数列练习题(附答案)
高二数学数列专题练习题(含答案)
高二数学数列专题练习题(含答案)高中数学《数列》专题练1.数列基本概念已知数列的前n项和S_n和第n项a_n之间的关系为:a_n=S_n-S_{n-1} (n>1),当n=1时,a_1=S_1.通过这个关系式可以求出任意一项的值。
2.等差数列和等比数列等差数列和等比数列是两种常见的数列类型。
对于等差数列,有通项公式a_n=a_1+(n-1)d,其中d为公差。
对于等比数列,有通项公式a_n=a_1*q^{n-1},其中q为公比。
如果a、G、b成等比数列,那么G叫做a与b的等比中项。
如果a、A、b、B成等差数列,那么A、B叫做a、b的等差中项。
3.求和公式对于等差数列,前n项和S_n=n(a_1+a_n)/2.对于等比数列,前n项和S_n=a_1(1-q^n)/(1-q),其中q不等于1.另外,对于等差数列,S_n、S_{2n}-S_n、S_{3n}-S_{2n}构成等差数列;对于等比数列,S_n、S_{2n}/S_n、S_{3n}/S_{2n}构成等比数列。
4.数列的函数看法数列可以看作是一个函数,通常有以下几种形式:a_n=dn+(a_1-d),a_n=An^2+Bn+C,a_n=a_1q^n,a_n=k*n+b。
5.判定方法对于数列的常数项,可以使用定义法证明;对于等差中项,可以证明2a_n=a_{n-1}+a_{n+1};对于等比中项,可以证明2a_n=a_{n-1}*a_{n+1}。
最后,对于数列的通项公式,可以使用数学归纳法证明。
1.数列基本概念和通项公式数列是按照一定规律排列的一列数,通常用{ }表示。
其中,第n项表示为an,公差为d,公比为q。
常用的数列有等差数列和等比数列。
等差数列的通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差。
等比数列的通项公式为an = a1q^(n-1),其中a1为首项,q为公比。
2.数列求和公式数列求和是指将数列中的所有项加起来的操作。
数列习题及答案
数列综合题一.选择题1.如果等差数列{}n a 中,34512a a a ++=,那么127...a a a +++=( )A.14 B .21 C .28 D .35 2.设数列{}n a 的前n 项和3S n n =,则4a 的值为( )A.15 B .37 C .27 D .64 3.设等比数列{}n a 的公比2q =,前n 项和为n S ,则42S a =( ) A .2B .4C .215 D .217 4.设n S 为等比数列{}n a 的前n 项和,已知3432S a =-,2332S a =-,则公比q =( )A .3B .4C .5D .65.已知,231,231-=+=b a 则b a ,的等差中项为( )A .3B .2 C.3D.26.已知}{n a 是等比数列,22a =,514a =,则12231n n a a a a a a ++++=( )A .32(12)3n -- B .16(14)n -- C .16(12)n -- D .32(14)3n -- 7.若数列}{n a 的通项公式是(1)(32)n n a n =--,则1220a a a ++⋅⋅+= ( )A .30B .29C .-30D .-298.已知等比数列{}n a 满足0,1,2,n a n >=,且25252(3)nn a a n -⋅=≥,则当1n ≥时,2123221log log log n a a a -+++=( )A. (21)n n -B. 2(1)n +C. 2nD. 2(1)n - 9.设{}n a 是等差数列,1359a a a ++=,69a =,则这个数列的前6项和等于( ) A .12B. 24C. 36D. 4810.数列{}n a 中,123,6,a a ==且12n n n a a a ++=+,则2004a =( ) A.3 B.-3 C.-6 D.611.在等差数列{}n a 中,1031531=++a a a ,则5a 的值为( ) .A.2B.3C.4D.512.等比数列{}n a 的前n 项和为n s ,若6542s s s +=,则数列{}n a 的公比q 的值为( )A.-2或1B.-1或2C.-2D.113.已知{}n a 为等差数列,其公差为-2,且7a 是3a 与9a 的等比中项,n s 为{}n a 的前n 项和,∈n N *,则10s 的值为( )A.-110B.-90C.90D.110 14.等差数列{}n a 的公差为2,若842,,a a a 成等比数列,则{}n a 的前n 项和n s 等于( )A.)1(+n nB.)1(-n nC.2)1(+n n D.2)1(-n n 15.在正项等比数列{}n a 中,2312,21,3a a a 成等差数列,则2013201220152014a a a a ++等于( )A.3或-1B.9或1C.1D.916.已知数列,,1617,815,413,211 则其前n 项和n s 为( )A.n n 2112-+ B.n n 2122-+ C.12211--+n n D.12212--+n n17.若数列{}n a 的通项公式为)2(2+=n n a n ,则其前n 项和n s 为( )A.211+-n B.11123+--n n C.21123+--n n D.211123+-+-n n18.某种细胞开始有2个,1小时后分裂成4个并死去1个,2小时后分裂成6个并死去1个,3小时后分裂成10个并死去1个,…,按此规律进行下去,6小时后细胞存活的个数是( )A .33个B .65个C .66个D .129个 19.设)(x f 是定义在R 上的恒不为零的函数,且对任意的实数∈y x ,R ,都有)()()(y x f y f x f +=⋅,若)(,211n f a a n ==(∈n N *),则数列{}n a 的前n 项和n s 的取值范围为( )A .⎪⎭⎫⎢⎣⎡2,21B .⎥⎦⎤⎢⎣⎡2,21C .⎪⎭⎫⎢⎣⎡1,21D .⎥⎦⎤⎢⎣⎡1,2120.小正方形按照如图所示的规律排列:每个图中的小正方形的个数构成一个数列{}n a ,有以下结论:①155=a ;②数列{}n a 是一个等差数列;③数列{}n a 是一个等比数列;④数列的递推公式为:11++=+n a a n n (∈n N *).其中正确的命题序号为( )A .①②B .①③C .①④D .① 21.已知数列{}n a 满足133,011+-==+n n n a a a a (∈n N *),则=20a ( )A .0B .3- C.3 D.23 22.数列{}n a 满足递推公式)2(1331≥-+=-n a a n n n ,又51=a ,则使得⎭⎬⎫⎩⎨⎧+n n a 3λ为等差数列的实数=λ( )A .2B .5C .21-D.21 23.在等差数列{}n a 中,0,01110><a a ,且1011a a >,则{}n a 的前n 项和n s 中最大的负数为( )A .17sB .18sC .19sD .20s 24.将数列{}13-n 按“第n 组有n 个数”的规则分组如下:(1),(3,9),(27,81,243),…,则第100组中的第一个数是( )A .49503B .50003C .50103D .50503 25.已知{}n a 为等比数列,,8,26574-==+a a a a 则=+101a a ( )A .7B .5C .-5D .-726.已知等差数列{}n a 的前n 项和为s ,,15,555==s a 则数列⎭⎬⎫⎩⎨⎧+11n n a a 的前100项和为( )A.101100 B.10199 C.10099 D.10010127.已知1,111+==+n nn a a a a ,则=n a ( ) A.n 1 B.n C.1+n n D.n n 1+ 28.在数列{}n a 中,)11ln(,211na a a n n ++==+,则=n a ( )A.n ln 2+B.n n ln )1(2-+C.n n ln 2+D.n n ln 1++ 二.填空题29.已知数列{}n a 满足: 35a =,121n n a a +=- (n ∈N*),则1a = ________. 30.已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=________. 31.设等差数列{}n a 的公差d 不为0,19a d =.若k a 是1a 与2k a 的等比中项,则k =______.32.设等差数列{}n a 的前n 项和为n s ,若,729=s 则=++942a a a ________. 33.设数列{}n a 中,,1,211++==+n a a a n n 则通项=n a ________. 34.若数列{}n a 的前n 项和为n s ,且满足323-=n n a s ,则数列{}n a 的通项公式是________.35.若数列{}n a 的前n 项和3132+=n n a s ,则{}n a 的通项公式是=n a ____. 36.数列{}n a 满足13313131221+=+++n a a a n n ,∈n N *,则=n a ________.37.在等比数列{}n a 中,,24,341==a a 则543a a a ++等于________.38.若等差数列{}n a 满足,0,0107987<+>++a a a a a 则当=n ________时,{}n a 的前n 项和最大.39.等比数列{}n a 的各项均为正数,且,451=a a 则=++++5242322212log log log log log a a a a a ________.40.设数列{}n a 满足,11=a 且11+=-+n a a n n (∈n N *),则数列⎭⎬⎫⎩⎨⎧n a 1前10项的和___.41.设数列{}n a 中,若21+=+=n n n a a a (∈n N *),则称数列{}n a 为“凸数列”,已知数列{}n b 为“凸数列”,且2,121-==b b ,则数列{}n b 的前2013项和为________.42.将含有k 项的等差数列插入4和67之间,结果仍成一个新的等差数列,并且新的等差数列所有项的和为781,则k =________.43.定义一种运算“*”,对于正整数n 满足以下的运算性质:(1)1*11=;(2)()()1*13*1n n +=,则*1n 用含有n 的代数式表示为________.44.设等差数列{}n a 的公差,4,01d a d =≠若k a 是1a 与k a 2的等比中项,则k 的值为________.45.设n s 是等比数列{}n a 的前n 项和,693,,s s s 成等差数列,且m a a a 252=+,则=m ________.46.将正偶数排列如下表,其中第i 行第j 个数表示为ij a (∈j i ,N *),(例如1813=a )若2014=ij a ,则j i +=________.2 468101214161820…47.已知数列{}n a 的首项12a =,122nn n a a a +=+,1,2,3,n =…,则 2012a = ________.三、解答题1、已知等差数列{}n a 的前n 项和n S 满足30S =,55S =-. (1)求{}n a 的通项公式; (2)求数列21211{}n n a a -+的前n 项和.2、已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根. (1)求{}n a 的通项公式;(2)求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和.3、已知等比数列{}n a 的前n 项和为n S ,且满足()122n n S p n N +*=+∈. (1)求p 的值及数列{}n a 的通项公式; (2)若数列{}n b 满足()132n n a bn a p +=+,求数列{}n b 的前n 项和n T .4、等差数列{}n a 的前n 项和为n S ,数列{}n b 是等比数列,满足13a =,11b =,2210b S +=,5232a b a -=.(1)求数列{}n a 和{}n b 的通项公式;(2)令设数列{}n c 的前n 项和n T ,求2n T .5、已知{}n a 是一个单调递增的等差数列,且满足2421a a =,1510a a +=,数列{}n c 的前n 项和为1n n S a =+()N n *∈,数列{}n b 满足n n n c b 2=. (1)求数列{}n a 的通项公式; (2)求数列{}n b 的前n 项和.6、已知数列{}n a 中,111,1,33,n n n a n n a a a n n +⎧+⎪==⎨⎪-⎩为奇数,为偶数.(1)求证:数列232n a ⎧⎫-⎨⎬⎩⎭是等比数列;(2)若n S 是数列{}n a 的前n 项和,求满足0n S >的所有正整数n.n 为奇数, n 为偶数,2,,n n n S c b ⎧⎪=⎨⎪⎩7、已知数列{}n a 的前n 项和为n S ,且22n n S a =-;数列{}n b 满足11b =,12n n b b +=+.n N *∈.(1)求数列{}n a ,{}n b 的通项公式;(2)记n n n c a b =,*n ∈N .求数列{}n c 的前n 项和n T .8、若数列{}n A 满足21n n A A +=,则称数列{}n A 为“平方递推数列”.已知数列{}n a 中,12a =,点()1,n n a a +在函数()222f x x x =+的图象上,其中n 为正整数. (1)证明数列{}21n a +是“平方递推数列”,且数列(){}lg 21n a +为等比数列; (2)设(1)中 “平方递推数列 ”的前n 项之积为n T ,即()()()12212121n n T a a a =+++,求数 列{}n a 的通项及 n T 关于n 的表 达 式;(3)记21log n n a n b T +=,求数 列{}n b 的前n 项和 n S ,并求使2012n S >的n 的 最小 值.9、已知数列{}n a 为等差数列,n S 为其前n 项和,且222n n S a n =+(n *∈N ).()1求n a ,n S ;()2若k a ,22k a -,21k a +(k *∈N )是等比数列{}n b 的前三项,设112233n n n a b a b a b a b T =+++⋅⋅⋅+,求n T .10、数列{}n a 的前n 项和记为n S 11=a ,点),(1+n n a S 在直线12+=x y 上*N n ∈ . (1)求证:数列{}n a 是等比数列,并求数列{}n a 的通项公式n a ;(2)设13log +=n n a b ,n T 是数列⎭⎬⎫⎩⎨⎧⋅+11n n b b 的前n 项和,求2015T 的值.11、已知数列{}n a 满足前n 项和12+=n S n ,数列{}n b 满足12+=n n a b ,且前n 项和为n T ,设n n n T T c -=+12. (1)求数列{}n b 的通项公式 (2)判断数列{}n c 的单调性; (3)当2≥n 时,)1(log 1275112--<-+a T T a n n 恒成立,求a 的取值范围.12、已知二次函数)()(2R x c bx ax x f ∈++=满足0)21()0(==f f ,且)(x f 的最小值是-18.设数列{}n a 的前n 项和为n S ,对一切*N n ∈ ,点),(n S n 在函数)(x f 的图像上.(1)求数列{}n a 的通项公式; (2)通过cn S b nn +=构造一个新的数列{}n b ,是否存在非零常数c ,使得{}n b 为等差数列?13、已知数列{}n a 的前n 项和2)21(1+--=-n n n a S .(1)令n n n a b 2=,求证:数列{}n b 是等差数列,并求数列{}n a 的通项公式; (2)令n n a nn c 1+=,n n c c c T +++= 21 ,求n T 并证明:3<n T .14、数列{}n a 的前n 项和为n S ,)(12321*2N n n n a S n n ∈+--=+.(1)设n a b n n +=,证明:数列{}n b 是等比数列; (2)求数列{}n nb 的前n 项和n T ;(3)若n nn a c -=)21(,∑=+++=20151221i i i i i c c c c P ,求不超过P 的最大的整数值.15、在等差数列{}n a 中,31=a ,其前n 项和为n S ,等比数列{}n b 的各项均为正数,11=b ,公比为q ,且2222,12b S q S b ==+. (1)求n a 与n b ; (2)设数列{}n c 满足nn S c 1=,求{}n c 的前n 项和n T .16、数列{}n a 的前n 项和为n S ,且12,111+==+n n S a a ,数列{}n b 为等差数列,且9,353==b b .(1)求数列{}{}n n b a ,的通项公式;(2)若对任意的n n b k S N n ≥⋅+∈)21(,*恒成立,求实数k 的取值范围.17、已知数列{}n a 满足),2(1,1*1211N n n a a a a a n n ∈≥-=-+++=- . (1)求数列{}n a 的通项公式;(2)令)1,0(5log 12221≠>++=++a a a a d n n a n ,记数列{}n d 的前n 项和为n S ,若nn S S 2恒为一个与n 无关的常数λ,试求常数a 和λ.18、设函数x xx f sin 2)(+=的所有正的极小值点从小到大排成的数列为{}n x . (1)求数列{}n x 的通项公式;(2)设{}n x 的前n 项和为n S ,求n S sin .19、已知数列{}n a 的前n 项和为nS ,11=a ,且))(1()1(22*1N n n n S n nS n n ∈+=+-+,数列{}n b 满足5),(023*12=∈=+-++b N n b b b n n n ,其前9项和为63. (1)求数列{}n a 和{}n b 的通项公式; (2)令nnn n n b a a b c +=,数列{}n c 的前n 项和为n T ,若对任意正整数n ,都有[]b a n T n ,2∈-,求a b -的最小值.20、已知函数x x x x f )296(cos ln )(--+=π的导数为)(/x f ,且数列{}n a 满足)(3)6(*/1N n nf a a n n ∈+=++π.(1)若数列{}n a 是等差数列,求1a 的值;(2)若对任意*N n ∈,都有022≥+n a n 成立,求1a 的取值范围.参考答案 一、选择题 二、填空题 三、解答题1、解:依题意,230a =,355a =-,故1d =-,所以11a =,所以1(1)n a n =--,即2n a n =-; (2)21211111111(1)(21)(23)2232122121n n na a n n n n n n -+-⎛⎫==-=--= ⎪------⎝⎭; 2、解:(1)方程2560x x -+=的两根为2,3,由题意得242,3a a ==.设数列{}n a 的公差为d ,则422a a d -=,故12d =,从而132a =.所以{}n a 的通项公式为112n a n =+. (2)设{}2n n a 的前n 项和为n S ,由(1)知1222n n n a n ++=,则23134122222n n n n n S +++=++++,34121341222222n n n n n S ++++=++++.两式相减得23412131112()222222n n n n S +++=++++- 123112(1)4422n n n +++=+--所以1422n n n S ++=-. 3、解:(Ⅰ)由2,2222211≥=--+=-=+-n p p S S a n n n n n n22411=+==p S a ,由321,,a a a 成等比得1-=p ; (Ⅱ)由,)3(21n n b a n p a +=+可得n n n b 2=,n n nT 222212+++= ,1322222121++++=n n nT , 13222121212121+-++++=n n n n T ,12211)2112121+---=n n n n T (,n n n n T 22121--=-. 4、解: (Ⅰ)设数列{}n a 的公差为d ,数列{}n b 的公比为q ,则由2252310,2,b S a b a +=⎧⎨-=⎩得610,34232,q d d q d ++=⎧⎨+-=+⎩解得2,2,d q =⎧⎨=⎩所以32(1)21n a n n =+-=+,12n n b -=. (Ⅱ)由13a =,21n a n =+得(2)n S n n =+,则即21321242()()n n n T c c c c c c -=+++++++32111111[(1)()()](222)3352121n n n -=-+-++-++++-+12(14)12114n n -=-++-22(41)213n n n =+-+. 5、解: (Ⅰ)设等差数列{}n a 的公差为d ,则依题知0d >.由315210a a a =+=,又可得35a =.由2421a a =,得(5)(5)21d d -+=,可得2d =. 所以1321a a d =-=.可得21(*)N n a n n =-∈ ;(Ⅱ)由(Ⅰ)得12n n S a n =+=,当2n ≥时,122(1)2n n n c S S n n -=-=--= 当1n =时,112c S ==满足上式,所以2(*)N n c n =∈,所以12222n n n n n b c +==⨯=,即12n n b +=,因为211222n n n n b b +++==,14b =,所以数列{}n b 是首项为4,公比为2的等比数列.所以前n 项和24(12)2412n n n T +⨯-==--. 6、解:(Ⅰ)设232n n b a =-,因为2122122133(21)3223322n n n n n n a n a b b a a +++++--==--=2213(6)(21)3232n n a n n a -++--=2211132332n n a a -=-, 所以数列23{}2n a -是以232a -即16-为首项,以13为公比的等比数列.(Ⅱ)由(Ⅰ)得123111126323n n n n b a -⎛⎫⎛⎫=-=-⋅=-⋅ ⎪⎪⎝⎭⎝⎭,即2113232nn a ⎛⎫=-⋅+ ⎪⎝⎭,111,22,n n c n n -⎧-⎪=+⎨⎪⎩n 为奇数, n 为偶数, n 为奇数,n 为偶数, 12,(2)2,n n n n c -⎧⎪+=⎨⎪⎩由2211(21)3n n a a n -=+-,得1212111533(21)()6232n n n a a n n --=--=-⋅-+,所以12121111[()()]692()692333n n n n n a a n n --+=-⋅+-+=-⋅-+,21234212()()()n n n S a a a a a a -=++++++21112[()()]6(12)9333n n n =-+++-++++11[1()](1)332691213n n n n -+=-⋅-⋅+- 2211()136()3(1)233n n n n n =--+=--+ 显然当n N *∈时,2{}n S 单调递减,又当1n =时,273S =>0,当2n =时,489S =-<0,所以当2n ≥时,2n S <0;22122315()36232n n n n S S a n n -=-=⋅--+,同理,当且仅当1n =时,21n S ->0,综上,满足0n S >的所有正整数n 为1和2.7、解:(Ⅰ)∵22n n S a =- ①, 当2≥n 时,1122--=-n n S a ②, ①-②得,122-=-n n n a a a ,即12-=n n a a (2≥n ). 又当n=1时,1122=-S a ,得12=a .∴数列{}n a 是以2为首项,公比为2的等比数列,∴数列{}n a 的通项公式为1222-=⋅=n n n a . 又由题意知,11b =,12n n b b +=+,即12+-=n n b b∴数列{}n b 是首项为1,公差为2的等差数列, ∴数列{}n b 的通项公式为1(1)221=+-⨯=-n b n n . (Ⅱ)由(Ⅰ)知,(21)2=-n n c n , ∴231123252(23)2(21)2-=⨯+⨯+⨯++-⋅+-⋅n n n T n n ③231121232(25)2(23)2(21)2-+=⨯+⨯++-⋅+-⋅+-⋅n n n n T n n n ④由③-④得2311222222222(21)2-+-=+⨯+⨯++⋅+⋅--⋅n n n n T n23112(12222)(21)2-+-=++++--⋅n n n n T n∴62)23(1-⋅-=-+n n n T , ∴62)32(2+⋅-=+n n n T , ∴数列{}n c 的前n 项和62)32(1+⋅-=+n n n T .8、解 (1)∵()()222112221222121n n n n n n n a a a a a a a ++=++=++=+,∴数列{}21n a +是“平方递推数列”.由以上结论()()()lg 211lg 2122lg 21n n n a a a ++=+=+,∴数列(){}lg 21n a +为首项是lg 5,公比为2的等比数列.(2)()()11211lg 21lg 2122lg5lg5nn n n a a ---+=+⨯==⎡⎤⎣⎦,∴12215n n a -+=,∴()121512n n a -=-.∵()()()1lg lg 21lg 2121lg 5n n n T a a =++++=- ,∴215nn T -=.(3)∵()()1121lg 5lg 12lg 212lg 52nn n n n n T b a ---===-+,∴11222nn S n -=-+. ∵2014n S > 4, ∴112220142n n --+>.∴110082nn +>. ∴min 1008n =.9、解:(1)2*22()n n S a n n N =+∈. 1122S a ∴=+,又11S a =,故12a =;又2228S a =+,故22428a a +=+,得24a =;等差数列{}n a 的公差21422d a a =-=-=.所以1(1)22(1)2n a a n d n n =+-=+-=,21()(22)22n n n a a n n S n n ++===+. (2)由已知有22221k k k a a a -+=⋅,故24(22)22(21)k k k -=⋅+,即22940k k -+=.解得4k =,或12k =,又*k N ∈,故4k =. ∴等比数列{}n b 的公比为6214263242a b q b a ⨯====⨯,首项为148b a ==.所以11138()2n n n b b q --==⨯.所以1332328()()232n n n n a b n n -=⋅=⋅.23323333[12()3()()]32222n n T n ∴=⨯+⨯+⨯++⨯.2313323333[1()2()(1)()()]232222n n n T n n +=⨯+⨯++-+⨯.23323333[()()]16()232222n n n n T T n ∴-=+++-⨯.33[1()]1323332216()32[1()]16()32322212n n n n n T n n -∴-=⨯-⋅=---⋅-332(1632)()2n n =---⋅.36432(2)()2n n T n ∴=+-⋅.10、解(1)由题意得a n +1=2S n +1,a n =2S n -1+1(n≥2),两式相减,得a n +1-a n=2a n ,即a n +1=3a n (n≥2).∵a 1=1,∴a 2=2S 1+1=3,∴{a n }是首项为1,公比为3的等比数列.∴a n=3n -1.(2)由(1)得知a n =3n -1,b n =log 3a n +1=n ,1b n b n +1=1+=1n -1n +1, T 2 015=1b 1b 2+1b 2b 3+…+1b 2 015b 2 016=(1-12)+(12-13)+…+(12 015-12 016)=2 0152 016. 11、解 (1)当n =1时,a 1=S 1=2,当n≥2时,a n =S n -S n -1=2n -1. ∴数列{b n}的通项公式为b n=⎩⎪⎨⎪⎧23,n =1,1n ,n≥2.(2)∵c n =T 2n +1-T n , ∴c n =b n +1+b n +2+…+b 2n +1=1n +1+1n +2+…+12n +1. ∴c n +1-c n =12n +2+12n +3-1n +1=12n +3-12n +2=-1++<0.∴数列{cn}是递减数列.(3)由(2)知,当n≥2时,c2=13+14+15为最大,∴13+14+15<15-712loga(a-1)恒成立,即loga(a-1)<-1.由真数a-1>0,得a>1,∴a-1<1 a .整理为a2-a-1<0,解得1<a<5+1 2.∴a的取值范围是 (1,5+12).12、解:(1)∵f(0)=f(12)=0,∴f(x)的图像的对称轴为直线x=0+122=14.又∵f(x)的最小值是-18,由二次函数图像的对称性可设f(x)=a(x-14)2-18.又∵f(0)=0,∴ a=2.∴f(x)=2(x-14)2-18=2x2-x.∵点(n,Sn )在函数f(x)的图像上,∴Sn=2n2-n.当n=1时,a1=S1=1;当n≥2时,an =Sn-Sn-1=4n-3.经验证,当n=1时也符合上式,∴an=4n-3(n∈N*).(2)bn =Snn+c=2n2-nn+c=2-12n+c,令c=-12,得bn=2n,此时数列{bn}为等差数列,∴存在非零常数c=-12,使得{bn}为等差数列.13、解 (1)在Sn =-an-(12)n-1+2中,令n=1,得S 1=-a1-1+2=a1,∴a1=12.当n≥2时,Sn-1=-an-1-(12)n-2+2,∴an=Sn-Sn-1=-an+an-1+(12)n-1,∴2an =an-1+(12)n-1,即2n an=2n-1an-1+1.∵bn =2n an,∴当n≥2时,bn-bn-1=1.又∵b1=2a1=1,∴数列{bn}是首项和公差均为1的等差数列.于是bn =1+(n-1)·1=2n an,∴an=n2n.(2)由(1)得cn =n+1nan=(n+1)(12)n,所以T n =2×12+3×(12)2+4×(12)3+…+(n+1)·(12)n.1 2Tn=2×(12)2+3×(12)3+4×(12)4+…+(n+1)(12)n+1,两式相减,得12Tn=1+(12)2+(12)3+…+(12)n-(n+1)·(12)n+1=1+14[1-12n-1]1-12-(n+1)(12)n+1=3 2-n+32n+1,∴Tn=3-n+32n.∵n+32n>0,∴Tn<3.14、解: (1)因为an +Sn=-12n2-32n+1,所以,当n=1时,2a1=-1,则a1=-12;当n≥2时,an-1+Sn-1=-12(n-1)2-32(n-1)+1,所以2an -an-1=-n-1,即2(an+n)=an-1+n-1.所以bn =12bn-1(n≥2),而b1=a1+1=12.所以数列{b n }是首项为12,公比为12的等比数列,所以b n =(12)n.(2)由(1)得nb n =n2n .所以T n =12+222+323+424+…+n -12n -1+n2n ,①2T n =1+22+322+423+…+n -12n -2+n2n -1,②②-①得T n =1+12+122+…+12n -1-n2n ,∴T n =1-12n1-12-n 2n =2-n +22n . (3)由(1)知a n =(12)n -n ,又∵c n =(12)n -a n ,∴c n =n.∴c 2n +c n +1c 2n +c n =1+1c 2n +c n=1+1+=1+1n -1n +1.所以P =∑i =12 013c 2i +c i +1c 2i +c i =(1+11-12)+(1+12-13)+(1+13-14)+…+(1+12 013-12 014)=2 014-12 014.故不超过P 的最大整数为2 013.15解: (1)设{a n }的公差为d ,因为⎩⎨⎧b 2+S 2=12,q =S2b 2,所以⎩⎨⎧q +6+d =12,q =6+dq .解得q =3或q =-4(舍),d =3. 故a n =3+3(n -1)=3n ,b n =3n -1. (2)由(1)知S n =+2,所以c n =1S n=2+=23(1n -1n +1).故Tn =23[(1-12)+(12-13)+…+(1n-1n+1)]=23(1-1n+1)=2n+.16、解:(1)由an+1=2Sn+1,①得an =2Sn-1+1(n≥2).②①-②得an+1-an=2(Sn-Sn-1).∴an+1=3an(n≥2).又a1=1,a2=2S1+1=2a1+1=3,也满足上式,∴{an}是首项为1,公比为3的等比数列.∴an=3n-1.∵{bn }为等差数列,∴b5-b3=2d=6,∴d=3.∴bn=3+(n-3)×3=3n-6.(2)Sn =a1-q n1-q=1-3n1-3=3n-12,∴(3n-12+12)·k≥3n-6对任意的n∈N*恒成立,∴k≥6n-123n=2(3n-63n)对任意的n∈N*恒成立.令cn =3n-63n,cn-cn-1=3n-63n-3n-93n-1=-2n+73n-1,当n≤3时,cn >cn-1,当n≥4时,cn<cn-1,∴(cn)max=c3=19.所以实数k的取值范围是k≥2 9 .17、解: (1)∵a1+a2+…+an-1-an=-1,①∴a1+a2+…+an-an+1=-1.②①-②,得an+1-2an=0,即an+1an=2(n≥2).当n=2时,a1-a2=-1.∵a1=1,∴a2=2,∴a2a1=2.∴数列{an}是首项为1,公比为2的等比数列.∴an=2n-1(n∈N*).(2)∵a n =2n -1,∴d n =1+log a a 2n +1+a 2n +25=1+2nlog a 2.∵d n +1-d n =2log a 2,∴{d n }是以d 1=1+2log a 2为首项,以2log a 2为公差的等差数列. ∴S 2nS n=+2log a +-2a+2log a+-2a=2++a21++a 2=λ.∴(λ-4)nlog a 2+(λ-2)(1+log a 2)=0. ∵S 2nS n 恒为一个与n 无关的常数λ, ∴⎩⎨⎧λ-a2=0,λ-+log a=0.解得⎩⎨⎧λ=4,a =12.18、解:(1)f(x)=x 2+sinx ,令f′(x)=12+cosx =0,得x =2k π±2π3(k ∈Z ).f′(x)>0⇒2k π-2π3<x<2k π+2π3(k ∈Z ),f′(x)<0⇒2k π+2π3<x<2k π+4π3(k ∈Z ),当x =2k π-2π3(k ∈Z )时,f(x)取得极小值,所以x n =2n π-2π3(n ∈N *).(2)由(1)得x n =2n π-2π3,S n =x 1+x 2+x 3+…+x n =2π(1+2+3+…+n)-2n π3=n(n +1)π-2n π3.当n =3k(k ∈N *)时,sinS n =sin(-2k π)=0; 当n =3k -1(k ∈N *)时,sinS n =sin 2π3=32; 当n =3k -2(k ∈N *)时,sinS n =sin4π3=-32. 所以sinS n=⎩⎪⎨⎪⎧0,n =3k ,k ∈N *,32,n =3k -1,k ∈N *,-32,n =3k -2,k ∈N *.19解: (1)由2nS n +1-2(n +1)S n =n(n +1),得S n +1n +1-S n n =12. 所以数列{S n n }是以首项为1,公差为12的等差数列.因此S n n =S 1+(n -1)×12=1+(n -1)×12=12n +12,即S n =+2.于是a n +1=S n +1-S n =++2-+2=n +1.因为a 1=1,所以a n =n.又因为b n +2-2b n +1+b n =0,所以数列{b n }是等差数列. 由S 9=3+b 72=63,b 3=5,得b 7=9.所以公差d =9-57-3=1. 所以b n =b 3+(n -3)×1=n +2.(2)由(1)知c n =b n a n +a n b n =n +2n +n n +2=2+2(1n -1n +2),所以T n =c 1+c 2+…+c n =2n +2×(1-13+12-14+13-15+…+1n -1-1n +1+1n -1n +2)=2n+2(1+12-1n+1-1n+2)=3-2(1n+1+1n+2)+2n.所以Tn -2n=3-2(1n+1+1n+2).设An =Tn-2n=3-2(1n+1+1n+2).因为An+1-An=3-2(1n+2+1n+3)-[3-2(1n+1+1n+2)]=2(1n+1-1n+3)=4++>0,所以{An }单调递增,故(An)min=A1=43.因为An =3-2(1n+1+1n+2)<3,所以43≤An<3.因为对任意正整数n,Tn -2n∈[a,b],所以a≤43,b≥3,即a的最大值为4 3,b的最小值为3,所以(b-a)min=3-43=53.20、解f′(x)=1x-sinx-6π+92,则f′(π6)=4,故a n+1+an=4n+3.(1)若数列{an }是等差数列,则an=a1+(n-1)d,an+1=a1+nd.由an+1+an=4n+3,得(a1+nd)+[a1+(n-1)d]=4n+3.解得d=2,a1=52.(2)方法一由an+1+an=4n+3(n∈N*),得an+2+an+1=4n+7.两式相减,得an+2-an=4.故数列{a2n-1}是首项为a1,公差为4的等差数列;数列{a2n}是首项为a2,公差为4的等差数列.又∵a1+a2=7,∴a2=7-a1.∴an =⎩⎨⎧2n-2+a1,n为奇数,2n+3-a1,n为偶数.①当n为奇数时,an =2n-2+a1,an+2n2≥0即2n-2+a1+2n2≥0,转化为a1≥-2n2-2n+2对任意的奇数n(n∈N*)恒成立.令f(n)=-2n2-2n+2=-2(n+12)2+52,∴f(n)max =f(1)=-2,∴a1≥-2.②当n为偶数时,an =2n+3-a1,an+2n2≥0,即2n+3-a1+2n2≥0,转化为-a1≥-2n2-2n-3对任意的偶数n(n∈N*)恒成立.令g(n)=-2n2-2n-3=-2(n+12)2-52,∴g(n)max =g(2)=-15,∴-a1≥-15,解得a1≤15.综上,a1的取值范围是[-2,15].方法二∵an+1=-an+4n+3,∴an+1+2(n+1)2=-an+4n+3+2(n+1)2,a n +2n2≥0对任意的n∈N*都成立,∴an+1+2(n+1)2≥0,即-an+4n+3+2(n+1)2≥0,∴-2n2≤an≤4n+3+2(n+1)2对任意的n∈N*都成立.故当n=1时也成立,即-2≤a1≤15.。
数列综合测试题(经典)含答案
数列综合测试题第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。
)1.已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 22=1,则数列{a n }的公差是( )A.12B .1C .2D .32.设等比数列{a n }的前n 项和为S n ,若8a 2+a 5=0,则下列式子中数值不能确定的是( )A.a 5a 3B.S 5S 3C.a n +1a nD.S n +1S n3.(理)已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *)且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( )A .-5B .-15C .5D.154.已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a nb n为正偶数时,n 的值可以是( )A .1B .2C .5D .3或115.已知a >0,b >0,A 为a ,b 的等差中项,正数G 为a ,b 的等比中项,则ab 与AG 的大小关系是( )A .ab =AGB .ab ≥AGC .ab ≤AGD .不能确定6.各项都是正数的等比数列{a n }的公比q ≠1,且a 2,12a 3,a 1成等差数列,则a 3+a 4a 4+a 5的值为( )A.1-52B.5+12C.5-12D.5+12或5-127.数列{a n }的通项公式为a n =2n -49,当该数列的前n 项和S n 达到最小时,n 等于( ) A .24 B .25 C .26D .278.数列{a n }是等差数列,公差d ≠0,且a 2046+a 1978-a 22012=0,{b n }是等比数列,且b 2012=a 2012,则b 2010·b 2014=( )A .0B .1C .4D .89.已知各项均为正数的等比数列{a n }的首项a 1=3,前三项的和为21,则a 3+a 4+a 5=( )A .33B .72C .84D .18910.已知等差数列{a n }的前n 项和为S n ,若a 1=1,S 3=a 5,a m =2011,则m =( ) A .1004 B .1005 C .1006D .100711.设{a n }是由正数组成的等差数列,{b n }是由正数组成的等比数列,且a 1=b 1,a 2003=b 2003,则( )A .a 1002>b 1002B .a 1002=b 1002C .a 1002≥b 1002D .a 1002≤b 100212.已知数列{a n }的通项公式为a n =6n -4,数列{b n }的通项公式为b n =2n ,则在数列{a n }的前100项中与数列{b n }中相同的项有( )A .50项B .34项C .6项D .5项第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.已知数列{a n }满足:a n +1=1-1a n,a 1=2,记数列{a n }的前n 项之积为P n ,则P 2011=________.14.秋末冬初,流感盛行,荆门市某医院近30天每天入院治疗流感的人数依次构成数列{a n },已知a 1=1,a 2=2,且a n +2-a n =1+(-1)n (n ∈N *),则该医院30天入院治疗流感的人数共有________人.15.已知等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 3+a 10a 1+a 8=________.16.在如图的表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列,且从上到下所有公比相等,则a +b +c 的值为________.三、解答题()17.设数列{a n }的前n 项和为n S =2n 2,{b n }为等比数列,且a 1=b 1,b 2(a 2 -a 1) =b 1。
数列综合练习题(含答案)精选全文
3月6日数列综合练习题一、单选题1.已知数列为等比数列,是它的前n项和.若,且与的等差中项为,则()A .35B .33C .31D .29【答案】C 【解析】试题分析:∵等比数列{}n a ,∴21a a q =⋅,∴13134222a q a a q a a ⋅⋅=⇒⋅=⇒=,又∵与的等差中项为54,∴477512244a a a ⋅=+⇒=,∴3741182a q q a ==⇒=,∴41316a a q ==,515116(1)(1)32311112a q S q--===--.2.等差数列{}n a 中,19173150a a a ++=则10112a a -的值是()A.30B.32C.34D.25【答案】A 【解析】试题分析:本题考查等差数列的性质,难度中等.由条件知930a =,所以10112a a -=930a =,故选A.3.数列满足且,则等于()A.B.C.D.【答案】D 【解析】由有解知数列1n x ⎧⎫⎨⎬⎩⎭是首项为1,公差为211112x x -=的等差数列;所以11121(1),221n n n n x x n +=+-=∴=+.故选D 4.设等差数列{}n a 的前n 项和为n S ,数列21{}n a -的前n 项和为n T ,下列说法错误..的是()A .若n S 有最大值,则n T 也有最大值B .若n T 有最大值,则n S 也有最大值C .若数列{}n S 不单调,则数列{}n T 也不单调D .若数列{}n T 不单调,则数列{}n S 也不单调【答案】C 【解析】【详解】解:数列{a 2n ﹣1}的首项是a 1,公差为2d ,A .若S n 有最大值,则满足a 1>0,d <0,则2d <0,即T n 也有最大值,故A 正确,B .若T n 有最大值,则满足a 1>0,2d <0,则d <0,即S n 也有最大值,故B 正确,C .S n =na 1()12n n -+•d 2d =n 2+(a 12d -)n ,对称轴为n 111122222d da a a d d d --=-==--⨯,T n =na 1()12n n -+•2d =dn 2+(a 1﹣d )n ,对称轴为n 111222a d d -=-=-•1a d,不妨假设d >0,若数列{S n }不单调,此时对称轴n 11322a d =-≥,即1a d-≥1,此时T n 的对称轴n 1122=-•111122a d ≥+⨯=1,则对称轴1122-•132a d <有可能成立,此时数列{T n }有可能单调递增,故C 错误,D .不妨假设d >0,若数列{T n }不单调,此时对称轴n 1122=-•132a d ≥,即1a d-≥2,此时{S n }的对称轴n 11122a d =-≥+25322>=,即此时{S n }不单调,故D 正确则错误是C ,故选C .5.设n=()A .333n 个B .21333n - 个C .21333n- 个D .2333n 个【答案】A【解析】1013333n n -====⋅⋅⋅ 个.故选A.6.已知各项均为正数的数列{}n a 的前n 项和为n S ,满足2124n n a S n +=++,且21a -,3a ,7a 恰好构成等比数列的前三项,则4a =().A .1B .3C .5D .7【答案】C 【详解】∵2124n n a S n +=++,当2n ≥,()21214n n a S n -=+-+,两式相减,化简得()2211n n a a +=+,∵0n a >,∴11n n a a +=+,数列{}n a 是公差1的等差数列.又21a -,3a ,7a 恰好构成等比数列的前三项,∴()()211126a a a +=+,∴12a =,∴45a =.故选:C第II 卷(非选择题)二、填空题7.已知数列{}n a 的首项11a =,且1(1)12nn na a n a +=+ ,则5a =____.【答案】198.等差数列{}n a 中,39||||a a =,公差0d <,则使前n 项和n S 取得最大值的自然数n 是________.【答案】5或6【解析】试题分析:因为0d <,且39||||a a =,所以39a a =-,所以1128a d a d +=--,所以150a d +=,所以60a =,所以0n a >()15n ≤≤,所以n S 取得最大值时的自然数n 是5或6.9.数列{}n a 满足:11a =,121n n a a +=+,且{}n a 的前n 项和为n S ,则n S =__.【答案】122n n +--【详解】由121n n a a +=+得()1+121n n a a +=+所以1112+n n a a +=+,且112a +=所以数列{}1n a +是以2为首项,2为公比的等比数列,且11=222n nn a -+⨯=所以21nn a =-前n 项和()123121222222212n nn nS n n n +-=++++-==--- 10.已知数列{}n a 中,132a =前n 项和为n S ,且满足()*123n n a S n N ++=∈,则满足2348337n n S S <<所有正整数n 的和是___________.【答案】12【详解】由()*123n n a S n N++=∈得()123n n n SS S +-+=,即()11332n n S S +-=-,所以数列{}3n S -是首项为113332S a -=-=-,公比为12的等比数列,故31322n nS -=-⋅,所以332n n S =-,所以22332n n S =-.由2348337n n S S <<得2332334833732n n -<-<,化简得1113327n <<,故3,4,5n =.满足2348337n nS S <<所有正整数n 的和为34512++=.故答案为:12三、解答题11.已知数列{a n }满足a 1=3,a n ﹣a n ﹣1﹣3n =0,n ≥2.(1)求数列{a n }的通项公式;(2)设b n 1na =,求数列{b n }的前n 项和S n .【详解】(1)数列{a n }满足a 1=3,a n ﹣a n ﹣1﹣3n =0,n ≥2,即a n ﹣a n ﹣1=3n ,可得a n =a 1+(a 2﹣a 1)+(a 3﹣a 2)+…+(a n ﹣a n ﹣1)=3+6+9+…+3n 12=n (3+3n )32=n 232+n ;(2)b n 123n a ==•2123n n =+(111n n -+),前n 项和S n 23=(1111112231n n -+-++-+ )23=(111n -+)()231n n =+.12.在数列{}n a 中,n S 为其前n 项和,满足2(,*)n n S ka n n k R n N =+-∈∈.(I )若1k =,求数列{}n a 的通项公式;(II )若数列{}21n a n --为公比不为1的等比数列,求n S .【答案】解:(1)当1k =时,2,n n S a n n =+-所以21,(2)n S n n n -=-≥,即22(1)(1),(1)n S n n n n n =+-+=+≥……3分所以当1n =时,112a S ==;当2n ≥时,221(1)(1)2n n n a S S n n n n n -=-=+----=所以数列{}n a 的通项公式为.……………6分(II )当时,1122n n n n n a S S ka ka n --=-=-+-,1(1)22n n k a ka n --=-+,111a S ka ==,若1k =,则211n a n --=-,从而{}21n a n --为公比为1的等比数列,不合题意;……………8分若1k ≠,则10a =,221a k=-,3246(1)k a k -=-212325378333,5,71(1)k k k a a a k k --+--=--=-=--由题意得,2213(5)(3)(7)0a a a -=--≠,所以0k =或32k =.……10分当0k =时,2n S n n =-,得22n a n =-,213n a n --=-,不合题意;…12分当32k =时,1344n n a a n -=-+,从而1213[2(1)1]n n a n a n ---=---因为121130,a -⨯-=-≠210n a n --≠,{}21n a n --为公比为3的等比数列,213nn a n --=-,所以231nn a n =-+,从而1233222n n S n n +=+-+.………………………14分【解析】试题分析:解:(1)当1k =时,2,n n S a n n =+-所以21,(2)n S n n n -=-≥,即22(1)(1),(1)n S n n n n n =+-+=+≥……3分所以当1n =时,112a S ==;当2n ≥时,221(1)(1)2n n n a S S n n n n n -=-=+----=所以数列{}n a 的通项公式为…6分(2)当时,1122n n n n n a S S ka ka n --=-=-+-,1(1)22n n k a ka n --=-+,111a S ka ==,若1k =,则211n a n --=-,从而{}21n a n --为公比为1的等比数列,不合题意;若1k ≠,则10a =,221a k=-,3246(1)k a k -=-212325378333,5,71(1)k k k a a a k k --+--=--=-=--由题意得,2213(5)(3)(7)0a a a -=--≠,所以0k =或32k =.当0k =时,2n S n n =-,得22n a n =-,213n a n --=-,不合题意;当32k =时,1344n n a a n -=-+,从而1213[2(1)1]n n a n a n ---=---因为121130,a -⨯-=-≠210n a n --≠,{}21n a n --为公比为3的等比数列,213nn a n --=-,所以231nn a n =-+,从而1233222n n S n n +=+-+.13.设数列{}n a 的通项公式63n a n =-+,{}n b 为单调递增的等比数列,123512b b b =,1133a b a b +=+.()1求数列{}n b 的通项公式.()2若3nn na cb -=,求数列{}n c 的前n 项和n T .【详解】()1由题意,数列{}n a 的通项公式n a 6n 3=-+,{}n b 为单调递增的等比数列,设公比为q ,123b b b 512=,1133a b a b +=+.可得331b q 512=,2113b 15b q -+=-+,解得1b 4=,或1q 2(2=-舍去),则n 1n 1n b 422-+=⋅=。
高中数学《数列》100题(问题+答案)
数列一、单选题1.在ABC 中,AB,45C =︒,O 是ABC 的外心,若OC AB CA CB ⋅+⋅的最大值是m ,数列{}n a 中,11a =,12n n a ma +=+,则{}n a 的通项公式为n a =()A .1231n -⋅-B .1322n -⋅-C .32n -D .1544n -⋅-2.将等比数列{}n b 按原顺序分成1项,2项,4项,…,12n -项的各组,再将公差为2的等差数列{}n a 的各项依次插入各组之间,得到新数列{}n c :1b ,1a ,2b ,3b ,2a ,4b ,5b ,6b ,7b ,3a ,…,新数列{}n c 的前n 项和为n S .若11c =,22c =,3134S =,则S 200=()A .3841117232⎡⎤⎛⎫-⎢⎥⎪⎝⎭⎢⎥⎣⎦B .3861113032⎡⎤⎛⎫-⎢⎥⎪⎝⎭⎢⎥⎣⎦C .3861117232⎡⎤⎛⎫-⎢⎥⎪⎝⎭⎢⎥⎣⎦D .38411302⎛⎫- ⎪⎝⎭3.在ABC 中,AB =,45C =︒,O 是ABC 的外心,若21OC AC ⋅-的最大值是m ,数列{}n a 中,11a =,12n n a ma +=+,则{}n a 的通项公式为n a =().A .1231n -⋅-B .1322n -⋅-C .32n -D .1544n -⋅-4.设数列{}n a 的通项公式为()()()*121cos 1N 2nn n a n n π=--⋅+∈,其前n 项和为n S ,则120S =()A .60-B .120-C .180D .2405.已知等差数列{}n a 的前n 项和为n S ,满足190S >,200S <,若数列{}n a 满足10m m a a +⋅<,则m =()A .9B .10C .19D .206.已知数列{}n a 的首项11a =,函数()()41cos 221n n f x x a x a +=+-+有唯一零点,则通项n a =()A .13n -B .12n -C .21n -D .32n -7.等差数列{}n a 的首项为正数,其前n 项和为n S .现有下列命题,其中是假命题的有()A .若n S 有最大值,则数列{}n a 的公差小于0B .若6130a a +=,则使0n S >的最大的n 为18C .若90a >,9100a a +<,则{}n S 中9S 最大D .若90a >,9100a a +<,则数列{}n a 中的最小项是第9项8.已知各项都为正数的等比数列{}n a 满足7652a a a =+,存在两项m a ,n a使得14a =,则122n m n+++的最小值为()A.118+B .2615C .74D .28159.设数列{}n a 的前n 项和为n S ,满足()2*12n n na S n N a +=∈,则下列说法正确的是()A .202120221a a ⋅<B .202120221a a ⋅>C.2022a <-D.2022a >10.数列{}n a 满足11a =,且对于任意的*N n ∈都有11n n a a a n +=++,则122015111a a a +++= ()A .10071008B .20151008C .1007504D .2015201611.在数列{}n a 中,12a =,22a =且21(1)(N )nn n a a n ++-=+-∈,100S =()A .0B .1300C .2600D .265012.童谣是一种民间文学,因为常取材于现实生活,语言幽默风趣、朗朗上口而使少年儿童易于接受,从而成为了重要的传统教育方式.有一首童谣中唱到:“玲珑塔上琉璃灯,沙弥点灯向上行.首层掌灯共三盏,明灯层层更倍增(意为:每上一层,灯的数量增加一倍).小僧掌灯到塔顶,心中默数灯几重.玲珑塔上灯火数,三百八十一盏明.灯映湖心点点红,但问塔顶几盏灯?”童谣中的玲珑塔的顶层灯的盏数为()A .96B .144C .192D .23113.已知无穷等比数列{}n a 中12a =,22a <,它的前n 项和为n S ,则下列命题正确的是()A .数列{}n S 是递增数列B .数列{}n S 是递减数列C .数列{}n S 存在最小项D .数列{}n S 存在最大项14.已知等差数列{}n a 中,前4项为1,3,5,7,则数列{}n a 前10项的和10S =()A .100B .23C .21D .1715.已知等差数列{}n a 中,其前5项的和525S =,等比数列{}n b 中,1132,8,b b ==则37a b =()A .54-或54B .54-C .45D .5416.在等比数列{}n a 中,已知对*n N ∈有1221n n a a a ++⋯+=-,那么22212n a a a ++⋯+=()A .2(21)n -B .21(21)3n -C .41n -D .1(41)3n-17.设等比数列{}n a 的各项均为正数,已知237881a a a a =,则267a a a +的最小值为()AB.C.D.18.已知等差数列{}n a 满足13512a a a ++=,10111224a a a ++=,则{}n a 的前13项的和为()A .12B .36C .78D .15619.设()n a Ω表示落在区间[],n n a 内的偶数个数.在等比数列{}n a n -中,14a =,211a =,则()4a Ω=()A .21B .20C .41D .4020.已知数列1,12-,14,18-,….则该数列的第10项为()A .1512-B .1512C .11024-D .1102421.有一个非常有趣的数列1⎧⎫⎨⎬⎩⎭n 叫做调和数列,此数列的前n 项和已经被研究了几百年,但是迄今为止仍然没有得到它的求和公式.某数学探究小组为了探究调和数列的性质,仿照“杨辉三角”.将1,12,13,14, (1),…作为第一行,相邻两个数相减得到第二行,依次类推,得到如图所示的三角形差数列,则第2行的前100项和为()A .100101B .99100C .99200D .5010122.等差数列{}n a 的前n 项和为n S ,若1a ,2020a 满足12020OA a OB a OC =+,其中A 为OBC边BC 上任意一点,则2020S =().A .2020B .1010C .1020D .223.一定数目的点在等距离的排列下可以形成一个等边三角形,这样的数被称为三角形数.如图,根据前三个点阵图形的规律,第四个点阵表示的三角形数是()A .1B .6C .10D .2024.数列{}n a 的前4项为:1111,,,25811,则它的一个通项公式是()A .121n -B .121n +C .131n -D .131n +25.已知数列1,3-,5,7-,9,…,则该数列的第10项为()A .21-B .19-C .19D .2126.在等差数列{}n a 中,若47101102a a a ++=,则311a a +=()A .2B .4C .6D .827.等差数列{}n a 中,若14a =,公差2d =,则5a =()A .10B .12C .14D .22二、多选题28.在平面四边形ABCD 中,ABD △的面积是BCD △面积的2倍,又数列{}n a 满足12a =,当2n ≥时,恒有()()1122n nn n BD a BA a BC --=-++ ,设{}n a 的前n 项和为n S ,则()A .{}n a 为等比数列B .2n n a ⎧⎫⎨⎬⎩⎭为递减数列C .{}n a 为等差数列D .()152210n n S n +=--29.已知数列{}n a 的前n 项和为n S ,11a =,121n n n S S a +=++,数列12n n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和为*,n T n N ∈,则下列选项正确的为()A .数列{1}n a +是等差数列B .数列{1}n a +是等比数列C .数列{}n a 的通项公式为21nn a =-D .1n T <30.已知等差数列{}n a 的前n 项和为n S ,公差为d ,若10911S S S <<,则()A .0d >B .10a >C .200S <D .210S >31.记n S 为等差数列{}n a 的前n 项和,已知342,14a S ==,则()A .{}n a 是递增数列B .18a =C .523S a a =D .n S 的最小值为332.已知数列{}n a 中,13a =,()1*11N n na n a +=∈-,下列选项中能使3n a =的n 有()A .22B .24C .26D .2833.对任意数列{}n a ,下列说法一定正确的是()A .若数列{}n a 是等差数列,则数列{2}n a 是等比数列B .若数列{}n a 是等差数列,则数列{2}n a 是等差数列C .若数列{}n a 是等比数列,则数列{lg |}|n a 是等比数列D .若数列{}n a 是等比数列,则数列{lg |}|n a 是等差数列三、填空题34.在数列{}n a 及{}n b 中,1n n n a a b +=++,1n n n b a b +=+,11a =,11b =.设11n n nc a b =+,则数列{}n c 的前2018项和为_________35.已知数列{}n a 的通项为21n a n =-+,等比数列{}n b 的公比q 满足1(2)n n q a a n -=-≥且12b a =,则123...n b b b b ++++=________.36.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一个数列:1,1,2,3,5,8,13,21,…,其中从第三个数起,每一个数都等于它前面两个数的和,人们把这样的一列数所组成的数列称为“斐波那契数列”,记为{}n F .利用下图所揭示的{}n F 的性质,则在等式()222220221220212022m F F F F F F -++⋅⋅⋅+=⋅中,m =______.37.将公差不为零的等差数列1a ,2a ,3a 调整顺序后构成一个新的等比数列i a ,j a ,k a ,其中{,,}{1,2,3}i j k =,试写出一个调整顺序后成等比数列的数列公比:_____.(写出一个即可).38.已知()f x 为R 上单调递增的奇函数,在数列{}n a 中,120a =,对任意正整数n ,()()130n n f a f a ++-=,则数列{}n a 的前n 项和n S 的最大值为___________.39.给定正整数n 和正数b ,对于满足条件211n a a b +-=的所有无穷等差数列{}n a ,当1n a +=________时,1221n n n y a a a +++=+++ 取得最大值.40.在我国南宋数学家杨辉所著作的《详解九章算法》一书中,用如图所示的三角形(杨辉三角)解释了二项和的乘方规律,下面的数字三角形可以看做当n 依次取0、1、2、3、L 时()na b +展开式的二项式系数,相邻两斜线间各数的和组成数列{}n a ,例11a =,211a =+,312a =+,L ,设数列{}n a 的前n 项和为n S .若20243a m =+,则2022S =___________.41.已知数列{}n a 的前n 项和343n n nS -=,记n b =,则数列{}n b 的前n 项和n T =_______.42.现有一根长为81米的圆柱形铁棒,第1天截取铁棒长度的13,从第2天开始每天截取前一天剩下长度的13,则第5天截取的长度是______米.43.已知数列{}n a 满足112,,n n a a a n +==-则求100a =___________44.已知等差数列的前n 项和为n S ,且13140,0S S ><,则使n S 取得最大值的n 为__________.45.在等差数列{}n a 中,710132a a =+,则该数列的前7项和为_________.46.已知等比数列{}n a 的前n 项和为n S ,公比1q >,且21a +为1a 与3a 的等差中项,314S =.若数列{}n b 满足2log n n b a =,其前n 项和为n T ,则n T =_________.47.已知数列{}n a 是递增数列,且满足121n n a a +=+,且1a 的取值范围是___________.48.已知等比数列{}n a 的公比为2,前n 项和为n S ,则lim nn nS a →∞=__________.49.已知数列{}n a 的首项12a =,且对任意的*n N ∈,都有122nn n a a a +=+,则lim n n a →+∞=______.50.数列{}n a 满足12a =,2111a a =-,若对于大于2的正整数n ,111n n a a -=-,则102a =__________.51.若n a 为()1nx +的二项展开式中2x 项的系数,则2limnn a n →+∞=_________.52.联合国教科文组织将3月14日确定为“国际数学日”,是因为3.14是圆周率数值最接近的数字.我国数学家刘徽首创割圆术,所谓“割圆术”,是用圆内接正多边形的面积去无限逼近圆面积并以此求取圆周率的方法.步骤是:第1步,计算圆内接正六边形的周长;第2步,计算圆内接正12边形的周长;第3步,计算圆内接正24边形的周长;以此类推,第6步,需要计算的是正______边形的周长.53.已知数列{}n a 满足11n nna a +=+,且46a =,则1a =___________.54.已知无穷数列{}n a 满足12a =,25a =,318a =,写出{}n a 的一个通项公式:______.(不能写成分段函数的形式)55.数列{}n a 的前几项和为n S ,且111,2n n a a a +==,则,4S =__________.56.若等差数列{}n a 满足202220221a a a =+=,则1a 的值为___________.57.“中国剩余定理”又称“孙子定理”.1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1到2022这2022个数中,能被3除余1且被5整除余1的数按从小到大的顺序排成一列,构成数列{}n a ,则此数列的项数为__________.58.已知数列{}n a 中,11a =,13n n a a +=-,则5S =_________四、解答题59.已知正项数列{}n a 的前n 项和为n S 满足12311111n n S S S S n +++⋯+=+,*N n ∈.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足22na nb =,记n T 为数列{}n b 的前n 项和,()x Ω表示x 除以3的余数,求()21n T +Ω.60.已知等比数列{}n a 的各项均为正数,52a ,4a ,64a 成等差数列,且满足2434a a =,数列{}n S 的前n 项之积为n b ,且121n nS b +=.(1)求数列{}n a 和{}n b 的通项公式;(2)设21n n n n n b a d b b ++⋅=⋅,若数列{}n d 的前n 项和n M ,证明:71303n M ≤<.61.若有穷数列A :1a ,2a ,…,()*,3n a n n ∈≥N ,满足()1121,2,,2i i i i a a a a i n +++-≤-=- ,则称数列A 为M 数列.(1)判断下列数列是否为M 数列,并说明理由;①1,2,4,3②4,2,8,1(2)已知M 数列A :1a ,2a ,…,9a ,其中14a =,27a =,求349a a a +++ 的最小值.(3)已知M 数列A 是1,2,…,n 的一个排列.若1112n k k k a a n -+=-=+∑,求n 的所有取值.62.已知数列{}n a 的前n 项和为n S ,且211122n S n n =++,*N n ∈.(1)求{}n a 的通项公式;(2)若数列{}n b 满足11223113322n n n b b b a a a ++++⋅⋅⋅+=⨯-,*N n ∈,求数列{}n b 的前n 项和n T .63.已知数列{}n a 满足12a =,{}n a 的前n 项和为n S ,()()121n n a S n n ++=++∈N ,令1n n b a =+.(1)求证:{}n b 是等比数列;(2)记数列{}n nb 的前n 项和为n T ,求n T ;(3)求证:123111156n a a a a ++++<L .64.对于有限数列()12:3n A a a a n ≥ ,,,,如果()12121ni a a a a i n n +++<=- ,,,,则称数列A 具有性质P .(1)判断数列1:2323A ,,,和2:3456A ,,,是否具有性质P ,并说明理由;(2)求证:若数列12:n A a a a ,,,具有性质P ,则对任意互不相等的{}12i j k n ∈ ,,,,,,有i j k a a a +>;(3)设数列122022:A a a a ,,,具有性质P ,每一项均为整数,()1122021i i a a i +≠= ,,,,求122022a a a +++ 的最小值.65.已知数列{}n a 满足11a =,1,,2,.n n n a n a a n +⎧=⎨⎩为奇数为偶数(1)令2n n b a =,求1b ,2b 及{}n b 的通项公式;(2)求数列{}n a 的前2n 项和2n S .66.已知集合(Z 是整数集,m 是大于3的正整数).若含有m 项的数列{}n a 满足:任意的,i j M ∈,都有i a M ∈,且当i j ≠时有i j a a ≠,当i m <时有12i i a a +-=或13i i a a +-=,则称该数列为P 数列.(1)写出所有满足5m =且11a =的P 数列;(2)若数列{}n a 为P 数列,证明:{}n a 不可能是等差数列;(3)已知含有100项的P 数列{}n a 满足5105100,,,,,(1,2,3,,20)k a a a a k = 是公差为(0)d d >等差数列,求d 所有可能的值67.设数列{}n a 的前n 项和n S 满足121n n S S n +-=+(N n *∈),且11a =.(1)求证:数列{}1n a +是等比数列;(2)若()22log 1nn n b a =⋅+,求数列{}n b 的前n 项和nT 68.设数列{}n a 的前n 项和为n S ,已知13n n a a +=,且3431S S +=.(1)求{}n a 的通项公式;(2)设()()311log 3n n n b a n a =++,求数列{}n b 的前n 项和n T.69.(1)已知数列{}n a 是正项数列,12a =,且2211122n n n n n n a a a a a a +++-+=+.求数列{}n a 的通项公式;(2)已知数列{}n a 满足12a =,28a =,2143n n n a a a ++=-.求数列{}n a 的通项公式.70.已知数列{}n a 和{}n b 的通项公式:21n a n =-,2n n b =(1)求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n S .(2)求数列211n n n n a a a b +++⎧⎫⎨⎬⎩⎭的前n 项和n T .71.已知公差不为零的等差数列{}n a 的前n 项和为n S ,12a =,且1a ,2a ,4a 成等比数列.(1)求数列{}n a 的通项公式;(2)若11n n b S +=,数列{}n b 的前n 项和为n T ,证明:12n T <.72.设正项数列{}n a 的前n 项和为n S ,且()()647n n n S a a =-+.(1)求{}n a 的通项公式;(2)设1133nn nn n n a a b a a ++-=⋅,求数列{}n b 的前n 项和n T .73.已知数列{}{},n n a b 满足111a b ==.数列{}n n a b +是公差为q 的等差数列,数列{}n n a b 是公比为q 的等比数列,,n n a b n *≥∈N .(1)若1q =,求数列{}n a 的通项公式;(2)若01q <<,证明:12231,1n n qa b a b a b n q*++++<∈-N .74.已知数列{an }对任意的n ∈N *都满足312233333n n a a a a n ++++= .(1)求数列{an }的通项公式;(2)令bn =3413431log log n n a a -+,求数列{bn }的前n 项和为Tn .75.已知数列{}n a 的各项均为非零实数,且对于任意的正整数n ,都有23333123123()n n a a a a a a a a ++++=++++ .(1)写出数列的前三项(请写出所有可能的结果);(2)是否存在满足条件的无穷数列{}n a ,使得20172016a =-?若存在,求出这样的无穷数列的一个通项公式;若不存在,说明理由;(3)记n a 的所有取值构成的集合为n A ,求集合n A 中所有元素之和.(结论不要求证明)76.已知数列{}n a 是等差数列,{}n b 是等比数列,且22b =,34b =,11a b =,851a b +=.(1)求数列{}n a 、{}n b 的通项公式;(2)设11n n n a c b ++=,数列{}n c 的前n 项和为n S ,求n S .77.设各项均不等于零的数列{}n a 的前n 项和为n S ,已知1114,42n n n a S a a a +=+=.(1)求23,a a 的值,并求数列{}n a 的通项公式;(2)证明:1211121n nS S S a +++<- .78.已知{}n a 是等差数列,{}n b 是等比数列,且22b =,516b =,112a b =,34a b =.(1)求{}n a 、{}n b 的通项公式;(2)设n n n c a b =⋅,求数列{}n c 的前n 项和n S .79.已知等差数列{}n a 的前n 项和为n S ,且31a =,67S =;数列{}n b 满足11222n n b b b ++++=- .(1)求数列{}n a 和{}n b 的通项公式;(2)记tan()n n n c b a π=⋅,求数列{}n c 的前3n 项和.80.已知数列{an }的前n 项和为n S ,*1(N )22n n a n S -∈=,数列{bn }满足b 1=1,点P(bn ,bn +1)在直线x ﹣y +2=0上.(1)求数列{an },{bn }的通项公式;(2)令n n n c a b =⋅,求数列{}n c 的前n 项和Tn ;(3)若0λ>,求对所有的正整数n 都有222nnb k a λλ-+>成立的k 的取值范围.81.已知等比数列{}n a 的公比1q >,且45656a a a ++=,54a +是4a ,6a 的等差中项.(1)求数列{}n a 的通项公式;(2)数列{}1n n a a λ+-的前n 项和为n S ,若()*21n n S n =-∈N ,求实数λ的值.82.已知数列{}n a 的前n 项和为n S ,若n n S na =,且246601860S S S S ++++= ,求1a .83.已知{}n a 为等差数列,{}n b 为等比数列,()()115435431,5,4a b a a a b b b ===-=-.(1)求{}n a 和{}n b 的通项公式;(2)记{}n a 的前n 项和为n S ,求证:()221n n n S S S n N *++<∈;(3)对任意的正整数n ,设()21132,,,,n nn n n n n a b n a a c a n b +-+⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数求数列{}n c 的前2n 项和.84.在数列{}n a 中,()*112,21n n a a a n n +==-+∈N ,数列{}n a 的前n 项和为n S .(1)证明:数列{}n a n -是等比数列,并求数列{}n a 的通项公式;(2)求n S .85.设数列{}n a 的前n 项和为n S ,若对任意的正整数n ,都有23n n S a n =-.(1)求{}n a 的通项公式;(2)求数列{(1)}n n a +⋅的前n 项和n T .86.已知数列{}n a 是等差数列,{}n b 是等比数列,且111a b ==,322b b =,441a b +=.(1)求数列{}n a 、{}n b 的通项公式;(2)设11n n n a c b ++=,数列{}n c 的前n 项和为n S ,若不等式12n n nS λ-<+对任意的n *∈N 恒成立,求实数λ的取值范围.87.甲、乙两人同时分别入职,A B 两家公司,两家公司的基础工资标准分别为:A 公司第一年月基础工资数为3700元,以后每年月基础工资比上一年月基础工资增加300元;B 公司第一年月基础工资数为4000元,以后每年月基础工资都是上一年的月基础工资的1.05倍.(1)分别求甲、乙两人工作满10年的基础工资收入总量(精确到1元)(2)设甲、乙两人入职第n 年的月基础工资分别为n a 、n b 元,记n n n c a b =-,讨论数列{}n c 的单调性,指出哪年起到哪年止相同年份甲的月基础工资高于乙的月基础工资,并说明理由.88.已知各项均不相等的等差数列{}n a 的前4项和为10,且124,,a a a 是等比数列{}n b 的前3项.(1)求,n n a b ;(2)设22121n n n n n c b a a ++=+⋅,求{}n c 的前n 项和n S .89.治理垃圾是改善环境的重要举措.A 地在未进行垃圾分类前每年需要焚烧垃圾量为200万吨,当地政府从2020年开始推进垃圾分类工作,通过对分类垃圾进行环保处理等一系列措施,预计从2020年开始的连续5年,每年需要焚烧垃圾量比上一年减少20万吨,从第6年开始,每年需要焚烧垃圾量为上一年的75%(记2020年为第1年).(1)写出A 地每年需要焚烧垃圾量与治理年数()*n n N∈的表达式;(2)设n A 为从2020年开始n 年内需要焚烧垃圾量的年平均值....,证明数列{}n A 为递减数列.90.已知{}n a 是公差不为0的等差数列,{}n b 是等比数列111a b ==,22a b =,3342a b a +=.(1)求{}n a 和{}n b 的通项公式;(2)记,,n n na n cb n ⎧=⎨⎩为奇数为偶数,求数列{}n c 的前2n 项和2n T .91.已知{}n a 是递增的等差数列,13a =,且13a ,4a ,1a 成等比数列.(1)求数列{}n a 的通项公式;(2)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:11156n T ≤<.92.设等差数列{}n a 的前n 项和为n S ,且126a =-,1215S S =.(1)求{}n a 的通项公式;(2)求数列{}2nn a -的前n 项和n T .93.设数列{}n a 是等比数列,其前n 项和为n S .(1)从下面两个条件中任选一个作为已知条件,求{}n a 的通项公式;①{}11,2n a S =-是等比数列;②233421,61S a S a =+=+.(2)在(1)的条件下,若31n n b a -=,求数列{}n b 的前n 项和n T .注:如果选择多个条件分别作答,按第一个解答计分.94.已知{}n a 是等比数列,0n a >,1329a a a =,12312323a a a ++=.(1)求{}n a 的通项公式;(2)记n S 为数列{}n a 的前n 项和,求使得1n n S na +≥的正整数n 的所有取值.95.已知数列{}n a 的通项公式为2n a n n λ=+,若数列{}n a 为递增数列,求λ的取值范围.96.设{}{}n n a b 、是两个数列,()()12122n n n n M A a B n n -⎛⎫⎪⎝⎭,,,,,为直角坐标平面上的点.对*N n n n M A B ∈,、、三点共线.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足:1122212log n nn na b a b a b c a a a +++=+++ ,其中{}n c 是第三项为8,公比为4的等比数列.求证:点列()()()11221,2,,n n P b P b P n b 、、、在同一条直线上;(3)记数列{}{}n n a b 、的前m 项和分别为m A 和m B ,对任意自然数n ,是否总存在与n 相关的自然数m ,使得n m n m a B b A =若存在,求出m 与n 的关系,若不存在,请说明理由.97.已知等差数列{}n a 满足:47a =,1019a =,其前n 项和为.n S (1)求数列{}n a 的通项公式n a 及n S ;(2)若n b ={}n b 的前n 项和n T .98.在等差数列{}n a 中,已知1210a a +=,34530a a a ++=.(1)求数列{}n a 的通项公式;(2)若数列{}n n a b +是首项为1,公比为3的等比数列,求数列{}n b 的前n 项和n S .五、双空题99.“一尺之棰,日取其半,万世不竭”出自我国古代典籍《庄子·天下》,其中蕴含着等比数列的相关知识.已知长度为4的线段AB ,取AB 的中点C ,以AC 为边作等边三角形(如图①),该等边三角形的面积为1S ,在图①中取CB 的中点1C ,以1CC 为边作等边三角形(如图②),图②中所有的等边三角形的面积之和为2S ,以此类推,则3S =___________;1nii iS==∑___________.100.已知[]x 表示不超过x 的最大整数,例如:[]2.32=,[]1.72-=-.在数列{}n a 中,[]lg n a n =,记n S 为数列{}n a 的前n 项和,则2022a =______;2022S =______.参考答案:1.A 【解析】【分析】先由正弦定理得到2sin b B =,02b <≤2211122a b =+-,由向量数量积的几何意义,得22122b AC OC AC =⋅= ,22122CB OC CB a ⋅=-=- ,进而计算出3m =,再使用构造法求解通项公式【详解】设BC a =,AC b =,AB c =,则在ABC 中,由正弦定理sin sin c bC B=及c 45C =︒,得2sin b B =,∵0180B ︒<<︒,∴0sin 1B <≤,∴02b <≤.在ABC 中,由余弦定理及2222cos c a b ab C =+-及c =45C =︒,2211122a b =+-.因为O 是ABC 的外心,所以O 在线段AC ,CB 上的射影为相应线段的中点,由向量数量积的几何意义,得22122b AC OC AC =⋅=,22122CBOC CB a ⋅=-=- ,()OC AB CA CB OC AC CB CA CB OC AC OC CB CA CB⋅+⋅=⋅++⋅=⋅+⋅+⋅ 222222211111111222222b a b a a b b =-+=-++-=-.∵02b <≤,∴2113b -<-≤,所以OC AB CA CB ⋅+⋅的最大值为3.即3m =.由132n n a a +=+,得()1131n n a a ++=+.所以数列{}1n a +是首项112a +=,公比为3的等比数列.所以1123n n a -+=⨯,即1231n n a -=⨯-.故选:A 【点睛】构造法求解数列的通项公式,是经常考查的知识点,要结合递推数列的结构特点,选择合适的方法进行构造,常见的构造类型有()11n n a pa q p +=+≠和()11nn n a pa q p +=+≠等.2.A 【解析】【分析】由已知求得等比数列的首项和公比,以及等差数列的首项,再求得数列{}n c 的前200项中含有数列{}n a 的前7项,含有数列{}n b 的前193项,运用分组求和的方法可求得答案.【详解】解:由已知得11b =,12a =,2331214b c S c c ==--=,等比数列{}n b 的公比14q =.令21122221nn n T -=++++=- ,则663T =,7127T =,8255T =所以数列{}n c 的前200项中含有数列{}n a 的前7项,含有数列{}n b 的前193项,故()()20012181292S b b b a a a =+++++++ 1933841176112472172123214⎛⎫- ⎪⎡⎤⨯⎛⎫⎝⎭=++⨯=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-⨯.故选:A .3.A 【解析】【分析】设AC b =,AB c =,由正余弦定理可得2sin b B =,结合三角形外心性质、向量数量积的几何意义求得21OC AC ⋅-的最大值为3,进而可得()1131n n a a ++=+,利用等比数列的定义写出通项公式.【详解】设AC b =,AB c =,在ABC 中,由sin sin c bC B=及c =45C =︒,得2sin b B =,∵0180B ︒<<︒,则0sin 1B <≤,∴02b <≤.因为O 是ABC 的外心,所以O 在线段AC ,CB 上的射影为相应线段的中点,由向量数量积的几何意义,得222111OC AC AC b ⋅-=-=- ,而2113b -<-≤,所以21OC AC ⋅-的最大值为3.即3m =.由132n n a a +=+,得()1131n n a a ++=+.所以数列{}1n a +是首项112a +=,公比为3的等比数列.所以1123n n a -+=⨯,即1231n n a -=⨯-.故选:A 4.D 【解析】【分析】分别取43n k =-,42k -,41k -和4k ,*k N ∈,可验证出43424148k k k k a a a a ---+++=,利用周期性可验算得到结果.【详解】当43n k =-,*N k ∈时,cos 02n π=,431k a -=;当42n k =-,*N k ∈时,1os 2c n π=-,()()4224211186k a k k -=⨯--⨯-+=-+⎡⎤⎣⎦;当41n k =-,*N k ∈时,cos 02n π=,411k a -=;当4n k =,*N k ∈时,cos12n π=,424118k a k k =⨯-+=.()4342414186188k k k k a a a a k k ---∴+++=+-+++=,12012082404S ∴=⨯=.故选:D 5.B 【解析】【分析】根据给定条件,利用等差数列的前n 项和结合等差数列性质,求出异号的相邻两项即可作答.【详解】等差数列{}n a 的前n 项和为n S ,则1191910191902a a S a +=⨯=>,有100a >,1202010112010()02a a S a a +=⨯=+<,有11100a a <-<,显然数列{}n a 是递减的,且10110a a ⋅<,因10m m a a +⋅<,所以10m =.故选:B 6.C 【解析】【分析】由奇偶性定义可判断出()f x 为偶函数,由此可确定唯一零点为0x =,从而得到递推关系式;利用递推关系式可证得数列{}1n a +为等比数列,由等比数列通项公式可推导得到n a .【详解】()()()()()()4411cos 221cos 221n n n n f x x a x a x a x a f x ++-=-+--+=+-+= ,()f x ∴为偶函数,图象关于y 轴对称,()f x ∴的零点关于y 轴对称,又()f x 有唯一零点,()f x ∴的零点为0x =,即()()10210n n f a a +=-+=,121n n a a +∴=+,即()1121n n a a ++=+,又112a +=,∴数列{}1n a +是以2为首项,2为公比的等比数列,12n n a ∴+=,则21n n a =-.故选:C.【点睛】关键点点睛:本题考查函数与数列的综合应用问题;解题关键是能够根据奇偶性的性质确定函数的唯一零点为0x =,从而结合零点确定数列的递推关系式,由递推关系式证得数列{}1n a +为等比数列.7.B 【解析】【分析】由n S 有最大值可判断A ;由6139100a a a a +=+=,可得90a >,100a <,利用91018182+=a a S 可判断BC ;90a >,9100a a +<得90a >,991010a a a a =<-=,可判断D.【详解】对于选项A ,∵n S 有最大值,∴等差数列{}n a 一定有负数项,∴等差数列{}n a 为递减数列,故公差小于0,故选项A 正确;对于选项B ,∵6139100a a a a +=+=,且10a >,∴90a >,100a <,∴179=170S a >,910181802a a S +=⨯=,则使0n S >的最大的n 为17,故选项B 错误;对于选项C ,∵90a >,9100a a +<,∴90a >,100a <,故{}n S 中9S 最大,故选项C 正确;对于选项D ,∵90a >,9100a a +<,∴90a >,991010a a a a =<-=,故数列{}n a 中的最小项是第9项,故选项D 正确.故选:B.8.B 【解析】【分析】根据等比数列的知识求得,m n 的关系式,结合基本不等式求得122n m n+++的最小值.【详解】因为7652a a a =+,所以2q =或1q =-,又0n a >,所以2q =.14a =14a =,所以6m n +=,则()28m n ++=,()2121212112282m n n m n m n m n +++⎛⎫+=++=⋅++ ⎪+++⎝⎭()22121822m m n n m n m n +⎡⎤+=+++⎢⎥++⎣⎦()22113131828m n m n ⎛+⎛⎫ =+++≥++ ⎪ +⎝⎭⎝118+=,由()222m nm n+=+可得取等号时)2n m =+,但,m n *∈N ,无解;又6m n +=,经检验1m =且5n =时有最小值2615.故选:B 9.A 【解析】【分析】根据()2*1n n na S n N a +=∈求出1a 的值,判断数列{}2n S 是等差数列,求出n S 的通项公式,再求出n a ,然后逐个分析判断即可【详解】因为数列{}n a 的前n 项和为n S ,满足()2*12n n na S n N a +=∈,所以当1n =时,()211*112a S n N a +=∈,解得11a =或11a =-,当2n ≥时,()2111112n n n n n n n n n a S a S S a a S S --+==+=-+-,整理得2211n n S S --=,所以数列{}2nS 是以1为公差的等差数列,当11a =±时,21(1)n S n n =+-=,所以=n S 或n S=所以1-=-=n n n a S S 11a =满足此式,或1n n n a S S -=-=11a =-满足此式,所以2022a =或2022a =,所以CD 错误,当=n a20212022a a ⋅=1<,当n a =20212022a a ⋅=1<,所以A 正确,B 错误,故选:A 10.B 【解析】【分析】先利用累加法求得数列{}n a 的通项公式,再利用裂项相消法去求122015111a a a +++ 的值.【详解】由11a =,11n n a a a n +=++,可得11n n a a n +-=+则2n ≥时,()()11232211()()n n n n n a a a a a a a a a a ---=-+-++-+-+ ()1321(1)2nn n n =+-++++=+ 又11122a ==⨯,则数列{}n a 的通项公式为(1)2n n a n =+则()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭则122015111a a a +++ 1111111201522112232015201620161008⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-+-++-=-= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎣=⎭⎦ 故选:B 11.D 【解析】【分析】分n 为奇数和n 为偶数两种情况讨论,再利用分组求和法及等差数列前n 项和的公式,即可得出答案.【详解】解:当n 为奇数时,20n n a a +-=,所以数列{}n a 的奇数项是以0为公差的等差数列,当n 为偶数时,22n n a a +-=,所以数列{}n a 的偶数项是以2为公差的等差数列,所以2,,n n a n n ⎧=⎨⎩为奇数为偶数,所以()()10050210025024610010026502S +=⨯+++++=+=L .故选:D.12.C 【解析】【分析】由条件可得玲珑塔的灯盏数从首层到顶层为等比数列,由条件列方程求玲珑塔的顶层灯的盏数.【详解】由题意可得玲珑塔的灯盏数从首层到顶层为等比数列,设其首层为1a ,公比q ,顶层为n a ,前n 项和为n S 由已知可得13a =,2q =,381n S =,由等比数列的前n 项和公式可得132********n nn a a q a a q --==-=--,所以192n a =.故玲珑塔的顶层灯的盏数为192,故选:C.13.C 【解析】【分析】对AB ,举公比为负数的反例判断即可对CD ,设等比数列{}n a 公比为q ,分0q >和0q <两种情况讨论,再得出结论即可【详解】对AB ,当公比为12-时,2311,,2a a =-=此时12332,1,2S S S ===,此时{}n S 既不是递增也不是递减数列;对CD ,设等比数列{}n a 公比为q ,当0q >时,因为22a <,故22q <,故01q <<,此时()2122111n nn q q S qq q-==----,易得n S 随n 的增大而增大,故{}n S 存在最小项1S ,不存在最大项;当0q <时,因为22a <,故22q -<,故10q -<<,2211nn q S q q =---,因为1q <,故当n 为偶数时,2211nn q S q q =---,随着n 的增大而增大,此时222111nn q S q q q =-<---无最大值,当2n =时有最小值222S q =+;当n 为奇数时,2211nn q S q q=+--,随着n 的增大而减小,故222111nn q S q q q=+>---无最小值,有最大值12S =.综上,当0q <时,因为22221q q +<<-,故当2n =时有最小值222S q =+,当1n =时有最大值12S =综上所述,数列{}n S 存在最小项,不一定有最大项,故C 正确;D 错误故选:C 14.A 【解析】【分析】先求出公差,再由等差数列求和公式求解即可.【详解】设公差为d ,则312d =-=,则1010910121002S ⨯=⨯+=.故选:A.15.D 【解析】【分析】由等差数列求和公式求出35a =,由等比数列通项公式基本量计算得到公比,进而求出6714b b q ==,从而求出结果.【详解】由题意得:()155355252a a S a +===,解得:35a =,设等比数列{}n b 的公比是q ,因为1132,8b b ==,所以1228q =,解得:124q =,显然60q >,所以62q =,所以6714b b q ==,所以3754a b =故选:D 16.D 【解析】【分析】利用“1n =时,11a S =;当2n时,1n n n a S S -=-”即可得到n a ,进而得到数列2{}n a 是等比数列,求出公比和首项,再利用等比数列的前n 项和公式即可得出.【详解】设等比数列{}n a 的公比为q ,1221n n n S a a a =++⋯+=- ,∴当2n 时,1112121n n n S a a a ---=++⋯+=-,111222n n n n n n a S S ---∴=-=-=.∴2122221(2)4(2)n n n n a a ---==,当1n =时,11211a =-=,21221a a +=-,解得22a =,22214a a =.也符合2214n n a a -=,∴数列2{}n a 是等比数列,首项为1,公比为4.∴22212411(41)413n n na a a -++⋯+==--.故选:D 17.C 【解析】【分析】设等比数列{}n a 的公比为(0)q q >,根据题意得到2673339q a a qa +=+,结合基本不等式,即可求解.【详解】设等比数列{}n a 的公比为(0)q q >,因为23784581a a a a a ==,所以53a =,又因为235553326739,a a a a a q a q q q q===⋅=,所以3267339q a a q a +=+≥=当且仅当3339q q =时,即613q =时,等号成立,所以267a a a +的最小值为.故选:C.18.C 【解析】【分析】利用已知等式可求得等差数列的公差d 和首项1a ,由等差数列求和公式可求得结果.【详解】设等差数列{}n a 公差为d ,13512a a a ++= ,10111224a a a ++=,()1011121352412a a a a a a d ∴++-++==,解得:12d =,135********a a a a d a ∴++=+=+=,解得:13a =,{}n a ∴的前13项的和为11312131213397824a d ⨯⨯+=+=.故选:C.19.C 【解析】【分析】设{}n a n -的公比为q ,根据1a 和2a 求出q ,从而得n a 和4a ,再根据()n a Ω的定义可求出结果.【详解】设{}n a n -的公比为q ,则2121123141a q a --===--,所以111(1)(41)33n n n n a n a q---=-⋅=-⋅=,则3n n a n =+,所以445438a =+=.所以落在区间[]4,85内的偶数共有41个,故()441a Ω=.故选:C 20.A 【解析】【分析】根据规律可得数列通项,再求其中的项即可.【详解】通过观察可知该数列的通项公式为()1112n n n a +--=,所以()11109112512a -==-.故选:A 21.A 【解析】【分析】利用裂项相消法求和即可;【详解】解:由题可知,第2行的前100项和10011111261210012010S +++++⨯= 1111111100122334100101101=-+-+-++-= .故选:A 22.B 【解析】【分析】根据三点共线可得120201a a +=,结合等差数列的前n 项和公式求解.∵,,A B C 三点共线且12020OA a OB a OC =+,则120201a a +=∴()120202020202010102a a S +==故选:B .23.C 【解析】【分析】根据规律求得正确答案.【详解】根据规律可知,第四个点阵表示的三角形数为:123410+++=.故选:C 24.C 【解析】【分析】根据规律可得结果.【详解】将1111,,,25811可以写成1111,,,311321331341⨯-⨯-⨯-⨯-,所以{}n a 的通项公式为131n -;故选:C 25.B 【解析】【分析】由数列的前几项可得数列的一个通项公式,再代入计算可得;【详解】解:依题意可得该数列的通项公式可以为()()1121n n a n +=-⋅-,所以1019a =-.故选:B 26.D 【解析】根据等差数列的下标和性质即可解出.【详解】因为4710771110222a a a a a +=+=+,解得:74a =,所以311728a a a +==.故选:D .27.B 【解析】【分析】根据等差数列的性质直接计算即可.【详解】由等差数列的性质可知:51444212a a d =+=+⨯=;故选:B.28.BD 【解析】【分析】连AC 交BD 于E ,根据面积关系推出2AE EC =,根据平面向量知识推出BE = 1233BA BC +,结合()()1122n n n n BD a BA a BC --=-++ ,推出1122(2)n n n n a a --+=-,11222nn n n a a ---=-,求出232nn a n =-+,(23)2n n a n =-+⋅,根据等比数列的定义可判断A ;根据等差数列的定义可判断C ,根据数列的单调性可判断B ;利用错位相减法求出n S ,可判断D.【详解】如图,连AC 交BD 于E ,则1sin 21sin 2ABD BD AE AEB S S BD EC CED ⋅⋅=⋅⋅△△BCD ÐÐ=2AEEC=,即2AE EC =,所以2AE EC =,所以()2BE BA BC BE -=- ,所以BE = 1233BA BC +,设BD tBE =(1)t >,因为当2n ≥时,恒有()()1122n nn n BD a BA a BC --=-++ ,所以()()111122n nn n BE a BA a BC t t--=-++ ,()()1111231223n n n na t a t--⎧-=⎪⎪⎨⎪+=⎪⎩,所以当2n ≥时,恒有1122(2)n n n n a a --+=-,所以11222n n n n a a --=-,即11222n n n n a a ---=-,又12a =,所以112a =,所以12(1)232nn a n n =--=-+,所以(23)2n n a n =-+⋅,因为11(21)242(23)223n n n n a n n a n n ++-+⋅-+==-+⋅-+不是常数,所以{}n a 不为等比数列,故A 不正确;因为11(21)(23)2022n n n n a a n n ++-=-+--+=-<,即1122n n n n a a ++<,所以2n n a ⎧⎫⎨⎬⎩⎭为递减数列,故B 正确;因为1n n a a +-=1(21)2(23)2n n n n +-+⋅--+⋅=(21)2n n --⋅不是常数,所以{}n a 不为等差数列,故C 不正确;因为12312(1)2(3)2(23)2nn S n =⨯+-⋅+-⋅++-+⋅ ,所以2341212(1)2(3)2(23)2n n S n +=⨯+-⋅+-⋅++-+⋅ ,所以12341122(2222)(23)2n n n S n +-=⨯-++++--+⋅ ,所以114(12)22(23)212n n n S n -+--=-⨯--+⋅-110(52)2n n +=--⋅,所以1(52)210n n S n +=-⋅-,故D 正确.故选:BD 29.BCD【解析】【分析】由题知121n n a a +=+,进而得数列{1}n a +是首项为2,公比为2的等比数列,再结合通项公式和裂项求和求解即可.【详解】由121n n n S S a +=++得1121n n n n a S S a ++=-=+,即121n n a a +=+所以112(1)n n a a ++=+,由111S a ==,所以数列{1}n a +是首项为2,公比为2的等比数列,故A 错误,B 正确;所以12nn a +=,即21n n a =-,故C 正确;又1112211(21)(21)2121n n n n n n n n a a +++==-----,所以22311111111111212*********n n n n T ++=-+-+⋯+-=-<------,故D 正确.故选:BCD 30.AD 【解析】【分析】对AB ,根据通项n a 与n S 的关系可得100a <,110a >即可判断;对CD ,根据等差数列前n 项和的公式,结合等差数列的性质判断即可【详解】因为109S S <,1011S S <,所以109100S S a -=<,1110110a S S =>-,故等差数列首项为负,公差为正,所以0d >,10a <,故A 正确,B 错误;由911S S <,可知11910110S S a a -=+>,所以()()20120101110100S a a a a =+=+>,故C 错误;因为110a >,所以2111210S a =>,故D 正确.故选:AD 31.BCD 【解析】【分析】设等差数列{}n a 的公差为d ,再根据n S 与n a 的公式可得d ,进而求得n S 与n a 的通项公式,再逐个判定即可【详解】设等差数列{}n a 的公差为d ,则11224614a d a d +=⎧⎨+=⎩,解得183a d =⎧⎨=-⎩,故311n a n =-+,()()311819232n n n S n n ==-+-.故{}n a 是递减数列,A 错误;18a =,B 正确;()535191250S -⨯==,235210a a =⨯=,故C 正确;()1932n n n S =-,当1,2,3...6n =时,()1932n n n S -=,因为函数()193y x x =-的对称轴为196x =,开口向下,故当6n =时,n S 取得最小值()66193632S -⨯==;当7,8,9...n =时,()3192n n n S -=,函数()319y x x =-的对称轴为196x =,开口向上,故当7n =时,nS 取得最小值()77371972S ⨯-==,综上有n S 的最小值为3,故D 正确;故选:BCD 32.AD 【解析】【分析】由递推公式可得数列为周期数列,即得答案.【详解】解:因为13a =,()1*11N n na n a +=∈-,所以23412,,323a a a =-==,所以数列{}n a 是周期为3的数列,所以132(N )n a a n *-=∈,故122283a a a ===.故选:AD.33.AD 【解析】【分析】根据等差数列和等比数列的定义逐一判断可得选项.【详解】。
高中数学数列经典题型专题训练试题(含答案)
高中数学数列经典题型专题训练试题学校:___________姓名:___________班级:___________考号:___________说明:1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分100分。
考试时间120分钟。
2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。
考试结束后,只收第Ⅱ卷第Ⅰ卷(选择题)一.单选题(共15小题,每题2分,共30分)1.数列{a n},已知对任意正整数n,a1+a2+a3+…+a n=2n-1,则a12+a22+a32+…+a n2等于()A.(2n-1)2B.C.D.4n-12.若{a n}为等比数列a5•a11=3,a3+a13=4,则=()A.3B.C.3或D.-3或-3.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.4.等差数列{a n}中,a1=1,a3=4,则公差d等于()A.1B.2C.D.5.数列的前n项和为S n,a n=,则S n≥0的最小正整数n的值为()6.若数列{a n}的前n项和S n=2n2-2n,则数列{a n}是()A.公差为4的等差数列B.公差为2的等差数列C.公比为4的等比数列D.公比为2的等比数列7.已知数列{a n}的前n项和S n=2n-1,则此数列奇数项的前n项和为()A.B.C.D.8.在等比数列{a n} 中,a1=4,公比为q,前n项和为S n,若数列{S n+2}也是等比数列,则q 等于()A.2B.-2C.3D.-39.在数列{a n}中,a1=2,a2=2,a n+2-a n=1+(-1)n,n∈N*,则S60的值为()A.990B.1000C.1100D.9910.若数列{a n}是公差为2的等差数列,则数列是()A.公比为4的等比数列B.公比为2的等比数列C.公比为的等比数列D.公比为的等比数列11.在数列{a n}中,a1=0,a n=4a n-1+3,则此数列的第5项是()A.252B.255C.215D.52212.数列{a n}、{b n}满足a n•b n=1,a n=n2+3n+2,则{b n}的前10项之和等于()A.B.C.D.13.等比数列{a n}中,a1+a2=8,a3-a1=16,则a3等于()14.已知在等比数列{a n}中,S n为其前n项和,且a4=2S3+3,a5=2S4+3,则此数列的公比q为()A.2B.C.3D.15.数列{a n}的通项,则数列{a n}中的最大项是()A.第9项B.第8项和第9项C.第10项D.第9项和第10项二.填空题(共10小题,每题2分,共20分)16.已知等差数列{a n},有a1+a2+a3=8,a4+a5+a6=-4,则a13+a14+a15=______.17.在等差数列{a n}中,a3+a5+a7+a9+a11=20,则a1+a13=______.18.数列{a n}的通项公式为a n=2n+2n-1,则数列a n的前n项和为______.19.数列{a n}中,a1=1,a n+1=2a n+1,则通项a n=______.20.数列{a n}是公差不为0的等差数列,且a2+a6=a8,则=______.21.已知数列{a n},a n+1=2a n+1,且a1=1,则a10=______.22.设正项等比数列{an}的公比为q,且,则公比q=______.23.已知数列{a n}满足a1=3,a n+1=2a n+1,则数列{a n}的通项公式a n=______.24.数列{a n}为等差数列,已知a3+2a8+a9=20,则a7______.25.设数列{a n}为正项等比数列,且a n+2=a n+1+a n,则其公比q=______.第Ⅱ卷(非选择题)三.简答题(共5小题,50分)26.(10分)已知等差数列{a n},前n项和为S n=n2+Bn,a7=14.(1)求B、a n;(2)设c n=n•,求T n=c1+c2+…+c n.27.(8分)已知等差数列{a n}满足:a5=11,a2+a6=18(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=a n+3n,求数列{b n}的前n项和S n.28.(7分)已知数列{a n}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.29.(12分)已知数列{a n}满足.(1)求a2,a3,a4的值;(2)求证:数列{a n-2}是等比数列;(3)求a n,并求{a n}前n项和S n.30.(12分)在数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)在数列{b n}中,若存在正整数p,q使b p=q,b q=p(p>q),求p,q得值;(Ⅲ)若记c n=a n•b n,求数列{c n}的前n项的和S n.参考答案一.单选题(共__小题)1.数列{a n},已知对任意正整数n,a1+a2+a3+…+a n=2n-1,则a12+a22+a32+…+a n2等于()A.(2n-1)2B.C.D.4n-1答案:C解析:解:∵a1+a2+a3+…+a n=2n-1…①∴a1+a2+a3+…+a n-1=2n-1-1…②,①-②得a n=2n-1,∴a n2=22n-2,∴数列{a n2}是以1为首项,4为公比的等比数列,∴a12+a22+a32+…+a n2==,故选C.2.若{a n}为等比数列a5•a11=3,a3+a13=4,则=()A.3B.C.3或D.-3或-答案:C解析:解:∵{a n}为等比数列a5•a11=3,∴a3•a13=3①∵a3+a13=4②由①②得a3=3,a13=1或a3=1,a13=3∴q10=或3,∴=或3,故选C.3.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.答案:A解析:解:a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10,a52=a2a8,∴,∴,故选A.4.等差数列{a n}中,a1=1,a3=4,则公差d等于()A.1B.2C.D.答案:D解析:解:∵数列{a n}是等差数列,a1=1,a3=4,∴a3=a1+2d,即4=1+2d,解得d=.故选:D.5.数列的前n项和为S n,a n=,则S n≥0的最小正整数n的值为()A.12B.13C.14D.15答案:A解析:解:令a n=<0,解得n≤6,当n>7时,a n>0,且a6+a7=a5+a8=a4+a9=a3+a10=a2+a11=a1+a12=0,所以S12=0,S13>0,即使S n≥0的最小正整数n=12.故选A.6.若数列{a n}的前n项和S n=2n2-2n,则数列{a n}是()A.公差为4的等差数列B.公差为2的等差数列C.公比为4的等比数列D.公比为2的等比数列答案:A解析:解:∵S n=2n2-2n,则S n-S n-1=a n=2n2-2n-[2(n-1)2-2(n-1)]=4n-4故数列{a n}是公差为4的等差数列故选A.7.已知数列{a n}的前n项和S n=2n-1,则此数列奇数项的前n项和为()A.B.C.D.答案:C解析:解:当n=1时,a1=S1=21-1=1,当n≥2时,a n=Sn-Sn-1=2n-1-(2n-1-1)=2•2n-1-2n-1=2n-1,对n=1也适合∴a n=2n-1,∴数列{a n}是等比数列,此数列奇数项也构成等比数列,且首项为1,公比为4.∴此数列奇数项的前n项和为==故选C8.在等比数列{a n} 中,a1=4,公比为q,前n项和为S n,若数列{S n+2}也是等比数列,则q 等于()A.2B.-2C.3D.-3答案:C解析:解:由题意可得q≠1由数列{S n+2}也是等比数列可得s1+2,s2+2,s3+2成等比数列则(s2+2)2=(S1+2)(S3+2)代入等比数列的前n项和公式整理可得(6+4q)2=24(1+q+q2)+12解可得q=3故选C.9.在数列{a n}中,a1=2,a2=2,a n+2-a n=1+(-1)n,n∈N*,则S60的值为()A.990B.1000C.1100D.99答案:A解析:解:当n为奇数时,a n+2-a n=1+(-1)n=0,可得a1=a3=…=a59=2.当n为偶数时,a n+2-a n=1+(-1)n=2,∴数列{a2n}为等差数列,首项为2,公差为2,∴a2+a4+…+a60=30×2+=930.∴S60=(a1+a3+…+a59)+(a2+a4+…+a60)=30×2+930=990.故选:A.10.若数列{a n}是公差为2的等差数列,则数列是()A.公比为4的等比数列B.公比为2的等比数列C.公比为的等比数列D.公比为的等比数列答案:A解析:解:∵数列{a n}是公差为2的等差数列∴a n=a1+2(n-1)∴∴数列是公比为4的等比数列故选A11.在数列{a n}中,a1=0,a n=4a n-1+3,则此数列的第5项是()A.252B.255C.215D.522答案:B解析:解:由a n=4a n-1+3可得a n+1=4a n-1+4=4(a n-1+1),故可得=4,由题意可得a1+1=1即数列{a n+1}为首项为1,公比为4的等比数列,故可得a5+1=44=256,故a5=255故选B12.数列{a n}、{b n}满足a n•b n=1,a n=n2+3n+2,则{b n}的前10项之和等于()A.B.C.D.答案:B解析:解:∵a n•b n=1∴b n==∴s10==(-)+=-=故选项为B.13.等比数列{a n}中,a1+a2=8,a3-a1=16,则a3等于()A.20B.18C.10D.8答案:B解析:解:设等比数列{a n}的公比为q,∵a1+a2=8,a3-a1=16,∴,解得,∴=2×32=18.故选:B.14.已知在等比数列{a n}中,S n为其前n项和,且a4=2S3+3,a5=2S4+3,则此数列的公比q为()A.2B.C.3D.答案:C解析:解:∵a4=2S3+3,a5=2S4+3,即2S4=a5-3,2S3=a4-3∴2S4-2S3=a5-3-(a4-3)=a5-a4=2a4,即3a4=a5∴3a4=a4q解得q=3,故选C15.数列{a n}的通项,则数列{a n}中的最大项是()A.第9项B.第8项和第9项C.第10项D.第9项和第10项答案:D解析:解:由题意得=,∵n是正整数,∴=当且仅当时取等号,此时,∵当n=9时,=19;当n=9时,=19,则当n=9或10时,取到最小值是19,而取到最大值.故选D.二.填空题(共__小题)16.已知等差数列{a n},有a1+a2+a3=8,a4+a5+a6=-4,则a13+a14+a15=______.答案:-40解析:解:设等差数列{a n}的公差为d,∵a1+a2+a3=8,a4+a5+a6=-4,∵a4+a5+a6=(a1+3d)+(a2+3d)+(a3+3d)=a1+a2+a3+9d,∴-4=8+9d,解得d=-,∴a13+a14+a15=a1+a2+a3+36d=8-×36=-40,故答案为:-4017.在等差数列{a n}中,a3+a5+a7+a9+a11=20,则a1+a13=______.答案:8解析:解:由等差数列的性质可得a3+a5+a7+a9+a11=(a3+a11)+a7+(a5+a9)=2a7+a7+2a7=5a7=20∴a7=4∴a1+a13=2a7=8故答案为:818.(2015秋•岳阳校级月考)数列{a n}的通项公式为a n=2n+2n-1,则数列a n的前n项和为______.答案:2n+n2-1解析:解:数列a n的前n项和S n=(2+22+23+…+2n)+[1+3+5+…+(2n-1)]=+=2n-1+n2.故答案为:2n-1+n2.19.数列{a n}中,a1=1,a n+1=2a n+1,则通项a n=______.答案:2n-1解析:解:由题可得,a n+1+1=2(a n+1),则=2,又a1=1,则a1+1=2,所以数列{a n+1}是以2为首项、公比的等比数列,所以a n+1=2•2n-1=2n,则a n=2n-1.故答案为:2n-1.20.数列{a n}是公差不为0的等差数列,且a2+a6=a8,则=______.答案:3解析:解:设等差数列{a n}的首项为a1,公差为d,由a2+a6=a8,得a1+d+a1+5d=a1+7d,即a1=d,所以==.故答案为3.21.已知数列{a n},a n+1=2a n+1,且a1=1,则a10=______.答案:1023解析:解:由题意,两边同加1得:a n+1+1=2(a n+1),∵a1+1=2∴{a n+1}是以2为首项,以2为等比数列∴a n+1=2•2n-1=2n∴a n=2n-1∴a10=1024-1=1023.故答案为:1023.22.设正项等比数列{an}的公比为q,且,则公比q=______.答案:解析:解:由题意知得∴6q2-q-1=0∴q=或q=-(与正项等比数列矛盾,舍去).故答案为:23.已知数列{a n}满足a1=3,a n+1=2a n+1,则数列{a n}的通项公式a n=______.答案:2n+1-1解析:解:由题意知a n+1=2a n+1,则a n+1+1=2a n+1+1=2(a n+1)∴=2,且a1+1=4,∴数列{a n+1}是以4为首项,以2为公比的等比数列.则有a n+1=4×2n-1=2n+1,∴a n=2n+1-1.24.数列{a n}为等差数列,已知a3+2a8+a9=20,则a7______.答案:=5解析:解:等差数列{a n}中,∵a3+2a8+a9=20,∴(a1+2d)+2(a1+7d)+(a1+8d)=4a1+24d=4(a1+6d)=4a7=20,∴a7=5.故答案为:5.25.设数列{a n}为正项等比数列,且a n+2=a n+1+a n,则其公比q=______.答案:解析:解:由题设条件知a1+a1q=a1q2,∵a1>0,∴q2-q-1=0解得,∵数列{a n}为正项等比数列,∴.故答案:.三.简答题(共__小题)26.已知等差数列{a n},前n项和为S n=n2+Bn,a7=14.(1)求B、a n;(2)设c n=n•,求T n=c1+c2+…+c n.答案:解:(1)∵a7=14.即a7=S7-S6=72+7B-62-6B=14.解得B=1,当n=1时,a1=S1=2;当n≥2时,a n=S n-S n-1=n2+n-(n-1)2-(n-1)=2n.n=1时也适合∴a n=2n(2)由(1)c n=n•=n•4n,T n=c1+c2+…+c n.=1•41+2•42+3•43+…n•4n①4T n=1•42+2•43+3•44+…(n-1)•4n+n•4n+1,②①-②得-3T n=41+42+43+…4n-n•4n+1=-n•4n+1=•4n+1∴T n=•4n+1解析:解:(1)∵a7=14.即a7=S7-S6=72+7B-62-6B=14.解得B=1,当n=1时,a1=S1=2;当n≥2时,a n=S n-S n-1=n2+n-(n-1)2-(n-1)=2n.n=1时也适合∴a n=2n(2)由(1)c n=n•=n•4n,T n=c1+c2+…+c n.=1•41+2•42+3•43+…n•4n①4T n=1•42+2•43+3•44+…(n-1)•4n+n•4n+1,②①-②得-3T n=41+42+43+…4n-n•4n+1=-n•4n+1=•4n+1∴T n=•4n+127.已知等差数列{a n}满足:a5=11,a2+a6=18(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=a n+3n,求数列{b n}的前n项和S n.答案:解:(Ⅰ)设等差数列{a n}的公差为d,∵a5=11,a2+a6=18,∴,解得a1=3,d=2.∴a1=2n+1.(Ⅱ)由(I)可得:b n=2n+1+3n.∴S n=[3+5+…+(2n+1)]+(3+32+…+3n)=+=n2+2n+-.解析:解:(Ⅰ)设等差数列{a n}的公差为d,∵a5=11,a2+a6=18,∴,解得a1=3,d=2.∴a1=2n+1.(Ⅱ)由(I)可得:b n=2n+1+3n.∴S n=[3+5+…+(2n+1)]+(3+32+…+3n)=+=n2+2n+-.28.已知数列{a n}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.答案:解:(Ⅰ)设数列{a n}的公差为d,由a1=2和a2,a3,a4+1成等比数列,得(2+2d)2-(2+d)(3+3d),解得d=2,或d=-1,当d=-1时,a3=0,与a2,a3,a4+1成等比数列矛盾,舍去.∴d=2,∴a n=a1+(n-1)d=2+2(n-1)=2n.即数列{a n}的通项公式a n=2n;(Ⅱ)由a n=2n,得b n==,∴S n=b1+b2+b3+…+b n==.解析:解:(Ⅰ)设数列{a n}的公差为d,由a1=2和a2,a3,a4+1成等比数列,得(2+2d)2-(2+d)(3+3d),解得d=2,或d=-1,当d=-1时,a3=0,与a2,a3,a4+1成等比数列矛盾,舍去.∴d=2,∴a n=a1+(n-1)d=2+2(n-1)=2n.即数列{a n}的通项公式a n=2n;(Ⅱ)由a n=2n,得b n==,∴S n=b1+b2+b3+…+b n==.29.已知数列{a n}满足.(1)求a2,a3,a4的值;(2)求证:数列{a n-2}是等比数列;(3)求a n,并求{a n}前n项和S n.答案:解:(1)∵数列{a n}满足,∴.…(3分)(2)∵,又a1-2=-1,∴数列{a n-2}是以-1为首项,为公比的等比数列.…(7分)(注:文字叙述不全扣1分)(3)由(2)得,…(9分)∴.…(12分)解析:解:(1)∵数列{a n}满足,∴.…(3分)(2)∵,又a1-2=-1,∴数列{a n-2}是以-1为首项,为公比的等比数列.…(7分)(注:文字叙述不全扣1分)(3)由(2)得,…(9分)∴.…(12分)30.在数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)在数列{b n}中,若存在正整数p,q使b p=q,b q=p(p>q),求p,q得值;(Ⅲ)若记c n=a n•b n,求数列{c n}的前n项的和S n.答案:解:(Ⅰ)数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n;∴b n+1=log2a n+1,∴b n+1-b n=log2a n+1-log2a n=log2=-1;∴=,∴{a n}是等比数列,通项公式为a n=16×=;∴{b n}的通项公式b n=log2a n=log2=5-n;(Ⅱ)数列{b n}中,∵b n=5-n,假设存在正整数p,q使b p=q,b q=p(p>q),则,解得,或;(Ⅲ)∵a n=,b n=5-n,∴c n=a n•b n=(5-n)×;∴{c n}的前n项和S n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×①,∴s n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×②;①-②得:s n=4×----…--(5-n)×=64--(5-n)×=48+(n-3)×;∴s n=96+(n-3)×.解析:解:(Ⅰ)数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n;∴b n+1=log2a n+1,∴b n+1-b n=log2a n+1-log2a n=log2=-1;∴=,∴{a n}是等比数列,通项公式为a n=16×=;∴{b n}的通项公式b n=log2a n=log2=5-n;(Ⅱ)数列{b n}中,∵b n=5-n,假设存在正整数p,q使b p=q,b q=p(p>q),则,解得,或;(Ⅲ)∵a n=,b n=5-n,∴c n=a n•b n=(5-n)×;∴{c n}的前n项和S n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×①,∴s n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×②;①-②得:s n=4×----…--(5-n)×=64--(5-n)×=48+(n-3)×;∴s n=96+(n-3)×.。
(完整版)《数列》练习题及答案
欢迎阅读《数列》练习题姓名_________班级___________一、选择题(本大题共10个小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.等差数列-2,0,2,…的第15项为( ) A .11 2 B .12 2 C .13 2 D .14 22.若在数列{a n }中,a 1=1,a n +1=a 2n -1(n ∈N *),则a 1+a 2+a 3+a 4+a 5=( ) A .-1 B .1 C .0 D .23.某种细胞开始有2个,1小时后分裂成4个并死去1个,2小时后分裂成6个并死去1个,3小时后分裂成10个并死去1个,…,按此规律进行下去,6小时后细胞存活的个数是( )A .33个B .65个C .66个D .129个4.设S n 为等差数列{a n }的前n 项和,若S 8=30,S 4=7,则a 4的值等于( ) A.14 B.94 C.134 D.1745.设f (x )是定义在R 上的恒不为零的函数,且对任意的实数x 、y ∈R ,都有f (x )·f (y )=f (x +y ),若a 1=12,a n =f (n )(n ∈N *),则数列{a n }的前n 项和S n 的取值范围为( )A .[12,2)B .[12,2]C .[12,1)D .[12,1]6.小正方形按照如图所示的规律排列:每个图中的小正方形的个数构成一个数列{a n },有以下结论:①a 5=15;②数列{a n }是一个等差数列;③数列{a n }是一个等比数列;④数列的递推公式为:a n +1=a n +n +1(n ∈N *).其中正确的命题序号为( )A .①②B .①③C .①④D .①7.已知数列{a n }满足a 1=0,a n +1=a n -33a n +1(n ∈N *),则a 20=( )A .0B .- 3 C. 3D.328.数列{a n }满足递推公式a n =3a n -1+3n -1(n ≥2),又a 1=5,则使得{a n +λ3n}为等差数列的实数λ=( )A .2B .5C .-12D.129.在等差数列{a n }中,a 10<0,a 11>0,且a 11>|a 10|,则{a n }的前n 项和S n 中最大的负数为( )A.S17 B.S18 C.S19D.S2010.将数列{3n-1}按“第n组有n个数”的规则分组如下:(1),(3,9),(27,81,243),…,则第100组中的第一个数是( )A.34 950 B.35 000 C.35 010D.35 050二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)11.设等差数列{a n}的前n项和为S n,若S9=72,则a2+a4+a9=________.12.设数列{a n}中,a1=2,a n+1=a n+n+1,则通项a n=________..)100项2,0,n2n1232n-1<3.18.(本小题满分8分)已知数列{a n}的前n项和为S n,且a n+S n=1(n∈N*).(1)求数列{a n}的通项公式;(2)若数列{b n}满足b n=3+log4a n,设T n=|b1|+|b2|+…+|b n|,求T n.19.(本小题满分10分)已知单调递增的等比数列{a n}满足a2+a3+a4=28,且a3+2是a2,a4的等差中项.(1)求数列{a n}的通项公式;(2)若b n =n n a log a 21,S n =b 1+b 2+…+b n ,对任意正整数n ,S n +(n +m )a n +1<0恒成立,试求m 的取值范围.参考答案选择题答案题号 12345678910答案C A B C C C B C C A填空题答案第11题 24第12题第13题 a n =2·3n第14题-7【第15题】S 5=5?a 1+a 5?2=5?a 1+5?2=15,∴a 1=1. ∴d =a 5-a 15-1=5-15-1=1.∴a n =1+(n -1)×1=n . ∴1a n a n +1=1n ?n +1?.设{1a n a n +1}的前n 项和为T n ,则T 100=11×2+12×3+…+1100×101 =1-12+12-13+…+1100-1101 =1-1101=100101. 【第16题】(1)设{a n }的公差为d .由题意,a 211=a 1a 13,即(a 1+10d )2=a 1(a 1+12d ).于是d (2a 1+25d )=0.又a 1=25,所以d =0(舍去),d =-2. 故a n =-2n +27.(2)令S n =a 1+a 4+a 7+…+a 3n -2.由(1)知a 3n -2=-6n +31,故{a 3n -2}是首项为25,公差为-6的等差数列. 从而S n =n 2(a 1+a 3n -2)=n2(-6n +56)=-3n 2+28n .【第17题】(1)∵{a n }是递减的等比数列, ∴数列{a n }的公比q 是正数. 又∵{a 1,a 2,a 3}{-4,-3,-2,0,1,2,3,4},∴a 1=4,a 2=2,a 3=1.∴q =a 2a 1=24=12.∴a n =a 1q n -1=82n .(2)由已知得b n =12])1(1[8+--n n ,当n =2k (k ∈N *)时,b n =0,当n =2k -1(k ∈N *)时,b n =a n . 即b n =⎩⎨⎧0,?n =2k ,k ∈N *?,a n ,?n =2k -1,k ∈N *?.∴b 1+b 2+b 3+…+b 2n -2+b 2n -1T n T n n ⎪⎩≥+-)7(,460112n n n 【第19题】(1)n n 2a =(2)∵b n =2n ·log 12 2n =-n ·2n ,∴-S n =1×2+2×22+3×23+…+n ×2n ,① -2S n =1×22+2×23+3×24+…+(n -1)×2n +n ×2n +1.②①-②,得S n =2+22+23+…+2n -n ·2n +1=21)21(2--n -n ·2n +1=2n +1-n ·2n +1-2.∵S n +(n +m )a n +1<0,∴2n +1-n ·2n +1-2+n ·2n +1+m ·2n +1<0对任意正整数n 恒成立. ∴m ·2n +1<2-2n +1对任意正整数n 恒成立,即m <12n -1恒成立.∵12n -1>-1,∴m ≤-1,即m 的取值范围是(-∞,-1].。
数列练习题及答案
数列练习题及答案一、选择题1. 已知数列{an}的前n项和为Sn,若a1=1,a2=3,且满足an+1 = an + 2n,求S5的值。
A. 25B. 28B. 30D. 312. 对于数列{bn},若b1=2,且bn+1 = 2bn + 1,求b4的值。
A. 17B. 15C. 13D. 113. 已知数列{cn}是等差数列,其公差为3,且c5=23,求c1的值。
A. 2B. 5C. 8D. 114. 数列{dn}的通项公式为dn = 2n - 1,求d10的值。
A. 19B. 17C. 15D. 135. 若数列{en}满足en = 3en-1 - 2,e1 = 1,求e3的值。
B. 5C. 3D. 1二、填空题6. 已知数列{fn}的前n项和为Sn,且满足Sn = n^2,求f3的值。
7. 对于数列{gn},若g1=4,且满足gn+1 = 3gn - 2,求g3的值。
8. 已知等比数列{hn}的首项为h1=8,公比为2,求h5的值。
9. 若数列{in}满足in = 2^n - 1,求i5的值。
10. 对于数列{jn},若j1=1,且满足jn+1 = jn^2,求j4的值。
三、解答题11. 某工厂生产的产品数量构成一个等差数列,第一年生产了100件,每年生产量比上一年多20件。
求第5年的产量,并求这5年的总产量。
12. 某公司的股票价格构成一个等比数列,第一年价格为10元,每年价格是上一年的2倍。
求第3年的股票价格,并求这3年的平均价格。
13. 已知数列{kn}的前n项和为Sn,且满足Sn = 2n^2 + n,求k5的值。
14. 对于数列{ln},若l1=1,且满足ln+1 = ln + ln-1,l2=3,求l4的值。
15. 某数列{mn}的通项公式为mn = 3^n - 2^n,求m5的值。
1. B2. A3. D4. A5. A6. 67. 108. 1289. 3110. 25511. 第5年产量为180件,5年总产量为700件。
新高考——数学数列多选题专项训练专项练习附答案
一、数列多选题1.意大利人斐波那契于1202年从兔子繁殖问题中发现了这样的一列数:1,1,2,3,5,8,13,….即从第三项开始,每一项都是它前两项的和.后人为了纪念他,就把这列数称为斐波那契数列.下面关于斐波那契数列{}n a 说法正确的是( ) A .1055a = B .2020a 是偶数C .2020201820223a a a =+D .123a a a +++…20202022a a +=答案:AC 【分析】由该数列的性质,逐项判断即可得解. 【详解】对于A ,,,,故A 正确;对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误; 对于C ,,故C 正确; 对于D ,,,, , 各式相加解析:AC 【分析】由该数列的性质,逐项判断即可得解. 【详解】对于A ,821a =,9211334a =+=,10213455a =+=,故A 正确; 对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误;对于C ,20182022201820212020201820192020202020203a a a a a a a a a a +=++=+++=,故C 正确; 对于D ,202220212020a a a =+,202120202019a a a =+,202020192018a a a =+,32121,a a a a a ⋅⋅⋅=+=,各式相加得()2022202120202021202020192012182a a a a a a a a a ++⋅⋅⋅+=+++⋅⋅⋅++, 所以202220202019201811a a a a a a =++⋅⋅⋅+++,故D 错误. 故选:AC. 【点睛】关键点点睛:解决本题的关键是合理利用该数列的性质去证明选项. 2.已知数列{}n a 满足()*111n na n N a +=-∈,且12a =,则( ) A .31a =-B .201912a =C .332S =D . 2 01920192S =答案:ACD 【分析】先计算出数列的前几项,判断AC ,然后再寻找规律判断BD . 【详解】由题意,,A 正确,,C 正确; ,∴数列是周期数列,周期为3. ,B 错; ,D 正确. 故选:ACD . 【点睛】 本解析:ACD 【分析】先计算出数列的前几项,判断AC ,然后再寻找规律判断BD . 【详解】由题意211122a =-=,311112a =-=-,A 正确,3132122S =+-=,C 正确;41121a =-=-,∴数列{}n a 是周期数列,周期为3. 2019367331a a a ⨯===-,B 错;20193201967322S =⨯=,D 正确.故选:ACD . 【点睛】本题考查由数列的递推式求数列的项与和,解题关键是求出数列的前几项后归纳出数列的性质:周期性,然后利用周期函数的定义求解.3.已知数列{}n a 满足112a =-,111n na a +=-,则下列各数是{}n a 的项的有( )A .2-B .23C .32D .3答案:BD 【分析】根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论.【详解】 因为数列满足,, ; ; ;数列是周期为3的数列,且前3项为,,3; 故选:. 【点睛】 本题主要解析:BD 【分析】根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论. 【详解】因为数列{}n a 满足112a =-,111n na a +=-,212131()2a ∴==--;32131a a ==-; 4131112a a a ==-=-; ∴数列{}n a 是周期为3的数列,且前3项为12-,23,3; 故选:BD . 【点睛】本题主要考查数列递推关系式的应用,考查数列的周期性,解题的关键在于求出数列的规律,属于基础题.4.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,….,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a =B .733S =C .135********a a a a a +++⋅⋅⋅+=D .22212201920202019a a a a a ++⋅⋅⋅⋅⋅⋅+= 答案:ABCD 【分析】由题意可得数列满足递推关系,对照四个选项可得正确答案. 【详解】对A ,写出数列的前6项为,故A 正确; 对B ,,故B 正确; 对C ,由,,,……,,可得:.故是斐波那契数列中的第解析:ABCD 【分析】由题意可得数列{}n a 满足递推关系12211,1,(3)n n n a a a a a n --===+≥,对照四个选项可得正确答案. 【详解】对A ,写出数列的前6项为1,1,2,3,5,8,故A 正确; 对B ,71123581333S =++++++=,故B 正确;对C ,由12a a =,342a a a =-,564a a a =-,……,201920202018a a a =-, 可得:135********a a a a a +++⋅⋅⋅+=.故1352019a a a a +++⋅⋅⋅+是斐波那契数列中的第2020项.对D ,斐波那契数列总有21n n n a a a ++=+,则2121a a a =,()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,……,()220182018201920172018201920172018a a a a a a a a =-=-,220192019202020192018a a a a a =-2222123201920192020a a a a a a +++⋅⋅⋅⋅⋅⋅+=,故D 正确;故选:ABCD. 【点睛】本题以“斐波那契数列”为背景,考查数列的递推关系及性质,考查方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意递推关系的灵活转换.5.(多选)在数列{}n a 中,若221(2,,n n a a p n n N p *--=≥∈为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( ) A .若{}n a 是等差数列,则{}n a 是等方差数列 B .(){}1n- 是等方差数列C .{}2n是等方差数列.D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列答案:BD 【分析】根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可.【详解】对于A ,若是等差数列,如,则不是常数,故不是等方差数列,故A 错误; 对于B ,数列中,是常数,是等方差数列,故解析:BD 【分析】根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可. 【详解】对于A ,若{}n a 是等差数列,如n a n =,则12222(1)21n n a a n n n --=--=-不是常数,故{}na 不是等方差数列,故A 错误;对于B ,数列(){}1n-中,222121[(1)][(1)]0n n n n a a ---=---=是常数,{(1)}n ∴-是等方差数列,故B 正确; 对于C ,数列{}2n中,()()22221112234n n n n n aa ----=-=⨯不是常数,{}2n∴不是等方差数列,故C 错误; 对于D ,{}n a 是等差数列,1n n a a d -∴-=,则设n a dn m =+,{}n a 是等方差数列,()()222112(2)n n n n dn m a a a a d a d d n m d d dn d m --∴-=++++=+=++是常数,故220d =,故0d =,所以(2)0m d d +=,2210n n a a --=是常数,故D 正确.故选:BD. 【点睛】关键点睛:本题考查了数列的新定义问题和等差数列的定义,解题的关键是正确理解等差数列和等方差数列定义,利用定义进行判断.6.等差数列{}n a 是递增数列,公差为d ,前n 项和为n S ,满足753a a =,下列选项正确的是( ) A .0d <B .10a <C .当5n =时n S 最小D .0n S >时n 的最小值为8答案:BD 【分析】由题意可知,由已知条件可得出,可判断出AB 选项的正误,求出关于的表达式,利用二次函数的基本性质以及二次不等式可判断出CD 选项的正误. 【详解】由于等差数列是递增数列,则,A 选项错误解析:BD 【分析】由题意可知0d >,由已知条件753a a =可得出13a d =-,可判断出AB 选项的正误,求出n S 关于d 的表达式,利用二次函数的基本性质以及二次不等式可判断出CD 选项的正误. 【详解】由于等差数列{}n a 是递增数列,则0d >,A 选项错误;753a a =,则()11634a d a d +=+,可得130a d =-<,B 选项正确;()()()22171117493222224n n n d n n d n n d S na nd n d -⎡⎤--⎛⎫=+=-+==--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当3n =或4时,n S 最小,C 选项错误; 令0n S >,可得270n n ->,解得0n <或7n >.n N *∈,所以,满足0n S >时n 的最小值为8,D 选项正确.故选:BD.7.记n S 为等差数列{}n a 的前n 项和.已知450,5S a ==,则( ) A .25n a n =-B .310na nC .228n S n n =- D .24n S n n =-答案:AD 【分析】设等差数列的公差为,根据已知得,进而得,故,. 【详解】解:设等差数列的公差为,因为所以根据等差数列前项和公式和通项公式得:, 解方程组得:, 所以,. 故选:AD.解析:AD 【分析】设等差数列{}n a 的公差为d ,根据已知得1145460a d a d +=⎧⎨+=⎩,进而得13,2a d =-=,故25n a n =-,24n S n n =-.【详解】解:设等差数列{}n a 的公差为d ,因为450,5S a == 所以根据等差数列前n 项和公式和通项公式得:1145460a d a d +=⎧⎨+=⎩,解方程组得:13,2a d =-=,所以()31225n a n n =-+-⨯=-,24n S n n =-.故选:AD.8.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,现有下列4个命题中正确的有( )A .若100S =,则280S S +=;B .若412S S =,则使0n S >的最大的n 为15C .若150S >,160S <,则{}n S 中8S 最大D .若78S S <,则89S S <答案:BC 【分析】根据等差数列的性质,以及等差数列的求和公式,逐项判断,即可得答案. 【详解】 A 选项,若,则, 那么.故A 不正确; B 选项,若,则,又因为,所以前8项为正,从第9项开始为负, 因为解析:BC 【分析】根据等差数列的性质,以及等差数列的求和公式,逐项判断,即可得答案. 【详解】A 选项,若1011091002S a d ⨯=+=,则1290a d +=, 那么()()2811128281029160S S a d a d a d d +=+++=+=-≠.故A 不正确; B 选项,若412S S =,则()5611128940a a a a a a ++++=+=,又因为10a >,所以前8项为正,从第9项开始为负, 因为()()116168916802a a S a a +==+=, 所以使0n S >的最大的n 为15.故B 正确; C 选项,若()115158151502a a S a +==>,()()116168916802a a S a a +==+<, 则80a >,90a <,则{}n S 中8S 最大.故C 正确;D 选项,若78S S <,则80a >,而989S S a -=,不能判断9a 正负情况.故D 不正确. 故选:BC . 【点睛】本题考查等差数列性质的应用,涉及等差数列的求和公式,属于常考题型.9.设公差不为0的等差数列{}n a 的前n 项和为n S ,若1718S S =,则下列各式的值为0的是( ) A .17aB .35SC .1719a a -D .1916S S -答案:BD 【分析】由得,利用可知不正确;;根据可知 正确;根据可知不正确;根据可知正确. 【详解】因为,所以,所以, 因为公差,所以,故不正确; ,故正确; ,故不正确; ,故正确. 故选:BD.解析:BD 【分析】 由1718S S =得180a =,利用17180a a d d =-=-≠可知A 不正确;;根据351835S a =可知 B 正确;根据171920a a d -=-≠可知C 不正确;根据19161830S S a -==可知D 正确. 【详解】因为1718S S =,所以18170S S -=,所以180a =,因为公差0d ≠,所以17180a a d d =-=-≠,故A 不正确;13518351835()35235022a a a S a +⨯====,故B 正确; 171920a a d -=-≠,故C 不正确;19161718191830S S a a a a -=++==,故D 正确.故选:BD. 【点睛】本题考查了等差数列的求和公式,考查了等差数列的下标性质,属于基础题.10.等差数列{}n a 的前n 项和为n S ,若90a <,100a >,则下列结论正确的是( ) A .109S S >B .170S <C .1819S S >D .190S >答案:ABD 【分析】先根据题意可知前9项的和最小,判断出正确;根据题意可知数列为递减数列,则,又,进而可知,判断出不正确;利用等差中项的性质和求和公式可知,,故正确.【详解】根据题意可知数列为递增解析:ABD 【分析】先根据题意可知前9项的和最小,判断出A 正确;根据题意可知数列为递减数列,则190a >,又181919S S a =-,进而可知1516S S >,判断出C 不正确;利用等差中项的性质和求和公式可知()01179179172171722a a a S a <+⨯⨯===,()1191019101921919022a a a S a +⨯⨯===>,故BD 正确. 【详解】根据题意可知数列为递增数列,90a <,100a >,∴前9项的和最小,故A 正确;()11791791721717022a a a S a +⨯⨯===<,故B 正确; ()1191019101921919022a a a S a +⨯⨯===>,故D 正确; 190a >, 181919S S a ∴=-, 1819S S ∴<,故C 不正确.故选:ABD . 【点睛】本题考查等差数列的综合应用,考查逻辑思维能力和运算能力,属于常考题.。
数列的概念练习题(有答案)
一、数列的概念选择题1.已知数列265n a n n =-+则该数列中最小项的序号是( )A .3B .4C .5D .62.已知数列{}n a 的前n 项和223n S n n =-,则10a =( )A .35B .40C .45D .503.已知数列,21,n -21是这个数列的( )A .第10项B .第11项C .第12项D .第21项4.若数列的前4项分别是1111,,,2345--,则此数列的一个通项公式为( ) A .1(1)n n --B .(1)n n -C .1(1)1n n +-+D .(1)1n n -+5.已知数列{}n a 的通项公式为()()211nn a n=--,则6a =( )A .35B .11-C .35-D .116.在数列{}n a 中,12a =,111n n a a -=-(2n ≥),则8a =( ) A .1-B .12C .1D .27.已知数列{}n a 的首项为2,且数列{}n a 满足111n n n a a a +-=+,数列{}n a 的前n 项的和为n S ,则1008S 等于( )A .504B .294C .294-D .504-8.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列,如数列1,3,6,10,前后两项之差得到新数列2,3,4,新数列2,3,4为等差数列,这样的数列称为二阶等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为( ) A .184B .174C .188D .1609.已知数列{}n a 满足11a =),2n N n *=∈≥,且()2cos3n n n a b n N π*=∈,则数列{}n b 的前18项和为( ) A .120B .174C .204-D .373210.历史上数列的发展,折射出许多有价值的数学思想方法,对时代的进步起了重要的作用.比如意大利数学家列昂纳多—斐波那契以兔子繁殖为例,引入“兔子数列”:即1,1,2,3,5,8,13,21,34,55,89,144,233…即121a a ==,当n ≥3时,12n n n a a a --=+,此数列在现代物理及化学等领域有着广泛的应用.若此数列的各项依次被4整除后的余数构成一个新的数列{}n b ,记数列{}n b 的前n 项和为n S ,则20S 的值为( ) A .24B .26C .28D .3011.已知数列{}n a 的前5项为:12a =,232a =,343a =,454a =,565a =,可归纳得数列{}n a 的通项公式可能为( ) A .1+=n n a nB .21n n a n +=+ C .3132n n a n -=-D .221n na n =- 12.已知数列{}n a 满足11a =,122n n a a n n+=++,则10a =( ) A .259B .145 C .3111D .17613.已知数列{}n a 的前n 项和2n S n n =+,则4a 的值为( ) A .4B .6C .8D .1014.正整数的排列规则如图所示,其中排在第i 行第j 列的数记为,i j a ,例如4,39a =,则645a ,等于( )12345678910A .2019B .2020C .2021D .202215.历史上数列的发展,折射出很多有价值的数学思想方法,对时代的进步起了重要的作用,比如意大利数学家列昂纳多·斐波那契以兔子繁殖为例,引入“兔子数列”:即1,1,2,3,5,8,13,21,34,55,89,144,233……即F (1)=F (2)=1,F (n )=F (n -1)+F (n -2),()*3n n N≥∈,,此数列在现代物理及化学等领域有着广泛的应用,若此数列被4整除后的余数构成一个新数列{}n b ,则b 2020=( ) A .3B .2C .1D .016.数列{}n a 满足:12a =,111nn na a a ++=-()*n N ∈其前n 项积为n T ,则2018T =( ) A .6-B .16-C .16D .617.在数列{}n a 中,11a =,()*122,21n n a n n N a -=≥∈-,则3a =( )A .6B .2C .23D .21118.已知数列{}n a 满足12n n a a n +=+,且133a =,则na n的最小值为( ) A .21B .10C .212 D .17219.数列{}n a 前n 项和为n S ,若21n n S a =+,则72019a S +的值为( ) A .2B .1C .0D .1-20.若数列{a n }满足1112,1nn na a a a ++==-,则2020a 的值为( ) A .2B .-3C .12-D .13二、多选题21.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{a n }称为“斐波那契数列”,记S n 为数列{a n }的前n 项和,则下列结论正确的是( ) A .a 8=34 B .S 8=54C .S 2020=a 2022-1D .a 1+a 3+a 5+…+a 2021=a 202222.意大利人斐波那契于1202年从兔子繁殖问题中发现了这样的一列数:1,1,2,3,5,8,13,….即从第三项开始,每一项都是它前两项的和.后人为了纪念他,就把这列数称为斐波那契数列.下面关于斐波那契数列{}n a 说法正确的是( ) A .1055a = B .2020a 是偶数C .2020201820223a a a =+D .123a a a +++…20202022a a +=23.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,….,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a =B .733S =C .135********a a a a a +++⋅⋅⋅+=D .22212201920202019a a a a a ++⋅⋅⋅⋅⋅⋅+= 24.已知等差数列{}n a 的前n 项和为n S ,218a =,512a =,则下列选项正确的是( ) A .2d =- B .122a =C .3430a a +=D .当且仅当11n =时,n S 取得最大值25.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,则下列4个命题中正确的有( )A .若100S =,则50a >,60a <;B .若412S S =,则使0n S >的最大的n 为15;C .若150S >,160S <,则{}n S 中7S 最大;D .若89S S <,则78S S <.26.已知正项数列{}n a 的前n 项和为n S ,若对于任意的m ,*n N ∈,都有m n m n a a a +=+,则下列结论正确的是( )A .11285a a a a +=+B .56110a a a a <C .若该数列的前三项依次为x ,1x -,3x ,则10103a = D .数列n S n ⎧⎫⎨⎬⎩⎭为递减的等差数列 27.等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则( ) A .若59S >S ,则150S > B .若59S =S ,则7S 是n S 中最大的项 C .若67S S >, 则78S S > D .若67S S >则56S S >.28.已知数列{}2nna n +是首项为1,公差为d 的等差数列,则下列判断正确的是( ) A .a 1=3 B .若d =1,则a n =n 2+2n C .a 2可能为6D .a 1,a 2,a 3可能成等差数列29.已知等差数列{}n a 的前n 项和为,n S 且15110,20,a a a 则( )A .80a <B .当且仅当n = 7时,n S 取得最大值C .49S S =D .满足0n S >的n 的最大值为1230.设{}n a 是等差数列,n S 是其前n 项的和,且56S S <,678S S S =>,则下列结论正确的是( ) A .0d > B .70a =C .95S S >D .6S 与7S 均为n S 的最大值31.已知数列{}n a 为等差数列,则下列说法正确的是( ) A .1n n a a d +=+(d 为常数) B .数列{}n a -是等差数列 C .数列1n a ⎧⎫⎨⎬⎩⎭是等差数列 D .1n a +是n a 与2n a +的等差中项32.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大B .在数列{}n a 中,3a 或4a 最大C .310S S =D .当8n ≥时,0n a <33.数列{}n a 满足11,121nn n a a a a +==+,则下列说法正确的是( ) A .数列1n a ⎧⎫⎨⎬⎩⎭是等差数列 B .数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和2n S n = C .数列{}n a 的通项公式为21n a n =- D .数列{}n a 为递减数列34.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,现有下列4个命题中正确的有( )A .若100S =,则280S S +=;B .若412S S =,则使0n S >的最大的n 为15C .若150S >,160S <,则{}n S 中8S 最大D .若78S S <,则89S S <35.已知等差数列{}n a 的前n 项和为S n (n ∈N *),公差d ≠0,S 6=90,a 7是a 3与a 9的等比中项,则下列选项正确的是( ) A .a 1=22B .d =-2C .当n =10或n =11时,S n 取得最大值D .当S n >0时,n 的最大值为21【参考答案】***试卷处理标记,请不要删除一、数列的概念选择题 1.A 解析:A 【分析】首先将n a 化简为()234n a n =--,即可得到答案。
数列综合练习题以及答案解析
数列综合练习题一.选择题(共23小题)1.已知函数f(x)=,若数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,则实数a的取值范围是()A.[,4)B.(,4)C.(2,4) D.(1,4)2.已知{a n}是递增数列,且对任意n∈N*都有a n=n2+λn恒成立,则实数λ的取值范围是()A.(﹣,+∞)B.(0,+∞)C.[﹣2,+∞)D.(﹣3,+∞)3.已知函数f(x)是R上的单调增函数且为奇函数,数列{a n}是等差数列,a11>0,则f(a9)+f(a11)+f(a13)的值()A.恒为正数B.恒为负数C.恒为0 D.可正可负4.等比数列{a n}中,a4=2,a7=5,则数列{lga n}的前10项和等于()A.2 B.lg50 C.10 D.55.右边所示的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形,根据图中的数构成的规律,a所表示的数是()A.2 B.4 C.6 D.86.已知正项等比数列{a n}满足:a7=a6+2a5,若存在两项a m,a n,使得=4a1,则+的最小值为()A.B.C.D.7.已知,把数列{a n}的各项排列成如图的三角形状,记A(m,n)表示第m行的第n个数,则A(10,12)=()A.B.C.D.8.设等差数列{a n}满足=1,公差d∈(﹣1,0),若当且仅当n=9时,数列{a n}的前n项和S n取得最大值,则首项a1的取值范围是()A.(π,)B.[π,]C.[,]D.(,)9.定义在(﹣∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{a n},{f (a n)},仍是等比数列,则称f(x)为“等比函数”.现有定义在(﹣∞),0)∪(0,+∞)上的如下函数:①f(x)=3x,②f(x)=,③f(x)=x3,④f(x)=log2|x|,则其中是“等比函数”的f(x)的序号为()A.①②③④B.①④C.①②④D.②③10.已知数列{a n}(n∈N*)是各项均为正数且公比不等于1的等比数列,对于函数y=f(x),若数列{lnf(a n)}为等差数列,则称函数f(x)为“保比差数列函数”.现有定义在(0,+∞)上的三个函数:①f(x)=;②f(x)=e x;③f(x)=;④f(x)=2x,则为“保比差数列函数”的是()A.③④B.①②④C.①③④D.①③11.已知数列{a n}满足a1=1,a n+1=,则a n=()A.B.3n﹣2 C.D.n﹣212.已知数列{a n}满足a1=2,a n+1﹣a n=a n+1a n,那么a31等于()A.﹣B.﹣C.﹣D.﹣13.如果数列{a n}是等比数列,那么()A.数列{}是等比数列B.数列{2an}是等比数列C.数列{lga n}是等比数列D.数列{na n}是等比数列14.在数列{a n}中,a n+1=a n+2,且a1=1,则=()A.B.C.D.15.等差数列的前n项,前2n项,前3n项的和分别为A,B,C,则()A.A+C=2B B.B2=AC C.3(B﹣A)=C D.A2+B2=A(B+C)16.已知数列{a n}的通项为a n=(﹣1)n(4n﹣3),则数列{a n}的前50项和T50=()A.98 B.99 C.100 D.10117.数列1,,,…,的前n项和为()A.B. C. D.18.数列{a n}的通项公式为,其前n项和为s n,则s2017等于()A.1006 B.1008 C.﹣1006 D.﹣100819.数列{a n}中,,则数列{a n}前16项和等于()A.130 B.132 C.134 D.13620.《庄子•天下篇》中记述了一个著名命题:“一尺之锤,日取其半,万世不竭”.反映这个命题本质的式子是()A.1+++…+=2﹣B.1+++…++…<2C.++…+=1 D.++…+<121.在数列{a n}中,若=+,a1=8,则数列{a n}的通项公式为()A.a n=2(n+1)2B.a n=4(n+1)C.a n=8n2D.a n=4n(n+1)22.已知函数f(x)=,把函数g(x)=f(x)﹣x的零点按从小到大的顺序排列成一个数列,则该数列的前n项的和为S n,则S10=()A.210﹣1 B.29﹣1 C.45 D.5523.设等差数列{a n}满足,公差d∈(﹣1,0),当且仅当n=9时,数列{a n}的前n项和S n取得最大值,求该数列首项a1的取值范围()A.B.[,]C.(,)D.[,]二.解答题(共4小题)24.已知{a n}是等差数列,{b n}是等比数列,且b2=3,b3=9,a1=b1,a14=b4.(1)求{a n}的通项公式;(2)设c n=a n+b n,求数列{c n}的前n项和.25.已知等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,a1=﹣1,b1=1,a2+b2=2.(1)若a3+b3=5,求{b n}的通项公式;(2)若T3=21,求S3.26.设数列{a n}满足a1+3a2+…+(2n﹣1)a n=2n.(1)求{a n}的通项公式;(2)求数列{}的前n项和.27.已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n﹣1.数列综合练习题答案与解析一.选择题(共23小题)1.已知函数f(x)=,若数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,则实数a的取值范围是()A.[,4)B.(,4)C.(2,4) D.(1,4)【解答】解:函数f(x)=,数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,∴,解得2<a<4.故选:C.2.已知{a n}是递增数列,且对任意n∈N*都有a n=n2+λn恒成立,则实数λ的取值范围是()A.(﹣,+∞)B.(0,+∞)C.[﹣2,+∞)D.(﹣3,+∞)【解答】解:∵{a n}是递增数列,∴a n>a n,+1∵a n=n2+λn恒成立即(n+1)2+λ(n+1)>n2+λn,∴λ>﹣2n﹣1对于n∈N*恒成立.而﹣2n﹣1在n=1时取得最大值﹣3,∴λ>﹣3,故选D.3.已知函数f(x)是R上的单调增函数且为奇函数,数列{a n}是等差数列,a11>0,则f(a9)+f(a11)+f(a13)的值()A.恒为正数B.恒为负数C.恒为0 D.可正可负【解答】解:∵f(a11)>f(0)=0,a9+a13=2a11>0,a9>﹣a13,∴f(a9)>f(﹣a13)=﹣f(a13),f(a9)+f(a13)>0,∴f(a9)+f(a11)+f(a13)>0,故选:A.4.等比数列{a n}中,a4=2,a7=5,则数列{lga n}的前10项和等于()A.2 B.lg50 C.10 D.5【解答】解:∵等比数列{a n}中,a4=2,a7=5,∴a1a10=a2a9=…=a4a7=10,∴数列{lga n}的前10项和S=lga1+lga2+…+lga10=lga1a2…a10=lg105=5故选:D5.右边所示的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形,根据图中的数构成的规律,a所表示的数是()A.2 B.4 C.6 D.8【解答】解:杨辉三角形中,每一行的第一个数和最后一个数都是1,首尾之间的数总是上一行对应的两个数的和,∴a=3+3=6;故选C.6.已知正项等比数列{a n}满足:a7=a6+2a5,若存在两项a m,a n,使得=4a1,则+的最小值为()A.B.C.D.【解答】解:设正项等比数列{a n}的公比为q,且q>0,由a7=a6+2a5得:a6q=a6+,化简得,q2﹣q﹣2=0,解得q=2或q=﹣1(舍去),因为a m a n=16a12,所(a1q m﹣1)(a1q n﹣1)=16a12,则q m+n﹣2=16,解得m+n=6,+=×(m+n)×(+)=×(17++)≥×(17+2)=,当且仅当=,解得:m=,n=,因为m n取整数,所以均值不等式等号条件取不到,+>,验证可得,当m=1、n=5时,取最小值为.故答案选:B.7.已知,把数列{a n}的各项排列成如图的三角形状,记A(m,n)表示第m行的第n个数,则A(10,12)=()A.B.C.D.【解答】解:由A(m,n)表示第m行的第n个数可知,A(10,12)表示第10行的第12个数,根据图形可知:①每一行的最后一个项的项数为行数的平方,所以第10行的最后一个项的项数为102=100,即为a100;②每一行都有2n﹣1个项,所以第10行有2×10﹣1=19项,得到第10行第一个项为100﹣19+1=82,所以第12项的项数为82+12﹣1=93;所以A(10,12)=a93=故选A.8.设等差数列{a n}满足=1,公差d∈(﹣1,0),若当且仅当n=9时,数列{a n}的前n项和S n取得最大值,则首项a1的取值范围是()A.(π,)B.[π,]C.[,]D.(,)【解答】解:∵======﹣=﹣sin(4d),∴sin(4d)=﹣1,∵d∈(﹣1,0),∴4d∈(﹣4,0),∴4d=﹣,d=﹣,∵S n=na1+==﹣+,∴其对称轴方程为:n=,有题意可知当且仅当n=9时,数列{a n}的前n项和S n取得最大值,∴<<,解得π<a1<,故选:A.9.定义在(﹣∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{a n},{f (a n)},仍是等比数列,则称f(x)为“等比函数”.现有定义在(﹣∞),0)∪(0,+∞)上的如下函数:①f(x)=3x,②f(x)=,③f(x)=x3,④f(x)=log2|x|,则其中是“等比函数”的f(x)的序号为()A.①②③④B.①④C.①②④D.②③【解答】解:不妨设等比数列{a n}中,a n=a1•q n﹣1,①∵f(x)=3x,∴====常数,故当q≠1时,{f(a n)}不是等比数列,故f(x)=3x不是等比函数;②∵f(x)=,∴===,故{f(a n)}是等比数列,故f(x)=是等比函数;③∵f(x)=x3,∴=═q3,故{f(a n)}是等比数列,故f(x)=x3是等比函数;④f(x)=log2|x|,∴==,故{f(a n)}不是等比数列,故f(x)=log2|x|不是等比函数.故其中是“等比函数”的f(x)的序号②③,故选:D.10.已知数列{a n}(n∈N*)是各项均为正数且公比不等于1的等比数列,对于函数y=f(x),若数列{lnf(a n)}为等差数列,则称函数f(x)为“保比差数列函数”.现有定义在(0,+∞)上的三个函数:①f(x)=;②f(x)=e x;③f(x)=;④f(x)=2x,则为“保比差数列函数”的是()A.③④B.①②④C.①③④D.①③【解答】解:设数列{a n}的公比为q(q≠1)①由题意,lnf(a n)=ln,∴lnf(a n+1)﹣lnf(a n)=ln﹣ln=ln=﹣lnq是常数,∴数列{lnf(a n)}为等差数列,满足题意;②由题意,lnf(a n)=ln,∴lnf(a n+1)﹣lnf(a n)=ln﹣ln=a n+1﹣a n不是常数,∴数列{lnf(a n)}不为等差数列,不满足题意;③由题意,lnf(a n)=ln,∴lnf(a n+1)﹣lnf(a n)=ln﹣ln=lnq是常数,∴数列{lnf(a n)}为等差数列,满足题意;④由题意,lnf(a n)=ln(2a n),∴lnf(a n+1)﹣lnf(a n)=ln(2a n+1)﹣ln(2a n)=lnq是常数,∴数列{lnf(a n)}为等差数列,满足题意;综上,为“保比差数列函数”的所有序号为①③④故选:C.11.已知数列{a n}满足a1=1,a n+1=,则a n=()A.B.3n﹣2 C.D.n﹣2【解答】解:∵a1=1,a n+1=,∴=+3,即﹣=3,∴数列{}是以1为首项,3为公差的等差数列,∴=1+(n﹣1)×3=3n﹣2,∴a n=,故选:A.12.已知数列{a n}满足a1=2,a n+1﹣a n=a n+1a n,那么a31等于()A.﹣B.﹣C.﹣D.﹣【解答】解:由已知可得﹣=﹣1,设b n=,则数列{b n}是以为首项,公差为﹣1的等差数列.∴b31=+(31﹣1)×(﹣1)=﹣,∴a31=﹣.故选:B.13.如果数列{a n}是等比数列,那么()A.数列{}是等比数列B.数列{2an}是等比数列C.数列{lga n}是等比数列D.数列{na n}是等比数列【解答】解:对于A:设b n=,则==()2=q2,∴{b n}成等比数列;正确;对于B:数列{2},=2≠常数;不正确;对于C:当a n<0时lga n无意义;不正确;对于D:设c n=na n,则==≠常数.不正确.故选A.14.在数列{a n}中,a n+1=a n+2,且a1=1,则=()A.B.C.D.【解答】解:在数列{a n}中,a n+1=a n+2,且a1=1,可得a n=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1,由==(﹣),可得=(1﹣+﹣+﹣+…+﹣)=(1﹣)=.故选:A.15.等差数列的前n项,前2n项,前3n项的和分别为A,B,C,则()A.A+C=2B B.B2=AC C.3(B﹣A)=C D.A2+B2=A(B+C)【解答】解:由等差数列的前n项和公式的性质可得:A,B﹣A,C﹣B也成等差数列.∴2(B﹣A)=A+C﹣B,解得3(B﹣A)=C.故选:C.16.已知数列{a n}的通项为a n=(﹣1)n(4n﹣3),则数列{a n}的前50项和T50=()A.98 B.99 C.100 D.101【解答】解:数列{a n}的通项为a n=(﹣1)n(4n﹣3),前50项和T50=﹣1+5﹣9+13﹣17+…+197=(﹣1+5)+(﹣9+13)+(﹣17+21)+…+(﹣193+197)=4+4+4+…+4=4×25=100.故选:C.17.数列1,,,…,的前n项和为()A.B. C. D.【解答】解:===2().数列1,,,…,的前n项和:数列1+++…+=2(1++…)=2(1﹣)=.故选:B.18.数列{a n}的通项公式为,其前n项和为s n,则s2017等于()A.1006 B.1008 C.﹣1006 D.﹣1008【解答】解:∵,n=2k﹣1(k∈N*)时,a n=a2k﹣1=(2k﹣1)=0.n=2k时,a n=a2k=2kcoskπ=2k•(﹣1)k.∴s2017=(a1+a3+…+a2017)+(a2+a4+…+a2016)=0+(﹣2+4﹣…﹣2014+2016)=1008.故选:B.19.数列{a n}中,,则数列{a n}前16项和等于()A.130 B.132 C.134 D.136+(﹣1)n a n=2n﹣1,【解答】解:∵a n+1∴a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a16﹣a15=29.从而可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a11=2,a12+a10=40,a13+a15=2,a16+a14=56,从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列.∴{a n}的前16项和为4×2+8×4+=136.故选:D.20.《庄子•天下篇》中记述了一个著名命题:“一尺之锤,日取其半,万世不竭”.反映这个命题本质的式子是()A.1+++…+=2﹣B.1+++…++…<2C.++…+=1 D.++…+<1【解答】解:根据已知可得每次截取的长度构造一个以为首项,以为公比的等比数列,∵++…+=1﹣<1,故反映这个命题本质的式子是++…+<1,故选:D21.在数列{a n}中,若=+,a1=8,则数列{a n}的通项公式为()A.a n=2(n+1)2B.a n=4(n+1)C.a n=8n2D.a n=4n(n+1)【解答】解:∵=+,a1=8,则数列{}为等差数列.∴=+(n﹣1)=(n+1).∴a n=2(n+1)2.故选:A.22.已知函数f(x)=,把函数g(x)=f(x)﹣x的零点按从小到大的顺序排列成一个数列,则该数列的前n项的和为S n,则S10=()A.210﹣1 B.29﹣1 C.45 D.55【解答】解:当0<x≤1时,有﹣1<x﹣1<0,则f(x)=f(x﹣1)+1=2x﹣1,当1<x≤2时,有0<x﹣1≤1,则f(x)=f(x﹣1)+1=2x﹣2+1,当2<x≤3时,有1<x﹣1≤2,则f(x)=f(x﹣1)+1=2x﹣3+2,当3<x≤4时,有2<x﹣1≤3,则f(x)=f(x﹣1)+1=2x﹣4+3,以此类推,当n<x≤n+1(其中n∈N)时,则f(x)=f(x﹣1)+1=2x﹣n﹣1+n,所以,函数f(x)=2x的图象与直线y=x+1的交点为:(0,1)和(1,2),由于指数函数f(x)=2x为增函数且图象下凸,故它们只有这两个交点.然后:①将函数f(x)=2x和y=x+1的图象同时向下平移一个单位,即得到函数f(x)=2x﹣1和y=x 的图象,取x≤0的部分,可见它们有且仅有一个交点(0,0).即当x≤0时,方程f(x)﹣x=0有且仅有一个根x=0.②取①中函数f(x)=2x﹣1和y=x图象﹣1<x≤0的部分,再同时向上和向右各平移一个单位,即得f(x)=2x﹣1和y=x在0<x≤1上的图象,此时它们仍然只有一个交点(1,1).即当0<x≤1时,方程f(x)﹣x=0有且仅有一个根x=1.③取②中函数f(x)=2x﹣1和y=x在0<x≤1上的图象,继续按照上述步骤进行,即得到f(x)=2x﹣2+1和y=x在1<x≤2上的图象,此时它们仍然只有一个交点(2,2).即当1<x≤2时,方程f(x)﹣x=0有且仅有一个根x=2.④以此类推,函数y=f(x)与y=x在(2,3],(3,4],…,(n,n+1]上的交点依次为(3,3),(4,4),…(n+1,n+1).即方程f(x)﹣x=0在(2,3],(3,4],…(n,n+1]上的根依次为3,4,…,n+1.综上所述方程f(x)﹣x=0的根按从小到大的顺序排列所得数列为:0,1,2,3,4,…,其通项公式为:a n=n﹣1,前n项的和为S n=,∴S10=45,故选C.23.设等差数列{a n}满足,公差d∈(﹣1,0),当且仅当n=9时,数列{a n}的前n项和S n取得最大值,求该数列首项a1的取值范围()A.B.[,]C.(,)D.[,]【解答】解:∵等差数列{a n}满足,∴(sina4cosa7﹣sina7cosa4)(sina4cosa7+sina7cosa4)=sin(a5+a6)=sin(a4+a7)=sina4cosa7+sina7cosa4,∴sina4cosa7﹣sina7cosa4=1,或sina4cosa7+sina7cosa4=0即sin(a4﹣a7)=1,或sin(a4+a7)=0(舍)当sin(a4﹣a7)=1时,∵a4﹣a7=﹣3d∈(0,3),a4﹣a7=2kπ+,k∈Z,∴﹣3d=2kπ+,d=﹣﹣π.∴d=﹣∵S n=na1+=n2+(a1﹣)n,且仅当n=9时,数列{a n}的前n项和S n取得最大值,∴8.5<﹣<9.5,∴π<a1<故选:C二.解答题(共4小题)24.已知{a n}是等差数列,{b n}是等比数列,且b2=3,b3=9,a1=b1,a14=b4.(1)求{a n}的通项公式;(2)设c n=a n+b n,求数列{c n}的前n项和.【解答】解:(1)设{a n}是公差为d的等差数列,{b n}是公比为q的等比数列,由b2=3,b3=9,可得q==3,b n=b2q n﹣2=3•3n﹣2=3n﹣1;即有a1=b1=1,a14=b4=27,则d==2,则a n=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1;(2)c n=a n+b n=2n﹣1+3n﹣1,则数列{c n}的前n项和为(1+3+…+(2n﹣1))+(1+3+9+…+3n﹣1)=n•2n+=n2+.25.已知等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,a1=﹣1,b1=1,a2+b2=2.(1)若a3+b3=5,求{b n}的通项公式;(2)若T3=21,求S3.【解答】解:(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q,a1=﹣1,b1=1,a2+b2=2,a3+b3=5,可得﹣1+d+q=2,﹣1+2d+q2=5,解得d=1,q=2或d=3,q=0(舍去),则{b n}的通项公式为b n=2n﹣1,n∈N*;(2)b1=1,T3=21,可得1+q+q2=21,解得q=4或﹣5,当q=4时,b2=4,a2=2﹣4=﹣2,d=﹣2﹣(﹣1)=﹣1,S3=﹣1﹣2﹣3=﹣6;当q=﹣5时,b2=﹣5,a2=2﹣(﹣5)=7,d=7﹣(﹣1)=8,S3=﹣1+7+15=21.26.设数列{a n}满足a1+3a2+…+(2n﹣1)a n=2n.(1)求{a n}的通项公式;(2)求数列{}的前n项和.【解答】解:(1)数列{a n}满足a1+3a2+…+(2n﹣1)a n=2n.n≥2时,a1+3a2+…+(2n﹣3)a n﹣1=2(n﹣1).∴(2n﹣1)a n=2.∴a n=.当n=1时,a1=2,上式也成立.∴a n=.(2)==﹣.∴数列{}的前n项和=++…+=1﹣=.27.已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n﹣1.【解答】解:(Ⅰ)等差数列{a n},a1=1,a2+a4=10,可得:1+d+1+3d=10,解得d=2,所以{a n}的通项公式:a n=1+(n﹣1)×2=2n﹣1.(Ⅱ)由(Ⅰ)可得a5=a1+4d=9,等比数列{b n}满足b1=1,b2b4=9.可得b3=3,或﹣3(舍去)(等比数列奇数项符号相同).∴q2=3,{b2n}是等比数列,公比为3,首项为1.﹣1b1+b3+b5+…+b2n﹣1==.。
数列练习题(附答案)
数列综合题一、填空题1. 各项都是正数的等比数列{a n },公比q ≠1,a 5,a 7,a 8成等差数列,则公比q= 2. 已知等差数列{a n },公差d ≠0,a 1,a 5,a 17成等比数列,则18621751a a a a a a ++++=3. 已知数列{a n }满足S n =1+n a 41,则a n = 4.已知二次函数f(x)=n(n+1)x 2-(2n+1)x+1,当n=1,2,…,12时,这些函数的图像在x 轴上截得的线段长度之和为5.已知数列{a n }的通项公式为a n =log (n+1)(n+2),则它的前n 项之积为6.数列{(-1)n-1n 2}的前n 项之和为7.一种堆垛方式,最高一层2个物品,第二层6个物品,第三层12个物品,第四层20个物品,第五层30个物品,…,当堆到第n 层时的物品的个数为8.已知数列1,1,2,…,它的各项由一个等比数列与一个首项为0的等差数列的对应项相加而得到,则该数列前10项之和为9.在2和30之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则插入的这两个数的等比中项为 10.已知整数对的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),……,则第60个数对为 11.设等差数列{a n }的前n 项和是S n ,若a 5=20-a 16,则S 20=___________. 12.若{a n }是等比数列,a 4· a 7= -512,a 3+ a 8=124,且公比q 为整数,则a 10等于___________. 13.在数列{a n }中,a 1=1,当n ≥2时,a 1 a 2… a n =n 2恒成立,则a 3+ a 5=___________.14.设{a n }是首项为1的正项数列,且(n +1)21+n a -na 2n +a n +1 a n =0(n =1,2,3,…),则它的通项公式是a n =___________.二.解答题1.已知数列{a n }的通项公式为a n =3n +2n+(2n-1),求前n 项和。
数列的概念练习题(有答案)百度文库
一、数列的概念选择题1.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列,如数列1,3,6,10,前后两项之差得到新数列2,3,4,新数列2,3,4为等差数列,这样的数列称为二阶等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为( ) A .184B .174C .188D .1602.数列{}n a 的通项公式是276n a n n =-+,4a =( )A .2B .6-C .2-D .13.在数列{}n a 中,10a =,1n a +,则2020a =( ) A .0B .1C.D4.设{}n a 是等差数列,且公差不为零,其前n 项和为n S .则“*n N ∀∈,1n n S S +>”是“{}n a 为递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件5.已知数列22333311313571351,,,,,,,...,,,,...2222222222n n n,则该数列第2019项是( ) A .1019892 B .1020192 C .1119892 D .1120192 6.已知数列{}n a ,{}n b ,其中11a =,且n a ,1n a +是方程220nn x b x -+=的实数根,则10b 等于( ) A .24B .32C .48D .647.已知数列{}n a 满足()()*622,6,6n n p n n a n p n -⎧--≤=∈⎨>⎩N ,且对任意的*n ∈N 都有1n n a a +>,则实数p 的取值范围是( )A .71,4⎛⎫ ⎪⎝⎭B .101,7⎛⎫ ⎪⎝⎭C .()1,2D .10,27⎛⎫ ⎪⎝⎭8.在数列{}n a 中,114a =-,111(1)n n a n a -=->,则2019a 的值为( ) A .45B .14-C .5D .以上都不对9.已知数列{}n a 满足11a =),2n N n *=∈≥,且()2cos3n n n a b n N π*=∈,则数列{}n b 的前18项和为( ) A .120B .174C .204-D .373210.已知数列{}n a 的首项为1,第2项为3,前n 项和为n S ,当整数1n >时,1112()nnn S S S S 恒成立,则15S 等于( )A .210B .211C .224D .22511.数列{}:1,1,2,3,5,8,13,21,34,...,n F 成为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,该数列从第三项开始,每项等于其前两相邻两项之和,记该数{}n F 的前n 项和为n S ,则下列结论正确的是( )A .201920212S F =+B .201920211S F =-C .201920202S F =+D .201920201S F =-12.数列{}n a 满足12a =,1111n n n a a a ++-=+,则2019a =( ) A .3-B .12-C .13D .213.已知数列265n a n n =-+则该数列中最小项的序号是( )A .3B .4C .5D .614.定义:在数列{}n a 中,若满足211n n n na a d a a +++-=( *,n N d ∈为常数),称{}n a 为“等差比数列”,已知在“等差比数列”{}n a 中,1231,3a a a ===,则20202018a a 等于( ) A .4×20162-1 B .4×20172-1C .4×20182-1D .4×2018215.数列1111,,,57911--,…的通项公式可能是n a =( ) A .1(1)32n n --+B .(1)32n n -+C .1(1)23n n --+D .(1)23nn -+16.大衍数列,来源于《乾坤普》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两翼数量总和,是中国传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0,2,4,8,12,18,24,32,40,50,……则此数列的第40项为( ). A .648 B .722C .800D .88217.数列12,16,112,120,…的一个通项公式是( )A .()11n a n n =-B .()1221n a n n =-C .111n a n n =-+ D .11n a n=-18.已知数列{}n a 满足1N a *∈,1,2+3,nn n n n a a a a a +⎧⎪=⎨⎪⎩为偶数为奇数,若{}n a 为周期数列,则1a 的可能取到的数值有( ) A .4个B .5个C .6个D .无数个19.在数列{}n a 中,11(1)1,2(2)nn n a a n a --==+≥,则3a =( ) A .0B .53C .73D .320.在数列{}n a 中,12a =,111n n a a -=-(2n ≥),则8a =( ) A .1-B .12C .1D .2二、多选题21.已知数列{}n a :1,1,2,3,5,…其中从第三项起,每个数等于它前面两个数的和,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68S a = B .733S =C .135********a a a a a ++++= D .2222123202020202021a a a a a a ++++=22.已知数列0,2,0,2,0,2,,则前六项适合的通项公式为( )A .1(1)nn a =+-B .2cos2n n a π= C .(1)2sin2n n a π+= D .1cos(1)(1)(2)n a n n n π=--+--23.黄金螺旋线又名等角螺线,是自然界最美的鬼斧神工.在一个黄金矩形(宽长比约等于0.618)里先以宽为边长做正方形,然后在剩下小的矩形里以其宽为边长做正方形,如此循环下去,再在每个正方形里画出一段四分之一圆弧,最后顺次连接,就可得到一条“黄金螺旋线”.达·芬奇的《蒙娜丽莎》,希腊雅典卫城的帕特农神庙等都符合这个曲线.现将每一段黄金螺旋线与其所在的正方形所围成的扇形半径设为a n (n ∈N *),数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3).再将扇形面积设为b n (n ∈N *),则( )A .4(b 2020-b 2019)=πa 2018·a 2021B .a 1+a 2+a 3+…+a 2019=a 2021-1C .a 12+a 22+a 32…+(a 2020)2=2a 2019·a 2021D .a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=024.已知数列{}n a 中,11a =,1111n n a a n n +⎛⎫-=+ ⎪⎝⎭,*n N ∈.若对于任意的[]1,2t ∈,不等式()22212na t a t a a n<--++-+恒成立,则实数a 可能为( ) A .-4B .-2C .0D .225.已知数列{}n a 的前4项为2,0,2,0,则该数列的通项公式可能为( ) A .0,2,n n a n ⎧=⎨⎩为奇数为偶数B .1(1)1n n a -=-+C .2sin2n n a π= D .cos(1)1n a n π=-+26.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,667711,01a a a a -><-,则下列结论正确的是( ) A .01q <<B .681a a >C .n S 的最大值为7SD .n T 的最大值为6T27.斐波那契数列,又称黄金分割数列、兔子数列,是数学家列昂多·斐波那契于1202年提出的数列.斐波那契数列为1,1,2,3,5,8,13,21,……,此数列从第3项开始,每一项都等于前两项之和,记该数列为(){}F n ,则(){}F n 的通项公式为( )A .(1)1()2n n F n -+=B .()()()11,2F n F n F n n +=+-≥且()()11,21F F ==C .()1515225n nF n ⎡⎤⎛⎛+-⎥=- ⎥⎝⎭⎝⎭⎦D .()1122n nF n ⎡⎤⎛⎛⎥=+ ⎥⎝⎭⎝⎭⎦28.已知数列{}n a 是等差数列,前n 项和为,n S 且13522,a a S +=下列结论中正确的是( ) A .7S 最小B .130S =C .49S S =D .70a =29.等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则( ) A .若59S >S ,则150S > B .若59S =S ,则7S 是n S 中最大的项 C .若67S S >, 则78S S > D .若67S S >则56S S >.30.已知数列{}2nna n +是首项为1,公差为d 的等差数列,则下列判断正确的是( ) A .a 1=3 B .若d =1,则a n =n 2+2n C .a 2可能为6D .a 1,a 2,a 3可能成等差数列31.等差数列{}n a 的前n 项和记为n S ,若10a >,717S S =,则( ) A .0d < B .120a > C .13n S S ≤D .当且仅当0nS <时,26n ≥32.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大 B .在数列{}n a 中,3a 或4a 最大 C .310S S =D .当8n ≥时,0n a <33.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大 B .在数列{}n a 中,3a 或4a 最大 C .310S S =D .当8n ≥时,0n a <34.设等差数列{}n a 的前n 项和为n S ,若39S =,47a =,则( )A .2n S n =B .223n S n n =-C .21n a n =-D .35n a n =-35.已知{}n a 为等差数列,其前n 项和为n S ,且13623a a S +=,则以下结论正确的是( ). A .10a =0B .10S 最小C .712S S =D .190S =【参考答案】***试卷处理标记,请不要删除一、数列的概念选择题 1.B 解析:B 【分析】根据高阶等差数列的知识,结合累加法求得数列的通项公式,由此求得19a . 【详解】3,4,6,9,13,18,24,1,2,3,4,5,6,所以()1112,3n n a a n n a --=-≥=, 所以()()()112211n n n n n a a a a a a a a ---=-+-++-+()()1213n n =-+-+++()()()11113322n n n n -+⋅--=+=+.所以19191831742a ⨯=+=. 故选:B 【点睛】本小题主要考查数列新定义,考查累加法,属于基础题.2.B解析:B 【分析】 令4n = 代入即解 【详解】令4n =,2447466a =-⨯+=-故选:B. 【点睛】数列通项公式n a 是第n 项与序号n 之间的函数关系,求某项值代入求解.3.A解析:A 【分析】写出数列的前几项,找寻规律,求出数列的周期,问题即可解. 【详解】10a =,1n a +1n =时,2a 2n =时,3a3n =时,4a ; ∴ 数列{}n a 的周期是320206733110a a a ⨯+∴===故选:A. 【点睛】本题考查周期数列. 求解数列的周期问题时,周期数列的解题方法:根据给出的关系式求出数列的若干项,通过观察归纳出数列的周期,进而求有关项的值或者前n 项的和.4.A解析:A 【分析】根据等差数列的前n 项和公式以及充分条件和必要条件的定义进行判断即可. 【详解】{}n a 是等差数列,且公差d 不为零,其前n 项和为n S ,充分性:1n n S S +>,则10n a +>对任意的n *∈N 恒成立,则20a >,0d ≠,若0d <,则数列{}n a 为单调递减数列,则必存在k *∈N ,使得当n k >时,10n a +<,则1n n S S +<,不合乎题意;若0d >,由20a >且数列{}n a 为单调递增数列,则对任意的n *∈N ,10n a +>,合乎题意.所以,“*n N ∀∈,1n n S S +>”⇒“{}n a 为递增数列”;必要性:设10n a n =-,当8n ≤时,190n a n +=-<,此时,1n n S S +<,但数列{}n a 是递增数列.所以,“*n N ∀∈,1n n S S +>”⇐/“{}n a 为递增数列”.因此,“*n N ∀∈,1n n S S +>”是“{}n a 为递增数列”的充分而不必要条件. 故选:A. 【点睛】本题主要考查充分条件和必要条件的判断,结合等差数列的前n 项和公式是解决本题的关键,属于中等题.5.C解析:C 【分析】 由观察可得()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭项数为21,1,2,4,8,...,2,...k -,注意到101110242201922048=<<=,第2019项是第12个括号里的第995项. 【详解】由数列()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,可发现其项数为 21,1,2,4,8,...,2,...k -,则前11个括号里共有1024项,前12个括号里共有2048项,故原数列第2019项是第12个括号里的第995项,第12个括号里的数列通项为11212m -, 所以第12个括号里的第995项是1119892. 故选:C. 【点睛】本题考查数列的定义,考查学生观察找出已知数列的特征归纳出其项数、通项,是一道中档题.6.D解析:D 【分析】根据题意,得到1n n n a a b ++=,12nn n a a +=,求得22a =,推出112n n a a +-=,进而可求出10a ,11a ,从而可求出结果.【详解】因为n a ,1n a +是方程220nn x b x -+=的实数根, 所以1n n n a a b ++=,12nn n a a +=,又11a =,所以22a =; 当2n ≥时,112n n n a a --=,所以11112n n n n n na a a a a a ++--==, 因此4102232a a =⋅=,5111232a a =⋅=所以101011323264b a a =+=+=. 故选:D. 【点睛】本题主要考查由数列的递推关系求数列中的项,属于常考题型.7.D解析:D 【分析】根据题意,得到数列是增数列,结合通项公式,列出不等式组求解,即可得出结果. 【详解】因为对任意的*n ∈N 都有1n n a a +>,则数列{}n a 单调递增; 又()()*622,6,6n n p n n a n pn -⎧--≤=∈⎨>⎩N ,所以只需67201p p a a ->⎧⎪>⎨⎪<⎩,即21106p p p p<⎧⎪>⎨⎪-<⎩,解得1027p <<. 故选:D. 【点睛】本题主要考查由数列的单调性求参数,属于基础题型.8.A解析:A 【分析】根据递推式可得{}n a 为一个周期为3的数列,求{}n a 中一个周期内的项,利用周期性即可求2019a 的值 【详解】由114a =-,111(1)n n a n a -=->知 21115a a =-= 321415a a =-= 4131114a a a =-=-= 故数列{}n a 是周期为3的数列,而2019可被3整除 ∴2019345a a == 故选:A 【点睛】本题主要考查递推数列,考查数列的周期性,考查合情推理,属于基础题9.B解析:B 【分析】将题干中的等式化简变形得211n n a n a n --⎛⎫= ⎪⎝⎭,利用累乘法可求得数列{}n a 的通项公式,由此计算出()32313k k k b b b k N *--++∈,进而可得出数列{}nb 的前18项和.【详解】)1,2na n N n*--=∈≥,将此等式变形得211nna na n--⎛⎫= ⎪⎝⎭,由累乘法得22232121211211123nnna aa na aa a a n n--⎛⎫⎛⎫⎛⎫=⋅⋅=⨯⨯⨯⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()2cos3n nna b n Nπ*=∈,22cos3nnb nπ∴=,()()222 323134232cos231cos29cos233 k k kb b b k k k k k kπππππ--⎛⎫⎛⎫∴++=--+--+⎪ ⎪⎝⎭⎝⎭592k=-,因此,数列{}n b的前18项和为()591234566921151742⨯+++++-⨯=⨯-=.故选:B.【点睛】本题考查并项求和法,同时也涉及了利用累乘法求数列的通项,求出32313k k kb b b--++是解答的关键,考查计算能力,属于中等题.10.D解析:D【分析】利用已知条件转化推出1122n na a a+-==,说明数列是等差数列,然后求解数列的和即可.【详解】解:结合1112()n n nS S S S可知,11122n n nS S S a+-+-=,得到1122n na a a+-==,故数列{}n a为首项为1,公差为2的等差数列,则12(1)21na n n=+-=-,所以1529a=,所以11515()15(291)1522522a aS++===,故选:D.【点睛】本题考查数列的递推关系式的应用,考查数列求和,是基本知识的考查.11.B解析:B【分析】利用迭代法可得21123211n n n n n n nF F F F F F F F F++---=+=+++++++,可得21n nF S+=+,代入2019n=即可求解.【详解】由题意可得该数列从第三项开始,每项等于其前两相邻两项之和,则211112n n n n n n n n n n F F F F F F F F F F ++----=+=++=+++1211232n n n n n n n n n F F F F F F F F F -------=+++=++++=123211n n n n F F F F F F ---=+++++++,所以21n n F S +=+,令2019n =,可得201920211S F =-,故选:B 【点睛】关键点点睛:本题的关键点是理解数列新定义的含义得出21n n n F F F ++=+,利用迭代法得出21123211n n n n n n n F F F F F F F F F ++---=+=+++++++,进而得出21n n F S +=+.12.B解析:B 【分析】由递推关系,可求出{}n a 的前5项,从而可得出该数列的周期性,进而求出2019a 即可. 【详解】 由1111n n n a a a ++-=+,可得111nn n a a a ++=-,由12a =,可得23a =-,312a =-,413a =,52a =,由15a a =,可知数列{}n a 是周期数列,周期为4, 所以2019312a a ==-. 故选:B.13.A解析:A 【分析】首先将n a 化简为()234n a n =--,即可得到答案。
高中数列精选大题50题(带详细答案)
高中数列精选大题50题(带详细答案)1 .数列{n a }的前n 项和为n S ,且满足11a =,2(1)n n S n a =+.(1)求{n a }的通项公式; (2)求和T n =1211123(1)na a n a ++++.2 .已知数列}{n a ,a 1=1,点*))(2,(1N n a a P n n ∈+在直线0121=+-y x 上. (1)求数列}{n a 的通项公式; (2)函数)2*,(1111)(321≥∈++++++++=n N n a n a n a n a n n f n且 ,求函数)(n f 最小值.3 .已知函数x ab x f =)( (a ,b 为常数)的图象经过点P (1,81)和Q (4,8)(1) 求函数)(x f 的解析式;(2) 记a n =log 2)(n f ,n 是正整数,n S 是数列{a n }的前n 项和,求n S 的最小值。
4 .已知y =f (x )为一次函数,且f (2)、f (5)、f (4)成等比数列,f (8)=15.求n S =f (1)+f (2)+…+f (n )的表达式.5 .设数列{}n a 的前n 项和为n S ,且1n n S c ca =+-,其中c 是不等于1-和0的实常数.(1)求证: {}n a 为等比数列;(2)设数列{}n a 的公比()q f c =,数列{}n b 满足()()111,,23n n b b f b n N n -==∈≥,试写出1n b ⎧⎫⎨⎬⎩⎭的通项公式,并求12231n n b b b b b b -+++的结果.6 .在平面直角坐标系中,已知A n (n,a n )、B n (n,b n )、C n (n -1,0)(n ∈N *),满足向量1+n n A A 与向量n n C B 共线,且点B n (n,b n ) (n ∈N *)都在斜率为6的同一条直线上.(1)试用a 1,b 1与n 来表示a n ;(2)设a 1=a ,b 1=-a ,且12<a ≤15,求数列{a n }中的最小项.7 .已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且212322a a a +++…12n n a -+8n =对任意的∈n N*都成立,数列1{}n n b b +-是等差数列.(1)求数列{}n a 与{}n b 的通项公式;(2)问是否存在k ∈N *,使得(0,1)k k b a -∈?请说明理由. 8 .已知数列),3,2(1335,}{11 =-+==-n a a a a n n n n 且中(I )试求a 2,a 3的值; (II )若存在实数}3{,nn a λλ+使得为等差数列,试求λ的值. 9 .已知数列{}n a 的前n 项和为n S ,若()1,211++=⋅=+n n S a n a n n ,(1)求数列{}n a 的通项公式; (2)令n nn S T 2=,①当n 为何正整数值时,1+>n n T T :②若对一切正整数n ,总有m T n ≤,求m 的取值范围。
数列综合经典练习题(含详细答案)
数列综合经典练习题(含详解答案)一、选择题1.已知等差数列{}n a 中79416,1,a a a +==则12a 的值是( ) A .15B .30C .31D .642.如果等差数列{}n a 中,,34515a a a ++=,那么127a a a +++=( )A.14B.21C.28D.353.已知首项为正数的等差数列{}n a 满足:20052006200520060,.0a a a a +><.则使0n S >成立的最大自然数n 是 ( )A. 4009B.4010C. 4011D.4012 4.在等差数列{}n a 中, n S 为其前n 项和,若34825a a a ++=,则9S = ( ) A.60 B.75 C.90 D.1055.设n S 为等比数列{}n a 的前n 项和,且关于x 的方程21320a x a x a -+=有两个相等的实根,则93S S 的值为( ) A.27B.21C.14D.56.设等差数列{}n a 的前n 项和为n S ,若488,20S S ==,则13141516a a a a +++=( ) A.12B.8C.20D.167.若数列{}n a 的首项112a =,且*1(1)(N )n n n a a a n +=+∈,则200300a a =( )A.32B.23 C.201301D.3012018.古时有如下问题:今有肖司差夫一丁八万六十四人筑堤,只云初日差六十四人,次日转多七人,每人日支米三升.其大意为:官府陆续派遣1864人前往修筑堤坝,第一天派出64人,从第二天开始每天派出的人数比前一天多7人,每个修筑堤坝的人每天分发到3升大米.在该问题中第三天共发了大米( ) A. 234升B.405升C. 639升D.894升9.一个有限项的等差数列,前4项的和为40,最后4项的和是80,所有项的和是210,则此数列的项数为( ) A.12B.14C.16D.1810.已知等差数列{}n a 的前n 项和为n S ,且112,0,3,2m m m S S S m -+=-==≥,则n nS 的最小值为( ) A.-3B.-5C.-6D.-911.在等比数列{}n a 中,已知151,20192019a a ==,则3a =( ) A.1B.3C.±1D.±312.设{}n a 是首项为1a ,公差为2-的等差数列,n S 为其前n 项和,若124,,S S S 成等比数列,则1a =( ) A.2B.-2C.1D.-113.已知等比数列{}n a 的前n 项和为n S ,103010,130S S ==,则40S =( ) A.-510B.400C.400或-510D.30或4014.已知数列{}n a 是等比数列,2511,8a a ==,则*12231...(N )n n a a a a a a n ++++∈的最小值为( ) A.83B.1C.2D.315.已知数列{}n a 的前n 项和为n S ,若*1111,(N )3n n a S a n +==∈,则7a =( ) A. 74B. 534⨯C.634⨯D. 641+16.已知等比数列{}n a 中,2346781,64a a a a a a ==,则5a =( ) A .2±B .2C .2-D .417.已知等比数列{}n a 中,公比1q >,且168a a +=,3412a a =,则20192014a a = ( ) A .2 B .3 C .6 D .3或618.已知正项等比数列{}n a 满足7652a a a -=.若存在两项,m n a a14a =,则9n mmn +的最小值为( )A .83 B .114 C .145 D .17619.2+2的等比中项是( ) A .1 B .2 C .1± D .2±20.中国古代数学名著《九章算术》中有这样一个问題:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马、“马主曰:“我马食半牛,”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟、羊主人说:“我羊所吃的禾苗只有马的一半,”马主人说:“我马所吃的禾苗只有牛的一半,“打算按此比例偿还,他们各应偿还多少?该问题中,1斗为10升,则马主人应偿还( )升粟? A.253 B. 503 C. 507D. 100721.若1既是2a 与2b 的等比中项,又是1a 与1b 的等差中项,则22a ba b++的值是( ) A .1或12B .1或12-C .1或13D .1或13-22.如果等差数列{}n a 中34512a a a ++=,那么7S =( ) A.28 B.21 C.35D.14二、填空题23.在等比数列{}n a 中,若7944,1a a a ⋅==,则12a 的值是 . 24.设数列{}n a 是递减的等比数列,且满足2712a a =,3694a a +=,则1232n a a a a ⋅⋅⋅的最大值为__________.25.已知等比数{}n a 中, 171,2727a a ==,求n a = 26.设数列{}n a 的前n 项和为n S ,且11a =,13n n a S +=,*N n ∈,则n a =_____________. 27.设数列{}n a 满足121,3a a ==,且112(1)(1)(2)n n n na n a n a n -+=-++≥,则20a 的值为___________.28.已知n S 为数列{}n a 的前n 项和,且*2log (1)1(N )n S n n +=+∈,则数列{}n a 的通项公式为___________.29.等比数列{}n a 的公比大于1,514215,6a a a a -=-=,则3a =_______. 三、解答题30.已知数列{}n a 是等差数列,且1212,()a a a a <分别为方程2650x x -+=的两个根. 1.求数列{}n a 的前n 项和n S ; 2.在1中,设n n S b n c =+,求证:当12c =-时,数列{}n b 是等差数列.31.已知等差数列{}n a 中,1242,16a a a =+=. 1.设2n an b =,求证:数列{}n b 是等比数列; 2.求{}n n a b +的前n 项和.32.已知等比数列{}n a 的前n 项和为n S ,满足443321,21S a S a =-=-. 1.求{}n a 的通项公式; 2.记161n n b S =+,求12...n b b b +++的最大值. 参考答案一、选择题1.答案:A 解析:2.答案:D 解析:3.答案:B解析:由题意知:等差数列中,从第1项到第2005项是正数,且从第2006项开始为负数, 则()()40101401020052006200520050S a a a a =+=+>,14011401120064011()401102a a S a +==<故n 的最大值为4010. 故选B 4.答案:B解析:因为等差数列{}n a 中, n S 为其前n 项和, 348153(4)325a a a a d a ++=+==,所以131225a d +=,所以512543a a d =+=,所以()9195925997523S a a a =+==⨯=.故选B. 5.答案:B解析:因为{}n a 为等比数列,所以23211,a aq q a a ==,故原方程可以化为220x q x q -+=.又该方程有两个相等的实数根,故440q q -=,解得0q =(舍)或34q =,所以9933116421114S q S q --===--,故选B. 6.答案:C解析:∵4841281612,,,S S S S S S S ---成等差数列,∴由4848,12S S S =-=,得128161216,20S S S S -=-=,即1314151620a a a a +++=.故选C.7.答案:D解析:由1(1)n n n a a a +=+,得11n n n n a a a a ++-=且0n a ≠,所以1111n n a a +-=,即1{}na 是以2为首项,1为公差的等差数列,所以11nn a =+,所以20030011201,301a a ==,从而200300301201a a =. 8.答案:C解析:根据题意设每天派出的人数组成数列{}n a ,它是首项164a =,公差为7的等差数列,则第二天派出的人数为2a ,且264771a =+=,第三天派出的人数为3a ,且3642778a =+⨯=.又每人每天分发到3升大米,则第三天共分发大米(647178)3639++⨯=(升),故选C.9.答案:B解析:设等差数列共有n 项,记该数列为{}n a , 则123440a a a a +++=,12380n n n n a a a a ---+++=, 相加得14()120n a a +=,所以130n a a +=.1()152102n n n a a S n +===,解得14n =.故选B. 10.答案:D解析:由112,0,3,2m m m S S S m -+=-==≥,后式减前式知12,3m m a a +==.设等差数列{}n a 的公差为d,则1d =.∵0m S =,∴12m a a =-=-,则3n a n =-,(5)2n n n S -=,2(5)2n n n nS -=.设22(5)3(),0,'()5,022x x f x x f x x x x -=>=->, 则当1003x <<时, ()f x 单调递减,当103x >时, ()f x 单调递增, ∴()f x 的极小值点为103x =,在此处()f x 取得最小值. 又(3)9,(4)8f f =-=-,∴n nS 的最小值为-9,故选D. 11.答案:A解析:由等比数列的性质可得23151201912019a a a ==⨯=,解得31a =±.又2310a a q =>,所以31a =.故选A.解析:由题意得111212(1),,22n a a n S a S a =--==-,41412S a =-.∵124,,S S S 成等比数列,∴2111(22)(412)a a a -==-,解得11a =-.故选D.13.答案:B解析:设等比数列{}n a 公比为q,∵等比数列{}n a 的前n 项和为n S ,∴10201030204030,,,S S S S S S S ---也成等比数列,∴21030202010()()S S S S S -=-,即2202010(130)(10)S S -=-,解得2040S =或2030S =-.∵10100S =>,10201030203,90S S q S S =+=-=,4030270S S -=,∴40400S =.故选B.14.答案:C解析:由已知得数列{}n a 的公比满足35218a q a ==,解得12q =,∴1312,2a a ==,∴数列1{}n n a a +是以2为首项,公比为231214a a a a =的等比数列.由于数列1{}n n a a +各项均为正,∴12231...n n a a a a a a ++++的最小值为122a a =.故选C.15.答案:B 解析:由113n n S a +=,可得11,23n n S a n -=≥,两式相减可得111,233n n n a a a n +=-≥,即14,2n n a a n +=≥.又113n n S a +=,所以2133a S ==,所以数列{}n a 是从第2项起的等比数列,公比为4.所以72572434a a -==⨯,故选B.16.答案:B 解析: 17.答案:B 解析: 18.答案:B 解析: 19.答案:C 解析: 20.答案:D 解析: 21.答案:D 解析:解析:二、填空题 23.答案:4解析:24.答案:64 解析:25.答案:43n n a -=或()43.n n a -=--解析: 26.答案:21,134,2n n n a n -=⎧=⎨⨯≥⎩解析:当1n =时,211333a S a ===. 当2n ≥时,∵13n n a S +=,∴13n n a S -=,两式相减得113()3n n n n n a a S S a +--=-=,即14n n a a +=,当2n ≥时,{}n a 是以3为首项,4为公比的等比数列,得234n n a -=⨯.综上,21,134,2n n n a n -=⎧⎨⨯≥⎩. 27.答案:245解析:因为112(1)(1)(2)n n n na n a n a n -+=-++≥,所以数列{}n na 为等差数列,首项为1,公差为2125a a -=.所以1(1)554n na n n =+-⨯=-,则204245,54205n n a a =-=-=. 28.答案:3,12,2n n n a n =⎧=⎨≥⎩解析:由2log (1)1n S n +=+,得112n n S ++=.当1n =时, 113a S ==;当2n ≥时,12n n n n a S S -=-=.则数列{}n a 的通项公式为3,12,2n n n a n =⎧=⎨≥⎩.29.答案:4 解析:三、解答题30.答案:1.解方程2650x x -+=得其两个根分别为1和5, ∵1212,()a a a a <分别为方程2650x x -+=的两个根,∴121,5a a ==,∴等差数列{}n a 的公差为4, ∴2(1)1422n n n S n n n -=⋅+⋅=-. 2.当12c =-时, 22212n n S n n b n n c n -===+-, ∴112(1)22,2n n b b n n b +-=+-==, ∴{}n b 是首项为2,公差为2的等差数列. 解析:31.答案:1.设等差数列{}n a 的公差为d .由2416a a +=可得11()(3)16a d a d +++=,即12416a d +=. 又12a =,可得3d =.故1(1)2(1)331n a a n d n n =+-=+-⨯=-. 依题意, 312n n b -=,因为3231312282n n n n b b ++-===(常数),所以{}n b 是首项为4,公比为8的等比数列. 2.因为{}n a 的前n 项和为1()(31)22n n a a n n ++=, {}n b 的前n 项和为313324221421877n n -+-⋅=⋅--.所以{}n n a b +的前n 项和为32(31)142277n n n +++⋅-. 解析:32.答案:1.设等比数列{}n a 的公比为q , 由434S S a -=得43422a a a -=, 所以432a a =,所以2q =. 又因为3321S a =-,所以11112481a a a a ++=-,所以11a =.所以12n n a -=.2.由1知122112nn n S -==--,所以416()2821n n n b n S -===-+,所以12n n b b +-=-,所以{}n b 是首项为6,公差为-2的等差数列, 所以12346,4,2,0b b b b ====,当5n ≥时, 0n b <,所以当3n =或4n =时, 12...n b b b +++有最大值,且最大值为12. 解析:。
(完整版)数列单元测试题(含答案)
《数列》一、选择题(每小题3分,共33分)1、数列⋯--,924,715,58,1的一个通项公式是 ( )A .12)1(3++-=n nn a nnB .12)3()1(++-=n n n a nnC .121)1()1(2--+-=n n a n nD .12)2()1(++-=n n n a nn 2、已知数列{a n }的通项公式)(43*2N n n n a n ∈--=,则a 4等于( ). A 1 B 2 C 3 D 0 3、在等比数列}{n a 中,,8,1641=-=a a 则=7a ( )A 4-B 4±C 2-D 2± 4、已知等差数列}{n a 的公差为2,若1a ,3a ,4a 成等比数列,则2a 等于( ) A 4- B 6- C 8- D 10-5、等比数列{a n }的前3项的和等于首项的3倍,则该等比数列的公比为( )A .-2B .1C .-2或1D .2或-16、等差数列}a {n 中,已知前15项的和90S 15=,则8a 等于( ).A .245B .12C .445 D .67、已知等比数列{a n } 的前n 项和为S n ,若S 4=1,S 8=4,则a 13+a 14+a 15+a 16=( ).A .7B .16C .27D .648、一个三角形的三个内角A 、B 、C 成等差数列,那么()tan A C +的值是( )A B .C .D .不确定 9、若一个凸多边形的内角度数成等差数列,最小角为100°,最大角为140°,这个凸多边形的边数为( )A .6B .8C .10D .1210、在等比数列{a n }中4S =1,8S =3,则20191817a a a a +++的值是 ( )A .14B .16C .18D .2011、计算机的成本不断降低,若每隔3年计算机价格降低31,现在价格为8100元的计算机,9年后的价格可降为( ) A .2400元B .900元C .300元D .3600元二、填空题(每小题4分,共20分)12、已知等比数列{n a }中,1a =2,4a =54,则该等比数列的通项公式n a = 13、 等比数列的公比为2, 且前4项之和等于30, 那么前8项之和等于 14、数列11111,2,3,,,2482n n ++++……的前n 项和是 . 15、 黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案: 则第n 个图案中有白色地面砖_________________块.16、在数列{}n a 中,11a =,且对于任意自然数n ,都有1n n a a n +=+,则100a = 三、解答题17、(本小题满分8分)等差数列{}n a 中,已知33,4,31521==+=n a a a a ,试求n 的值18、(本小题满分8分)在等比数列{}n a 中,5162a =,公比3q =,前n 项和242n S =,求首项1a 和项数n .19、(本小题满分10分)已知:等差数列{n a }中,4a =14,前10项和18510=S . (1)求n a ;(2)将{n a }中的第2项,第4项,…,第n 2项按原来的顺序排成一个新数列,求此数列的前n 项和n G .20、(本小题满分10分)某城市2001年底人口为500万,人均住房面积为6 m 2,如果该城市每年人口平均增长率为1%,则从2002年起,每年平均需新增住房面积为多少万m 2,才能使2020年底该城市人均住房面积至少为24m 2?(可参考的数据1.0118=1.20,1.0119=1.21,1.0120=1.22).21、(本小题满分11分)已知等差数列{a n }的首项a 1=1,公差d >0,且第二项,第五项,第十四项分别是等比数列{b n }的第二项,第三项,第四项. (1)求数列{a n }与{b n }的通项公式; (2)设数列{c n }对任意自然数n ,均有1332211+=+⋯⋯+++n nn a b c b c b c b c , 求c 1+c 2+c 3+……+c 2006值.题号 1 2 3 4 5 6 7 8 9 10 11 答案 DDABCDCBABA12、3.2n-1 13、510 14、n (n+1)+1-2n 15、4n+2 16、4951 17、d=32,n=50 18、解:由已知,得51113162,(13)242,13n a a -⎧⋅=⎪⎨-=⎪-⎩①②由①得181162a =,解得 12a =.将12a =代入②得()21324213n =--,即 3243n =,解得 n =5.∴ 数列{}n a 的首项12a =,项数n =5. 19、解析:(1)、由41014185a S =⎧⎨=⎩ ∴ 11314,1101099185,2a d a d +=⎧⎪⎨+⋅⋅⋅=⎪⎩ 153a d =⎧⎨=⎩ 23+=∴n a n (2)、设新数列为{n b },由已知,223+⋅=n n bn n G n n n 2)12(62)2222(3321+-=+++++=∴ *)(,62231N n n n ∈-+⋅=+20.解 设从2002年起,每年平均需新增住房面积为x 万m 2,则由题设可得下列不等式19500619500(10.01)24x ⨯+≥⨯+⨯解得605x ≥.答:设从2002年起,每年平均需新增住房面积为605万m 2.21、解:(1)由题意得(a 1+d )(a 1+13d )=(a 1+4d )2(d >0) 解得d =2,∴a n =2n -1,b n =3n -1.(2)当n =1时,c 1=3 当n ≥2时,,1n n nna abc -=+ 132-⋅=n n c ,⎩⎨⎧≥⋅==-)2(32)1(31n n c n n22005200612200632323233c c c ∴++⋯+=+⨯+⨯+⋯+⨯=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列综合题
一、填空题
1. 各项都是正数的等比数列{a n },公比q ≠1,a 5,a 7,a 8成等差数列,则公比q= 2. 已知等差数列{a n },公差d ≠0,a 1,a 5,a 17成等比数列,则
18
6217
51a a a a a a ++++=
3. 已知数列{a n }满足S n =1+
n a 4
1
,则a n = 4.已知二次函数f(x)=n(n+1)x 2
-(2n+1)x+1,当n=1,2,…,12时,这些函数的图像在x 轴上截得的线段长度之和为
5.已知数列{a n }的通项公式为a n =log (n+1)(n+2),则它的前n 项之积为
6.数列{(-1)n-1n 2
}的前n 项之和为
7.一种堆垛方式,最高一层2个物品,第二层6个物品,第三层12个物品,第四层20个物品,第五层30个物品,…,当堆到第n 层时的物品的个数为
8.已知数列1,1,2,…,它的各项由一个等比数列与一个首项为0的等差数列的对应项相加而得到,则该数列前10项之和为
9.在2和30之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则插入的这两个数的等比中项为 10.已知整数对的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),……,则第60个数对为 11.设等差数列{a n }的前n 项和是S n ,若a 5=20-a 16,则S 20=___________. 12.若{a n }是等比数列,a 4· a 7= -512,a 3+ a 8=124,且公比q 为整数,则a 10等于___________. 13.在数列{a n }中,a 1=1,当n ≥2时,a 1 a 2… a n =n 2恒成立,则a 3+ a 5=___________.
14.设{a n }是首项为1的正项数列,且(n +1)21+n a -na 2n +a n +1 a n =0(n =1,2,3,…),
则它的通项公式是a n =___________.
二.解答题
1.已知数列{a n }的通项公式为a n =3n +2n
+(2n-1),求前n 项和。
2.已知数列{a n }是公差d 不为零的等差数列,数列{a bn }是公比为q 的等比数列, b 1=1,b 2=10,b 3=46,,求公比q 及bn 。
3.已知等差数列{a n}的公差与等比数列{b n}的公比相等,且都等于d(d>0,d 1),a1=b1,a3=3b3,a5=5b5,求a n,b n。
4.有四个数,其中前三个数成等比数列,其积为216,后三个数成等差数列,其和为36,求这四个数。
5.已知等差数列{a n}中,a1+a4+a7 =15,a2 a4 a6=45,求{a n}的通项公式.
6.在等差数列{a n}中,a1=13,前n项和为S n,且S3= S11,求S n的最大值.
参考答案
1. 251+
2. 2926
3. n )31(34- ⎪⎪⎩⎪⎪⎨
⎧
+=+=--11411411n n n n a S a S ,相减得
a n =14141--n n a a 故a n =-131-n a
4. 1312
111)1(14)(2122121+-
=+=-+=-n n n n x x x x x x 5. log 2(n+2) 6. (-1)n-12)
1(+n n 7. n 2
+n 8. 978 9. ±63
10.(5,7)
规律:(1)两个数之和为n 的整数对共有n-1个。
(2)在两个数之和为n 的n-1个整数对中,排列顺序为,第1个数由1起越来越大,第2个数由n-1起来越来越小。
设两个数之和为2的数对方第1组,数对个数为1;两个数之和为3的数对为第二组,数对个数2;…… ,两个数之和为n+1的数对为第n 组,数对个数为 n 。
∵ 1+2+…+10=55,1+2+…+11=66
∴∴ 第60个数对在第11组之中的第5个数,从而两数之和为12,应为(5,7)
11.200.a 1+ a 20= a 5+a 16=20,∴S 20=()
220201a a +=10×20=200.
12.512.∵ a 3+ a 8=124,又a 3 ·a 8= a 4·a 7=-512,
故a 3, a 8是方程x 2-124x -512=0的两个根. 于是,a 3=-4,a 8=128,或a 3=128,a 8=-4. 由于q 为整数,故只有a 3=-4,a 8=128 因此-4· q 5=128,q =-2.所以a 10= a 8··q 2=128×4=512.
13.1661
. a 1 a 2…a n =n 2,∴a 1 a 2…a n -1 =(n -1)2.
两式相除,得21⎪
⎭⎫ ⎝⎛-=n n a n (n ≥2).所以,a 3+ a 5=166145232
2=⎪⎭⎫
⎝⎛+⎪⎭
⎫ ⎝⎛. 14.n 1
.所给条件式即(a n +1 a n )[(n +1)a n +1-n a n ]=0,由于a n +1 a n >0,所以(n
+1)a n +1= na n ,
又a 1=1,故na n =(n -1)a n -1=(n -2)a n -2=…=2a 2= a 1=1,∴a n =n 1
.
三、解答题
1. S n =a 1+a 2+…+a n =(31+21+1)+(32+22+3)+ …+[3n +2n +(2n-1)]=(31+32+…+3n )+(21+22
+…
2n
)++[1+3+…+(2n-1)]=27
2232)121(21)21(23
1)31(3211-
++=-++--+--++n n n n n n n 2.a 1b =a 1,a 2b =a 10=a 1+9d,a 3b =a 46=a 1+45d
由{a bn }为等比数例,得(a 1+9d )2
=a 1(a 1+45d)得a 1=3d,即a b1=3d,a b2=12d,a b3=48d. ∴q=4 又由{a bn }是{a n }中的第b n a 项,及a bn =a b1·4n-1
=3d ·4n-1
,a 1+(bn-1)d=3d ·4
n-1
∴b n =3·4n-1
-2
3.∴ a 3=3b 3 , ∴a 1+2d=3a 1d 2 , ∴a1(1-3d 2
)=-2d ① a 5=5b 5, ∴a 1+4d=5a 1d 4 , ∴
a 1(1-5d 4)=-4d ② ②/①,得243151d d --=2,∴ d 2=1或d 2
=51
,由题意,d=55,a 1=-5。
∴a n =a 1+(n-1)d=55(n-6) b n =a 1d n-1=-5·(55
)
n-1
4.设这四个数为a
aq aq a q a
-2,,, 则
⎪⎩
⎪⎨⎧=-++=⋅36)3(216·a aq aq a aq a q
a
②①
由①,得a 3
=216,a=6 ③
③代入②,得3aq=36,q=2 ∴这四个数为3,6,12,18
∵a 1+a 7=2a 4,
∴3a 4= a 1+a 4+a 7=15,a 4=5. ——3分 ∵a 2 a 4 a 6=45, ∴a 2 a 6=9.
——4分
设{a n }的公差为d , 则(a 4-2d )(a 4+2d )9, 即(5-2d )(5+2d )=9, ∴d = ±2.
——7分 因此,当d = 2时,a n = a 4+(n -4)d =2 n -3,
——9分
当d = -2时,a n = a 4+(n -4)d =-2 n +13,
∵ S 3= S 11,
∴3 a 1+d
a d 210
11112231⨯+=⨯.
——3分
又a 1=13,
∴8×13+52d =0 解得d = -2.
——5分 ∴a n = a 1+(n -1) d = -2 n +15.
——7分
由⎩⎨⎧≤≥+.0,01n n a a 即⎩⎨
⎧≤++-≥+-015)1(20152n n ,解得213≤n ≤215.
由于N ∈n ,故n =7. ——10分
∴当n =7时,S n 最大,最大值是
()49226
7137267717=-⨯+
⨯=⋅⨯+
=d a S .
——13分。