2004年普通高等学校招生全国统一考试文科(上海卷)数学

合集下载

2004年普通高等学校春季招生考试数学(上海卷)(附解答)

2004年普通高等学校春季招生考试数学(上海卷)(附解答)

2004年上海市普通高校春季高考数学试卷(考试时间:2003.12.20)一、填空题(本大题满分48分)1.若复数z 满足2)1(=+i z ,则z 的实部是__________. 2.方程1)3(lg lg =++x x 的解=x __________.3.在A B C ∆中,c b a 、、分别是A ∠、B ∠、C ∠所对的边若 105=∠A , 45=∠B ,22=b , 则=c __________.4.过抛物线x y 42=的焦点F 作垂直于x 轴的直线,交抛物线于A 、B 两点,则以F 为圆心、 AB 为直径的圆方程是________________. 5.已知函数)24(log )(3+=xx f ,则方程4)(1=-x f 的解=x __________. 6.如图,在底面边长为2的正三棱锥ABC V -中,E 是BC 的中点,若 的面积是41,则侧棱VA 与底面所成角的大小为_____________(结果用反三角函数值表示).7.在数列}{n a 中,31=a ,且对任意大于1的正整数n ,点),(1-n n a a 在直线03=--y x上,则=+∞→2)1(lim n a nn _____________.8.根据下列5个图形及相应点的个数的变化规律,试猜测第n ___________个点.(1) (2) (3) (4) (5)9.一次二期课改经验交流会打算交流试点学校的论文5篇和非试点学校的论文3篇若任意排列交流次序,则最先和最后交流的论文都为试点学校的概率是__________(结果用分数表示). 10.若平移椭圆369)3(422=++y x ,使平移后的椭圆中心在第一象限,且它与x 轴、y 轴分别只有一个交点,则平移后的椭圆方程是___________________. 11.如图,在由二项式系数所构成的杨辉三角形中,第 _____行中从左至右第14与第15个数的比为3:2.12.在等差数列}{n a 中,当s r a a =)(s r ≠时,}{n a必定是常数数列然而在等比数列}{n a 中,对某 些正整数r 、s )(s r ≠,当s r a a =时,非常数数列}{n a 的一个例子是____________. 二、选择题(本大题满分16分)13.下列函数中,周期为1的奇函数是 ( )(A )x y π2sin 21-= (B ))32(sin ππ+=x y (C )x tgy 2π= (D )x x y ππcos sin =14.若非空集合N M ⊂,则“M a ∈或N a ∈”是“N M a ∈”的 ( ) (A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分又非必要条件 15.在ABC ∆中,有命题①BC AC AB =-;②0=++CA BC AB ;③若0)()(=-⋅+,则ABC ∆为等 腰三角形;④若0>⋅AB AC ,则ABC ∆为锐角三角形.A B CV E 第0行 1第1行 1 1 第2行 1 2 1第3行 1 3 3 1第4行 1 4 6 4 1第5行 1 5 10 10 5 1 …… …… ……上述命题正确的是 ( ) (A )①② (B )①④ (C )②③ (D )②③④16.若21++=aa p )0(>a ,t q arccos =)11(≤≤-t ,则下列不等式恒成立的是 ( )(A )q p >≥π (B )0≥>q p (C )q p ≥>4 (D )0>≥q p三、解答题(本大题满分86分)17. (本题满分12分) 在直角坐标系xOy 中,已知点)22cos 2,1cos 2(++x x P 和点)1,cos (-x Q ,其中],0[π∈x . 若向量OP 与OQ 垂直,求x 的值.18. (本题满分12分)已知实数p 满足不等式0212<++x x ,试判断方程05222=-+-p z z 有无实根,并给出证明.19. (本题满分14分) 本题共有2个小题,第一小题满分6分,第2小题满分8分.某市2003年共有1万辆燃油型公交车有关部门计划于2004年投入128辆电力型公交车, 随后电力型公交车每年的投入比上一年增加50%,试问: (1) 该市在2010年应该投入多少辆电力型公交车?(2) 到哪一年底,电力型公交车的数量开始超过该市公交车总量的31?20. (本题满分14分) 本题共有2个小题,第一小题满分6分,第2小题满分8分.如图,点P 为斜三棱柱111C B A ABC -的侧棱1BB 上一点,1BB PM ⊥交1AA 于点M , 1BB PN ⊥交1CC 于点N . (1) 求证:MN CC ⊥1;(2) 在任意DEF ∆中有余弦定理:DFE EF DF EF DF DE ∠⋅-+=cos 2222. 拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角 之间的关系式,并予以证明.A A 1B 1 BC 1 C MNP21.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分. 已知函数()a x x f -=,()122++=ax x x g (a 为正常数),且函数()x f 与()x g 的图象在y 轴上的截距相等(1)求a 的值;(2)求函数()()x g x f +的单调递增区间; (3)若n 为正整数,证明:()()4)54(10<⋅n g n f .22.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知倾斜角为︒45的直线l 过点)2,1(-A 和点B ,B 在第一象限,23||=AB .(1) 求点B 的坐标;(2) 若直线l 与双曲线1:222=-y ax C )0(>a 相交于E 、F 两点,且线段EF 的中点坐标为)1,4(,求a 的值;(3) 对于平面上任一点P ,当点Q 在线段AB 上运动时,称||PQ 的最小值为P 与线段AB 的距离. 已知点P 在x 轴上运动,写出点)0,(t P 到线段AB 的距离h 关于t 的函数关系式.2003年上海市普通高校春季高考数学试卷参考答案一、填空题1.1 2.2 3.2 4.4)1(22=+-y x 5.1 6.41arctg 7.3 8.12+-n n 9.14510.14)2(9)3(22=+--y x 11.34 12.)0(,,,,≠--a a a a a ,r 与s 同为奇数或偶数 二、选择题 13.D 14.B 15.C 16.B 三、解答题17. 由OQ OP ⊥,得0)22cos 2()1cos 2(cos =+-+x x x ,利用1cos 22cos 2-=x x ,化简后得0cos cos 22=-x x ,于是0cos =x 或21cos =x ,],0[π∈x ,32ππ或=∴x . 18. 由0212<++x x ,解得212-<<-x ,212-<<-∴p . 方程05222=-+-p z z 的判别式)4(42-=∆p . 212-<<-p ,4241<<∴p ,0<∆,由此得方程05222=-+-p z z 无实根. 19.(1)该市逐年投入的电力型公交车的数量组成等比数列}{n a ,其中,5.1,1281==q a则在2010年应该投入的电力型公交车为14585.11286617=⨯=⋅=q a a (辆)(2)记n n a a a S +++= 21,依据题意,得3110000>+nn S S 于是50005.11)5.11(128>=--nn S (辆),即326575.1>n ,则有,5.7≈n 因此≥n 所以,到2011年底,3120. (1) 证:MN CC PMN CC PN CC PM CC BB CC ⊥⇒⊥∴⊥⊥⇒111111,,//平面 ;(2) 解:在斜三棱柱111C B A ABC -中,有αcos 21111111111222A ACC B BCC A ACC B BCC A ABB S S S S S ⋅-+=,其中α为平面B B CC 11与平面A A CC 11所组成的二面角.∴⊥,1PMN CC 平面 上述的二面角为MNP∠,在PMN∆中,c o s 2222⇒∠⋅-+=M N PMN PN MN PN PM MNP CC MN CC PN CC MN CC PN CC PM ∠⋅⋅⋅-+=cos )()(211111222222,由于111111111,,BB PM S CC MN S CC PN S A ABB A ACC B BCC ⋅=⋅=⋅=,∴有αcos 21111111111222A ACC B BCC A ACC B BCC A ABB S S S S S ⋅-+=. 21.(1)由题意,()()00g f =,1||=a 又0>a ,所以1=a(2)()()12|1|2+++-=+x x x x g x f当1≥x 时,()()x x x g x f 32+=+,它在[)∞+,1上单调递增;当1<x 时,()()22++=+x x x g x f ,它在[)1,21-上单调递增 (3)设()()n g n f n c )(1054⋅=,考查数列{}n c 的变化规律:解不等式11<+nn c c ,由0>n c ,上式化为1)54(1032<⋅+n解得7.3238.0lg 21≈->n ,因N n ∈得4≥n ,于是4321c c c c ≤≤≤,而 >>>654c c c 所以()()()()4)54(10)54(10)54(1025344<⋅=⋅≤⋅g f n g n f22. (1) 直线AB 方程为3-=x y ,设点),(y x B ,由⎩⎨⎧=++--=18)2()1(322y x x y 及0>x ,0>y 得4=x ,1=y ,点B 的坐标为)1,4((2)由⎪⎩⎪⎨⎧=--=13222y x y a x 得0106)1(212=-+-x x a ,设),(,),(2211y x F y x E ,则4221621=-=+-a a x x ,得=a(3)(解法一)设线段AB 上任意一点Q 坐标为)3,(-x x Q ,22)3()(||-+-=x x t PQ ,记2)3(223222)(2)3()()(-++-=-+-=t t x x x t x f )41(≤≤t , 当4123≤≤+t 时,即51≤≤-t 时,2|3|23min )(||-+==t t f PQ , 当423>+t ,即5>t 时,)(x f 在]4,1[上单调递减,∴1)4()4(||2min +-==t f PQ ; 当123<+t ,即1-<t 时,)(x f 在]4,1[上单调递增,)1(||min =f PQ 综上所述,⎪⎪⎩⎪⎪⎨⎧>+-≤≤--<+-=-.51)4(;51;14)1()(22|3|2t t t t t t h t (解法二) 过A 、B 两点分别作线段AB 的垂线,交x 轴于)0,1('-A 、)0,5('B , 当点P 在线段'B A 上,即51≤≤-t 时,由点到直线的距离公式得:2|3|min ||-=t PQ ;当点P 的点在点'A 的左边,1-<t 时,4)1(||||2min +-==t PA PQ ; 当点P 的点在点'A 的右边,5>t时,||||min ==PB PQ 综上所述,⎪⎪⎩⎪⎪⎨⎧>+-≤≤--<+-=-.51)4(;51;14)1()(22|3|2t t t t t t h tx。

2004年上海市普通高校春季高考数学试卷参考答案

2004年上海市普通高校春季高考数学试卷参考答案

2004年上海市普通高校春季高考数学试卷参考答案一、填空题1.1 2.2 3.2 4.4)1(22=+-y x 5.1 6.41arctg 7.3 8.12+-n n 9.14510.14)2(9)3(22=+--y x11.34 12.)0(,,,,≠--a a a a a ,r 与s 同为奇数或偶数 二、选择题 13.D 14.B 15.C 16.B 三、解答题17. 由⊥,得0)22cos 2()1cos 2(cos =+-+x x x ,利用1cos 22cos 2-=x x ,化简后得0cos cos 22=-x x ,于是0cos =x 或21cos =x ,],0[π∈x ,32ππ或=∴x . 18. 由0212<++x x ,解得212-<<-x ,212-<<-∴p . 方程05222=-+-p z z 的判别式)4(42-=∆p . 12-<<-p ,4241<<∴p ,0<∆,由此得方程05222=-+-p z z 无实根. 19.(1)该市逐年投入的电力型公交车的数量组成等比数列}{n a ,其中,5.1,1281==q a则在2010年应该投入的电力型公交车为14585.11286617=⨯=⋅=q a a (辆)。

(2)记n n a a a S +++= 21,依据题意,得3110000>+nnS S 。

于是50005.11)5.11(128>=--n n S (辆),即326575.1>n ,则有,5.7≈n 因此8≥n 。

所以,到2011年底,电力型公交车的数量开始超过该市公交车总量的31。

20. (1) 证:MN CC PMN CC PN CC PM CC BB CC ⊥⇒⊥∴⊥⊥⇒111111,,//平面 ;(2) 解:在斜三棱柱111C B A ABC -中,有αcos 21111111111222A ACC B BCC A ACC B BCC A ABB S S S S S ⋅-+=,其中α为平面B B CC 11与平面A A CC 11所组成的二面角.∴⊥,1PMN CC 平面 上述的二面角为MN P ∠,在PMN ∆中,c o s 2222⇒∠⋅-+=M N PMN PN MN PN PM MNP CC MN CC PN CC MN CC PN CC PM ∠⋅⋅⋅-+=cos )()(211111222222,由于111111111,,BB PM S CC MN S CC PN S A ABB A ACC B BCC ⋅=⋅=⋅=,∴有αcos 21111111111222A ACC B BCC A ACC B BCC A ABB S S S S S ⋅-+=. 21.(1)由题意,()()00g f =,1||=a 又0>a ,所以1=a 。

2004年普通高等学校春季招生考试数学(上海卷)(附解答)

2004年普通高等学校春季招生考试数学(上海卷)(附解答)

2004年上海市普通高校春季高考数学试卷(考试时间:2003.12.20)一、填空题(本大题满分48分)1.若复数z 满足2)1(=+i z ,则z 的实部是__________. 2.方程1)3(lg lg =++x x 的解=x __________.3.在ABC ∆中,c b a 、、分别是A ∠、B ∠、C ∠所对的边若 105=∠A , 45=∠B ,22=b ,则=c __________.4.过抛物线x y 42=的焦点F 作垂直于x 轴的直线,交抛物线于A 、B 两点,则以F 为圆心、 AB 为直径的圆方程是________________. 5.已知函数)24(log )(3+=xx f ,则方程4)(1=-x f 的解=x __________. 6.如图,在底面边长为2的正三棱锥ABC V -中,E 是BC 的中点,若 的面积是41,则侧棱VA 与底面所成角的大小为_____________(结果用反三角函数值表示).7.在数列}{n a 中,31=a ,且对任意大于1的正整数n ,点),(1-n n a a 在直线03=--y x 上,则=+∞→2)1(limn a nn _____________.8.根据下列5个图形及相应点的个数的变化规律,试猜测第n ___________个点.(1) (2) (3) (4) (5)9.一次二期课改经验交流会打算交流试点学校的论文5篇和非试点学校的论文3篇若任意排列交流次序,则最先和最后交流的论文都为试点学校的概率是__________(结果用分数表示). 10.若平移椭圆369)3(422=++y x ,使平移后的椭圆中心在第一象限,且它与x 轴、y 轴分别只有一个交点,则平移后的椭圆方程是___________________. 11.如图,在由二项式系数所构成的杨辉三角形中,第 _____行中从左至右第14与第15个数的比为3:2.12.在等差数列}{n a 中,当s r a a =)(s r ≠时,}{n a必定是常数数列然而在等比数列}{n a 中,对某 些正整数r 、s )(s r ≠,当s r a a =时,非常数数列}{n a 的一个例子是____________. 二、选择题(本大题满分16分)13.下列函数中,周期为1的奇函数是 ( )(A )x y π2sin 21-= (B ))32(sin ππ+=x y (C )x tgy 2π= (D )x x y ππcos sin =14.若非空集合N M ⊂,则“M a ∈或N a ∈”是“N M a ∈”的 ( )(A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分又非必要条件 15.在ABC ∆中,有命题①=-;②=++;③若0)()(=-⋅+,则ABC ∆为等 腰三角形;④若0>⋅AB AC ,则ABC ∆为锐角三角形.ABC VE 第0行 1第1行 1 1 第2行 1 2 1第3行 1 3 3 1第4行 1 4 6 4 1第5行 1 5 10 10 5 1 …… …… ……上述命题正确的是 ( ) (A )①② (B )①④ (C )②③ (D )②③④16.若21++=aa p )0(>a ,t q arccos =)11(≤≤-t ,则下列不等式恒成立的是 ( )(A )q p >≥π (B )0≥>q p (C )q p ≥>4 (D )0>≥q p三、解答题(本大题满分86分)17. (本题满分12分) 在直角坐标系xOy 中,已知点)22cos 2,1cos 2(++x x P 和点)1,cos (-x Q ,其中],0[π∈x . 若向量OP 与垂直,求x 的值.18. (本题满分12分)已知实数p 满足不等式0212<++x x ,试判断方程05222=-+-p z z 有无实根,并给出证明.19. (本题满分14分) 本题共有2个小题,第一小题满分6分,第2小题满分8分.某市2003年共有1万辆燃油型公交车有关部门计划于2004年投入128辆电力型公交车, 随后电力型公交车每年的投入比上一年增加50%,试问: (1) 该市在2010年应该投入多少辆电力型公交车?(2) 到哪一年底,电力型公交车的数量开始超过该市公交车总量的31?20. (本题满分14分) 本题共有2个小题,第一小题满分6分,第2小题满分8分.如图,点P 为斜三棱柱111C B A ABC -的侧棱1BB 上一点,1BB PM ⊥交1AA 于点M , 1BB PN ⊥交1CC 于点N . (1) 求证:MN CC ⊥1;(2) 在任意DEF ∆中有余弦定理:DFE EF DF EF DF DE ∠⋅-+=cos 2222. 拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角 之间的关系式,并予以证明.A A 1B 1 B 1C MNP21.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分. 已知函数()a x x f -=,()122++=ax x x g (a 为正常数),且函数()x f 与()x g 的图象在y 轴上的截距相等 (1)求a 的值;(2)求函数()()x g x f +的单调递增区间;(3)若n 为正整数,证明:()()4)54(10<⋅n g n f .22.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知倾斜角为︒45的直线l 过点)2,1(-A 和点B ,B 在第一象限,23||=AB .(1) 求点B 的坐标;(2) 若直线l 与双曲线1:222=-y ax C )0(>a 相交于E 、F 两点,且线段EF 的中点坐标为)1,4(,求a 的值;(3) 对于平面上任一点P ,当点Q 在线段AB 上运动时,称||PQ 的最小值为P 与线段AB 的距离. 已知点P 在x 轴上运动,写出点)0,(t P 到线段AB 的距离h 关于t 的函数关系式.2003年上海市普通高校春季高考数学试卷参考答案一、填空题1.1 2.2 3.2 4.4)1(22=+-y x 5.1 6.41arctg 7.3 8.12+-n n 9.145 10.14)2(9)3(22=+--y x 11.34 12.)0(,,,,≠--a a a a a ,r 与s 同为奇数或偶数 二、选择题 13.D 14.B 15.C 16.B 三、解答题17. 由OQ OP ⊥,得0)22cos 2()1cos 2(cos =+-+x x x ,利用1cos 22cos 2-=x x ,化简后得0cos cos 22=-x x ,于是0cos =x 或21cos =x ,],0[π∈x ,32ππ或=∴x . 18. 由012<+x,解得12-<<-x ,12-<<-∴p . 方程05222=-+-p z z 的判别式)4(42-=∆p . 212-<<-p ,4241<<∴p ,0<∆,由此得方程05222=-+-p z z 无实根. 19.(1)该市逐年投入的电力型公交车的数量组成等比数列}{n a ,其中,5.1,1281==q a则在2010年应该投入的电力型公交车为14585.11286617=⨯=⋅=q a a (辆)(2)记n n a a a S +++= 21,依据题意,得3110000>+nn S S于是50005.11)5.11(128>=--nn S (辆),即326575.1>n , 则有,5.7≈n 因此8≥n 所以,到2011年底,3120. (1) 证:MN CC PMN CC PN CC PM CC BB CC ⊥⇒⊥∴⊥⊥⇒111111,,//平面 ;(2) 解:在斜三棱柱111C B A ABC -中,有αcos 21111111111222A ACC B BCC A ACC B BCC A ABB S S S S S ⋅-+=,其中α为平面B B CC 11与平面A A CC 11所组成的二面角.∴⊥,1PMN CC 平面 上述的二面角为MN P∠,在PMN∆中,c o s 2222⇒∠⋅-+=M N PMN PN MN PN PM MNP CC MN CC PN CC MN CC PN CC PM ∠⋅⋅⋅-+=cos )()(211111222222,由于111111111,,BB PM S CC MN S CC PN S A ABB A ACC B BCC ⋅=⋅=⋅=,∴有αcos 21111111111222A ACC B BCC A ACC B BCC A ABB S S S S S ⋅-+=. 21.(1)由题意,()()00g f =,1||=a 又0>a ,所以1=a(2)()()12|1|2+++-=+x x x x g x f当1≥x 时,()()x x x g x f 32+=+,它在[)∞+,1上单调递增; 当1<x 时,()()22++=+x x x g x f ,它在[)1,21-上单调递增 (3)设()()n g n f n c )(1054⋅=,考查数列{}nc 的变化规律: 解不等式11<+nn c c ,由0>n c ,上式化为1)54(1032<⋅+n解得7.3238.0lg 21≈->n ,因N n ∈得4≥n ,于是4321c c c c ≤≤≤,而 >>>654c c c 所以()()()())54(10)54(10)54(1025344<⋅=⋅≤⋅g f n g n f 22. (1) 直线AB 方程为3-=x y ,设点),(y x B ,由⎩⎨⎧=++--=18)2()1(322y x x y 及0>x ,0>y 得4=x ,1=y ,点B 的坐标为)1,4((2)由⎪⎩⎪⎨⎧=--=13222y x y a x 得0106)1(21=-+-x x a ,设),(,),(2211y x F y x E ,则4221621=-=+-a a x x ,得=a(3)(解法一)设线段AB 上任意一点Q 坐标为)3,(-x x Q ,22)3()(||-+-=x x t PQ ,记2)3(223222)(2)3()()(-++-=-+-=t t x x x t x f )41(≤≤t , 当4123≤≤+t 时,即51≤≤-t 时,2|3|23min )(||-+==t t f PQ , 当423>+t ,即5>t 时,)(x f 在]4,1[上单调递减,∴1)4()4(||2min +-==t f PQ ; 当123<+t ,即1-<t 时,)(x f 在]4,1[上单调递增,)1(||min ==f PQ 综上所述,⎪⎪⎩⎪⎪⎨⎧>+-≤≤--<+-=-.51)4(;51;14)1()(22|3|2t t t t t t h t (解法二) 过A 、B 两点分别作线段AB 的垂线,交x 轴于)0,1('-A 、)0,5('B , 当点P 在线段'B A 上,即51≤≤-t 时,由点到直线的距离公式得:2|3|min ||-=t PQ ;当点P 的点在点'A 的左边,1-<t 时,4)1(||||2min +-==t PA PQ ; 当点P 的点在点'A 的右边,5>t时,||||min ==PB PQ 综上所述,⎪⎪⎩⎪⎪⎨⎧>+-≤≤--<+-=-.51)4(;51;14)1()(22|3|2t t t t t t h tx。

2004年普通高等学校春季招生考试数学(上海卷)(附解答)

2004年普通高等学校春季招生考试数学(上海卷)(附解答)

2004年上海市普通高校春季高考数学试卷(考试时间:2003.12.20)一、填空题(本大题满分48分)1.若复数z 满足2)1(=+i z ,则z 的实部是__________. 2.方程1)3(lg lg =++x x 的解=x __________.3.在A B C ∆中,c b a 、、分别是A ∠、B ∠、C ∠所对的边若 105=∠A , 45=∠B ,22=b , 则=c __________.4.过抛物线x y 42=的焦点F 作垂直于x 轴的直线,交抛物线于A 、B 两点,则以F 为圆心、 AB 为直径的圆方程是________________. 5.已知函数)24(log )(3+=xx f ,则方程4)(1=-x f 的解=x __________. 6.如图,在底面边长为2的正三棱锥ABC V -中,E 是BC 的中点,若 的面积是41,则侧棱VA 与底面所成角的大小为_____________(结果用反三角函数值表示).7.在数列}{n a 中,31=a ,且对任意大于1的正整数n ,点),(1-n n a a 在直线03=--y x上,则=+∞→2)1(lim n a nn _____________.8.根据下列5个图形及相应点的个数的变化规律,试猜测第n ___________个点.(1) (2) (3) (4) (5)9.一次二期课改经验交流会打算交流试点学校的论文5篇和非试点学校的论文3篇若任意排列交流次序,则最先和最后交流的论文都为试点学校的概率是__________(结果用分数表示). 10.若平移椭圆369)3(422=++y x ,使平移后的椭圆中心在第一象限,且它与x 轴、y 轴分别只有一个交点,则平移后的椭圆方程是___________________. 11.如图,在由二项式系数所构成的杨辉三角形中,第 _____行中从左至右第14与第15个数的比为3:2.12.在等差数列}{n a 中,当s r a a =)(s r ≠时,}{n a必定是常数数列然而在等比数列}{n a 中,对某 些正整数r 、s )(s r ≠,当s r a a =时,非常数数列}{n a 的一个例子是____________. 二、选择题(本大题满分16分)13.下列函数中,周期为1的奇函数是 ( )(A )x y π2sin 21-= (B ))32(sin ππ+=x y (C )x tgy 2π= (D )x x y ππcos sin =14.若非空集合N M ⊂,则“M a ∈或N a ∈”是“N M a ∈”的 ( ) (A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分又非必要条件 15.在ABC ∆中,有命题①BC AC AB =-;②0=++CA BC AB ;③若0)()(=-⋅+,则ABC ∆为等 腰三角形;④若0>⋅AB AC ,则ABC ∆为锐角三角形.A B CV E 第0行 1第1行 1 1 第2行 1 2 1第3行 1 3 3 1第4行 1 4 6 4 1第5行 1 5 10 10 5 1 …… …… ……上述命题正确的是 ( ) (A )①② (B )①④ (C )②③ (D )②③④16.若21++=aa p )0(>a ,t q arccos =)11(≤≤-t ,则下列不等式恒成立的是 ( )(A )q p >≥π (B )0≥>q p (C )q p ≥>4 (D )0>≥q p三、解答题(本大题满分86分)17. (本题满分12分) 在直角坐标系xOy 中,已知点)22cos 2,1cos 2(++x x P 和点)1,cos (-x Q ,其中],0[π∈x . 若向量OP 与OQ 垂直,求x 的值.18. (本题满分12分)已知实数p 满足不等式0212<++x x ,试判断方程05222=-+-p z z 有无实根,并给出证明.19. (本题满分14分) 本题共有2个小题,第一小题满分6分,第2小题满分8分.某市2003年共有1万辆燃油型公交车有关部门计划于2004年投入128辆电力型公交车, 随后电力型公交车每年的投入比上一年增加50%,试问: (1) 该市在2010年应该投入多少辆电力型公交车?(2) 到哪一年底,电力型公交车的数量开始超过该市公交车总量的31?20. (本题满分14分) 本题共有2个小题,第一小题满分6分,第2小题满分8分.如图,点P 为斜三棱柱111C B A ABC -的侧棱1BB 上一点,1BB PM ⊥交1AA 于点M , 1BB PN ⊥交1CC 于点N . (1) 求证:MN CC ⊥1;(2) 在任意DEF ∆中有余弦定理:DFE EF DF EF DF DE ∠⋅-+=cos 2222. 拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角 之间的关系式,并予以证明.A A 1B 1 BC 1 C MNP21.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分. 已知函数()a x x f -=,()122++=ax x x g (a 为正常数),且函数()x f 与()x g 的图象在y 轴上的截距相等(1)求a 的值;(2)求函数()()x g x f +的单调递增区间; (3)若n 为正整数,证明:()()4)54(10<⋅n g n f .22.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知倾斜角为︒45的直线l 过点)2,1(-A 和点B ,B 在第一象限,23||=AB .(1) 求点B 的坐标;(2) 若直线l 与双曲线1:222=-y ax C )0(>a 相交于E 、F 两点,且线段EF 的中点坐标为)1,4(,求a 的值;(3) 对于平面上任一点P ,当点Q 在线段AB 上运动时,称||PQ 的最小值为P 与线段AB 的距离. 已知点P 在x 轴上运动,写出点)0,(t P 到线段AB 的距离h 关于t 的函数关系式.2003年上海市普通高校春季高考数学试卷参考答案一、填空题1.1 2.2 3.2 4.4)1(22=+-y x 5.1 6.41arctg 7.3 8.12+-n n 9.14510.14)2(9)3(22=+--y x 11.34 12.)0(,,,,≠--a a a a a ,r 与s 同为奇数或偶数 二、选择题 13.D 14.B 15.C 16.B 三、解答题17. 由OQ OP ⊥,得0)22cos 2()1cos 2(cos =+-+x x x ,利用1cos 22cos 2-=x x ,化简后得0cos cos 22=-x x ,于是0cos =x 或21cos =x ,],0[π∈x ,32ππ或=∴x . 18. 由0212<++x x ,解得212-<<-x ,212-<<-∴p . 方程05222=-+-p z z 的判别式)4(42-=∆p . 212-<<-p ,4241<<∴p ,0<∆,由此得方程05222=-+-p z z 无实根. 19.(1)该市逐年投入的电力型公交车的数量组成等比数列}{n a ,其中,5.1,1281==q a则在2010年应该投入的电力型公交车为14585.11286617=⨯=⋅=q a a (辆)(2)记n n a a a S +++= 21,依据题意,得3110000>+nn S S 于是50005.11)5.11(128>=--nn S (辆),即326575.1>n ,则有,5.7≈n 因此≥n 所以,到2011年底,3120. (1) 证:MN CC PMN CC PN CC PM CC BB CC ⊥⇒⊥∴⊥⊥⇒111111,,//平面 ;(2) 解:在斜三棱柱111C B A ABC -中,有αcos 21111111111222A ACC B BCC A ACC B BCC A ABB S S S S S ⋅-+=,其中α为平面B B CC 11与平面A A CC 11所组成的二面角.∴⊥,1PMN CC 平面 上述的二面角为MNP∠,在PMN∆中,c o s 2222⇒∠⋅-+=M N PMN PN MN PN PM MNP CC MN CC PN CC MN CC PN CC PM ∠⋅⋅⋅-+=cos )()(211111222222,由于111111111,,BB PM S CC MN S CC PN S A ABB A ACC B BCC ⋅=⋅=⋅=,∴有αcos 21111111111222A ACC B BCC A ACC B BCC A ABB S S S S S ⋅-+=. 21.(1)由题意,()()00g f =,1||=a 又0>a ,所以1=a(2)()()12|1|2+++-=+x x x x g x f当1≥x 时,()()x x x g x f 32+=+,它在[)∞+,1上单调递增;当1<x 时,()()22++=+x x x g x f ,它在[)1,21-上单调递增 (3)设()()n g n f n c )(1054⋅=,考查数列{}n c 的变化规律:解不等式11<+nn c c ,由0>n c ,上式化为1)54(1032<⋅+n解得7.3238.0lg 21≈->n ,因N n ∈得4≥n ,于是4321c c c c ≤≤≤,而 >>>654c c c 所以()()()()4)54(10)54(10)54(1025344<⋅=⋅≤⋅g f n g n f22. (1) 直线AB 方程为3-=x y ,设点),(y x B ,由⎩⎨⎧=++--=18)2()1(322y x x y 及0>x ,0>y 得4=x ,1=y ,点B 的坐标为)1,4((2)由⎪⎩⎪⎨⎧=--=13222y x y a x 得0106)1(212=-+-x x a ,设),(,),(2211y x F y x E ,则4221621=-=+-a a x x ,得=a(3)(解法一)设线段AB 上任意一点Q 坐标为)3,(-x x Q ,22)3()(||-+-=x x t PQ ,记2)3(223222)(2)3()()(-++-=-+-=t t x x x t x f )41(≤≤t , 当4123≤≤+t 时,即51≤≤-t 时,2|3|23min )(||-+==t t f PQ , 当423>+t ,即5>t 时,)(x f 在]4,1[上单调递减,∴1)4()4(||2min +-==t f PQ ; 当123<+t ,即1-<t 时,)(x f 在]4,1[上单调递增,)1(||min =f PQ 综上所述,⎪⎪⎩⎪⎪⎨⎧>+-≤≤--<+-=-.51)4(;51;14)1()(22|3|2t t t t t t h t (解法二) 过A 、B 两点分别作线段AB 的垂线,交x 轴于)0,1('-A 、)0,5('B , 当点P 在线段'B A 上,即51≤≤-t 时,由点到直线的距离公式得:2|3|min ||-=t PQ ;当点P 的点在点'A 的左边,1-<t 时,4)1(||||2min +-==t PA PQ ; 当点P 的点在点'A 的右边,5>t时,||||min ==PB PQ 综上所述,⎪⎪⎩⎪⎪⎨⎧>+-≤≤--<+-=-.51)4(;51;14)1()(22|3|2t t t t t t h tx。

2004年普通高等学校招生统一考试(全国卷)

2004年普通高等学校招生统一考试(全国卷)

2004年普通高等学校招生统一考试(全国卷Ⅱ)文科综合能力测试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分300分,考试用时150分钟第Ⅰ卷本卷共35小题,每小题4分,共140分。

在每题给出的四个选项中,只有一项是最符合题目要求的。

《真腊风土记》(元)记载:①自温州开船,西南行,历闽、广海外诸州港口,过七洲洋,经交趾洋到占城。

又自占城顺风可半月到真腊;②真腊四时常如五六月天,不识霜雪,半年有雨,半年绝无;③信教者削发穿黄,偏袒右肩,其下系黄布裙,跣足。

据此并结合图1,回答1-4题。

1.当时从温州航海前往真腊的较佳时间是A.11-12月 B.3-4月 C.5-6月 D.7-8月2.真腊地区的气候属于A.亚热带季风气候B.热带季风气候C.热带沙漠气候D.热带雨林气候3.③所描述宗教的起源地是A.巴勒斯坦地区B.阿拉伯半岛C.南亚D.中亚4.该宗教的传播方式主要属于A.传染扩散B.迁移扩散C.刺激扩散D.等级扩散GIS中,不同类型的地理空间信息储存在不同的图层上。

叠加不同的图层可以分析不同要素间的相互关系。

回答5-6题。

5.城市交通图层与城市人口分布图层的叠加,可以A.为商业网点选址B.分析建筑设计的合理性C.计算城市水域面积D.估算工农业生产总值6.对1985年与2000年城市土地利用图层进行分析,能够A.计算交通流量的变化B.预测洪涝灾害的发生C.了解城市地域结构变化D.预测城市降水变化趋势图2表示工业区位选择的4种模式,图中圆圈大小表示各因素对工业区位选择影响程度的强弱。

读图2,回答7-8题。

7.工厂区位选择与图示相符的是A.①生物制药厂②食品罐头厂③电脑装配厂④玻璃厂B.①彩印厂②造船厂③纺织厂④皮革厂C.①水泥厂②造纸厂③家具厂④烤烟厂D.①啤酒厂②炼铝厂③缫丝厂④榨糖厂8.德国鲁尔工业区形成初期的区位选择符合A.①B.②C.③D.④对流层中的上升气流会使飞行中的飞机颠簸。

导致对流层气流上升的原因是:上层实际气温低于理论气温(按垂直递减率计算的气温)。

2004年普通高等学校招生全国统一考试文 科 数 学

2004年普通高等学校招生全国统一考试文 科 数 学

2004年普通高等学校招生全国统一考试文 科 数 学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合}032|{|,4|{22<--=<=x x x N x x M ,则集合N M ⋂= ( )A .{2|-<x x }B .{3|>x x }C .{21|<<-x x }D . {32|<<x x } 2.函数)5(51-≠+=x x y 的反函数是( ) A .)0(51≠-=x x yB .)(5R x x y ∈+=C .)0(51≠+=x xyD .)(5R x x y ∈-=3.曲线1323+-=x x y 在点(1,-1)处的切线方程为( )A .43-=x yB .23+-=x yC .34+-=x yD .54-=x y4.已知圆C 与圆1)1(22=+-y x 关于直线x y -=对称,则圆C 的方程为 ( )A .1)1(22=++y x B .122=+y xC .1)1(22=++y xD .1)1(22=-+y x球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式 V=334R π, 其中R 表示球的半径5.已知函数)2tan(ϕ+=x y 的图象过点)0,12(π,则ϕ可以是( )A .6π-B .6π C .12π-D .12π 6.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为 ( )A .75°B .60°C .45°D .30° 7.函数xe y -=的图象( )A .与x e y =的图象 关于y 轴对称B .与xe y =的图象关于坐标原点对称C .与x ey -=的图象关于y 轴对称D .与xey -=的图象关于坐标原点对称8.已知点A (1,2)、B (3,1),则线段AB 的垂直平分线的方程是 ( )A .524=+y xB .524=-y xC .52=+y xD .52=-y x 9.已知向量a 、b 满足:|a |=1,|b |=2,|a -b |=2,则|a +b |= ( )A .1B .2C .5D .610.已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离均为2π,则 球心O 到平面ABC 的距离为( )A .31 B .33 C .32 D .36 11.函数x x y 24cos sin +=的最小正周期为 ( )A .4π B .2π C .πD .2π12.在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521 的数共有 ( )A .56个B .57个C .58个D .60个第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.已知a 为实数,10)(a x +展开式中7x 的系数是-15,则=a .14.设y x ,满足约束条件:⎪⎩⎪⎨⎧≤-≥≥,12,,0y x y x x则y x z 23+=的最大值是 .15.设中心的原点的椭圆与双曲线2222y x -=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 . 16.下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱 ③若四个侧面两两全等,则该四棱柱为直四棱柱④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱其中,真命题的编号是 (写出所有正确结论的编号). 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知等差数列{n a },.21,952==a a (Ⅰ)求{n a }的通项公式; (Ⅱ)令na nb 2=,求数列}{n b 的前n 项和S n .18.(本小题满分12分)已知锐角三角形ABC 中,.51)sin(,53)sin(=-=+B A B A (Ⅰ)求证B A tan 2tan =;(Ⅱ)设AB=3,求AB 边上的高.19.(本小题满分12分)已知8支球队中有3支弱队,以抽签方式将这8支球队分为A、B两组,每组4支. 求:(Ⅰ)A、B两组中有一组恰有两支弱队的概率;(Ⅱ)A组中至少有两支弱队的概率.20.(本小题满分12分)如图,直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=1,CB=2,侧棱AA 1=1,侧面AA1B1B的两条对角线交点为D,B1C1的中点为M.(Ⅰ)求证CD⊥平面BDM;(Ⅱ)求面B1BD与面CBD所成二面角的大小.21.(本小题满分12分)若函数1)1(2131)(23+-+-=x a ax x x f 在区间(1,4)内为减函数,在区间 (6,+∞)上为增函数,试求实数a 的取值范围.22.(本小题满分14分)给定抛物线C :,42x y =F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点.(Ⅰ)设l 的斜率为1,求与夹角的大小;(Ⅱ)设]9,4[,∈=λλ若,求l 在y 轴上截距的变化范围.2004年普通高等学校招生全国统一考试文科数学(必修+选修Ⅱ)参考答案一、选择题C A B C A CD B D B B C二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.21- 14.5 15.1222=+y x 16.②④ 三、解答题17.本小题主要考查等差、等比数列的概念和性质,考查运算能力,满分12分. 解:(Ⅰ)设数列}{n a 的公差为d ,依题意得方程组⎩⎨⎧=+=+,214,911d a d a 解得.4,51==d a所以}{n a 的通项公式为.14+=n a n(Ⅱ)由,21414+=+=n n n b n a 得所以}{n b 是首项512=b ,公式42=q 的等比数列. 于是得}{n b 的前n 项和 .15)12(3212)12(24445-⨯=--⨯=n n n S 18.本小题主要考查三角函数概念,两角和、差的三角函数值以及应用、分析和计算能力,满分12分. (Ⅰ)证明:,51)sin(,53)sin(=-=+B A B A Θ .2tan tan 51sin cos ,52cos sin .51sin cos cos sin ,53sin cos cos sin =⇔⎪⎪⎩⎪⎪⎨⎧==⇔⎪⎪⎩⎪⎪⎨⎧=-=+∴B A B A B A B A B A B A B A 所以.tan 2tan B A =(Ⅱ)解:ππ<+<B A 2Θ,,43)tan(,53)sin(-=+∴=+B A B A 即43tan tan 1tan tan -=-+B A B A ,将B A tan 2tan =代入上式并整理得 .01tan 4tan 22=--B B解得262tan ±=B ,舍去负值得262tan +=B , .62tan 2tan +==∴B A 设AB 边上的高为CD. 则AB=AD+DB=.622tan tan +=+CDB CD A CD 由AB=3,得CD=2+6. 所以AB 边上的高等于2+6.19.本小题主要考查组合、概率等基本概念,相互独立事件和互斥事件等概率的计算,运用 数学知识解决问题的能力,满分12分.(Ⅰ)解法一:三支弱队在同一组的概率为 .7148354815=+C C C C故有一组恰有两支弱队的概率为.76711=-解法二:有一组恰有两支弱队的概率.76482523482523=+C C C C C C (Ⅱ)解法一:A 组中至少有两支弱队的概率 21481533482523=+C C C C C C 解法二:A 、B 两组有一组至少有两支弱队的概率为1,由于对A 组和B 组来说,至少有两支弱队的概率是相同的,所以A 组中至少有两支弱队的概率为.2120.本小题主要考查线面关系和直棱柱等基础知识,同时考查空间想象能力和推理运算能力.满分12分.解法一:(Ⅰ)如图,连结CA 1、AC 1、CM ,则CA 1=.2∵CB=CA 1=2,∴△CBA 1为等腰三角形,又知D 为其底边A 1B 的中点,∴CD ⊥A 1B. ∵A 1C 1=1,C 1B 1=2,∴A 1B 1=3又BB 1=1,A 1B=2. ∵△A 1CB 为直角三角形,D 为A 1B 的中点, ∴CD=21A 1B=1,CD=CC 1,又DM=21AC 1=22,DM=C 1M.∴△CDM ≌△CC 1M ,∠CDM=∠CC 1M=90°,即CD ⊥DM.因为A 1B 、DM 为平在BDM 内两条相交直线,所以CD ⊥平面BDM. (Ⅱ)设F 、G 分别为BC 、BD 的中点,连结B 1G 、FG 、B 1F ,则FG//CD ,FG=21CD. ∴FG=1,FG ⊥BD.由侧面矩形BB 1A 1A 的对角线的交点为D 知BD=B 1D=21A 1B=1, 所以△BB 1D 是边长为1的正三角形. 于是B 1G ⊥BD ,B 1G=.23∴∠B 1GF 是所求二面角的平面角, 又 B 1F 2=B 1B 2+BF 2=1+(2)22=23, ∴ .332123223)21()23(2cos 221212211-=⋅⋅-+=⋅-+=∠FGC B FB FG G B GF B即所求二面角的大小为.33arccos -π 解法二:如图,以C 为原点建立坐标系.(Ⅰ)B (2,0,0),B 1(2,1,0),A 1(0,1,1),D ()21,21,22,M (22,1,0),),21,21,0(),1,1,2(),21,21,22(1-=--==DM B A CD 则,0,01=⋅=⋅DM CD B A CD ∴CD ⊥A 1B ,CD ⊥DM.因为A 1B 、DM 为平面BDM 内两条相交直线,所以CD ⊥平面BDM. (Ⅱ)设BD 中点为G ,连结B 1G ,则G (41,41,423),22(-=BD 、21、21),),41,43,42(1--=G B .,.,0111面角等于所求的二面角的平的夹角与又θG B BD BD CD G B BD G B BD ∴⊥⊥∴=⋅∴.33||||cos 11-=⋅=∴G B CD θ 所以所求的二面角等于.33arccos-π 21.本小题主要考查导数的概念的计算,应用导数研究函数单调性的基本方法,考查综合运解:函数)(x f 的导数 .1)(2-+-='a ax x x f 令0)(='x f ,解得),1(,)1,1(,)1,()(,211,),1()(,211.11+∞---∞>>-+∞≤≤--==a a x f a a x f a a a x x 在内为减函数在上为增函数在函数时即当不合题意上是增函数在函数时即当或为增函数.依题意应有 当.0)(,),6(,0)(,)4,1(>'+∞∈<'∈x f x x f x 时当时所以 .614≤-≤a 解得.75≤≤a所以a 的取值范围是[5,7].22.本小题主要考查抛物线的性质,直线与抛物线的关系以及解析几何的基本方法、思想和综合解题能力。

2004年普通高等学校招生全国统一考试文科全国卷Ⅲ

2004年普通高等学校招生全国统一考试文科全国卷Ⅲ

2004年普通高等学校招生全国统一考试Ⅲ(老课程卷:内蒙古、海南、西藏、陕西、广西等地)数学(文史类)(老课程)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至10页。

考试结束后,将本试卷和答题卡一并交回。

第I 卷 参考公式:三角函数的和差化积公式)]sin()[sin(21cos sin βαβαβα-++= )]sin()[sin(21sin cos βαβαβα--+= )]cos()[cos(21cos cos βαβαβα-++= )]cos()[cos(21sin sin βαβαβα--+-= 一、选择题 (1)设集合(){}22,1,,M x y xy x R y R =+=∈∈,(){}2,0,,N x y xy x R y R =-=∈∈,则集合M N 中元素的个数为( )A .1B .2C .3D .4(2)函数sin2xy =的最小正周期是( ) A .2πB .πC .2πD .4π(3) 记函数13xy -=+的反函数为()y g x =,则(10)g =( )A . 2B . 2-C . 3D . 1-等比数列{}n a 中,29,a = 5243a =,则{}n a 的前4项和为( ) A . 81 B . 120 C .168D . 192(5) 圆2240x y x +-=在点(P 处的切线方程是( ) A .20x -= B .40x -= C .40x +=D .20x +=(6) 61x ⎫⎪⎭展开式中的常数项为( )A . 15B . 15-C . 20D . 20-正棱台、圆台的侧面积公式 l c c S )(21+'=台侧其中c ′、c 分别表示上、下底面周长,l 表示 斜高或母线长台体的体积公式 334R V π=球其中R 表示球的半径(7) 设复数z 的幅角的主值为23π2z =( )A . 2--B . 2i -C . 2+D . 2i(8) 设双曲线的焦点在x 轴上,两条渐近线为12y x =±,则双曲线的离心率e =( )A . 5B .C .D .54(9) 不等式113x <+<的解集为( ) A . ()0,2 B . ()()2,02,4- C . ()4,0-D . ()()4,20,2--(10) 正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为( )A .B .C . 3D .(11) 在ABC 中,3,4AB BC AC ===,则边AC 上的高为( )A .B .C .32D .(12) 4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有( ) A . 12 种 B . 24 种 C 36 种 D . 48 种第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分. 把答案填在题中横线上. (13) 函数)1(log 21-=x y 的定义域是 .(14) 用平面α截半径为R 的球,如果球心到平面α的距离为2R,那么截得小圆的面积与球 的表面积的比值为 . (15) 函数)(cos 21sin R x x x y ∈-=的最大值为 . (16) 设P 为圆122=+y x 上的动点,则点P 到直线01043=--y x 的距离的最小值为 .三、解答题:本大题共6小题,共74分. 解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分) 解方程.012242=--+x x(18) (本小题满分12分) 已知α为锐角,且αααααα2cos 2sin sin cos 2sin ,21tan -=求的值.(19) (本上题满分12分)设数列}{n a 是公差不为零的等差数列,S n 是数列}{n a 的前n 项和,且,9221S S =244S S =,求数列}{n a 的通项公式.20.(本小题满分12分)某村计划建造一个室内面积为800m 2的矩形蔬菜温室,在温室内,沿左、右两侧与后侧 内墙各保留1m 宽的通道,沿前侧内墙保留3m 宽的空地。

2004年普通高等学校招生全国统一考试数学(文科) 北京文(附答案)

2004年普通高等学校招生全国统一考试数学(文科) 北京文(附答案)

2004年普通高等学校招生全国统一考试数学(文科)(北京卷) 第Ⅰ卷一.选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题要求的.(1) 设M=x {-2x≤2}, N=x {x <1}, 则M∩N 等于 (A) x {1<x <2} (B) x {-2<x <1} (C) x {1<x≤2} (D) x {-2≤x <1}(2) 满足条件i z 43+=的复数z 在复平面上对应点的轨迹是(A) 一条直线 (B) 两条直线 (C) 圆 (D) 椭圆(3) 设 m, n 是两条不同的直线,r ,,βα是三个不同的平面.给出下列四个命题: ①若m ⊥α,n ∥α,则m ⊥n; ② 若α∥β, β∥r, m ⊥α,则m ⊥r; ③ 若m ∥α,n ∥α,则m ∥n; ④ 若α⊥r, β⊥r,则α∥β. 其中正确命题的序号是(A)①和② (B)②和③ (C)③和④ (D)①和④(4)已知a,b,c 满足c <b <a,且ac <0,那么下列选项是一定成立的是(A)ab >ac (B) c(b -a)<0 (C) cb 2<ab 2(D) ac(a -c)>0(5)从长度分别为1,2,3,4的四条线段中,任取三条的不同取法有n 种.在这些取法中,以取出的三条线段为边可组成的三角形的个数为m,则nm 等于(A) 0 (B)41 (C)21 (D) 43(6) 如图,在正方体ABCD -A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内 一动点,若P 到直线BC 与直线C 1D 1的距离相等,则动点P 的 轨迹所在的曲线是 (A) 直线 (B) 圆 (C) 双曲线 (D) 抛物线(7)函数32)(2--=ax x x f 在区间[1,2]上存在反函数的充分必要条件是 (A))1,(-∞∈a (B) [)+∞∈,2a(C) [)+∞-∞∈,2)1,( a (D) ]2,1[∈a(8)函数⎩⎨⎧∈∈-=,,,,)(P x x M x x x f 其中P ,M 为实数集R 的两个非空子集,又规定}.),({)(},),({)(M x x f y y M f P x x f y y P f ∈==∈==给出下列四个判断:① 若P∩M=φ,则;)()(φ=M f P f ②若P∩M≠φ,则;)()(φ≠M f P f ③若P ∪M=R,则 ;)()(R M f P f = ④若P ∪M≠R ,则R M f P f ≠)()( 其中正确判断有(A) 3个 (B)2个 (C)1个 (D) 0个第Ⅱ卷 (非选择题 共110分)二.填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. (9) 函数xcox x f sin )(=的最小正周期是 . (10) 方程3lg lg )2lg(2+=+x x 的解是 .(11)圆1)1(22=++y x 的圆心坐标是 ,如果直线x+y+a=0与该圆有公共点,那么实数a 的取值范围是 . (12) 某地球仪上北纬30°纬线的长度为12πcm,该地球仪的半径是 cm, 表面积是 cm 2.(13) 在函数c bx ax x f ++=2)(中,若a,b,c 成等数列且f(0)=-4,则f(x)有最 值(填“大”或“小”),且该值为 .(14)定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{}n a 是等和数列, 且a 1=5, 公和为5,那么a 18的值为 ,且这个数列的前21项和S 21的值为 .三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. (15) (本小题满分14分) 在中, 22cos sin =+A A ,AC=2, AB=3, 求tgA 的值和△ABC 的面积.(16) (本小题满分14分)如图,在正三棱柱ABC -A 1B 1C 1中,AB=2,AA 1=2,由顶点B 沿棱柱侧面经过棱AA 1到顶点C 1的最短路线与AA 1的交点记为M.求: (Ⅰ)三棱柱的侧面展开图的对角线长; (Ⅱ)该最短路线的长及AMM A 1的值;(Ⅲ)平面C 1MB 与平面ABC 所成二面角(锐角)的大小.(17) (本小题满分14分)如图,抛物线关于x 轴对称,它的顶点在坐标原点, 点P(1,2), A(x 1, y 1), B(x 2,y 2)均在直线上.(Ⅰ)写出该抛物线的方程及其准线方程. (Ⅱ)当PA 与PB 的斜率存在且倾角互补时, 求21y y 的值及直线AB 的斜率.(18) (本小题满分14分)函数f(x)定义在[0,1]上,满足)2(2)(xf x f =且f(1)=1,在每个区间i i i ](21,21(1-=1,2,…)上, y=f(x) 的图象都是平行于x 轴的直线的一部分. (Ⅰ)求f(0)及)41(),21(f f 的值,并归纳出 ,2,1)(21(=i if )的表达式;(Ⅱ)设直线x x ix i ,21,211-==轴及y=f(x)的图象围成的矩形的面积为),2,1( =i a i , 求a 1,a 2及)(21lim n n a a a +++∞→ 的值.(19) (本小题满分12分)某段城铁线路上依次有A,B,C 三站,AB=5km,BC=3km. 在列车运行时刻表上, 规定列车8时整从A 站发车,8时07分到达B 站并停车1分钟,8时12分到达C 站.在实际运行时,假设列车从A 站正点发车,在B 站停留1分钟,并在行驶时以同一速度vkm/h匀速行驶,列车从A站到达某站的时间与时刻表上相应时间之差的绝对值称为列车在该站的运行误差.(Ⅰ) 分别写出列车在B, C两站的运行误差;(Ⅱ) 若要求列车在B, C两站的运行误差之和不超过2分钟,求v的取值范围.(20) (本小题满分12分)给定有限正数满足条件T: 每个数都不大于50且总和L=1275.现将这些数按下列要求进行分组,每组数之和不大于150且分组的步骤是:首先,从这些数中选择这样一些数构成第一组,使得150与这组数之和的差r 1与所有可能的其他选择相比是最小的,r 1称为第一组余差;然后,在去掉已选入第一组的数后,对余下的数按第一组的选择方式构成第二组,这时的余差r 2;如此继续构成第三组(余差为r 3)、第四组(余差为r 4)、…,直至第N 组(余差为r N )把这些数全部分完为止。

2004年普通高等学校招生全国统一考试上海卷理科数学试题及答案

2004年普通高等学校招生全国统一考试上海卷理科数学试题及答案

2004年普通高等学校招生上海卷理工类数学试题一、填空题(本大题满分48分,每小题4分) 1.若tgα=,则tg(α+)= .2.设抛物线的顶点坐标为(2,0),准线方程为x=-1,则它的焦点坐标为 .3.设集合A={5,log 2(a+3)},集合B={a,b}.若A∩B={2},则A ∪B= .4.设等比数列{a n }(n ∈N)的公比q=-,且(a 1+a 3+a 5+…+a 2n-1)=,则a 1= .5.设奇函数f(x)的定义域为[-5,5].若当x ∈[0,5]时,f(x)的图象如右图,则不等式f(x)<0的解是 .6.已知点A(1, -2),若向量与={2,3}同向,=2,则点B 的坐标为 . 7.在极坐标系中,点M(4,)到直线l:ρ(2cosθ+sinθ)=4的距离d= .8.圆心在直线2x -y -7=0上的圆C 与y 轴交于两点A(0, -4),B(0, -2),则圆C 的方程为 .9.若在二项式(x+1)10的展开式中任取一项,则该项的系数为奇数的概率是 . (结果用分数表示) 10.若函数f(x)=a在[0,+∞)上为增函数,则实数a 、b 的取值范围是 .11.教材中“坐标平面上的直线”与“圆锥曲线”两章内容体现出解析几何的本质是 . 12.若干个能唯一确定一个数列的量称为该数列的“基本量”.设{a n }是公比为q 的无穷等比数列,下列{a n }的四组量中,一定能成为该数列“基本量”的是第 组.(写出所有符合要求的组号)①S 1与S 2; ②a 2与S 3; ③a 1与a n ; ④q 与a n . 其中n 为大于1的整数, S n 为{a n }的前n 项和. 二、选择题(本大题满分16分,每小题4分)13.在下列关于直线l 、m 与平面α、β的命题中,真命题是( ) (A)若l β且α⊥β,则l ⊥α. (B) 若l ⊥β且α∥β,则l ⊥α. (C) 若l ⊥β且α⊥β,则l ∥α. (D) 若α∩β=m 且l ∥m,则l ∥α. 14.三角方程2sin(-x)=1的解集为( ) (A){x│x=2kπ+,k ∈Z}. (B) {x│x=2kπ+,k ∈Z}.(C) {x│x=2kπ±,k ∈Z}. (D) {x│x=kπ+(-1)K ,k ∈Z}.15.若函数y=f(x)的图象可由函数y=lg(x+1)的图象绕坐标原点O 逆时针旋转得到,则f(x)=( )y=f(x)52xOy(A) 10-x -1. (B) 10x -1. (C) 1-10-x . (D) 1-10x .16.某地2004年第一季度应聘和招聘人数排行榜前5个行业的情况列表如下若用同一行业中应聘人数与招聘人数比值的大小来衡量该行业的就业情况,则根据表中数据,就业形势一定是( )(A)计算机行业好于化工行业. (B) 建筑行业好于物流行业.(C) 机械行业最紧张. (D) 营销行业比贸易行业紧张. 三、解答题(本大题满分86分) 17.(本题满分12分)已知复数z 1满足(1+i)z 1=-1+5i, z 2=a -2-i, 其中i 为虚数单位,a ∈R, 若<,求a 的取值范围.18.(本题满分12分)某单位用木料制作如图所示的框架, 框架的下部是边长分别为x 、y(单位:m)的矩形.上部是等腰直角三角形. 要求框架围成的总面积8cm 2. 问x 、y 分别为多少(精确到0.001m) 时用料最省?19.(本题满分14分) 第1小题满分6分, 第2小题满分8分 记函数f(x)=的定义域为A, g(x)=lg[(x -a -1)(2a -x)](a<1) 的定义域为B.(1) 求A ;(2) 若B A, 求实数a 的取值范围.20.(本题满分14分) 第1小题满分6分, 第2小题满分8分已知二次函数y=f 1(x)的图象以原点为顶点且过点(1,1),反比例函数y=f 2(x)的图象与直线行业名称 计算机 机械 营销 物流 贸易应聘人数 215830 200250 154676 74570 65280行业名称 计算机 营销 机械 建筑 化工招聘人数 124620 102935 89115 76516 70436y=x的两个交点间距离为8,f(x)= f1(x)+ f2(x).(1) 求函数f(x)的表达式;(2) 证明:当a>3时,关于x的方程f(x)= f(a)有三个实数解.21.(本题满分16分) 第1小题满分4分, 第2小题满分6分, 第3小题满分6分如图,P-ABC是底面边长为1的正三棱锥,D、E、F分别为棱长PA、PB、PC上的点, 截面DEF∥底面ABC, 且棱台DEF-ABC与棱锥P-ABC的棱长和相等.(棱长和是指多面体中所有棱的长度之和)(1)证明:P-ABC为正四面体;(2)若PD=PA, 求二面角D-BC-A的大小;(结果用反三角函数值表示)(3)设棱台DEF-ABC的体积为V, 是否存在体积为V且各棱长均相等的直平行六面体,使得它与棱台DEF-ABC有相同的棱长和? 若存在,请具体构造出这样的一个直平行六面体,并给出证明;若不存在,请说明理由.22.(本题满分18分) 第1小题满分6分, 第2小题满分4分, 第3小题满分8分设P1(x1,y1), P1(x2,y2),…, P n(x n,y n)(n≥3,n∈N) 是二次曲线C上的点, 且a1=2,a2=2, …, a n=2构成了一个公差为d(d≠0) 的等差数列, 其中O是坐标原点. 记S n=a1+a2+…+a n.(1)若C的方程为=1,n=3. 点P1(3,0) 及S3=255, 求点P3的坐标;(只需写出一个)(2)若C的方程为(a>b>0). 点P1(a,0), 对于给定的自然数n, 当公差d变化时,求S n的最小值;. (3)请选定一条除椭圆外的二次曲线C及C上的一点P1,对于给定的自然数n,写出符合条件的点P1, P2,…P n存在的充要条件,并说明理由.符号意义本试卷所用符号等同于《实验教材》符号向量坐标={x,y} =(x,y)正切tg tan2004年普通高等学校招生上海卷理工类数学试题参考答案一、填空题(本大题满分48分,每小题4分)1. 32.(5,0)3.{1,2,5}4.25.(-2,0)∪(2,5]6.(5,4)7.8.(x-2)2+(y+3)2=5 9.10.a>0且b≤011.用代数的方法研究图形的几何性质12.①、④二、选择题(本大题满分16分,每小题4分)13.B 14.C 15.A 16.B三、解答题(本大题满分86分)17.【解】由题意得z1==2+3i,于是==,=.<,得a2-8a+7<0,1<a<7.18.【解】由题意得xy+x2=8,∴y==(0<x<4).于定, 框架用料长度为l=2x+2y+2()=(+)x+≥4.当(+)x=,即x=8-4时等号成立.此时, x≈2.343,y=2≈2.828.故当x为2.343m,y为2.828m时, 用料最省.19.【解】(1)2-≥0, 得≥0, x<-1或x≥1即A=(-∞,-1)∪[1,+ ∞)(2) 由(x-a-1)(2a-x)>0, 得(x-a-1)(x-2a)<0.∵a<1,∴a+1>2a, ∴B=(2a,a+1).∵B A, ∴2a≥1或a+1≤-1, 即a≥或a≤-2, 而a<1,∴≤a<1或a≤-2, 故当B A时, 实数a的取值范围是(-∞,-2]∪[,1)20.【解】(1)由已知,设f1(x)=ax2,由f1(1)=1,得a=1, ∴f1(x)= x2.设f2(x)=(k>0),它的图象与直线y=x的交点分别为A(,)B(-,-)由=8,得k=8,. ∴f2(x)=.故f(x)=x2+.(2) 【证法一】f(x)=f(a),得x2+=a2+,即=-x2+a2+.在同一坐标系内作出f2(x)=和f3(x)= -x2+a2+的大致图象,其中f2(x)的图象是以坐标轴为渐近线,且位于第一、三象限的双曲线, f3(x)与的图象是以(0, a2+)为顶点,开口向下的抛物线.因此, f2(x)与f3(x)的图象在第三象限有一个交点,即f(x)=f(a)有一个负数解.又∵f2(2)=4, f3(2)= -4+a2+当a>3时,. f3(2)-f2(2)= a2+-8>0,∴当a>3时,在第一象限f3(x)的图象上存在一点(2,f(2))在f2(x)图象的上方.∴f2(x)与f3(x)的图象在第一象限有两个交点,即f(x)=f(a)有两个正数解.因此,方程f(x)=f(a)有三个实数解.【证法二】由f(x)=f(a),得x2+=a2+,即(x-a)(x+a-)=0,得方程的一个解x1=a.方程x+a-=0化为ax2+a2x-8=0,由a>3,△=a4+32a>0,得x2=, x3=,∵x2<0, x3>0, ∴x1≠ x2,且x2≠ x3.若x1= x3,即a=,则3a2=, a4=4a,得a=0或a=,这与a>3矛盾, ∴x1≠ x3.故原方程f(x)=f(a)有三个实数解.21.【证明】(1) ∵棱台DEF-ABC与棱锥P-ABC的棱长和相等,∴DE+EF+FD=PD+OE+PF.又∵截面DEF∥底面ABC,∴DE=EF=FD=PD=OE=PF,∠DPE=∠EPF=∠FPD=60°, ∴P-ABC是正四面体.【解】(2)取BC的中点M,连拉PM,DM.AM.∵BC⊥PM,BC⊥AM, ∴BC⊥平面PAM,BC⊥DM,则∠DMA为二面角D-BC-A的平面角.由(1)知,P-ABC的各棱长均为1,∴PM=AM=,由D是PA的中点,得sin∠DMA=,∴∠DMA=arcsin.(3)存在满足条件的直平行六面体.棱台DEF-ABC的棱长和为定值6,体积为V.设直平行六面体的棱长均为,底面相邻两边夹角为α,则该六面体棱长和为6, 体积为sinα=V.∵正四面体P-ABC的体积是,∴0<V<,0<8V<1.可知α=arcsim(8V)故构造棱长均为,底面相邻两边夹角为arcsim(8V)的直平行六面体即满足要求.22.【解】(1) a1=2=100,由S3=(a1+a3)=255,得a3=3=70.由,得∴点P3的坐标可以为(2, ).(2) 【解法一】原点O到二次曲线C:(a>b>0)上各点的最小距离为b,最大距离为a.∵a1=2=a2, ∴d<0,且a n=2=a2+(n-1)d≥b2,∴≤d<0. ∵n≥3,>0∴S n=na2+d在[,0)上递增,故S n的最小值为na2+·=.【解法二】对每个自然数k(2≤k≤n),由,解得y=∵0< y≤b2,得≤d<0∴≤d<0以下与解法一相同.(3) 【解法一】若双曲线C:-=1,点P1(a,0),则对于给定的n, 点P1, P2,…P n存在的充要条件是d>0.∵原点O到双曲线C上各点的距离h∈[,+∞),且=a2,∴点P1, P2,…P n存在当且仅当2>2,即d>0.【解法二】若抛物线C:y2=2x,点P1(0,0),则对于给定的n, 点P1, P2,…P n存在的充要条件是d>0.理由同上【解法三】若圆C:(x-a)+y2=a2(a≠0), P1(0,0),则对于给定的n, 点P1, P2,…P n存在的充要条件是0<d≤. ∵原点O到圆C上各点的最小距离为0,最大距离为2,且=0, ∴d>0且2=(n-1)d≤4a2.即0<d≤.。

2004年普通高等学校春季招生考试数学(上海卷)(附解答)

2004年普通高等学校春季招生考试数学(上海卷)(附解答)

2004年上海市普通高校春季高考数学试卷(考试时间:2003.12.20)一、填空题(本大题满分48分)1.若复数z 满足2)1(=+i z ,则z 的实部是__________. 2.方程1)3(lg lg =++x x 的解=x __________.3.在A B C ∆中,c b a 、、分别是A ∠、B ∠、C ∠所对的边若 105=∠A , 45=∠B ,22=b , 则=c __________.4.过抛物线x y 42=的焦点F 作垂直于x 轴的直线,交抛物线于A 、B 两点,则以F 为圆心、 AB 为直径的圆方程是________________. 5.已知函数)24(log )(3+=xx f ,则方程4)(1=-x f 的解=x __________. 6.如图,在底面边长为2的正三棱锥ABC V -中,E 是BC 的中点,若 V A E ∆的面积是41,则侧棱VA 与底面所成角的大小为_____________(结果用反三角函数值表示).7.在数列}{n a 中,31=a ,且对任意大于1的正整数n ,点),(1-n n a a 在直线03=--y x上,则=+∞→2)1(limn a nn _____________.8.根据下列5个图形及相应点的个数的变化规律,试猜测第n ___________个点.(1) (2) (3) (4) (5)9.一次二期课改经验交流会打算交流试点学校的论文5篇和非试点学校的论文3篇若任意排列交流次序,则最先和最后交流的论文都为试点学校的概率是__________(结果用分数表示). 10.若平移椭圆369)3(422=++y x ,使平移后的椭圆中心在第一象限,且它与x 轴、y 轴分别只有一个交点,则平移后的椭圆方程是___________________. 11.如图,在由二项式系数所构成的杨辉三角形中,第 _____行中从左至右第14与第15个数的比为3:2.12.在等差数列}{n a 中,当s r a a =)(s r ≠时,}{n a必定是常数数列然而在等比数列}{n a 中,对某 些正整数r 、s )(s r ≠,当s r a a =时,非常数数列}{n a 的一个例子是____________. 二、选择题(本大题满分16分)13.下列函数中,周期为1的奇函数是 ( )(A )x y π2sin 21-= (B ))32(sin ππ+=x y (C )x tgy 2π= (D )x x y ππcos sin =14.若非空集合N M ⊂,则“M a ∈或N a ∈”是“N M a ∈”的 ( ) (A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分又非必要条件 15.在ABC ∆中,有命题①=-;②=++;③若0)()(=-⋅+,则ABC ∆为等 腰三角形;④若0>⋅,则ABC ∆为锐角三角形.上述命题正确的是 ( )A B CV E 第0行 1第1行 1 1 第2行 1 2 1第3行 1 3 3 1第4行 1 4 6 4 1第5行 1 5 10 10 5 1 …… …… ……(A )①② (B )①④ (C )②③ (D )②③④16.若21++=aa p )0(>a ,t q arccos =)11(≤≤-t ,则下列不等式恒成立的是 ( )(A )q p >≥π (B )0≥>q p (C )q p ≥>4 (D )0>≥q p三、解答题(本大题满分86分)17. (本题满分12分) 在直角坐标系xOy 中,已知点)22cos 2,1cos 2(++x x P 和点)1,cos (-x Q ,其中],0[π∈x . 若向量与垂直,求x 的值.18. (本题满分12分)已知实数p 满足不等式0212<++x x ,试判断方程05222=-+-p z z 有无实根,并给出证明.19. (本题满分14分) 本题共有2个小题,第一小题满分6分,第2小题满分8分.某市2003年共有1万辆燃油型公交车有关部门计划于2004年投入128辆电力型公交车, 随后电力型公交车每年的投入比上一年增加50%,试问: (1) 该市在2010年应该投入多少辆电力型公交车?(2) 到哪一年底,电力型公交车的数量开始超过该市公交车总量的31?20. (本题满分14分) 本题共有2个小题,第一小题满分6分,第2小题满分8分.如图,点P 为斜三棱柱111C B A ABC -的侧棱1BB 上一点,1BB PM ⊥交1AA 于点M , 1BB PN ⊥交1CC 于点N . (1) 求证:MN CC ⊥1;(2) 在任意DEF ∆中有余弦定理:DFE EF DF EF DF DE ∠⋅-+=cos 2222. 拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角 之间的关系式,并予以证明.A A 1B 1 BC 1 C MNP21.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分. 已知函数()a x x f -=,()122++=ax x x g (a 为正常数),且函数()x f 与()x g 的图象在y 轴上的截距相等(1)求a 的值;(2)求函数()()x g x f +的单调递增区间; (3)若n 为正整数,证明:()()4)54(10<⋅n g n f .22.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知倾斜角为︒45的直线l 过点)2,1(-A 和点B ,B 在第一象限,23||=AB . (1) 求点B 的坐标;(2) 若直线l 与双曲线1:222=-y ax C )0(>a 相交于E 、F 两点,且线段EF 的中点坐标为)1,4(,求a 的值;(3) 对于平面上任一点P ,当点Q 在线段AB 上运动时,称||PQ 的最小值为P 与线段AB 的距离. 已知点P 在x 轴上运动,写出点)0,(t P 到线段AB 的距离h 关于t 的函数关系式.2003年上海市普通高校春季高考数学试卷参考答案一、填空题1.1 2.2 3.2 4.4)1(22=+-y x 5.1 6.41arctg 7.3 8.12+-n n 9.14510.14)2(9)3(22=+--y x 11.34 12.)0(,,,,≠--a a a a a ,r 与s 同为奇数或偶数 二、选择题 13.D 14.B 15.C 16.B 三、解答题17. 由OQ OP ⊥,得0)22cos 2()1cos 2(cos =+-+x x x ,利用1cos 22cos 2-=x x ,化简后得0cos cos 22=-x x ,于是0cos =x 或21cos =x ,],0[π∈x ,32ππ或=∴x . 18. 由0212<++x x ,解得212-<<-x ,212-<<-∴p . 方程05222=-+-p z z 的判别式)4(42-=∆p . 212-<<-p ,4241<<∴p ,0<∆,由此得方程05222=-+-p z z 无实根. 19.(1)该市逐年投入的电力型公交车的数量组成等比数列}{n a ,其中,5.1,1281==q a则在2010年应该投入的电力型公交车为14585.11286617=⨯=⋅=q a a (辆)(2)记n n a a a S +++= 21,依据题意,得3110000>+nn S S 于是50005.11)5.11(128>=--nn S (辆),即326575.1>n ,则有,5.7≈n 因此≥n 所以,到2011年底,3120. (1) 证:MN CC PMN CC PN CC PM CC BB CC ⊥⇒⊥∴⊥⊥⇒111111,,//平面 ;(2) 解:在斜三棱柱111C B A ABC -中,有αcos 21111111111222A ACC B BCC A ACC B BCC A ABB S S S S S ⋅-+=,其中α为平面B B CC 11与平面A A CC 11所组成的二面角.∴⊥,1PMN CC 平面 上述的二面角为MNP∠,在PMN∆中,c o s 2222⇒∠⋅-+=M N PMN PN MN PN PM MNP CC MN CC PN CC MN CC PN CC PM ∠⋅⋅⋅-+=cos )()(211111222222,由于111111111,,BB PM S CC MN S CC PN S A ABB A ACC B BCC ⋅=⋅=⋅=,∴有αcos 21111111111222A ACC B BCC A ACC B BCC A ABB S S S S S ⋅-+=. 21.(1)由题意,()()00g f =,1||=a 又0>a ,所以1=a(2)()()12|1|2+++-=+x x x x g x f当1≥x 时,()()x x x g x f 32+=+,它在[)∞+,1上单调递增;当1<x 时,()()22++=+x x x g x f ,它在[)1,21-上单调递增 (3)设()()n g n f n c )(1054⋅=,考查数列{}n c 的变化规律:解不等式11<+nn c c ,由0>n c ,上式化为1)54(1032<⋅+n解得7.3238.0lg 21≈->n ,因N n ∈得4≥n ,于是4321c c c c ≤≤≤,而 >>>654c c c 所以()()()()4)54(10)54(10)54(1025344<⋅=⋅≤⋅g f n g n f22. (1) 直线AB 方程为3-=x y ,设点),(y x B ,由⎩⎨⎧=++--=18)2()1(322y x x y 及0>x ,0>y 得4=x ,1=y ,点B 的坐标为)1,4((2)由⎪⎩⎪⎨⎧=--=13222y x y ax 得0106)1(212=-+-x x a ,设),(,),(2211y x F y x E ,则4221621=-=+-a a x x ,得=a (3)(解法一)设线段AB 上任意一点Q 坐标为)3,(-x x Q ,22)3()(||-+-=x x t PQ ,记2)3(223222)(2)3()()(-++-=-+-=t t x x x t x f )41(≤≤t , 当4123≤≤+t 时,即51≤≤-t 时,2|3|23min )(||-+==t t f PQ , 当423>+t ,即5>t 时,)(x f 在]4,1[上单调递减,∴1)4()4(||2min +-==t f PQ ; 当123<+t ,即1-<t 时,)(x f 在]4,1[上单调递增,)1(||min =f PQ 综上所述,⎪⎪⎩⎪⎪⎨⎧>+-≤≤--<+-=-.51)4(;51;14)1()(22|3|2t t t t t t h t (解法二) 过A 、B 两点分别作线段AB 的垂线,交x 轴于)0,1('-A 、)0,5('B , 当点P 在线段'B A 上,即51≤≤-t 时,由点到直线的距离公式得:2|3|min ||-=t PQ ;当点P 的点在点'A 的左边,1-<t 时,4)1(||||2min +-==t PA PQ ; 当点P 的点在点'A 的右边,5>t时,||||min ==PB PQ 综上所述,⎪⎪⎩⎪⎪⎨⎧>+-≤≤--<+-=-.51)4(;51;14)1()(22|3|2t t t t t t h t x。

2004年普通高等学校招生全国统一考试上海卷理科数学试题含答案

2004年普通高等学校招生全国统一考试上海卷理科数学试题含答案

(D) 营销行业比贸易行业紧张.
三、解答题(本大题满分 86 分)
17.(本题满分 12 分)
已知复数 z1 满足(1+i)z1=-1+5i, z2=a-2-i, 其中 i 为虚数单位,a∈R, 若 z1 − z2 < z1 ,
求 a 的取值范围.
18.(本题满分 12 分) 某单位用木料制作如图所示的框架, 框架的下部是边长分别为 x、y(单位:m)的矩形.
∵正四面体 P-ABC 的体积是 2 ,∴0<V< 2 ,0<8V<1.可知 α=arcsim(8V)
12
12
故构造棱长均为 1 ,底面相邻两边夹角为 arcsim(8V)的直平行六面体即满足要求. 2
22.【解】(1) a1=
OP1
2=100,由 S3= 3 2
(a1+a3)=255,得 a3= OP3
∴PM=AM= 3 ,由 D 是 PA 的中点,得 2
sin∠DMA= AD =
3 ,∴∠DMA=arcsin
3
.
AM 3
3
(3)存在满足条件的直平行六面体. 棱台 DEF-ABC 的棱长和为定值 6,体积为 V.
设直平行六面体的棱长均为 1 ,底面相邻两边夹角为 α, 2
则该六面体棱长和为 6, 体积为 1 sinα=V. 8
22.(本题满分 18 分) 第 1 小题满分 6 分, 第 2 小题满分 4 分, 第 3 小题满分 8 分
设 P1(x1,y1), P1(x2,y2),…, Pn(xn,yn)(n≥3,n∈N) 是 二 次 曲 线 C 上 的 点 , 且 a1= OP1 2,
a2= OP2 2, …, an= OPn 2 构成了一个公差为 d(d≠0) 的等差数列, 其中 O 是坐标原点. 记

2004年普通高等学校招生全国统一考试文科数学(必修+选修I)

2004年普通高等学校招生全国统一考试文科数学(必修+选修I)

2004年普通高等学校招生全国统一考试文科数学(必修+选修I )本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷(选择题 共60分)参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分.1.设集合U={1,2,3,4,5},A={1,2,3},B={2,5},则A ∩( U B )=( )A .{2}B .{2,3}C .{3}D . {1,3}2.已知函数=-=+-=)(,21)(,11lg )(a f a f x x x f 则若 ( )A .21B .-21 C .2D .-2 3.已知a +b 均为单位向量,它们的夹角为60°,那么|a +3b |= ( )A .7B .10C .13D .4 4.函数)1(11>+-=x x y 的反函数是( )A .)1(222<+-=x x x y B .)1(222≥+-=x x x yC .)1(22<-=x x x yD .)1(22≥-=x x x y 5.73)12(xx -的展开式中常数项是( )A .14B .-14C .42D .-42 6.设)2,0(πα∈若,53sin =α则)4cos(2πα+= ( )A .57B .51C .27D .47.椭圆122=+y x 的两个焦点为F 、F ,过F 作垂直于x 轴的直线与椭圆相交,一个交点 球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径为P ,则||2PF = ( )A .23 B .3C .27 D .48.设抛物线x y 82=的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线 l 的斜率的取值范围是( )A .]21,21[- B .[-2,2] C .[-1,1] D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( )A .向右平移6π个单位长度B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H ,设四面体EFGH的表面积为T ,则ST等于 ( )A .91 B .94C .41 D .31 11.从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是 ( )A .95B .94 C .2111 D .2110 12.已知ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为 ( )A .3-21 B .21-3 C .-21-3 D .21+3第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式x +x 3≥0的解集是 .14.已知等比数列{,384,3,}103==a a a n 中则该数列的通项n a = .15.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB=60°,则动点P 的轨迹方程为 .16.已知a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的射影有可能是 .①两条平行直线 ②两条互相垂直的直线 ③同一条直线④一条直线及其外一点在一面结论中,正确结论的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)等差数列{n a }的前n 项和记为S n .已知.50,302010==a a (Ⅰ)求通项n a ; (Ⅱ)若S n =242,求n.18.(本小题满分12分)求函数xxx x x x f 2sin 2cos sin cos sin )(2244-++=的最小正周期、最大值和最小值.19.(本小题满分12分)已知13)(23+-+=x x ax x f 在R 上是减函数,求a 的取值范围.20.(本小题满分12分)从10位同学(其中6女,4男)中随机选出3位参加测验.每位女同学能通过测验的概率均为54,每位男同学能通过测验的概率均为53.试求: (I )选出的3位同学中,至少有一位男同学的概率;(II )10位同学中的女同学甲和男同学乙同时被选中且通过测验的概率.21.(本小题满分12分)如图,已知四棱锥P—ABCD,PB⊥AD,侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD与底面ABCD所成的二面角为120°.(I)求点P到平面ABCD的距离;(II)求面APB与面CPB所成二面角的大小.22.(本小题满分14分)设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125=求a 的值.2004年普通高等学校招生全国统一考试文科数学(必修+选修I )参考答案一、选择题DBCBABCCBACB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x |x ≥0} 14.3·2n -3 15.422=+y x 16.①②④三、解答题17.本小题主要考查等差数列的通项公式、求和公式,考查运算能力.满分12分.解:(Ⅰ)由,50,30,)1(20101==-+=a a d n a a n 得方程组 ⎩⎨⎧=+=+.5019,30911d a d a ……4分 解得.2,121==d a 所以 .102+=n a n ……7分(Ⅱ)由242,2)1(1=-+=n n S d n n na S 得方程 .24222)1(12=⨯-+n n n ……10分 解得).(2211舍去或-==n n ………12分18.本小题主要考查三角函数基本公式和简单的变形,以及三角函数的有关性质.满分12分.解:xx xx x x x f cos sin 22cos sin )cos (sin )(22222--+=.212sin 41)cos sin 1(21)cos sin 1(2cos sin 122+=+=--=x x x x x x x所以函数)(x f 的最小正周期是π,最大值是,43最小值是.41…………12分 19.本小题主要考查导数的概念和计算,应用导数研究函数单调性的基本方法,考查综合运用数学知识解决问题的能力.满分12分.解:函数f (x )的导数:.163)(2-+='x ax x f ………………3分 (Ⅰ)当0)(<'x f (R x ∈)时,)(x f 是减函数.)(01632R x x ax ∈<-+ .3012360-<⇔<+=∆<⇔a a a 且所以,当))((,0)(,3R x x f x f a ∈<'-<知由时是减函数;………………9分………………6分(II )当3-=a 时,133)(23+-+-=x x x x f =,98)31(33+--x 由函数3x y =在R 上的单调性,可知 当3-=a 时,R x x f ∈)(()是减函数;(Ⅲ)当3->a 时,在R 上存在一个区间,其上有,0)(>'x f所以,当3->a 时,函数))((R x x f ∈不是减函数. 综上,所求a 的取值范围是(].3,-∞-………………12分20.本小题主要考查组合,概率等基本概念,独立事件和互斥事件的概率以及运用概率知识 解决实际问题的能力,满分12分. 解:(Ⅰ)随机选出的3位同学中,至少有一位男同学的概率为1-6531036=C C ;………………6分(Ⅱ)甲、乙被选中且能通过测验的概率为.1254535431018=⨯⨯C C ;………………12分21.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.(I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD 、OB 与AD 交于点E ,连结PE. ∵AD ⊥PB ,∴AD ⊥OB ,∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD. 由此知∠PEB 为面PAD 与面ABCD所成二面角的平面角,………………4分 ∴∠PEB=120°,∠PEO=60°由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯, 即点P 到平面ABCD 的距离为23.………………6分 (II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG.又知).0,233,2(),0,23,1(-C A 由此得到:,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅-=-=--=PB BC PB GA 于是有所以θ的夹角BC GA PB BC PB GA ,.⊥⋅⊥等于所求二面角的平面角,…………10分 于是,772||||cos -=⋅=BC GA θ 所以所求二面角的大小为772arccos-π.…………12分 解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG//BC ,FG=21BC. ∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB ,∴∠AGF 是所求二面角的平面角.……9分 ∵AD ⊥面POB ,∴AD ⊥EG.又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°. 在Rt △PEG 中,EG=PE ·cos60°=23. 在Rt △PEG 中,EG=21AD=1. 于是tan ∠GAE=AE EG=23, 又∠AGF=π-∠GAE. 所以所求二面角的大小为π-arctan23.…………12分 22.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分14分. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得 (1-a 2)x 2+2a 2x -2a 2=0. ① ……2分.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率第 11 页 共 11 页 分的取值范围为即离心率且且6).,2()2,26(226,120.11122ΛΛY Θ+∞≠>∴≠<<+=+=e e e a a a aa e (II )设)1,0(),,(),,(12211P y x B y x A.125).1,(125)1,(,125212211x x y x y x =-=-∴=由此得Θ……8分 由于x 1,x 2都是方程①的根,且1-a 2≠0,分所以由得消去所以14.1317,06028912,,.12125,1212172222222222ΛΛΛ=>=----=--=a a a a x a a x a a x。

2004年普通高等学校招生全国统一考试(上海卷)

2004年普通高等学校招生全国统一考试(上海卷)

2004年普通高等学校招生全国统一考试(上海卷)文科综合能力测试本试卷分第Ⅰ卷和第Ⅱ卷两部分,全卷共12页,满分为150分,考试时间为120分钟。

第Ⅰ卷(共72分)一、李斌,中专毕业后进入上海液化压泵厂工作。

23年来,他在工人岗位上刻苦钻研,勇于创新,无私奉献,成为高级技师和公认的数控机床专家,被誉为“知识工人的楷模”。

1.李斌现象说明了,在什么是人才的表述上,下列最恰当的是A.人才是指极少数作出杰出贡献的人B.人才是指在某一领域得过奖的人C.人才是指高学历、高职称的人D.人才是指具有一定知识或技能,能进行创造性劳动并作出积极贡献的人2.由于李斌的品牌效应,上海液压泵厂近年来接到了大量定单,国家重点项目,专用设备项目相继找上门,去年销售额同比增加12.6%。

这说明在经济和社会发展中,人才是第一资源,这一观点反映了①劳动者是生产力的决定性因素②劳动者是生产力发展水平的标志性因素③人才是生产力发展的唯一要素④科学技术和劳动者结合能转化为第一生产力A.②④B.③④C.①④D.①③3.李斌的经历告诉我们,人才是多种多样的,每个人都应该立志成为某一方面的人才,实现人生的应有价值。

为此,我们一定要①考上名牌大学②认识自己的个性特点,确定成才方向③选择热门专业④把个人机遇与国家、民族机遇联系起来A.①③B.②④C.②③D.①④二、《中华人民共和国宪法》是我国的根本大法。

为适应社会主义现代化建设的需要,现行宪法自1982年颁布以来,已在1988年、1993年和1999年作过三次修改,今年又作了第四次修改。

4.2004年3月14日,十届全国人大二次会议经地全体代表认真广泛的审议,以2863票赞成、10票反对、17票弃权,表决通过了《中华人民共和国宪法修正案》。

这表明A.我国国家机构实行民主集中制原则B.人民代表大会制度是我国的基本国体C.不断完善宪法是加强社会主义法制的中心环节D.全国人大是依法治国的主体5.十届全国人大二次会议通过了的宪法修正案指出:“公民的合法的私有财产不受侵犯。

上海文(附答案)

上海文(附答案)

2004年全国高考上海卷数学(文史类)一、填空题(本大题满分48分,每小题4分)1、若tgα=21,则tg(α+4π)= .2、设抛物线的顶点坐标为(2,0),准线方程为x=-1,则它的焦点坐标为 .3、设集合A={5,log 2(a+3)},集合B={a,b}.若A∩B={2},则A ∪B= .4、设等比数列{a n }(n ∈N)的公比q=-21,且∞→n lim (a 1+a 3+a 5+…+a 2n-1)=38,则a 1= .5、设奇函数f(x)的定义域为[-5,5].若当x ∈[0,5]时, f(x)的图象如右图,则不等式f(x)<0的 解是 .6、已知点A(-1,5)和向量a ={2,3},若AB =3a ,则点B 的坐标为 .7、当x 、y 满足不等式组2≤x≤4时,目标函数k=3x-2y 的最大值为 . y≥3x+y≤88、圆心在直线x=2上的圆C 与y 轴交于两点A(0, -4),B(0, -2),则圆C 的方程为 .9、若在二项式(x+1)10的展开式中任取一项,则该项的系数为奇数的概率是 . (结果用分数表示)10、若函数f(x)=a 2+-b x 在[0,+∞)上为增函数,则实数a 、b 的取值范围 是 .11、教材中“坐标平面上的直线”与“圆锥曲线”两章内容体现出解析几何的本质是 . 12、若干个能唯一确定一个数列的量称为该数列的“基本量”.设{a n }是公比为q 的无穷等比数列,下列{a n }的四组量中,一定能成为该数列“基本量”的是 第 组.(写出所有符合要求的组号) ①S 1与S 2; ②a 2与S 3; ③a 1与a n ; ④q 与a n . 其中n 为大于1的整数, S n 为{a n }的前n 项和.二、选择题(本大题满分16分,每小题4分)13、在下列关于直线l 、m 与平面α、β的命题中,真命题是( ) (A)若l ⊂β且α⊥β,则l ⊥α. (B) 若l ⊥β且α∥β,则l ⊥α. (C) 若l ⊥β且α⊥β,则l ∥α. (D) 若α∩β=m 且l ∥m,则l ∥α.14、三角方程2sin(2π-x)=1的解集为( )(A){x│x=2kπ+3π,k ∈Z}. (B) {x│x=2kπ+35π,k ∈Z}.(C) {x│x=2kπ±3π,k ∈Z}. (D) {x│x=kπ+(-1)K,k ∈Z}.15、若函数y=f(x)的图象与函数y=lg(x+1)的图象关于直线x-y=0对称,则 f(x)=( )(A)10x -1. (B) 1-10x . (C) 1-10-x . (D) 10-x -1.16、某地2004年第一季度应聘和招聘人数排行榜前5个行业的情况列表如下若用同一行业中应聘人数与招聘人数比值的大小来衡量该行业的就业情况,则根据表中数据,就业形势一定是( )(A)计算机行业好于化工行业. (B) 建筑行业好于物流行业.(C) 机械行业最紧张. (D) 营销行业比贸易行业紧张. 三、解答题(本大题满分86分) 17、(本题满分12分)已知复数z 1满足(1+i)z 1=-1+5i, z 2=a -2-i, 其中i 为虚数单位,a ∈R, 若21z z -<1z ,求a 的取值范围.18、(本题满分12分)某单位用木料制作如图所示的框架, 框架的下部是边长分别为x 、y(单位:m)的矩形.上部是等腰直角三角形. 要求框架围成的总面积8cm 2. 问x 、y 分别为多少(精确到0.001m) 时用料最省?19、(本题满分14分) 第1小题满分6分, 第2小题满分8分 记函数f(x)=132++-x x 的定义域为A, g(x)=lg[(x -a -1)(2a -x)](a<1) 的定义域为B.(1) 求A ;(2) 若B ⊆A, 求实数a 的取值范围.20、(本题满分14分) 第1小题满分6分, 第2小题满分8分 如图, 直线y=21x 与抛物线y=81x 2-4交于A 、B 两点, 线段AB 的垂直平分线与直线y=-5交于Q 点.(1) 求点Q 的坐标;(2) 当P 为抛物线上位于线段AB 下方(含A 、B) 的动点时, 求ΔOPQ 面积的最大值.21、(本题满分16分) 第1小题满分4分, 第2小题满分6分, 第3小题满分6分如图,P-ABC 是底面边长为1的正三棱锥,D 、E 、F 分别为棱长PA 、PB 、PC 上的点, 截面DEF ∥底面ABC, 且棱台DEF-ABC 与棱锥P-ABC 的棱长和相等.(棱长和是指多面体中所有棱的长度之和)(1) 证明:P-ABC 为正四面体; (2) 若PD=21PA, 求二面角D-BC-A 的大小;(结果用反三角函数值表示) (3) 设棱台DEF-ABC 的体积为V , 是 否存在体积为V 且各棱长均相等的直 平行六面体,使得它与棱台DEF-ABC 有相同的棱长和? 若存在,请具体构造 出这样的一个直平行六面体,并给出证 明;若不存在,请说明理由.22、(本题满分18分) 第1小题满分6分, 第2小题满分4分, 第3小题满分8分 设P 1(x 1,y 1), P 1(x 2,y 2),…, P n (x n ,y n )(n≥3,n ∈N) 是二次曲线C 上的点, 且a 1=1OP 2,a 2=2OP 2, …, a n =nOP 2构成了一个公差为d(d≠0) 的等差数列, 其中O 是坐标原点. 记S n =a 1+a 2+…+a n . (1) 若C 的方程为92x-y 2=1,n=3. 点P 1(3,0) 及S 3=162, 求点P 3的坐标;(只需写出一个)(2) 若C 的方程为y 2=2px(p≠0). 点P 1(0,0), 对于给定的自然数n, 证明: (x 1+p)2, (x 2+p)2, …,(x n +p)2成等差数列; (3) 若C 的方程为12222=+by ax (a>b>0). 点P 1(a,0), 对于给定的自然数n, 当公差d 变化时, 求S n 的最小值.上海数学(文史类) 参考答案一、填空题(本大题满分48分,每小题4分)1、32、(5,0)3、{1,2,5}4、25、(-2,0)∪(2,5]6、(5,4)7、68、(x -2)2+(y+3)2=5 9、114 10、a>0且b≤011、用代数的方法研究图形的几何性质 12、①、④ 二、选择题(本大题满分16分,每小题4分) 13、B 14、C 15、A 16、B 三、解答题(本大题满分86分) 17、【解】由题意得 z 1=ii ++-151=2+3i,于是21z z -=i a 24+-=4)4(2+-a ,1z =13.4)4(2+-a <13,得a 2-8a+7<0,1<a<7.18、【解】由题意得xy+41x 2=8,∴y=xx482-=48x x-(0<x<42).于定, 框架用料长度为 l=2x+2y+2(x 22)=(23+2)x+x16≥4246+.当(23+2)x=x16,即x=8-42时等号成立.此时, x≈2.343,y =22≈2.828.故当x 为2.343m,y 为2.828m 时, 用料最省. 19、【解】(1)2-13++x x ≥0, 得11+-x x ≥0, x<-1或x≥1即A=(-∞,-1)∪[1,+ ∞)(2) 由(x -a -1)(2a -x)>0, 得(x -a -1)(x -2a)<0. ∵a<1,∴a+1>2a, ∴B=(2a,a+1). ∵B ⊆A, ∴2a≥1或a+1≤-1, 即a≥21或a≤-2, 而a<1,∴21≤a<1或a≤-2, 故当B ⊆A 时, 实数a 的取值范围是(-∞,-2)∪[21,1)20、【解】(1) 解方程组 y=21x 得X 1=-4,x 2=8y=81x2-4y 1=-2,y 2=4即A(-4,-2),B(8,4), 从而AB 的中点为M(2,1). 由k AB ==21,直线AB 的垂直平分线方程y -1=21(x -2).令y=-5, 得x=5, ∴Q(5,-5) (2) 直线OQ 的方程为x+y=0, 设P(x,81x 2-4).∵点P 到直线OQ 的距离d=24812-+x x =3282812-+x x ,25=OQ ,∴S ΔOPQ =21d OQ =3281652-+x x .∵P 为抛物线上位于线段AB 下方的点, 且P 不在直线OQ 上, ∴-4≤x<43-4或43-4<x≤8.∵函数y=x 2+8x -32在区间[-4,8] 上单调递增,∴当x=8时, ΔOPQ 的面积取到最大值30. 21、【证明】(1) ∵棱台DEF-ABC 与棱锥P-ABC 的棱长和相等,∴DE+EF+FD=PD+OE+PF. 又∵截面DEF ∥底面ABC, ∴DE=EF=FD=PD=OE=PF,∠DPE=∠EPF=∠FPD=60°, ∴P-ABC 是正四面体. 【解】(2)取BC 的中点M,连拉PM,DM.AM. ∵BC ⊥PM,BC ⊥AM, ∴BC ⊥平面PAM,BC ⊥DM, 则∠DMA 为二面角D-BC-A 的平面角. 由(1)知,P-ABC 的各棱长均为1, ∴PM=AM=23,由D 是PA 的中点,得sin ∠DMA=33=AMAD ,∴∠DMA=arcsin33.(3)存在满足条件的直平行六面体.棱台DEF-ABC 的棱长和为定值6,体积为V . 设直平行六面体的棱长均为21,底面相邻两边夹角为α,则该六面体棱长和为6, 体积为81sinα=V .∵正四面体P-ABC 的体积是122,∴0<V<122,0<8V<1.可知α=arcsim(8V)故构造棱长均为21,底面相邻两边夹角为arcsim(8V)的直平行六面体即满足要求.22、【解】(1) a 1=1OP 2=9,由S 3=23(a 1+a 3)=162,得a 3=3OP 3=99.∴点P 3的坐标可以为(310,3).(2)对每个自然数k,1≤k≤n,由题意kOP 2=(k -1)d,及y 2k =2px k ,得x 2k+2px k =(k -1)d x 2k+y 2k=(k -1)d即(x k +p)2=p 2+(k -1)d, ∴(x 1+p)2, (x 2+p)2, …,(x n +p)2是首项为p 2,公差为d 的等差数列. (3) 【解法一】原点O 到二次曲线C:12222=+by ax (a>b>0)上各点的最小距离为b,最大距离为a.∵a 1=1OP 2=a 2, ∴d<0,且a n =n OP 2=a 2+(n -1)d≥b 2,∴122--n a b ≤d<0. ∵n≥3,2)1(-n n >0∴S n =na 2+2)1(-n n d 在[122--n a b ,0)上递增,故S n 的最小值为na 2+2)1(-n n ·122--n a b =2)(22b a n +.【解法二】对每个自然数k(2≤k≤n),由x 2k +y 2k =a 2+(k -1)d ,解得y 2k=222)1(ba d kb ---22ax k +22by k =1由 92x-y 2=1,得x 23=90x 23+y 23=99y 23=9∵0< y 2k≤b 2,得122--k a b ≤d<0∴122--n ab ≤d<0以下与解法一相同.。

2004年高考文综全国卷1

2004年高考文综全国卷1

2004年普通高等学校招生全国统一考试(全国卷Ⅰ)文科综合能力测试第1卷(选择题,共140分)在每题给出的四个选项中,只有一项是最符合题目要求的。

<<真腊风土记>>(元)记载:①白温州开船,西南行,历闽、广海外诸州港口,过七洲洋,经交趾洋到占城。

又自占城顶风可半月到真腊;②真腊四时常如五六月天,不识霜雪,半年有雨,半年绝无;③信教者削发穿黄,偏袒右肩,其下系黄布裙,跪足。

据此并结合图1,回答1—4题。

1.当时从温州航梅前往真腊的较佳时间是人11-12月D.3-4月C.5~6月D.7-8月2.真腊地区的气候属于A.亚热带季风气候B.热带季风气候c.热带沙漠气候D.热带雨林气候3.③所描述宗教的起源地是A.巴勒斯坦地区D.阿拉伯半岛c.南亚D.中亚4.该宗教的传播方式主要属于A.传染扩散B.迁移扩散c.刺激扩散D.等级扩散GIS中,不同类型的地理空间信息储存在不同的图层上。

叠加不同的图层可以分析不同要素间的相互关系。

回答5-6是。

5.城市交通图层与城市人口分布图层的叠加,可以A.为商业网点选址B.分析建筑设计的合理性C.计算城市水域面积D.估算工农业生产总值6.对1985年与2000年城市土地利用田层进行分析,能够A.计算交通流量的变化B.预测洪涝灾害的发生C.了解城市地域结构变化D.预测城市降水变化趋势图2表示工业区位选择的4种模式,图中圆圈大小表示各因素对工业区位选择影响程度的强弱。

读图2,回答7~8题。

7.工厂区位选择与图示相符的是A.①生物制药厂②食品罐头厂③电脑装配厂④玻璃厂B.①彩印厂②造船厂③纺织厂④皮革厂c.①水泥厂②造纸厂③家具厂④烤烟厂D.①啤酒厂②炼铝广③缚丝厂④榨糖厂8.德国鲁尔工业区形成初期的区位选择符合A.①B.②C.③D.④对流层中的上升气流会使飞行中的飞机颠簸。

导致对流层气流上升的原固是:上居实际气温低于理论气温(按垂直递减率计算的气温)。

田3表示四种对流层气温分布状况,分析图3回答9-10题。

2004年普通高等学校春季招生考试数学(上海卷)(附解答)

2004年普通高等学校春季招生考试数学(上海卷)(附解答)

2004年上海市普通高校春季高考数学试卷(考试时间:2003.12.20)一、填空题(本大题满分48分)1.若复数z 满足2)1(=+i z ,则z 的实部是__________. 2.方程1)3(lg lg =++x x 的解=x __________.3.在A B C ∆中,c b a 、、分别是A ∠、B ∠、C ∠所对的边若 105=∠A , 45=∠B ,22=b , 则=c __________.4.过抛物线x y 42=的焦点F 作垂直于x 轴的直线,交抛物线于A 、B 两点,则以F 为圆心、 AB 为直径的圆方程是________________. 5.已知函数)24(log )(3+=xx f ,则方程4)(1=-x f 的解=x __________. 6.如图,在底面边长为2的正三棱锥ABC V -中,E 是BC 的中点,若 的面积是41,则侧棱VA 与底面所成角的大小为_____________(结果用反三角函数值表示).7.在数列}{n a 中,31=a ,且对任意大于1的正整数n ,点),(1-n n a a 在直线03=--y x上,则=+∞→2)1(lim n a nn _____________.8.根据下列5个图形及相应点的个数的变化规律,试猜测第n ___________个点.(1) (2) (3) (4) (5)9.一次二期课改经验交流会打算交流试点学校的论文5篇和非试点学校的论文3篇若任意排列交流次序,则最先和最后交流的论文都为试点学校的概率是__________(结果用分数表示). 10.若平移椭圆369)3(422=++y x ,使平移后的椭圆中心在第一象限,且它与x 轴、y 轴分别只有一个交点,则平移后的椭圆方程是___________________. 11.如图,在由二项式系数所构成的杨辉三角形中,第 _____行中从左至右第14与第15个数的比为3:2.12.在等差数列}{n a 中,当s r a a =)(s r ≠时,}{n a必定是常数数列然而在等比数列}{n a 中,对某 些正整数r 、s )(s r ≠,当s r a a =时,非常数数列}{n a 的一个例子是____________. 二、选择题(本大题满分16分)13.下列函数中,周期为1的奇函数是 ( )(A )x y π2sin 21-= (B ))32(sin ππ+=x y (C )x tgy 2π= (D )x x y ππcos sin =14.若非空集合N M ⊂,则“M a ∈或N a ∈”是“N M a ∈”的 ( ) (A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分又非必要条件 15.在ABC ∆中,有命题①BC AC AB =-;②0=++CA BC AB ;③若0)()(=-⋅+,则ABC ∆为等 腰三角形;④若0>⋅AB AC ,则ABC ∆为锐角三角形.A B CV E 第0行 1第1行 1 1 第2行 1 2 1第3行 1 3 3 1第4行 1 4 6 4 1第5行 1 5 10 10 5 1 …… …… ……上述命题正确的是 ( ) (A )①② (B )①④ (C )②③ (D )②③④16.若21++=aa p )0(>a ,t q arccos =)11(≤≤-t ,则下列不等式恒成立的是 ( )(A )q p >≥π (B )0≥>q p (C )q p ≥>4 (D )0>≥q p三、解答题(本大题满分86分)17. (本题满分12分) 在直角坐标系xOy 中,已知点)22cos 2,1cos 2(++x x P 和点)1,cos (-x Q ,其中],0[π∈x . 若向量OP 与OQ 垂直,求x 的值.18. (本题满分12分)已知实数p 满足不等式0212<++x x ,试判断方程05222=-+-p z z 有无实根,并给出证明.19. (本题满分14分) 本题共有2个小题,第一小题满分6分,第2小题满分8分.某市2003年共有1万辆燃油型公交车有关部门计划于2004年投入128辆电力型公交车, 随后电力型公交车每年的投入比上一年增加50%,试问: (1) 该市在2010年应该投入多少辆电力型公交车?(2) 到哪一年底,电力型公交车的数量开始超过该市公交车总量的31?20. (本题满分14分) 本题共有2个小题,第一小题满分6分,第2小题满分8分.如图,点P 为斜三棱柱111C B A ABC -的侧棱1BB 上一点,1BB PM ⊥交1AA 于点M , 1BB PN ⊥交1CC 于点N . (1) 求证:MN CC ⊥1;(2) 在任意DEF ∆中有余弦定理:DFE EF DF EF DF DE ∠⋅-+=cos 2222. 拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角 之间的关系式,并予以证明.A A 1B 1 BC 1 C MNP21.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分. 已知函数()a x x f -=,()122++=ax x x g (a 为正常数),且函数()x f 与()x g 的图象在y 轴上的截距相等(1)求a 的值;(2)求函数()()x g x f +的单调递增区间; (3)若n 为正整数,证明:()()4)54(10<⋅n g n f .22.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知倾斜角为︒45的直线l 过点)2,1(-A 和点B ,B 在第一象限,23||=AB .(1) 求点B 的坐标;(2) 若直线l 与双曲线1:222=-y ax C )0(>a 相交于E 、F 两点,且线段EF 的中点坐标为)1,4(,求a 的值;(3) 对于平面上任一点P ,当点Q 在线段AB 上运动时,称||PQ 的最小值为P 与线段AB 的距离. 已知点P 在x 轴上运动,写出点)0,(t P 到线段AB 的距离h 关于t 的函数关系式.2003年上海市普通高校春季高考数学试卷参考答案一、填空题1.1 2.2 3.2 4.4)1(22=+-y x 5.1 6.41arctg 7.3 8.12+-n n 9.14510.14)2(9)3(22=+--y x 11.34 12.)0(,,,,≠--a a a a a ,r 与s 同为奇数或偶数 二、选择题 13.D 14.B 15.C 16.B 三、解答题17. 由OQ OP ⊥,得0)22cos 2()1cos 2(cos =+-+x x x ,利用1cos 22cos 2-=x x ,化简后得0cos cos 22=-x x ,于是0cos =x 或21cos =x ,],0[π∈x ,32ππ或=∴x . 18. 由0212<++x x ,解得212-<<-x ,212-<<-∴p . 方程05222=-+-p z z 的判别式)4(42-=∆p . 212-<<-p ,4241<<∴p ,0<∆,由此得方程05222=-+-p z z 无实根. 19.(1)该市逐年投入的电力型公交车的数量组成等比数列}{n a ,其中,5.1,1281==q a则在2010年应该投入的电力型公交车为14585.11286617=⨯=⋅=q a a (辆)(2)记n n a a a S +++= 21,依据题意,得3110000>+nn S S 于是50005.11)5.11(128>=--nn S (辆),即326575.1>n ,则有,5.7≈n 因此≥n 所以,到2011年底,3120. (1) 证:MN CC PMN CC PN CC PM CC BB CC ⊥⇒⊥∴⊥⊥⇒111111,,//平面 ;(2) 解:在斜三棱柱111C B A ABC -中,有αcos 21111111111222A ACC B BCC A ACC B BCC A ABB S S S S S ⋅-+=,其中α为平面B B CC 11与平面A A CC 11所组成的二面角.∴⊥,1PMN CC 平面 上述的二面角为MNP∠,在PMN∆中,c o s 2222⇒∠⋅-+=M N PMN PN MN PN PM MNP CC MN CC PN CC MN CC PN CC PM ∠⋅⋅⋅-+=cos )()(211111222222,由于111111111,,BB PM S CC MN S CC PN S A ABB A ACC B BCC ⋅=⋅=⋅=,∴有αcos 21111111111222A ACC B BCC A ACC B BCC A ABB S S S S S ⋅-+=. 21.(1)由题意,()()00g f =,1||=a 又0>a ,所以1=a(2)()()12|1|2+++-=+x x x x g x f当1≥x 时,()()x x x g x f 32+=+,它在[)∞+,1上单调递增;当1<x 时,()()22++=+x x x g x f ,它在[)1,21-上单调递增 (3)设()()n g n f n c )(1054⋅=,考查数列{}n c 的变化规律:解不等式11<+nn c c ,由0>n c ,上式化为1)54(1032<⋅+n解得7.3238.0lg 21≈->n ,因N n ∈得4≥n ,于是4321c c c c ≤≤≤,而 >>>654c c c 所以()()()()4)54(10)54(10)54(1025344<⋅=⋅≤⋅g f n g n f22. (1) 直线AB 方程为3-=x y ,设点),(y x B ,由⎩⎨⎧=++--=18)2()1(322y x x y 及0>x ,0>y 得4=x ,1=y ,点B 的坐标为)1,4((2)由⎪⎩⎪⎨⎧=--=13222y x y a x 得0106)1(212=-+-x x a ,设),(,),(2211y x F y x E ,则4221621=-=+-a a x x ,得=a(3)(解法一)设线段AB 上任意一点Q 坐标为)3,(-x x Q ,22)3()(||-+-=x x t PQ ,记2)3(223222)(2)3()()(-++-=-+-=t t x x x t x f )41(≤≤t , 当4123≤≤+t 时,即51≤≤-t 时,2|3|23min )(||-+==t t f PQ , 当423>+t ,即5>t 时,)(x f 在]4,1[上单调递减,∴1)4()4(||2min +-==t f PQ ; 当123<+t ,即1-<t 时,)(x f 在]4,1[上单调递增,)1(||min =f PQ 综上所述,⎪⎪⎩⎪⎪⎨⎧>+-≤≤--<+-=-.51)4(;51;14)1()(22|3|2t t t t t t h t (解法二) 过A 、B 两点分别作线段AB 的垂线,交x 轴于)0,1('-A 、)0,5('B , 当点P 在线段'B A 上,即51≤≤-t 时,由点到直线的距离公式得:2|3|min ||-=t PQ ;当点P 的点在点'A 的左边,1-<t 时,4)1(||||2min +-==t PA PQ ; 当点P 的点在点'A 的右边,5>t时,||||min ==PB PQ 综上所述,⎪⎪⎩⎪⎪⎨⎧>+-≤≤--<+-=-.51)4(;51;14)1()(22|3|2t t t t t t h tx。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2004年普通高等学校招生全国统一考试(上海卷)数学(文史类)一、填空题(本大题满分48分,每小题4分) 1.若tg α=21,则tg(α+4π)= . 2.设抛物线的顶点坐标为(2,0),准线方程为x =-1,则它的焦点坐标为 . 3.设集合A={5,log 2(a +3)},集合B={a ,b}.若A∩B={2},则A∪B= . 4.设等比数列{a n }(n∈N)的公比q=-21,且∞→n lim (a 1+a 3+a 5+…+a 2n-1)=38,则a 1= .5.设奇函数f(x)的定义域为[-5,5].若当x ∈[0,5]时, f(x)的图象如右图,则不等式f(x)<0的 解是 .6.已知点A(-1,-5)和向量a ={2,3},若AB =3a ,则点B 的坐 标为 .2≤x ≤47.当x 、y 满足不等式组 y≥3 时,目标函数k=3x -2y 的最大值为 .x +y≤88.圆心在直线x =2上的圆C 与y 轴交于两点A(0, -4),B(0, -2),则圆C 的方程为 .9.若在二项式(x +1)10的展开式中任取一项,则该项的系数为奇数的概率是 . (结果用分数表示)10.若函数f(x)= a 2+-b x 在[0,+∞]上为增函数,则实数a 、b 的取值范围是 .11.教材中“坐标平面上的直线”与“圆锥曲线”两章内容体现出解析几何的本质是.12.若干个能唯一确定一个数列的量称为该数列的“基本量”.设{a n }是公比为q 的无穷等比数列,下列{a n }的四组量中,一定能成为该数列“基本量”的是第 组.(写出所有符合要求的组号)①S 1与S 2; ②a 2与S 3; ③a 1与a n ; ④q 与a n . 其中n 为大于1的整数, S n 为{a n }的前n 项和. 二、选择题(本大题满分16分,每小题4分)13.在下列关于直线l 、m 与平面α、β的命题中,真命题是( )A .若l ⊂β且α⊥β,则l ⊥α.B .若l ⊥β且α∥β,则l ⊥α.C .若l ⊥β且α⊥β,则l ∥α.D .若α∩β=m 且l ∥m,则l ∥α. 14.三角方程2sin(2π-x )=1的解集为( )A .{x │x =2k π+3π,k∈Z}.B .{x │x =2k π+35π,k∈Z}. C .{x │x =2k π±3π,k∈Z}.D .{x │x =k π+(-1)K3x ,k∈Z}.15.若函数y=f(x)的图象与函数y=lg(x +1)的图象关于直线x -y=0对称,则f(x)= ( ) A .10x-1. B .1-10x. C .1-10—x. D .10—x-1. 16.某地2004年第一季度应聘和招聘人数排行榜前5个行业的情况列表如下若用同一行业中应聘人数与招聘人数比值的大小来衡量该行业的就业情况,则根据表中数据,就业形势一定是( ) A .计算机行业好于化工行业.B .建筑行业好于物流行业.C .机械行业最紧张.D .营销行业比贸易行业紧张.三、解答题(本大题满分86分) 17.(本题满分12分)已知复数z 1满足(1+i )z 1=-1+5i , z 2=a -2-i , 其中i 为虚数单位,a ∈R, 若21z z -<1z ,求a 的取值范围.行业名称 计算机机械营销物流贸易 应聘人数215830 200250 154676 7457065280行业名称 计算机营销机械建筑 化工 招聘人数124620 102935 89115765167043618.(本题满分12分)某单位用木料制作如图所示的框架, 框架的下部是边长分别为x 、y(单位:m)的矩形.上部是等腰直角三角形. 要求框架围成的总面积8m 2. 问x 、y 分别为多少(精确到0.001m) 时用料最省?19.(本题满分14分) 第1小题满分6分, 第2小题满分8分 记函数f(x)=132++-x x 的定义域为A, g(x )=lg[(x -a -1)(2a -x )](a <1) 的定义域为B.(1) 求A ;(2) 若B ⊆A, 求实数a 的取值范围.20.(本题满分14分) 第1小题满分6分, 第2小题满分8分 如图, 直线y=21x 与抛物线y=81x 2-4交于A 、B 两点, 线段AB 的垂直平分线与直线y=-5交于Q 点.(1) 求点Q 的坐标;(2) 当P 为抛物线上位于线段AB 下方(含点A 、B) 的动点时, 求△OPQ 面积的最大值.21.(本题满分16分) 第1小题满分4分, 第2小题满分6分, 第3小题满分6分如图,P —ABC 是底面边长为1的正三棱锥,D 、E 、F 分别为棱长PA 、PB 、PC 上的点, 截面DEF∥底面ABC, 且棱台DEF —ABC 与棱锥P —ABC 的棱长和相等.(棱长和是指多面体中所有棱的长度之和)(1)证明:P —ABC 为正四面体; (2)若PD=21PA, 求二面角D —BC —A 的大小;(结果用反三角函数值表示) (3)设棱台DEF —ABC 的体积为V, 是否存在体积为V 且各棱长均相等的直平行六面体, 使得它与棱台DEF —ABC 有相同的棱长和? 若存在,请具体构造出这样的一个直平行六面体,并给出证明;若不存在,请说明理由.22.(本题满分18分) 第1小题满分6分, 第2小题满分4分, 第3小题满分8分 设P 1(x 1,y 1), P 1(x 2,y 2),…, P n (x n ,y n )(n≥3,n∈N) 是二次曲线C 上的点, 且a 1=1OP 2,a 2=2OP 2, …, a n =n OP 2构成了一个公差为d(d≠0) 的等差数列, 其中O 是坐标原点. 记S n =a 1+a 2+…+a n .(1)若C 的方程为92x -y 2=1,n=3. 点P 1(3,0) 及S 3=162, 求点P 3的坐标;(只需写出一个)(2)若C 的方程为y 2=2p x (p≠0). 点P 1(0,0), 对于给定的自然数n, 证明:(x 1+p)2,(x 2+p)2, …,(x n +p)2成等差数列;(3)若C 的方程为12222=+by a x (a >b>0). 点P 1(a ,0), 对于给定的自然数n, 当公差d变化时, 求S n 的最小值.2004年普通高等学校招生全国统一考试 数学参考答案(文史类)(上海卷)一、填空题(本大题满分48分,每小题4分)1.3 2.(5,0) 3.{1,2,5} 4.2 5.(-2,0)∪(2,5] 6.(5,4) 7.6 8.(x -2)2+(y+3)2=5 9.11410.a >0且b≤0 11.用代数的方法研究图形的几何性质 12.①、④ 二、选择题(本大题满分16分,每小题4分) 13.B 14.C 15.A 16.B 三、解答题(本大题满分86分) 17.【解】由题意得 z 1=ii++-151=2+3i , 于是21z z -=i a 24+-=4)4(2+-a ,1z =13. 由4)4(2+-a <13,得a 2-8a +7<0,1<a <7.18.【解】由题意得x y+41x 2=8, ∴y=x x 482-=48x x -(0<x <42). 于是,框架用料长度为符号意义 本试卷所用符号 等同于《实验教材》符号向量坐标 a ={x,y} a =(x,y) 正切 tg tanl =2x +2y+2(x 22)=(23+2)x +x 16≥)223(162+≥=4246+.当(23+2)x =x16,即x =8-42时等号成立. 此时, x ≈2.343,y=22≈2.828. 故当x 为2.343m,y 为2.828m 时, 用料最省. 19.【解】(1)2-13++x x ≥0, 得11+-x x ≥0, x <-1或x ≥1 即A=(-∞,-1)∪[1,+ ∞) (2) 由(x -a -1)(2a -x )>0, 得(x -a -1)(x -2a )<0.∵a <1,∴a +1>2a , ∴B=(2a ,a +1). ∵B ⊆A, ∴2 a ≥1或a +1≤-1, 即a ≥21或a ≤-2, 而a <1, ∴21≤a <1或a ≤-2, 故当B ⊆A 时, 实数a 的取值范围是 (-∞,-2)∪[21,1) 20.【解】(1) 解方程组 y=21x 得 x 1=-4, x 2=8y=81x 2-4 y 1=-2, y 2=4即A(-4,-2),B(8,4), 从而AB 的中点为M(2,1). 由k AB ==21,直线AB 的垂直平分线方程y -1=21(x -2). 令y=-5, 得x =5, ∴Q(5,-5) (2) 直线OQ 的方程为x +y=0, 设P(x ,81x 2-4). ∵点P 到直线OQ 的距离d=24812-+x x =3282812-+x x , 25=OQ ,∴S ΔOPQ =21d OQ =3281652-+x x . ∵P 为抛物线上位于线段AB 下方的点, 且P 不在直线OQ 上,∴-4≤x <43-4或43-4<x ≤8. ∵函数y=x 2+8x -32在区间[-4,8] 上单调递增, 且当x =-4时,|x 2+8x -32|=48 当x =8时,|x 2+8x -32|=96 ∴当x =8时, ΔOPQ 的面积取到最大值3096165=⨯. 21.【证明】(1) ∵棱台DEF —ABC 与棱锥P —ABC 的棱长和相等, ∴DE+EF+FD=PD+PE+PF. 又∵截面DEF∥底面ABC,∴DE=EF=FD=PD=PE=PF,∠DPE=∠EPF=∠FPD=60°, ∴P—ABC 是正四面体. 【解】(2)取BC 的中点M,连接PM,DM.AM.∵BC⊥PM,BC⊥AM, ∴BC⊥平面PAM,BC⊥DM,则∠DMA 为二面角D —BC —A 的平面角. 由(1)知,P —ABC 的各棱长均为1,∴PM=AM=23,由D 是PA 的中点, 得sin∠DMA=33=AM AD ,∴∠DMA=arcsin 33. (3)存在满足条件的直平行六面体. 棱台DEF —ABC 的棱长和为定值6,体积为V.设直平行六面体的棱长均为21,底面相邻两边夹角为α, 则该六面体棱长和为6, 体积为81sin α=V.∵正四面体P —ABC 的体积是122, ∴0<V<122,0<8V<1.可知α=arcsim(8V)故构造棱长均为21,底面相邻两边夹角为arcsim(8V)的直平行六面体即满足要求. 22.【解】(1) a 1=1OP 2=9,由S 3=23(a 1+a 3)=162,得a 3=3OP 3=99.∴点P 3的坐标可以为(310,3).(2)对每个自然数k,1≤k≤n,由题意kOP 2=(k -1)d,及y 2k =2px k,得x 2k +2p x k =(k -1)dx 2k +y 2k =(k -1)d即(x k +p)2=p 2+(k -1)d, ∴(x 1+p)2, (x 2+p)2, …,(x n +p)2是首项为p 2,公差为d 的等差数列.(3) 【解法一】原点O 到二次曲线C:12222=+by a x (a >b>0)上各点的最小距离为b,最大距离为a .∵a 1=1OP 2=a 2, ∴d<0,且a n =n OP 2=a 2+(n -1)d≥b 2, ∴122--n a b ≤d<0. ∵n≥3,2)1(-n n >0 ∴S n =n a 2+2)1(-n n d 在[122--n a b ,0)上递增,故S n 的最小值为n a 2+2)1(-n n ²122--n a b =2)(22b a n +.【解法二】对每个自然数k(2≤k≤n),由92x -y 2=1 ,得x 23=90x 23+y 23=99y 23=9由x2k+y2k=a2+(k-1)d,解得y2k=222)1(badkb---22axk+22byk=1∵0< y2k ≤b2,得122--kab≤d<0 ∴122--nab≤d<0 以下与解法一相同.。

相关文档
最新文档