌△DCB.故答案为:②.一般三角形全等的判定方法有SSS SAS AAS ASA HL据此可逐个对比求解.本题考查全等三角形的几种基本判定方法只要判定方法掌握得牢固此题不难判断.13.【答案】30【解析】【分析】本题主要考查全等三角形的性质以及三角形内角和定理发现并利用∠ADB=∠EDB=∠EDC=60°∠DEC=∠DEB=∠A=90°是正确解决本题的关键.因为三个三角形为全等三角形则对应角相等从而得到∠ADB=∠EDB=∠EDC∠DEC=∠DEB=∠A再利用三角形内角和定理得到∠ADB=∠EDB=∠EDC=60°∠DEC=∠DEB=∠A=90°最后在△DEC中利用三角形内角和定理求得∠C的度数.【解答】解:∵△ADB≌△EDB≌△EDC∴∠ADB=∠EDB=∠EDC又∵∠ADB+∠EDB+∠EDC=180°∴∠ADB=∠EDB=∠EDC=60°在△DEC中∴∠C=30°.故答案为30.14.【答案】7【解析】【分析】此题主要考查了全等三角形的判定与性质得出△ACD≌△CBE是解题关键.利用等腰三角形的性质结合全等三角形的判定方法得出即可.【解答】解:由题意可得:∠ACD+∠BCE=90°则∠DAC=∠ECB在△ACD和△CBE中{∠CDA=∠BEC ∠DAC=∠ECB AC=CB,∴△ACD≌△CBE(AAS)故DC=BE=3则两条凳子的高度之和为:3+4=7.故答案为7.15.【答案】4【解析】【分析】本题考查了全等三角形的应用;解答本题的关键是利用互余关系找三角形全等的条件 对应角相等 并巧妙地借助两个三角形全等 寻找所求线段与已知线段之间的等量关系.本题的关键是求得Rt △ACM≌Rt △BMD .根据题意证明∠C =∠DMB 利用AAS 证明△ACM≌△BMD 根据全等三角形的性质得到BD =AM =12米 再利用时间=路程÷速度即可.【解答】解:∵∠CMD =90°∴∠CMA +∠DMB =90°又∵∠CAM =90°∴∠CMA +∠C =90°∴∠C =∠DMB .在Rt △ACM 和Rt △BMD 中{∠A =∠B ∠C =∠DMB CM =MD∴Rt △ACM≌Rt △BMD(AAS)∴BD =AM =12米∴BM =20−12=8(米)∵该人的运动速度为2m/s∴他到达点M 时 运动时间为8÷2=4(s).故答案为4.16.【答案】证明:因为AB//CD所以∠B =∠DCE .在△ABC 和△ECD 中{AB =EC ∠B =∠DCE BC =CD所以△ABC ≌△ECD(SAS).所以AC =ED .【解析】本题考查了三角形全等的判定与性质平行线的性质比较简单求出∠B=∠DCE是证明三角形全等的关键.根据两直线平行内错角相等可得∠B=∠DCE然后利用“边角边”证明△ABC和△ECD全等再根据全等三角形对应边相等即可得证.17.【答案】(1)证明:∵∠DAE=∠BAC∴∠DAE−∠DAC=∠BAC−∠DAC∴∠1=∠CAE在△ABD和△ACE中∴△ABD≌△ACE(SAS);(2)解:∵△ABD≌△ACE∴∠DBA=∠2∵∠2=30°∴∠DBA=30°∵∠1=25°∴∠3=∠1+∠DBA=25°+30°=55°.【解析】本题考查的是全等三角形的判定和性质以及三角形的外角性质掌握全等三角形的判定方法和适当运用三角形的外角定理是关键.(1)由∠BAC=∠DAE可得∠1=∠CAE利用SAS可证明结论;(2)由△ABD≌△ACE得到由∠DBA=∠2最后利用三角形的外角的性质即可解答.18.【答案】证明:∵BE=CF∴BE+EF=CF+EF即BF=CE∵∠A=∠D=90°∴△ABF与△DCE都为直角三角形在Rt△ABF和Rt△DCE中{BF=CE,AB=DC∴Rt△ABF≌Rt△DCE(HL).【解析】此题考查了直角三角形全等的判定解题关键是由BE=CF通过等量代换得到BF=CE.由BE=CF通过等量代换得到BF=CE结合AB=CD根据直角三角形全等的判定的方法即可证明.19.【答案】证明:如图在Rt △ACE 和Rt △CBF 中{AC =BC AE =CF∴Rt △ACE≌Rt △CBF(HL)∴∠EAC =∠BCF∵∠EAC +∠ACE =90°∴∠ACE +∠BCF =90°∴∠ACB =180°−90°=90°.【解析】先利用HL 定理证明△ACE 和△CBF 全等 再根据全等三角形对应角相等可以得到∠EAC =∠BCF 因为∠EAC +ACE =90° 所以∠ACE +∠BCF =90° 根据平角定义可得∠ACB =90°.本题主要考查全等三角形的判定 全等三角形对应角相等的性质 熟练掌握性质是解题的关键. 20.【答案】解:(1)当t =1时 AP =BQ =1又∵∠A =∠B =90°在△ACP 和△BPQ 中AP =BQ ∠A =∠B∴△ACP≌△BPQ(SAS).∴∠ACP =∠BPQ∴∠APC +∠BPQ =∠APC +∠ACP =90°.∴∠CPQ =90°即线段PC 与线段PQ 垂直.(2)①若△ACP≌△BPQ则AC =BP{3=4−t t =xt解得{t =1x =1②若△ACP≌△BQP则AC =BQ{3=xt t =4−t解得{t =2x =32综上所述 存在{t=1x=1或{t=2 x=32使得△ACP与△BPQ全等.【解析】本题主要考查了全等三角形的判定与性质注意分类讨论思想的渗透.(1)利用SAS证得△ACP≌△BPQ得出∠ACP=∠BPQ进一步得出∠APC+∠BPQ=∠APC+∠ACP= 90°得出结论即可;(2)由△ACP≌△BPQ分两种情况:①AC=BP AP=BQ②AC=BQ AP=BP建立方程组求得答案即可.。
苏科版数学八年级上册第一章《全等三角形》单元卷(含答案解析)
苏科版数学八年级上第一章《全等三角形》单元卷题号一二三四五总分第分一.选择题(共9小题)1.如图,△ACB ≌△A ′CB ′,∠ACB =70°,∠ACB ′=100°,则∠BCA ′的度数为()A .30°B .35°C .40°D .50°2.如图,△ABC ≌△ADC ,∠ABC =118°,∠DAC =40°,则∠BCD 的度数为()A .40°B .44°C .50°D .84°3.如果△ABC ≌△DEF ,△DEF 的周长为12,AB =3,BC =4,则AC 的长为()A .2B .3C .4D.54.如图,已知△ABC ≌△DEF .若AC =22,CF =4,则CD 的长是()A .22B .18C .16D .45.如图,AB =AC ,D ,E 分别是AB ,AC 上的点,下列条件不能判断△ABE ≌△ACD 的是()A .∠B =∠CB .BE =CDC .AD =AED .BD =CE6.如图,在△ABC 和△DEF 中,AB =DE ,AC =DF ,BE =CF,且BC =5,∠A =70°,∠B =75°,EC =2,则下列结论中错误的是()A .BE =3B .∠F =35°C .DF =5D .AB ∥DE7.如图,在△ABC 中,∠C =90°,AD平分∠CAB ,BC =12cm ,BD =8cm ,那么点D 到直线AB 的距离是()A .2cmB .4cmC .6cmD .10cm8.如图,点D 为∠AOB 的平分线OC 上的一点,DE ⊥AO 于点E .若DE =4,则D 到OB 的距离为()A .5B .4C .3.5D .39.如图,AB ⊥CD ,且AB =CD ,E 、F 是AD 上两点,CE ⊥AD ,BF ⊥AD .若CE =8,BF =6,AD =10,则EF 的长为()A .4B .72C .3D .52二.填空题(共10小题)10.已知,△ABC ≌△DEF ,△ABC 的周长为64cm ,AB =20cm ,AC =18cm ,则DE =,EF=.11.如图,△ABC ≌△DBE ,A 、D 、C 在一条直线上,且∠A =60°,∠C =35°,则∠DBC =°.12.如图,△ABC ≌△ADE ,线段BC 的延长线过点E ,与线段AD 交于点F ,∠ACB =∠AED =108°,∠CAD =12°,∠B =48°,则∠DEF 的度数.13.一个三角形的三边为6、10、x ,另一个三角形的三边为y 、6、12,如果这两个三角形全等,则x +y =.14.如图,△ABC 中,∠C =90°,AC =8,BC =4,AX ⊥AC ,点P 、Q 分别在边AC 和射线AX 上运动,若△ABC 与△PQA 全等,则AP 的长是.15.如图,AB ⊥CF ,垂足为B ,AB ∥DE ,点E 在CF 上,CE =FB ,AB =DE ,依据以上条件可以判定△ABC ≌△DEF ,这种判定三角形全等的方法,可以简写为.16.如图所示的网格是正方形网格,点A ,B ,C ,D 均落在格点上,则∠BAC +∠ACD =°.17.在Rt △ABC 中,∠ACB =90°,AD 平分∠BAC 与BC 相交于点D ,若BD =2,CD =1,则AC 的长是.18.如图,BD 平分∠ABC ,DE ⊥AB 于E ,DF ⊥BC 于F ,AB =6,BC =8,若S △ABC =21,则DE =.19.如图,正方形ABCD 中,点E 是AD 边的中点,BD ,CE 交于点H ,BE 、AH 交于点G ,则下列结论:①AG ⊥BE ;②BG =4GE ;③S △BHE =S △CHD ;④∠AHB =∠EHD .其中正确的答案是;三.解答题(共9小题)20.已知:如图,△ABC ≌△A ′B ′C ,∠A :∠BCA :∠ABC =3:10:5,求∠A ′,∠B ′BC的度数.21.如图,已知△ABC ≌△DEF ,B 、E 、C 、F 在同一直线上.(1)若∠BED =130°,∠D =70°,求∠ACB 的度数;(2)若2BE =EC ,EC =6,求BF 的长.22.如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出边FG的对应边与∠EGF的对应角;(2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MN和HG的长度.23.已知△ABC中,∠B=50°,∠C=70°,AD是△ABC的角平分线,DE⊥AB于E点.(1)求∠EDA的度数;(2)AB=10,AC=8,DE=3,求S△ABC.24.如图,点E是△ABC的BC边上的一点,∠AEC=∠AED,ED=EC,∠D=∠B,求证:AB=AC.25.已知:△ABC≌△EDC.(1)若DE∥BC(如图1),判断△ABC的形状并说明理由.(2)连结BE,交AC于F,点H是CE上的点,且CH=CF,连结DH交BE于K(如图2).求证:∠DKF=∠ACB26.△ABC中,AB=AC,∠A=40°,D、E分别是AB,AC上的不动点.且BD+CE=BC,点P是BC上的一动点.(1)当PC=CE时(如图1),求∠DPE的度数;(2)若PC=BD时(如图2),求∠DPE的度数还会与(1)的结果相同吗?若相同,请写出求解过程;若不相同,请说明理由.27.如图,在Rt△ABC中,∠ABC=90°点D在BC的延长线上,且BD=AB.过点B作BE⊥AC,与BD的垂线DE交于点E.(1)求证:△ABC≌△BDE;(2)请找出线段AB、DE、CD之间的数量关系,并说明理由.一.选择题(共9小题)参考答案与试题解析【点评】本题主要考查了全等三角形的性质,解题时注意:全等三角形的对应角相等.3.如果△ABC≌△DEF,△DEF的周长为12,AB=3,BC=4,则AC的长为()1.如图,△ACB≌△A′CB′,∠ACB=70°,∠ACB′=100°,则∠BCA′的度数为()A.30°B.35°C.40°D.50°【分析】根据全等三角形的性质和角的和差即可得到结论.【解答】解:∵△ACB≌△A′CB′,∴∠A′CB′=∠ACB=70°,∵∠ACB′=100°,∴∠BCB′=∠ACB′﹣ACB=30°,∴∠BCA′=∠A′CB′﹣∠BCB′=40°,故选:C.【点评】本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.2.如图,△ABC≌△ADC,∠ABC=118°,∠DAC=40°,则∠BCD的度数为()A.40°B.44°C.50°D.84°【分析】根据全等的性质得出∠DAC=∠BAC=40°,∠B=∠D=118°,根据四边形内角和定理求出∠BCD即可.【解答】解:∵△ABC≌△ADC,∴∠ABC=118°=∠D,∠DAC=40°=∠BAC,∴∠BAD=80°,∴四边形ABCD中,∠BCD=360°﹣2×118°﹣80°=44°,故选:B.A.2B.3C.4D.5【分析】根据全等三角形的周长相等求出△ABC的周长,根据三角形的周长公式计算即可.【解答】解:∵△ABC≌△DEF,△DEF的周长为12,∴△ABC的周长为12,又AB=3,BC=4,∴AC=5,故选:D.【点评】本题考查的是全等三角形的性质,掌握全等三角形的周长相等,面积相等是解题的关键.4.如图,已知△ABC≌△DEF.若AC=22,CF=4,则CD的长是()A.22B.18C.16D.4【分析】根据全等三角形的性质得AC=DF,则依据CF=4可得CD的长.【解答】解:△ABC≌△DEF,∠A与∠D是对应角,AB与DE是对应边,∴AC=DF=22,又∵CF=4,∴CD=DF﹣CF=22﹣4=18,故选:B.【点评】本题考查了全等三角形的性质:全等三角形的对应边相等;全等三角形的性质是证明线段和角相等的理论依据,应用时要会找对应角和对应边.5.如图,AB=AC,D,E分别是AB,AC上的点,下列条件不能判断△ABE≌△ACD的是()A.∠B=∠C B.BE=CD C.AD=AE D.BD=CE【分析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.【解答】解:∵AB=AC,∠A为公共角,A、如添∠B=∠C,利用ASA即可证明△ABE≌△ACD;B、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件;C、如添加AD=AE,利用SAS即可证明△ABE≌△ACD;D、如添BD=CE,可证明AD=AE,利用SAS即可证明△ABE≌△ACD;故选:B.【点评】此题主要考查学生对全等三角形判定定理的理解和掌握,此类添加条件题,要求学生应熟练掌握全等三角形的判定定理:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.如图,在△ABC和△DEF中,AB=DE,AC=DF,BE=CF,且BC=5,∠A=70°,∠B=75°,EC=2,则下列结论中错误的是()A.BE=3B.∠F=35°C.DF=5D.AB∥DE【分析】由SSS证明△ABC≌△DEF得出∠B=∠DEF,∠ACB=∠F,BC=EF=5,证出AB∥DE,得出BE=BC﹣EC=3,由三角形内角和定理得出∠F=∠ACB=35°,即可得出答案.【解答】解:∵BE=CF,∴BE+EC=CF+EC,即BC=EF.在△ABC和△DEF 中,,∴△ABC≌△DEF(SSS)∴∠B=∠DEF,∠ACB=∠F,BC=EF=5,∴AB∥DE,∵EC=2,∴BE=BC﹣EC=3,∵∠ACB=180°﹣∠A﹣∠B=180°﹣70°﹣75°=35°,∴∠F=35°,即选项A、B、D正确,选项C错误;故选:C.【点评】本题考查了全等三角形的判定和性质、平行线的判定、三角形内角和定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.7.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=12cm,BD=8cm,那么点D到直线AB的距离是()A.2cm B.4cm C.6cm D.10cm【分析】先求出CD的长,过点D作DE⊥AB于点E,根据角平分线上的点到角的两边的距离相等的性质可得DE=CD,从而得解.【解答】解:如图,过点D作DE⊥AB于点E,∵BC=12cm,BD=8cm,∴CD=BC﹣BD=12﹣8=4cm,∵∠C=90°,AD平分∠CAB,∴DE=CD=4cm,即点D到直线AB的距离是4cm.故选:B.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,是基础题,熟记性质是解题的关键.8.如图,点D为∠AOB的平分线OC上的一点,DE⊥AO于点E.若DE=4,则D到OB的距离为()A.5B.4C.3.5D.3【分析】如图,作DH⊥OB于H.利用角平分线的性质定理即可解决问题.【解答】解:如图,作DH⊥OB于H.∵OC平分∠AOB,DE⊥OA,DH⊥OB,∴DE=DH=4,故选:B.【点评】本题考查角平分线的性质定理,解题的关键是学会添加常用辅助线,则有中考常考题型.9.如图,AB⊥CD,且AB=CD,E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=8,BF=6,AD=10,则EF的长为()A.4B.72C.3D.52【分析】由题意可证△ABF≌△CDF,可得BF=DE=6,CE=AF=8,可求EF的长.【解答】证明:∵AB⊥CD,CE⊥AD,∴∠C+∠D=90°,∠A+∠D=90°,∴∠A=∠C,且AB=CD,∠AFB=∠CED,∴△ABF≌△CDF(AAS)∴BF=DE=6,CE=AF=8,∵AE=AD﹣DE=10﹣6=4∴EF=AF﹣AE=8﹣4=4,故选:A.【点评】本题考查了全等三角形的判定和性质,熟练运用全等三角形的判定是本题的关键.二.填空题(共10小题)10.已知,△ABC≌△DEF,△ABC的周长为64cm,AB=20cm,AC=18cm,则DE=20cm,EF=26cm.【分析】由三角形的周长可求得BC,再由全等三角形的性质可求得DE、EF.【解答】解:∵△ABC的周长为64cm,AB=20cm,AC=18cm,∴BC=64﹣20﹣18=26cm,∵△ABC≌△DEF,∴DE=AB=20cm,EF=BC=26cm,故答案为:20cm,26cm.【点评】本题主要考查全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.11.如图,△ABC≌△DBE,A、D、C在一条直线上,且∠A=60°,∠C=35°,则∠DBC=25°.【分析】由△ABC≌△DBE,推出AB=BD,推出∠A=∠BDA=60°,再根据∠BDA=∠C+∠DBC,求出∠DBC 即可.【解答】解:∵△ABC≌△DBE,∴AB=BD,∴∠A=∠BDA=60°,∵∠BDA=∠C+∠DBC,∠C=35°,∴∠DBC=60°﹣35°=25°,故答案为25.【点评】本题考查全等三角形的性质,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12.如图,△ABC≌△ADE,线段BC的延长线过点E,与线段AD交于点F,∠ACB=∠AED=108°,∠CAD=12°,∠B=48°,则∠DEF的度数36°.【分析】由△ACB的内角和定理求得∠CAB=24°;然后由全等三角形的对应角相等得到∠EAD=∠CAB=24°.则结合已知条件易求∠EAB的度数;最后利用△AEB的内角和是180度和图形来求∠DEF的度数.【解答】解:∵∠ACB=108°,∠B=48°,∴∠CAB=180°﹣∠B﹣∠ACB=180°﹣48°﹣108°=24°.又∵△ABC≌△ADE,∴∠EAD=∠CAB=24°.又∵∠EAB=∠EAD+∠CAD+∠CAB,∠CAD=12°,∴∠EAB=24°+12°+24°=60°,∴∠AEB=180°﹣∠EAB﹣∠B=180°﹣60°﹣48°=72°,∴∠DEF=∠AED﹣∠AEB=108°﹣72°=36°.故答案为:36°【点评】本题考查全等三角形的性质.全等三角形的性质是证明线段和角相等的理论依据,应用时要会找对应角和对应边.13.一个三角形的三边为6、10、x,另一个三角形的三边为y、6、12,如果这两个三角形全等,则x+y =22.【分析】根据全等三角形对应边相等求出x、y,然后相加计算即可得解.【解答】解:∵两个三角形全等,∴x=12,y=10,∴x+y=10+12=22.故答案为:22【点评】本题考查全等三角形的性质,熟记全等三角形对应边相等是解题的关键.14.如图,△ABC中,∠C=90°,AC=8,BC=4,AX⊥AC,点P、Q分别在边AC和射线AX上运动,若△ABC与△PQA全等,则AP的长是4或8.【分析】根据全等三角形的性质即可得到结论.【解答】解:∵△ABC与△PQA全等,∴AP=BC=4或AP=AC=8,故答案为:4或8.【点评】本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.15.如图,AB⊥CF,垂足为B,AB∥DE,点E在CF上,CE=FB,AB=DE,依据以上条件可以判定△ABC≌△DEF,这种判定三角形全等的方法,可以简写为SAS.【分析】依据AB⊥CF,AB∥DE,可得△ABC和△DEF都是直角三角形,由CE=FB,可得BC=EF,所以可用SAS判定△ABC≌△DEF,于是答案可得.【解答】解:∵AB⊥CF,AB∥DE,∴△ABC和△DEF都是直角三角形.∵CE=FB,CE为公共部分,∴CB=EF,又∵AB=DE,∴△ABC≌△DEF(SAS).故答案为:SAS.【点评】本题考查的是直角三角形全等的判定定理及平行线的性质;两边及其夹角分别对应相等的两个三角形全等.16.如图所示的网格是正方形网格,点A,B,C,D均落在格点上,则∠BAC+∠ACD=90°.【分析】证明△DCE≌△ABD(SAS),得∠CDE=∠DAB,根据同角的余角相等和三角形的内角和可得结论.【解答】解:在△DCE和△ABD中,∵,∴△DCE≌△ABD(SAS),∴∠CDE=∠DAB,∵∠CDE +∠ADC =∠ADC +∠DAB =90°,∴∠AFD =90°,∴∠BAC +∠ACD =90°,故答案为:90.【点评】本题网格型问题,考查了三角形全等的性质和判定及直角三角形各角的关系,本题构建全等三角形是关键.17.在Rt △ABC 中,∠ACB =90°,AD 平分∠BAC 与BC 相交于点D ,若BD =2,CD =1,则AC 的长是3【分析】作DE ⊥AB 于E ,根据角平分线的性质得到DE =DC ,根据勾股定理求出BE ,再根据勾股定理计算即可.【解答】解:作DE ⊥AB 于E ,∵AD 是∠BAC 的平分线,∠ACB =90°,DE ⊥AB ,∴DE =DC =1,在Rt △ACD 和Rt △AED 中,AD ADCD DE =⎧⎨=⎩,∴Rt △ACD ≌Rt △AED (HL ),∴AC =AE ,由勾股定理得BE =22BD DE -3设AC =AE =x ,由勾股定理得x 2+32=(x 32,解得x =3.∴AC 3故3.【点评】本题考查的是勾股定理以及角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.18.如图,BD 平分∠ABC ,DE ⊥AB 于E ,DF ⊥BC 于F ,AB =6,BC =8,若S △ABC =21,则DE =3.【分析】根据角平分线上的点到角的两边的距离相等可得DE =DF ,然后根据三角形的面积公式列式计算即可得解.【解答】解:∵BD 平分∠ABC ,DE ⊥AB ,DF ⊥BC ,∴DE =DF ,∵AB =6,BC =8,∴S △ABC =12AB •DE +12BC •DF =12×6DE +12×8DE =21,即3DE +4DE =21,解得DE =3.故答案为:3.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,三角形的面积,是基础题,熟记性质是解题的关键.19.如图,正方形ABCD 中,点E 是AD 边的中点,BD ,CE 交于点H ,BE 、AH 交于点G ,则下列结论:①AG ⊥BE ;②BG =4GE ;③S △BHE =S △CHD ;④∠AHB =∠EHD .其中正确的答案是①②③④;【分析】首先根据正方形的性质证得△BAE≌△CDE,推出∠ABE=∠DCE,再证△ADH≌△CDH,求得∠HAD=∠HCD,推出∠ABE=∠HAD;求出∠ABE+∠BAG=90°;最后在△AGE中根据三角形的内角和是180°求得∠AGE=90°即可得到①正确.根据tan∠ABE=tan∠EAG=12,得到AG=12BG,GE=12AG,于是得到BG=4EG,故②正确;根据AD∥BC,求出S△BDE=S△CDE,推出S△BDE﹣S△DEH=S△CDE﹣S△DEH,即;S△BHE=S△CHD,故③正确;由∠AHD=∠CHD,得到邻补角和对顶角相等得到∠AHB=∠EHD,故④正确;【解答】证明:∵四边形ABCD是正方形,E是AD边上的中点,∴AE=DE,AB=CD,∠BAD=∠CDA=90°,∴△BAE≌△CDE(SAS),∴∠ABE=∠DCE,∵四边形ABCD是正方形,∴AD=DC,∠ADB=∠CDB=45°,DH=DH,∴△ADH≌△CDH(SAS),∴∠HAD=∠HCD,∵∠ABE=∠DCE∴∠ABE=∠HAD,∵∠BAD=∠BAH+∠DAH=90°,∴∠ABE+∠BAH=90°,∴∠AGB=180°﹣90°=90°,∴AG⊥BE,故①正确;∵tan∠ABE=tan∠EAG=12,∴AG=12BG,GE=12AG,∴BG=4EG,故②正确;∵AD∥BC,∴S△BDE=S△CDE,∴S△BDE ﹣S△DEH=S△CDE﹣S△DEH,即;S△BHE=S△CHD,故③正确;∵△ADH≌△CDH,∴∠AHD=∠CHD,∴∠AHB=∠CHB,∵∠BHC=∠DHE,∴∠AHB=∠EHD,故④正确;故答案为①②③④.【点评】本题主要考查了正方形的性质及全等三角形的判定与性质,三角形的面积公式,解答本题要充分利用正方形的特殊性质:①四边相等,两两垂直;②四个内角相等,都是90度;③对角线相等,相互垂直,且平分一组对角.三.解答题(共9小题)20.已知:如图,△ABC≌△A′B′C,∠A:∠BCA:∠ABC=3:10:5,求∠A′,∠B′BC的度数.【分析】先求出△ABC的各角的度数,再根据全等三角形对应角相等求出∠B′CB′的度数,利用三角形的外角知识求出∠A′,∠B′BC的度数.【解答】解:∵∠A:∠BCA:∠ABC=3:10:5,∴设∠A=3x,∠ABC=5x,∠BCA=10x.∵∠A+∠ABC+∠BCA=180°,∴3x+5x+10x=180°,x=10°.∴∠A=30°∠ABC=50°∠BCA=100°.∵△ABC≌△A'B'C,∴∠A'=∠A=30°,∠B'=∠ABC=50°.∵∠B'C B=180°﹣∠BCA=80°.∴∠B'B C=180°﹣∠B'﹣∠B'C B=180°﹣50°﹣80°=50°.【点评】本题主要考查全等三角形的性质,根据比值和三角形内角和定理求出△ABC的各角的度数是解题的关键.21.如图,已知△ABC≌△DEF,B、E、C、F在同一直线上.(1)若∠BED=130°,∠D=70°,求∠ACB的度数;(2)若2BE=EC,EC=6,求BF的长.【分析】(1)根据三角形的外角的性质求出∠F,根据全等三角形的对应角相等解答;(2)根据题意求出BE、EF,根据全等三角形的性质解答.【解答】解:(1)由三角形的外角的性质可知,∠F=∠BED﹣∠D=60°,∵△ABC≌△DEF,∴∠ACB=∠F=60°;(2)∵2BE=EC,EC=6,∴BE=3,∴BC=9,∵△ABC≌△DEF,∴EF=BC=9,∴BF=EF+BE=12.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.22.如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出边FG的对应边与∠EGF的对应角;(2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MN和HG的长度.【分析】(1)根据全等三角形的定义即可判断;(2)利用全等三角形的性质即可解决问题;【解答】解:(1)∵△EFG≌△NMH,∴FG的对应边是MH,∠EGF的对应角是∠MHN.(2))∵△EFG≌△NMH,∴MN=EF=2.1cm,HM=FG=3.3cm,∵FH=1.1cm,∴HG=3.3﹣1.1=2.2cm.【点评】本题考查全等三角形的性质,解题的关键是熟练掌握基本知识,属于中考基础题.23.已知△ABC中,∠B=50°,∠C=70°,AD是△ABC的角平分线,DE⊥AB于E点.(1)求∠EDA的度数;(2)AB=10,AC=8,DE=3,求S△ABC.【分析】(1)直接利用三角形内角和定理得出∠BAC的度数,再利用角平分线的定义得出答案;(2)过D作DF⊥AC于F,依据角平分线的性质,即可得到DF=DE=3,再根据S△ABC=12×AB×DE+12×AC ×DF进行计算即可.【解答】解:(1)∵∠B=50°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣50°﹣70°=60°,∵AD是△ABC的角平分线,∴∠BAD=12∠BAC=12×60°=30°,∵DE⊥AB,∴∠DEA=90°,∴∠EDA=180°﹣∠BAD﹣∠DEA=180°﹣30°﹣90°=60°;(2)如图,过D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DF=DE=3,又∵AB=10,AC=8,∴S△ABC=12×AB×DE+12×AC×DF=12×10×3+12×8×3=27.【点评】本题主要考查了角平分线的性质以及三角形的面积,角的平分线上的点到角的两边的距离相等.24.如图,点E是△ABC的BC边上的一点,∠AEC=∠AED,ED=EC,∠D=∠B,求证:AB=AC.【分析】由SAS证明△AED与△AEC全等,进而利用全等三角形的性质和等腰三角形的判定解答即可;【解答】证明:(1)在△AED与△AEC中∴△AED≌△AEC(SAS),∴∠D=∠C,∵∠D=∠B,∴∠B=∠C,∴AB=AC;【点评】本题考查全等三角形的判定和性质,等腰三角形的判定,关键是根据SAS证明△AED与△AEC全等.25.已知:△ABC≌△EDC.(1)若DE∥BC(如图1),判断△ABC的形状并说明理由.(2)连结BE,交AC于F,点H是CE上的点,且CH=CF,连结DH交BE于K(如图2).求证:∠DKF=∠ACB【分析】(1)根据全等三角形的性质和等腰三角形的判定解答即可;(2)根据全等三角形的性质得出BC=CD,∠ACB=∠DCE,进而证明三角形全等解答即可.【解答】解:(1)∵△ABC≌△EDC,∴∠ABC=∠EDC,∠ACB=∠ECD,∵DE∥BC,∴∠EDC=∠ACB,∴∠ABC=∠ACB,∴AB=AC,即△ABC是等腰三角形.(2)∵△ABC≌△EDC,∴BC=CD,∠ACB=∠DCE,在△BCF和△DCH中,∴△BCF≌△DCH,∴∠FBC=∠HDC,在△FBC和△FDK中,∵∠FBC=∠HDC,∠BFC=∠DFK,∴∠DKF=∠ACB.【点评】此题考查全等三角形的性质,关键是根据全等三角形的性质和判定解答.26.△ABC中,AB=AC,∠A=40°,D、E分别是AB,AC上的不动点.且BD+CE=BC,点P是BC上的一动点.(1)当PC=CE时(如图1),求∠DPE的度数;(2)若PC=BD时(如图2),求∠DPE的度数还会与(1)的结果相同吗?若相同,请写出求解过程;若不相同,请说明理由.【分析】(1)根据等腰三角形的性质和三角形的内角和即可得到结论;(2)根据全等三角形的判定和性质和三角形的内角和即可得到结论.【解答】解:(1)∵AB=AC,∠A=40°,∴∠B=∠C=70°,∵CE=PC,∠EPC=(180°﹣70°)×12=55°,又∵BD+CE=BP+PC,PC=CE,∴BD=PB,∠BPD=55°,∴∠DPE=180°﹣∠BPD﹣∠EPC=180°﹣55°﹣55°=70°;(2)相同,理由:∵PC=BC﹣BP,BD=BC﹣CE,PC=BD,∴BP=CE,∴△BDP≌△CPE(SAS),∴∠CPE=∠BDP,又∵∠BPD+∠CPE+∠DPE=180°,∠BPD+∠BDP+∠B=180°,∴∠DPE=∠B=70°.【点评】本题考查了全等三角形的判定和性质,等腰三角形的性质,熟练正确全等三角形的判定和性质是解题的关键.27.如图,在Rt△ABC中,∠ABC=90°点D在BC的延长线上,且BD=AB.过点B作BE⊥AC,与BD的垂线DE交于点E.(1)求证:△ABC≌△BDE;(2)请找出线段AB、DE、CD之间的数量关系,并说明理由.【分析】(1)利用已知得出∠A=∠DBE,进而利用ASA得出△ABC≌△BDE即可;(2)根据全等三角形的性质即可得到结论.【解答】(1)证明:∵BE⊥AC,∴∠A+∠ABE=90°,∵∠ABC=90°,∴∠DBE+∠ABE=90°,∴∠A=∠DBE,在△ABC和△BDE中,∴△ABC≌△BDE(ASA);(2)解:AB=DE+CD,理由:由(1)证得,△ABC≌△BDE,∴AB=BD,BC=DE,∵BD=CD+BC,∴AB=CD+DE.【点评】本题主要考查了全等三角形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.。
苏科版八年级上册数学第一章全等三角形1-1全等图形( 含答案)
苏科版八年级上册数学第一章全等三角形1.1全等图形一、选择题1.全等的两个图形面积()A.不相等B.相等C.不一定相等D.不能确定2.下列图形中,不能分成两个全等图形的是()3.下列说法:①用一张像底冲洗出来的2张1寸相片是全等形;②所有的正三角形是全等形;③全等形的周长相等;④面积相等的图形一定是全等形.其中正确的是()A .①②③B .①③④C .①③D .③4.如图所示,A,B,C,D,E,F 几个区域中,其中全等图形的对数为()A.1B.2C.3D.45.下面是5个全等的正六边形A、B、C 、D、E ,请你仔细观察A、B、C、D 四个图案,其中与E 图案完全相同的是().6.如图是5×5的正方形网络,以点D ,E 为两个顶点作位置不同的格点三角形,使所作的格点三角形与△ABC 全等,这样的格点三角形最多可以画出()A .2个B .4个C .6个D .8个A B C D7.如图,下面4个正方形的边长都相等,其中阴影部分的面积相等的图形有()A.0个B.2个C.3个D.4个8.如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC上,将△ABC沿着DE折叠压平,A与A'重合,若∠A=75°,则∠1+∠2等于().A.150°B.210°C.105°D.75°二、填空题9.是全等图形。
10.请写出全等图形的性质(一条即可)11.已知三角形ABC和三角形DEF全等,期中AB和DE是一组对应边长,如果DE的长度是5cm,则AB的长度是cm。
12.已知下图的两个三角形全等,∠A=50°,∠B=65°,则∠C’=°13.在如图所示的4×4正方形网格中,∠1+∠4+∠7=°14.如图的图案是由全等的图形拼成的,其中.AD=2.5cm,BC=3.5cm,则AF=cm.15.如图,将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为N,P,Q,M的四个图形, 试按照“哪个正方形剪开后与哪个图形”的对应关系填空: A 与对应;B与对应;C与对应;D与对应.16.如图,等边△ABC的边长为1cm,D、E分别是AB、AC上的点,将△ADE沿直线DE折叠,点A落在点A'处,且点A'在△ABC外部,则阴影部分图形的周长为__________cm.三、解答题17.用直线将下列图形中的全等图形连起来.18.如图,是一块“L”形状的木板,请你用线段把它分成四个全等的部分,并且每一部分的形状仍要保持“L”形.19.如图,某地板砖厂要制作一批正六边形地板砖,为适应市场需求,要求在地板砖上设计的图案能够把正六边形六等分,请你帮他设计等分图案.( 至少设计两种)20.如图中有12棵树,请你把这个正方形划分为四块,要求每块的形状、大小都相同,并且每块中恰好有3棵树.21.如图,将Rt△ABC(其中∠B=34°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,旋转角最小是多少度?22.玩具店有A、B、C三种型号的拼板(如图),其中A型板每块3元,B型板每块4元,C 型板每块5元.小明现在想拼一个与右图6×6的正方形全等的图案,且只选一种型号的材料.那么小明选哪种材料最省钱,要用多少元?参考答案:1.B2.A3.C4.C5.C6.B7.C8.A9.能够互相重合的平面图形10.面积相等或周长相等(答案不唯一)11.512.6513.13514.2415.M、N、、Q、P.16.317..①与⑨,③与⑧,④与⑩,⑤与⑦18.如答图所示.19.20.21.124°22.选A型材料,要36元.。
苏科版八年级数学上册第一章《全等三角形》单元测试附答案
苏科版八年级数学上册第一章《全等三角形》单元测试一、单选题(共10题;共30分)1.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是()A、∠A=∠CB、AD=CBC、BE='DF'D、AD∥BC2.如图,D在AB上,E在AC上,且∠B=∠C,那么补充下列条件后,不能判定△ABE≌△ACD的是()A、AD=AEB、BE=CDC、∠AEB=∠ADCD、AB=AC3.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBDD.AD∥BC,且AD=BC4.如图,在下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=ACB.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CADD.∠B=∠C,BD=DC5.已知图中的两个三角形全等,则∠1等于()A.72°B.60°C.50°D.58°6.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积=12AC•BD,其中正确的结论有()A.0个B.1个C.2个D.3个7.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE8.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠NB.AM=CNC.AB=CDD.AM∥CN9.已知△ABC≌△DEF,∠A=50°,∠B=75°,则∠F的大小为()A.50°B.55°C.65°D.75°10.如图,在△ABC和△DEF中,给出以下六个条件中,以其中三个作为已知条件,不能判断△ABC和△DEF 全等的是()①AB=DE;②BC=EF;③AC=DF;④∠A=∠D;⑤∠B=∠E;⑥∠C=∠F.A、①⑤②B、①②③C、④⑥①D、②③④二、填空题(共8题;共27分)11.如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=________°.12.如图所示,已知△ABC≌△ADE,∠C=∠E,AB=AD,则另外两组对应边为________,另外两组对应角为________.13.如图,△ACE≌△DBF,点A、B、C、D共线,若AC=5,BC=2,则CD的长度等于________.14.如图,AB=AD,只需添加一个条件________,就可以判定△ABC≌△ADE.15.△ABC中,AB=AC=12厘米,∠B=∠C,BC=8厘米,点D为AB的中点.如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q的运动速度为v厘米/秒,则当△BPD与△CQP全等时,v的值为________.16.如图,已知△ABC≌△DCB,∠BDC=35°,∠DBC=50°,则∠ABD=________.17.如图,△ABC≌△DEF,点F在BC边上,AB与EF相交于点P.若∠DEF=40°,PB=PF,则∠APF=________°.18.如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加的一个条件可以是________.三、解答题(共5题;共37分)19.如图,已知△ABC≌△BAD,AC与BD相交于点O,求证:OC=OD.20.图中所示的是两个全等的五边形,∠β=115°,d=5,指出它们的对应顶点•对应边与对应角,并说出图中标的a,b,c,e,α各字母所表示的值.21.如图,AB=CB,BE=BF,∠1=∠2,证明:△ABE≌△CBF.22.已知命题:如图,点A,D,B,E在同一条直线上,且AD=BE,∠A=∠FDE,则△ABC≌△DEF.判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明.23.如图,已知点C是线段AB上一点,直线AM⊥AB,射线CN⊥AB,AC=3,CB=2.分别在直线AM上取一点D,在射线CN上取一点E,使得△ABD与△BDE全等,求CE2的值.四、综合题(共1题;共10分)24.定义:我们把三角形被一边中线分成的两个三角形叫做“朋友三角形”.性质:“朋友三角形”的面积相等.如图1,在△ABC中,CD是AB边上的中线.=S△BCD.那么△ACD和△BCD是“朋友三角形”,并且S△ACD应用:如图2,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AB=AD=4,BC=6,点E在BC上,点F在AD 上,BE=AF,AE与BF交于点O.(1)求证:△AOB和△AOF是“朋友三角形”;(2)连接OD,若△AOF和△DOF是“朋友三角形”,求四边形CDOE的面积.拓展:如图3,在△ABC中,∠A=30°,AB=8,点D在线段AB上,连接CD,△ACD和△BCD是“朋友三角形”,将△ACD沿CD所在直线翻折,得到△A′CD,若△A′CD与△ABC重合部分的面积等于△ABC面积的,则△ABC的面积是________(请直接写出答案).答案解析一、单选题1、【答案】B【考点】全等三角形的判定【解析】【分析】由AE=CF可得AF=CE,再有∠AFD=∠CEB,根据全等三角形的判定方法依次分析各选项即可.【解答】∵AE=CF∴AE+EF=CF+EF,即AF=CE,∵∠A=∠C,AF=CE,∠AFD=∠CEB,∴△ADF≌△CBE(ASA)∵BE=DF,∠AFD=∠CEB,AF=CE,∴△ADF≌△CBE(SAS)∵AD∥BC,∴∠A=∠C,∵∠A=∠C,AF=CE,∠AFD=∠CEB,∴△ADF≌△CBE(ASA)故A、C、D均可以判定△ADF≌△CBE,不符合题意B、AF=CE,AD=CB,∠AFD=∠CEB无法判定△ADF≌△CBE,本选项符合题意.【点评】全等三角形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.2、【答案】C【考点】全等三角形的判定【解析】【分析】A、根据AAS(∠A=∠A,∠C=∠B,AD=AE)能推出△ABE≌△ACD,正确,故本选项错误;B、根据AAS(∠A=∠A,∠B=∠C,BE=CD)能推出△ABE≌△ACD,正确,故本选项错误;C、三角对应相等的两三角形不一定全等,错误,故本选项正确;D、根据ASA(∠A=∠A,AB=AC,∠B=∠C)能推出△ABE≌△ACD,正确,故本选项错误;故选C.3、【答案】C【考点】全等三角形的性质【解析】【解答】解:A、∵△ABD≌△CDB,∴△ABD和△CDB的面积相等,故本选项错误;B、∵△ABD≌△CDB,∴△ABD和△CDB的周长相等,故本选项错误;C、∵△ABD≌△CDB,∴∠A=∠C,∠ABD=∠CDB,∴∠A+∠ABD=∠C+∠CDB≠∠C+∠CBD,故本选项正确;D、∵△ABD≌△CDB,∴AD=BC,∠ADB=∠CBD,∴AD∥BC,故本选项错误;故选C.【分析】根据全等三角形的性质得出对应角相等,对应边相等,推出两三角形面积相等,周长相等,再逐个判断即可.4、【答案】D【考点】全等三角形的判定【解析】【解答】解:A、∵在△ABD和△ACD中∴△ABD≌△ACD(SSS),故本选项错误;B、∵在△ABD和△ACD中∴△ABD≌△ACD(SAS),故本选项错误;C、∵在△ABD和△ACD中∴△ABD≌△ACD(AAS),故本选项错误;D、不符合全等三角形的判定定理,不能推出△ABD≌△ACD,故本选项正确;故选D.【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据全等三角形的判定定理逐个判断即可.5、【答案】D【考点】全等三角形的性质【解析】【解答】解:如图,由三角形内角和定理得到:∠2=180°﹣50°﹣72°=58°.∵图中的两个三角形全等,∴∠1=∠2=58°.故选:D.【分析】根据三角形内角和定理求得∠2=58°;然后由全等三角形是性质得到∠1=∠2=58°.6、【答案】D【考点】全等三角形的判定【解析】【解答】解:在△ABD与△CBD中,AD=CDAB=BCDB=DB,∴△ABD≌△CBD(SSS),故①正确;∴∠ADB=∠CDB,在△AOD与△COD中,,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC,∴AC⊥DB,故②正确;四边形ABCD的面积=S△ADB+S△BDC=12DB×OA+12DB×OC=12AC·BD故③正确;故选D.【分析】先证明△ABD与△CBD全等,再证明△AOD与△COD全等即可判断.7、【答案】D【考点】全等三角形的性质【解析】【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选D.【分析】根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.8、【答案】B【考点】全等三角形的判定【解析】【解答】解:A、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故A选项不符合题意;B、根据条件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故B选项符合题意;C、AB=CD,符合SAS,能判定△ABM≌△CDN,故C选项不符合题意;D、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故D选项不符合题意.故选:B.【分析】根据普通三角形全等的判定定理,有AAS、SSS、ASA、SAS四种.逐条验证.9、【答案】B【考点】全等三角形的性质【解析】【解答】解:∵∠A=50°,∠B=75°,又∵∠A+∠B+C=180°,∴∠C=55°,∵△ABC≌△DEF,∴∠F=∠C,即:∠F=55°.故选B.【分析】由∠A=50°,∠B=75°,根据三角形的内角和定理求出∠C的度数,根据已知△ABC≌△DEF,利用全等三角形的性质得到∠F=∠C,即可得到答案.10、【答案】D【考点】全等三角形的判定【解析】【解答】解:在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);∴A不符合题意;在△ABC和△DEF中,,∴△ABC≌△DEF(SSS);∴B不符合题意;在△ABC和△DEF中,,∴△ABC≌△DEF(AAS),∴C不符合题意;在△ABC和△DEF中,D②③④不能判断△ABC和△DEF全等,故选D.【分析】根据全等三角形的判定方法对组合进行判断即可.二、填空题11、【答案】50【考点】全等三角形的性质【解析】【解答】因为∠B=100°,∠BAC=30°所以∠ACB=50°;又因为△ABC≌△ADE,所以∠ACB=∠AED=50°;【分析】首先根据全等三角形性质可得对应角相等,再结合图形找到全等三角形的那两个角对应相等,根据题意完成填空.12、【答案】BC=DE、AC=AE;∠B=∠ADE、∠BAC=∠DAE【考点】全等三角形的性质【解析】【解答】∵△ABC≌△ADE,∠C=∠E,AB=AD,∴AC=AE,BC=DE;∴∠BAC=∠DAE,∠B=∠ADE.【分析】由已知△ABC≌△ADE,∠C=∠E,AB=AD得C点与点E,点B与点D为对应点,然后根据全等三角形的性质可得答案.13、【答案】3【考点】全等三角形的性质【解析】【解答】解:∵△ACE≌△DBF,∴AC=BD=5,∴CD=BD﹣BC=5﹣2=3.故答案为:3.【分析】根据全等三角形对应边相等可得AC=BD,然后根据CD=BD﹣BC计算即可得解.14、【答案】∠B=∠D【考点】全等三角形的判定【解析】【解答】解:添加条件∠B=∠D,∵在△ABC和△ADE中,∴△ABC≌△ADE(ASA),故答案为:∠B=∠D.【分析】添加条件∠B=∠D,再由条件∠A=∠A,AB=AD,可利用ASA定理证明△ABC≌△ADE,答案不惟一.15、【答案】2或3【考点】全等三角形的判定【解析】【解答】解:当BD=PC时,△BPD与△CQP全等,∵点D为AB的中点,∴BD=12AB=6cm,∵BD=PC,∴BP=8﹣6=2(cm),∵点P在线段BC上以2厘米/秒的速度由B点向C点运动,∴运动时间时1s,∵△DBP≌△PCQ,∴BP=CQ=2cm,∴v=2÷1=2;当BD=CQ时,△BDP≌△QCP,∵BD=6cm,PB=PC,∴QC=6cm,∵BC=8cm,∴BP=4cm,∴运动时间为4÷2=2(s),∴v=6÷2=3(m/s),故答案为:2或3.【分析】此题要分两种情况:①当BD=PC时,△BPD与△CQP全等,计算出BP的长,进而可得运动时间,然后再求v;②当BD=CQ时,△BDP≌△QCP,计算出BP的长,进而可得运动时间,然后再求v.16、【答案】45°【考点】全等三角形的性质【解析】【解答】解:∵∠BDC=35°,∠DBC=50°,∴∠BCD=180°﹣∠BDC﹣∠DBC=180°﹣35°﹣50°=95°,∵△ABC≌△DCB,∴∠ABC=∠BCD=95°,∴∠ABD=∠ABC﹣∠DBC=95°﹣50°=45°.故答案为:45°.【分析】根据三角形的内角和等于180°求出∠BCD,再根据全等三角形对应角相等可得∠ABC=∠BCD,然后列式进行计算即可得解.17、【答案】80【考点】全等三角形的性质【解析】【解答】解:∵△ABC≌△DEF,∴∠B=∠DEF=40°,∵PB=PF,∴∠PFB=∠B=40°,∴∠APF=∠B+∠PFB=80°,故答案为:80.【分析】由全等三角形的性质可求得∠B,再利用等腰三角形和外角的性质可求得∠APF.18、【答案】DC=BC或∠DAC=∠BAC【考点】全等三角形的判定【解析】【解答】解:添加条件为DC=BC,在△ABC和△ADC中,,∴△ABC≌△ADC(SSS);若添加条件为∠DAC=∠BAC,在△ABC和△ADC中,,∴△ABC≌△ADC(SAS).故答案为:DC=BC或∠DAC=∠BAC【分析】添加DC=BC,利用SSS即可得到两三角形全等;添加∠DAC=∠BAC,利用SAS即可得到两三角形全等.三、解答题19、【答案】证明:∵△ABC≌△BAD,∴∠CAB=∠DBA,AC=BD,∴OA=OB,∴AC﹣OA=BD﹣OB,即:OC=OD.【考点】全等三角形的性质【解析】【分析】由△ABC≌△BAD,根据全等三角形的性质得出∠CAB=∠DBA,AC=BD,利用等角对等边得到OA=OB,那么AC﹣OA=BD﹣OB,即:OC=OD.20、【答案】解:对应顶点:A和G,E和F,D和J,C和I,B和H,对应边:AB和GH,AE和GF,ED和FJ,CD和JI,BC和HI;对应角:∠A和∠G,∠B和∠H,∠C和∠I,∠D和∠J,∠E和∠F;∵两个五边形全等,∴a=12,c=8,b=10,e=11,α=90°.【考点】全等图形【解析】【分析】根据能够完全重合的两个图形叫做全等形,重合的顶点叫做对应顶点;重合的边叫做对应边;重合的角叫做对应角可得对应顶点,对应边与对应角,进而可得a,b,c,e,α各字母所表示的值.21、【答案】证明:∵∠1=∠2,∴∠1+∠FBE=∠2+∠FBE,即∠ABE=∠CBF,在△ABE与△CBF中,AB=CB∠ABE=∠CBFBE=BF,∴△ABE≌△CBF(SAS).【考点】全等三角形的判定【解析】【分析】利用∠1=∠2,即可得出∠ABE=∠CBF,再利用全等三角形的判定SAS得出即可.22、【答案】解:是假命题.以下任一方法均可:①添加条件:AC=DF.证明:∵AD=BE,∴AD+BD=BE+BD,即AB=DE.在△ABC和△DEF中,AB=DE,∠A=∠FDE,AC=DF,∴△ABC≌△DEF(SAS);②添加条件:∠CBA=∠E.证明:∵AD=BE,∴AD+BD=BE+BD,即AB=DE.在△ABC和△DEF中,∠A=∠FDE,AB=DE,∠CBA=∠E,∴△ABC≌△DEF(ASA);③添加条件:∠C=∠F.证明:∵AD=BE,∴AD+BD=BE+BD,即AB=DE.在△ABC和△DEF中,∠A=∠FDE,∠C=∠F,AB=DE,∴△ABC≌△DEF(AAS)【考点】全等三角形的判定【解析】【分析】本题中要证△ABC≌△DEF,已知的条件有一组对应边AB=DE(AD=BE),一组对应角∠A=∠FDE.要想证得全等,根据全等三角形的判定,缺少的条件是一组对应角(AAS或ASA),或者是一组对应边AC=EF(SAS).只要有这两种情况就能证得三角形全等.23、【答案】解:如图,当△ABD≌△EBD时,BE=AB=5,∴CE2=BE2﹣BC2=25﹣4=21.【考点】全等三角形的判定【解析】【分析】由题意可知只能是△ABD≌△EBD,则可求得BE,再利用勾股定理可求得CE2四、综合题24、【答案】(1)证明:∵AD∥BC,∴∠OAF=∠OEB,在△AOF和△EOB中,,∴△AOF≌△EOB(AAS),∴OF=OB,则AO是△ABF的中线.∴△AOB和△AOF是“朋友三角形”(2)8或8【考点】全等三角形的判定【解析】【解答】(2)解:∵△AOF和△DOF是“朋友三角形”,=S△DOF,∴S△AOF∵△AOF≌△EOB,=S△EOB,∴S△AOB∵△AOB和△AOF是“朋友三角形”=S△AOF,∴S△AOB=S△DOF=S△AOB=S△EOB,=×4×2=4,∴S△AOF﹣2S△ABE=×(4+6)×4﹣2×4=12;∴四边形CDOE的面积=S梯形ABCD拓展:解:分为两种情况:①如图1所示:∵S △ACD =S △BCD .∴AD=BD=AB=4,∵沿CD 折叠A 和A′重合,∴AD=A′D=AB=×8=4,∵△A′CD 与△ABC 重合部分的面积等于△ABC 面积的,∴S △DOC =S △ABC =S △BDC =S △ADC =S △A′DC ,∴DO=OB ,A′O=CO ,∴四边形A′DCB 是平行四边形,∴BC=A′D=4,过B 作BM ⊥AC 于M ,∵AB=8,∠BAC=30°,∴BM=AB=4=BC ,即C 和M 重合,∴∠ACB=90°,由勾股定理得:AC==4,∴△ABC 的面积=×BC×AC=×4×4=8;②如图2所示:=S△BCD.∵S△ACD∴AD=BD=AB,∵沿CD折叠A和A′重合,∴AD=A′D=AB=×8=4,∵△A′CD与△ABC重合部分的面积等于△ABC面积的,=S△ABC=S△BDC=S△ADC=S△A′DC,∴S△DOC∴DO=OA′,BO=CO,∴四边形A′BDC是平行四边形,∴A′C=BD=4,过C作CQ⊥A′D于Q,∵A′C=4,∠DA′C=∠BAC=30°,∴CQ=A′C=2,=2S△ADC=2S△A′DC=2××A′D×CQ=2××4×2=8;∴S△ABC即△ABC的面积是8或8;故答案为:8或8.【分析】应用:(1)由AAS证明△AOF≌△EOB,得出OF=OB,AO是△ABF的中线,即可得出结论;(2)△AOE和△DOE是“友好三角形”,即可得到E是AD的中点,则可以求得△ABE和梯形ABCD的面积的面积,=S矩形ABCD﹣2S△ABF即可求解.拓展:画出符合条件的两种情况:①求出四边形A′DCB是平行根据S四边形CDOF四边形,求出BC和A′D推出∠ACB=90°,根据三角形面积公式求出即可;②求出高CQ,求出△A′DC的面积.即可求出△ABC的面积。
八年级数学上册《第一章 全等三角形》单元测试卷及答案(苏科版)
八年级数学上册《第一章 全等三角形》单元测试卷及答案(苏科版)班级 姓名 学号一、单选题(共10小题,满分40分) 1.如图,在△ABC 中,△B =90°,AB =3,BC =4,AC =5,△1=△2,则点 C 到直线AE 的距离是( )A .3B .4C .4.5D .52.如图ABC BAD ≌,点A 和点B ,点C 和点D 是对应点.如果D ∠=70 CAB ∠=50 那么DAB ∠度数是( )A .80B .70C .60D .503.以下说法正确的是( )A .各边都相等的多边形是正多边形B .到线段两个端点距离相等的点在线段的垂直平分线上C .角的平分线就是角的对称轴D .形状相同的两个三角形是全等三角形4.如图,ABC 中,AD 为BAC ∠的角平分线,作BD 垂直AD 于D ,ABC 的面积为8,则ACD 的面积为( )A .3B .4C .5D .65.如图,已知ABC BAD ≌△△,线段AD 与BC 交于点O ,则下面的结论中不正确...的是( )A .=AC BDB .=BC AD C .CAO BOD ∠=∠ D .CAB DBA ∠=∠6.如图,AB△CD ,CE△BF ,A 、 E 、F 、D 在一直线上,BC 与AD 交于点O ,且OE=OF ,则图中有全等三角形的对数为( )A .2B .3C .4D .57.如图,BP 是△ABC 的平分线,AP △BP 于P ,连接PC ,若△ABC 的面积为1cm 2则△PBC 的面积为( ).A .0.4 cm 2B .0.5 cm 2C .0.6 cm 2D .不能确定8.如图,点F ,B ,E ,C 在同一条直线上,点A ,D 在直线BE 的两侧,AC//DF ,CE=FB ,添加下列哪个条件后,仍不能判定出ABC DEF ∆≅∆( )A .AB DE = B .//AB DEC .AD ∠=∠ D .AC DF =9.如图,点B 、F 、C 、E 在同一条直线上AC DF ∥,AC DF =添加以下条件,仍不能使△ABC △△DEF 的是( )A .A D ∠=∠B .AB DE =C .AB DE ∥D .BF EC =10.如图,在△ABC 中,直线ED 垂直平分线段BC ,分别交BC 、AB 于点D 点E ,若BD =3,△AEC 的周长为20,则△ABC 的周长为( )A .23B .26C .28D .30二、填空题(共8小题,满分32分)11.如图,ABC 是等边三角形,D ,E ,F 分别是AB ,BC ,CA 边上一点,且AD BE CF ==.则DEF 的形状是 .12.如图AC DB =,AO DO =且20CD =m 则A ,B 两点间的距离为 m .13.如图,小李为了测量河的宽度,他先站在河边的C 点面向河对岸,压低帽檐使目光正好落在河对岸的A 点,然后姿态不变原地转了一个角度,正好看见了他所在的岸上的一块石头B 点,他发现看到B 点和A 点的视角相等,并测量BC=30m,则河宽为;90,AB=a18.已知:如图,点E F 、分别在等边三角形ABC 的边CB AC 、的延长线上,,BE CF FB =的延长线交AE 于点G ,则AGB ∠= .三、解答题(共6小题,每题8分,满分48分)19.如图90ACB ∠=︒,AC=BC 和AD CE ⊥,BE CE ⊥垂足分别为D ,E ,且 2.5cm AD = 1.7cm DE =.(1)证明:ACD CBE ≌;(2)求BE 的长.20.如图,在五边形ABCDE 中AB DE = AC AD =.(1)请你添加一个条件,使得ABC DEA △△≌,并说明理由;(2)在(1)的条件下,若66CAD ∠=︒,110B ∠=︒求BAE ∠的度数.21.如图,△ABD 为等腰直角三角形,C 为BD 延长线上一点,F 为AD 上一点,且DF=DC ,连接BF ,AC ,试判断BF 和AC 的位置关系,并说明理由.22.如图,ABC ∆是等腰直角三角形090BAC ∠=,点D 是直线BC 上的一个动点(点D 与点B C 、不重合),以AD 为腰作等腰直角ADE ∆,连接CE .(1)如图△,当点D 在线段BC 上时,直接写出,BC CE 的位置关系,线段,BC CD ,CE 之间的数量关系;(2)如图△,当点D 在线段BC 的延长线上时,试判断线段BC ,CE 的位置关系,线段,,BC CD CE 之间的数量关系,并说明理由;(3)如图△,当点D 在线段CB 的延长线上时,试判断线段,BC CE 的位置关系,线段,,BC CD CE 之间的数量关系,并说明理由.23.如图△AOB 是直角,在△AOB 外作射线OC ,OM 平分△AOC ,ON 平分△BOC .(1)若△AOC =38°,求△MON 的度数;(2)若△AOC =α,试说明△MON 的大小与α无关.24.如图,已知AB=AC,E,D分别是AB,AC的中点,且AF△△BD交BD的延长线于F,AG△CE交CE的延长线于G,试判断AF和AG的关系是否相等,并说明理由.参考答案:1.B2.C3.B4.B5.C6.B7.B8.A9.B10.B11.等边三角形12.2060 (1)略0.8cm。
新苏科版八年级数学《全等三角形》专题练习卷(含答案)
新苏科版八年级数学上册《全等三角形》专题练习卷1.若图中的两个三角形全等,则∠a的度数是( )A.72°B.60°C.58°D.50°2.使两个直角三角形全等的条件是( )A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条边对应相等3.如图,如果AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF ≌△CBE的是( )A.∠A=∠C B.AD=CB C.BF=DF D.AD∥BC4.已知△A1B1C1与△A2B2C2的周长相等,现有两个判断:①若A1B1=A2B2,A1C1=A3C3,则△A1B1C1≌△A2B2C2;②若∠A1=∠A2.∠B1=∠B2,则△A1B1C2≌△A2B2C2.对于上述的连个判断,下列说法正确的是( )A.①正确②错误 B.①错误②正确C.①②都错误D.①②都正确5.如图,在Rt△ABC中,AB⊥AC,AD⊥BC,BE平分∠ABC,交AD于点E,EF∥AC,下列结论一定成立的是( )A.AB=BF B.AE=ED C.AD=DC D.∠ABE=∠DFE6.如图,在等腰直角三角形ABC中,∠C=90°,AC=8.F是边AB上的中点,点D,E 分别在边AC,BC上运动,且保持AD=CE.连接DE,DF,EF.在此运动变化的过程中,给出下列结论:①△DFE是等腰直角三角形:②四边形CDFE不可能为正方形:③DF长度的最小值为4;④四边形CDFE的面积保持不变;⑤△CDE面积的最大值为8.其中正确的结论是( )A.①②③B.①④⑤C.①③①D.③④⑤7.如图,已知∠1=∠2=90°,AD=AE,那么图中有_______对全等三角形.8.如图,BD是∠ABC的平分线,P是BD上的一点,PE⊥BA,垂足为点E.若PE=4cm,则点P到边BC的距离为_______cm.9.如图,∠AOB=70°,QC⊥OA,垂足为点C,QD⊥OB,垂足为点D,若QC=QD,则∠AOQ=_______°.10.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE ⊥AB,垂足为点E.若PE=2,则两平行线AD与BC间的距离为_______.11.如图,建高楼常需要用塔吊来吊建筑材料,而塔吊的上部是三角形结构,这是应用了三角形的哪个性质?答:_______.(填“稳定性”或“不稳定性”)12.如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.13.已知点P是Rt△ABC斜边AB上一动点(不与点A,B重合)分别过点A,B向直线CP作垂线,垂足分别为点E,F,Q为斜边AB的中点.(1)如图1,当点P与点Q重合时,AE与BF的位置关系是_______,QE与QF的数量关系是_______;(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.参考答案1.D2.D3.B4.D5.A6.B7.38.49.35 10.4 11.稳定性12.略13.(1)AE//BF QE=QF (2)QE=QF (3)(2)中结论仍然成立。
苏教版数学八年级上册 全等三角形综合测试卷含答案
苏教版数学八年级上册全等三角形综合测试卷第Ⅰ卷(选择题)一.选择题(本大题共10小题,每小题3分,共30分)1.如图,已知△ABE≌△ACD,则下列结论中不正确的是( )A.AB=AC B.∠BAE=∠CADC.BE=CD D.AD=DE2.如图,已知CD⊥AB,BE⊥AC,垂足分别为点D,E,BE,CD相交于点O,且AO平分∠BAC,那么图中全等三角形共有( )A.2对B.3对C.4对D.5对3.已知△ABC与△A′B′C′全等,其中∠A=60°,∠A′=80°,∠B′=40°,BC=3,则A′B′的值为( ) A.3 B.4C.5 D.不能确定4.下列说法正确的是( )A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等5.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( )A.1个B.2个C.3个D.4个6.下列条件中,不能判定两个直角三角形全等的是( )A.两条直角边对应相等B.两个锐角对应相等C.一个锐角和一条直角边对应相等D.一条斜边和一条直角边对应相等7.如图,OD⊥AB于点D,OP⊥AC于点P,且OD=OP,则△AOD与△AOP全等的理由是( ) A.SSS B.ASA C.SSA D.HL8.如图,AB∥DE,AC∥DF,AC=DF,下列条件中,不能判断△ABC≌△DEF的是( ) A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC9.如图,AC平分∠BAD,CM⊥AB于点M,CN⊥AN,且BM=DN,则∠ADC与∠ABC的关系是( )A.相等B.互补C.和为150°D.和为165°10. 如图,在△ABC中,P是BC上一点,PD⊥AB于点D,PE⊥AC于点E,且PD=PE,F是AC 上一点,且∠APF=∠PAF,下列结论:①AD=AE;②PF∥AB;③△PEF≌△PEC.其中正确的是()A.①②③B.只有①②C.只有①③D.只有①第Ⅱ卷(非选择题)二.填空题(共8小题,3*8=24)11.如图,C为∠DAB内一点,CD⊥AD于点D,CB⊥AB于点B,且CD=CB,∠DCB=150°,则∠DAC=________.12.如图,△ABC≌△ADE,∠EAC=25°,则∠BAD=____.13. 如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD,CE交于点H,请你添加一个适当的条件:____________,使△AEH≌△CEB.14.如图,要测量河岸相对的两点A,B之间的距离,先从B处出发,与AB成90°角方向,向前走50米到C处立一根标杆,然后方向不变继续朝前走50米到D处,在D处转90°沿DE方向再走17米,到达E处,通过目测使A,C与E在同一直线上,那么A,B之间的距离为_______米.15.如图,在平面直角坐标系中,四边形OBCD是正方形,B点的坐标为(2,1),则D点的坐标为____________.16. 如图,若△AOB≌△COD,∠B=30°,∠AOC=52°,则∠CEO的度数为_______.17.如图,AB⊥BC,DC⊥BC,垂足分别为点B,C,∠BAD和∠ADC的平分线恰好相交于BC边上的E点,AD=9,BE=4,则四边形ABCD的面积为_____.18.如图,任意画一个∠BAC=60°的△ABC,再分别作△ABC的两条角平分线BE和CD,BE和CD 交于点P,连接AP.有以下结论:①∠BPC=120°;②AP平分∠BAC;③PD=PE;④BD+CE=BC;⑤S△PBD+S△PCE=S△PBC.其中正确结论的序号是________________.三.解答题(共7小题,66分)19.(8分) 如图,EF=BC,DF=AC,DA=EB.求证:∠F=∠C.20.(8分) 如图,点D是△ABC中BC边上一点,E是AD上一点,EB=EC,∠BAE=∠CAE.求证:∠ABE=∠ACE.21.(8分)如图,点C,E分别为△ABD的边BD,AB上两点,且AE=AD,CE=CD,∠D=70°,∠ECD=150°,求∠B的度数.22.(10分) 如图,在△ABC中,D是BC的中点,过点D的直线GF交AC于点F,交AC的平行线BG于点G,DE⊥DF交AB于点E,连接EG,EF.(1)求证:BG=CF;(2)求证:EG=EF;(3)请你判断BE+CF与EF的大小关系,并证明你的结论.23.(10分)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.24.(10分) 如图,在四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ADE≌△CBF;(2)若AC与BD相交于点O,求证:AO=CO.25.(12分) 如图,AC⊥BC,AD⊥BD,AD=BC,CE⊥AB,DF⊥AB,垂足分别是点E,F,求证:CE=DF.参考答案:1-5DCACC 6-10BDCBB 11. 15° 12. 25° 13. AH =CB 14. 17 15. (-1,2) 16. 82° 17. 3618. ①②③④⑤19. 解:证明:∵DA =BE ,∴DE =AB , 在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AB =DE AC =DF BC =EF ,∴△ABC ≌△DEF(SSS),∴∠C =∠F20. 解:过点E 作EF ⊥AB 于F ,EG ⊥AC 于G ,∵∠BAE =∠CAE , ∴AE 平分∠BAC ,∴EF =EG.在Rt △BFE 和Rt △CGE 中,⎩⎪⎨⎪⎧EB =EC ,EF =EG ,∴Rt △BFE ≌Rt △CGE(HL),∴∠ABE =∠ACE 21. 解:连接AC ,∵AE =AD ,CE =CD ,AC =AC , ∴△ACE ≌△ACD ,∴∠AEC =∠D =70°,又∵∠ECD =150°,∴∠ECB =30°,∴∠B =70°-30°=40° 22. 解:(1)∵AC ∥BG ,∴∠DBG =∠C ,∠DGB =∠DFC ,又∵BD =CD ,∴△BDG ≌△CDF(AAS),∴BG =CF(2)由(1)可得DG =DF ,由SAS 可证△EDG ≌△EDF ,∴EG =EF (3)BE +CF>EF.证明:在△BEG 中,BE +BG>EG , 而BG =CF ,EG =EF ,∴BE +CF>EF23. 解:(1)证明:∵AE 和BD 相交于点O ,∴∠AOD =∠BOE. 在△AOD 和△BOE 中,∠A =∠B ,∴∠BEO =∠2. 又∵∠1=∠2,∴∠1=∠BEO ,∴∠AEC =∠BED.在△AEC 和△BED 中,⎩⎪⎨⎪⎧∠A =∠B ,AE =BE ,∠AEC =∠BED ,∴△AEC ≌△BED(ASA)(2)∵△AEC ≌△BED ,∴EC =ED ,∠C =∠BDE. 在△EDC 中,∵EC =ED ,∠1=42°, ∴∠C =∠EDC =69°,∴∠BDE =∠C =69°24. 解:(1)∵BE =DF ,∴BE -EF =DF -EF ,即BF =DE , ∵AE ⊥BD ,CF ⊥BD ,∴∠AED =∠CFB =90°, 在Rt △ADE 与Rt △CBF 中,AD =BC ,DE =BF , ∴Rt △ADE ≌Rt △CBF(HL)(2)连接AC 交BD 于O ,∵Rt △ADE ≌Rt △CBF ,∴∠ADE =∠CBF , 又∵AD =BC ,∠AOD =∠COB ,∴△AOD ≌△COB(AAS), ∴AO =CO25. 解:∵AC ⊥BC ,AD ⊥BD ,∴∠ACB =∠ADB =90°,在Rt △ABC 和Rt △BAD 中,⎩⎪⎨⎪⎧AB =BA ,BC =AD ,∴Rt △ABC ≌Rt △BAD(HL), ∴∠CBE =∠DAF.∵CE ⊥AB ,DF ⊥AB ,∴∠CEB =90°,∠DFA =90°, 在△BCE 和△ADF 中,⎩⎪⎨⎪⎧∠CEB =∠DFA =90°,∠CBE =∠DAF ,BC =AD ,∴△BCE ≌△ADF(AAS), ∴CE =DF。
苏教版八班级数学全等三角形试卷
八班级数学全等三角形试卷一.选择题(共7小题)1.(2016春•淅川县期末)如图是一个4×4的正方形网格,图中所标示的7个角的角度之和等于()A.585°B.540°C.270°D.315°2.(2015•黄冈校级自主招生)如图,在△ABC中,AB=AC,∠ABC=40°,BD是∠ABC的平分线,延长BD至E,使DE=AD,则∠ECA的度数为()A.30°B.35°C.40°D.45°3.(2015秋•湘潭县期末)如图所示,AB∥EF∥CD,∠ABC=90°,AB=DC,那么图中的全等三角形有()A.1对B.2对C.3对D.4对4.(2015秋•宝应县期末)如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD5.(2015秋•郯城县期末)如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则这四个结论中正确的有()①PA平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP.A.4个B.3个C.2个D.1个6.(2014•荆州模拟)如图,有一块边长为4的正方形塑料摸板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E.则四边形AECF的面积是()A.13 B.14 C.15 D.167.(2014•泰安模拟)已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF.其中正确的是()A.①②③ B.①③④ C.①②④ D.①②③④二.填空题(共8小题)8.(2005•宁德)如图,已知:AC=AB,AE=AD,请写出一个与点D有关的正确结论:.(例如:∠ADO+∠ODB=180°,DB=EC等,除此之外再填一个).9.(2003•广州)如图,∠E=∠F=90°,∠B=∠C,AE=AF,给出下列结论:(1)∠1=∠2;(2)BE=CF;(3)△ACN≌△ABM;(4)CD=DN,其中正确的结论是.(注:将你认为正确的结论都填上).10.(2010•石家庄校级模拟)“石门福地”小区有一块直角梯形花园,测量AB=20米,∠DEC=90°,∠ECD=45°,则该花园面积为平方米.11.(2009•怀化)如图,已知AB=AD,∠BAE=∠DAC,要使△ABC≌△ADE,可补充的条件是(写出一个即可).12.(2015春•苏州期末)如图,△ABC≌△ADE,BC的延长线交DA于F,交DE于G,∠D=25°,∠E=105°,∠DAC=16°,则∠DGB=.13.(2015秋•偃师市期末)如图所示,△ABC≌△ADE,BC的延长线交DA于F,交DE 于G,∠ACB=∠AED=105°,∠CAD=15°,∠B=∠D=30°,则∠1的度数为度.14.(2015秋•乌达区期末)如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=°.15.(2014秋•阜宁县期末)在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=2cm,过点E作EF⊥AC交CD的延长线于点F.若AE=3cm,则EF= cm.三.解答题(共9小题)16.(2015•铁岭一模)已知:△ABC中,BD、CE分别是AC、AB边上的高,BQ=AC,点F在CE的延长线上,CF=AB,求证:AF⊥AQ.17.(2008•台州)CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE CF;EF|BE﹣AF|(填“>”,“<”或“=”);②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).18.(2007•绍兴)课外兴趣小组活动时,许老师出示了如下问题:如图1,己知四边形ABCD 中,AC平分∠DAB,∠DAB=60°,∠B与∠D互补,求证:AB+AD=AC.小敏反复探索,不得其解.她想,若将四边形ABCD特殊化,看如何解决该问题.(1)特殊情况入手添加条件:“∠B=∠D”,如图2,可证AB+AD=AC;(请你完成此证明)(2)解决原来问题受到(1)的启发,在原问题中,添加辅助线:如图3,过C点分别作AB、AD的垂线,垂足分别为E、F.(请你补全证明)19.(2016•同安区一模)如图所示,CD=CA,∠1=∠2,EC=BC,求证:△ABC≌△DEC.20.(2016•丹东模拟)如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,CE⊥BD于点E.求证:AD=BE.21.(2016•洛江区模拟)如图,∠BAC=∠DAE,∠ABD=∠ACE,AB=AC.求证:BD=CE.22.(2015•菏泽)如图,已知∠ABC=90°,D是直线AB上的点,AD=BC.(1)如图1,过点A作AF⊥AB,并截取AF=BD,连接DC、DF、CF,判断△CDF的形状并证明;(2)如图2,E是直线BC上一点,且CE=BD,直线AE、CD相交于点P,∠APD的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.23.(2005•扬州)(本题有3小题,第(1)小题为必答题,满分5分;第(2)、(3)小题为选答题,其中,第(2)小题满分3分,第(3)小题满分6分,请从中任选1小题作答,如两题都答,以第(2)小题评分.)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.注意:第(2)、(3)小题你选答的是第2小题.24.(2016•常德)已知四边形ABCD中,AB=AD,AB⊥AD,连接AC,过点A作AE⊥AC,且使AE=AC,连接BE,过A作AH⊥CD于H交BE于F.(1)如图1,当E在CD的延长线上时,求证:①△ABC≌△ADE;②BF=EF;(2)如图2,当E不在CD的延长线上时,BF=EF还成立吗?请证明你的结论.八班级数学全等三角形试卷参考答案与试题解析一.选择题(共7小题)1.(2016春•淅川县期末)如图是一个4×4的正方形网格,图中所标示的7个角的角度之和等于()A.585°B.540°C.270°D.315°【解答】解:仔细观察图形,我们可以发现:∵AB=AZ,BC=ZV,∠B=∠Z,∴△ABC≌△AZV,∴∠1+∠7=180°,同理可得:∠2+∠6=180°,∠3+∠5=180°,∠4=45°,所以说图示的7个角的度数和为∠1+∠7+∠2+∠6+∠3+∠5+∠4=180°+180°+180°+45°=585°.【点评】本题考查了全等三角形对应角相等的性质,求证全等三角形,找出对应角是解决本题的关键.2.(2015•黄冈校级自主招生)如图,在△ABC中,AB=AC,∠ABC=40°,BD是∠ABC 的平分线,延长BD至E,使DE=AD,则∠ECA的度数为()A.30°B.35°C.40°D.45°【解答】解:在BC上截取BF=AB,连DF,则有△ABD≌△FBD(SAS),∴DF=DA=DE,又∵∠ACB=∠ABC=40°,∠DFC=180°﹣∠A=80°,∴∠FDC=60°,∵∠EDC=∠ADB=180°﹣∠ABD﹣∠A=180°﹣20°﹣100°=60°,∴△DCE≌△DCF(SAS),故∠ECA=∠DCB=40°.故选:C.【点评】本题主要考查了全等三角形的判定及性质以及三角形内角和定理,能够掌握并进行一些简单的计算.3.(2015秋•湘潭县期末)如图所示,AB∥EF∥CD,∠ABC=90°,AB=DC,那么图中的全等三角形有()A.1对B.2对C.3对D.4对【解答】解:∵AB∥EF∥DC,∴∠ABC=∠DCB,在△ABC和△DCB中,∵,∴△ABC≌△DCB(SAS);在△ABE和△CDE中,∵,∴△ABE≌△CDE(AAS);在△BFE和△CFE中,∵,∴△BFE≌△CFE.∴图中的全等三角形共有3对.故选C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.(2015秋•宝应县期末)如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD【解答】解:A、添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项不合题意;B、添加AB=DC可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C、添加∠ACB=∠DBC可利用ASA定理判定△ABC≌△DCB,故此选项不合题意;D、添加AC=BD不能判定△ABC≌△DCB,故此选项符合题意;故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.(2015秋•郯城县期末)如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则这四个结论中正确的有()①PA平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP.A.4个B.3个C.2个D.1个【解答】解:(1)PA平分∠BAC.∵PR⊥AB,PS⊥AC,PR=PS,AP=AP,∴△APR≌△APS,∴∠PAR=∠PAS,∴PA平分∠BAC;(2)由(1)中的全等也可得AS=AR;(3)∵AQ=PR,∴∠1=∠APQ,∴∠PQS=∠1+∠APQ=2∠1,又∵PA平分∠BAC,∴∠BAC=2∠1,∴∠PQS=∠BAC,∴PQ∥AR;(4)∵PR⊥AB,PS⊥AC,∴∠BRP=∠CSP,∵PR=PS,∴△BRP不一定全等与△CSP(只具备一角一边的两三角形不一定全等).故选B.【点评】本题考查了全等三角形的判定和性质;做题时利用了平行线的判定、等边对等角、三角形外角的性质,要熟练掌握这些知识并能灵活应用.6.(2014•荆州模拟)如图,有一块边长为4的正方形塑料摸板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E.则四边形AECF的面积是()A.13 B.14 C.15 D.16【解答】解:∵四边形ABCD为正方形,∴∠D=∠ABC=90°,AD=AB,∴∠ABE=∠D=90°,∵∠EAF=90°,∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,∴∠DAF=∠BAE,∴△AEB≌△AFD,∴S△AEB=S△AFD,∴它们都加上四边形ABCF的面积,可得到四边形AECF的面积=正方形的面积=16.故选D.【点评】本题主要考查了在旋转过程中一定会出现全等三角形,应根据所给条件找到,难度适中.7.(2014•泰安模拟)已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF.其中正确的是()A.①②③ B.①③④ C.①②④ D.①②③④【解答】解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,∴在△ABD和△EBC中,,∴△ABD≌△EBC(SAS),…①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,…②正确;③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE为等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE=EC.…③正确;④过E作EG⊥BC于G点,∵E是BD上的点,∴EF=EG,∵在RT△BEG和RT△BEF中,,∴RT△BEG≌RT△BEF(HL),∴BG=BF,∵在RT△CEG和RT△AFE中,,∴RT△CEG≌RT△AFE(HL),∴AF=CG,∴BA+BC=BF+FA+BG﹣CG=BF+BG=2BF.…④正确.故选D.【点评】本题考查了全等三角形的判定,考查了全等三角形的对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等性质是解题的关键.二.填空题(共8小题)8.(2005•宁德)如图,已知:AC=AB,AE=AD,请写出一个与点D有关的正确结论:∠ADC=∠AEB或∠CDB=∠CEB(答案不唯一).(例如:∠ADO+∠ODB=180°,DB=EC等,除此之外再填一个).【解答】解:在△ADC和△AEB中,AC=AB,AE=AD,∠A=∠A,∴△ADC≌△AEB.∴∠ADC=∠AEB,∠CDB=∠CEB.(答案不唯一).故填∠ADC=∠AEB或∠CDB=∠CEB.【点评】本题考查了全等三角形的判定与性质;题目是一道开放结论的试题,它有利于考查学生的发散思维能力和创新意识.9.(2003•广州)如图,∠E=∠F=90°,∠B=∠C,AE=AF,给出下列结论:(1)∠1=∠2;(2)BE=CF;(3)△ACN≌△ABM;(4)CD=DN,其中正确的结论是∠1=∠2,BE=CF,△ACN≌△ABM.(注:将你认为正确的结论都填上).【解答】解:∵∠E=∠F=90°,∠B=∠C,AE=AF∴△AEB≌△AFC(AAS),∴BE=CF故(2)正确;∵∠1=∠EAB﹣∠CAB,∠2=∠FAC﹣∠CAB又∵∠EAB=∠FAC∴∠1=∠2故(1)正确;∵AC=AB,∠B=∠C,∠CAN=∠BAM∴△ACN≌△ABM(ASA)故(3)正确.∴正确的结论是∠1=∠2,BE=CF,△ACN≌△ABM.故填∠1=∠2,BE=CF,△ACN≌△ABM.【点评】本题考查了全等三角形的判定与性质;题目是全等三角形的判定、性质的综合运用,要求学生能熟练运用性质解题.10.(2010•石家庄校级模拟)“石门福地”小区有一块直角梯形花园,测量AB=20米,∠DEC=90°,∠ECD=45°,则该花园面积为200平方米.【解答】解:∵∠DEC=90°,∠ECD=45°,∴∠EDC=45°,∴DE=CE,∵四边形ABCD是直角梯形,∴AD∥BC,∠A=∠B=90°,∴∠ADC+∠BCD=180°,∵∠ECD=∠EDC=45°,∴∠1+∠3=90°,∵∠1+∠2=90°,∠3+∠4=90°,∴∠1=∠4,∠2=∠3,在Rt△ADE与Rt△BEC中,∠1=∠4,ED=CE,∠2=∠3,∴Rt△ADE≌Rt△BEC,∴AD=BE,AE=BC,∴AD+BC=AB=20米,∴该花园面积=(AD+BC)×AB=×20×20=200(平方米).故答案为:200.【点评】本题考查的是全等三角形的应用及梯形的面积公式、平行线的性质,根据题意得出Rt△ADE≌Rt△BEC是解答此题的关键.11.(2009•怀化)如图,已知AB=AD,∠BAE=∠DAC,要使△ABC≌△ADE,可补充的条件是AC=AE或∠C=∠E或∠B=∠D(写出一个即可).【解答】解:可补充的条件是:当AC=AE,△ABC≌△ADE(SAS);当∠C=∠E,△ABC≌△ADE(AAS);当∠B=∠D,△ABC≌△ADE(ASA).故答案为:AC=AE或∠C=∠E或∠B=∠D.【点评】本题考查了全等三角形的判定;题目是开放型题目,根据已知条件结合判定方法,找出所需条件,一般答案不唯一,只要符合要求即可.12.(2015春•苏州期末)如图,△ABC≌△ADE,BC的延长线交DA于F,交DE于G,∠D=25°,∠E=105°,∠DAC=16°,则∠DGB=66°.【解答】解:∵△ABC≌△ADE,∴∠ACB=∠E=105°,∴∠ACF=180°﹣105°=75°,在△ACF和△DGF中,∠D+∠DGB=∠DAC+∠ACF,即25°+∠DGB=16°+75°,解得∠DGB=66°.故答案为:66°.【点评】本题考查了全等三角形的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.13.(2015秋•偃师市期末)如图所示,△ABC≌△ADE,BC的延长线交DA于F,交DE 于G,∠ACB=∠AED=105°,∠CAD=15°,∠B=∠D=30°,则∠1的度数为60度.【解答】解:∵∠ACB=∠AFC+∠CAF∴∠AFC=∠ACB﹣∠CAF=105°﹣15°=90°∴∠DFG=∠AFC=90°∴∠1=180°﹣90°﹣∠D=180°﹣90°﹣30°=60°故填60.【点评】本题考查了全等三角形的性质;解决本题的关键是能够正确理解题意,由已知条件,联想到所学的定理,充分挖掘题目中的结论是解题的关键.14.(2015秋•乌达区期末)如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=135°.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故填135.【点评】此题综合考查角平分线,余角,要注意∠1与∠3互余,∠2是直角的一半,特别是观察图形的能力.15.(2014秋•阜宁县期末)在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=2cm,过点E作EF⊥AC交CD的延长线于点F.若AE=3cm,则EF=5cm.【解答】解:∵CD⊥AB,EF⊥AC,∴∠FEC=∠ADC=∠ACB=90°,∴∠ACD+∠A=∠ACD+∠F=90°,∴∠A=∠F.∵BC=EC=2cm,在△ABC和△FCE中,∴△ABC≌△FCE(SAS),∴AC=FE.∵AC=AE+EC,∴FE=AE+EC.∵EC=2cm,AE=3cm,∴FE=2+3=5cm.故答案为:5【点评】本题考查了垂直的性质的运用,直角三角形的性质的运用,全等三角形的判定与性质的运用,解答时证明三角形全等是关键.三.解答题(共9小题)16.(2015•铁岭一模)已知:△ABC中,BD、CE分别是AC、AB边上的高,BQ=AC,点F在CE的延长线上,CF=AB,求证:AF⊥AQ.【解答】证明:∵BD、CE分别是AC、AB边上的高,∴∠ADB=90°,∠AEC=90°,∴∠ABQ+∠BAD=90°,∠BAC+∠ACE=90°,∴∠ABD=∠ACE,在△ABQ和△ACF中,∴△ABQ≌△ACF(SAS),∴∠F=∠BAQ,∵∠F+∠FAE=90°,∴∠BAQ+∠FAE═90°,∴AF⊥AQ.【点评】此题主要考查了全等三角形的判定与性质,关键是掌握全等三角形的判定方法,以及全等三角形的性质定理.17.(2008•台州)CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE=CF;EF=|BE﹣AF|(填“>”,“<”或“=”);②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件∠α+∠BCA=180°,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).【解答】解:(1)①∵∠BCA=90°,∠α=90°,∴∠BCE+∠CBE=90°,∠BCE+∠ACF=90°,∴∠CBE=∠ACF,∵CA=CB,∠BEC=∠CFA;∴△BCE≌△CAF,∴BE=CF;EF=|CF﹣CE|=|BE﹣AF|.②所填的条件是:∠α+∠BCA=180°.证明:在△BCE中,∠CBE+∠BCE=180°﹣∠BEC=180°﹣∠α.∵∠BCA=180°﹣∠α,∴∠CBE+∠BCE=∠BCA.又∵∠ACF+∠BCE=∠BCA,∴∠CBE=∠ACF,又∵BC=CA,∠BEC=∠CFA,∴△BCE≌△CAF(AAS)∴BE=CF,CE=AF,又∵EF=CF﹣CE,∴EF=|BE﹣AF|.(2)猜想:EF=BE+AF.证明过程:∵∠BEC=∠CFA=∠α,∠α=∠BCA,∠BCA+∠BCE+∠ACF=180°,∠CFA+∠CAF+∠ACF=180°,∴∠BCE=∠CAF,又∵BC=CA,∴△BCE≌△CAF(AAS).∴BE=CF,EC=FA,∴EF=EC+CF=BE+AF.【点评】本题综合考查全等三角形、等边三角形和四边形的有关知识.注意对三角形全等,相似的综合应用.18.(2007•绍兴)课外兴趣小组活动时,许老师出示了如下问题:如图1,己知四边形ABCD 中,AC平分∠DAB,∠DAB=60°,∠B与∠D互补,求证:AB+AD=AC.小敏反复探索,不得其解.她想,若将四边形ABCD特殊化,看如何解决该问题.(1)特殊情况入手添加条件:“∠B=∠D”,如图2,可证AB+AD=AC;(请你完成此证明)(2)解决原来问题受到(1)的启发,在原问题中,添加辅助线:如图3,过C点分别作AB、AD的垂线,垂足分别为E、F.(请你补全证明)【解答】证明:(1)∵∠B与∠D互补,∠B=∠D,∴∠B=∠D=90°,∠CAD=∠CAB=∠DAB=30°,∵在△ADC中,cos30°=,在△ABC中,cos30°=,∴AB=AC,AD=.∴AB+AD=.(2)由(1)知,AE+AF=AC,∵AC为角平分线,CF⊥AD,CE⊥AB,∴CE=CF.而∠ABC与∠D互补,∠ABC与∠CBE也互补,∴∠D=∠CBE.∵在Rt△CDF与Rt△CBE中,∴Rt△CDF≌Rt△CBE.∴DF=BE.∴AB+AD=AB+(AF+FD)=(AB+BE)+AF=AE+AF=AC.【点评】本题考查了直角三角形全等的判定及性质;通过辅助线来构建全等三角形是解题的常用方法,也是解决本题的关键.19.(2016•同安区一模)如图所示,CD=CA,∠1=∠2,EC=BC,求证:△ABC≌△DEC.【解答】证明:∵∠1=∠2,∴∠ACB=∠DCE,在△ABC和△DEC中,,∴△ABC≌△DEC(SAS).【点评】本题考查了三角形全等的判定方法和性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.结合图形做题,由∠1=∠2得∠ACB=∠DCE是解决本题的关键.20.(2016•丹东模拟)如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,CE⊥BD于点E.求证:AD=BE.【解答】证明:∵AD∥BC,∴∠ADB=∠DBC.∵CE⊥BD,∴∠BEC=90°.∵∠A=90°,∴∠A=∠BEC.∵BD=BC,∴△ABD≌△BCE.∴AD=BE.【点评】本题考查了直角三角形全等的判定及性质;此题把全等三角形放在梯形的背景之下,利用全等三角形的性质与判定解决题目问题.21.(2016•洛江区模拟)如图,∠BAC=∠DAE,∠ABD=∠ACE,AB=AC.求证:BD=CE.【解答】证明:∵∠BAC=∠DAE∴∠BAD=∠CAE∵∠ABD=∠ACE,AB=AC∵在△ABD与△ACE中,∴△ABD≌△ACE(ASA)∴BD=CE.【点评】本题考查了全等三角形的判定与性质,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等.22.(2015•菏泽)如图,已知∠ABC=90°,D是直线AB上的点,AD=BC.(1)如图1,过点A作AF⊥AB,并截取AF=BD,连接DC、DF、CF,判断△CDF的形状并证明;(2)如图2,E是直线BC上一点,且CE=BD,直线AE、CD相交于点P,∠APD的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.【解答】解:(1)△CDF是等腰直角三角形,理由如下:∵AF⊥AD,∠ABC=90°,∴∠FAD=∠DBC,在△FAD与△DBC中,,∴△FAD≌△DBC(SAS),∴FD=DC,∴△CDF是等腰三角形,∵△FAD≌△DBC,∴∠FDA=∠DCB,∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,∴△CDF是等腰直角三角形;(2)作AF⊥AB于A,使AF=BD,连结DF,CF,如图,∵AF⊥AD,∠ABC=90°,∴∠FAD=∠DBC,在△FAD与△DBC中,,∴△FAD≌△DBC(SAS),∴FD=DC,∴△CDF是等腰三角形,∵△FAD≌△DBC,∴∠FDA=∠DCB,∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,∴△CDF是等腰直角三角形,∴∠FCD=45°,∵AF∥CE,且AF=CE,∴四边形AFCE是平行四边形,∴AE∥CF,∴∠APD=∠FCD=45°.【点评】此题考查了全等三角形的判定与性质的运用,平行四边形的判定及性质的运用,等腰直角三角形的判定及性质的运用.解答时证明三角形全等是关键.23.(2005•扬州)(本题有3小题,第(1)小题为必答题,满分5分;第(2)、(3)小题为选答题,其中,第(2)小题满分3分,第(3)小题满分6分,请从中任选1小题作答,如两题都答,以第(2)小题评分.)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.注意:第(2)、(3)小题你选答的是第2小题.【解答】证明:(1)①∵∠ADC=∠ACB=∠BEC=90°,∴∠CAD+∠ACD=90°,∠BCE+∠CBE=90°,∠ACD+∠BCE=90°.∴∠CAD=∠BCE.∵AC=BC,∴△ADC≌△CEB.②∵△ADC≌△CEB,∴CE=AD,CD=BE.∴DE=CE+CD=AD+BE.解:(2)∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE.又∵AC=BC,∴△ACD≌△CBE.∴CE=AD,CD=BE.∴DE=CE﹣CD=AD﹣BE.(3)当MN旋转到图3的位置时,AD、DE、BE所满足的等量关系是DE=BE﹣AD(或AD=BE﹣DE,BE=AD+DE等).∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE,又∵AC=BC,∴△ACD≌△CBE,∴AD=CE,CD=BE,∴DE=CD﹣CE=BE﹣AD.【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,再根据全等三角形对应边相等得出结论.24.(2016•常德)已知四边形ABCD中,AB=AD,AB⊥AD,连接AC,过点A作AE⊥AC,且使AE=AC,连接BE,过A作AH⊥CD于H交BE于F.(1)如图1,当E在CD的延长线上时,求证:①△ABC≌△ADE;②BF=EF;(2)如图2,当E不在CD的延长线上时,BF=EF还成立吗?请证明你的结论.【解答】证明:(1)①如图1,∵AB⊥AD,AE⊥AC,∴∠BAD=90°,∠CAE=90°,∴∠1=∠2,在△ABC和△ADE中,∵∴△ABC≌△ADE(SAS);②如图1,∵△ABC≌△ADE,∴∠AEC=∠3,在Rt△ACE中,∠ACE+∠AEC=90°,∴∠BCE=90°,∵AH⊥CD,AE=AC,∴CH=HE,∵∠AHE=∠BCE=90°,∴BC∥FH,∴==1,∴BF=EF;(2)结论仍然成立,理由是:如图2所示,过E作MN∥AH,交BA、CD延长线于M、N,∵∠CAE=90°,∠BAD=90°,∴∠1+∠2=90°,∠1+∠CAD=90°,∴∠2=∠CAD,∵MN∥AH,∴∠3=∠HAE,∵∠ACH+∠CAH=90°,∠CAH+∠HAE=90°,∴∠ACH=∠HAE,∴∠3=∠ACH,在△MAE和△DAC中,∵∴△MAE≌△DAC(ASA),∴AM=AD,∵AB=AD,∴AB=AM,∵AF∥ME,∴==1,∴BF=EF.【点评】本题考查了全等三角形的性质和判定,平行线分线段成比例的性质,本题的关键是能正确找出全等三角形;在几何图形中证明线段相等或已知线段相等的一般思路是:①证明相等线段所在的三角形全等;②利用相等线段的比值为1证相等.。
苏教版八年级上册。全等三角形提优测试卷
苏教版八年级上册。
全等三角形提优测试卷全等三角形是指能够完全重合的两个三角形。
它们的形状与大小完全相等,与位置无关,即一个三角形经过平移、翻折、旋转后得到的三角形,与原三角形仍然全等。
三角形全等不因位置发生变化而改变。
全等三角形具有以下性质:对应边相等、对应角相等;周长相等、面积相等;对应边上的对应中线、角平分线、高线分别相等。
判定两个三角形全等的方法有:边角边公理(SAS)、角边角公理(ASA)、推论(AAS)、边边边公理(SSS)和斜边、直角边公理(HL)。
证明两个三角形全等的基本思路是:已知两边,找第三边(SSS);已知一边一角,找一角(AAS或ASA);已知两角,找夹边(ASA)。
举例来说,对于已知BD=CE,AD=AE,求证AB=AC的问题,可以通过证明△ABD≌△ACE和△ADE≌△ABC来解决。
因为AD=AE,所以∠DAE=∠EAC;又因为BD=CE,所以∠BDA=∠XXX。
由此可以得出∠BAD=∠CAE。
又因为三角形内角和为180度,所以∠ABC=∠XXX。
因此,可以得出AB=AC。
再比如,对于已知AB=AE,AD=AC,∠BAD=∠EAC,BC、DE交于点O,求证OB=OE的问题,可以通过证明△ABO≌△AEO和△ADO≌△ACO来解决。
因为AB=AE,AD=AC,所以△ABD≌△XXX。
又因为∠BAD=∠EAC,所以△ABO≌△AEO。
因此,可以得出OB=OE。
2.若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于G,PH⊥EC于H,求PG+PH的值是否会变化?请说明理由并给出这个值。
解析:根据勾股定理,可以得到AG=$\sqrt{64-x^2}$,GC=$\sqrt{x^2-9}$,其中$x=AP$。
同理,可以得到BH=$\sqrt{64-y^2}$,HE=$\sqrt{y^2-9}$,其中$y=CP$。
因此,PG=$\sqrt{64-x^2}-3$,PH=$\sqrt{64-y^2}-3$。
苏科版八年级数学上册第一章 全等三角形单元测试卷( 含答案)-doc
苏科版八年级数学上册第一章 全等三角形单元测试卷第1章 全等三角形(时间:100分钟 总分:120分)一、选择题 (每题3分,共24分)1.下列图形中与如图所示的图形全等的是 ( )A .B .C .D .2.如图,已知,,.则的理由是AD BD ⊥BC AC ⊥AC BD =CAB DBA △△≌( )A .HLB .SASC .AASD .ASA3.如图,,则为的长为 ( )ΔΔ35ABD EBC AB BC ≅==,,DEA .B .C .D .85324.如图所示,的度数是( )ΔΔ,3095,ABC ADE B C EAD ∠=︒∠=︒∠≌,A .44°B .55°C .66°D .77°5.根据下列条件,能画出唯一△ABC 的是 ( )A .AB =3,BC =4,CA =7 B .AC =4,BC =3.5,∠A =60°C .∠A =45°,∠B =60°,∠C =75°D .AB =5,BC =4,∠C =90°6.如图,已知OF 平分,于D 点,于E 点,F 是OF AOB ∠PD OA ⊥PE OB ⊥上的另一点,连接DF 、EF .判断图中有几对全等三角形 ( )A .1B .2C .3D .47.如图,在中,,,是边上的中线,则的取ABC A 5AB =9AC =AD BC AD 值范围是 ( )A .B .C .D .414AD <<014AD <<27AD <<59AD <<8.如果△ABC 的三边长分别为3、5、7,△DEF 的三边长分别为3,3x-2,2x-1,若这两个三角形全等,则x 的值为 ( )A .B .4C .3D .573二、填空题(每题3分,共24分)9.已知图中的两个三角形全等,则∠α的大小为______.10.如图,E 是的边的中点,过点C 作,过点E 作直线ABC A AC CF AB ∥交于D ,交于F ,若,则的长为__________. DF AB CF 9 6.5AB CF ,==BD11.如图,小明把一块三角形的玻璃片打碎成三块,现要到玻璃店去配一块完全相同的玻璃片,那么最省事的办法是带_________去.12.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,EF=6,BG=3,DH=4,计算图中实线所围成的图形的面积S是______.13.如图是由4个相同的小正方形组成的网格图,则______.∠+∠=124cm14.如图,小虎用10块高度都是的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(,=AC BC ),点在上,点和分别与木墙的顶端重合,则两堵木墙∠=︒C DE A BACB90之间的距离为______.15.如图,在正方形方格中,各正方形的顶点叫做格点,三个顶点都在格点上的三角形称为格点三角形.图中是格点三角形,请你找出方格中AABC所有与全等,且以A为顶点的格点三角形.这样的三角形共有_____ AABC个(除外).AABC16.如图.已知中,厘米,,厘米,D 为ABC A 12AB AC ==B C ∠=∠8BC =的中点.如果点P 在线段上以2厘米/秒的速度由点B 向点C 运动,AB BC 同时,点Q 在线段上由点C 向点A 运动.若点Q 的运动速度为a 厘米/CA 秒,则当与全等时,a 的值为______.BPD △CQP V三、解答题(每题8分,共72分)17.如图所示,点O 为AC 和BD 的中点,求证:.ABO CDO ∆≅∆18.如图,△ABC 中,AD 是BC 边上的中线,E ,F 为直线AD 上的点,连接BE ,CF ,且BE ∥CF .(1)求证:△BDE ≌△CDF ;(2)若AE =13,AF =7,试求DE 的长.19.已知:如图,,,三点在同一条直线上,,,B C E AC DE ∥AC CE =.B D ∠=∠求证:.ABC CDE ∆≅∆20.问题发现:如图1,已知为线段上一点,分别以线段,为C AB AC BC 直角边作等腰直角三角形,,,,连接,90ACD ∠=︒CA CD =CB CE =AE BD ,线段,之间的数量关系为______;位置关系为_______.AE BD拓展探究:如图2,把绕点逆时针旋转,线段,交于点Rt ACD △C AE BD F ,则与之间的关系是否仍然成立?请说明理由.AE BD 21.如图,于点,点在直线上,90,ABC FA AB ∠=⊥ A D AB ,AD BC AF BD ==.(1)如图1,若点在线段上,判断与的数量关系和位置关系,D AB DF DC 并说明理由;(2)如图2,若点在线段的延长线上,其他条件不变,试判断(1)中D AB 结论是否成立,并说明理由.22.如图,在和中,,,.AOB A COD △OA OB =OC OD =50AOB COD ∠=∠=︒(1)试说明:;AC BD =(2)与相交于点,求的度数.AC BD P APB ∠23.如图,在△ABC 中,∠B=∠C ,点D 是边BC 上一点,CD=AB ,点E 在边AC 上.(1)若∠ADE=∠B ,求证:①∠BAD=∠CDE ;②BD=CE ;(2)若BD=CE ,∠BAC=70°,求∠ADE 的度数.24.(1)阅读理解:如图①,在中,,,,ABC A AB AC =AD BC ⊥CE AB ⊥垂足分别为,,且,与交于点,图中与全等的D E AE EC =AD CE F ABD △三角形是______,与全等的三角形是______;AEF A (2)问题探究:如图②,在中,,,平分ABC A 90A ∠=︒AB AC =BD ABC ∠,,垂足为,探究线段,,之间的关系,并证明;DE BC ⊥E BC AB AD (3)问题解决:如图③,在中,,,平分,ABC A 90A ∠=︒AB AC =CE ACB ∠交的延长线于点,求证:.BD CE ⊥CE D 2CE BD =25.问题背景:如图1:在四边形ABCD 中,AB =AD .∠BAD =120°.∠B =∠ADC =90°.E ,F 分别是BC .CD 上的点,且∠EAF =60°,探究图中线段BE ,EF ,FD 之间的数量关系.(1)小王同学探究此问题的方法是:延长FD 到点G .使DG =BE .连接AG ,先证明△ABE ≌△ADG ,再证明△AEF ≌△AGF ,可得出结论,他的结论应是 ;(直接写结论,不需证明)探索延伸:(2)如图2,若在四边形ABCD 中,AB =AD ,∠B +∠ADF =180°.E ,F 分别是BC ,CD 上的点,且∠EAF =∠BAD ,(1)中结论是否仍然成立,并说明理12由;(3)如图3,在四边形ABCD 中,AB =AD ,∠B +∠ADC =180°,E 、F 分别是边BC 、CD 延长线上的点,且∠EAF =∠BAD ,(1)中的结论是否仍然成立?若12成立,请证明:若不成立,请直接写出它们之间的数量关系.参考答案:1.解:观察四个选项可知,只有选项B 符合题意,故选:B .2.证明:∵AD ⊥BD ,BC ⊥AC ,∴∠C =∠D =90°,在Rt △CAB 和Rt △DBA 中,, AB BA AC BD=⎧⎨=⎩∴Rt △CAB ≌Rt △DBA (HL ).故选:A .3.解:∵△ABD ≌△EBC ,AB =3,BC =5,∴BE =AB =3,BD =BC =5,∴DE =BD -BE =2,故选D .4.在中,ABC A 3095,B C ∠=︒∠=︒,∴∠CAB =180°-30°-95°=55°,∵,ΔΔABC ADE ≌∴∠EAD =∠CAB =55°,故选B .5.解:A 、不满足三边关系,本选项不符合题意.B 、边边角三角形不能唯一确定.本选项不符合题意.C 、没有边的条件,三角形不能唯一确定.本选项不符合题意.D 、斜边直角边三角形唯一确定.本选项符合题意.故选:D .6. 解:OF 平分,,,AOB ∠PD OA ⊥PE OB ⊥,.DOP EOP ∴∠=∠PDO PEO ∠=∠ ,,,PDO PEO OP OP DOP EOP ∠=∠⎧⎪=⎨⎪∠=∠⎩.DOP EOP ∴≌△△,.PD PE ∴=DPO EPO ∠=∠.180180DPF DPO EPO EPF ∴∠=︒-∠=︒-∠=∠ ,,,PF PF DPF EPF PD PE =⎧⎪∠=∠⎨⎪=⎩.FDP FEP ∴≌△△.DFO EFO ∴∠=∠ ,,,DOP EOP OF OF DFO EFO ∠=∠⎧⎪=⎨⎪∠=∠⎩.FDO FEO ∴≌△△共有3对全等三角形.∴故选:C .7.解:如图,延长AD 至点E ,使得DE =AD ,∵是边上的中线,AD BC ∴,BD CD =在△ABD 和△CDE 中,, AD DE ADB CDE BD CD =⎧⎪∠=∠⎨⎪=⎩∴△ABD △CDE (SAS ),≌∴AB =CE=5,AD =DE ,∵△ACE 中,AC -CE <AE <AC +CE ,∴4<AE <14,∴2<AD <7.故选:C .8.解:此题需要分类讨论.①若,则,325x -=73x =所以 112173x -=≠所以此种情况不符合题意;②若,则,327x -=3x =所以.215x -=所以此种情况符合题意.综上所述:3x =故选C .9.解:∵图中的两个三角形全等,∴边a 所对的角为72°,边c 所对的角是58°,∴边b 所对的角是180°-72°-58°=50°,∴∠α=50°.故答案为:50°.10.证明:∵CF //AB ,∴∠ADE =∠F ,∠FCE =∠A ,∵点E 为AC 的中点,∴AE = EC ,在△ADE 和∆CFE 中,ADE F A FCE AE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌∆CFE (AAS ),∴AD = CF = 6.5,∵AB = 9,∴BD = AB - AD =9- 6.5= 2.5,故答案为: 2.5.11.解:第①块和第②块都没有保留完整的边,而全等三角形的判定定理中,至少存在一条边,第③块保留了一边边和两个角,则利用ASA 判定定理可得到一个全等三角形,进而可带③去,故答案为:③.12.解:∵∠EAF +∠BAG =90°,∠EAF +∠AEF =90°,∴∠BAG =∠AEF ,∵在△AEF 和△BAG 中,, 90F AGB AEF BAG AE AB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△AEF ≌△BAG (AAS ),同理△BCG ≌△CDH ,∴AF =BG ,AG =EF ,GC =DH ,BG =CH ,∵梯形DEFH 的面积=(EF +DH )•FH =80, 12S △AEF =S △ABG =AF •AE =9,12S △BCG =S △CDH =CH •DH =6,12∴图中实线所围成的图形的面积S =80-2×9-2×6=50,故答案为:50.13.解:由题意得:,,,AB ED =BC DC =90D B ∠=∠=︒所以△ABC ≌△EDC(SAS ),, 1BAC ∴∠=∠所以.12180∠+∠=︒故答案为:180°.14.解:由题意得:AC =BC ,∠ACB =90°,AD ⊥DE ,BE ⊥DE ,∴∠ADC =∠CEB =90°,∴∠ACD +∠BCE =90°,∠ACD +∠DAC =90°,∴∠BCE =∠DAC ,在△ADC 和△CEB 中,, ADC CEB DAC BCE AC BC ∠∠⎧⎪∠∠⎨⎪⎩===∴△ADC ≌△CEB (AAS );由题意得:AD =EC =12cm ,DC =BE =28cm ,∴DE =DC +CE =40(cm ),答:两堵木墙之间的距离为40cm ,故答案为:40 cm .15.解:如图,根据平移,对称,可得与△ABC 全等的三角形有5个,包括△ADE ,△ANF ,△ANG ,△ACG ,△AEF .故答案为:5.16.解:当BD =PC 时,△BPD 与△CQP 全等,∵点D 为AB 的中点,∴BD =AB =6cm ,12∵BD =PC ,∴BP =8-6=2(cm ),∵点P 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,∴运动时间时1s ,∵△DBP ≌△PCQ ,∴BP =CQ =2cm ,∴a =2÷1=2;当BD =CQ 时,△BDP ≌△CQP ,∵BD =6cm ,PB =PC ,∴QC =6cm ,∵BC =8cm ,∴BP =4cm ,∴运动时间为4÷2=2(s ),∴a =6÷2=3(m /s ),故答案为:2或3.17.解:点O 为AC 和BD 的中点,∴AO =CO ,BO =DO ,在△ABO 和△CDO 中,, AO CO AOB COD BO DO =⎧⎪∠=∠⎨⎪=⎩∴△ABO ≌△CDO (SAS ).18.(1)证明:∵AD 是BC 边上的中线,∴BD =CD ,∵BE ∥CF ,∴∠DBE =∠DCF ,在△BDE 和△CDF 中,,∴△BDE ≌△CDF (ASA ); DBE DCF BD CD BDE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩(2)解:∵AE =13,AF =7,∴EF =AE -AF =13-7=6,∵△BDE ≌△CDF ,∴DE =DF ,∵DE +DF =EF =6,∴DE =3.19.证明:,AC DE ∥ .ACB E ∴∠=∠在和中,ABC ∆CDE ∆∵, ACB E B D AC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩.()ABC CDE AAS ∴∆≅∆20.解:问题发现:延长BD ,交AE 于点F ,如图所示:∵,90ACD ︒=∠∴,90ACE DCB ︒∠=∠=又∵,,CA CD CB CE ==∴(SAS ),ACE DCB ∆≅∆,,AE ED CAE CDB ∴=∠=∠∵,90CDB CBD ︒∠+∠=∴,90CAE CBD ︒∠+∠=∴,90AFD ︒∠=∴,AF FB ⊥,AE BD ∴⊥故答案为:,;AE BD =AE BD ⊥拓展探究:成立.理由如下:设与相交于点,如图1所示:CE BD G∵,90ACD BCE ︒∠=∠=∴,ACE BCD ∠=∠又∵,,CB CE =AC CD =∴(SAS ),ACE DCB ∆≅∆∴,,AE BD =AEC DBC ∠=∠∵,90CBD CGB ︒∠+∠=∴,90AEC EGF ︒∠+∠=∴,90AFB ︒∠=∴,BD AE ⊥即,依然成立.AE BD =AE BD ⊥21.(1)解:∵,90,ABC FA AB ∠=⊥ ∴,90ABC DAF ∠∠== 在△ADF 与△BCD 中, AF BD DAF ABC AD BC =⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△BCD ,∴DF =DC ,,ADF BCD ∠=∠∵∠BDC +∠BCD =90°,∴∠BDC +∠ADF =90°,∴∠FDC =90°,即DF ⊥DC .(2)∵,90,ABC FA AB ∠=⊥∴,90DBC DAF ∠∠== 在△ADF 与△BCD 中, AF BD DAF DBC AD BC =⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△BCD ,∴DF =DC ,,ADF BCD ∠=∠∵∠BDC +∠BCD =90°,∴∠BDC +∠ADF =90°,∴∠FDC =90°,即DF ⊥DC .22.(1)证明:∵∠AOB =∠COD ,∴∠AOB +∠BOC =∠COD +∠BOC ,即∠AOC =∠BOD ,∵OA =OB ,OC =OD ,∴△AOC ≌△BOD (SAS ),∴AC =BD ;(2)解:如图,设AC 与BO 交于点M ,则∠AMO =∠BMP ,∵△AOC ≌△BOD ,∴∠OAC =∠OBD ,∴180°-∠OAC -∠AMO =180°-∠OBD -∠BMP ,即∠MPB =∠AOM =50°,∴∠APB =50°.23.(1)①∵在△ABC 中,∠BAD +∠B +∠ADB =180°∴∠BAD =180°-∠B -∠ADB ,又∵∠CDE =180°-∠ADE -∠ADB 且∠ADE =∠B ∴∠BAD =∠CDE ② 由①得∠BAD =∠CDE 在△ABD 与△DCE 中, B C AB DC BAD CDE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABD ≌△DCE (ASA )∴BD =CE(2)∵在△ABD 与△DCE 中,∴△ABD ≌△DCE (SAS)∴∠BAD =∠CDE 又AB DC B C BD CE =⎧⎪∠=∠⎨⎪=⎩∵∠ADE =180°-∠CDE -∠ADB ∴∠ADE =180°-∠BAD -∠ADB =∠B 在△ABC 中,∠BAC =70°,∠B =∠C ∴∠B =∠C =(180°-∠BAC )=1212⨯110°=55°∴∠ADE =55°24.解:(1),AD BC ⊥,90ADB ADC ∠∠∴==︒,,AB AC = AD AD =≌,Rt ABD ∴A ()HL Rt ACD A ,CE AB ⊥ ,90AEC BEC ADB ∠∠∠∴===︒,90BAD B B BCE ∠∠∠∠+=︒=+ ,BAD BCE ∠∠∴=又,AE EC = ≌,AEF ∴A ()ASA CEB A 故答案为:,;ACD △CEB △(2),理由如下:BC AB AD =+,,90A ∠=︒ AB AC =,45ABC C ∠∠∴==︒,DE BC ⊥ ,45CDE C ∠∠∴==︒,CE DE ∴=平分,BD Q ABC ∠,ABD CBD ∠∠∴=又,,A DEB ∠∠= BD BD =≌,ABD ∴A ()AAS EBD A ,,AB BE ∴=AD DE EC ==;BC BE EC AB AD ∴=+=+(3)如图,延长,交于点,BD CA H平分,CE ACB ∠,ACE BCE ∠∠∴=又,,CD CD = 90CDB CDH ∠∠==︒≌,CBD ∴A ()ASA CHD A ,BD DH ∴=,90CDH BAH ∠∠==︒ ,90H HBA H ACE ∠∠∠∠∴+=︒=+,ACE HBA ∠∠∴=又,,AB AC = 90CAE BAH ∠∠==︒≌,ACE ∴A ()ASA ABH A ,CE BH ∴=.2CE BD ∴=25.(1)解:EF =BE +FD .延长FD 到点G .使DG =BE .连接AG ,∵∠ABE =∠ADG =∠ADC =90°,AB =AD ,∴△ABE ≌△ADG (SAS ).∴AE =AG ,∠BAE =∠DAG .∴∠BAE +∠DAF =∠DAG +∠DAF =∠EAF =60°.∴∠GAF =∠EAF =60°.又∵AF =AF ,∴△AGF ≌△AEF (SAS ).∴FG =EF .∵FG =DF +DG .∴EF =BE +FD .故答案为:EF =BE +FD ;(2)解:(1)中的结论EF =BE +FD 仍然成立.证明:如图②中,延长CB 至M ,使BM =DF ,连接AM .∵∠ABC +∠D =180°,∠1+∠ABC =180°,∴∠1=∠D ,在△ABM 与△ADF 中,, 1AB AD D BM DF =⎧⎪∠=∠⎨⎪=⎩∴△ABM ≌△ADF (SAS ).∴AF =AM ,∠2=∠3.∵∠EAF =∠BAD ,12∴∠2+∠4=∠BAD =∠EAF .12∴∠3+∠4=∠EAF ,即∠MAE =∠EAF .在△AME 与△AFE 中,, AM AF MAE EAF AE AE =⎧⎪∠=∠⎨⎪=⎩∴△AME ≌△AFE (SAS ).∴EF =ME ,即EF =BE +BM ,∴EF =BE +DF ;(3)解:结论EF =BE +FD 不成立,结论:EF =BE -FD . 证明:如图③中,在BE 上截取BG ,使BG =DF ,连接AG .∵∠B +∠ADC =180°,∠ADF +∠ADC =180°,∴∠B =∠ADF .在△ABG 与△ADF 中,, AB AD ABG ADF BG DF =⎧⎪∠=∠⎨⎪=⎩∴△ABG ≌△ADF (SAS ).∴∠BAG =∠DAF ,AG =AF .∴∠BAG +∠EAD =∠DAF +∠EAD =∠EAF =∠BAD . 12∴∠GAE =∠EAF .∵AE =AE ,∴△AEG ≌△AEF (SAS ),∴EG =EF ,∵EG =BE -BG ,∴EF=BE-FD.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八班级数学全等三角形试卷一.选择题(共7小题)1.(2016春•淅川县期末)如图是一个4×4的形网格,图中所标示的7个角的角度之和等于()A.585°B.540° C.270°D.315°2.(2015•黄冈校级自主招生)如图,在△ABC中,AB=AC,∠ABC=40°,BD是∠ABC的平分线,延长BD至E,使DE=AD,则∠ECA的度数为()A.30°B.35°C.40°D.45°3.(2015秋•县期末)如图所示,AB∥EF∥CD,∠ABC=90°,AB=DC,那么图中的全等三角形有()A.1对B.2对C.3对D.4对4.(2015秋•宝应县期末)如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB 的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD5.(2015秋•郯城县期末)如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则这四个结论中正确的有()①PA平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP.A.4个B.3个C.2个D.1个6.(2014•荆州模拟)如图,有一块边长为4的形塑料摸板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E.则四边形AECF的面积是()A.13 B.14 C.15 D.167.(2014•模拟)已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF.其中正确的是()A.①②③B.①③④C.①②④D.①②③④二.填空题(共8小题)8.(2005•)如图,已知:AC=AB,AE=AD,请写出一个与点D有关的正确结论:.(例如:∠ADO+∠ODB=180°,DB=EC等,除此之外再填一个).9.(2003•)如图,∠E=∠F=90°,∠B=∠C,AE=AF,给出下列结论:(1)∠1=∠2;(2)BE=CF;(3)△ACN≌△ABM;(4)CD=DN,其中正确的结论是.(注:将你认为正确的结论都填上).10.(2010•校级模拟)“石门福地”小区有一块直角梯形花园,测量AB=20米,∠DEC=90°,∠ECD=45°,则该花园面积为平方米.11.(2009•)如图,已知AB=AD,∠BAE=∠DAC,要使△ABC≌△ADE,可补充的条件是(写出一个即可).12.(2015春•期末)如图,△ABC≌△ADE,BC的延长线交DA于F,交DE于G,∠D=25°,∠E=105°,∠DAC=16°,则∠DGB= .13.(2015秋•偃师市期末)如图所示,△ABC≌△ADE,BC的延长线交DA于F,交DE于G,∠ACB=∠AED=105°,∠CAD=15°,∠B=∠D=30°,则∠1的度数为度.14.(2015秋•乌达区期末)如图为6个边长等的形的组合图形,则∠1+∠2+∠3= °.15.(2014秋•阜宁县期末)在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=2cm,过点E作EF⊥AC交CD的延长线于点F.若AE=3cm,则EF= cm.三.解答题(共9小题)16.(2015•一模)已知:△ABC中,BD、CE分别是AC、AB边上的高,BQ=AC,点F在CE的延长线上,CF=AB,求证:AF⊥AQ.17.(2008•)CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α.(1)若直线CD经过∠BCA的部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE CF;EF |BE﹣AF|(填“>”,“<”或“=”);②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).18.(2007•)课外兴趣小组活动时,许老师出示了如下问题:如图1,己知四边形ABCD 中,AC平分∠DAB,∠DAB=60°,∠B与∠D互补,求证:AB+AD=AC.小敏反复探索,不得其解.她想,若将四边形ABCD特殊化,看如何解决该问题.(1)特殊情况入手添加条件:“∠B=∠D”,如图2,可证AB+AD=AC;(请你完成此证明)(2)解决原来问题受到(1)的启发,在原问题中,添加辅助线:如图3,过C点分别作AB、AD的垂线,垂足分别为E、F.(请你补全证明)19.(2016•同安区一模)如图所示,CD=CA,∠1=∠2,EC=BC,求证:△ABC≌△DEC.20.(2016•模拟)如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,CE⊥BD于点E.求证:AD=BE.21.(2016•洛江区模拟)如图,∠BAC=∠DAE,∠ABD=∠ACE,AB=AC.求证:BD=CE.22.(2015•)如图,已知∠ABC=90°,D是直线AB上的点,AD=BC.(1)如图1,过点A作AF⊥AB,并截取AF=BD,连接DC、DF、CF,判断△CDF的形状并证明;(2)如图2,E是直线BC上一点,且CE=BD,直线AE、CD相交于点P,∠APD的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.23.(2005•)(本题有3小题,第(1)小题为必答题,满分5分;第(2)、(3)小题为选答题,其中,第(2)小题满分3分,第(3)小题满分6分,请从中任选1小题作答,如两题都答,以第(2)小题评分.)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.注意:第(2)、(3)小题你选答的是第2小题.24.(2016•)已知四边形ABCD中,AB=AD,AB⊥AD,连接AC,过点A作AE⊥AC,且使AE=AC,连接BE,过A作AH⊥CD于H交BE于F.(1)如图1,当E在CD的延长线上时,求证:①△ABC≌△ADE;②BF=EF;(2)如图2,当E不在CD的延长线上时,BF=EF还成立吗?请证明你的结论.八班级数学全等三角形试卷参考答案与试题解析一.选择题(共7小题)1.(2016春•淅川县期末)如图是一个4×4的形网格,图中所标示的7个角的角度之和等于()A.585°B.540° C.270°D.315°【解答】解:仔细观察图形,我们可以发现:∵AB=AZ,BC=ZV,∠B=∠Z,∴△ABC≌△AZV,∴∠1+∠7=180°,同理可得:∠2+∠6=180°,∠3+∠5=180°,∠4=45°,所以说图示的7个角的度数和为∠1+∠7+∠2+∠6+∠3+∠5+∠4=180°+180°+180°+45°=585°.【点评】本题考查了全等三角形对应角相等的性质,求证全等三角形,找出对应角是解决本题的关键.2.(2015•黄冈校级自主招生)如图,在△ABC中,AB=AC,∠ABC=40°,BD是∠ABC的平分线,延长BD至E,使DE=AD,则∠ECA的度数为()A.30°B.35°C.40°D.45°【解答】解:在BC上截取BF=AB,连DF,则有△ABD≌△FBD(SAS),∴DF=DA=DE,又∵∠ACB=∠ABC=40°,∠DFC=180°﹣∠A=80°,∴∠FDC=60°,∵∠EDC=∠ADB=180°﹣∠ABD﹣∠A=180°﹣20°﹣100°=60°,∴△DCE≌△DCF(SAS),故∠ECA=∠DCB=40°.故选:C.【点评】本题主要考查了全等三角形的判定及性质以及三角形角和定理,能够掌握并进行一些简单的计算.3.(2015秋•县期末)如图所示,AB∥EF∥CD,∠ABC=90°,AB=DC,那么图中的全等三角形有()A.1对B.2对C.3对D.4对【解答】解:∵AB∥EF∥DC,∴∠ABC=∠DCB,在△ABC和△DCB中,∵,∴△ABC≌△DCB(SAS);在△ABE和△CDE中,∵,∴△ABE≌△CDE(AAS);在△BFE和△CFE中,∵,∴△BFE≌△CFE.∴图中的全等三角形共有3对.故选C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.(2015秋•宝应县期末)如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB 的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD【解答】解:A、添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项不合题意;B、添加AB=DC可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C、添加∠ACB=∠DBC可利用ASA定理判定△ABC≌△DCB,故此选项不合题意;D、添加AC=BD不能判定△ABC≌△DCB,故此选项符合题意;故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.(2015秋•郯城县期末)如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则这四个结论中正确的有()①PA平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP.A.4个B.3个C.2个D.1个【解答】解:(1)PA平分∠BAC.∵PR⊥AB,PS⊥AC,PR=PS,AP=AP,∴△APR≌△APS,∴∠PAR=∠PAS,∴PA平分∠BAC;(2)由(1)中的全等也可得AS=AR;(3)∵AQ=PR,∴∠1=∠APQ,∴∠PQS=∠1+∠APQ=2∠1,又∵PA平分∠BAC,∴∠BAC=2∠1,∴∠PQS=∠BAC,∴PQ∥AR;(4)∵PR⊥AB,PS⊥AC,∵PR=PS,∴△BRP不一定全等与△CSP(只具备一角一边的两三角形不一定全等).故选B.【点评】本题考查了全等三角形的判定和性质;做题时利用了平行线的判定、等边对等角、三角形外角的性质,要熟练掌握这些知识并能灵活应用.6.(2014•荆州模拟)如图,有一块边长为4的形塑料摸板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E.则四边形AECF的面积是()A.13 B.14 C.15 D.16【解答】解:∵四边形ABCD为形,∴∠D=∠ABC=90°,AD=AB,∴∠ABE=∠D=90°,∵∠EAF=90°,∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,∴△AEB≌△AFD,∴S△AEB=S△AFD,∴它们都加上四边形ABCF的面积,可得到四边形AECF的面积=形的面积=16.故选D.【点评】本题主要考查了在旋转过程中一定会出现全等三角形,应根据所给条件找到,难度适中.7.(2014•模拟)已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF.其中正确的是()A.①②③B.①③④C.①②④D.①②③④【解答】解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,∴在△ABD和△EBC中,,∴△ABD≌△EBC(SAS),…①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,…②正确;③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE为等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE=EC.…③正确;④过E作EG⊥BC于G点,∵E是BD上的点,∴EF=EG,∵在RT△BEG和RT△BEF中,,∴RT△BEG≌RT△BEF(HL),∴BG=BF,∵在RT△CEG和RT△AFE中,,∴RT△CEG≌RT△AFE(HL),∴AF=CG,∴BA+BC=BF+FA+BG﹣CG=BF+BG=2BF.…④正确.故选D.【点评】本题考查了全等三角形的判定,考查了全等三角形的对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等性质是解题的关键.二.填空题(共8小题)8.(2005•)如图,已知:AC=AB,AE=AD,请写出一个与点D有关的正确结论:∠ADC=∠AEB或∠CDB=∠CEB(答案不唯一).(例如:∠ADO+∠ODB=180°,DB=EC等,除此之外再填一个).【解答】解:在△ADC和△AEB中,AC=AB,AE=AD,∠A=∠A,∴△ADC≌△AEB.∴∠ADC=∠AEB,∠CDB=∠CEB.(答案不唯一).故填∠ADC=∠AEB或∠CDB=∠CEB.【点评】本题考查了全等三角形的判定与性质;题目是一道开放结论的试题,它有利于考查学生的发散思维能力和创新意识.9.(2003•)如图,∠E=∠F=90°,∠B=∠C,AE=AF,给出下列结论:(1)∠1=∠2;(2)BE=CF;(3)△ACN≌△ABM;(4)CD=DN,其中正确的结论是∠1=∠2,BE=CF,△ACN ≌△ABM.(注:将你认为正确的结论都填上).【解答】解:∵∠E=∠F=90°,∠B=∠C,AE=AF∴△AEB≌△AFC(AAS),∴BE=CF故(2)正确;∵∠1=∠EAB﹣∠CAB,∠2=∠FAC﹣∠CAB又∵∠EAB=∠FAC∴∠1=∠2故(1)正确;∵AC=AB,∠B=∠C,∠CAN=∠BAM∴△ACN≌△ABM(ASA)故(3)正确.∴正确的结论是∠1=∠2,BE=CF,△ACN≌△ABM.故填∠1=∠2,BE=CF,△ACN≌△ABM.【点评】本题考查了全等三角形的判定与性质;题目是全等三角形的判定、性质的综合运用,要求学生能熟练运用性质解题.10.(2010•校级模拟)“石门福地”小区有一块直角梯形花园,测量AB=20米,∠DEC=90°,∠ECD=45°,则该花园面积为200平方米.【解答】解:∵∠DEC=90°,∠ECD=45°,∴∠EDC=45°,∴DE=CE,∵四边形ABCD是直角梯形,∴AD∥BC,∠A=∠B=90°,∴∠ADC+∠BCD=180°,∵∠ECD=∠EDC=45°,∴∠1+∠3=90°,∵∠1+∠2=90°,∠3+∠4=90°,∴∠1=∠4,∠2=∠3,在Rt△ADE与Rt△BEC中,∠1=∠4,ED=CE,∠2=∠3,∴Rt△ADE≌Rt△BEC,∴AD=BE,AE=BC,∴AD+BC=AB=20米,∴该花园面积=(AD+BC)×AB=×20×20=200(平方米).故答案为:200.【点评】本题考查的是全等三角形的应用及梯形的面积公式、平行线的性质,根据题意得出Rt△ADE≌Rt△BEC是解答此题的关键.11.(2009•)如图,已知AB=AD,∠BAE=∠DAC,要使△ABC≌△ADE,可补充的条件是AC=AE或∠C=∠E或∠B=∠D(写出一个即可).【解答】解:可补充的条件是:当AC=AE,△ABC≌△ADE(SAS);当∠C=∠E,△ABC≌△ADE(AAS);当∠B=∠D,△ABC≌△ADE(ASA).故答案为:AC=AE或∠C=∠E或∠B=∠D.【点评】本题考查了全等三角形的判定;题目是开放型题目,根据已知条件结合判定方法,找出所需条件,一般答案不唯一,只要符合要求即可.12.(2015春•期末)如图,△ABC≌△ADE,BC的延长线交DA于F,交DE于G,∠D=25°,∠E=105°,∠DAC=16°,则∠DGB=66°.【解答】解:∵△ABC≌△ADE,∴∠ACB=∠E=105°,∴∠ACF=180°﹣105°=75°,在△ACF和△DGF中,∠D+∠DGB=∠DAC+∠ACF,即25°+∠DGB=16°+75°,解得∠DGB=66°.故答案为:66°.【点评】本题考查了全等三角形的性质,三角形的角和定理,熟记性质并准确识图是解题的关键.13.(2015秋•偃师市期末)如图所示,△ABC≌△ADE,BC的延长线交DA于F,交DE于G,∠ACB=∠AED=105°,∠CAD=15°,∠B=∠D=30°,则∠1的度数为60度.【解答】解:∵∠ACB=∠AFC+∠CAF∴∠AFC=∠ACB﹣∠CAF=105°﹣15°=90°∴∠DFG=∠AFC=90°∴∠1=180°﹣90°﹣∠D=180°﹣90°﹣30°=60°故填60.【点评】本题考查了全等三角形的性质;解决本题的关键是能够正确理解题意,由已知条件,联想到所学的定理,充分挖掘题目中的结论是解题的关键.14.(2015秋•乌达区期末)如图为6个边长等的形的组合图形,则∠1+∠2+∠3=°.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=°.故填135.【点评】此题综合考查角平分线,余角,要注意∠1与∠3互余,∠2是直角的一半,特别是观察图形的能力.15.(2014秋•阜宁县期末)在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=2cm,过点E作EF⊥AC交CD的延长线于点F.若AE=3cm,则EF=5cm.【解答】解:∵CD⊥AB,EF⊥AC,∴∠FEC=∠ADC=∠ACB=90°,∴∠ACD+∠A=∠ACD+∠F=90°,∴∠A=∠F.∵BC=EC=2cm,在△ABC和△FCE中,∴△ABC≌△FCE(SAS),∴AC=FE.∵AC=AE+EC,∴FE=AE+EC.∵EC=2cm,AE=3cm,∴FE=2+3=5cm.故答案为:5【点评】本题考查了垂直的性质的运用,直角三角形的性质的运用,全等三角形的判定与性质的运用,解答时证明三角形全等是关键.三.解答题(共9小题)16.(2015•一模)已知:△ABC中,BD、CE分别是AC、AB边上的高,BQ=AC,点F在CE的延长线上,CF=AB,求证:AF⊥AQ.【解答】证明:∵BD、CE分别是AC、AB边上的高,∴∠ADB=90°,∠AEC=90°,∴∠ABQ+∠BAD=90°,∠BAC+∠ACE=90°,∴∠ABD=∠ACE,在△ABQ和△ACF中,∴△ABQ≌△ACF(SAS),∴∠F=∠BAQ,∵∠F+∠FAE=90°,∴∠BAQ+∠FAE═90°,∴AF⊥AQ.【点评】此题主要考查了全等三角形的判定与性质,关键是掌握全等三角形的判定方法,以及全等三角形的性质定理.17.(2008•)CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α.(1)若直线CD经过∠BCA的部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE=CF;EF=|BE﹣AF|(填“>”,“<”或“=”);②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件∠α+∠BCA=180°,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).【解答】解:(1)①∵∠BCA=90°,∠α=90°,∴∠BCE+∠CBE=90°,∠BCE+∠ACF=90°,∴∠CBE=∠ACF,∵CA=CB,∠BEC=∠CFA;∴△BCE≌△CAF,∴BE=CF;EF=|CF﹣CE|=|BE﹣AF|.②所填的条件是:∠α+∠BCA=180°.证明:在△BCE中,∠CBE+∠BCE=180°﹣∠BEC=180°﹣∠α.∵∠BCA=180°﹣∠α,∴∠CBE+∠BCE=∠BCA.又∵∠ACF+∠BCE=∠BCA,∴∠CBE=∠ACF,又∵BC=CA,∠BEC=∠CFA,∴△BCE≌△CAF(AAS)∴BE=CF,CE=AF,又∵EF=CF﹣CE,∴EF=|BE﹣AF|.(2)猜想:EF=BE+AF.证明过程:∵∠BEC=∠CFA=∠α,∠α=∠BCA,∠BCA+∠BCE+∠ACF=180°,∠CFA+∠CAF+∠ACF=180°,∴∠BCE=∠CAF,又∵BC=CA,∴△BCE≌△CAF(AAS).∴BE=CF,EC=FA,∴EF=EC+CF=BE+AF.【点评】本题综合考查全等三角形、等边三角形和四边形的有关知识.注意对三角形全等,相似的综合应用.18.(2007•)课外兴趣小组活动时,许老师出示了如下问题:如图1,己知四边形ABCD 中,AC平分∠DAB,∠DAB=60°,∠B与∠D互补,求证:AB+AD=AC.小敏反复探索,不得其解.她想,若将四边形ABCD特殊化,看如何解决该问题.(1)特殊情况入手添加条件:“∠B=∠D”,如图2,可证AB+AD=AC;(请你完成此证明)(2)解决原来问题受到(1)的启发,在原问题中,添加辅助线:如图3,过C点分别作AB、AD的垂线,垂足分别为E、F.(请你补全证明)【解答】证明:(1)∵∠B与∠D互补,∠B=∠D,∴∠B=∠D=90°,∠CAD=∠CAB=∠DAB=30°,∵在△ADC中,cos30°=,在△ABC中,cos30°=,∴AB=AC,AD=.∴AB+AD=.(2)由(1)知,AE+AF=AC,∵AC为角平分线,CF⊥AD,CE⊥AB,∴CE=CF.而∠ABC与∠D互补,∠ABC与∠CBE也互补,∴∠D=∠CBE.∵在Rt△CDF与Rt△CBE中,∴Rt△CDF≌Rt△CBE.∴DF=BE.∴AB+AD=AB+(AF+FD)=(AB+BE)+AF=AE+AF=AC.【点评】本题考查了直角三角形全等的判定及性质;通过辅助线来构建全等三角形是解题的常用方法,也是解决本题的关键.19.(2016•同安区一模)如图所示,CD=CA,∠1=∠2,EC=BC,求证:△ABC≌△DEC.【解答】证明:∵∠1=∠2,∴∠ACB=∠DCE,在△ABC和△DEC中,,∴△ABC≌△DEC(SAS).【点评】本题考查了三角形全等的判定方法和性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.结合图形做题,由∠1=∠2得∠ACB=∠DCE是解决本题的关键.20.(2016•模拟)如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,CE⊥BD于点E.求证:AD=BE.【解答】证明:∵AD∥BC,∴∠ADB=∠DBC.∵CE⊥BD,∴∠BEC=90°.∵∠A=90°,∴∠A=∠BEC.∵BD=BC,∴△ABD≌△BCE.∴AD=BE.【点评】本题考查了直角三角形全等的判定及性质;此题把全等三角形放在梯形的背景之下,利用全等三角形的性质与判定解决题目问题.21.(2016•洛江区模拟)如图,∠BAC=∠DAE,∠ABD=∠ACE,AB=AC.求证:BD=CE.【解答】证明:∵∠BAC=∠DAE∴∠BAD=∠CAE∵∠ABD=∠ACE,AB=AC∵在△ABD与△ACE中,∴△ABD≌△ACE(ASA)∴BD=CE.【点评】本题考查了全等三角形的判定与性质,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等.22.(2015•)如图,已知∠ABC=90°,D是直线AB上的点,AD=BC.(1)如图1,过点A作AF⊥AB,并截取AF=BD,连接DC、DF、CF,判断△CDF的形状并证明;(2)如图2,E是直线BC上一点,且CE=BD,直线AE、CD相交于点P,∠APD的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.【解答】解:(1)△CDF是等腰直角三角形,理由如下:∵AF⊥AD,∠ABC=90°,∴∠FAD=∠DBC,在△FAD与△DBC中,,∴△FAD≌△DBC(SAS),∴FD=DC,∴△CDF是等腰三角形,∵△FAD≌△DBC,∴∠FDA=∠DCB,∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,∴△CDF是等腰直角三角形;(2)作AF⊥AB于A,使AF=BD,连结DF,CF,如图,∵AF⊥AD,∠ABC=90°,∴∠FAD=∠DBC,在△FAD与△DBC中,,∴△FAD≌△DBC(SAS),∴FD=DC,∴△CDF是等腰三角形,∵△FAD≌△DBC,∴∠FDA=∠DCB,∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,∴△CDF是等腰直角三角形,∴∠FCD=45°,∵AF∥CE,且AF=CE,∴四边形AFCE是平行四边形,∴AE∥CF,∴∠APD=∠FCD=45°.【点评】此题考查了全等三角形的判定与性质的运用,平行四边形的判定及性质的运用,等腰直角三角形的判定及性质的运用.解答时证明三角形全等是关键.23.(2005•)(本题有3小题,第(1)小题为必答题,满分5分;第(2)、(3)小题为选答题,其中,第(2)小题满分3分,第(3)小题满分6分,请从中任选1小题作答,如两题都答,以第(2)小题评分.)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.注意:第(2)、(3)小题你选答的是第2小题.【解答】证明:(1)①∵∠ADC=∠ACB=∠BEC=90°,∴∠CAD+∠ACD=90°,∠BCE+∠CBE=90°,∠ACD+∠BCE=90°.∴∠CAD=∠BCE.∵AC=BC,∴△ADC≌△CEB.②∵△ADC≌△CEB,∴CE=AD,CD=BE.∴DE=CE+CD=AD+BE.解:(2)∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE.又∵AC=BC,∴△ACD≌△CBE.∴CE=AD,CD=BE.∴DE=CE﹣CD=AD﹣BE.(3)当MN旋转到图3的位置时,AD、DE、BE所满足的等量关系是DE=BE﹣AD(或AD=BE﹣DE,BE=AD+DE等).∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE,又∵AC=BC,∴△ACD≌△CBE,∴AD=CE,CD=BE,∴DE=CD﹣CE=BE﹣AD.【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,再根据全等三角形对应边相等得出结论.24.(2016•)已知四边形ABCD中,AB=AD,AB⊥AD,连接AC,过点A作AE⊥AC,且使AE=AC,连接BE,过A作AH⊥CD于H交BE于F.(1)如图1,当E在CD的延长线上时,求证:①△ABC≌△ADE;②BF=EF;(2)如图2,当E不在CD的延长线上时,BF=EF还成立吗?请证明你的结论.【解答】证明:(1)①如图1,∵AB⊥AD,AE⊥AC,∴∠BAD=90°,∠CAE=90°,∴∠1=∠2,在△ABC和△ADE中,∵∴△ABC≌△ADE(SAS);②如图1,∵△ABC≌△ADE,∴∠AEC=∠3,在Rt△ACE中,∠ACE+∠AEC=90°,∴∠BCE=90°,∵AH⊥CD,AE=AC,∴CH=HE,∵∠AHE=∠BCE=90°,∴BC∥FH,∴==1,∴BF=EF;(2)结论仍然成立,理由是:如图2所示,过E作MN∥AH,交BA、CD延长线于M、N,∵∠CAE=90°,∠BAD=90°,∴∠1+∠2=90°,∠1+∠CAD=90°,∴∠2=∠CAD,∵MN∥AH,∴∠3=∠HAE,∵∠ACH+∠CAH=90°,∠CAH+∠HAE=90°,∴∠ACH=∠HAE,∴∠3=∠ACH,在△MAE和△DAC中,∵∴△MAE≌△DAC(ASA),∴AM=AD,∵AB=AD,∴AB=AM,∵AF∥ME,∴==1,∴BF=EF.【点评】本题考查了全等三角形的性质和判定,平行线分线段成比例的性质,本题的关键是能正确找出全等三角形;在几何图形中证明线段相等或已知线段相等的一般思路是:①证明相等线段所在的三角形全等;②利用相等线段的比值为1证相等.。