浙江省2019高考数学优编增分练:解答题突破练五函数与导数201812133257
2019高考浙江数学优编增分练:解答题突破练(三) Word版含解析
得到a1= ,a2= ,a3= ,
∵{an}是等差数列,∴2a2=a1+a3,
即 = + ,
解得k=-1.
由于(n+1)an=2n2+n-1=(2n-1)(n+1),
又∵n+1≠0,∴an=2n-1(n∈N*).
方法二∵{an}是等差数列,设公差为d,
则an=a1+d(n-1)=dn+(a1-d),
有a1+a2+…an≥ - + - +…+ - = - ,
∴取x= = ,
则a1+a2…+an≥ = > ,
∴原不等式成立.
6.已知在数列{an}中,满足a1= ,an+1= ,记Sn为an的前n项和.
(1)证明:an+1>an;
(2)证明:an=co(1)由题意知{an}的各项均为正数,
∴(n+1)an=(n+1)(dn+a1-d)
=dn2+a1n+a1-d,
∴dn2+a1n+a1-d=2n2+n+k对于任意n∈N*均成立,
则 解得k=-1,∴an=2n-1(n∈N*).
(2)由bn= =
= =1+
=1+ = +1,
得Sn=b1+b2+b3+…+bn
= +1+ +1+ +1+…+ +1
(2)因为bn+1-bn=an+1,b1=1,
所以bn-bn-1=an(n≥2,n∈N*),
所以当n≥2时,
bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=an+an-1+…+a2+b1= .
又b1=1也适合上式,所以bn= (n∈N*).
所以 =
= · = · ,
所以Tn= ·
③-④,得
Tn=1+2 -(2n-1)· n
=1+2 -(2n-1)· n
2019高考数学总复习优编增分练:高考解答题分项练五函数与导数A
(五)函数与导数(A)1.(2018·宿迁期末)已知函数f (x )=a ⎝⎛⎭⎪⎪⎫1-2ax +a 2(a >0,且a ≠1)是定义在R 上的奇函数. (1)求a 的值;(2)求函数f (x )的值域;(3)若存在x ∈[1,2],使得4+mf (x )-2x +1≥0成立,求实数m 的取值范围.解(1)∵f (x )是R 上的奇函数, ∴f (0)=a ⎝⎛⎭⎪⎪⎫1-21+a 2=0,可得a =2. 经检验a =2符合题意.(2)由(1)可得f (x )=2⎝ ⎛⎭⎪⎫1-22x +1, ∴函数f (x )在R 上单调递增,又2x +1>1,∴-2<-22x +1<0, ∴-2<2⎝ ⎛⎭⎪⎫1-22x +1<2. ∴函数f (x )的值域为(-2,2).(3)当x ∈[1,2]时,f (x )=2⎝ ⎛⎭⎪⎫2x -12x +1>0. 由题意知,存在x ∈[1,2],使得mf (x )=2m ·2x -12x +1≥2x +1-4成立, 即存在x ∈[1,2],使得m ≥错误!成立.令t =2x-1(1≤t ≤3),则有m ≥错误!=t -错误!+1,∵当1≤t ≤3时,函数y =t -2t +1为增函数, ∴⎝ ⎛⎭⎪⎫t -2t +1min =0. ∴m ≥0.故实数m 的取值范围为[0,+∞).2.已知函数f (x )=aex x+x . (1)若函数f (x )的图象在(1,f (1))处的切线经过点(0,-1),求a 的值;(2)是否存在负整数a ,使函数f (x )的极大值为正值?若存在,求出所有负整数a 的值;若不存在,请说明理由.解(1)∵f ′(x )=错误!,∴f ′(1)=1,f (1)=a e +1.∴函数f (x )在(1,f (1))处的切线方程为y -(a e +1)=x -1,又直线过点(0,-1),∴-1-(a e +1)=-1,解得a =-1e. (2)若a <0,f ′(x )=错误!,当x ∈(-∞,0)时,f ′(x )>0恒成立,函数在(-∞,0)上无极值;当x ∈(0,1)时,f ′(x )>0恒成立,函数在(0,1)上无极值.方法一 当x ∈(1,+∞)时,若f (x )在x 0处取得符合条件的极大值f (x 0),则错误!则错误!由③得0e x a =-x20x0-1,代入②得-x0x0-1+x 0>0, 结合①可解得x 0>2,再由f (x 0)=0e x a x +x 0>0,得a >-020e x x , 设h (x )=-x2ex,则h ′(x )=错误!, 当x >2时,h ′(x )>0,即h (x )是增函数,∴a >h (x 0)>h (2)=-4e2. 又a <0,故当极大值为正数时,a ∈⎝ ⎛⎭⎪⎫-4e2,0, 从而不存在负整数a 满足条件.方法二 当x ∈(1,+∞)时,令H (x )=a e x (x -1)+x 2,则H ′(x )=(a e x +2)x ,∵x ∈(1,+∞),∴e x ∈(e,+∞),∵a 为负整数,∴a ≤-1,∴a e x <a e≤-e ,∴a e x +2<0,∴H ′(x )<0,∴H (x )在(1,+∞)上单调递减.又H (1)=1>0,H (2)=a e 2+4≤-e 2+4<0,∴∃x 0∈(1,2),使得H (x 0)=0,且当1<x <x 0时,H (x )>0,即f ′(x )>0;当x >x 0时,H (x )<0,即f ′(x )<0.。
浙江省2019高考数学优编增分练:解答题突破练三数列
(三)数 列1.已知正项数列{a n }的前n 项和为S n ,a 1=1,且(t +1)S n =a 2n +3a n +2(t ∈R ). (1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1=1,b n +1-b n =a n +1,求数列⎩⎨⎧⎭⎬⎫12b n +7n 的前n 项和T n .解 (1)因为a 1=S 1=1,且(t +1)S n =a 2n +3a n +2, 所以(t +1)S 1=a 21+3a 1+2,所以t =5. 所以6S n =a 2n +3a n +2.①当n ≥2时,有6S n -1=a 2n -1+3a n -1+2,② ①-②得6a n =a 2n +3a n -a 2n -1-3a n -1, 所以(a n +a n -1)(a n -a n -1-3)=0, 因为a n >0,所以a n -a n -1=3, 又因为a 1=1,所以{a n }是首项a 1=1,公差d =3的等差数列, 所以a n =3n -2(n ∈N *). (2)因为b n +1-b n =a n +1,b 1=1, 所以b n -b n -1=a n (n ≥2,n ∈N *), 所以当n ≥2时,b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1=a n +a n -1+…+a 2+b 1=3n 2-n2.又b 1=1也适合上式,所以b n =3n 2-n 2(n ∈N *).所以12b n +7n =13n 2-n +7n=13·1n (n +2)=16·⎝ ⎛⎭⎪⎫1n -1n +2, 所以T n =16·⎝ ⎛⎭⎪⎫1-13+12-14+…+1n -1n +2=16·⎝ ⎛⎭⎪⎫32-1n +1-1n +2=3n 2+5n 12(n +1)(n +2). 2.设等差数列{a n }的前n 项和为S n ,且S 3,S 52,S 4成等差数列,a 5=3a 2+2a 1-2.(1)求数列{a n }的通项公式;(2)设b n =2n -1,求数列⎩⎨⎧⎭⎬⎫a nb n 的前n 项和T n .解 (1)设等差数列{a n }的首项为a 1,公差为d , 由S 3,S 52,S 4成等差数列,可知S 3+S 4=S 5,得2a 1-d =0,① 由a 5=3a 2+2a 1-2,② 得4a 1-d -2=0,由①②,解得a 1=1,d =2, 因此,a n =2n -1(n ∈N *).(2)令c n =a n b n =(2n -1)⎝ ⎛⎭⎪⎫12n -1,则T n =c 1+c 2+…+c n ,∴T n =1·1+3·12+5·⎝ ⎛⎭⎪⎫122+…+(2n -1)·⎝ ⎛⎭⎪⎫12n -1,③12T n =1·12+3·⎝ ⎛⎭⎪⎫122+5·⎝ ⎛⎭⎪⎫123+…+(2n -1)·⎝ ⎛⎭⎪⎫12n ,④③-④,得12T n =1+2⎣⎢⎡⎦⎥⎤12+⎝ ⎛⎭⎪⎫122+…+⎝ ⎛⎭⎪⎫12n -1-(2n -1)·⎝ ⎛⎭⎪⎫12n =1+2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -1 -(2n -1)·⎝ ⎛⎭⎪⎫12n= 3-2n +32n ,∴T n =6-2n +32n -1(n ∈N *).3.已知等差数列{a n }满足(n +1)a n =2n 2+n +k ,k ∈R . (1)求数列{a n }的通项公式; (2)设b n =4n2a n a n +1,求数列{b n }的前n 项和S n .解 (1)方法一 由(n +1)a n =2n 2+n +k , 令n =1,2,3,得到a 1=3+k 2,a 2=10+k 3,a 3=21+k4,∵{a n }是等差数列,∴2a 2=a 1+a 3, 即20+2k 3=3+k 2+21+k 4,解得k =-1.由于(n +1)a n =2n 2+n -1=(2n -1)(n +1), 又∵n +1≠0,∴a n =2n -1(n ∈N *). 方法二 ∵{a n }是等差数列,设公差为d , 则a n =a 1+d (n -1)=dn +(a 1-d ), ∴(n +1)a n =(n +1)(dn +a 1-d ) =dn 2+a 1n +a 1-d ,∴dn 2+a 1n +a 1-d =2n 2+n +k 对于任意n ∈N *均成立,则⎩⎪⎨⎪⎧d =2,a 1=1,a 1-d =k ,解得k =-1,∴a n =2n -1(n ∈N *).(2)由b n =4n2a n a n +1=4n 2(2n -1)(2n +1)=4n 24n 2-1=1+14n 2-1=1+1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1+1,得S n =b 1+b 2+b 3+…+b n=12⎝ ⎛⎭⎪⎫1-13+1+12⎝ ⎛⎭⎪⎫13-15+1+12⎝ ⎛⎭⎪⎫15-17+1+…+12⎝ ⎛⎭⎪⎫12n -1-12n +1+1=12⎝ ⎛⎭⎪⎫1-13+13-15+15-17+…+12n -1-12n +1+n=12⎝ ⎛⎭⎪⎫1-12n +1+n=n 2n +1+n =2n 2+2n 2n +1(n ∈N *). 4.(2018·绍兴市柯桥区模拟)已知数列{a n }满足:x 1=1,x n =x n +1+1e n x +-1,证明:当n ∈N*时,(1)0<x n +1<x n ; (2)x n x n +1>x n -2x n +1;(3)⎝ ⎛⎭⎪⎫12n ≤x n ≤⎝ ⎛⎭⎪⎫12n -1. 证明 (1)用数学归纳法证明x n >0, 当n =1时,x 1=1>0,假设x k >0,k ∈N *,k ≥1,成立, 当n =k +1时,若x k +1≤0,则x k =x k +1+1ek x +-1≤0,矛盾,故x k +1>0,因此x n >0(n ∈N *), 所以x n =x n +1+1en x +-1>x n +1+e 0-1=x n +1,综上,x n >x n +1>0.(2)x n +1x n +2x n +1-x n =x n +1(x n +1+1en x +-1)+2x n +1-x n +1-1en x ++1=x 2n +1+1en x +(x n +1-1)+1,设f (x )=x 2+e x(x -1)+1(x ≥0), 则f ′(x )=2x +e x·x ≥0, 所以f (x )在[0,+∞)上单调递增, 因此f (x )≥f (0)=0, 因此x 2n +1+1en x +(x n +1-1)+1=f (x n +1)>f (0)=0,故x n x n +1>x n -2x n +1. (3)由(2)得1x n +1+1<2⎝ ⎛⎭⎪⎫1x n+1,所以当n >1时,1x n+1<2⎝⎛⎭⎪⎫1x n -1+1<…<2n -1⎝ ⎛⎭⎪⎫1x 1+1=2n , 当n =1时,1x n +1=2n ,所以1x n ≤2n,即x n ≥12n ,又由于x n =x n +1+1en x +-1≥x n +1+(x n +1+1)-1=2x n +1,x n +1≤12x n ,所以易知x n ≤12n -1,综上,⎝ ⎛⎭⎪⎫12n ≤x n ≤⎝ ⎛⎭⎪⎫12n -1.5.(2018·浙江省台州中学模拟)已知数列{a n }的首项a 1=35,a n +1=3a n2a n +1,n =1,2,….(1)求{a n }的通项公式; (2)证明:对任意的x >0,a n ≥11+x -1(1+x )2·⎝ ⎛⎭⎪⎫23n -x ,n =1,2,…;(3)证明:a 1+a 2+…+a n >n 2n +1.(1)解 ∵a n +1=3a n 2a n +1,∴1a n +1-1=13⎝ ⎛⎭⎪⎫1a n -1,∴1a n -1=23·13n -1=23n ,∴a n =3n3n +2(n ∈N *). (2)证明 由(1)知a n =3n3n +2>0,11+x -1(1+x )2⎝ ⎛⎭⎪⎫23n -x =11+x -1(1+x )2⎝ ⎛⎭⎪⎫23n +1-1-x =11+x -1(1+x )2⎣⎢⎡⎦⎥⎤1a n -(1+x )=-1a n ·1(1+x )2+21+x =-1a n ⎝ ⎛⎭⎪⎫11+x -a n 2+a n ≤a n , ∴原不等式成立.(3)证明 由(2)知,对任意的x >0, 有a 1+a 2+…a n ≥11+x -1(1+x )2⎝ ⎛⎭⎪⎫23-x +11+x -1(1+x )2⎝ ⎛⎭⎪⎫232-x +…+11+x -1(1+x )2⎝ ⎛⎭⎪⎫23n -x =n1+x-1(1+x )2⎝ ⎛⎭⎪⎫23+232+…+23n -nx , ∴取x =1n ⎝ ⎛⎭⎪⎫23+232+…+23n =1n ⎝ ⎛⎭⎪⎫1-13n ,则a 1+a 2…+a n ≥n 1+1n ⎝ ⎛⎭⎪⎫1-13n =n 2n +1-13n>n 2n +1,∴原不等式成立.6.已知在数列{a n }中,满足a 1=12,a n +1=a n +12,记S n 为a n 的前n 项和.(1)证明:a n +1>a n ; (2)证明:a n =cos π3·2n -1;(3)证明:S n >n -27+π254.证明 (1)由题意知{a n }的各项均为正数, 因为2a 2n +1-2a 2n =a n +1-2a 2n =(1-a n )(1+2a n ). 所以,要证a n +1>a n ,只需要证明a n <1即可. 下面用数学归纳法证明a n <1. ①当n =1时,a 1=12<1成立,②假设当n =k 时,a k <1成立, 那么当n =k +1时,a k +1=a k +12<1+12=1. 综上所述,a n <1成立,所以a n +1>a n . (2)用数学归纳法证明a n =cos π3·2n -1.①当n =1时,a 1=12=cos π3成立,②假设当n =k 时,a k =cos π3·2k -1. 那么当n =k +1时,综上所述,a n =cos π3·2n -1.(3)由题意及(2)知, 1-a n -12=1-a n -1+12 =1-a 2n =1-cos 2π3·2n -1 =sin2π3·2n -1<⎝ ⎛⎭⎪⎫π3·2n -12(n ≥2),得a n -1>1-2π29·4n -1(n ≥2),故当n =1时,S 1=12>1-27+π254;当n ≥2时,S n >∑ni =2 ⎝ ⎛⎭⎪⎫1-2π29·4i +12=n -12-2π29×43×116⎝ ⎛⎭⎪⎫1-14n -1>n -27+π254.综上所述,S n >n -27+π254.。
浙江省2019高考数学优编增分练:解答题突破练三数列
3
3an
5.(2018 ·浙江省台州中学模拟 ) 已知数列 { an} 的首项 a1=5, an+1= 2an+ 1, n= 1,2 ,….
(1) 求 { an} 的通项公式;
(2) 证明:对任意的
1 x>0,an≥ 1+ x-
1 2·
1+x
2 n- x 3
,n= 1,2 ,…;
n2
(3)
证明:
a1+ a2+…+
解 (1) 因为 a1= S1=1,且 ( t +1) Sn= a2n+ 3an+ 2,
所以 ( t + 1) S1= a21+ 3a1+ 2,所以 t = 5.
所以 6Sn=a2n+ 3an+2. ①
当 n≥2时,有
6Sn
-
1=
a2 n-
1+
3
an-
1+
2,②
①-②得
6an=
a2n+
3
an-
a2 n-1
d= 2, 则 a1= 1,
a1- d=k,
解得 k=- 1,∴ an= 2n- 1( n∈N* ) .
4n2
4n2
(2) 由 bn=anan+1= 2n- 1 2n+ 1
4n2
1
= 4n2- 1=1+ 4n2- 1
1
11
1
= 1+ 2n-1
2n+ 1
= 2
2n- 1- 2n+ 1
+ 1,
得 Sn= b1+b2+ b3+…+ bn
当 n≥2时, Sn>∑ i =2
1- 9·4i + 2
1 2π2 4 1
1
= n- 2- 9 × 3×16 1- 4n-1
27+ π 2 >n- 54 .
2019高考数学优编增分练5套
高考数学优编增分练目录(一)三角函数与解三角形 (2)(二)立体几何 (5)(三)数列 (10)(四)解析几何 (15)(五)函数与导数 (21)(一)三角函数与解三角形1.(2018·浙江省教育绿色评价联盟月考)已知函数f (x )=sin x ·(cos x +3sin x ).(1)求f (x )的最小正周期;(2)若关于x 的方程f (x )=t 在区间⎣⎡⎦⎤0,π2内有两个不相等的实数解,求实数t 的取值范围. 解 (1)f (x )=sin x cos x +3sin 2x=12sin 2x +32(1-cos 2x ) =12sin 2x -32cos 2x +32=sin ⎝⎛⎭⎫2x -π3+32. 所以f (x )的最小正周期T =2π2=π. (2)因为x ∈⎣⎡⎦⎤0,π2,所以2x -π3∈⎣⎡⎦⎤-π3,2π3. 令u =2x -π3,因为y =sin u 在⎣⎡⎦⎤-π3,π2上是增函数,在⎣⎡⎦⎤π2,2π3上是减函数, 令u =2x -π3=π2,则x =5π12,所以f (x )在⎣⎡⎦⎤0,5π12上是增函数,在⎣⎡⎦⎤5π12,π2上是减函数. 由题意知,关于x 的方程f (x )=t 在区间⎣⎡⎦⎤0,π2内有两个不相等的实数解,等价于y =f (x )与y =t 的图象(图略)在区间⎣⎡⎦⎤0,π2内有两个不同的交点, 又因为f (0)=0,f ⎝⎛⎭⎫5π12=1+32,f ⎝⎛⎭⎫π2=3, 所以3≤t <1+32,即t 的取值范围是⎣⎡⎭⎫3,1+32. 2. (2018·湖州、衢州、丽水三地市模拟)已知函数f (x )=3sin ⎝⎛⎭⎫2x +π6-2sin x cos x . (1)求函数f (x )的最小正周期;(2)当x ∈⎣⎡⎦⎤-π4,π4时,求函数f (x )的最大值和最小值. 解 (1)f (x )=3⎝⎛⎭⎫sin 2x cos π6+cos 2x sin π6-sin 2x =32cos 2x +12sin 2x =sin ⎝⎛⎭⎫2x +π3, 因此函数f (x )的最小正周期T =π.(2)因为-π4≤x ≤π4,所以-π6≤2x +π3≤5π6,所以-12≤sin ⎝⎛⎭⎫2x +π3≤1, 因此当x =π12时,f (x )的最大值为1, 当x =-π4时,f (x )的最小值为-12. 3.(2018·浙江省台州中学模拟)在△ABC 中,cos B =-513,cos C =45. (1)求sin A 的值;(2)设△ABC 的面积S △ABC =332,求BC 的长. 解 (1)由cos B =-513,得sin B =1213, 由cos C =45,得sin C =35, sin A =sin(B +C )=sin B cos C +cos B sin C =3365. (2)由S △ABC =332,得12AB ·AC ·sin A =332, ∴AB ·AC =65.又AC =AB ·sin B sin C =2013AB , ∴AB =132,BC =AB ·sin A sin C =112. 4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足23a sin C sin B =a sin A +b sin B -c sin C .(1)求角C 的大小;(2)若a cos ⎝⎛⎭⎫π2-B =b cos(2k π+A )(k ∈Z )且a =2,求△ABC 的面积. 解 (1)由23a sin C sin B =a sin A +b sin B -c sin C 及正弦定理得,23ab sin C =a 2+b 2-c 2, ∴3sin C =a 2+b 2-c 22ab ,∴3sin C =cos C , ∴tan C =33,又0<C <π,∴C =π6. (2)由a cos ⎝⎛⎭⎫π2-B =b cos(2k π+A )(k ∈Z ),得a sin B =b cos A .由正弦定理得sin A sin B =sin B cos A ,又sin B ≠0,∴sin A =cos A ,∴A =π4, 根据正弦定理可得2sin π4=c sin π6,解得c =2, ∴S △ABC =12ac sin B =12×2×2sin(π-A -C ) =2sin ⎝⎛⎭⎫π4+π6=3+12.5.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知sin A +sin B =3sin C .(1)若cos 2A =sin 2B +cos 2C +sin A sin B ,求sin A +sin B 的值;(2)若c =2,求△ABC 面积的最大值.解 (1)∵cos 2A =sin 2B +cos 2C +sin A sin B ,∴1-sin 2A =sin 2B +1-sin 2C +sin A sin B ,∴sin 2A +sin 2B -sin 2C =-sin A sin B ,∴由正弦定理,得a 2+b 2-c 2=-ab ,∴由余弦定理,得cos C =a 2+b 2-c 22ab =-12, 又0<C <π,∴C =2π3, ∴sin A +sin B =3sin C =3sin2π3=32. (2)当c =2,a +b =3c =23,∴cos C =a 2+b 2-c 22ab =(a +b )2-2ab -c 22ab =4ab-1, ∴sin C =1-cos 2C =1-⎝⎛⎭⎫4ab -12 =-⎝⎛⎭⎫4ab 2+8ab ,∴S =12ab sin C =12ab -⎝⎛⎭⎫4ab 2+8ab =12-16+8ab . ∵a +b =23≥2ab ,即0<ab ≤3,当且仅当a =b =3时等号成立,∴S =12-16+8ab ≤12-16+8×3=2, ∴△ABC 面积的最大值为 2.6.已知m =(3sin ωx ,cos ωx ),n =(cos ωx ,-cos ωx )(ω>0,x ∈R ),f (x )=m·n -12且f (x )的图象上相邻两条对称轴之间的距离为π2. (1)求函数f (x )的单调递增区间;(2)若△ABC 中内角A ,B ,C 的对边分别为a ,b ,c 且b =7,f (B )=0,sin A =3sin C ,求a ,c 的值及△ABC 的面积. 解 (1)f (x )=m·n -12=3sin ωx cos ωx -cos 2ωx -12 =32sin 2ωx -12cos 2ωx -1=sin ⎝⎛⎭⎫2ωx -π6-1. ∵相邻两条对称轴之间的距离为π2, ∴T =2π2ω=π,∴ω=1,∴f (x )=sin ⎝⎛⎭⎫2x -π6-1, 令2k π-π2≤2x -π6≤2k π+π2,k ∈Z , 则k π-π6≤x ≤k π+π3,k ∈Z , ∴f (x )的单调递增区间为⎣⎡⎦⎤k π-π6,k π+π3,k ∈Z . (2)由(1)知,f (B )=sin ⎝⎛⎭⎫2B -π6-1=0, ∵0<B <π,∴-π6<2B -π6<11π6, ∴2B -π6=π2,∴B =π3, 由sin A =3sin C 及正弦定理,得a =3c ,在△ABC 中,由余弦定理,可得cos B =a 2+c 2-b 22ac =9c 2+c 2-76c 2=10c 2-76c 2=12, ∴c =1,a =3,∴S △ABC =12ac sin B =12×3×1×32=334. (二)立体几何1.(2018·浙江省金丽衢十二校联考)如图,四棱锥S -ABCD 的底面是边长为1的正方形,侧棱SB 垂直于底面.(1)求证:平面SBD ⊥平面SAC ;(2)若SA 与平面SCD 所成的角为30°,求SB 的长.(1)证明 连接AC ,BD ,因为四边形ABCD 为正方形,所以AC ⊥BD .又因为SB ⊥底面ABCD ,所以AC ⊥SB ,因为BD ∩SB =B ,BD ,SB ⊂平面SBD ,所以AC ⊥平面SBD .又因为AC ⊂平面SAC ,所以平面SAC ⊥平面SBD .(2)解 将四棱锥补形成正四棱柱ABCD -A ′SC ′D ′,连接A ′D ,作AE ⊥A ′D ,垂足为点E ,连接SE .由SA ′∥CD 可知,平面SCD 即为平面SCDA ′.因为CD ⊥侧面ADD ′A ′,AE ⊂侧面ADD ′A ′,所以CD ⊥AE ,又因为AE ⊥A ′D ,A ′D ∩CD =D ,A ′D ,CD ⊂平面SCD ,所以AE ⊥平面SCD ,于是∠ASE 即为SA 与平面SCD 所成的角.设SB =x ,在Rt △ABS 中,SA =1+x 2,在Rt △DAA ′中,AE =x 1+x 2 . 因为∠ASE =30°,所以1+x 2=2x 1+x 2, 解得x =1,即SB 的长为1.2.(2018·浙江省金华十校模拟)如图,在几何体ABCDE 中,CD ∥AE ,∠EAC =90°,平面EACD ⊥平面ABC ,CD =2EA =2,AB =AC =2,BC =23,F 为BD 的中点.(1)证明:EF ∥平面ABC ;(2)求直线AB 与平面BDE 所成角的正弦值.(1)证明 取BC 的中点G ,连接FG ,AG ,∵F 为BD 的中点,CD =2EA ,CD ∥AE ,∴FG =12CD =EA ,且FG ∥AE , ∴四边形AGFE 是平行四边形,∴EF ∥AG ,∵EF ⊄平面ABC ,AG ⊂平面ABC ,∴EF ∥平面ABC .(2)解 ∵∠EAC =90°,平面EACD ⊥平面ABC ,且平面EACD ∩平面ABC =AC ,EA ⊂平面EACD , ∴EA ⊥平面ABC ,由(1)知FG ∥AE ,∴FG ⊥平面ABC ,又∵AB =AC ,G 为BC 的中点,∴AG ⊥BC ,如图,以G 为坐标原点,分别以GA ,GB ,GF 所在直线为x ,y ,z 轴建立空间直角坐标系,则A (1,0,0),B (0,3,0),D (0,-3,2),E (1,0,1), ∴AB →=(-1,3,0),BD →=(0,-23,2),BE →=(1,-3,1),设平面BDE 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·BD →=0,n ·BE →=0,即⎩⎨⎧z -3y =0,x -3y +z =0, 令y =1,得n =(0,1,3),∴直线AB 与平面BDE 所成角的正弦值为|AB →·n ||AB →||n |=34. 3.在三棱锥D —ABC 中,DA =DB =DC ,D 在底面ABC 上的射影为E ,AB ⊥BC ,DF ⊥AB 于F .(1)求证:平面ABD ⊥平面DEF ;(2)若AD ⊥DC ,AC =4,∠BAC =60°,求直线BE 与平面DAB 所成角的正弦值.(1)证明 由题意知DE ⊥平面ABC ,所以AB ⊥DE ,又AB ⊥DF ,且DE ∩DF =D ,所以AB ⊥平面DEF ,又AB ⊂平面ABD ,所以平面ABD ⊥平面DEF .(2)解 方法一 由DA =DB =DC ,知EA =EB =EC ,所以E 是△ABC 的外心.又AB ⊥BC ,所以E 为AC 的中点,如图所示.过E 作EH ⊥DF 于H ,连接BH ,则由(1)知EH ⊥平面DAB ,所以∠EBH 即为BE 与平面DAB 所成的角.由AC =4,∠BAC =60°,得AB =AE =BE =2,所以EF =3,又DE =2,所以DF =DE 2+EF 2=7,EH =237,所以sin ∠EBH =EH BE =217.方法二 如图建系,则A (0,-2,0),D (0,0,2),B (3,-1,0),所以DA →=(0,-2,-2),DB →=(3,-1,-2).设平面DAB 的法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ·DA →=0,n ·DB →=0,得⎩⎨⎧ -2y -2z =0,3x -y -2z =0,取z =1,得n =⎝⎛⎭⎫33,-1,1.设EB →与n 的夹角为θ,则cos θ=EB →·n |EB →|·|n |=2273=217,所以BE 与平面DAB 所成角的正弦值为217. 4.如图,在矩形ABCD 中,已知AB =2,AD =4,点E ,F 分别在AD ,BC 上,且AE =1,BF =3,将四边形AEFB 沿EF 折起,使点B 在平面CDEF 上的射影H 在直线DE 上.(1)求证:CD ⊥BE ;(2)求线段BH 的长度;(3)求直线AF 与平面EFCD 所成角的正弦值.(1)证明 ∵BH ⊥平面CDEF ,∴BH ⊥CD ,又CD ⊥DE ,BH ∩DE =H ,BH ,DE ⊂平面DBE ,∴CD ⊥平面DBE ,∴CD ⊥BE .(2)解 方法一 设BH =h ,EH =k ,过F 作FG 垂直ED 于点G ,∵线段BE ,BF 在翻折过程中长度不变,根据勾股定理得⎩⎪⎨⎪⎧ BE 2=BH 2+EH 2,BF 2=BH 2+FH 2=BH 2+FG 2+GH 2, 即⎩⎪⎨⎪⎧ 5=h 2+k 2,9=22+h 2+(2-k )2,解得⎩⎪⎨⎪⎧h =2,k =1, ∴线段BH 的长度为2.方法二 如图,过点E 作ER ∥DC ,过点E 作ES ⊥平面EFCD ,以点E 为坐标原点,分别以ER ,ED ,ES 所在直线为x ,y ,z 轴建立空间直角坐标系,设点B (0,y ,z )(y >0,z >0),由于F (2,2,0),BE =5,BF =3,∴⎩⎪⎨⎪⎧y 2+z 2=5,4+(y -2)2+z 2=9, 解得⎩⎪⎨⎪⎧y =1,z =2,于是B (0,1,2), ∴线段BH 的长度为2.(3)解 方法一 延长BA 交EF 于点M ,∵AE ∶BF =MA ∶MB =1∶3,∴点A 到平面EFCD 的距离为点B 到平面EFCD 距离的13, ∴点A 到平面EFCD 的距离为23,而AF =13, 故直线AF 与平面EFCD 所成角的正弦值为21339. 方法二 由(2)方法二知FB →=(-2,-1,2), 故EA →=13FB →=⎝⎛⎭⎫-23,-13,23, F A →=FE →+EA →=⎝⎛⎭⎫-83,-73,23,设平面EFCD 的一个法向量为n =(0,0,1),直线AF 与平面EFCD 所成角的大小为θ,则sin θ=|F A →·n ||F A →||n |=21339. 5.在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC ⊥BC ,且AC =BC =BD =2AE ,M 是AB 的中点.(1)求证:CM ⊥EM ;(2)求CM 与平面CDE 所成的角.方法一 (1)证明 因为AC =BC ,M 是AB 的中点,所以CM ⊥AB .又EA ⊥平面ABC ,CM ⊂平面ABC ,所以EA ⊥CM ,因为AB ∩EA =A ,AB ,EA ⊂平面ABDE ,所以CM ⊥平面ABDE ,又因为EM ⊂平面ABDE ,所以CM ⊥EM .(2)解 过点M 作MH ⊥平面CDE ,垂足为H ,连接CH 并延长交ED 于点F ,连接MF ,MD ,∠FCM 是直线CM 和平面CDE 所成的角.因为MH ⊥平面CDE ,ED ⊂平面CDE ,所以MH ⊥ED ,又因为CM ⊥平面EDM ,ED ⊂平面EDM ,所以CM ⊥ED ,因为MH ∩CM =M ,MH ,CM ⊂平面CMF ,所以ED ⊥平面CMF ,因为MF ⊂平面CMF ,所以ED ⊥MF .设EA =a ,BD =BC =AC =2a ,在直角梯形ABDE 中,AB =22a ,M 是AB 的中点,所以DE =3a ,EM =3a ,MD =6a ,所以EM 2+MD 2=ED 2,所以△EMD 是直角三角形,其中∠EMD =90°,所以MF =EM ·MD DE=2a . 在Rt △CMF 中,tan ∠FCM =MF MC=1, 又因为∠FCM ∈(0°,90°),所以∠FCM =45°,故CM 与平面CDE 所成的角是45°.方法二 如图,以点C 为坐标原点,CA ,CB 所在直线分别作为x 轴和y 轴,过点C 作与平面ABC 垂直的直线为z 轴,建立直角坐标系,设EA =a ,则A (2a,0,0),B (0,2a,0),E (2a,0,a ),D (0,2a,2a ),M (a ,a,0).(1)证明 因为EM →=(-a ,a ,-a ),CM →=(a ,a,0),所以EM →·CM →=0,故EM ⊥CM .(2)解 设向量n =(1,y 0,z 0)为平面CDE 的一个法向量,则n ⊥CE →,n ⊥CD →,即n ·CE →=0,n ·CD →=0.因为CE →=(2a,0,a ),CD →=(0,2a,2a ),所以⎩⎪⎨⎪⎧ 2a +az 0=0,2ay 0+2az 0=0,解得⎩⎪⎨⎪⎧y 0=2,z 0=-2, 即n =(1,2,-2),cos 〈n ,CM →〉=CM →·n |CM →|·|n |=22, 因为〈n ,CM →〉∈[0°,180°],所以〈n ,CM →〉=45°.直线CM 与平面CDE 所成的角θ是n 与CM →夹角的余角,所以θ=45°,因此直线CM 与平面CDE 所成的角是45°.6.如图,在三棱台ABCDEF 中,平面BCFE ⊥平面ABC ,∠ACB =90°,BE =EF =FC =1,BC =2,AC =3.(1)求证:BF ⊥平面ACFD ;(2)求直线BD 与平面ACFD 所成角的余弦值.(1)证明 延长AD ,BE ,CF 相交于一点K ,如图所示,因为平面BCFE ⊥平面ABC ,且AC ⊥BC ,所以AC ⊥平面BCK ,因此BF ⊥AC .又因为EF ∥BC ,BE =EF =FC =1,BC =2,所以△BCK 为等边三角形,且F 为CK 的中点,则BF ⊥CK .所以BF ⊥平面ACFD .(2)解 因为BF ⊥平面ACK ,所以∠BDF 是直线BD 与平面ACFD 所成的角.在Rt △BFD 中,BF =3,DF =32, 得cos ∠BDF =217. 所以直线BD 与平面ACFD 所成角的余弦值为217. (三)数 列1.已知正项数列{a n }的前n 项和为S n ,a 1=1,且(t +1)S n =a 2n +3a n +2(t ∈R ).(1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1=1,b n +1-b n =a n +1,求数列⎩⎨⎧⎭⎬⎫12b n +7n 的前n 项和T n . 解 (1)因为a 1=S 1=1,且(t +1)S n =a 2n +3a n+2,所以(t +1)S 1=a 21+3a 1+2,所以t =5.所以6S n =a 2n +3a n +2.①当n ≥2时,有6S n -1=a 2n -1+3a n -1+2,②①-②得6a n =a 2n +3a n -a 2n -1-3a n -1,所以(a n +a n -1)(a n -a n -1-3)=0,因为a n >0,所以a n -a n -1=3,又因为a 1=1,所以{a n }是首项a 1=1,公差d =3的等差数列,所以a n =3n -2(n ∈N *).(2)因为b n +1-b n =a n +1,b 1=1,所以b n -b n -1=a n (n ≥2,n ∈N *),所以当n ≥2时,b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1=a n +a n -1+…+a 2+b 1=3n 2-n 2. 又b 1=1也适合上式,所以b n =3n 2-n 2(n ∈N *). 所以12b n +7n =13n 2-n +7n=13·1n (n +2)=16·⎝⎛⎭⎫1n -1n +2, 所以T n =16·⎝⎛⎭⎫1-13+12-14+…+1n -1n +2 =16·⎝⎛⎭⎫32-1n +1-1n +2=3n 2+5n 12(n +1)(n +2).2.设等差数列{a n }的前n 项和为S n ,且S 3,S 52,S 4成等差数列,a 5=3a 2+2a 1-2. (1)求数列{a n }的通项公式;(2)设b n =2n -1,求数列⎩⎨⎧⎭⎬⎫a n b n 的前n 项和T n . 解 (1)设等差数列{a n }的首项为a 1,公差为d ,由S 3,S 52,S 4成等差数列, 可知S 3+S 4=S 5,得2a 1-d =0,①由a 5=3a 2+2a 1-2,②得4a 1-d -2=0,由①②,解得a 1=1,d =2,因此,a n =2n -1(n ∈N *).(2)令c n =a n b n=(2n -1)⎝⎛⎭⎫12n -1,则T n =c 1+c 2+…+c n ,∴T n =1·1+3·12+5·⎝⎛⎭⎫122+…+(2n -1)·⎝⎛⎭⎫12n -1,③ 12T n =1·12+3·⎝⎛⎭⎫122+5·⎝⎛⎭⎫123+…+(2n -1)·⎝⎛⎭⎫12n ,④ ③-④,得12T n =1+2⎣⎡⎦⎤12+⎝⎛⎭⎫122+…+⎝⎛⎭⎫12n -1-(2n -1)·⎝⎛⎭⎫12n =1+2⎣⎡⎦⎤1-⎝⎛⎭⎫12n -1 -(2n -1)·⎝⎛⎭⎫12n = 3-2n +32n , ∴T n =6-2n +32n -1(n ∈N *). 3.已知等差数列{a n }满足(n +1)a n =2n 2+n +k ,k ∈R .(1)求数列{a n }的通项公式;(2)设b n =4n 2a n a n +1,求数列{b n }的前n 项和S n . 解 (1)方法一 由(n +1)a n =2n 2+n +k ,令n =1,2,3,得到a 1=3+k 2,a 2=10+k 3,a 3=21+k 4, ∵{a n }是等差数列,∴2a 2=a 1+a 3,即20+2k 3=3+k 2+21+k 4, 解得k =-1.由于(n +1)a n =2n 2+n -1=(2n -1)(n +1),又∵n +1≠0,∴a n =2n -1(n ∈N *).方法二 ∵{a n }是等差数列,设公差为d ,则a n =a 1+d (n -1)=dn +(a 1-d ),∴(n +1)a n =(n +1)(dn +a 1-d )=dn 2+a 1n +a 1-d ,∴dn 2+a 1n +a 1-d =2n 2+n +k 对于任意n ∈N *均成立,则⎩⎪⎨⎪⎧ d =2,a 1=1,a 1-d =k ,解得k =-1,∴a n =2n -1(n ∈N *).(2)由b n =4n 2a n a n +1=4n 2(2n -1)(2n +1)=4n 24n 2-1=1+14n 2-1=1+1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1+1, 得S n =b 1+b 2+b 3+…+b n=12⎝⎛⎭⎫1-13+1+12⎝⎛⎭⎫13-15+1+12⎝⎛⎭⎫15-17+1+…+12⎝⎛⎭⎫12n -1-12n +1+1 =12⎝⎛⎭⎫1-13+13-15+15-17+…+12n -1-12n +1+n =12⎝⎛⎭⎫1-12n +1+n =n 2n +1+n =2n 2+2n 2n +1(n ∈N *). 4.(2018·绍兴市柯桥区模拟)已知数列{a n }满足:x 1=1,x n =x n +1+1en x +-1,证明:当n ∈N *时, (1)0<x n +1<x n ;(2)x n x n +1>x n -2x n +1;(3)⎝⎛⎭⎫12n ≤x n ≤⎝⎛⎭⎫12n -1. 证明 (1)用数学归纳法证明x n >0,当n =1时,x 1=1>0,假设x k >0,k ∈N *,k ≥1,成立,当n =k +1时,若x k +1≤0,则x k =x k +1+1e k x +-1≤0,矛盾,故x k +1>0,因此x n >0(n ∈N *),所以x n =x n +1+1e n x +-1>x n +1+e 0-1=x n +1,综上,x n >x n +1>0.(2)x n +1x n +2x n +1-x n =x n +1(x n +1+1en x +-1)+2x n +1-x n +1-1e n x ++1=x 2n +1+1e n x +(x n +1-1)+1, 设f (x )=x 2+e x (x -1)+1(x ≥0),则f ′(x )=2x +e x ·x ≥0,所以f (x )在[0,+∞)上单调递增,因此f (x )≥f (0)=0,因此x 2n +1+1e n x +(x n +1-1)+1=f (x n +1)>f (0)=0,故x n x n +1>x n -2x n +1.(3)由(2)得1x n +1+1<2⎝⎛⎭⎫1x n +1,所以当n >1时, 1x n +1<2⎝⎛⎭⎫1x n -1+1<…<2n -1⎝⎛⎭⎫1x 1+1=2n , 当n =1时,1x n +1=2n ,所以1x n ≤2n ,即x n ≥12n , 又由于x n =x n +1+1e n x +-1≥x n +1+(x n +1+1)-1=2x n +1,x n +1≤12x n ,所以易知x n ≤12n -1, 综上,⎝⎛⎭⎫12n ≤x n ≤⎝⎛⎭⎫12n -1.5.(2018·浙江省台州中学模拟)已知数列{a n }的首项a 1=35,a n +1=3a n 2a n +1,n =1,2,…. (1)求{a n }的通项公式;(2)证明:对任意的x >0,a n ≥11+x -1(1+x )2·⎝⎛⎭⎫23n -x ,n =1,2,…; (3)证明:a 1+a 2+…+a n >n 2n +1. (1)解 ∵a n +1=3a n 2a n +1,∴1a n +1-1=13⎝⎛⎭⎫1a n -1, ∴1a n -1=23·13n 1=23,∴a n =3n3n +2(n ∈N *). (2)证明 由(1)知a n =3n3n +2>0, 11+x -1(1+x )2⎝⎛⎭⎫23n -x =11+x -1(1+x )2⎝⎛⎭⎫23n +1-1-x =11+x -1(1+x )2⎣⎡⎦⎤1a n -(1+x ) =-1a n ·1(1+x )2+21+x =-1a n ⎝⎛⎭⎫11+x -a n 2+a n ≤a n , ∴原不等式成立.(3)证明 由(2)知,对任意的x >0,有a 1+a 2+…a n ≥11+x -1(1+x )2⎝⎛⎭⎫23-x +11+x -1(1+x )2⎝⎛⎭⎫23-x +…+11+x -1(1+x )2⎝⎛⎭⎫23-x =n 1+x -1(1+x )2⎝⎛⎭⎫23+232+…+23n -nx , ∴取x =1n ⎝⎛⎭⎫23+23+…+23=1n ⎝⎛⎭⎫1-13, 则a 1+a 2…+a n ≥n1+1n ⎝⎛⎭⎫1-13n =n 2n +1-13n >n 2n +1, ∴原不等式成立.6.已知在数列{a n }中,满足a 1=12,a n +1=a n +12,记S n 为a n 的前n 项和. (1)证明:a n +1>a n ;(2)证明:a n =cos π3·2n -1; (3)证明:S n >n -27+π254. 证明 (1)由题意知{a n }的各项均为正数,因为2a 2n +1-2a 2n =a n +1-2a 2n =(1-a n )(1+2a n). 所以,要证a n +1>a n ,只需要证明a n <1即可.下面用数学归纳法证明a n <1.①当n =1时,a 1=12<1成立, ②假设当n =k 时,a k <1成立,那么当n =k +1时,a k +1=a k +12<1+12=1. 综上所述,a n <1成立,所以a n +1>a n .(2)用数学归纳法证明a n =cos π3·2n -1. ①当n =1时,a 1=12=cos π3成立, ②假设当n =k 时,a k =cos π3·2k -1. 那么当n =k +1时,a k +1=a k +12=cos π3·2k -1+12=cos π3·2k , 综上所述,a n =cosπ3·2n -1. (3)由题意及(2)知, 1-a n -12=1-a n -1+12=1-a 2n =1-cos 2π3·2n 1=sin 2π3·2n -1<⎝⎛⎭⎫π3·2n -12(n ≥2), 得a n -1>1-2π29·4n -1(n ≥2), 故当n =1时,S 1=12>1-27+π254; 当n ≥2时,S n >∑n i =2 ⎝⎛⎭⎫1-2π29·4i +12 =n -12-2π29×43×116⎝⎛⎭⎫1-14n -1 >n -27+π254. 综上所述,S n >n -27+π254. (四)解析几何1.(2018·浙江省台州中学模拟)过抛物线E :x 2=2py (p >0)的焦点F 作斜率分别为k 1,k 2的两条不同直线l 1,l 2且k 1+k 2=2,l 1与E 相交于点A ,B ,l 2与E 相交于点C ,D ,以AB ,CD 为直径的圆M ,圆N (M ,N 为圆心)的公共弦所在直线记为l .(1)若k 1>0,k 2>0,证明:FM →·FN →<2p 2;(2)若点M 到直线l 的距离的最小值为755,求抛物线E 的方程. (1)证明 由题意知,抛物线E 的焦点为F ⎝⎛⎭⎫0,p 2, 直线l 1的方程为y =k 1x +p 2. 由⎩⎪⎨⎪⎧y =k 1x +p 2,x 2=2py ,得x 2-2pk 1x -p 2=0. 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则x 1,x 2是上述方程的两个实数根,从而x 1+x 2=2pk 1,y 1+y 2=2pk 21+p ,∴点M 的坐标为⎝⎛⎭⎫pk 1,pk 21+p 2,FM →=(pk 1,pk 21). 同理可得点N 的坐标为⎝⎛⎫pk 2,pk 22+p 2, FN →=(pk 2,pk 22),于是FM →·FN →=p 2(k 1k 2+k 21k 22).∵k 1+k 2=2,k 1>0,k 2>0,k 1≠k 2,∴0<k 1k 2<1,故FM →·FN →<p 2(1+1)=2p 2.(2)解 由抛物线的定义得|F A |=y 1+p 2,|FB |=y 2+p 2, ∴|AB |=y 1+y 2+p =2pk 21+2p ,从而圆M 的半径r 1=pk 21+p .故圆M 的方程为x 2+y 2-2pk 1x -p (2k 21+1)y -34p 2=0, 同理可得圆N 的方程为x 2+y 2-2pk 2x -p (2k 22+1)y -34p 2=0, ∴直线l 的方程为(k 2-k 1)x +(k 22-k 21)y =0, 即x +2y =0.∴点M 到直线l 的距离为d =p |2k 21+k 1+1|5. 故当k 1=-14时,d 取最小值7p 85. 由已知得7p 85=755,解得p =8. 故所求抛物线E 的方程为x 2=16y .2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两焦点分别是F 1()-2,0,F 2()2,0,点E ⎝⎛⎭⎫2,322在椭圆C 上. (1)求椭圆C 的方程;(2)设P 是y 轴上的一点,若椭圆C 上存在两点M ,N ,使得MP →=2PN →,求以F 1P 为直径的圆面积的取值范围.解 (1)由已知,得半焦距c =2,2a =|EF 1|+|EF 2|=8+92+322=42, 所以a =22,所以b 2=a 2-c 2=8-2=6, 所以椭圆C 的方程是x 28+y 26=1. (2)设点P 的坐标为(0,t ),当直线MN 斜率不存在时,可得M ,N 分别是短轴的两端点,得到t =±63,t 2=23. 当直线MN 斜率存在时,设直线MN 的方程为y =kx +t ,M (x 1,y 1),N (x 2,y 2),则由MP →=2PN →得x 1=-2x 2,①联立⎩⎪⎨⎪⎧y =kx +t ,x 28+y 26=1, 得(3+4k 2)x 2+8ktx +4t 2-24=0,由题意,得Δ=64k 2t 2-4(3+4k 2)(4t 2-24)>0,整理得t 2<8k 2+6,由根与系数的关系得x 1+x 2=-8kt 3+4k 2, x 1·x 2=4t 2-243+4k 2,② 由①②,消去x 1,x 2得k 2=-t 2+612t 2-8, 由⎩⎪⎨⎪⎧ -t 2+612t 2-8≥0,t 2<8·-t 2+612t 2-8+6,解得23<t 2<6, 综上23≤t 2<6, 又因为以F 1P 为直径的圆面积S =π·2+t 24,所以S 的取值范围是⎣⎡⎭⎫2π3,2π. 3.(2018·浙江“超级全能生”联考)如图,已知直线y =-2mx -2m 2+m 与抛物线C :x 2=y 相交于A ,B 两点,定点M ⎝⎛⎭⎫-12,1. (1)证明:线段AB 被直线y =-x 平分;(2)求△MAB 面积取得最大值时m 的值.(1)证明 设A (x 1,y 1),B (x 2,y 2),联立方程组⎩⎪⎨⎪⎧y =-2mx -2m 2+m ,y =x 2, 得x 2+2mx +2m 2-m =0,∴x 1+x 2=-2m ,x 1·x 2=2m 2-m ,则x 1+x 22=-m , y 1+y 22=x 21+x 222=(x 1+x 2)2-2x 1x 22=m , ∴线段AB 的中点坐标为(-m ,m ),∴线段AB 被直线y =-x 平分.(2)解 ∵|AB |=(x 1-x 2)2+(y 1-y 2)2 =1+4m 2-4m 2+4m (0<m <1),点M 到直线AB 的距离为d =|1+2m 2-2m |1+4m 2, ∴△MAB 的面积S =12|AB |d =-m 2+m |1-2(-m 2+m )|(0<m <1),令-m 2+m =t ,则S =t |1-2t 2|,又∵0<t ≤12,∴S =t -2t 3⎝⎛⎭⎫0<t ≤12, 令f (t )=t -2t 3⎝⎛⎭⎫0<t ≤12,则f ′(t )=1-6t 2, 则f (t )在⎝⎛⎭⎫0,66上单调递增,在⎝⎛⎦⎤66,12上单调递减,故当t =66时,f (t )取得最大值,即△MAB 面积取得最大值,此时有-m 2+m =66,解得m =3±36. 4.已知椭圆C :x 2a 2+y 2b2=1(a >b >0),A ,B 是椭圆与x 轴的两个交点,M 为椭圆C 的上顶点,设直线MA 的斜率为k 1,直线MB 的斜率为k 2,k 1k 2=-23. (1)求椭圆C 的离心率;(2)设直线l 与x 轴交于点D (-3,0),交椭圆于P ,Q 两点,且满足DP →=3QD →,当△OPQ 的面积最大时,求椭圆C 的方程.解 (1)M (0,b ),A (-a,0),B (a,0),k 1=b a ,k 2=-b a, k 1k 2=-b a ·b a =-b 2a 2=-23,e =c a =33. (2)由(1)知e =c a =33, 得a 2=3c 2,b 2=2c 2,可设椭圆C 的方程为2x 2+3y 2=6c 2,设直线l 的方程为x =my -3,由⎩⎨⎧2x 2+3y 2=6c 2,x =my -3,得(2m 2+3)y 2-43my +6-6c 2=0,因为直线l 与椭圆C 相交于P (x 1,y 1),Q (x 2,y 2)两点,所以Δ=48m 2-4(2m 2+3)(6-6c 2)>0,由根与系数的关系得,y 1+y 2=43m 2m 2+3,y 1y 2=6-6c 22m 2+3. 又DP →=3QD →,所以y 1=-3y 2,代入上述两式得6-6c 2=-36m 22m 2+3, 所以S △OPQ =12|OD ||y 1-y 2|=32⎪⎪⎪⎪⎪⎪83m 2m 2+3 =12|m |2|m |2+3=122|m |+3|m |≤6, 当且仅当m 2=32时,等号成立,此时c 2=52, 代入Δ,此时Δ>0成立,所以椭圆C 的方程为2x 215+y 25=1. 5.已知在平面直角坐标系中,动点P (x ,y )(x ≥0)到点N (1,0)的距离比到y 轴的距离大1.(1)求动点P 的轨迹C 的方程;(2)若过点M (2,0)的直线与轨迹C 相交于A ,B 两点,设点Q 在直线x +y -1=0上,且满足OA →+OB →=tOQ→(O 为坐标原点),求实数t 的最小值.解 (1)方法一 因为点P (x ,y )(x ≥0)到点N (1,0)的距离比到y 轴的距离大1,所以|PN |-1=|x |,将点N 的坐标代入,并整理得y 2=4x .故点P 的轨迹C 的方程是y 2=4x .方法二 因为平面上动点P 到点N (1,0)的距离比到y 轴的距离大1,所以点P 到点N (1,0)的距离与点P 到直线x =-1的距离相等,即点P 的轨迹是以原点为顶点,焦点到准线的距离为2,并且为开口向右的抛物线,所以点P 的轨迹C 的方程为y 2=4x .(2)由题意知直线AB 的斜率存在且斜率不为0且与抛物线y 2=4x 有两个交点,设直线AB :y =k (x -2),A (x 1,y 1),B (x 2,y 2),Q (x ,y ),由⎩⎪⎨⎪⎧y =k (x -2),y 2=4x ,得k 2x 2-4(k 2+1)x +4k 2=0(k ≠0). Δ=16(2k 2+1)>0恒成立,所以x 1+x 2=4(k 2+1)k 2,x 1·x 2=4, 因为OA →+OB →=tOQ →,所以(x 1+x 2,y 1+y 2)=t (x ,y ),即x =x 1+x 2t =4(k 2+1)k 2t ,y =y 1+y 2t =k (x 1-2)+k (x 2-2)t =k (x 1+x 2)-4k t =4tk, 又点Q 在x +y -1=0上,所以4(k 2+1)k 2t +4tk-1=0. 所以t =4⎝⎛⎭⎫1k 2+1k +1=4⎝⎛⎭⎫1k +122+3≥3.故实数t 的最小值为3.6.如图,过椭圆M :x 22+y 2=1的右焦点F 作直线交椭圆于A ,C 两点.(1)当A ,C 变化时,在x 轴上求定点Q ,使得∠AQF =∠CQF ;(2)设直线QA 交椭圆M 的另一个交点为B ,连接BF 并延长交椭圆于点D ,当四边形ABCD 的面积取得最大值时,求直线AC 的方程.解 (1)设A (x 1,y 1),C (x 2,y 2),Q (q,0),当A ,C 不在x 轴上时,设直线AC 的方程为x =ty +1,代入椭圆M 的方程,可得(2+t 2)y 2+2ty -1=0.则y 1+y 2=-2t 2+t 2,y 1y 2=-12+t 2, 由意题知k AQ +k CQ =y 1x 1-q +y 2x 2-q=y 1(x 2-q )+y 2(x 1-q )(x 1-q )(x 2-q ) =y 1(ty 2+1-q )+y 2(ty 1+1-q )(x 1-q )(x 2-q ) =2ty 1y 2+(1-q )(y 1+y 2)(x 1-q )(x 2-q )=0, 即2ty 1y 2+(1-q )(y 1+y 2)=0,整理得-2t -2t (1-q )=0,由题知无论t 取何值,上式恒成立,则q =2,当A ,C 在x 轴上时,定点Q (2,0)依然可使∠AQF =∠CQF 成立,所以点Q 的坐标是(2,0).(2)由(1)知∠AQF =∠CQF ,∠BQF =∠DQF .所以B ,C 关于x 轴对称,A ,D 关于x 轴对称,所以四边形ABCD 是一个等腰梯形.则四边形ABCD 的面积S (t )=|x 1-x 2|·|y 1-y 2|=|t |·|y 1-y 2|2=8·(t 2+1)|t |(t 2+2)2. 由对称性不妨设t >0,求导可得S ′(t )=-8·t 4-3t 2-2(t 2+2)3, 令S ′(t )=0,可得t 2=3+172, 由于S (t )在⎝ ⎛⎭⎪⎫0,3+172上单调递增, 在⎝ ⎛⎭⎪⎫3+172,+∞上单调递减,所以当t 2=3+172时,四边形ABCD 的面积S 取得最大值. 此时,直线AC 的方程是x =±3+172y +1. (五)函数与导数1.(2018·浙江省台州中学模拟)设函数f (x )=ax 2+bx +c (a ≠0),曲线y =f (x )过点(0,2a +3),且在点(-1,f (-1))处的切线垂直于y 轴.(1)用a 分别表示b 和c ;(2)当bc 取得最小值时,求函数g (x )=-f (x )e -x 的单调区间.解 (1)f ′(x )=2ax +b ,由题意得⎩⎪⎨⎪⎧2a +3=c ,2a ·(-1)+b =0,则b =2a ,c =2a +3. (2)由(1)得bc =2a (2a +3)=4⎝⎛⎭⎫a +342-94, 故当a =-34时,bc 取得最小值-94, 此时有b =-32,c =32, 从而f (x )=-34x 2-32x +32,f ′(x )=-32x -32, g (x )=-f (x )e -x =⎝⎛⎭⎫34x 2+32x -32e -x ,所以g ′(x )=-34(x 2-4)e -x , 令g ′(x )=0,解得x 1=-2,x 2=2.当x ∈(-∞,-2)时,g ′(x )<0,故g (x )在(-∞,-2)上为减函数;当x ∈(-2,2)时,g ′(x )>0,故g (x )在(-2,2)上为增函数;当x ∈(2,+∞)时,g ′(x )<0,故g (x )在(2,+∞)上为减函数.由此可见,函数g (x )的单调递减区间为(-∞,-2),(2,+∞),单调递增区间为(-2,2).2.(2018·浙江省温州六校协作体联考)已知函数f (x )=e kx (k -x )(k ≠0).(1)当k =2时,求y =f (x )在x =1处的切线方程;(2)对任意x ∈R ,f (x )≤1k恒成立,求实数k 的取值范围. 解 (1)当k =2时,f (x )=e 2x (2-x ).∵f ′(x )=2e 2x (2-x )-e 2x =e 2x (3-2x ),∴f ′(1)=e 2,又∵f (1)=e 2,∴所求的切线方程为y -e 2=e 2(x -1).即y =e 2x .(2)方法一 ∵e kx (k -x )≤1k, ∴当x =k 时,0≤1k,即k >0, ∴对任意x ∈R ,k (k -x )≤e-kx 恒成立, 设g (x )=e -kx +kx -k 2,g ′(x )=-k e -kx +k =k (1-e -kx ),当x <0时,g ′(x )<0,当x >0时,g ′(x )>0,∴g (x )在(-∞,0)上是减函数,在(0,+∞)上是增函数,∴g (x )min =g (0)=1-k 2≥0,又k >0,∴0<k ≤1.方法二 对任意x ∈R ,f (x )≤1k 恒成立⇔f (x )max ≤1k,x ∈R . ∵f ′(x )=k e kx (k -x )-e kx =e kx (k 2-kx -1),当k <0,x ≥k -1k 时,f ′(x )≥0;x <k -1k时,f ′(x )<0, ∴f (x )在⎝⎛⎭⎫-∞,k -1k 上是减函数,在⎣⎡⎭⎫k -1k ,+∞上是增函数. 又当x →-∞时,f (x )→+∞,而1k<0, ∴与f (x )≤1k恒成立矛盾,∴k <0不满足条件; 当k >0,x ≤k -1k 时,f ′(x )≥0;x >k -1k时,f ′(x )<0, ∴f (x )在⎝⎛⎦⎤-∞,k -1k 上是增函数,在⎝⎛⎭⎫k -1k ,+∞上是减函数. ∴f (x )max =f ⎝⎛⎭⎫k -1k =21e k -·1k ≤1k,∴k 2-1≤0,即-1≤k ≤1,又k >0,∴0<k ≤1,综上所述,实数k 的取值范围是(0,1].3.设函数f (x )=x ln x -ax 2+(b -1)x ,g (x )=e x -e x .(1)当b =0时,函数f (x )有两个极值点,求实数a 的取值范围;(2)若y =f (x )在点(1,f (1))处的切线与x 轴平行,且函数h (x )=f (x )+g (x )在x ∈(1,+∞)时,其图象上每一点处切线的倾斜角均为锐角,求实数a 的取值范围.解 (1)当b =0时,f (x )=x ln x -ax 2-x ,f ′(x )=ln x -2ax ,∴f (x )=x ln x -ax 2-x 有2个极值点就是方程ln x -2ax =0有2个不同的解,即y =2a 与m (x )=ln x x的图象的交点有2个. ∵m ′(x )=1-ln x x 2, 当x ∈(0,e)时,m ′(x )>0,m (x )单调递增;当x ∈(e ,+∞)时,m ′(x )<0,m (x )单调递减.∴m (x )有极大值1e, 又∵x ∈(0,1]时,m (x )≤0;当x ∈(1,+∞)时,0<m (x )<1e. 当a ∈⎝⎛⎭⎫12e ,+∞时,y =2a 与m (x )=ln x x的图象的交点有0个; 当a ∈(-∞,0]或a =12e 时,y =2a 与m (x )=ln x x的图象的交点有1个; 当a ∈⎝⎛⎭⎫0,12e 时,y =2a 与m (x )=ln x x的图象的交点有2个. 综上,实数a 的取值范围为⎝⎛⎭⎫0,12e . (2)函数y =f (x )在点(1,f (1))处的切线与x 轴平行,∴f ′(1)=0且f (1)≠0,∵f ′(x )=ln x -2ax +b ,∴b =2a 且a ≠1.h (x )=x ln x -ax 2+(b -1)x +e x -e x 在x ∈(1,+∞)时,其图象的每一点处的切线的倾斜角均为锐角,即当x >1时,h ′(x )=f ′(x )+g ′(x )>0恒成立,即ln x +e x -2ax +2a -e>0恒成立,令t (x )=ln x +e x -2ax +2a -e ,∴t ′(x )=1x+e x -2a ,设φ(x )=1x +e x -2a ,φ′(x )=e x -1x 2, ∵x >1,∴e x >e ,1x 2<1, ∴φ′(x )>0,∴φ(x )在(1,+∞)上单调递增,即t ′(x )在(1,+∞)上单调递增,∴t ′(x )>t ′(1)=1+e -2a ,当a ≤1+e 2且a ≠1时,t ′(x )≥0, ∴t (x )=ln x +e x -2ax +2a -e 在(1,+∞)上单调递增,∴t (x )>t (1)=0成立,当a >1+e 2时, ∵t ′(1)=1+e -2a <0,t ′(ln 2a )=1ln 2a+2a -2a >0, ∴存在x 0∈(1,ln 2a ),满足t ′(x 0)=0.∵t ′(x )在(1,+∞)上单调递增,∴当x ∈(1,x 0)时,t ′(x )<0,t (x )单调递减,∴t (x 0)<t (1)=0,t (x )>0不恒成立.∴实数a 的取值范围为(-∞,1)∪⎝⎛⎦⎤1,1+e 2. 4.已知函数f (x )=x -1+a e x .(1)讨论f (x )的单调性;(2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2>4.(1)解 f ′(x )=1+a e x ,当a ≥0时,f ′(x )>0,则f (x )在R 上单调递增.当a <0时,令f ′(x )>0,得x <ln ⎝⎛⎭⎫-1a , 则f (x )的单调递增区间为⎝⎛⎭⎫-∞,ln ⎝⎛⎭⎫-1a , 令f ′(x )<0,得x >ln ⎝⎛⎭⎫-1a , 则f (x )的单调递减区间为⎝⎛⎭⎫ln ⎝⎛⎭⎫-1a ,+∞. (2)证明 由f (x )=0得a =1-x e x , 设g (x )=1-x e x ,则g ′(x )=x -2e x . 由g ′(x )<0,得x <2;由g ′(x )>0,得x >2.故g (x )min =g (2)=-1e 2<0. 当x >1时,g (x )<0,当x <1时,g (x )>0,不妨设x 1<x 2,则x 1∈(1,2),x 2∈(2,+∞),x 1+x 2>4等价于x 2>4-x 1,∵4-x 1>2且g (x )在(2,+∞)上单调递增,∴要证x 1+x 2>4,只需证g (x 2)>g (4-x 1),∵g (x 1)=g (x 2)=a ,∴只需证g (x 1)>g (4-x 1),即1-x 11e x >x 1-314e x −, 即证124e x −(x 1-3)+x 1-1<0;设h (x )=e 2x -4(x -3)+x -1,x ∈(1,2),则h ′(x )=e 2x -4(2x -5)+1,令m (x )=h ′(x ),则m ′(x )=4e 2x -4(x -2),∵x ∈(1,2),∴m ′(x )<0,∴m (x )在(1,2)上单调递减,即h ′(x )在(1,2)上单调递减,∴h ′(x )>h ′(2)=0,∴h (x )在(1,2)上单调递增,∴h (x )<h (2)=0,∴124e x −()x 1-3+x 1-1<0,从而x 1+x 2>4得证.5.已知函数f (x )=a +ln x x,g (x )=mx . (1)求函数f (x )的单调区间;(2)当a =0时,f (x )≤g (x )恒成立,求实数m 的取值范围;(3)当a =1时,求证:当x >1时,(x +1)⎝⎛⎭⎫x +1e x f (x )>2⎝⎛⎭⎫1+1e . (1)解 f (x )=a +ln x x的定义域为(0,+∞), 且f ′(x )=1-(a +ln x )x 2=1-ln x -a x 2. 由f ′(x )>0得1-ln x -a >0,即ln x <1-a ,解得0<x <e 1-a ,∴f (x )在(0,e 1-a )上单调递增,在(e 1-a ,+∞)上单调递减.(2)解 a =0,f (x )=ln x x,∴f (x )≤g (x )⇔ln x x ≤mx ⇔m ≥ln x x 2, 令u (x )=ln x x 2,∴u ′(x )=1-2ln x x 3, 由u ′(x )>0得0<x <e ,∴u (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,∴u (x )max =u (e)=ln e e =12e ,∴m ≥12e. (3)证明 (x +1)⎝⎛⎭⎫x +1e x f (x )>2⎝⎛⎭⎫1+1e , 等价于1e +1·(x +1)(ln x +1)x >2e x -1x e x +1. 令p (x )=(x +1)(ln x +1)x ,则p ′(x )=x -ln x x 2, 令φ(x )=x -ln x ,则φ′(x )=1-1x =x -1x, ∵x >1,∴φ′(x )>0,∴φ(x )在(1,+∞)上单调递增,φ(x )>φ(1)=1>0,p ′(x )>0,∴p (x )在(1,+∞)上单调递增,∴p (x )>p (1)=2,∴p (x )e +1>2e +1, 令h (x )=2e x -1x e x +1, 则h ′(x )=2e x -1(1-e x )(x e x +1)2, ∵x >1,∴1-e x <0,∴h ′(x )<0,h (x )在(1,+∞)上单调递减,∴当x >1时,h (x )<h (1)=2e +1, ∴p (x )e +1>2e +1>h (x ), 即(x +1)⎝⎛⎭⎫x +1e x f (x )>2⎝⎛⎭⎫1+1e ,x >1. 6.已知函数f (x )=x 3+|ax -3|-2,a >0.(1)求函数y =f (x )的单调区间;(2)当a ∈(0,5)时,对于任意x 1∈[0,1],总存在x 2∈[0,1],使得f (x 1)+f (x 2)=0,求实数a 的值. 解 (1)f (x )=x 3+|ax -3|-2(a >0)=⎩⎨⎧ x 3+ax -5,x ≥3a ,x 3-ax +1,x <3a .则f ′(x )=⎩⎨⎧ 3x 2+a ,x ≥3a ,3x 2-a ,x <3a . 当a 3≥3a,即a ≥3时, 函数y =f (x )的单调递减区间为⎝⎛⎭⎫-a 3,3a ,单调递增区间为⎝⎛⎭⎫-∞,-a 3,⎝⎛⎭⎫3a ,+∞; 当a 3<3a,即0<a <3时, 函数y =f (x )的单调递减区间为⎝⎛⎭⎫-a 3,a 3, 单调递增区间为⎝⎛⎭⎫-∞,-a 3,⎝⎛⎭⎫a 3,+∞. (2)由题意知,对于任意x 1∈[0,1],总存在x 2∈[0,1],使得f (x 1)+f (x 2)=0,等价于当x ∈[0,1]时,f (x )min +f (x )max =0,由(1)得当3≤a <5时,y =f (x )在⎣⎡⎭⎫0,3a 上单调递减,在⎝⎛⎦⎤3a ,1上单调递增, 所以f (x )min =f ⎝⎛⎭⎫3a =27a 3-2,f (x )max =max{f (0),f (1)}=max{1,a -4}=1,所以27a3-2+1=0,解得a =3; 当0<a <3时,y =f (x )在⎣⎡⎭⎫0,a 3上单调递减, 在⎝⎛⎦⎤a 3,1上单调递增, 所以f (x )min =f ⎝⎛⎭⎫a 3=1-2a 3a 3, f (x )max =max{f (0),f (1)}=max{1,2-a },当1<a <3时,f (x )max =1,则1-2a 3a 3+1=0,得a =3(舍去); 当0<a ≤1时,f (x )max =2-a ,则1-2a 3a 3+2-a =0, 即3-a =2a 3a 3,其中3-a ≥2,而2a 3a 3<2,所以无解,舍去. 综上所述,a =3.。
2019版高考数学(浙江专用)二轮复习(优编增分):专题五 函数与导数 规范答题示例8Word版含答案
典例8 (15分)已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围.审题路线图 求f ′(x )―――――→讨论f ′(x )的符号f (x )单调性―→f (x )最大值―→解f (x )max >2a -2.评分细则 (1)函数求导正确给1分; (2)分类讨论,每种情况给2分,结论1分; (3)求出最大值给3分;(4)构造函数g (a )=ln a +a -1给3分;(5)通过分类讨论得出a 的范围,给3分.跟踪演练8 (2018·天津)已知函数f (x )=a x ,g (x )=log a x ,其中a >1. (1)求函数h (x )=f (x )-x ln a 的单调区间;(2)若曲线y =f (x )在点(x 1,f (x 1))处的切线与曲线y =g (x )在点(x 2,g (x 2))处的切线平行,证明x 1+g (x 2)=-2lnln a ln a;(3)证明当a ≥1ee 时,存在直线l ,使l 是曲线y =f (x )的切线,也是曲线y =g (x )的切线. (1)解 由已知得h (x )=a x -x ln a ,则h ′(x )=a x ln a -ln a .令h ′(x )=0,解得x =0. 由a >1,可知当x 变化时,h ′(x ),h (x )的变化情况如下表:所以函数h (x )的单调递减区间为(-∞,0),单调递增区间为(0,+∞).(2)证明 由f ′(x )=a x ln a ,可得曲线y =f (x )在点(x 1,f (x 1))处的切线斜率为1xa ln a . 由g ′(x )=1x ln a ,可得曲线y =g (x )在点(x 2,g (x 2))处的切线斜率为1x 2ln a .因为这两条切线平行,所以有1xa ln a =1x 2ln a ,即x 21xa (ln a )2=1, 两边取以a 为底的对数,得 log a x 2+x 1+2log a ln a =0, 所以x 1+g (x 2)=-2lnln aln a.(3)证明 曲线y =f (x )在点(x 1,1xa )处的切线为l 1:y -1xa =1xa ln a ·(x -x 1).曲线y =g (x )在点(x 2,log a x 2)处的切线为l 2:y -log a x 2=1x 2ln a(x -x 2).要证明当a ≥1ee 时,存在直线l ,使l 是曲线y =f (x )的切线,也是曲线y =g (x )的切线,只需证明当a ≥1ee 时,存在x 1∈(-∞,+∞),x 2∈(0,+∞),使得l 1与l 2重合.即只需证明当a ≥1ee 时,下面的方程组有解⎩⎨⎧1x a ln a =1x 2ln a , ①1x a-x 11x a ln a =log a x 2-1ln a,②由①得,x 2=11x a (ln a )2,代入②,得1x a -x 11xa ln a +x 1+1ln a +2lnln a ln a=0.③因此,只需证明当a ≥1ee 时,关于x 1的方程③存在实数解. 设函数u (x )=a x -xa x ln a +x +1ln a +2lnln a ln a, 即要证明a ≥1ee 时,函数u (x )存在零点.u ′(x )=1-(ln a )2xa x ,可知当x ∈(-∞,0)时,u ′(x )>0;当x ∈(0,+∞)时,u ′(x )单调递减,又u ′(0)=1>0,u ′⎝⎛⎭⎫1(ln a )2=1-()1ln a a <0,故存在唯一的x 0,且x 0>0,使得u ′(x 0)=0,即1-(ln a )2x 00xa =0.由此可得u (x )在(-∞,x 0)上单调递增,在(x 0,+∞)上单调递减. u (x )在x =x 0处取得极大值u (x 0). 因为a ≥1ee ,所以lnln a ≥-1,所以u (x 0)=0x a -x 00xa ln a +x 0+1ln a +2lnln a ln a=1x 0(ln a )2+x 0+2lnln a ln a ≥2+2lnln aln a ≥0.下面证明存在实数t ,使得u (t )<0. 由(1)可得a x ≥1+x ln a , 当x >1ln a 时,有u (x )≤(1+x ln a )(1-x ln a )+x +1ln a +2lnln a ln a =-(ln a )2x 2+x +1+1ln a +2lnln aln a, 所以存在实数t ,使得u (t )<0.因此当a ≥1ee 时,存在x 1∈(-∞,+∞),使得u (x 1)=0.所以当a ≥1ee 时,存在直线l ,使l 是曲线y =f (x )的切线,也是曲线y =g (x )的切线.。
「精品」浙江省2019高考数学优编增分练:解答题突破练(一)三角函数与解三角形
(一)三角函数与解三角形1.(2018·浙江省教育绿色评价联盟月考)已知函数f (x )=sin x ·(cos x +3sin x ).(1)求f (x )的最小正周期;(2)若关于x 的方程f (x )=t 在区间⎣⎢⎡⎦⎥⎤0,π2内有两个不相等的实数解,求实数t 的取值范围. 解 (1)f (x )=sin x cos x +3sin 2x=12sin 2x +32(1-cos 2x ) =12sin 2x -32cos 2x +32=sin ⎝⎛⎭⎪⎫2x -π3+32. 所以f (x )的最小正周期T =2π2=π. (2)因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以2x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3. 令u =2x -π3,因为y =sin u 在⎣⎢⎡⎦⎥⎤-π3,π2上是增函数,在⎣⎢⎡⎦⎥⎤π2,2π3上是减函数, 令u =2x -π3=π2,则x =5π12,所以f (x )在⎣⎢⎡⎦⎥⎤0,5π12上是增函数,在⎣⎢⎡⎦⎥⎤5π12,π2上是减函数. 由题意知,关于x 的方程f (x )=t 在区间⎣⎢⎡⎦⎥⎤0,π2内有两个不相等的实数解,等价于y =f (x )与y =t 的图象(图略)在区间⎣⎢⎡⎦⎥⎤0,π2内有两个不同的交点, 又因为f (0)=0,f ⎝ ⎛⎭⎪⎫5π12=1+32,f ⎝ ⎛⎭⎪⎫π2=3, 所以3≤t <1+32,即t 的取值范围是⎣⎢⎡⎭⎪⎫3,1+32. 2. (2018·湖州、衢州、丽水三地市模拟)已知函数f (x )=3sin ⎝⎛⎭⎪⎫2x +π6-2sin x cos x . (1)求函数f (x )的最小正周期; (2)当x ∈⎣⎢⎡⎦⎥⎤-π4,π4时,求函数f (x )的最大值和最小值. 解 (1)f (x )=3⎝⎛⎭⎪⎫sin 2x cos π6+cos 2x sin π6-sin 2x=32cos 2x +12sin 2x =sin ⎝⎛⎭⎪⎫2x +π3, 因此函数f (x )的最小正周期T =π.(2)因为-π4≤x ≤π4,所以-π6≤2x +π3≤5π6, 所以-12≤sin ⎝⎛⎭⎪⎫2x +π3≤1, 因此当x =π12时,f (x )的最大值为1, 当x =-π4时,f (x )的最小值为-12. 3.(2018·浙江省台州中学模拟)在△ABC 中,cos B =-513,cos C =45. (1)求sin A 的值;(2)设△ABC 的面积S △ABC =332,求BC 的长. 解 (1)由cos B =-513,得sin B =1213, 由cos C =45,得sin C =35, sin A =sin(B +C )=sin B cos C +cos B sin C =3365. (2)由S △ABC =332,得12AB ·AC ·sin A =332, ∴AB ·AC =65.又AC =AB ·sin B sin C =2013AB , ∴AB =132,BC =AB ·sin A sin C =112. 4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足23a sin C sin B =a sin A +b sin B -c sin C .(1)求角C 的大小;(2)若a cos ⎝ ⎛⎭⎪⎫π2-B =b cos(2k π+A )(k ∈Z )且a =2,求△ABC 的面积. 解 (1)由23a sin C sin B =a sin A +b sin B -c sin C 及正弦定理得,23ab sin C =a 2+b 2-c 2,∴3sin C =a 2+b 2-c 22ab,∴3sin C =cos C ,∴tan C =33,又0<C <π,∴C =π6. (2)由a cos ⎝ ⎛⎭⎪⎫π2-B =b cos(2k π+A )(k ∈Z ), 得a sin B =b cos A .由正弦定理得sin A sin B =sin B cos A ,又sin B ≠0,∴sin A =cos A ,∴A =π4, 根据正弦定理可得2sin π4=c sin π6,解得c =2, ∴S △ABC =12ac sin B =12×2×2sin(π-A -C ) =2sin ⎝ ⎛⎭⎪⎫π4+π6=3+12. 5.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知sin A +sin B =3sin C .(1)若cos 2A =sin 2B +cos 2C +sin A sin B ,求sin A +sin B 的值;(2)若c =2,求△ABC 面积的最大值.解 (1)∵cos 2A =sin 2B +cos 2C +sin A sin B ,∴1-sin 2A =sin 2B +1-sin 2C +sin A sin B ,∴sin 2A +sin 2B -sin 2C =-sin A sin B ,∴由正弦定理,得a 2+b 2-c 2=-ab , ∴由余弦定理,得cos C =a 2+b 2-c 22ab =-12, 又0<C <π,∴C =2π3, ∴sin A +sin B =3sin C =3sin 2π3=32. (2)当c =2,a +b =3c =23,∴cos C =a 2+b 2-c 22ab =(a +b )2-2ab -c 22ab =4ab-1, ∴sin C =1-cos 2C =1-⎝ ⎛⎭⎪⎫4ab -12 =-⎝ ⎛⎭⎪⎫4ab 2+8ab, ∴S =12ab sin C =12ab -⎝ ⎛⎭⎪⎫4ab 2+8ab=12-16+8ab . ∵a +b =23≥2ab ,即0<ab ≤3,当且仅当a =b =3时等号成立,∴S =12-16+8ab ≤12-16+8×3=2, ∴△ABC 面积的最大值为 2.6.已知m =(3sin ωx ,cos ωx ),n =(cos ωx ,-cos ωx )(ω>0,x ∈R ),f (x )=m·n -12且f (x )的图象上相邻两条对称轴之间的距离为π2.(1)求函数f (x )的单调递增区间;(2)若△ABC 中内角A ,B ,C 的对边分别为a ,b ,c 且b =7,f (B )=0,sin A =3sin C ,求a ,c 的值及△ABC 的面积.解 (1)f (x )=m·n -12=3sin ωx cos ωx -cos 2ωx -12=32sin 2ωx -12cos 2ωx -1 =sin ⎝⎛⎭⎪⎫2ωx -π6-1. ∵相邻两条对称轴之间的距离为π2, ∴T =2π2ω=π,∴ω=1,∴f (x )=sin ⎝⎛⎭⎪⎫2x -π6-1, 令2k π-π2≤2x -π6≤2k π+π2,k ∈Z , 则k π-π6≤x ≤k π+π3,k ∈Z , ∴f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3,k ∈Z . (2)由(1)知,f (B )=sin ⎝⎛⎭⎪⎫2B -π6-1=0, ∵0<B <π,∴-π6<2B -π6<11π6,∴2B -π6=π2,∴B =π3, 由sin A =3sin C 及正弦定理,得a =3c , 在△ABC 中,由余弦定理,可得cos B =a 2+c 2-b 22ac =9c 2+c 2-76c 2=10c 2-76c 2=12, ∴c =1,a =3,∴S △ABC =12ac sin B =12×3×1×32=334.。
2019高考浙江数学优编增分练:解答题突破练(四) Word版含解析
(四)解析几何1.(2018·浙江省台州中学模拟)过抛物线E :x 2=2py (p >0)的焦点F 作斜率分别为k 1,k 2的两条不同直线l 1,l 2且k 1+k 2=2,l 1与E 相交于点A ,B ,l 2与E 相交于点C ,D ,以AB ,CD 为直径的圆M ,圆N (M ,N 为圆心)的公共弦所在直线记为l .(1)若k 1>0,k 2>0,证明:FM →·FN →<2p 2;(2)若点M 到直线l 的距离的最小值为755,求抛物线E 的方程. (1)证明 由题意知,抛物线E 的焦点为F ⎝⎛⎭⎫0,p 2, 直线l 1的方程为y =k 1x +p 2. 由⎩⎪⎨⎪⎧y =k 1x +p 2,x 2=2py ,得x 2-2pk 1x -p 2=0. 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2), 则x 1,x 2是上述方程的两个实数根,从而x 1+x 2=2pk 1,y 1+y 2=2pk 21+p ,∴点M 的坐标为⎝⎛⎭⎫pk 1,pk 21+p 2,FM →=(pk 1,pk 21). 同理可得点N 的坐标为⎝⎛⎭⎫pk 2,pk 22+p 2, FN →=(pk 2,pk 22),于是FM →·FN →=p 2(k 1k 2+k 21k 22).∵k 1+k 2=2,k 1>0,k 2>0,k 1≠k 2,∴0<k 1k 2<1,故FM →·FN →<p 2(1+1)=2p 2.(2)解 由抛物线的定义得|F A |=y 1+p 2,|FB |=y 2+p 2, ∴|AB |=y 1+y 2+p =2pk 21+2p ,从而圆M 的半径r 1=pk 21+p .故圆M 的方程为x 2+y 2-2pk 1x -p (2k 21+1)y -34p 2=0, 同理可得圆N 的方程为x 2+y 2-2pk 2x -p (2k 22+1)y -34p 2=0, ∴直线l 的方程为(k 2-k 1)x +(k 22-k 21)y =0,即x +2y =0.∴点M 到直线l 的距离为d =p |2k 21+k 1+1|5. 故当k 1=-14时,d 取最小值7p 85. 由已知得7p 85=755,解得p =8. 故所求抛物线E 的方程为x 2=16y .2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两焦点分别是F 1()-2,0,F 2()2,0,点E ⎝⎛⎭⎫2,322在椭圆C 上.(1)求椭圆C 的方程;(2)设P 是y 轴上的一点,若椭圆C 上存在两点M ,N ,使得MP →=2PN →,求以F 1P 为直径的圆面积的取值范围.解 (1)由已知,得半焦距c =2,2a =|EF 1|+|EF 2|=8+92+322=42, 所以a =22,所以b 2=a 2-c 2=8-2=6,所以椭圆C 的方程是x 28+y 26=1. (2)设点P 的坐标为(0,t ),当直线MN 斜率不存在时, 可得M ,N 分别是短轴的两端点,得到t =±63,t 2=23. 当直线MN 斜率存在时,设直线MN 的方程为y =kx +t ,M (x 1,y 1),N (x 2,y 2),。
2019版高考数学(浙江专用)二轮复习(优编增分):专题五 函数与导数 规范答题示例9Word版含答案
典例9 (15分)设函数f (x )=e mx +x 2-mx .(1)证明:f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增;(2)若对于任意x 1,x 2∈[-1,1],都有|f (x 1)-f (x 2)|≤e -1,求m 的取值范围.审题路线图 (1)求导f ′(x )=m (e mx -1)+2x ―→讨论m 确定f ′(x )的符号―→证明结论 (2)条件转化为(|f (x 1)-f (x 2)|)max ≤e -1――――→结合(1)知f (x )min=f (0)⎩⎪⎨⎪⎧f (1)-f (0)≤e -1,f (-1)-f (0)≤e -1―→⎩⎪⎨⎪⎧e m-m ≤e -1,e -m +m ≤e -1―→构造函数g (t )=e t -t -e +1―→研究g (t )的单调性―→寻求⎩⎪⎨⎪⎧g (m )≤0,g (-m )≤0的条件―→对m 讨论得适合条件的范围评分细则 (1)求出导数给1分;(2)讨论时漏掉m =0扣1分;两种情况只讨论正确一种给2分; (3)确定f ′(x )符号时只有结论无中间过程扣1分; (4)写出f (x )在x =0处取得最小值给1分; (5)无最后结论扣1分; (6)其他方法构造函数同样给分.跟踪演练9 (2018·全国Ⅰ)已知函数f (x )=1x -x +a ln x .(1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2, 证明:f (x 1)-f (x 2)x 1-x 2<a -2.(1)解 f (x )的定义域为(0,+∞), f ′(x )=-1x 2-1+ax =-x 2-ax +1x 2.①若a ≤2,则f ′(x )≤0,当且仅当a =2,x =1时,f ′(x )=0, 所以f (x )在(0,+∞)上单调递减. ②若a >2,令f ′(x )=0,得x =a -a 2-42或x =a +a 2-42. 当x ∈⎝ ⎛⎭⎪⎫0,a -a 2-42∪⎝ ⎛⎭⎪⎫a +a 2-42,+∞时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42时,f ′(x )>0. 所以f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-42,⎝ ⎛⎭⎪⎫a +a 2-42,+∞上单调递减,在⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42上单调递增.(2)证明 由(1)知,f (x )存在两个极值点当且仅当a >2. 由于f (x )的两个极值点x 1,x 2满足x 2-ax +1=0, 所以x 1x 2=1,不妨设0<x 1<x 2,则x 2>1. 由于f (x 1)-f (x 2)x 1-x 2=-1x 1x 2-1+a ln x 1-ln x 2x 1-x 2=-2+a ln x 1-ln x 2x 1-x 2=-2+a -2ln x 21x 2-x 2,所以f (x 1)-f (x 2)x 1-x 2<a -2等价于1x 2-x 2+2ln x 2<0.设函数g (x )=1x-x +2ln x ,由(1)知,g (x )在(0,+∞)上单调递减, 又g (1)=0,从而当x ∈(1,+∞)时,g (x )<0. 所以1x 2-x 2+2ln x 2<0,即f (x 1)-f (x 2)x 1-x 2<a -2.。
浙江省2019高考数学优编增分练:解答题突破练三数列
(三)数 列1.已知正项数列{a n }的前n 项和为S n ,a 1=1,且(t +1)S n =a 2n +3a n +2(t ∈R ).(1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1=1,b n +1-b n =a n +1,求数列⎩⎨⎧⎭⎬⎫12b n +7n 的前n 项和T n . 解 (1)因为a 1=S 1=1,且(t +1)S n =a 2n +3a n +2,所以(t +1)S 1=a 21+3a 1+2,所以t =5.所以6S n =a 2n +3a n +2.①当n ≥2时,有6S n -1=a 2n -1+3a n -1+2,②①-②得6a n =a 2n +3a n -a 2n -1-3a n -1,所以(a n +a n -1)(a n -a n -1-3)=0,因为a n >0,所以a n -a n -1=3,又因为a 1=1,所以{a n }是首项a 1=1,公差d =3的等差数列,所以a n =3n -2(n ∈N *).(2)因为b n +1-b n =a n +1,b 1=1,所以b n -b n -1=a n (n ≥2,n ∈N *),所以当n ≥2时, b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1=a n +a n -1+…+a 2+b 1=3n 2-n 2. 又b 1=1也适合上式,所以b n =3n 2-n 2(n ∈N *). 所以12b n +7n =13n 2-n +7n=13·1n (n +2)=16·⎝ ⎛⎭⎪⎫1n -1n +2, 所以T n =16·⎝ ⎛⎭⎪⎫1-13+12-14+…+1n -1n +2 =16·⎝ ⎛⎭⎪⎫32-1n +1-1n +2=3n 2+5n 12(n +1)(n +2). 2.设等差数列{a n }的前n 项和为S n ,且S 3,S 52,S 4成等差数列,a 5=3a 2+2a 1-2. (1)求数列{a n }的通项公式;(2)设b n =2n -1,求数列⎩⎨⎧⎭⎬⎫a nb n 的前n 项和T n . 解 (1)设等差数列{a n }的首项为a 1,公差为d ,由S 3,S 52,S 4成等差数列, 可知S 3+S 4=S 5,得2a 1-d =0,①由a 5=3a 2+2a 1-2,②得4a 1-d -2=0,由①②,解得a 1=1,d =2,因此,a n =2n -1(n ∈N *). (2)令c n =a n b n =(2n -1)⎝ ⎛⎭⎪⎫12n -1, 则T n =c 1+c 2+…+c n ,∴T n =1·1+3·12+5·⎝ ⎛⎭⎪⎫122+…+(2n -1)·⎝ ⎛⎭⎪⎫12n -1,③ 12T n =1·12+3·⎝ ⎛⎭⎪⎫122+5·⎝ ⎛⎭⎪⎫123+…+(2n -1)·⎝ ⎛⎭⎪⎫12n ,④ ③-④,得12T n =1+2⎣⎢⎡⎦⎥⎤12+⎝ ⎛⎭⎪⎫122+…+⎝ ⎛⎭⎪⎫12n -1-(2n -1)·⎝ ⎛⎭⎪⎫12n =1+2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -1 -(2n -1)·⎝ ⎛⎭⎪⎫12n = 3-2n +32n , ∴T n =6-2n +32n -1(n ∈N *). 3.已知等差数列{a n }满足(n +1)a n =2n 2+n +k ,k ∈R .(1)求数列{a n }的通项公式;(2)设b n =4n 2a n a n +1,求数列{b n }的前n 项和S n .解 (1)方法一 由(n +1)a n =2n 2+n +k ,令n =1,2,3,得到a 1=3+k 2,a 2=10+k 3,a 3=21+k 4, ∵{a n }是等差数列,∴2a 2=a 1+a 3,即20+2k 3=3+k 2+21+k 4,解得k =-1.由于(n +1)a n =2n 2+n -1=(2n -1)(n +1),又∵n +1≠0,∴a n =2n -1(n ∈N *).方法二 ∵{a n }是等差数列,设公差为d ,则a n =a 1+d (n -1)=dn +(a 1-d ),∴(n +1)a n =(n +1)(dn +a 1-d )=dn 2+a 1n +a 1-d ,∴dn 2+a 1n +a 1-d =2n 2+n +k 对于任意n ∈N *均成立, 则⎩⎪⎨⎪⎧ d =2,a 1=1,a 1-d =k ,解得k =-1,∴a n =2n -1(n ∈N *). (2)由b n =4n 2a n a n +1=4n 2(2n -1)(2n +1)=4n 24n 2-1=1+14n 2-1=1+1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1+1, 得S n =b 1+b 2+b 3+…+b n=12⎝ ⎛⎭⎪⎫1-13+1+12⎝ ⎛⎭⎪⎫13-15+1+12⎝ ⎛⎭⎪⎫15-17+1+…+12⎝ ⎛⎭⎪⎫12n -1-12n +1+1 =12⎝ ⎛⎭⎪⎫1-13+13-15+15-17+…+12n -1-12n +1+n =12⎝ ⎛⎭⎪⎫1-12n +1+n =n 2n +1+n =2n 2+2n 2n +1(n ∈N *). 4.(2018·绍兴市柯桥区模拟)已知数列{a n }满足:x 1=1,x n =x n +1+1e n x +-1,证明:当n ∈N *时,(1)0<x n +1<x n ;(2)x n x n +1>x n -2x n +1; (3)⎝ ⎛⎭⎪⎫12n ≤x n ≤⎝ ⎛⎭⎪⎫12n -1. 证明 (1)用数学归纳法证明x n >0,当n =1时,x 1=1>0,假设x k >0,k ∈N *,k ≥1,成立,当n =k +1时,若x k +1≤0,则x k =x k +1+1e k x +-1≤0,矛盾,故x k +1>0, 因此x n >0(n ∈N *),所以x n =x n +1+1e n x +-1>x n +1+e 0-1=x n +1, 综上,x n >x n +1>0.(2)x n +1x n +2x n +1-x n =x n +1(x n +1+1en x +-1)+2x n +1-x n +1-1e n x ++1=x 2n +1+1e n x +(x n +1-1)+1, 设f (x )=x 2+e x (x -1)+1(x ≥0),则f ′(x )=2x +e x ·x ≥0,所以f (x )在[0,+∞)上单调递增,因此f (x )≥f (0)=0,因此x 2n +1+1e n x +(x n +1-1)+1=f (x n +1)>f (0)=0,故x n x n +1>x n -2x n +1.(3)由(2)得1x n +1+1<2⎝ ⎛⎭⎪⎫1x n +1,所以当n >1时, 1x n +1<2⎝ ⎛⎭⎪⎫1x n -1+1<…<2n -1⎝ ⎛⎭⎪⎫1x 1+1=2n , 当n =1时,1x n +1=2n ,所以1x n ≤2n ,即x n ≥12n , 又由于x n =x n +1+1en x +-1≥x n +1+(x n +1+1)-1=2x n +1, x n +1≤12x n ,所以易知x n ≤12n -1,综上,⎝ ⎛⎭⎪⎫12n ≤x n ≤⎝ ⎛⎭⎪⎫12n -1. 5.(2018·浙江省台州中学模拟)已知数列{a n }的首项a 1=35,a n +1=3a n 2a n +1,n =1,2,…. (1)求{a n }的通项公式;(2)证明:对任意的x >0,a n ≥11+x -1(1+x )2·⎝ ⎛⎭⎪⎫23n -x ,n =1,2,…; (3)证明:a 1+a 2+…+a n >n 2n +1. (1)解 ∵a n +1=3a n 2a n +1,∴1a n +1-1=13⎝ ⎛⎭⎪⎫1a n -1, ∴1a n -1=23·13n -1=23n ,∴a n =3n3n +2(n ∈N *). (2)证明 由(1)知a n =3n 3n +2>0, 11+x -1(1+x )2⎝ ⎛⎭⎪⎫23n -x =11+x -1(1+x )2⎝ ⎛⎭⎪⎫23n +1-1-x =11+x -1(1+x )2⎣⎢⎡⎦⎥⎤1a n -(1+x )=-1a n ·1(1+x )2+21+x =-1a n ⎝ ⎛⎭⎪⎫11+x -a n 2+a n ≤a n , ∴原不等式成立.(3)证明 由(2)知,对任意的x >0,有a 1+a 2+…a n ≥11+x -1(1+x )2⎝ ⎛⎭⎪⎫23-x +11+x -1(1+x )2⎝ ⎛⎭⎪⎫232-x +…+11+x -1(1+x )2⎝ ⎛⎭⎪⎫23n -x =n1+x -1(1+x )2⎝ ⎛⎭⎪⎫23+232+…+23n -nx , ∴取x =1n ⎝ ⎛⎭⎪⎫23+232+…+23n =1n ⎝ ⎛⎭⎪⎫1-13n , 则a 1+a 2…+a n ≥n 1+1n ⎝ ⎛⎭⎪⎫1-13n =n 2n +1-13n >n 2n +1, ∴原不等式成立.6.已知在数列{a n }中,满足a 1=12,a n +1=a n +12,记S n 为a n 的前n 项和. (1)证明:a n +1>a n ;(2)证明:a n =cos π3·2n -1; (3)证明:S n >n -27+π254. 证明 (1)由题意知{a n }的各项均为正数,因为2a 2n +1-2a 2n =a n +1-2a 2n =(1-a n )(1+2a n ).所以,要证a n +1>a n ,只需要证明a n <1即可.下面用数学归纳法证明a n <1.①当n =1时,a 1=12<1成立, ②假设当n =k 时,a k <1成立,那么当n =k +1时,a k +1=a k +12<1+12=1. 综上所述,a n <1成立,所以a n +1>a n .(2)用数学归纳法证明a n =cos π3·2n -1. ①当n =1时,a 1=12=cos π3成立, ②假设当n =k 时,a k =cosπ3·2k -1. 那么当n =k +1时,a k +1=a k +12=cos π3·2k -1+12=cos π3·2k , 综上所述,a n =cos π3·2n -1. (3)由题意及(2)知,1-a n -12=1-a n -1+12=1-a 2n =1-cos2π3·2n -1 =sin 2π3·2n -1<⎝ ⎛⎭⎪⎫π3·2n -12(n ≥2), 得a n -1>1-2π29·4n -1(n ≥2), 故当n =1时,S 1=12>1-27+π254; 当n ≥2时,S n >∑n i =2 ⎝ ⎛⎭⎪⎫1-2π29·4i +12 =n -12-2π29×43×116⎝⎛⎭⎪⎫1-14n -1 >n -27+π254. 综上所述,S n >n -27+π254.。
浙江省2019高考数学优编增分练:解答题突破练五函数与导数
(五)函数与导数1.(2018·浙江省台州中学模拟)设函数f (x )=ax 2+bx +c (a ≠0),曲线y =f (x )过点(0,2a +3),且在点(-1,f (-1))处的切线垂直于y 轴.(1)用a 分别表示b 和c ;(2)当bc 取得最小值时,求函数g (x )=-f (x )e -x 的单调区间.解 (1)f ′(x )=2ax +b ,由题意得⎩⎪⎨⎪⎧ 2a +3=c ,2a ·(-1)+b =0,则b =2a ,c =2a +3.(2)由(1)得bc =2a (2a +3)=4⎝ ⎛⎭⎪⎫a +342-94, 故当a =-34时,bc 取得最小值-94, 此时有b =-32,c =32, 从而f (x )=-34x 2-32x +32,f ′(x )=-32x -32, g (x )=-f (x )e -x =⎝ ⎛⎭⎪⎫34x 2+32x -32e -x , 所以g ′(x )=-34(x 2-4)e -x , 令g ′(x )=0,解得x 1=-2,x 2=2.当x ∈(-∞,-2)时,g ′(x )<0,故g (x )在(-∞,-2)上为减函数;当x ∈(-2,2)时,g ′(x )>0,故g (x )在(-2,2)上为增函数;当x ∈(2,+∞)时,g ′(x )<0,故g (x )在(2,+∞)上为减函数.由此可见,函数g (x )的单调递减区间为(-∞,-2),(2,+∞),单调递增区间为(-2,2).2.(2018·浙江省温州六校协作体联考)已知函数f (x )=e kx (k -x )(k ≠0).(1)当k =2时,求y =f (x )在x =1处的切线方程;(2)对任意x ∈R ,f (x )≤1k恒成立,求实数k 的取值范围. 解 (1)当k =2时,f (x )=e 2x(2-x ).∵f ′(x )=2e 2x (2-x )-e 2x =e 2x (3-2x ),∴f ′(1)=e 2,又∵f (1)=e 2,∴所求的切线方程为y -e 2=e 2(x -1).即y =e 2x .(2)方法一 ∵e kx (k -x )≤1k, ∴当x =k 时,0≤1k,即k >0, ∴对任意x ∈R ,k (k -x )≤e-kx 恒成立, 设g (x )=e -kx +kx -k 2, g ′(x )=-k e -kx +k =k (1-e -kx ),当x <0时,g ′(x )<0,当x >0时,g ′(x )>0,∴g (x )在(-∞,0)上是减函数,在(0,+∞)上是增函数,∴g (x )min =g (0)=1-k 2≥0,又k >0,∴0<k ≤1.方法二 对任意x ∈R ,f (x )≤1k 恒成立⇔f (x )max ≤1k,x ∈R . ∵f ′(x )=k e kx (k -x )-e kx =e kx (k 2-kx -1),当k <0,x ≥k -1k 时,f ′(x )≥0;x <k -1k时,f ′(x )<0, ∴f (x )在⎝ ⎛⎭⎪⎫-∞,k -1k 上是减函数,在⎣⎢⎡⎭⎪⎫k -1k ,+∞上是增函数. 又当x →-∞时,f (x )→+∞,而1k<0, ∴与f (x )≤1k恒成立矛盾,∴k <0不满足条件; 当k >0,x ≤k -1k 时,f ′(x )≥0;x >k -1k时,f ′(x )<0, ∴f (x )在⎝ ⎛⎦⎥⎤-∞,k -1k 上是增函数,在⎝ ⎛⎭⎪⎫k -1k ,+∞上是减函数. ∴f (x )max =f ⎝ ⎛⎭⎪⎫k -1k =21e k -·1k ≤1k, ∴k 2-1≤0,即-1≤k ≤1,又k >0,∴0<k ≤1,综上所述,实数k 的取值范围是(0,1].3.设函数f (x )=x ln x -ax 2+(b -1)x ,g (x )=e x-e x .(1)当b =0时,函数f (x )有两个极值点,求实数a 的取值范围;(2)若y =f (x )在点(1,f (1))处的切线与x 轴平行,且函数h (x )=f (x )+g (x )在x ∈(1,+∞)时,其图象上每一点处切线的倾斜角均为锐角,求实数a 的取值范围.解 (1)当b =0时,f (x )=x ln x -ax 2-x , f ′(x )=ln x -2ax ,∴f (x )=x ln x -ax 2-x 有2个极值点就是方程ln x -2ax =0有2个不同的解,即y =2a 与m (x )=ln x x的图象的交点有2个. ∵m ′(x )=1-ln x x 2, 当x ∈(0,e)时,m ′(x )>0,m (x )单调递增;当x ∈(e,+∞)时,m ′(x )<0,m (x )单调递减.∴m (x )有极大值1e, 又∵x ∈(0,1]时,m (x )≤0;当x ∈(1,+∞)时,0<m (x )<1e. 当a ∈⎝ ⎛⎭⎪⎫12e ,+∞时,y =2a 与m (x )=ln x x 的图象的交点有0个; 当a ∈(-∞,0]或a =12e 时,y =2a 与m (x )=ln x x的图象的交点有1个; 当a ∈⎝ ⎛⎭⎪⎫0,12e 时,y =2a 与m (x )=ln x x 的图象的交点有2个. 综上,实数a 的取值范围为⎝ ⎛⎭⎪⎫0,12e . (2)函数y =f (x )在点(1,f (1))处的切线与x 轴平行,∴f ′(1)=0且f (1)≠0,∵f ′(x )=ln x -2ax +b ,∴b =2a 且a ≠1.h (x )=x ln x -ax 2+(b -1)x +e x -e x 在x ∈(1,+∞)时,其图象的每一点处的切线的倾斜角均为锐角,即当x >1时,h ′(x )=f ′(x )+g ′(x )>0恒成立,即ln x +e x -2ax +2a -e>0恒成立,令t (x )=ln x +e x -2ax +2a -e ,∴t ′(x )=1x+e x -2a , 设φ(x )=1x +e x -2a ,φ′(x )=e x -1x 2, ∵x >1,∴e x >e ,1x 2<1, ∴φ′(x )>0,∴φ(x )在(1,+∞)上单调递增,即t ′(x )在(1,+∞)上单调递增,∴t ′(x )>t ′(1)=1+e -2a ,当a ≤1+e 2且a ≠1时,t ′(x )≥0, ∴t (x )=ln x +e x-2ax +2a -e 在(1,+∞)上单调递增,∴t (x )>t (1)=0成立,当a >1+e 2时, ∵t ′(1)=1+e -2a <0, t ′(ln 2a )=1ln 2a+2a -2a >0, ∴存在x 0∈(1,ln 2a ),满足t ′(x 0)=0.∵t ′(x )在(1,+∞)上单调递增,∴当x ∈(1,x 0)时,t ′(x )<0,t (x )单调递减,∴t (x 0)<t (1)=0,t (x )>0不恒成立.∴实数a 的取值范围为(-∞,1)∪⎝ ⎛⎦⎥⎤1,1+e 2. 4.已知函数f (x )=x -1+a e x.(1)讨论f (x )的单调性;(2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2>4.(1)解 f ′(x )=1+a e x ,当a ≥0时,f ′(x )>0,则f (x )在R 上单调递增. 当a <0时,令f ′(x )>0,得x <ln ⎝ ⎛⎭⎪⎫-1a , 则f (x )的单调递增区间为⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-1a , 令f ′(x )<0,得x >ln ⎝ ⎛⎭⎪⎫-1a , 则f (x )的单调递减区间为⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-1a ,+∞. (2)证明 由f (x )=0得a =1-xe x , 设g (x )=1-x e x ,则g ′(x )=x -2e x . 由g ′(x )<0,得x <2;由g ′(x )>0,得x >2.故g (x )min =g (2)=-1e 2<0.当x >1时,g (x )<0,当x <1时,g (x )>0,不妨设x 1<x 2,则x 1∈(1,2),x 2∈(2,+∞),x 1+x 2>4等价于x 2>4-x 1,∵4-x 1>2且g (x )在(2,+∞)上单调递增,∴要证x 1+x 2>4,只需证g (x 2)>g (4-x 1),∵g (x 1)=g (x 2)=a ,∴只需证g (x 1)>g (4-x 1),即1-x 11e x >x 1-314ex -, 即证124e x -(x 1-3)+x 1-1<0;设h (x )=e 2x -4(x -3)+x -1,x ∈(1,2),则h ′(x )=e 2x -4(2x -5)+1, 令m (x )=h ′(x ),则m ′(x )=4e 2x -4(x -2),∵x ∈(1,2),∴m ′(x )<0,∴m (x )在(1,2)上单调递减,即h ′(x )在(1,2)上单调递减,∴h ′(x )>h ′(2)=0,∴h (x )在(1,2)上单调递增,∴h (x )<h (2)=0,∴124e x -()x 1-3+x 1-1<0,从而x 1+x 2>4得证. 5.已知函数f (x )=a +ln x x ,g (x )=mx . (1)求函数f (x )的单调区间;(2)当a =0时,f (x )≤g (x )恒成立,求实数m 的取值范围;(3)当a =1时,求证:当x >1时,(x +1)⎝ ⎛⎭⎪⎫x +1e x f (x )>2⎝ ⎛⎭⎪⎫1+1e . (1)解 f (x )=a +ln x x的定义域为(0,+∞), 且f ′(x )=1-(a +ln x )x 2=1-ln x -a x 2. 由f ′(x )>0得1-ln x -a >0,即ln x <1-a ,解得0<x <e1-a , ∴f (x )在(0,e 1-a )上单调递增,在(e 1-a ,+∞)上单调递减.(2)解 a =0,f (x )=ln x x, ∴f (x )≤g (x )⇔ln x x ≤mx ⇔m ≥ln x x 2, 令u (x )=ln x x 2,∴u ′(x )=1-2ln x x 3, 由u ′(x )>0得0<x <e ,∴u (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,∴u (x )max =u (e)=ln e e =12e ,∴m ≥12e. (3)证明 (x +1)⎝ ⎛⎭⎪⎫x +1e x f (x )>2⎝ ⎛⎭⎪⎫1+1e , 等价于1e +1·(x +1)(ln x +1)x >2e x -1x e x +1. 令p (x )=(x +1)(ln x +1)x ,则p ′(x )=x -ln x x2, 令φ(x )=x -ln x ,则φ′(x )=1-1x =x -1x, ∵x >1,∴φ′(x )>0,∴φ(x )在(1,+∞)上单调递增,φ(x )>φ(1)=1>0,p ′(x )>0,∴p (x )在(1,+∞)上单调递增,∴p (x )>p (1)=2,∴p (x )e +1>2e +1, 令h (x )=2e x -1x e x +1, 则h ′(x )=2e x -1(1-e x )(x e x +1)2, ∵x >1,∴1-e x <0,∴h ′(x )<0,h (x )在(1,+∞)上单调递减,∴当x >1时,h (x )<h (1)=2e +1, ∴p (x )e +1>2e +1>h (x ), 即(x +1)⎝ ⎛⎭⎪⎫x +1e xf (x )>2⎝ ⎛⎭⎪⎫1+1e ,x >1. 6.已知函数f (x )=x 3+|ax -3|-2,a >0.(1)求函数y =f (x )的单调区间;(2)当a ∈(0,5)时,对于任意x 1∈[0,1],总存在x 2∈[0,1],使得f (x 1)+f (x 2)=0,求实数a 的值.解 (1)f (x )=x 3+|ax -3|-2(a >0)=⎩⎪⎨⎪⎧ x 3+ax -5,x ≥3a ,x 3-ax +1,x <3a . 则f ′(x )=⎩⎪⎨⎪⎧ 3x 2+a ,x ≥3a ,3x 2-a ,x <3a . 当a 3≥3a,即a ≥3时, 函数y =f (x )的单调递减区间为⎝ ⎛⎭⎪⎫-a 3,3a ,单调递增区间为⎝ ⎛⎭⎪⎫-∞,-a 3,⎝ ⎛⎭⎪⎫3a ,+∞; 当a 3<3a,即0<a <3时, 函数y =f (x )的单调递减区间为⎝ ⎛⎭⎪⎫-a 3,a 3, 单调递增区间为⎝ ⎛⎭⎪⎫-∞,-a 3,⎝ ⎛⎭⎪⎫a 3,+∞.(2)由题意知,对于任意x 1∈[0,1],总存在x 2∈[0,1],使得f (x 1)+f (x 2)=0,等价于当x ∈[0,1]时,f (x )min +f (x )max =0,由(1)得当3≤a <5时,y =f (x )在⎣⎢⎡⎭⎪⎫0,3a 上单调递减,在⎝ ⎛⎦⎥⎤3a ,1上单调递增, 所以f (x )min =f ⎝ ⎛⎭⎪⎫3a =27a3-2, f (x )max =max{f (0),f (1)}=max{1,a -4}=1,所以27a3-2+1=0,解得a =3; 当0<a <3时,y =f (x )在⎣⎢⎡⎭⎪⎫0,a 3上单调递减, 在⎝ ⎛⎦⎥⎤a 3,1上单调递增, 所以f (x )min =f ⎝ ⎛⎭⎪⎫a 3=1-2a 3a 3,f (x )max =max{f (0),f (1)}=max{1,2-a }, 当1<a <3时,f (x )max =1,则1-2a 3a 3+1=0,得a =3(舍去); 当0<a ≤1时,f (x )max =2-a ,则1-2a 3a 3+2-a =0, 即3-a =2a 3a 3,其中3-a ≥2,而2a 3a 3<2, 所以无解,舍去.综上所述,a =3.。
浙江省2019高考数学优编增分练:解答题突破练三数列
(三)数 列1.已知正项数列{a n }的前n 项和为S n ,a 1=1,且(t +1)S n =a 2n +3a n +2(t ∈R ). (1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1=1,b n +1-b n =a n +1,求数列⎩⎨⎧⎭⎬⎫12b n +7n 的前n 项和T n .解 (1)因为a 1=S 1=1,且(t +1)S n =a 2n +3a n +2, 所以(t +1)S 1=a 21+3a 1+2,所以t =5. 所以6S n =a 2n +3a n +2.①当n ≥2时,有6S n -1=a 2n -1+3a n -1+2,② ①-②得6a n =a 2n +3a n -a 2n -1-3a n -1, 所以(a n +a n -1)(a n -a n -1-3)=0, 因为a n >0,所以a n -a n -1=3, 又因为a 1=1,所以{a n }是首项a 1=1,公差d =3的等差数列, 所以a n =3n -2(n ∈N *). (2)因为b n +1-b n =a n +1,b 1=1, 所以b n -b n -1=a n (n ≥2,n ∈N *), 所以当n ≥2时,b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1=a n +a n -1+…+a 2+b 1=3n 2-n2.又b 1=1也适合上式,所以b n =3n 2-n 2(n ∈N *).所以12b n +7n =13n 2-n +7n=13·1n (n +2)=16·⎝ ⎛⎭⎪⎫1n -1n +2, 所以T n =16·⎝ ⎛⎭⎪⎫1-13+12-14+…+1n -1n +2=16·⎝ ⎛⎭⎪⎫32-1n +1-1n +2=3n 2+5n 12(n +1)(n +2). 2.设等差数列{a n }的前n 项和为S n ,且S 3,S 52,S 4成等差数列,a 5=3a 2+2a 1-2.(1)求数列{a n }的通项公式;(2)设b n =2n -1,求数列⎩⎨⎧⎭⎬⎫a nb n 的前n 项和T n .解 (1)设等差数列{a n }的首项为a 1,公差为d , 由S 3,S 52,S 4成等差数列,可知S 3+S 4=S 5,得2a 1-d =0,① 由a 5=3a 2+2a 1-2,② 得4a 1-d -2=0,由①②,解得a 1=1,d =2, 因此,a n =2n -1(n ∈N *).(2)令c n =a n b n =(2n -1)⎝ ⎛⎭⎪⎫12n -1,则T n =c 1+c 2+…+c n ,∴T n =1·1+3·12+5·⎝ ⎛⎭⎪⎫122+…+(2n -1)·⎝ ⎛⎭⎪⎫12n -1,③12T n =1·12+3·⎝ ⎛⎭⎪⎫122+5·⎝ ⎛⎭⎪⎫123+…+(2n -1)·⎝ ⎛⎭⎪⎫12n ,④③-④,得12T n =1+2⎣⎢⎡⎦⎥⎤12+⎝ ⎛⎭⎪⎫122+…+⎝ ⎛⎭⎪⎫12n -1-(2n -1)·⎝ ⎛⎭⎪⎫12n =1+2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -1 -(2n -1)·⎝ ⎛⎭⎪⎫12n= 3-2n +32n ,∴T n =6-2n +32n -1(n ∈N *).3.已知等差数列{a n }满足(n +1)a n =2n 2+n +k ,k ∈R . (1)求数列{a n }的通项公式; (2)设b n =4n2a n a n +1,求数列{b n }的前n 项和S n .解 (1)方法一 由(n +1)a n =2n 2+n +k , 令n =1,2,3,得到a 1=3+k 2,a 2=10+k 3,a 3=21+k4,∵{a n }是等差数列,∴2a 2=a 1+a 3, 即20+2k 3=3+k 2+21+k 4,解得k =-1.由于(n +1)a n =2n 2+n -1=(2n -1)(n +1), 又∵n +1≠0,∴a n =2n -1(n ∈N *). 方法二 ∵{a n }是等差数列,设公差为d , 则a n =a 1+d (n -1)=dn +(a 1-d ), ∴(n +1)a n =(n +1)(dn +a 1-d ) =dn 2+a 1n +a 1-d ,∴dn 2+a 1n +a 1-d =2n 2+n +k 对于任意n ∈N *均成立,则⎩⎪⎨⎪⎧d =2,a 1=1,a 1-d =k ,解得k =-1,∴a n =2n -1(n ∈N *).(2)由b n =4n2a n a n +1=4n 2(2n -1)(2n +1)=4n 24n 2-1=1+14n 2-1=1+1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1+1,得S n =b 1+b 2+b 3+…+b n=12⎝ ⎛⎭⎪⎫1-13+1+12⎝ ⎛⎭⎪⎫13-15+1+12⎝ ⎛⎭⎪⎫15-17+1+…+12⎝ ⎛⎭⎪⎫12n -1-12n +1+1=12⎝ ⎛⎭⎪⎫1-13+13-15+15-17+…+12n -1-12n +1+n=12⎝ ⎛⎭⎪⎫1-12n +1+n=n 2n +1+n =2n 2+2n 2n +1(n ∈N *). 4.(2018·绍兴市柯桥区模拟)已知数列{a n }满足:x 1=1,x n =x n +1+1e n x +-1,证明:当n ∈N*时,(1)0<x n +1<x n ; (2)x n x n +1>x n -2x n +1;(3)⎝ ⎛⎭⎪⎫12n ≤x n ≤⎝ ⎛⎭⎪⎫12n -1. 证明 (1)用数学归纳法证明x n >0, 当n =1时,x 1=1>0,假设x k >0,k ∈N *,k ≥1,成立, 当n =k +1时,若x k +1≤0,则x k =x k +1+1ek x +-1≤0,矛盾,故x k +1>0,因此x n >0(n ∈N *), 所以x n =x n +1+1en x +-1>x n +1+e 0-1=x n +1,综上,x n >x n +1>0.(2)x n +1x n +2x n +1-x n =x n +1(x n +1+1en x +-1)+2x n +1-x n +1-1en x ++1=x 2n +1+1en x +(x n +1-1)+1,设f (x )=x 2+e x(x -1)+1(x ≥0), 则f ′(x )=2x +e x·x ≥0, 所以f (x )在[0,+∞)上单调递增, 因此f (x )≥f (0)=0, 因此x 2n +1+1en x +(x n +1-1)+1=f (x n +1)>f (0)=0,故x n x n +1>x n -2x n +1. (3)由(2)得1x n +1+1<2⎝ ⎛⎭⎪⎫1x n+1,所以当n >1时,1x n+1<2⎝⎛⎭⎪⎫1x n -1+1<…<2n -1⎝ ⎛⎭⎪⎫1x 1+1=2n , 当n =1时,1x n +1=2n ,所以1x n ≤2n,即x n ≥12n ,又由于x n =x n +1+1en x +-1≥x n +1+(x n +1+1)-1=2x n +1,x n +1≤12x n ,所以易知x n ≤12n -1,综上,⎝ ⎛⎭⎪⎫12n ≤x n ≤⎝ ⎛⎭⎪⎫12n -1.5.(2018·浙江省台州中学模拟)已知数列{a n }的首项a 1=35,a n +1=3a n2a n +1,n =1,2,….(1)求{a n }的通项公式; (2)证明:对任意的x >0,a n ≥11+x -1(1+x )2·⎝ ⎛⎭⎪⎫23n -x ,n =1,2,…;(3)证明:a 1+a 2+…+a n >n 2n +1.(1)解 ∵a n +1=3a n 2a n +1,∴1a n +1-1=13⎝ ⎛⎭⎪⎫1a n -1,∴1a n -1=23·13n -1=23n ,∴a n =3n3n +2(n ∈N *). (2)证明 由(1)知a n =3n3n +2>0,11+x -1(1+x )2⎝ ⎛⎭⎪⎫23n -x =11+x -1(1+x )2⎝ ⎛⎭⎪⎫23n +1-1-x =11+x -1(1+x )2⎣⎢⎡⎦⎥⎤1a n -(1+x )=-1a n ·1(1+x )2+21+x =-1a n ⎝ ⎛⎭⎪⎫11+x -a n 2+a n ≤a n , ∴原不等式成立.(3)证明 由(2)知,对任意的x >0, 有a 1+a 2+…a n ≥11+x -1(1+x )2⎝ ⎛⎭⎪⎫23-x +11+x -1(1+x )2⎝ ⎛⎭⎪⎫232-x +…+11+x -1(1+x )2⎝ ⎛⎭⎪⎫23n -x =n1+x-1(1+x )2⎝ ⎛⎭⎪⎫23+232+…+23n -nx , ∴取x =1n ⎝ ⎛⎭⎪⎫23+232+…+23n =1n ⎝ ⎛⎭⎪⎫1-13n ,则a 1+a 2…+a n ≥n 1+1n ⎝ ⎛⎭⎪⎫1-13n =n 2n +1-13n>n 2n +1,∴原不等式成立.6.已知在数列{a n }中,满足a 1=12,a n +1=a n +12,记S n 为a n 的前n 项和.(1)证明:a n +1>a n ; (2)证明:a n =cos π3·2n -1;(3)证明:S n >n -27+π254.证明 (1)由题意知{a n }的各项均为正数, 因为2a 2n +1-2a 2n =a n +1-2a 2n =(1-a n )(1+2a n ). 所以,要证a n +1>a n ,只需要证明a n <1即可. 下面用数学归纳法证明a n <1. ①当n =1时,a 1=12<1成立,②假设当n =k 时,a k <1成立, 那么当n =k +1时,a k +1=a k +12<1+12=1. 综上所述,a n <1成立,所以a n +1>a n . (2)用数学归纳法证明a n =cos π3·2n -1.①当n =1时,a 1=12=cos π3成立,②假设当n =k 时,a k =cos π3·2k -1. 那么当n =k +1时,a k +1=a k +12=cos π3·2k -1+12=cos π3·2k ,综上所述,a n =cos π3·2n -1.(3)由题意及(2)知, 1-a n -12=1-a n -1+12 =1-a 2n =1-cos 2π3·2n -1 =sin2π3·2n -1<⎝ ⎛⎭⎪⎫π3·2n -12(n ≥2),得a n -1>1-2π29·4n -1(n ≥2),故当n =1时,S 1=12>1-27+π254;当n ≥2时,S n >∑ni =2 ⎝ ⎛⎭⎪⎫1-2π29·4i +12=n -12-2π29×43×116⎝ ⎛⎭⎪⎫1-14n -1>n -27+π254.综上所述,S n >n -27+π254.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(五)函数与导数1.(2018·浙江省台州中学模拟)设函数f (x )=ax 2+bx +c (a ≠0),曲线y =f (x )过点(0,2a +3),且在点(-1,f (-1))处的切线垂直于y 轴. (1)用a 分别表示b 和c ;(2)当bc 取得最小值时,求函数g (x )=-f (x )e -x的单调区间. 解 (1)f ′(x )=2ax +b ,由题意得⎩⎪⎨⎪⎧2a +3=c ,2a ·(-1)+b =0,则b =2a ,c =2a +3.(2)由(1)得bc =2a (2a +3)=4⎝ ⎛⎭⎪⎫a +342-94,故当a =-34时,bc 取得最小值-94,此时有b =-32,c =32,从而f (x )=-34x 2-32x +32,f ′(x )=-32x -32,g (x )=-f (x )e -x =⎝ ⎛⎭⎪⎫34x 2+32x -32e -x ,所以g ′(x )=-34(x 2-4)e -x,令g ′(x )=0,解得x 1=-2,x 2=2.当x ∈(-∞,-2)时,g ′(x )<0,故g (x )在(-∞,-2)上为减函数; 当x ∈(-2,2)时,g ′(x )>0,故g (x )在(-2,2)上为增函数; 当x ∈(2,+∞)时,g ′(x )<0,故g (x )在(2,+∞)上为减函数.由此可见,函数g (x )的单调递减区间为(-∞,-2),(2,+∞),单调递增区间为(-2,2). 2.(2018·浙江省温州六校协作体联考)已知函数f (x )=e kx(k -x )(k ≠0). (1)当k =2时,求y =f (x )在x =1处的切线方程; (2)对任意x ∈R ,f (x )≤1k恒成立,求实数k 的取值范围.解 (1)当k =2时,f (x )=e 2x(2-x ). ∵f ′(x )=2e 2x(2-x )-e 2x=e 2x(3-2x ), ∴f ′(1)=e 2,又∵f (1)=e 2, ∴所求的切线方程为y -e 2=e 2(x -1). 即y =e 2x .(2)方法一 ∵e kx(k -x )≤1k,∴当x =k 时,0≤1k,即k >0,∴对任意x ∈R ,k (k -x )≤e -kx恒成立,设g (x )=e-kx+kx -k 2,g ′(x )=-k e -kx +k =k (1-e -kx ),当x <0时,g ′(x )<0,当x >0时,g ′(x )>0,∴g (x )在(-∞,0)上是减函数,在(0,+∞)上是增函数, ∴g (x )min =g (0)=1-k 2≥0, 又k >0,∴0<k ≤1.方法二 对任意x ∈R ,f (x )≤1k 恒成立⇔f (x )max ≤1k,x ∈R .∵f ′(x )=k e kx (k -x )-e kx =e kx (k 2-kx -1),当k <0,x ≥k -1k 时,f ′(x )≥0;x <k -1k时,f ′(x )<0,∴f (x )在⎝ ⎛⎭⎪⎫-∞,k -1k 上是减函数,在⎣⎢⎡⎭⎪⎫k -1k,+∞上是增函数.又当x →-∞时,f (x )→+∞,而1k<0,∴与f (x )≤1k恒成立矛盾,∴k <0不满足条件;当k >0,x ≤k -1k 时,f ′(x )≥0;x >k -1k时,f ′(x )<0,∴f (x )在⎝ ⎛⎦⎥⎤-∞,k -1k 上是增函数,在⎝⎛⎭⎪⎫k -1k,+∞上是减函数.∴f (x )max =f ⎝⎛⎭⎪⎫k -1k=21e k -·1k ≤1k,∴k 2-1≤0,即-1≤k ≤1, 又k >0,∴0<k ≤1,综上所述,实数k 的取值范围是(0,1].3.设函数f (x )=x ln x -ax 2+(b -1)x ,g (x )=e x-e x . (1)当b =0时,函数f (x )有两个极值点,求实数a 的取值范围;(2)若y =f (x )在点(1,f (1))处的切线与x 轴平行,且函数h (x )=f (x )+g (x )在x ∈(1,+∞)时,其图象上每一点处切线的倾斜角均为锐角,求实数a 的取值范围. 解 (1)当b =0时,f (x )=x ln x -ax 2-x ,f ′(x )=ln x -2ax ,∴f (x )=x ln x -ax 2-x 有2个极值点就是方程ln x -2ax =0有2个不同的解, 即y =2a 与m (x )=ln xx的图象的交点有2个.∵m ′(x )=1-ln x x2, 当x ∈(0,e)时,m ′(x )>0,m (x )单调递增; 当x ∈(e,+∞)时,m ′(x )<0,m (x )单调递减. ∴m (x )有极大值1e ,又∵x ∈(0,1]时,m (x )≤0; 当x ∈(1,+∞)时,0<m (x )<1e .当a ∈⎝⎛⎭⎪⎫12e ,+∞时,y =2a 与m (x )=ln x x 的图象的交点有0个;当a ∈(-∞,0]或a =12e 时,y =2a 与m (x )=ln xx 的图象的交点有1个;当a ∈⎝ ⎛⎭⎪⎫0,12e 时,y =2a 与m (x )=ln x x 的图象的交点有2个.综上,实数a 的取值范围为⎝ ⎛⎭⎪⎫0,12e .(2)函数y =f (x )在点(1,f (1))处的切线与x 轴平行, ∴f ′(1)=0且f (1)≠0, ∵f ′(x )=ln x -2ax +b , ∴b =2a 且a ≠1.h (x )=x ln x -ax 2+(b -1)x +e x -e x 在x ∈(1,+∞)时,其图象的每一点处的切线的倾斜角均为锐角, 即当x >1时,h ′(x )=f ′(x )+g ′(x )>0恒成立, 即ln x +e x-2ax +2a -e>0恒成立, 令t (x )=ln x +e x-2ax +2a -e , ∴t ′(x )=1x+e x-2a ,设φ(x )=1x +e x -2a ,φ′(x )=e x-1x2,∵x >1,∴e x>e ,1x2<1,∴φ′(x )>0,∴φ(x )在(1,+∞)上单调递增,即t ′(x )在(1,+∞)上单调递增, ∴t ′(x )>t ′(1)=1+e -2a , 当a ≤1+e 2且a ≠1时,t ′(x )≥0,∴t (x )=ln x +e x-2ax +2a -e 在(1,+∞)上单调递增, ∴t (x )>t (1)=0成立, 当a >1+e 2时,∵t ′(1)=1+e -2a <0,t ′(ln 2a )=1ln 2a+2a -2a >0, ∴存在x 0∈(1,ln 2a ),满足t ′(x 0)=0. ∵t ′(x )在(1,+∞)上单调递增,∴当x ∈(1,x 0)时,t ′(x )<0,t (x )单调递减, ∴t (x 0)<t (1)=0,t (x )>0不恒成立.∴实数a 的取值范围为(-∞,1)∪⎝ ⎛⎦⎥⎤1,1+e 2.4.已知函数f (x )=x -1+a e x. (1)讨论f (x )的单调性;(2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2>4. (1)解 f ′(x )=1+a e x,当a ≥0时,f ′(x )>0,则f (x )在R 上单调递增.当a <0时,令f ′(x )>0,得x <ln ⎝ ⎛⎭⎪⎫-1a ,则f (x )的单调递增区间为⎝⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-1a ,令f ′(x )<0,得x >ln ⎝ ⎛⎭⎪⎫-1a ,则f (x )的单调递减区间为⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-1a ,+∞.(2)证明 由f (x )=0得a =1-xex , 设g (x )=1-x e x ,则g ′(x )=x -2ex .由g ′(x )<0,得x <2;由g ′(x )>0,得x >2. 故g (x )min =g (2)=-1e2<0.当x >1时,g (x )<0,当x <1时,g (x )>0, 不妨设x 1<x 2,则x 1∈(1,2),x 2∈(2,+∞),x 1+x 2>4等价于x 2>4-x 1,∵4-x 1>2且g (x )在(2,+∞)上单调递增, ∴要证x 1+x 2>4,只需证g (x 2)>g (4-x 1), ∵g (x 1)=g (x 2)=a ,∴只需证g (x 1)>g (4-x 1),即1-x 11e x >x 1-314ex -,即证124ex -(x 1-3)+x 1-1<0;设h (x )=e 2x -4(x -3)+x -1,x ∈(1,2), 则h ′(x )=e2x -4(2x -5)+1,令m (x )=h ′(x ), 则m ′(x )=4e2x -4(x -2),∵x ∈(1,2),∴m ′(x )<0, ∴m (x )在(1,2)上单调递减, 即h ′(x )在(1,2)上单调递减, ∴h ′(x )>h ′(2)=0, ∴h (x )在(1,2)上单调递增, ∴h (x )<h (2)=0, ∴124ex -()x 1-3+x 1-1<0,从而x 1+x 2>4得证. 5.已知函数f (x )=a +ln xx,g (x )=mx . (1)求函数f (x )的单调区间;(2)当a =0时,f (x )≤g (x )恒成立,求实数m 的取值范围;(3)当a =1时,求证:当x >1时,(x +1)⎝ ⎛⎭⎪⎫x +1e x f (x )>2⎝ ⎛⎭⎪⎫1+1e . (1)解 f (x )=a +ln xx 的定义域为(0,+∞), 且f ′(x )=1-(a +ln x )x2=1-ln x -ax2. 由f ′(x )>0得1-ln x -a >0, 即ln x <1-a ,解得0<x <e 1-a,∴f (x )在(0,e1-a)上单调递增,在(e 1-a,+∞)上单调递减.(2)解 a =0,f (x )=ln xx,∴f (x )≤g (x )⇔ln x x ≤mx ⇔m ≥ln x x2,令u (x )=ln x x 2,∴u ′(x )=1-2ln x x3, 由u ′(x )>0得0<x <e ,∴u (x )在(0,e)上单调递增,在(e ,+∞)上单调递减, ∴u (x )max =u (e)=ln e e =12e ,∴m ≥12e. (3)证明 (x +1)⎝ ⎛⎭⎪⎫x +1e x f (x )>2⎝ ⎛⎭⎪⎫1+1e , 等价于1e +1·(x +1)(ln x +1)x >2ex -1x e x +1.令p (x )=(x +1)(ln x +1)x ,则p ′(x )=x -ln x x2, 令φ(x )=x -ln x ,则φ′(x )=1-1x =x -1x,∵x >1,∴φ′(x )>0,∴φ(x )在(1,+∞)上单调递增, φ(x )>φ(1)=1>0,p ′(x )>0, ∴p (x )在(1,+∞)上单调递增, ∴p (x )>p (1)=2, ∴p (x )e +1>2e +1, 令h (x )=2ex -1x e x +1,则h ′(x )=2e x -1(1-e x)(x e x +1)2,∵x >1,∴1-e x <0,∴h ′(x )<0,h (x )在(1,+∞)上单调递减, ∴当x >1时,h (x )<h (1)=2e +1,∴p (x )e +1>2e +1>h (x ), 即(x +1)⎝ ⎛⎭⎪⎫x +1e f (x )>2⎝ ⎛⎭⎪⎫1+1e ,x >1. 6.已知函数f (x )=x 3+|ax -3|-2,a >0.(1)求函数y =f (x )的单调区间;(2)当a ∈(0,5)时,对于任意x 1∈[0,1],总存在x 2∈[0,1],使得f (x 1)+f (x 2)=0,求实数a 的值.解 (1)f (x )=x 3+|ax -3|-2(a >0) =⎩⎪⎨⎪⎧ x 3+ax -5,x ≥3a ,x 3-ax +1,x <3a.则f ′(x )=⎩⎪⎨⎪⎧3x 2+a ,x ≥3a ,3x 2-a ,x <3a.当a 3≥3a,即a ≥3时, 函数y =f (x )的单调递减区间为⎝ ⎛⎭⎪⎫-a 3,3a ,单调递增区间为⎝ ⎛⎭⎪⎫-∞,-a 3,⎝ ⎛⎭⎪⎫3a ,+∞;当a 3<3a,即0<a <3时, 函数y =f (x )的单调递减区间为⎝⎛⎭⎪⎫-a3,a 3, 单调递增区间为⎝⎛⎭⎪⎫-∞,-a 3,⎝⎛⎭⎪⎫a3,+∞.(2)由题意知,对于任意x 1∈[0,1],总存在x 2∈[0,1],使得f (x 1)+f (x 2)=0,等价于当x ∈[0,1]时,f (x )min +f (x )max =0,由(1)得当3≤a <5时,y =f (x )在⎣⎢⎡⎭⎪⎫0,3a 上单调递减,在⎝ ⎛⎦⎥⎤3a ,1上单调递增,所以f (x )min =f ⎝ ⎛⎭⎪⎫3a =27a3-2,f (x )max =max{f (0),f (1)}=max{1,a -4}=1,所以27a3-2+1=0,解得a =3;当0<a <3时,y =f (x )在⎣⎢⎡⎭⎪⎫0,a 3上单调递减,在⎝⎛⎦⎥⎤a3,1上单调递增,所以f (x )min =f ⎝⎛⎭⎪⎫a 3=1-2a 3a3,f (x )max =max{f (0),f (1)}=max{1,2-a },当1<a <3时,f (x )max =1, 则1-2a 3a3+1=0,得a =3(舍去); 当0<a ≤1时,f (x )max =2-a , 则1-2a 3a3+2-a =0, 即3-a =2a3a3,其中3-a ≥2,而2a3a3<2,所以无解,舍去. 综上所述,a =3.。