第七章 线性变换

合集下载

《高等代数》第七章 线性变换

《高等代数》第七章  线性变换

线性变换的多项式有以下性质:
1) f (A ) 是一线性变换.
2) 如果在 P[ x ] 中,有 h(x) = f (x) + g(x) , p(x) = f (x) g(x) ,
那么
h(A ) = f (A ) + g(A ) , p(A ) = f (A ) g(A ) .
特别地,
f (A ) g(A ) = g(A ) f (A ) .
定义为 数乘k变A 换= ,K可A用, K 表示. 显然,当 k = 1 时

们(k便A得)恒(等) =变K换(,A当(k) =) =0 K时A,便(得) .零变换.
显然,k A 还是线性变换. 2. 运算规律 1) ( kl ) A = k ( l A ) , 2) ( k + l ) A = k A + l A , 3) k (A + B ) = k A + k B , 4) 1 A = A .
证毕
五、线性变换的多项式
下面引进线性变换的多项式的概念.
1. 线性变换的幂
既然线性变换的乘法满足结合律,当若干个线
性变换 A 重复相乘时,其最终结果是完全确定的,
与乘积的结合方式无关. 因此当 n 个( n 是正整数)
线性变换 A 相乘时,我们就可以用 A A ... A
n个
来表示,称为 A 的 n 次幂,简单地记作 A n. 即
对于线性变换,我们已经定义了乘法、加法与 数量乘法三种运算. 由加法与数量乘法的性质可知, 线性空间 V 中全体线性变换,对于如上定义的加法 与数量乘法,也构成数域 P 上一个线性空间.
对于线性变换,我们也可定义逆变换.
四、线性变换的逆变换
1. 定义 定义5 线性空间 V 的线性变换 A 称为可逆的 如果有 V 的变换 B 存在,使

第七章 线性变换

第七章 线性变换

(4) 多项式:
1) n 个( n 是正整数)线性变换 /A的乘积为/A的
n次幂,记为/An,即/An=/A/A.../A(n个). 规定 /A0 = /E. 当线性变换/A可逆时, 规定/A-n=(/A-1)n 2) 设 f (x) = amxm + am -1xm -1 + … + a0 是P[ x ] 中 一多项式,/A是 V 的一线性变换,则称 f (/A ) = am /A m + am -1 /A m -1 + … + a0/E
xi1, xi 2 ,, xiri
,则向量组
x11 , x12 ,, x1r1,x21 , x22 ,, x2r2, ,xs1, xs 2 ,, xsrs
线性无关.
6) 设B=X-1AX,即矩阵A与B相似. 如果i是A的特征
值,xi是A对应特征值i的特征向量,则i是B的特征值 ,且B对应特征值i的特征向量是X-1x.
是线性变换 /A 的多项式.
3) 线性变换的幂运算规律 ① /A n + m = /A n /A m , (/A n )m = /A m n (m , n 0) . ② 一般来说:(/A /B )n /A n /B n . 4) 如果在 P[ x ] 中,有 h(x) = f (x) + g(x) , p(x) = f (x) g(x) , 那么 h(/A ) = f (/A ) + g(/A ) , p(/A ) = f (/A ) g(/A ) .
1+ 2+ ...+n=a11+a22+...+ann; 12...n=|A|.
4) 如果1, 2, ..., s是矩阵A的互异特征值,其对应

(完整word版)第七章线性变换总结篇(高等代数).docx

(完整word版)第七章线性变换总结篇(高等代数).docx

第 7 章线性变换7.1 知识点归纳与要点解析一.线性变换的概念与判别1. 线性变换的定义数域P 上的线性空间 V 的一个变换称为线性变换, 如果对 V中任意的元素,和数域 P 中的任意数k ,都有:,kk。

注: V 的线性变换就是其保持向量的加法与数量乘法的变换。

2. 线性变换的判别设为数域 P 上线性空间 V 的一个变换,那么:为 V 的线性变换k l k l , , V , k,l P3. 线性变换的性质设 V 是数域 P 上的线性空间,为 V 的线性变换,1 ,2 ,, s ,V 。

性质 1.0 0,;性质 2. 若 1 , 2 , , s 线性相关,那么1,2 ,,s也线性相关。

性质 3. 设线性变换为单射,如果 1 , 2 ,, s 线性无关, 那么1 ,2,,s也线性无关。

注: 设 V 是数域 P 上的线性空间,1,2 ,, m,1,2,, s 是 V 中的两个向量组,如果:1 c111c122 c1ss2c211c222c2ssmcm1 1cm22cms s记:c11c21cm11, 2 ,, m1, 2 ,c12c22 cm2, sc1sc2scms于是,若 dim Vn , 1, 2 , ,n 是 V 的一组基, 是 V 的线性变换, 1 , 2 , , m 是V 中任意一组向量,如果:1 b111b12 2b1n n2b 21 1 b 22 2 b 2 n nmbm11bm22bmnn记:1 ,2 ,, m1 ,2 m那么:b11b21cm11, 2 ,, m1, 2 ,b12 b22 cm2, nb1nb2ncmnb11b21cm1设 Bb 12b 22c m2, 1 ,2 ,,m 是矩阵B 的列向量组,如果i , i ,, i 是12rb1n b2n cmn1 , 2,, m 的 一 个 极 大 线 性 无 关 组 , 那 么i 1 ,i 2 i r就 是1,2m 的一个极大线性无关组,因此向量组1,2m的秩等于秩B 。

高等代数--第七章 线性变换_OK

高等代数--第七章 线性变换_OK
• 乘法 • 加 减 数乘 • 逆变换 • 变换的多项式
45
线性变换的乘法
首先,线性空间的线性变换作为映射的特殊 情形当然可以定义乘法。设A,B 是线性空间V 的两个线性变换,定义它们的乘积AB为
(A B )() A (B ()) ( V ).
容易证明,线性变换的乘积也是线性变换。事 实上,
(A B )( ) A (B ( )) A (B () B ())
A ( ) k1A (1) k2A (2) krA (r ),
14
又如果1 , 2 ,, r之间有一线性关系式 k11 k22 krr 0,
那么它们的象之间也有同样的关系
A ( ) k1A (1) k2A (2) krA (r ),
15
3. 线性变换把线性相关的向量组变成线性 相关的向量组.
A x1A 1 x2A 2 xnA n x1B 1 x2B 2 xnB n B .
20
结论1的意义就是,一个线性变换完全被它 在一组基上的作用所决定。
2.设 1,2,,n是线性空间V的一组基。对于
任意一组向量 1,2,,n一定有一个线性变换A
使
A i i ,i 1, 2, , n.
46
A (B ()) A (B ( )) (A B )( ) (A B )( ),
(A B )(k) A (B (k)) A (kB ())
kA (B ()) k(A B )().
这说明AB是线性的。
既然一般映射的乘法适合结合律,线性变换
的乘法当然也适合结合律,即
(A B )C A (B C ).
29
例3 在 F 22 中定义线性变换 A
X
a c
b
d
X

高等代数讲义ppt第七章 线性变换

高等代数讲义ppt第七章 线性变换

(4) 若A 是可逆的,则矩阵 A 也可逆,且A-1的矩阵是A-1。
例5 设 V是数域P上的n维线性空间,则L(V)与P n×n同构。
例6 设 A1,A2是 n 维线性空间 V 的两个线性变换,证明: A2V⊂A1V 的充要条件是存在线性变换 A 使得 A2=A1A 。
线性变换
§3 线性变换的矩阵
例4 设 A 是n维线性空间V的一个线性变换, A3=2E, B =A2-2A+2E, 证明:A,B都是可逆变换。
线性变换
§3 线性变换的矩阵
§3 线性变换的矩阵
定理1 设1, 2 , , n是线性空间V的一组基, 对V中任意n个向量 1,2 , ,n 存在唯一的线性变换 A∈L(V) 使任的何像得元,素只都要可选以取是适基当
线性变换
§1 线性变换的定义
二、线性变换的性质
性质1 设 A 是V的线性变换,则 A(0) 0, A( ) A()
性质2 线性变换保持线性组合与线性关系式不变。
性质3 线性变换把线性相关的向量组变成线性相关的向量组。
注意: 线性变换可能把线性无关的向量组变成线性相关的 向量组。
例3 设 1,2, ,r 是线性空间V的一组向量,A 是V的一个线
线性变换的加法满足以下运算规律:
(1) A + ( B + C ) = ( A + B ) + C
(2) A + B = B + A
线性变换
§2 线性变换的运算
定义2 设 A∈L(V),k∈P,对k与 A 的数量乘积 kA 定义为:
(kA) k A, V
结论2 对∀A ∈L(V),k∈P 有 kA∈L(V)。
Amn AmAn , (Am )n Amn, m, n N

第七章 线性变换

第七章 线性变换

第七章 线性变换一. 内容概述1. 线性变换的概念设n V 是n 维线性空间,T 是n 维线性空间n V 中的变换,且满足1) 对任意向量n V ∈βα,,有 )()()(βαβαT T T +=+ 2) 对任意向量F k V n ∈∈,α,有)()(ααkT k T =则称为中的线性变换。

2. 线性变换的性质及运算1)0)0(=T )()(ααT T -=-2) )()()()(22112211n n n n T k T k T k k k k T αααααα+++=+++ΛΛ3)设向量组n ααα,,,21Λ线性相关,则向量组)(),(),(21n T T T αααΛ也线性相关。

线性变换的和:)()())((2121αααT T T T +=+ 线性变换的积:))(())((2121ααT T T T = 数乘变换:)())((αλαλT T = 线性变换T 可逆时,逆变换1-T都是线性变换。

线性变换的多项式:0111)(a a a a f m m m m ++++=--σσσσΛ 3. 线性变换的矩阵设σ是V 的一个线性变换,n εεε,,,21Λ是V 的一个基,且n n a a a εεεεσ12211111)(+++=Λn n a a a εεεεα22221122)(+++=ΛΛΛΛΛn nn n n n a a a εεεεσΛ++=2211)(记))(),(),((),,,(2121n n εσεσεσεεεσΛΛ=A n n n ),,,())(,),(),((),,,(212121εεεεσεσεσεεεσΛΛΛ== 则称A 为线性变换σ在基n εεε,,,21Λ下的矩阵。

4. 设n εεε,,,21Λ是数域P 上n 维线性空间V 的一组基,在这组基下,每个线性变换按公式)(*对应一个n n ⨯矩阵,这个对应具有以下性质:1) 线性变换的和对应与矩阵的和; 2) 线性变换的积对应与矩阵的积;3) 线性变换的数量乘积对应与矩阵的数量乘积;4) 可逆的线性变换与可逆矩阵对应,且逆变换对于与逆矩阵。

7线性变换

7线性变换

因为
(A + B ) ( + ) = A ( + ) + B ( + ) = (A ( ) + A ( ) ) + (B () + B ( )) = (A ( ) + B ( ) ) + (A () + B ( )) = (A + B ) ( ) + ( A + B ) ( ) , (A + B ) ( k ) = A ( k ) + B ( k ) = k A ( ) + k B ( )
可能把线性无关的向量组也变成线性相关的向量
组. 例如零变换就是这样.
17
§2 线性变换的运算
线性变换的乘积
线性变换的加法
线性变换的数量乘法 线性变换的逆变换
线性变换的多项式
举例
18
一、线性变换的乘积
1. 定义 线性空间的线性变换作为映射的特殊情形当然 可以定义乘法.
定义2
设 A , B 是线性空间 V 的两个线性变
15
= -A ( ).
性质 2
线性变换保持线性组合与线性关系式不变.
换句话说,如果 是 1 , 2 , … , r 的线性组合:
= k11 + k22 + … + krr ,
那么经过线性变换 A 之后, A ( ) 是 A ( 1 ), A ( 2 ) , …, A ( r ) 同样的线性组合: A ( ) = k1A ( 1 ) + k2A ( 2 ) + …+ krA ( r ) . 又如果 1 , 2 , … , r 之间有关系式
T( + ) = - ( + )+ 2( + , ) = [- + 2 ( , ) ] + [- + 2 ( , ) ] = T( ) + T ( )

第七章 线性变换

第七章 线性变换

第七章线性变换§7.1 线性映射=(x1,x2,x3)是R3的任意向量.下列映射哪些是R3到自身的1.令(1)(ξ) =ξ+ α,α是R3的一个固定向量.(2)(ξ) = (2x1–x2 + x3,x2 + x3,–x3)(3)(ξ) =(x12,x22,x32).(4)σ() =(cos x1,sin x2,0).2.设V是数域F上一个一维向量空间.证明V到自身的一个映射是线性V,都有() = a,这里a是F中一个映射的充要条件是:对于任意3.令M n (F) 表示数域F上一切n阶矩阵所成的向量空间.取定A M n (F).对任意(F),定义(X) = A X–X A.X Mn(i)证明:是M n (F)是自身的线性映射。

(ii)证明:对于任意X,Y M n (F),(XY) = (X)Y+X (Y) .4.令F4表示数域F上四元列空间,取A=对于F4,令() = A.求线性映射的核和像的维数.5.设V和W都是数域F上向量空间,且dim V = n.令是V到W的一个线性映射.我们如此选取V的一个基:1,…,s,s+1,…,n,使得1,…,s,是Ker()的一个基.证明:(i)(s+1),…,(n)组成Im()的一个基;(ii)dim Ker() + dim Im() = n.。

6.设是数域F上n维向量空间V到自身的一个线性映射.W1,W2是V的子空间,并且V = W1W2.证明:有逆映射的充要条件是V = (W1)(W1) .§7.2 线性变换的运算1.举例说明,线性变换的乘法不满足交换律.2.在F[x]中,定义:f (x) f’(x) ,:f (x) xf (x) ,这里f’(x)表示f(x)的导数.证明, ,都是F[x]的线性变换,并且对于任意正整数n都有n–n = n n-13.设V是数域F上的一个有限维向量空间.证明,对于V的线性变换来说,下列三个条件是等价的:(i)是满射; (ii)Ker() = {0}; (iii) 非奇异.当V不是有限维时,(i),(ii)是否等价?L(V),V,并且,(),…,k-1()都不等于零,4.设但k() = 0.证明:,(),…,k-1() 线性无关.Ker()当且仅当2 = ;(1) Im()(2)(3)(i) 证明:是F n的一个线性变换,且n = ;(ii) 求Ker()和Im() 的维数.§7.3 线性变换和矩阵1.令Fn[x]表示一切次数不大于n的多项式连同零多项式所成的向量空间,:f (x) f’(x) ,求 关于以下两个基的矩阵:(1) 1,x ,x2,…,x n,(2) 1,x –c ,,…,,c F .2.设F 上三维向量空间的线性变换关于基 {1,2,3}的矩阵是求关于基1 = 21 +32 +3,2= 31+42+3,3=1+22+23,的矩阵.设= 2 1 +2–3.求( )关于基1,2,3的坐标.3.设{1,2,…,n}是n 维向量空间V 的一个基.j= ,= , j = 1,2,…,n ,并且1,2,…,n线性无关.又设是V 的一个线性变换,使得 (j) =,j = 1,2,…,n ,求关于基,,…,的矩阵.4.设A ,B 是n 阶矩阵,且A 可逆,证明,AB 与BA 相似.5.设A是数域F上一个n阶矩阵,证明,存在F上一个非零多项式f (x)使得f (A) = 0.6.证明,数域F上n维向量空间V的一个线性变换是一个位似(即单位变换的一个标量倍)必要且只要关于V的任意基的矩阵都相等.7.令M n (F)是数域F上全休n阶矩阵所成的向量空间.取定一个矩阵A M n (F) .对任意X M n (F),定义(X) = A X–X A.由7.1习题3知是M n (F)的一个线性变换,设A =是一个对角形矩阵.证明,关于Mn (F)的标准基{Eij|1}(见6.4,例5)的矩阵也是对角形矩阵,它的主对角线上的元素是一切a i–a j(1).[建议先具体计算一下n = 3的情形.]8.设是数域F上n维向量空间V的一个线性变换.证明,总可以如此选取V的两个基{1,2,…,n}和{1,2,…,n},使得对于V的任意向量来说,如果=,则() =,这里0是一个定数。

第七章 线性变换

第七章 线性变换

第七章 线性变换一. 内容概述1. 线性变换的概念设n V 是n 维线性空间,T 是n 维线性空间n V 中的变换,且满足1) 对任意向量n V ∈βα,,有 )()()(βαβαT T T +=+ 2) 对任意向量F k V n ∈∈,α,有)()(ααkT k T =则称为中的线性变换。

2. 线性变换的性质及运算1)0)0(=T )()(ααT T -=-2) )()()()(22112211n n n n T k T k T k k k k T αααααα+++=+++3)设向量组n ααα,,,21 线性相关,则向量组)(),(),(21n T T T ααα 也线性相关。

线性变换的和:)()())((2121αααT T T T +=+ 线性变换的积:))(())((2121ααT T T T = 数乘变换:)())((αλαλT T = 线性变换T 可逆时,逆变换1-T都是线性变换。

线性变换的多项式:0111)(a a a a f m m m m ++++=--σσσσ 3. 线性变换的矩阵设σ是V 的一个线性变换,n εεε,,,21 是V 的一个基,且n n a a a εεεεσ12211111)(+++= n n a a a εεεεα22221122)(+++=n nn n n n a a a εεεεσ ++=2211)(记))(),(),((),,,(2121n n εσεσεσεεεσ =A n n n ),,,())(,),(),((),,,(212121εεεεσεσεσεεεσ ==则称A 为线性变换σ在基n εεε,,,21 下的矩阵。

4. 设n εεε,,,21 是数域P 上n 维线性空间V 的一组基,在这组基下,每个线性变换按公式)(*对应一个n n ⨯矩阵,这个对应具有以下性质:1) 线性变换的和对应与矩阵的和; 2) 线性变换的积对应与矩阵的积;3) 线性变换的数量乘积对应与矩阵的数量乘积;4) 可逆的线性变换与可逆矩阵对应,且逆变换对于与逆矩阵。

高等代数第七章线性变换

高等代数第七章线性变换

高等代数第七章线性变换一、定义:变换:线性空间V到自身的映射通常称为V的一个变换线性变换=线性映射+变换更准确地说线性变换的特点就是满足线性性以及定义域和陪域都是同一个线性空间*这里说的陪域是丘维生的高等代数里提出的一个概念,与值域的每一个自变量都有因变量相对应不同的是陪域包含自变量没有因变量相对应的情况这样解释是为了类比:同构映射=线性映射+双射也就是说同构映射的特点是满足线性性以及每一个自变量都有一个因变量相对应下面引出线性变换的准确定义线性变换:如果对于V中任意的元素 \alpha,\beta和数域P 中任意数k,都有\sigma(\alpha+\beta )=\sigma(\alpha)+\sigma(\beta) ,\sigma(k\alpha)=k\sigma(\alpha) 则称线性空间V的一个变换 \sigma 称为线性变换。

二、线性变换的矩阵所有线性变换的全体可以通过选取V的一组基与所有矩阵的全体建立一一对应的关系,将几何对象和代数对象建立转化。

只要取一组足够好的基,就可以得到足够好的矩阵。

某些特殊情况下,矩阵可以取成对角阵,就称线性变换可以对角化,不可对角的矩阵可以写成若尔当块的形式,则选取的基就为循环基,当做不到选取循环基时就只能上三角化或者下三角化。

三、矩阵的相似1.定义Ⅰ.①相似的定义: A,B\in P^{n\times n} ,若存在可逆矩阵 P ,使得 P^{-1}AP=B ,则称A与B是相似的②相似的标准型:若尔当标准型Ⅱ.类比合同(相抵):本质是初等变换①合同的定义: A,B\in P^{n\times n} 若存在可逆矩阵P ,使得 PAQ=B ,则称A与B是合同的②合同的标准型:PAQ=\left( \begin{array}{cc} E_{r}&0\\ 0&0 \end{array} \right),r=r(A),E(r)=\left( \begin{array}{cc} 1&&\\ &1 &\\ &...\\ &&1 \end{array} \right)_{r\times r}③性质:若 A\sim B ,则 \left| A \right|=\left| B \right| ,r(A)=r(B)若A\sim B ,则 A,B 的特征多项式相同,极小多项式相同若 A\sim B ,则 A'\sim B'*根据定义有 P^{-1}AP=B ,两边同时转置: P'A'(P')^{-1}=B' ,则 A'\sim B'若 A\sim B ,A可逆,则 A^{-1}\sim B^{-1}若 A\sim B ,则 A^{k}\sim B^{k}若 A\sim B , f(x)\in k[x] (f(x)是数域K上的多项式)则 f(A)\sim f(B) (A与B的多项式相似)*多项式的形式是 f(x)=x^{k}+x^{k-1}+...+x+m ,由A^{k}\sim B^{k} ,则 f(A)\sim f(B)若 A\sim B,则 A^{*}\sim B^{*} (A的伴随矩阵相似于B的伴随矩阵)四、矩阵的特征值和特征向量1.定义:对于矩阵A,若存在 x\ne0 (非零向量), x\inK^{n} ,s,t, Ax=\lambda x ,则称 \lambda 是 A 的一个特征值, x 是 \lambda 对应的特征向量2.求特征值、特征向量①求解特征多项式f(\lambda)=\left| \lambda E_{n} -A\right|=0\Rightarrow\lambda_{1},\lambda_{2},...,\lambda_{n} 为特征值②求 (\lambda_{i} E_{n} -A)x=0\Rightarrowx_{1},x_{2},...,x_{n} 为特征向量3.性质:若矩阵A的特征值为 \lambda_{1},...,\lambda_{n}① tr(A)=\lambda_{1}+...+\lambda_{n} ( tr(A) 为矩阵的迹:对角线元素之和为矩阵特征值之和)② \left| A\right|=\lambda_{1}\lambda_{2}...\lambda_{n}③哈密顿-凯莱定理:特征多项式一定是零化多项式f(\lambda)=\left| \lambda E_{n}-A \right|,f(A)=0*零化多项式: f(x)\in k[x] ( f(x) 是数域K上的多项式),若 f(A)=0 则称 f(x) 是 A 的零化多项式eg. f(x)=x^2-3x+1 则有 A^2-3A+E_{n}=0④若 f(A)=0\Rightarrow f(\lambda)=0eg. A^2-3A+E_{n}=0\Rightarrow\lambda^2-3\lambda+1=0则根据④若矩阵A的特征值为\lambda_{1},\lambda_{2},...,\lambda_{n}\Rightarrow A^{-1} 的特征值为\frac{1}{\lambda_{1}},\frac{1}{\lambda_{2}},...,\frac{ 1}{\lambda_{n}}\Rightarrow aA 的特征值为a\lambda_{1},a\lambda_{2},...,a\lambda_{n}\Rightarrow A^{k} 的特征值为\lambda_{1}^k,\lambda_{2}^k,...,\lambda_{n}^k五、矩阵A可对角化的判别办法① A_{n\times n} 可对角化 \Leftrightarrow n阶矩阵A有n个线性无关的特征向量设 \lambda_{1},\lambda_{2},...,\lambda_{s} 是两两不同的特征值②A可对角化 \LeftrightarrowdimV_{\lambda_{1}}+dimV_{\lambda_{2}}+...+dimV_{\lambd a_{s}}=n③(充分但不必要条件)A的特征多项式无重根 \Rightarrow A可对角化六、不变子空间定义:W是线性空间V的子空间,线性变换 \sigma:V\rightarrow V ,若 \sigma(W)\subseteq W ,则称W是\sigma 的不变子空间利用定义求不变子空间。

高等代数.第七章.线性变换.课堂笔记

高等代数.第七章.线性变换.课堂笔记

第七章 线性变换§7.1 线性变换的定义与判别一、线性变换的定义:定义1 设V 为数域P 上线性空间,A 为V 的一个变换(即V ⟶V 的映射),若A 保持加法和数乘运算,即A (α+β)=A (α)+ A (β),∀α,β∈V ,A (kα)=k A (α),∀k ∈P ,则称A 为V 的一个线性变换.注记: 以后我们用花体拉丁字母A,B,C,...表示V 的线性变换,除了特别说明外,本章节中V 均指数域P 上有限维线性空间.例1.说明下列变换均为线性变换: (1)把V 中任一向量都映射为0(称为零变换,记作0); (2)把V 中任一向量α映射为本身(恒等变换,记作E ); (3)取定k ∈P ,把V 中的每一个向量α映射为kα(数乘变换,记作k ).例2.判定下列规则σ是否为指定线性空间的线性变换: (1)ℝ,x -:σ(f (x ))=f′(x );(2)C ,a,b -: σ(f (x ))=∫f (t )dt x0;(3)P n×n : σ(A )=A +A ′,σ2(A )=SAT ,S,T 为固定二个n ×n 矩阵. (4)ℝ,x -n : σ1(f (x ))=xf (x ),σ2(f (x ))=f (x )+1. 解:可验证(1)-(3)均为线性变换,下面证明(1): ∀ f (x )∈ℝ,x -,其导函数唯一确定,且f (x )∈ℝ,x -,因而σ为V ⟶V 的变换,即V 的一个变换,σ(f (x )+g (x ))=(f (x )+g (x ))′=f ′(x )+g ′(x )= σ(f (x ))+ σ(g (x )), ∀k ∈ℝ,σ(kf (x ))=(kf (x ))′=kf ′(x )=kσ(f (x )).(4): σ1与σ2均不是线性变换,取f (x )=x n−1+1=ℝ,x -n ,但σ1(f (x ))=xf (x )=x n +x ∉ℝ,x -n , 因而σ1不是ℝ,x -n 的一个变换, σ2是ℝ,x -n 的一个变换,但运算不保持,因而不是线性变换.习题:P320、1例3.设α为通常几何空间ℝ3中固定的向量,把空间中每个向量η映射为η在α上的内映射(正投影),即Πα: η⟶(α∙η)(α∙α)α是ℝ3的线性变换,这里(α∙η),(α∙α)表示通常向量的内积.证:如图,Πα(η)=OD ⃗⃗⃗⃗⃗ =ηcos (η∙α)α|α|=(α∙η)(α∙α)α,唯一确定, 从而Πα为ℝ3的一个变换,如图,AC ⊥W(垂足为C),OCD LA Wα1α2η因此L 与W 为ℝ3的子空间且ℝ3=W ⊕L ,令 η=α1+α2,α1=OD⃗⃗⃗⃗⃗ =Πα(η),α2∈W , δ=β1+β2,β1=Πα(δ)∈L,β2∈W ,则η+δ=(α1+β1)+(α2+β2),α1+β1∈L,α2+β2∈W , 从而Πα(η+δ)=α1+β1=Πα(η)+Πα(δ), 同理,Πα(kη)=kΠα(η).二、线性变换的性质: 设A 为V 的线性变换,则: (1) A (0)=0, A (−α)=−A (α),∀α∈V ; (2) A (k 1α1+k 2α2+⋯+k t αt )=k 1A (α1)+k 2A (α2)+⋯+k t A (αt ); (3) A 把线性相关的向量组映射为线性相关的向量组(反之不真).2011-04-02A : V ⟶V 线性变换性质: (3) A 为V 中线性相关的向量组,映为V 中线性相关的向量组,即α1,α2,…,αs 相关⟹A (α1), A (α2),…, A (αs )相关;但A (α1), A (α2),…, A (αs )线性相关⇒α1,α2,…,αs 相关. 如A =0,∀ α∈V,α≠0, A (α)=0.(4)设α1,α2,…,αn 为V 的一个基,∀ α∈V,α=x 1α1+x 2α2+⋯+x n αn ⟹A (α)=A (x 1α1+x 2α2+⋯+x n αn ) 线性变换A 由V 中一个基中的像唯一确定;(5)设α1,α2,…,αn 为V 的一个基,则对V 中任一向量组β1,β2,…,βn 必存在一个线性变换 A : V ⟶V ,使得:A (αi )=βi ,1≤i ≤n ;证:作V ⟶V 映射:A (α)= x 1β1+x 2β2+⋯+x n βn ,其中:α=x 1β1+x 2β2+⋯+x n βn ,则A (αi )=βi ,1≤i ≤n ; 下证:A 为V 的线性变换:∀ α=x 1α1+x 2α2+⋯+x n αn ∈V,β=y 1α1+y 2α2+⋯+y n αn ∈V,A (α+β)= A .(x 1+y 1)α1+(x 2+y 2)α2+⋯+(x n +y n )αn /=(x 1+y 1)β1+(x 2+y 2)β2+⋯+(x n +y n )βn=(x 1β1+x 2β2+⋯+x n βn )+(y 1β1+y 2β2+⋯+y n βn ) = A (x 1α1+x 2α2+⋯+x n αn )+ A (y 1α1+y 2α2+⋯+y n αn )= A (α)+A (β)同理,∀k ∈P ,A (kα)=k A (α).§7.2 线性变换的运算为方便,引入记号:Hom (V,V ),它表示数域P 上线性空间V 的所有线性变换的集合。

高等代数第七章线性变换复习讲义

高等代数第七章线性变换复习讲义

⾼等代数第七章线性变换复习讲义第七章线性变换⼀.线性变换的定义和运算1.线性变换的定义(1)定义:设V是数域p上的线性空间,A是V上的⼀个变换,如果对任意α,β∈V和k∈P都有A(α+β)=A(α)+A(β),A(kα)=kA(α)则称A为V的⼀个线性变换。

(2)恒等变换(单位变换)和零变换的定义:ε(α)=α,ο(α)=0,任意α∈V.它们都是V的线性变换。

(3)A是线性变换的充要条件:A(kα+lβ)=kA(α)+lA(β),任意α,β∈V,k,l∈P.2.线性变换的性质设V是数域P上的线性空间,A是V的线性变换,则有(1)A(0)=0;(2)A(-α)=-A(α),任意α∈V;(3)A(∑kiαi)=ΣkiA(α),α∈V,ki∈P,i=1,…,s;(4)若α1,α2,…,αs∈V,且线性相关,则A(α1),A (α2),…,A(αs)也线性相关,但当α1,α2,…,αs线性⽆关时,不能推出A(α1),A(α2),…,A(αs)线性⽆关。

3.线性变换的运算4.线性变换与基的关系(1)设ε1,ε2,…,εn是线性空间v的⼀组基,如果线性变换A和B在这组基上的作⽤相同,即Aεi=Bεi,i=1,2,…,n,则有A=B.(2)设ε1,ε2,…,εn是线性空间v的⼀组基,对于V 中任意⼀组向量α1,α2,…,αn,存在唯⼀⼀个线性变换A 使Aεi=αi,i=1,2,…,n.⼆.线性变换的矩阵1.定义:设ε1,ε2,…,εn是数域P上n维线性空间v的⼀组基,A是V中的⼀个线性变换,基向量的像可以被基线性表出Aε1=a11ε1+a21ε2+…an1εnAε2=a12ε1+a22ε2+…an2εn……Aεn= a1nε1+a2nε2+…annεn⽤矩阵表⽰就是A(ε1,ε2,…,εn)=(ε1,ε2,…,εn)A,其中a 11 a 12 …… a 1na 21 a 22 …… a 2nA= ……a n1 a n2 …… a nn称为A在基ε1,ε2,…,εn下的矩阵。

高等代数第7章线性变换PPT课件

高等代数第7章线性变换PPT课件

特征向量定义
对应于特征值m的非零向量x称为A的对应于特征值 m的特征向量。
设A是n阶方阵,如果存在数m和非零n维列向 量x,使得Ax=mx成立,则称m是A的一个特 征值。
求解方法
通过求解特征多项式f(λ)=|A-λE|的根得到特 征值,再代入原方程求解对应的特征向量。
特征多项式及其性质分析
特征多项式定义
量子力学
在量子力学中,特征值和特征向量用 于描述微观粒子的状态和能量级别。
图像处理
在图像处理中,特征值和特征向量可 以用于图像压缩和图像识别等任务。
经济学
在经济学中,特征值和特征向量可以 用于分析和预测经济系统的稳定性和 发展趋势。
04
线性变换对角化条
件及步骤
可对角化条件判断方法
判断矩阵是否可对角化
线性变换的性质与 矩阵性质对应
线性变换的性质如保持加法、 数乘等运算可以通过其对应的 矩阵性质来体现。例如,两个 线性变换的和对应两个矩阵的 和;线性变换的复合对应两个 矩阵的乘积等。
02
线性变换矩阵表示

标准基下矩阵表示法
定义
设V是n维线性空间,e1,e2,...,en 是V的一个基,T是V上的一个线 性变换,则T在基e1,e2,...,en下的 矩阵A称为T在基e1,e2,...,en下的 标准矩阵表示。
计算矩阵的高次幂
对于可对角化的矩阵A,可以利用对角化公式A=PDP^(-1)将A的高次幂转化为对角矩阵D的高次幂, 从而简化计算过程。
求解线性方程组
对于系数矩阵为可对角化矩阵的线性方程组,可以通过对角化将系数矩阵转化为对角矩阵,进而 简化方程组的求解过程。
计算行列式和逆矩阵
对于可对角化的矩阵A,其行列式值等于对角矩阵D的行列式值,逆矩阵可以通过对角化公式求得, 从而简化相关计算。

高等代数第7章线性变换[1]

高等代数第7章线性变换[1]
于是Aa = Ba. 由a的任意性,知 A = B.
推论 设e1, e2, …, en是线性空间V的一
组基, 如果V的两个线性变换A与B在这
组基上的作用相同,即
Aei = Bei ,
则必有 A = B.
推论 设x1, x2, …, xs是n维线性空间V的一
组线性无关向量, a1,a2,…,as是V中任意取
二、线性变换在一组基下的矩阵
定义 设e1, e2, …, en是数域P上n维
线性空间V的一组基,A是V的线性变
换,则基向量的象可唯一地被基线
性表示为
Ae1 a11e1 a21e 2 an1e n
Ae 2 a12e1 a22e 2 an2e n
Ae n a1ne1 a2ne 2 anne n
D是一个线性变换,称为微分变换.
例7 闭区间[a, b]上所有连续函数全体 组成实数域R上的线性空间C0(a, b). 定义变换
x
则J是一个J(线f (性x))变=换.a f (t)dt
二、线性变换的简单性质
1、设A是线性空间V的一个线性变换,则
A(0) = 0, A(-a) = - A(a)
2、线性变换保持向量的线性组合与线性 关系式不变.即若

定义 设V是数域P上的n维线性空间,
A :VV为V的一个变换, 若对任意a,bV
和数kP, 都有
A(a + b ) = A(a) + A(b)
A(ka) = kA(a)
则称A是线性空间V的一个线性变换. (linear transformation).
称A(a)或Aa为向量a在线性变换A下的
象(image).
2、(1)交换律 A +B =B +A (2)结合律 (A+B)+C =A+(B+C) (3)零变换 A+O =A (4)负变换 A+(-A) = O

第七章 线性变换

第七章 线性变换

, ε n ,写出
,ε n
高等代数
东北大学秦皇岛分校
例 2 设线性变换A 在基 ε 1 , ε 2 , ε 3 下的矩阵是
⎛1 2 2⎞ ⎜ ⎟ A = ⎜ 2 1 2⎟, ⎜2 2 1⎟ ⎝ ⎠
求A 的特征值与特征向量. 线性变换A 的属于 λ0 的全部特征向量再添上零向量所 成的集合,是V的一个子空间,称为A 的一个特征子空间,记为
高等代数
东北大学秦皇岛分校
例 设V是数域P上一个二维线性空间,
ε 1 , ε 2是一组基线性变换A 在 ε 1 , ε 2 下的矩阵是
⎛ 2 1⎞ ⎜ ⎟. ⎝ −1 0 ⎠ 对V的另一组基 η1 ,η 2 ,有
⎛ 1 −1 ⎞ (η1 ,η 2 ) = (ε 1 , ε 2 ) ⎜ ⎟, ⎝ −1 2 ⎠ k ⎛ 2 1⎞ 求 ⎜ ⎟ . ⎝ −1 0 ⎠
高等代数
东北大学秦皇岛分校
定理 2 设 ε 1 , ε 2 ,
, ε n 使数域P上n维 ,ε n ) A
线性空间V的一组基,在这组基下,每个线性变换按
A (ε 1 , ε 2 ,
, ε n ) = (ε 1 , ε 2 ,
都对应一个 n × n 矩阵,这个对应具有以下的性质: 1) 线性变换的和对应于矩阵的和; 2) 线性变换的乘积对应于矩阵的乘积; 3) 线性变换的数量乘积对应与矩阵的数量乘积; 4) 可逆的线性变换与可逆矩阵对应,且逆变换对 应于逆矩阵.
高等代数
东北大学秦皇岛分校
利用线性变换的矩阵计算向量的像: 定理 3 设线性变换A 在基 ε 1 , ε 2 , 矩阵是A,向量 ξ 在基 ε 1 , ε 2 , 则 A ξ 在基 ε 1 , ε 2 ,
, ε n 下的 , ε n下的坐标是 ( x1 , x2 ,

线性代数与解析几何 第7章 线性空间与线性变换

线性代数与解析几何 第7章 线性空间与线性变换

§ 7.1 线性空间的定义与性质
7.1.1 线性空间的定义
7.1.2 线性空间的性质
7.1.3 子空间
§ 7.1 线性空间的定义与性质
7.1.1 线性空间的定义
定义7.1
设是一个非空集合,为实数域. 若在中定义
了两种运算,一种运算称为加法:即对于中任意两个元素
, ,在中都有唯一的元素与它们相对应,称为与的
证明
因为 a, b R , R
有 a b ab R , a a R
即R+对上述定义的加法与数乘运算封闭.

a
,
b
,
c

R
, , R 时,有
又因
(1) a b ab=ba b a ;
(2) (a b) c (ab) c (ab)c a(bc) a(b c) a (b c) ;
A R mn
又对矩阵加法和数与矩阵的乘法两种运算满足线性运算规律,
所以R mn对矩阵加法和数与矩阵的乘法,构成实数域R
上的线性空间,称此线性空间为mn矩阵空间.
§ 7.1 线性空间的定义与性质
注7.1
检验一个集合是否构成线性空间,当然不能只象例
7.1、例7.2、例7.3那样检验对运算的封闭性.若所定义的加法
(7) ( + ) a a a a a a a a ;
(8) (a b) (ab) (ab) a b
a b a b ;
所以R+对上述定义的加法与数乘运算构成线性空间.
*第7章
线性空间与线性变换
线性空间又称向量空间,是线性代数的中心内容和

第七章-线性变换

第七章-线性变换

x1 , x2 ,, xn P , 使 x1 1 x2 2 xn n
从而, ( ) x1 ( 1 ) x2 ( 2 ) xn ( n ).
由此知, ( ) 由 ( 1 ), ( 2 ),, ( n ) 完全确定.
二、 线性变换与矩阵
1.线性变换的矩阵
设 1 , 2 , , n为数域P上线性空间V的一组基,
为V的线性变换. 基向量的象可以被基线性表出,设
( 1 ) a11 1 a21 2 an1 n ( 2 ) a12 1 a22 2 an 2 n ( ) a a a n 1n 1 2n 2 nn n
=x1 1 x2 2 xn n
=x1 1 x2 2 xn n
由已知,即得 = .
.
由此知,一个线性变换完全由它在一组基上的作 用所决定.
( 2 ) (0,1,0) (0,1,1) 0 1 1 2 1 3
( 3 ) (0,0,1) (0,0,0) 0 1 0 2 0 3
1 0 0 ( 1 , 2 , 3 ) ( 1 , 2 , 3 ) 0 1 0 1 1 0
和 :
数量乘积
k : k k k P
记作 1 .
的逆变换: E
n
n 的n次幂: , n为自然数
的多项式: f ( ) am m a1 a0 E
5/36
二、 线性变换的简单性质

第七章线性变换.(20201011015825)

第七章线性变换.(20201011015825)

第七章 线性变换计划课时: 24 学时 .( P 307—334)§7.1 线性变换的定义及性质( 2 学时)教学目的及要求 :理解线性变换的定义,掌握线性变换的性质教学重点、难点 :线性变换的定义及线性变换的性质本节内容可分为下面的两个问题讲授 .一 . 线性变换的定义( P 307 )注意:向量空间V 到自身的同构映射一定是 V 上的线性变换,反之不然。

二. 线性变换的性质定理 7.1.1定理 7.1.2推论 7.1.3 注意:1.定理 7.1.2 给出了在有限维向量空间构造线性变换的方法,且说明了一个线性变换完全被它对基 向量的作用所决定。

2. 两个线性变换相等当且仅当它们对任意一个向量的作用结果相等,推论 我们,只要这两个线性变换对某个基中的每个基向量的作用结果相等即可。

P 309) P 309) ( P 3107.1.3 (P 310)告诉作业:习题七 P 330 1 ,2,3.§ 7.2 线性变换的运算(4 学时)教学目的及要求 教学重点、难点 :掌握线性变换的运算及线性变换可逆的条件:线性变换的运算及线性变换可逆的条件本节内容分为下面四个问题讲授:一. 加法运算定义 1 ( P 310)注意:+ 是V 的线性变换.二 . 数乘运算定义 2 ( P 311) 显然k 也是V 的一个线性变换.定理 7.2.1L (V ) 对于线性变换的加法与数乘运算构成数域 三 . 乘法运算(1). 乘法运算定义 3( P 311-312 ) 注意 :线性变换的乘法适合结合律,但不适合交换律及消去律 F 上的一个向量空间 . 两个非零线性变换的乘积可能是零变换 .(2). 线性变换 的方幂四 . 可逆线性变换定义 4 ( P 313)线性变换可逆的充要条件 例 2 ( P 314)线性变换的多项式的概念 ( 阅读内容 ).作业: P 330 习题七 4, 5.§7.3 线性变换的矩阵( 6 学时)教学目的及要求 :理解线性变换关于一个基的矩阵的定义,掌握 与 ( )关于同一个基的坐标之间的关系、线性变换与它们的和、数乘、乘积在同一个基下的矩阵的关系、同一个线性变换在不同基下的矩阵是相似的理论,掌握L (V )与M (F )的同构理论。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算.
y1 x1 y2 x2 =A ⋮ ⋮ yn xn
高等代数
东北大学秦皇岛分校
线性变换
取定一组基后 一一对应
矩阵
线性变换的矩阵如何随着基的改变而改变: 线性变换的矩阵如何随着基的改变而改变 定理 4 设线性空间V中线性变换A 在两组基 ε 1 , ε 2 ,⋯ , ε n , (Ⅰ)
矩阵
给定一个线性变换,如何取一组合适的基 使 给定一个线性变换 如何取一组合适的基,使 如何取一组合适的基 对应的矩阵是最简单的? 对应的矩阵是最简单的
高等代数
东北大学秦皇岛分校
定义 4 设A 是数域P上线性空间V的一个 线性变换,如果对于数域P中一数 λ0 ,存在一个 非零向量 ξ ,使得
A ξ = λ0ξ.
A ε i = αi ,
i = 1, 2,⋯, n,
下面来建立线性变换与矩阵的关系: 下面来建立线性变换与矩阵的关系 定义 2 设 ε 1 , ε 2 ,⋯ , ε n 使数域P上n维线性空间V的 一组基,A 是V中的一个线性变换.基向量的像可以被基 线性表出:
高等代数
东北大学秦皇岛分校
A ε 1 = a11ε 1 + a21ε 2 + ⋯ + an1ε n , A ε = a ε + a ε + ⋯ + a ε , 2 12 1 22 2 n2 n ⋯⋯⋯⋯ A ε n = a1nε 1 + a2 nε 2 + ⋯ + annε n ,
λ E − A 的行列式
λ − a11
−a12 ⋮ −an 2

−a1n
−a21 λE − A = ⋮ −an1
λ − a22 ⋯
−a22 ⋮ ⋯ λ − an1
称为A的特征多项式 特征多项式,这是数域P上的一个n次多项式. 特征多项式
高等代数
东北大学秦皇岛分校
求线性变换A 的特征值与特征向量的方法: 求线性变换A 的特征值与特征向量的方法 1.在线性空间V中取一组基 ε 1 , ε 2 ,⋯ , ε n ,写出 A 在这组基下的矩阵A; 2.求出A的特征多项式 λ E − A 在数域P中全部的根, 它们也就是线性变换A 的全部特征值; 3.把所求得的特征值逐个地代入方程组 (λ0 E − A) X = 0 , 对于每一个特征值,解方程组,求出一组基础解系,它们就是属 于这个特征值的几个线性无关的特征向量在基 ε 1 , ε 2 ,⋯ , ε n 下的坐标.
高等代数
东北大学秦皇岛分校
例 2 设线性变换A 在基 ε 1 , ε 2 , ε 3 下的矩阵是
1 2 2 A = 2 1 2, 2 2 1
求A 的特征值与特征向量. 线性变换A 的属于 λ0 的全部特征向量再添上零向量所 成的集合,是V的一个子空间,称为A 的一个特征子空间,记为
(α ∈V ).
高等代数
东北大学秦皇岛分校
•零变换的特殊性:0 +A = A
,
•对每个线性变换A 定义负变换(-A ):
(−A )(α ) = −A (α )
• 1A = A , • (kl )A = k (l A ), • (k + l )A = k A + l A , • k (A + B ) = k A + kB ,
那么, λ0 称为A 的一个特征值 特征值,而 ξ 称为A 的属于特征 特征值 值的一个特征向量 特征向量. 特征向量 注:特征向量不是被特征值所唯一决定的; 特征值却是被特征向量所唯一决定的.
高等代数
东北大学秦皇岛分校
如何求特征值特征向量呢? 如何求特征值特征向量呢 设V是数域P上n维线性空间, ε 1 , ε 2 ,⋯ , ε n 是 它的一组基,线性变换A 在这组基下的矩阵是A.(分析:) 定义 5 设A是数域P上一n级矩阵, λ 是一个数字,矩阵
2 1 . −1 0 对V的另一组基 η1 ,η 2 ,有
1 −1 (η1 ,η 2 ) = (ε 1 , ε 2 ) , −1 2 k 2 1 求 . −1 0
高等代数
东北大学秦皇岛分校
§4.
特征值与特征向量
取定一组基后 一一对应
线性变换
高等代数
东北大学秦皇岛分校
第七章
线性变换
线性空间
某一类事物从量的方面的抽象
空间之间的关系
线性空间的同构
线性空间中,事物之间的联系
线性空间的映射
高等代数
东北大学秦皇岛分校
§1.
线性变换的定义
线性空间到自身的映射通常称为V的一个变换. 定义 1 线性空间V的一个变换A ,如果对于V中任意 的元素 α , β 和数域P中任意数k,都有
k A = KA
性质:
(kl )A = k (l A ), (k + l )A = k A + l A , k (A + B ) = k A + kB , 1A = A ,
高等代数
东北大学秦皇岛分校
定义和A +B为 (A + B )(α ) = A (α ) + B (α ) 和 定义数量乘法 数量乘法为 k A = K A 数量乘法 线性变换的和还是线性变换. 线性变换的数量乘法还是线性变换. •加法结合律: A +(B +C )= (A +B )+C , •加法交换律: A +B = B + A ,
A εi =B εi ,
那么A =B .
i = 1, 2,⋯, n,
2.设 ε 1 , ε 2 ,⋯ , ε n 是线性空间V的一组基,对于任意 一组向量 α1 , α 2 ,⋯ , α n ,一定有一个线性变换A 使
A ε i = αi ,
i = 1, 2,⋯, n,
高等代数
东北大学秦皇岛分校
1.2.综合: 定理 1 设 ε 1 , ε 2 ,⋯ , ε n 是线性空间V的一组基,对于 任意一组向量 α1 , α 2 ,⋯ , α n ,存在唯一的线性变换A 使
A 是V的一线性变换,我们定义
f (A ) = am A
m
+ am−1A
m −1
+ ⋯ + a0E.
显然,f (A ) 是一线性变换,它称为线性变换A 的多项式 线性变换A 的多项式. 线性变换
注:同一个线性变换的多项式的乘法是可交换的.
高等代数
东北大学秦皇岛分校
§3.
线性变换的矩阵
1.设 ε 1 , ε 2 ,⋯ , ε n 是线性空间V的一组基,如果线性 变换A 与B 在这组基上的作用相同,即
(α ∈V ).
易知: A + (-A )= 0
结论:线性空间V上的线性变换,对以上的加法和数量乘法构 结论 成了数域P上的线性空间。
高等代数
东北大学秦皇岛分校
•逆变换 逆变换: 逆变换 对于V的变换A ,如果有V的变换B 存在,使
AB = BA = E
则变换B 称为A 的逆变换,记为 A
−1
.
-1
都对应一个 n × n 矩阵,这个对应具有以下的性质: 1) 线性变换的和对应于矩阵的和; 2) 线性变换的乘积对应于矩阵的乘积; 3) 线性变换的数量乘积对应与矩阵的数量乘积; 4) 可逆的线性变换与可逆矩阵对应,且逆变换对 应于逆矩阵.
高等代数
东北大学秦皇岛分校
利用线性变换的矩阵计算向量的像: 利用线性变换的矩阵计算向量的像 定理 3 设线性变换A 在基 ε 1 , ε 2 ,⋯ , ε n 下的 矩阵是A,向量 ξ 在基 ε 1 , ε 2 ,⋯ , ε n下的坐标是 ( x1 , x2 ,⋯ , xn ) , 则 A ξ 在基 ε 1 , ε 2 ,⋯ , ε n 下的坐标 ( y1 , y2 ,⋯ , yn )可以按公式
如果线性变换A 是可逆的,那么它的逆变换A 也是可逆的.
高等代数
东北大学秦皇岛分校
当n个(n是正整数)线性变换A 相乘时,用
n个
AA ⋯ A 表示,称为A 的n次幂,简单的记作A
•线性变换的多项式 线性变换的多项式: 线性变换的多项式
n
,令 A
0
= E.
f ( x) = am x m + am−1 x m−1 + ⋯ + a0 是P[x]中一多项式, 设
矩阵相似的性质:反身性;对称性;传递性. 定理 5 线性变换在不同基下所对应的矩阵 是相似的;反过来,如果两个矩阵相似,那么它们可以看作 同一个线性变换在两组基下所对应的矩阵.
高等代数
东北大学秦皇岛分校
例 设V是数域P上一个二维线性空间,
ε 1 , ε 2是一组基线性变换A 在 ε 1 , ε 2 下的矩阵是
E (α ) = α
以及零变换 0,即 零变换
(α ∈V ) (α ∈V )
0(α ) = 0
都是线性变换.
高等代数
东北大学秦皇岛分校
例 4 设V是数域P上的线性空间,k是P中某 某个数,定义V的变换如下:
α → kα ,
α ∈V .
这是一个线性变换,称为由k决定的数乘变换 数乘变换. 数乘变换
高等代数
东北大学秦皇岛分校
线性变换
取定一组基后 一一对应
矩阵
例 设 ε 1 , ε 2 ,⋯ , ε m 是n ( n>m ) 维线性空间V的 子空间W的一组基,把它扩充为V的一组基 ε 1 , ε 2 ,⋯ , ε n , 指定线性变换A 如下:
A ε i = ε i , i = 1, 2,⋯, m, A ε i = 0, i = m + 1,⋯, n,
相关文档
最新文档