全国普通高等学校统一招生考试
(2024年高考真题)2024年普通高等学校招生全国统一考试语文试卷 全国甲卷(含答案)

2024年普通高等学校招生全国统一考试全国甲卷语文试卷养成良好的答题习惯,是决定成败的决定性因素之一。
做题前,要认真阅读题目要求、题干和选项,并对答案内容作出合理预测;答题时,切忌跟着感觉走,最好按照题目序号来做,不会的或存在疑问的,要做好标记,要善于发现,找到题目的题眼所在,规范答题,书写工整;答题完毕时,要认真检查,查漏补缺,纠正错误。
一、现代文阅读阅读下面的文字,完成下面小题。
2019年4月23日,习近平主席在会见应邀出席中国人民解放军海军成立70周年多国海军活动的外方代表团团长时指出:“海洋对于人类社会生存和发展具有重要意义。
海洋孕育了生命、联通了世界、促进了发展。
我们人类居住的这个蓝色星球,不是被海洋分割成了各个孤岛,而是被海洋连结成了命运共同体,各国人民安危与共。
”作为“人类命运共同体”的重要组成部分,海洋命运共同体的建设目标是打造一个持久和平、普遍安全、共同繁荣、开放包容、清洁美丽的海洋环境。
要实现海洋的持久和平与普遍安全,各国必须摒弃传统的大国争霸思路,充分照顾彼此的安全关切和合理利益,联合起来打击海盗、人口走私、贩毒等海上犯罪行为,在涉及海洋权益争端时通过友好协商的方式来解决问题,短期内无法协商的问题可以考虑搁置争议。
共同繁荣、开放包容和清洁美丽的愿景意味着,我们要坚持开放的自由贸易体系,同时共同应对气候变化、海洋环境保护等问题,发挥海洋作为国际贸易大通道的积极作用,关注发展中国家的发展诉求。
随着人类技术水平的提升和各国经济发展对资源需求的日益增加,各国都希望开发利用更多的海洋资源。
如何才能在更好地利用海洋资源的同时又促进可持续发展、构建海洋命运共同体?习近平总书记提出海洋发展的“四个转变”:“要提高海洋资源开发能力,着力推动海洋经济向质量效益型转变”;“要保护海洋生态环境,着力推动海洋开发方式向循环利用型转变”;“要发展海洋科学技术,着力推动海洋科技向创新引领型转变”;“要维护国家海洋权益,着力推动海洋维权向统筹兼顾型转变”。
2024年普通高等学校招生全国统一考试模拟押题卷

2024年普通高等学校招生全国统一考试模拟押题卷一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,19分)阅读下面的文字,完成下面小题。
材料一:人类是从混沌的自然中走出来的,最终仍要回到自然中去,但那已是深情的、充满灵性的自然,这一切都源于山水审美意识的觉醒与具有划时代意义的山水文学的诞生。
纵观中国山水文学长达一千余年的发展历程,其美学价值在多个方面。
中国山水文学提供了心物融通、人与自然一体化的途径。
山水文学的发生是以人与自然的同一性为基础和前提的。
在这个过程中,东晋诗人、史学家袁山松在《宜都山川记》中提出的“山水有灵,亦当惊知己于千古矣”,具有不可忽视的特殊意义。
“惊知己”不只是属于山水,同时也属于人,只有彼此都“惊知己”,为获得“知己”而庆幸,人与山水才能达成真正意义上的融通与共识。
它表明,在这一时期,山水自然已不是作为人的对立面存在,而是和人在心灵上达成共识。
一如钱锺书先生所说:“我心如山水境”“山水境亦自有其心,待吾心为映发也”(《谈艺录》)。
山水美既不是主观的,也不是客观的,而是主客观的结合。
山水审美的最高境界——心物感通、心物交融、心与物游的产生,是深刻体味对象、在对象中发现心灵、发现生命的结果,它构成了中国人独有的生命境界。
这个境界晶莹皎洁,充满情韵,透现出了审美主体的智慧及对宇宙自然至情至理的参透和感悟,也使中国人养就了一种能与天地精神相往来却不傲睨于万物的洒脱又深情的胸襟。
山水审美所发生的这种带有根本性的转变,预示了具有划时代意义的山水文学将要在晋宋时期诞生。
中国山水文学提供了在自然感发下心灵美的艺术呈现的文学载体。
山水文学不只是表现自然美,更在于表现由自然美所激发的心灵感受,李白的“众鸟高飞尽,孤云独去闲。
相看两不厌,只有敬亭山”(《独坐敬亭山》),堪称范例。
其不仅体现了诗人想从自然中寻找慰藉,更体现了物我融通后心灵世界的盈实、朗阔。
欣赏山水风光,赞美自然景色,实则也是欣赏、赞美生命自身。
2023年普通高等学校招生全国统一考试(新课标卷)

绝密 考试结束前2023年普通高等学校招生全国统一考试(新课标卷)地理试题适用地区:黑龙江省、吉林省、安徽省、山西省、云南省考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
一、选择题:本题共11小题,每小题4分,共44分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
20世纪80年代初,河北省馆陶县农民开始规模化养殖蛋鸡。
1998 年,馆陶县在临近国道交会处建立禽蛋交易市场。
目前,该市场已成为全国最大的禽蛋交易市场。
2023年,该市场迁址重建项目启动,将引入专业化运营管理模式,植入智能物流、集中仓储、供应链金融等新元素。
据此完成1 ~ 3题。
1.1998年禽蛋交易市场选址考虑的主要因素是A.土地价格B.产业基础C.交通条件D.人口规模2.禽蛋交易市场的繁荣与壮大,直接带动的产业有①房地产业②养殖与饲料业③仓储与物流业④文化与旅游业A.①②B.②③C.③④D.①④3.新禽蛋交易市场植入新元素的主要目的是①提升物流效率②提高交易价格③增加就业机会④扩大交易范围A.①②B.②③C.③④D.①④近十几年来,随着经济发展和家用汽车普及,我国区域公路干线(国道或省道)在经过平原地区县城时,一般经历从穿城到绕城的变化。
图1示意经过某县城的国道布局变化,其中新国道建成通车后,旧国道转为城市道路。
据此完成4 ~ 6题。
图14.图1所示旧国道布局的主要目的是A.方便县城对外运输B.方便县城内部运输C.促进县城用地扩展D.吸引县城商业集聚5.新国道通车前,旧国道面临的主要问题是①等级过低②线路过长③车流量过大④路口过多A.①②B.②③C.③④D.①④6.推测新国道通车后A.车辆过境速度提高B.车辆穿城用时增加C.县城汽车保有量减少D.县城商业萎缩莲花盆是一种独特的地下喀斯特景观。
2024年普通高等学校招生全国统一考试数学真题试卷(新课标Ⅰ卷)含解析

2024年普通高等学校招生全国统一考试数学真题试卷(新课标Ⅰ卷)1.已知集合,,则( ).{}355A x x =-<<∣{3,1,0,2,3}B =--A B = A. B. C. D.{1,0}-{2,3}{3,1,0}--{1,0,2}-2.若,则( ).1i 1zz =+-z =A. B. C. D.1i--1i-+1i-1i+3.已知向量,,若,则( ).(0,1)a =(2,)b x = (4)b b a ⊥- x =A.-2B.-1C.1D.24.已知,,则( ).cos()m αβ+=tan tan 2αβ=cos()αβ-=A. B. C.D.3m-3m -3m 3m5.,则圆锥的体积为( ).A. B. C. D.6.已知函数在R 上单调递增,则a 的取值范围是( ).22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩A. B. C. D.(,0]-∞[1,0]-[1,1]-[0,)+∞7.当时,曲线与的交点个数为( ).[0,2π]x ∈sin y x =π2sin 36y x ⎛⎫=- ⎪⎝⎭A.3B.4C.6D.88.已知函数的定义域为R ,,且当时,,则下列()f x ()(1)(2)f x f x f x >-+-3x <()f x x =结论中一定正确的是( ).A. B. C. D.(10)100f >(20)1000f >(10)1000f <(20)10000f <9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值,样本方差,已知该种植区以往的亩收入X 服从正态分布2.1X =20.01S =,假设失去出口后的亩收入Y 服从正态分布,则( ).(若随机变量Z 服从()21.8,0.1N ()2,N X S 正态分布,则)()2,N μσ()0.8413P Z μμ<+≈A. B. C. D.(2)0.2P X >>()0.5P X Z ><()0.5P Y Z >>()0.8P Y Z ><10.设函数,则( ).2()(1)(4)f x x x =--A.是的极小值点B.当时,3x =()f x 01x <<()2()f x f x <C.当时, D.当时,12x <<4(21)0f x -<-<110x -<<(2)()f x f x ->11.造型可以看作图中的曲线C 的一部分,已知C 过坐标原点O ,且C 上的点满足横坐标大于-2,到点的距离与到定直线的距离之积为4,则( ).(2,0)F (0)x a a =<A.2a =-B.点在C上C.C 在第一象限的点的纵坐标的最大值为1D.当点在C 上时,()00,x y 0042y x ≤+12.设双曲线的左右焦点分別为,,过作平行于y 轴的直线交2222:1x y C a b-=0a >0b >1F 2F 2F C 于A ,B 两点,若,,则C 的离心率为_________.113F A =||10AB =13.若曲线在点处的切线也是曲线的切线,则_________.e xy x =+(0,1)ln(1)y x a =++a =14.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两个各自从自己持有的卡片中随机选一张,并比较所选卡片的数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛比赛后,甲的总得分小于2的概率为_________.15.记的内角A ,B ,C 的对边分别为a ,b ,c ,已知,ABC △sin C B =.222a b c +-=(1)求B ;(2)若的面积为,求c .ABC △3+16.已知和为椭圆上两点.(0,3)A 33,2P ⎛⎫⎪⎝⎭2222:1(0)x y C a b a b +=>>(1)求C 的率心率;(2)若过P 的直线l 交C 于另一点B ,且的面积为9,求l 的方程.ABP △17.如图,四棱锥中,底面,,,.P ABCD -PA ⊥ABCD 2PA PC ==1BC =AB =(1)若,证明:平面PBC ;AD PB ⊥//AD(2)若,且二面角,求AD .AD DC ⊥A CP D --18.已知函数.3()ln(1)2xf x ax b x x=++--(1)若,且,求a 的最小值;0b =()0f x '≥(2)证明:曲线是中心对称图形;()y f x =(3)若,当且仅当,求b 的取值范围.()2f x >-12x <<19.设m 为正整数,数列,,…,是公差不为0的等差数列,若从中删去两项和1a 2a 42m a +i a 后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列,()j a i j <1a ,…,是——可分数列.2a 42m a +(,)i j (1)写出所有的,,使数列,,…,是——可分数列;(,)i j 16i j ≤<≤1a 2a 6a (,)i j (2)当时,证明:数列,,…,足——可分数列;3m ≥1a 2a 42m a +(2,13)(3)从1,2,…,中一次任取两个数i 和,记数列,,…,足—42m +()j i j <1a 2a 42m a +(,)i j —可分数列的概率为,证明.m P 18m P >答案1.A解析:,选A.{1,0}A B =- 2.C 解析:3.D解析:,,,,,选D.4(2,4)b a x -=-(4)b b a ⊥-(4)0b b a ∴-=4(4)0x x ∴+-=2x ∴=4.A解析:,,cos cos sin sin sin sin 2cos cos mαβαβαβαβ-=⎧⎪⎨=⎪⎩sin sin 2cos cos m m αβαβ=-⎧∴⎨=-⎩,选A.cos()cos cos sin sin 23m m m αβαβαβ-=+=--=-5.B解析:设它们底面半径为r ,圆锥母线l ,,,,2ππrl ∴=l ∴==3r ∴=,选B.1π93V =⋅⋅=6.B解析:在R 上↗,,,选B.()f x 0e ln1a a -≥⎧⎨-≤+⎩10a ∴-≤≤7.C解析:6个交点,选C.8.B解析:,,,,(1)1f =(2)2f =(3)(2)(1)3f f f >+=(4)(3)(2)5f f f >+>,,,(5)(4)(3)8f f f >+>(6)(5)(4)13f f f >+>(7)(6)(5)21f f f >+>,,,(8)(7)(6)34f f f >+>(9)(8)(7)55f f f >+>(10)(9)(8)89f f f >+>,,,(11)(10)(9)144f f f >+>(12)(11)(10)233f f f >+>(13)(12)(11)377f f f >+>,,,(14)(13)(12)610f f f >+>(15)(14)(13)987f f f >+>(16)1000f >(20)1000f ∴>,选B.9.BC解析:,,,()2~ 1.8,0.1X N ()2~ 2.1,0.1Y N 2 1.820.12μσ=+⨯=+,A 错.(2)(2)()10.84130.1587P X P X P X μσμσ>=>+<>+=-=,B 对.(2)( 1.8)0.5P X P X ><>=,,C 对.2 2.10.1μσ=-=-(2)( 2.1)0.5P Y P Y >>>=,D 错,所以选BC.(2)()()0.84130.8P Y P Y P Y μσμσ>=>-=<+=>10.ACD解析:A 对,因为;()3(1)(3)f x x x '=--B 错,因为当时且,所以;01x <<()0f x '>201x x <<<()2()f x f x <C 对,因为,,2(21)4(1)(25)0f x x x -=--<2(21)44(2)(21)0f x x x -+=-->,时,2223(2)()(1)(2)(1)(4)(1)(22)2(1)f x f x x x x x x x x --=------=--+=--11x -<<,,D 对.(2)()0f x f x -->(2)()f x f x ->11.ABD解析:A 对,因为O 在曲线上,所以O 到的距离为,而,x a =a -2OF =所以有,那么曲线的方程为.242a a -⋅=⇒=-(4x +=B 对,因为代入知满足方程;C 错,因为,求导得,那么有2224(2)()2y x f x x ⎛⎫=--= ⎪+⎝⎭332()2(2)(2)f x x x '=---+,,于是在的左侧必存在一小区间上满足,因此(2)1f =1(2)02f '=-<2x =(2,2)ε-()1f x >最大值一定大于1;D 对,因为.()22220000004442222y x y x x x ⎛⎫⎛⎫=--≤⇒≤ ⎪ ⎪+++⎝⎭⎝⎭12.32解析:由知,即,而,所以,即||10AB =25F A =2225b c a a a-==121F F F A ⊥1212F F =,代回去解得,所以.6c =4a =32e =13.ln 2解析:14.12解析:甲出1一定输,所以最多3分,要得3分,就只有一种组合、、、18-32-54-76-得2分有三类,分别列举如下:(1)出3和出5的赢,其余输:,,,16-32-54-78-(2)出3和出7的赢,其余输:,,,;,,,,14-32-58-76-18-32-56-74-,,,16-32-58-74-(3)出5和出7的赢,其余输:,,,;,,,;12-38-54-76-14-38-52-76-,,,;,,,;,,,;18-34-52-76-16-38-52-74-18-36-52-74-16-,,,;,,,38-54-72-18-36-54-72-共12种组合满足要求,而所有组合为24,所以甲得分不小于2的概率为1215.(1)π3B =(2)c =解析:(1)已知,根据余弦定理,222a b c +-=222cos 2a b c C ab+-=可得.cos C ==因为,所以.(0,π)C ∈π4C =又因为,即,解得.sin C B =πsin4B =B =1cos 2B =因为,所以.(0,π)B ∈π3B =(2)由(1)知,,则.π3B=π4C =ππ5πππ3412A B C =--=--=已知的面积为,ABC △31sin 2ABCS ab C =△则,.1πsin 324ab =132ab =+2(3ab =+又由正弦定理,可得.sin sin sin a b c A B C ==sin sin sin sin a C b Cc A B==则,,同理.π5πsin sin412c a =5πsin12πsin 4c a=πsin 3πsin 4c b =所以2225ππsin sin 421232(3π1sin42c c ab ⎝⎭===+解得c =16.(1)12(2)见解析解析:(1)将、代入椭圆,则(0,3)A 33,2P ⎛⎫⎪⎝⎭22220919941a b a b⎧+=⎪⎪⎨⎪+=⎪⎩22129a b ⎧=⎨=⎩.c=12ce a ∴===(2)①当L 的斜率不存在时,,,,A 到PB 距离,:3L x =33,2B ⎛⎫- ⎪⎝⎭3PB =3d =此时不满足条件.1933922ABP S =⨯⨯=≠△②当L 的斜率存在时,设,令、,3:(3)2PB y k x -=-()11,P x y ()22,B x y ,消y 可得223(3)21129y k x x y ⎧=-+⎪⎪⎨⎪+=⎪⎩()()22224324123636270k x k k x k k +--+--=,2122212224124336362743k k x x k k k x x k ⎧-+=⎪⎪+⎨--⎪=⎪+⎩PB =17.(1)证明见解析(2)AD =解析:(1)面,平面,PA ⊥ABCD AD ⊂ABCD PA AD∴⊥又,,平面PABAD PB ⊥ PB PA P = ,PB PA ⊂面,平面,AD ∴⊥PAB AB ∴⊂PAB AD AB∴⊥中,,ABC △222AB BC AC +=AB BC∴⊥,B ,C ,D 四点共面,A //AD BC∴又平面,平面PBCBC ⊂ PBC AD ⊄平面PBC .//AD ∴(2)以DA ,DC 为x ,y 轴过D 作与平面ABCD 垂直的线为z 轴建立如图所示空间直角坐标系D xyz-令,则,,,,AD t =(,0,0)A t (,0,2)P t (0,0,0)D DC =()C 设平面ACP 的法向量()1111,,n x y z =不妨设,,1x =1y t =10z =)1,0n t =设平面CPD 的法向量为()2222,,n x y z =不妨设,则,,2200n DP n DC ⎧⋅=⎪⎨⋅=⎪⎩222200tx z +=⎧∴=2z t =22x =-20y =2(2,0,)n t =- 二面角A CP D --121212cos ,n n n n n n ⋅===.t ∴=AD ∴=18.(1)-2(2)证明见解析(3)23b ≥-解析:(1)时,,对恒成立0b =()ln2x f x ax x =+-11()02f x a x x '=++≥-02x ∀<<而,11222(2)a a a x x x x ++=+≥+--当且仅当时取“=”,1x =故只需,即a 的最小值为-2.202a a +≥⇒≥-(2)方法一:,(0,2)x ∈(2)()f x f x -+332ln (2)(1)ln (1)22x x a x b x ax b x a x x-=+-+-+++-=-关于中心对称.()f x ∴(1,)a 方法二:将向左平移一个单位关于中心对称平移()f x 31(1)ln(1)1x f x a x bx x+⇒+=+++-(0,)a 回去关于中心对称.()f x ⇒(1,)a (3)当且仅当,()2f x >- 12x <<(1)22f a ∴=-⇒=-对恒成立3()ln 2(1)22x f x x b x x∴=-+->--12x ∀<<222112(1)2()23(1)3(1)(1)32(2)(2)x f x b x b x x b x x x x x x ⎡⎤-'=+-+-=+-=-+⎢⎥---⎣⎦令,必有(必要性)2()3(2)g x b x x =+-∴2(1)2303g b b =+≥⇒≥-当时,对,23b ≥-(1,2)x ∀∈32()ln 2(1)()23x f x x x h x x ≥---=-2222(1)1()2(1)2(1)10(2)(2)x h x x x x x x x ⎡⎤-'=--=-->⎢⎥--⎣⎦对恒成立,符合条件,(1,2)x ∀∈()(1)2h x h ∴>=-综上.23b ≥-19.(1),,(1,2)(1,6)(5,6)(2)证明见解析(3)证明见解析解析:(1)以下满足:,,(,)i j (1,2)(1,6)(5,6)(2)易知:,,,等差等差p a q a r a s a ,,,p q r s ⇔故只需证明:1,3,4,5,6,7,8,9,10,11,12,14可分分组为,,即可(1,4,7,10)(3,6,9,12)(5,8,11,14)其余,,按连续4个为一组即可k a 1542k m ≤≤+(3)由第(2)问易发现:,,…,是可分的是可分的.1a 2a 42m a +(,)i j 1,2,42m ⇔+ (,)i j 易知:1,2,…,是可分的42m +(41,42)k r ++(0)k r m ≤≤≤因为可分为,…,与(1,2,3,4)(43,42,41,4)k k k k ---,…,(4(1)1,4(1),4(1)1,4(1)2)r r r r +-+++++(41,4,41,42)m m m m -++此时共种211C (1)(1)(2)2m m m m +++=++再证:1,2,…,是可分的42m +(42,41)k r ++(0)k r m ≤<≤易知与是可分的1~4k 42~42r m ++只需考虑,,,…,,,41k +43k +44k +41r -4r 42r +记,只需证:1,3,5,…,,,可分*N p r k =-∈41p -4p 42p +去掉2与1~42p +41p +观察:时,1,3,4,6无法做到;1p =时,1,3,4,5,6,7,8,10,可以做到;2p =时,1,3,4,5,6,7,8,9,10,11,12,143p =时,1,3,4,5,6,7,8,9,10,11,12,13,14,15,16,184p =,,,满足(1,5,9,13)(3,7,11,15)(4,8,12,16)(6,10,14,18)故,可划分为:2p ∀≥,,,(1,1,21,31)p p p +++(3,3,23,33)p p p +++(4,4,24,34)p p p +++,…,,,共p 组(5,5,25,35)p p p +++(,2,3,4)p p p p (2,22,32,42)p p p p ++++事实上,就是,,且把2换成(,,2,3)i p i p i p i +++1,2,3,,i p = 42p +此时,均可行,共组(,)k k p +2p ≥211C (1)2m m m m +-=-,,…,不可行(0,1)(1,2)(1,)m m -综上,可行的与至少组(42,41)k r ++(41,42)k r ++11(1)(1)(2)22m m m m -+++故,得证!()222224212221112C (21)(41)8618m m m m m m m m P m m m m +++++++≥==>++++。
2023年普通高等学校招生全国统一考试(新高考全国Ⅱ卷)数学试卷(附答案)

年普通高等学校招生全国统一考试(新高考全国卷)2023Ⅱ数学一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 在复平面内,()()13i 3i +-对应的点位于( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 设集合{}0,A a =-,{}1,2,22B a a =--,若A B ⊆,则=a ( ). A. 2B. 1C.23D. 1-3. 某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有名400和200名学生,则不同的抽样结果共有( ). A .4515400200C C ⋅种B. 2040400200C C ⋅种 C. 3030400200C C ⋅种 D. 4020400200C C ⋅种4. 若()()21ln 21x f x x a x -=++为偶函数,则=a ( ). A. 1-B. 0C.12D. 15. 已知椭圆22:13x C y +=的左、右焦点分别为1F ,2F ,直线y x m =+与C 交于A ,B 两点,若1F AB △面积是2F AB △ 面积的2倍,则m =( ).A.23B.3C. 3-D. 23-6. 已知函数()e ln xf x a x =-在区间()1,2上单调递增,则a 的最小值为( ). A. 2eB. eC. 1e -D. 2e -7. 已知α为锐角,1cos 4α+=,则sin 2α=( ).A.38- B.18- C.34D.14-+ 8. 记n S 为等比数列{}n a 的前n 项和,若45S =-,6221S S =,则8S =( ).A. 120B. 85C. 85-D. 120-二、选择题:本题共4小题,每小题5分,共20分。
在每小题给出的选项中,有多项符合题目要求。
2024年普通高等学校招生全国统一考试数学真题试卷(新课标Ⅱ卷)含答案

2024年普通高等学校招生全国统一考试数学真题试卷(新课标Ⅱ卷)1.已知,则( ).1i z =--||z =A.0B.1 D.22.已知命题:,,命题,,则( ).:R p x ∀∈|1|1x +>:0q x ∃>3x x =A.p 和q 都是真命题 B.和q 都是真命题p ⌝C.p 和都是真命题D.和都是真命题q ⌝p ⌝q ⌝3.已知向量,满足,,且,则( ).a b ||1a = |2|2a b += (2)b a b -⊥ ||b =A. D.1124.某农业研究部门在面积相等的100块稻田上种植新型水稻,得到各块稻田的亩产量(单位:)并部分整理如下表所示.kg 亩产[900,950)[950,1000)[1000,1050)[1050,1150)[1150,1200)频数612182410根据表中数据,下列结论正确的是( )A.100块稻田亩产量的中位数小于1050kgB.100块稻田中的亩产量低于的稻田所占比例超过1100kg 40%C.100块稻田亩产量的极差介于到之间200kg 300kg D.100块稻田亩产量的平均值介于到之间900kg 1000kg 5.已知曲线,从C 上任意一点P 向x 轴作垂线,为垂足,则线段22:16(0)C x y y +=>PP 'P '的中点M 的轨迹方程为( ).PP 'A. B.221(0)164x y y +=>221(0)168x y y +=>C. D.221(0)164y x y +=>221(0)168y x y +=>6.设函数,,当时,曲线和2()(1)1f x a x =+-()cos 2g x x ax =+(1,1)x ∈-()y f x =恰有一个交点,则( )()y g x =a =A.-1 B. C.1 D.2127.已知正三棱台的体积为,,,则与平面ABC 所成角的正111ABC A B C -5236AB =112A B =1A A 切值为( ).A. B.1 C.2D.3128.设函数,若,则的最小值为( ).()()ln()f x x a x b =++()0f x ≥22a b +A. B. C. D.11814129.对于函数和,下列正确的有( ).()sin 2f x x =π()sin 24g x x ⎛⎫=-⎪⎝⎭A.与有相同零点B.与有相同最大值()f x ()g x ()f x ()g xC.与有相同的最小正周期D.与的图像有相同的对称轴()f x ()g x ()f x ()g x 10.拋物线的准线为l ,P 为C 上的动点,对P 作的一条切线,Q2:4C y x =22:(4)1A x y +-= 有切点,对P 作C 的垂线,垂足为B .则( ).A.l 与相切B.当P ,A ,B 三点共线时,A ||PQ =C.当时,D.满足的点A 有且仅有2个||2PB =PA AB⊥||||PA PB =11.设函数,则( ).32()231f x x ax =-+A.当时,有一个零点1a >()f x B.当时是的极大值点0a <0x =()f x C.存在a ,b 使得为曲线的对称轴x b =()y f x =D.存在a 使得点为曲线的对称中心(1,(1))f ()y f x =12.记为等差数列的前n 项和,若,,则__________.n S {}n a 347a a +=2535a a +=10S =13.已知为第一象限角,为第三象限角,,,则αβtan tan 4αβ+=tan tan 1αβ=+__________.sin()αβ+=14.在如图的方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有44⨯__________种选法,在所有符合上述要求的选法中,选中方格的4个数之和的最大值是__________.15.记的内角A ,B ,C 的对边分别为a ,b ,c ,已知.ABC △sin 2A A +=(1)求A ;(2)若,求周长.2a =sin 2C c B =ABC △16.已知函数.3()e x f x ax a =--(1)当时,求曲线在点处的切线方程;1a =()y f x =(1,(1))f (2)若有极小值,且极小值小于0,求a 的取值范围.()f x 17.如图,平面四边形ABCD 中,,,,,,点E ,F 满足,8AB =3CD =AD =90APC ∠=︒30BAD ∠=︒25AE AD =,将沿EF 对折至,使得,12AF AB = AEF △PEF △PC =(1)证明::EF PD ⊥(2)求面PCD 与PBF 所成的二面角的正弦值.18.某投篮比赛分为两个阶段,每个参赛队由两名队员组成,比赛具体规则如下:第一阶段由参赛队中一名队员投篮3次,若3次都未投中,则该队被淘汰,比赛成员为0分,若至少被投中一次,则该队进入第二阶段,由该队的另一名队员投篮3次,每次投中得5分,未投中得0分,该队的比赛成绩为第二阶段的得分总和.某参赛队由甲、乙两名队员组成,设甲每次投中的概率为p ,乙每次投中的概率为q ,各次投中与否相互独立.(1)若,,甲参加第一阶段比赛,求甲、乙所在队的比赛成绩不少于5的概率;0.4p =0.5q =(2)假设,0p q <<(i )为使得甲、乙所在队的比赛成绩为15分的概率最大,则该由谁参加第一阶段的比赛?(ii )为使得甲、乙,所在队的比赛成绩的数与期望最大,应该由谁参加第一阶段比赛?19.已知双曲线,点在C 上,k 为常数,,按照如下公式依22:(0)C x y m m -=>1(5,4)P 01k <<次构造点,过点作斜率为k 的直线与C 的左支点交于点,令为关于(2,3,)n P n = 1n P -1n Q -n P 1n Q -y 轴的对称点,记的坐标为.n P (),n n x y (1)若,求,;12k =2x 2y (2)证明:数列是公比为的等比数列;{}n n x y -11k k +-(3)设为的面积,证明:对任意的正整数n ,.n S 12n n n P P P ++△1n n S S +=2024年普通高等学校招生全国统一考试数学答案答案:C解析.||z =1.答案:B解析:时,,错误,和q 是真命题.1x =-|1|1x +<p ∴P ∴⌝2.答案:A解析:,(2)0b a b -⋅= 220b a b ∴-⋅= 又,,||1a = |2|4a b += 得.1||2b = 3.答案:C解析:中位数错误,标差介于之间,选C.200kg ~300kg ∴4.答案:A解析:设,将坐标代入原方程联立,得M 方程.(,)P x y 221(0)164x y y +=>5.答案:D解析:联立,,代入方程,恰好得到一个极点,()()f x g x =2(1)1cos 2a x x ax ∴+-=+2a =.2a ∴=6.答案:B解析:,.πtan 4α=tan 1α∴=7.答案:C 解析:,,,()()ln()f x x a x b =++()()()f x x a h x =+⋅(1)0g b -=,,10b a -+= 1a b ∴=-.222221(1)2212a b b b b b +=-+=-+=8.答案:BC 解析:A.令,,零点不同;()0f x =()0g x =B.,最大值相同;()f x ()g x C.,,C 正确;π()sin 22f x x Tf ===π()2g x =∴D.,对称轴显然不同,D 错误.()f x ()g x ∴9.答案:ABD解析:依次代入抛物线方程,联立求解,所以C 错,ABD 对.10.答案:D解析:依次带入质检即可后为直角三角形,,,,12AF F△12212c F F =≥=6C =22||8a AF AF =-=4a =.32c e a ==11.答案:95解析:命题意图是考察正确应用等差数列的通项公式和求和公式以及会解相关方程得,3412512573475a a a d a a a d +=+=⎧⎨+=+=⎩143a d =-⎧⎨=⎩10110931040135952S a ⨯⨯∴=+=-+=12.解析:考察三角恒等式变形tan tan tan()1tan tan αβαβαβ⋅+===--⋅222sin ()cos ()19cos ()1a αββαβ+++=⇒+=1cos()3αβ∴+=-1sin()3αβ⎛⎫+=--= ⎪⎝⎭13.答案:24;58解析:(1)41432124=⨯⨯⨯=(2)分别列出,13,14,15,16最大,.1314151658+++=14.答案:(1)π6A =(2)2ABC C =+△解析:(1)sin 2A A=2R ===2sin()2A φ+=π2A φ+=.tan φ=π6A =(2)24πsin 6aR ==sin 2sin cos C c B B=⋅,2cos B =π4B ∴=54sin π12c=⋅22ABC C a b c ∴=++=++=+△15.答案:(1)(e 3)2y x =-+(2)2e 8a >解析:(1)(1)e 1f =-当,时1a =1x =(1)e 3f '=-(e 1)(e 3)(1)y x --=--(e 3)3e e 1y x ∴=-+-+-;(e 3)2x =-+(2),2()e 3x f x ax '=-()0f x '=2e 30x ax -=2e 3x ax =,,()e 6x f x ax ''=-2e 3x ax = ()3(2)f x ax x ''=-时,2x =2e 12a =232(2)e 2e 8f a a=-⋅=-代入,得2222e 2e (2)e 8e e 1233k f =-⋅=-=(2)0f < 2e 80a ∴-<28e a >2e 8a >.2e ,8a ⎡⎫∴∈+∞⎪⎢⎣⎭16.答案:(1)EF PD⊥(2)正弦值为0解析:(1)证明:设A 的坐标为,则B 为,(0,0)(8,0)依次求出,,,E (4,0)F (1,EF = 152D ⎛ ⎝P 关于EF 的中点M 对称,34722M ⎛⎛+== ⎝⎝设,,(,)P xy 7(2x t =+⋅1y t =⋅15922C ⎛⎛=-= ⎝⎝PC ∴=将x ,y表达式代PC ==152PD x y ⎛⎫∴=-- ⎪ ⎪⎝⎭0EF PD ⋅= EF PD∴⊥建立坐标系求出各点坐标,再利用向量相乘之积为0证明垂直(2)(8,0)PC = 求出面PCD 与面PBF 的法向量,1a 2a 又1212sin 0||a a a a θ⋅==⋅ 正弦值为0.∴17.答案:(1)0.686(2)(i )乙(ii )甲18.答案:(1),23x =20y =(2)证明见解析(3)证明见解析解析:(1)设(),n n n P x y 2221n n x x a m∴-=()n n y y k x x -=-.()12n n y y x x -=--22211221n n x x y x a m⎛⎫-++ ⎪⎝⎭-=1122n y x xn yn -=-++2n nx x y =-代入得,.222()1x yn y a m+-=23x =20y =(2)()2221n n kx y kx x a m +--=22222222221n n n n n n k x kxx kx y k x y k x x a m++-+∴-=111n n x k x k++=-利用等性证明。
2024年普通高等学校招生全国统一考试(全国甲卷)英语试题(后附参考答案)

2024年普通高等学校招生全国统一考试(全国甲卷)英语学科第一部分听力(共两节, 满分30分)第一节(共5小题; 每小题1. 5分, 满分7. 5分)听下面5段对话。
每段对话后有一个小题, 从题中所给的A、B、C三个选项中选出最佳选项。
听完每段对话后, 你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1.Where are the speakers going?A.A new restaurant.B.A convenience store.C.Their office.2.When is the class presentation according to Vicky?A.On Thursday.B.On Wednesday.C.On Tuesday.3.Why does the woman make the call?A.To check the price.B.To make an apology.C.To cancel her order.4.What is the probable relationship between the speakers?A.Husband and wife.B.Boss and employee.C.Salesperson and customer.5.What are the speakers mainly talking about?A.Their move to a new place.B.Tom's friends at school.C.A sports center.第二节(共15小题; 每小题分, 满分22. 5分)听下面5段对话或独白。
每段对话或独白后有几个小题, 从题中所给的A、B、C三个选项中选出最佳选项。
听每段对话或独白前, 你将有时间阅读各个小题, 每小题5秒钟; 听完后, 各小题将给出5秒钟的作答时间。
2024年普通高等学校招生全国统一考试

2024年普通高等学校招生全国统一考试(新课标I卷)第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题纸上。
1. What is Kate doing?A. Boarding a flight.B. Arranging a trip.C. Seeing a friend off.2. What are the speakers talking about?A. A pop star.B. An old song.C. A radio program.3. What will the speakers do today?A. Go to an art show.B. Meet the man’s aunt.C. Eat out with Mark.4. What does the man want to do?A. Cancel an order.B. Ask for a receipt.C. Reschedule a delivery.5. When will the next train to Bedford leave?A. At 9:45.B. At 10:15.C. At 11:00.第二节(共15小题;每小题1.5分,满分22.5分)听第6段材料,回答第6、7题。
6. What will the weather be like today?A. Stormy.B. Sunny.C. Foggy.7. What is the man going to do?A. Plant a tree.B. Move his car.C. Check the map.听第7段材料,回答第8至10题。
8. Why is Kathy in California now?A. She is on vacation there.B. She has just moved there.C. She is doing business there.9. What is the relationship between Tom and Fiona?A. Husband and wife.B. Brother and sister.C. Father and daughter.10. What does Kathy thank Dave for?A. Finding her a new job.B. Sending her a present.C. Calling on her mother.听第8段材料,回答第11至13题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国普通高等学校统一招生考试
(文科数学试卷)
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若312z i i =++,则z = A.0 B.1 C.2 D. 2
2.已知合集{}
2340A x x x =--<,{}4,1,3,5B =-,则A B = A.{}4,1- B.{}1,5 C.{}3,5 D.{}1,3
3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为 A.
51
- B.
51
2- C.
51
+ D.
51
+ 4.设O 为正方形ABCD 的中心,在O, A ,B, C, D 中任取3点,则取到的3点共线的概
率为
A. 15
B. 25
C. 12
D. 45
5.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:C )的
关系,在20个不同的温度条件下进行种子的发芽实验,由实验数据
,)(i i y i =(x 1,2,…,20)得到下面的散点图:
由此散点图,在10C 至40C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是 A. y a bx =+ B. 2y a bx =+ C. x y a be =+ D. ln y a b x =+
D.
1
2
6.设O 为正方形ABCD 的中心,在O, A ,B, C, D 中任取3点,则取到的3点共线的概率为
A. 15
B. 25
C. 12
D. 45
7.已知圆2260x y x +-=,过点(1,2)的直线被该圆所截得的弦的长度的最小值为 A. 1 B. 2 C. 3 D. 4
8.设函数()cos()6f x x π
ω=+在[]-ππ,的图像大致如下图,则()f x 的最小正周期
为
A.
109π
B. 76π
C. 43π
D. 32
π
9.设3a log 42=,则-a 4
A.
116 B. 19
C. 18
D. 16
10.执行右面的程序框图,则输出的n = A. 17 B. 19 C. 21 D. 23
11.设{}n a 是等比数列,且123+1a a a +=,
2342a a a ++=,则678+a a a +=
A. 12
B. 24
C. 30
D. 32
12.设1F ,2F 是双曲线2
2
:13
y C x -=的两个焦点,O 为坐标原点,点P 在C 上且|OP |=2,则∆12PF F 的面积为
A. 72
B. 3
C. 52
D. 2
13 . 已知A ,B ,C 为球O 的球面上的三个点,
1O 为△ABC 的外接圆.若
1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为
A .64π
B .48π
C .36π
D .32π
二、填空题:本题共4小题,每小题5分,共20分。
14.若x ,y 满足约束条件2x -20
x -10y 10y y +≤⎧⎪
-≥⎨⎪+≥⎩,则z=x+7y 的最大值为_____.
15.设向量a=(1,-1),b=(m+1,2m-4),若a ⊥b ,则m=______.
16. 曲线ln 1y x x =++的一条切线的斜率为2,则该切线的方程为____. 17. 数列{}n a 满足()2131n
n n a a n ++-=-,前16项和为540,则1a =____.
三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个考题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分 18.(12分)
某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C ,D 四个等级,加工业务约定:对于A 级品、B 级品、C 级品,厂家每件分别收取加工费90元、50元、20元;对于D 级品,厂家每件赔偿原料损失费50元,该厂有甲、乙两个分厂可承接加工业务,甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件,厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:
甲分厂产品等级的频数分布表
等级 A B C D 频数
40
20
20
20
乙分厂产品等级的频数分布表
等级 A B C D 频数
28
17
34
21
(1) 分别估计甲、乙两分厂加工出来的一件产品为A 级品的概率; (2) 分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润 为依据,厂家应该选哪个分厂承接加工业务? 19.(12分)
△ABC 的内角,,A B C 的对边分别为,,a b c ,已知150B =. (1)若3a c =,27b =,求△ABC 的面积; (2)若2
sin 3sin A C +=,求C . 20. (12分)
如图,D 为圆锥的顶点,O 是圆锥底面的圆心,△ABC 是底面的内接正三角形,P 为DO 上一点,90APC ∠=. (1)证明:平面PAB ⊥平面PAC ;
(2)设2DO =,圆锥的侧面积为3π,求三棱锥P ABC -的体积.
21.(12分)
已知函数()(2).x f x e a x =-+ (1) 当a=1时,讨论()f x 的单调性; (2) 若()f x 有两个零点,求a 的取值范围. 22.(12分)
已知函数2()x f x e ax x =+-, (1)当1a =时,讨论()f x 的单调性;
(2)当x ≥0时,()f x ≥31
12
x +,求a 的取值范围。
(二)选考题:共10分,请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分。
23.[选修4-4:坐标系与参数方程](10分)
在直角坐标系xOy 中,曲线1C 的参数方程为cos sin k
k
x t
y t
⎧=⎪⎨=⎪⎩,(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为
4cos 16cos 30ρθρθ-+=.
(1)当k=1时,1C 是什么曲线?
(2)当k=4时,求1C 与2C 的公共点的直角坐标. 24.[选修4—5:不等式选讲](10分) 已知函数()f x =│3x +1│-2│x -1│. (1)画出y=()f x 的图像;
(2)求不等式()f x >(1)f x +的解集.。