(word完整版)初一数学数轴上的动点问题专题辅导卷.doc
最新初一年级数学数轴上的动点问题专题辅导卷
初一年级数学数轴上的动点问题专题辅导卷1.已知数轴上有A、B、C三点,分别代表—24,—10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒.⑴问多少秒后,甲到A、B、C的距离和为40个单位?⑵若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,问甲、乙在数轴上的哪个点相遇?⑶在⑴⑵的条件下,当甲到A、B、C的距离和为40个单位时,甲调头返回.问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.2.如图,已知A、B分别为数轴上两点,A点对应的数为—20,B点对应的数为100.⑴求AB中点M对应的数;⑵现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,求C点对应的数;⑶若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D点相遇,求D点对应的数.3.已知数轴上两点A、B对应的数分别为—1,3,点P为数轴上一动点,其对应的数为x.⑴若点P到点A、点B的距离相等,求点P对应的数;⑵数轴上是否存在点P,使点P到点A、点B的距离之和为5?若存在,请求出x的值.若不存在,请说明理由?⑶当点P以每分钟一个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度向左运动,点B一每分钟20个单位长度向左运动,问它们同时出发,几分钟后P点到点A、点B的距离相等?4、如图,有一数轴原点为O,点A所对应的数是-1 12,点A沿数轴匀速平移经过原点到达点B.(1)如果OA=OB,那么点B所对应的数是什么?(2)从点A到达点B所用时间是3秒,求该点的运动速度.(3)从点A沿数轴匀速平移经过点K到达点C,所用时间是9秒,且KC=KA,分别求点K和点C所对应的数.5、动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度.已知动点A、B的速度比是1:4.(速度单位:单位长度/秒)(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置同时向数轴负方向运动几秒后原点恰好处在两个动点正中间;(3)在(2)中A、B两点继续同时向数轴负方向运动时,另一动点C同时从B点位置出发向A运动,当遇到A后,立即返回向B点运动,遇到B点后立即返回向A点运动,如此往返,直到B追上A时,C立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始到停止运动,运动的路程是多少单位长度.6、已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由;(3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?6、数轴上两个质点A、B所对应的数为-8、4,A、B两点各自以一定的速度在上运动,且A点的运动速度为2个单位/秒.(1)点A、B两点同时出发相向而行,在原点处相遇,求B点的运动速度;(2)A、B两点以(1)中的速度同时出发向数轴正方向运动,几秒钟时两者相距6个单位长度;(3)A、B两点以(1)中的速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,且在运动过程中,始终有CB:CA=1:2,若干秒钟后,C停留在-10处,求此时B点的位置?7、数轴上,点A表示的数是-30,点B表示的数是170.(1)求A、B中点所表示的数.(2)一只电子青蛙m,从点B出发,以4个单位每秒的速度向左运动,同时另一只电子青蛙n,从A点出发以6个单位每秒的速度向右运动,假设它们在C点处相遇,求C点所表示的数.(3)两只电子青蛙在C点处相遇后,继续向原来运动的方向运动,当电子青蛙m处在A点处时,问电子青蛙n处在什么位置?(4)如果电子青蛙m从B点处出发向右运动的同时,电子青蛙n也向右运动,假设它们在D点处相遇,求D 点所表示的数8、已知数轴上有A、B、C三点,分别代表—24,—10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒.⑴问多少秒后,甲到A、B、C的距离和为40个单位?⑵若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,问甲、乙在数轴上的哪个点相遇?⑶在⑴⑵的条件下,当甲到A、B、C的距离和为40个单位时,甲调头返回.问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.9、已知数轴上两点A、B对应的数分别为—1,3,点P为数轴上一动点,其对应的数为x.⑴若点P到点A、点B的距离相等,求点P对应的数;⑵数轴上是否存在点P,使点P到点A、点B的距离之和为5?若存在,请求出x的值.若不存在,请说明理由?⑶当点P以每分钟一个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度向左运动,点B一每分钟20个单位长度向左运动,问它们同时出发,几分钟后P点到点A、点B的距离相等?10、如图1,已知数轴上有三点A、B、C,AB= 12AC,点C对应的数是200.(1)若BC=300,求点A对应的数;(2)如图2,在(1)的条件下,动点P、Q分别从A、C两点同时出发向左运动,同时动点R从A点出发向右运动,点P、Q、R的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M为线段PR的中点,点N为线段RQ的中点,多少秒时恰好满足MR=4RN(不考虑点R与点Q相遇之后的情形);(3)如图3,在(1)的条件下,若点E、D对应的数分别为-800、0,动点P、Q分别从E、D两点同时出发向左运动,点P、Q的速度分别为10单位长度每秒、5单位长度每秒,点M为线段PQ的中点,点Q在从是点D 运动到点A的过程中, 32QC-AM的值是否发生变化?若不变,求其值;若不变,请说明理由.11、思考下列问题并在横线上填上答案.思考下列问题并在横线上填上答案.(1)数轴上表示-3的点与表示4的点相距________个单位.(2)数轴上表示2的点先向右移动2个单位,再向左移动5个单位,最后到达的点表示的数是______.(3)数轴上若点A表示的数是2,点B与点A的距离为3,则点B表示的数是_____.(4)若|a-3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B两点间的最大距离是______,最小距离是_________.(5)数轴上点A表示8,点B表示-8,点C在点A与点B之间,A点以每秒0.5个单位的速度向左运动,点B 以每秒1.5个单位的速度向右运动,点C以每秒3个单位的速度先向右运动碰到点A后立即返回向左运动,碰到点B后又立即返回向右运动,碰到点A后又立即返回向左运动…,三个点同时开始运动,经过_________ 秒三个点聚于一点,这一点表示的数是________,点C在整个运动过程中,移动了_______个单位.12、已知数轴上两点A、B对应的数分别为-1、3,数轴上一动点P对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数;(2)当点P以每分钟1个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度的速度向左运动,点B以每分钟20个单位长度的速度向左运动,问几分钟时点P到点A,点B的距离相等.13、如图,在射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm(如图所示),点P从点O出发,沿OM方向以1cm/s的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点Q运动到点O时停止运动),两点同时出发.(1)当PA=2PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度.(2)若点Q运动速度为3cm/s,经过多长时间P、Q两点相距70cm.(3)当点P运动到线段AB上时,分别取OP和AB的中点E、F,求 OB-AP/EF的值.14、甲、乙物体分别从相距70米的两处同时相向运动.甲第1分钟走2米,以后每分钟比前1分钟多走1米,乙每分钟走5米.(1)甲、乙开始运动后几分钟相遇?(2)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1米,乙继续每分钟走5米,那么开始运动几分钟后第二相遇?15、如图,线段AB=20cm.(1)点P沿线段AB自A点向B点以2厘米/秒运动,同时点Q沿线段BA自B点向A点以3厘米/秒运动,几秒钟后,P、Q两点相遇?如图,已知数轴上A、B两点所表示的数分别为-2和8.(1)求线段AB的长;(2)若P为射线BA上的一点(点P不与A、B两点重合,M为PA的中点,N为PB的中点,当点P在射线BA 上运动时;MN的长度是否发生改变?若不变,请你画出图形,并求出线段MN的长;若改变,请说明理由.16、已知:如图1,M是定长线段AB上一定点,C、D两点分别从M、B出发以1cm/s、3cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AB=10cm,当点C、D运动了2s,求AC+MD的值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM=________ AB.(3)在(2)的条件下,N是直线AB上一点,且AN-BN=MN,求 MNAB的值.17、如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ-BQ=PQ,求 PQAB的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有 CD=12AB,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM-PN的值不变;② MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.18、如图,已知数轴上A、B两点所表示的数分别为-2和8.(1)求线段AB的长;(2)若P为射线BA上的一点(点P不与A、B两点重合),M为PA的中点,N为PB的中点,当点P在射线BA上运动时,线段MN的长度是否发生改变?若不变,请你画出图形,并求出线段MN的长;若改变,请说明理由.(3)若有理数a、b、c在数轴上的位置如图所示:且d=|a+b|-|-2-b|-|a-2c|-5,试求7(d+2c)2+2(d+2c)-5(d+2c)2-3(d+2c)的值.19、已知数轴上A、B两点对应数分别为—2,4,P为数轴上一动点,对应数为x.⑴若P为线段AB的三等分点,求P点对应的数.(答案:0或2)⑵数轴上是否存在P点,使P点到A、B距离和为10?若存在,求出x的值;若不存在,请说明理由.(答案:—4或6)⑶若点A、点B和P点(P点在原点)同时向左运动.它们的速度分别为1、2、1个单位长度/分钟,则第几分钟时P为AB的中点?(答案:2)。
动点问题专题(二)(word版)
动点问题专题(二)前言:数轴上的动点问题进阶是熟练描述点与点的位置关系以后,深入探讨点与线段、线段与线段之间的关系,而由于点的数量的多少和数据呈现的不同,题目又会出现一些不同的类别.一、例题解析【例1】已知点A、B在数轴上表示的数分别为a、b且满足|a-2|与(b-90)2互为相反数.(1)a值为,b值为.(2)一只电子狗P从点A出发,向右匀速运动,速度为每秒1个单位长度:另一电子狗Q从点B 出发,向左匀速运动,速度为每秒3个单位长度,且Q比P先运动2秒,已知在原点O处有病毒,若电子狗遇到病毒则停止运动,未遇到病毒则继续运动,问电子狗P经过多长时间,有P、Q两只电子狗相距20个单位长度?【例2】数轴上两个点A、B所对应的数为-8、4,A、B两点各自以一定的速度在数轴上运动,且A点的运动速度为2个单位/秒.(1)点A、B两点同时出发相向而行,在原点处相遇,求B点的运动速度;AB4-8(2)A、B两点同时以(1)中的速度同时出发,向数轴正方向运动,几秒后原点恰好在两动点中间;(3)A、B两点以(1)中的速度同时出发,几秒种时两者相距6个单位长度?【例3】如图,在数轴上每相邻两点间的距离为一个单位长度,点A、B、C、D对应的数分别是a、b、c、d,且d-2a=14.DC(1)那么a=,b=;(2)点A以3个单位/秒的速度沿着数轴的正方向运动,1秒后点B以4个单位/秒的速度也沿着数轴的正方向运动,当点A到达D点处立刻返回,与点B数轴某点处相遇,求这个点对应的数;(3)如果A、B两点以(2)中的速度同时向数轴的负方向运动,点C从图上的位置出发也向数轴的负方向运动,且始终保持AB=23AC,当点C运动到-6时,点A对应的数是多少?【例4】如图,数轴上点A、C对应的数分别为a、c,且满足|a+4|+(c-1)2018=0,点B对应的数为-3.COBA(1)求数a、c;(2)点A、B沿数轴同时出发向右匀速运动,点A速度为2个单位长度/秒,点B速度为1个单位长度/秒,若运动时间为t秒,运动过程中,当A、B两点到原点O的距离相等时,求t的值;(3)在(2)的条件下,若点B运动至点C处后立即以原速返回,到达自己的出发点后停止运动;点A 运动至点C处后也立即原速返回,到达自己的出发点后又折向点C运动,当点B停止运动时,点A随之停止运动,求在运动过程中,A,B两点同时到达的点在数轴上表示的数.【例5】已知点A在数轴上对应的数为a,点B对应的数为b,A、B之间的距离记作|AB|,定义:|AB|=|a -b|,且|a+2|+(b-5)2=0.(1)求线段AB的长;(2)设点P在数轴对应的数为x,当|AP|+|PB|=10时,求x的值;(3)如图,M 、N 两点分别从O 、B 出发以v 1、v 2的速度同时沿数轴负方向运动(M 在线段AO 上,N 在线段BO 上,当M 运动到A 点或N 运动到O 点时,另一点N 或M 即停止运动),P 是线段AN 的中点,若M 、N 运动到任一时刻时,总有|PM |为定值,下列结论:①12v v 的值不变;②v 1+v 2的值不变.其中只有一个结论是正确的,请你找出正确的结论,并求值.【例6】如图1,已知点A 、C 、E 、F 、B 为直线l 上的点,且AB =12,CE =6,F 为AE 的中点. (1)如图1,若CF =2,则BE = ,若CF =m ,BE 与CF 的数量关系是 .图1F BA(2)当点E 沿直线l 向左运动至图2的位置时,(1)中BE 、CF 的数量关系是否仍然成立?请说明理由.图2BE(3)如图3,在(2)的条件下,在线段BE 上,是否存在点D ,使得BD =7,且DF =3DE ?若存在,请求出10DFCF值;若不存在,请说明理由. D E BC A 图3二、课后练习1.数轴上点A对应的数为-5,点B在点A右边,电子蚂蚁甲、乙在B分别以2个单位/秒、1个单位/秒的速度向右运动,电子蚂蚁丙在A以3个单位/秒的速度向右运动.(1)若电子蚂蚁丙经过5秒运动到C点,求C点表示的数;-5BA (2)若它们同时出发,若丙在遇到乙后1秒遇到甲,求点B表示的数是:-5BA(3)在(2)的条件下,设它们同时出发的时间为t秒,是否存在t的值,使丙到乙的距离是丙到甲的距离的2倍?若存在,求出t值;若不存在,说明理由.-5BA2.已知:数轴上A、B、C三点对应有理数a、b、C、a、b、c在数轴上的位置如图所示,且|c|>|a|.(1)化简:|b-c|-|c-2a|+|2a+b|+|a+c|;(2)若|a+10|=30,b2=900,c是|x+40|-30取最小值时x的值,求a,b,c的值;(3)在(2)的条件下,数轴上是否存在一点P,使得P点到C点的距离加上P点到A点的距离减去P 点到B点的距离为60,即PC+P A—PB=60,若存在,求出P点在数轴上所对应的数;若存在,请说明理由.3.如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,C是AB的中点,且a,b满足|a+3|+(b+3a)2=0.(1)求点C表示的数;(2)点P从A点以3个单位每秒向右运动,点Q同时从B点以2个单位每秒向左运动,若AP+BQ=2PQ,求时间t;(3)若点P以3个单位秒从A点向右运动,点M为AP的中点,在P点到达点B之前①PA PBPC的值不变;②2BM-BP的值不变其中只有一个正确,请你找出正确的结论并求出.4.已知:如图1,M是定长线段AB上一定点,C、D两点分别从M、B出发以1c m/s、3cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AB=10cm,当点C、D运动了2s,求AC+MD的值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM=AB.(3)在(2)的条件下,N是直线AB上一点,且AN-BN=MN,求MNAB的值.BDMCA图1图2A M B5.如图1,已知数轴上有三点A 、B 、C ,AB =12AC ,点C 对应的数是200. (1)若BC =300,求点A 对应的数;(2)如图2,在(1)的条件下,动点P 、Q 分别从A 、C 两点同时出发向左运动,同时动点R 从A 点出发向右运动,点P 、Q 、R 的速度分别为10单位长度每秒、5单位长度每秒,点M 为线段PQ 的中点,点Q 在从点D 运动到点A 的过程中,32QC AM 的值是否发生变化?若不变,求其值;若不变,请说明理由.图1CB A图2Q200QR P图3C E 0。
初一数学 数轴上的动点问题压轴题 专题训练
七年级数学上册 数轴上的动点问题 专题训练1.在数轴上依次有A,B,C 三点,其中点A,C 表示的数分别为-2,5,且BC=6AB .(1)在数轴上表示出A,B,C 三点;(2)若甲、乙、丙三个动点分别从A 、B 、C 三点同时出发,沿数轴负方向运动,它们的速度分别是(单位长度/秒),当丙追上甲时,甲乙相距多少个单位长度?2,21,41(3)在数轴上是否存在点P ,使P 到A 、B 、C 的距离和等于10?若存在,求点P 对应的数;若不存在,请说明理由.2.已知多项式x 3-3xy 2-4的常数项是a ,次数是b(1) 直接写出a ,b ,并将这两个数在数轴上所对应的点A 、B 表示出来(2) 数轴上A 、B 之间的距离记作|AB |,定义:|AB |=|a -b |,设点P 在数轴上对应的数为x ,当|PA |+|PB|=13时,直接写出x 的值_____________(3) 若点A 、点B 同时沿数轴向正方向运动,点A 的速度是点B 的2倍,且3秒后,AO 23=OB ,求点B 的速度53.(本题12分)已知A、B两个动点同时在数轴上匀速运动,且保持运动的方向不变.若A、B两点的起始位置分别用有理数a、b表示,c是最大的负整数,且|a-19c2|+|b-8c3|=0(1) 求a、b、c的值(2) 根据题意及表格中的已知数据,填写完表格:057t运动时间(秒)A点位置a-1B点位置b1727(3) 若A、B两点同时到达点M的位置,且点M用有理数m表示,求m的值(4)A、B两点能否相距18个单位长度?如果能,求出此时运动了多少秒及此时A、B两点表示的有理数;如果不能,请说明理由c4.(本题7分)已知ab<0,>0,且|c|>|b|>|c|,数轴上a、b、c对应的点是A、aB、C(1) 若|a|=-a时,请在数轴上标出A、B、C的大致位置(2) 在(1)的条件下,化简:|a-b|-|b+c|+|c+a|5.如图,在数轴上A 点表示数a ,B 点表示数b ,AB 表示A 点和B 点之间的距离,C 是AB 的中点,且a 、b 满足|a +3|+(b +3a )2=0(1) 求点C 表示的数(2) 点P 从A 点以3个单位每秒向右运动,点Q 同时从B 点以2个单位每秒向左运动,若AP +BQ =2PQ ,求时间t(3) 若点P 从A 向右运动,点M 为AP 中点,在P 点到达点B 之前:① 的值不PCPB PA 变;②2BM -BP 的值不变,其中只有一个正确,请你找出正确的结论并求出其值6.数轴上点对应的数是﹣1,点对应的数是1,一只小虫甲从点出发沿着数轴的正方向以A B B 每秒4个单位的速度爬行至点,再以同样速度立即返回到点,共用了4秒钟.C A (1)求点对应的数;C (2)若小虫甲返回到点后再作如下运动:第1次向右爬行3个单位,第2次向左爬行5个A 单位, 第3次向右爬行7个单位,第4次向左爬行9个单位,……依次规律爬下去,求它第10次爬行后停在点所对应的数.(3)①若小虫甲返回到A 后继续沿着数轴的负方向以每秒4个单位的速度爬行,这时另一小虫乙从点出发沿着数轴的负方向以每秒6个单位的速度爬行,则运动秒后,甲、乙B t 两只小虫的距离为: .(用含的式子表示)t ②若小虫甲返回到A 后继续沿着数轴的负方向以每秒4个单位的速度爬行,同时另两只小虫乙、丙分别从点和点出发背向而行,乙的速度是每秒2个单位,丙的速度B C是每秒1个单位。
完整版)初一数学数轴上的动点问题专题辅导卷
完整版)初一数学数轴上的动点问题专题辅导卷初一数学数轴上的动点问题专题辅导卷1.在数轴上,有三个点A、B、C,分别代表-24、-10、10.两只电子蚂蚁甲、乙分别从A、C两点同时相向而行。
甲的速度为4个单位/秒。
问题如下:⑴问多少秒后,甲到A、B、C的距离和为40个单位?⑵若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行。
问甲、乙在数轴上的哪个点相遇?⑶在⑴⑵的条件下,当甲到A、B、C的距离和为40个单位时,甲调头返回。
问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由。
2.在数轴上,有两个点A、B,分别代表-20、100.问题如下:⑴求AB中点M对应的数;⑵现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,求C点对应的数;⑶若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D点相遇,求D点对应的数。
3.在数轴上,有两个点A、B,分别代表-1、3.点P为数轴上一动点,其对应的数为x。
问题如下:⑴若点P到点A、点B的距离相等,求点P对应的数;⑵数轴上是否存在点P,使点P到点A、点B的距离之和为5?若存在,请求出x的值。
若不存在,请说明理由;⑶当点P以每分钟一个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度向左运动,点B一每分钟20个单位长度向左运动,问它们同时出发,几分钟后P点到点A、点B的距离相等?4.在数轴上,有两个点A、B,分别代表-112、点A沿数轴匀速平移经过原点到达点B。
问题如下:⑴如果OA=OB,那么点B所对应的数是什么?⑵从点A到达点B所用时间是3秒,求该点的运动速度;⑶从点A沿数轴匀速平移经过点K到达点C,所用时间是9秒,且KC=KA,分别求点K和点C所对应的数。
[终稿]初中数学动点问题及练习题附参考答案.docx
例1.如图,已知在矩形ABCD 中,A£)=8, CD=4,点E 从点小I ]发,沿线段D4以每秒1 个单位长的速度向点A 方向移动,同吋点尸从点C 出发,沿射线CQ 方向以每秒2个单位 长的速度移动,当B, E, F 三点共线时,两点同时停止运动.设点E 移动的时间为/(秒).(1) 求当r 为何值时,两点同时停止运动;(2) 设四边形BCFE 的面积为S,求S 与/之间的函数关系式,并写岀r 的取值范围;(3) 求当t 为何值时,以E, F, C 三点为顶点的三介形是等腰三用形;例2•正方形ABCD 边长为4,、N 分别是BC 、CD 上的两个动点,当M 点在BC 上运动时,保持AM 和MN 垂直, (1) 证明:Rt/XABM s RM\MCN ;(2) 设B M =x,梯形ABCN 的而积为y,求歹与兀之间的函数关系式;当M 点运动到 什么位置吋,四边形ABCN 而积最大,并求出最大而积;(3)当M 点运动到什么位置时Rt/XABM ^Rt/\AMN ,求此时x 的值.例 3.如图,在梯形 ABCD 中,AD // BC, AP = 3, DC = 5, AB = 4^2, ZB = 45。
.动 点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同吋从C 点 出发沿线段CD 以每秒1个单位长度的速度向终点Q 运动.设运动的时间为/秒.(09年济南中考) (1)求BC 的长。
(2) 当MN // AB 时,求f 的值.(3) 试探究:f 为何值时,HMNC 为等腰三角形.(4)求当f 为何值时,ZBEC 二ZBFC.由题意可知:ED=t, BC=8, FD= 2/-4, FC= It.FD ED•: ED//BC,4FEDs/\FBC.:・——=——・FC BC2—4 t・・・一解得/=4.2t 8.・・当匸4时,两点同时停止运动;(3分)1 1 9(2)•:ED=t, CF=2t, :.S=S^BC^- S^BCF= - X8X4+ - X2rXr= 16+ z2.2 2即S=16+f. (0 W/ W4);.......................................................................... (6 分) (3)①若EF=EC时,则点F只能在CD的延长线上,VEF2=(2r-4)2+r2 =5r2-16r + 16,EC2=42 + z2 = z2 +16 , 5z2— 16f +16 = z2 +16 . f=4 ^=0 (^i);4 L②若EC=FC W,VEC2=42+r2 =r2 + 16, FC2=4r, A r+ 16=4r.:・t = -』3 ;3③若EF=FC时,*:EF2=⑵一4尸 + 尸=5厂 _ 16/ +16 , FC2=4/2,5t2—I6t +16 =4r2. .'.Z|=16+8A/3 (舍去),t2= 16 —8A/3.・•・当/的值为4, -V3, 16-8^3时,以E, F, C三点为顶点的三角形是等腰三3角形; ............................................................. (9分)Be CF(4)在RtA^CF 和RtAC££> 中,•/ ZBCD=ZCDE=90° ,——=——=2 ,CD ED:.RtABCF^RtACEP・:.ZBFC=ZCED. (10 分)•:AD//BC、:.ZBCE=ZCED.若ZBEC=ZBFC,则ZBEC=ZBCE.即BE=BC.*.* BE 2=t~ —16/ + 80 , /. t~ — 16/ + 80 =64./.Z J =16 + 8A /3 (舍去),t2= 16 — 8A /3 .・・・当匸16-朋 时,ZBEC=ZBFC. ......................................................... (12分) 例2.解:(1)在正方形ABCD 中,AB = BC = CD = 4, ZB = ZC = 90°, •・• AM 丄MN ,.•・ ZAMN =90\ZCMN + ZAMB = 90° f在 RtAABM 中,ZMAB + ZAMB = 90°, :.ZCMN =AM AB ,RtAABM s Rt/\MCN ,(2) ••• Rt/\ABM s RtAMCTV ,AB BM 4 x• _ — __ • ___ — _•• MC_ CN …4_x_ CN '当x = 2吋,歹取最大值,最大值为10.(3) v ZB = ZAW=90°,AM AR .••要使厶ABM s^AMN ,必须有—— =— MN BM•••当点M 运动到BC 的中点时,s ZMN ,此时x = 2. 例3.解:(1)如图①,过4、D 分别作4K 丄BC 于K , DH 丄BC 于H ,则四边形ADHK 是矩形 ・・.KH = AD = 3.在RtZ\ABK 中,AK = AB sin45° = 4^2.—= 4 2••• CN = -X 2 + 4x _4-U^^ + 4〕・4 二丄i i 9 2J + 2X + 8 = --(X -2)+10 由(1)知如MN AB~M CBK = AB cos 45° = 4迈—=42在RtACPH中,由勾股定理得,HC = V52 -42 = 3・•・ BC = BK + KH + HC = 4 + 3 + 3 = 10(图①)(图②)(2)如图②,过D作DG// AB交BC于G点,则四边形ADGB是平行四边形・・・MN // AB:.MN // DG:.BG = AD = 3:.GC = 10 — 3 = 7由题意知,当M、N运动到f秒时,CN=t, CM =10-2r.•・・ DG // MN:.ZNMC = ZDGC乂zc=zc・・・ ZXMNC s'GDC.CN CM9~CD~~CG10-2/7解得,(3)分三种情况讨论:①当NC = MC时,如图③,即/二10-2/10(图③)(图④)② 当MN = NC 时,如图④,过N 作NE 丄MC 于E VZC = ZC,乙DHC =乙NEC = 90°・•・ 'NEC s HDHC.NC EC^~DC~~HC 即[=□5 3•,兰8③ 当MN=MC 时,如图⑤,过M 作MF 丄CN 于F 点.FC=-NC = -t 2 2 VZC = ZC,乙MFC = ZDHC = 90° ・•・HMFCs'DHC ・ FC MC"~HC~~DC1即二Si3 5・ 60 • ■ t = -- 17综上所述,当/=巴、 3 &业好文档精心整理欢迎下载 2兰或2聖 8 17时,HMNC 九等腰三和形 (图⑤)。
初中数学七年级数轴上的动点问题专题(压轴题练习)
数轴上的动点问题专题【例1】1.如图,已知数轴上点A表示的为8,B是数轴上一点,且AB=14,动点P从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点H从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、H同时出发,问点P运动多少秒时追上点H?【练】2.已知:如图在数轴上有A,B两点,它们分别对应着﹣12和8.A、B两点同时出发,B点以每秒2个单位的速度向右运动,A点则已每秒4个单位的速度向右运动.(1)A点在多少秒后追上B点;(2)A点在什么坐标位置追上B点.3.已知a,b满足(a+2)2+|b﹣1|=0,请回答下列问题:(1)a=,b=;(2)a,b在数轴上对应的点分别为A,B,在所给的数轴上标出点A,点B;(3)若甲、乙两个动点分别从A,B两点同时出发沿x轴正方向运动,已知甲的速度为每秒2个单位长度,乙的速度为每秒1个单位长度,请问经过多少秒甲追上乙?4.如图A、B两点在数轴上分别表示﹣10和20,动点P从点A出发以10个单位每秒的速度向右运动,动点Q从点B出发以每秒5个单位的速度出向左运动.设运动时间为t.(1)当点P运动到B点时,求出t的值;(2)当t为何值时,P、Q两点相遇,并求出此时P点对应的数?(3)在此运动过程中,若P、Q相距10个单位,直接写出运动时间t?【练】5.如图,点P、Q在数轴上表示的数分别是﹣8、4,点P以每秒2个单位的速度运动,点Q 以每秒1个单位的速度运动.设点P、Q同时出发,运动时间为t秒.(1)若点P、Q同时向右运动2秒,则点P表示的数为,点P、Q之间的距离是个单位;(2)经过秒后,点P、Q重合;(3)试探究:经过多少秒后,点P、Q两点间的距离为14个单位.6.已知数轴上点A、B表示的数分别为﹣1、3、P为数轴上一动点,其表示的数为x.(1)若P到A、B的距离相等,则x=;(2)是否存在点P,使P A+PB=6?若存在,写出x的值;若不存在,请说明理由;(3)若点M、N分别从A、B同时出发,沿数轴正方向分别以2个单位/秒、1个单位/秒的速度运动,则经过多长时间,M、N两点相距1个单位长度?7.如图,数轴上点A,C对应的数分布是a,c,且a,c满足|a+4|+(c﹣1)2=0,点B对应的数是﹣3(1)求数a,c;(2)点A,B同时沿数轴向右匀速运动,点A的速度为每秒2个单位长度,点B的速度为每秒1个单位长度,若运动时间t秒,在运动过程中,点A,B到原点O的距离相等时,求t的值.【练】8.已知点P、Q是数轴上的两个动点,且P、Q两点的速度比是1:3.(速度单位:单位长度/秒)(1)动点P从原点出发向数轴负方向运动,同时,动点Q也从原点出发向数轴正方向运动,4秒时,两点相距16个单位长度.求两个动点的速度,并在数轴上标出P、Q两点从原点出发运动4秒时的位置.(2)如果P、Q两点从(1)中4秒时的位置同时向数轴负方向运动,那么再经过几秒,点P、Q到原点的距离相等?9.已知点P,Q是数轴上的两个动点,且P,Q两点的速度比是3:5.(速度单位:单位长度/秒)(1)动点P从原点出发向数轴正方向运动,同时,动点Q也从原点出发向数轴负方向运动,6秒时,两点相距96个单位长度.则动点P的速度是,此时点Q表示的有理数是;(2)如果P,Q两点从(1)中6秒时的位置同时向数轴正方向运动,那么再经过秒,点P,Q到数轴上表示有理数20的点的距离相等.10.如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,2秒后,两点相距16个单位长度.已知点B的速度是点A的速度的3倍.(速度单位:单位长度/秒)(1)求出点A、B运动的速度,并在数轴上标出A、B两点从原点出发运动2秒时的位置;(2)若A、B两点从(1)中标出的位置开始,仍以原来的速度同时沿数轴向左运动,经过几秒,点A、B之间相距4个单位长度?(3)若表示数0的点记为O,A、B两点分别从(1)中标出的位置同时沿数轴向左运动,经过多长时间,OB=2O A.【练】11.已知在数轴上有两个动点A、B,动点A从﹣1位置出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,4秒后两点相距25个单位长度,已知动点A、B的速度比是1:5(速度单位:1单位长度/秒).(1)求A、B两点从起始位置出发运动4秒后在数轴上分别对应的数是多少;(2)若A、B两点分别从(1)中所在的位置同时向数轴负方向运动,保持原来的速度不变,问经过几秒,点B到原点的距离恰好是点A到原点的距离的2倍?12.已知数轴上三点M,O,N对应的数分别为﹣3,0,1,点P为数轴上任意一点,其对应的数为x.(1)如果点P到点M、点N的距离相等,那么x的值是;(2)当x=时,使点P到点M、点N的距离之和是5;(3)如果点P以每秒钟3个单位长度的速度从点O向左运动时,点M和点N分别以每秒钟1个单位长度和每秒钟4个单位长度的速度也向左运动,且三点同时出发,那么秒钟时点P到点M,点N的距离相等.【练】13.数轴上两点A、B对应的数分别为﹣1,4,点P为数轴上一动点,其对应的数为x(1)如点P到点A,点B的距离相等,求点P在数轴上对应的数?(2)数轴上是否存在点P,使P到点A,点B的距离之和为7?若存在,请求出来x的值;若不存在,说明理由;(3)当点P以每分钟1个单位长度的速度从O点向左运动时点A以每分钟4个单位长度的速度向左运动,点B以每分钟12个单位的长度的速度向左运动,问它们同时出发,几分钟时点P到点A,点B的距离相等?14.如图:数轴上有A、B两点,分别对应的数为a,b,已知(a+1)2与|b﹣3|互为相反数.点P为数轴上一动点,对应为x.(1)若点P到点A和点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A和点B的距离之和为5?若存在,请求出x的值;若不存在,说明理由;(3)当点P以每分钟一个单位长度的速度从O点向左运动,点A以每分钟5各单位长度向左运动,问几分钟时点P到点A、点B的距离相等?15.已知A、B、C是数轴上从左至右的三点,点C表示的数是6,BC=4,AB=12,点P为数轴上一动点,其对应的数为x.(1)数轴上是否存在一点P,使点P到A、B的距离和为13?若存在,请求出x的值.若不存在,请说明理由;(2)当点P以每分钟1个长度单位的速度从C点向左运动时,点Q以每分钟2个长度单位的速度从点给A出发向左运动,点R从B点出发以每分钟5个长度单位的速度向右运动,向它们同时出发,几分钟后P点到点Q,点R的距离相等?16.已知数轴上两个点A、B所对应的数为a、b,且a、b满足|a+3|+(b﹣4)2=0.(1)求AB的长;(2)若甲、乙分别从A、B两点同时在数轴上运动,甲的速度是2个单位/秒,乙的速度比甲的速度快3个单位/秒,求甲乙相遇点所表示的数;(3)若点C对应的数为﹣1,在数轴上A点的左侧是否存在一点P,使P A+PB=3PC?若存在,求出点P所对应的数;若不存在,请说明理由.17.如图,数轴上A,B,C,D四点,分别对应的数为a、b、c、d,且满足a、b是|x+5|=1的两个解(a<b),(c﹣6)2与|d﹣10|互为相反数.(1)直接写出a,b,c,d的值;(2)若A,B两点以4个单位长度/秒的速度向右匀速运动,设运动时间为t秒,问t为时,点B运动到点C,D的中点上;(3)在(2)中,A,B继续运动,当B运动到D的右侧时,问是否存在时间t,使B与C 的距离是A与D的距离的2倍?若存在,求时间t;若不存在,请说明理由.18.已知数轴上两点A,B对应的数分别用a和b表示,且a,b满足|a+1|+(b﹣3)2=0,点P为数轴上一动点,其对应的数为x.(1)请直接写出求a和b的值;(2)若点P到点A,点B的距离相等,请直接写出点P对应的数x;(3)数轴上是否存在点P,使点P到点A,点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由;(4)当点P以每分钟1个单位长的速度从O点向左运动时,点A以每分钟5个单位长的速度向左运动,点B以每分钟20个单位长的速度向左运动,问它们同时出发,几分钟后P点到点A、点B的距离相等?【例6】19.如图,数轴上有两点A,B,点A表示的数为4,点B在点A的左侧,且AB=10,动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0).(1)写出数轴上点B表示的数,点P表示的数用含t的代数式表示:.(2)设点M是AP的中点,点N是PB的中点.点P在线段AB上运动过程中,线段MN的长度是否发生变化?若变化,请说出理由;若不变,求线段MN的长度.(3)动点R从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P,R同时出发,问点P运动多少秒与点R距离为2个单位长度.【练】20.已知数轴上A,B两点所表示的数分别为a,b,且满足ab<0,|a|=2,|b|=7,(1)求线段AB的长度;(2)若a<b,P为射线上的一点(点P不与A、B两点重合),M为P A的中点,N为PB 的中点,当点P在射线BA上运动时,线段MN的长度是否发生改变?若不变,请求出线段MN的长;若改变,请说明理由.21.已知点A在数轴上对应的数为a,点B对应的数为b,且|a+4|+(b﹣1)2=0,A,B之间的距离记作|AB|.(1)设点P在数轴上对应的数为x,当|P A|﹣|PB|=2时,求x的值;(2)若点P在A的左侧,M,N分别是P A,PB的中点,当点P在A的左侧移动时,式子|PN|﹣|PM|的值是否发生改变?若不变,请求其值;若发生变化,请说明理由.22.如图,已知数轴上有A、B、C三个点,它们表示的数分别是﹣24,﹣10,10.(1)填空:AB=,BC=;(2)若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和7个单位长度的速度向右运动.设运动时间为t,用含t的代数式表示BC和AB的长,试探索:BC﹣AB的值是否随着时间t的变化而改变?请说明理由.(3)现有动点P、Q都从A点出发,点P以每秒1个单位长度的速度向终点C移动;当点P移动到B点时,点Q才从A点出发,并以每秒3个单位长度的速度向右移动,且当点P 到达C点时,点Q就停止移动.设点P移动的时间为t秒,问:当t为多少时P、Q两点相距6个单位长度?23.已知:A、B、C为数轴上三个运动的点,速度分别为a个单位/秒、b个单位/秒和c个单位/秒(a、b、c为正整数),且满足|5﹣a|+(b﹣3)2=1﹣c.(1)求A、B、C三点运动的速度;(2)若A、B两点分别从原点出发,向数轴正方向运动,C从表示+20的点出发同时向数轴的负方向运动,几秒后,C点恰好为AB的中点?(3)如图,若一把长16cm的直尺一端始终与C重合(另一端D在C的右边),且M、N 分别为OD、OC的中点,在C点运动过程中,试问:MN的值是否变化?若变化,求出其取值范围;若不变,请求出其值.24.阅读下面的内容并用此结论(或变形式)解答下面题目的三个问题: (1)若点P 为线段MN 的中点,则MP =PN =12MN(2)若点P 为线段MN 上任一点,则:MP =MN ﹣PN如图①,已知数轴上有三点A ,B ,C ,点B 为AC 的中点,C 对应的数为200. ①若BC =300,求点A 对应的数.②在①的条件下,如图②,动点P 、Q 分别从两点同时出发向左运动,同时动点R 从A 点出发向右运动,点P 、Q 、R 的速度分别为10个单位长度每秒,5个单位长度每秒,2个单位长度每秒,点M 为线段PR 的中点,点N 为RQ 的中点,多少秒时恰好满足MR =4RN (不考虑点R 和点Q 相遇之后的情形).③在①的条件下,如图③,若点E 、D 对应的数分别为﹣800,0,动点P 、Q 分别从E 、D 两点同时出发向左运动,点P 、Q 的速度分别为10个单位长度每秒,5个单位长度每秒,点M 为线段PQ 的中点,点Q 在从点D 运动到点A 的过程中,32QC ﹣AM 的值是否发生变化?若不变,求其值,若变,请说明理由.25.如图1,已知数轴上两点A 、B 对应的数分别为﹣1、3,点P 为数轴上的一动点,其对应的数为x .(1)P A = ;PB = (用含x 的式子表示)(2)在数轴上是否存在点P ,使P A +PB =5?若存在,请求出x 的值;若不存在,请说明理由.(3)如图2,点P 以1个单位/s 的速度从点D 向右运动,同时点A 以5个单位/s 的速度向左运动,点B 以20个单位/s 的速度向右运动,在运动过程中,M 、N 分别是AP 、OB 的中点,问:AB -OPMN的值是否发生变化?请说明理由.26.(2014秋•江岸区期中)如图,在数轴上A 点表示数a ,B 点表示数b ,AB 表示A 点和B 点之间的距离,C 是AB 的中点,且a 、b 满足|a +3|+(b +3a )2=0. (1)求点C 表示的数;(2)点P 从A 点以3个单位每秒向右运动,点Q 同时从B 点以2个单位每秒向左运动,若AP +BQ =2PQ ,求时间t ;(3)若点P 从A 向右运动,点M 为AP 中点,在P 点到达点B 之前:①P A +PBPC 的值不变;②2BM ﹣BP 的值不变,其中只有一个正确,请你找出正确的结论并求出其值.27.如图1,点A 、B 分别在数轴原点O 的左右两侧,且13OA +50=OB ,点B 对应数是90.(1)求A 点对应的数;(2)如图2,动点M 、N 、P 分别从原点O 、A 、B 同时出发,其中M 、N 均向右运动,速度分别为2个单位长度/秒,7个单位长度/秒,点P 向左运动,速度为8个单位长度/秒,设它们运动时间为t 秒,问当t 为何值时,点M 、N 之间的距离等于P 、M 之间的距离; (3)如图3,将(2)中的三动点M 、N 、P 的运动方向改为与原来相反的方向,其余条件不变,设Q 为线段MN 的中点,R 为线段OP 的中点,求22RQ ﹣28RO ﹣5PN 的值.28.如图,在数轴上有A ,B 两点,所表示的数分别为a ,a +4,A 点以每秒32个单位长度的速度向正方向运动,同时B 点以每秒1个单位的速度也向正方向运动,设运动时间为t 秒.(1)运动前线段AB 的长为_____,t 秒后,A 点运动的距离可表示为_____,B 点运动距离可表示为_____; (2)当t 为何值时,A 、B 两点重合,并求出此时A 点所表示的数(用含a 与t 的式子表示); (3)在上述运动的过程中,若P 为线段AB 的中点,O 为数轴的原点,当a =﹣8时,是否存在这样的t 值,使得线段PO =5?若存在,求出符合条件的t 值;若不存在,请说明理由.动点问题补充训练1、(2016江岸区期中)已知数轴上有A 、B 、C 三个点对应的数分别是a 、b 、c ,且满足0)10(10242=-++++c b a ;动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设移动时间为t 秒. (1)求a 、b 、c 的值;(2)若点P 到A 点距离是到B 点距离的2倍,求点P 的对应的数;(3)当点P 运动到B 点时,点Q 从A 点出发,以每秒3个单位的速度向C 点运动,Q 点到达C 点后,再立即以同样的速度返回,运动到终点A .在点Q 开始运动后第几秒时,P 、Q 两点之间的距离为4?请说明理由.2、(2016二十五中期中)已知:数轴上A 、B 两点表示的有理数为a 、b ,且(a -1)2+|b +2|=0(1) 求a 、b 的值(2) 点C 在数轴上表示的数是c ,且与A 、B 两点的距离和为9,求值:a (bc +3)-|3(a -31b 2)-b 2|(3) 蚂蚁甲以2个单位长度/秒的速度从点B 出发向其左边30个单位长度处的食物M 爬去,10秒后位于点A 的蚂蚁乙收到它的信号,以3个单位长度/秒的速度也迅速爬向食物.蚂蚁甲到达M 后用了2秒时间背上食物,立即返回,速度降为1个单位长度/秒,与蚂蚁乙在数轴上D 点相遇,求点D 表示的有理数是多少?从出发到此时,蚂蚁甲共用去时间为多少?3、(2016东湖高新区期中)如图,若数轴上的A 、B 两点对应的数分别为a 、b ,且a 、b 满足|a +3|+(b +3a )2=0,请回答下列问题: (1)求a 和b 的值.(2)若数轴上有一点C ,满足点C 到点B 的距离为点C 到点A 的距离的2倍,求点C 在数轴上所对应的数.(3)若数轴上有一点P 从A 点向B 点运动(只在A 、B 两点之间运动),同时,数轴上的点M 是线段AP 的中点,数轴上的点N 是线段BP 的中点,请问:当点P 运动时,点M 、N 之间的距离是否发生变化,若不变化,求出该距离;若变化,说明理由.4、(2016外校期中)已知点A 、点B 在数轴上分别对应有理数a ,b ,其中a ,b 满足:()2112602a b -++=. (1)求a ,b 的值;(2)如图所示,在点A 、点B 之间存在一点C (点C 不与A 、B 重合),现有一个小球从A 出发向左匀速运动,经过一秒到达AC 的中点,又经过三秒之后到达BC 的中点,试求点C 所对应的有理数;OCAB(3)在(2)的条件下,现在我们在C 、A 两个位置各放一块挡板,有两个小球P 和Q 分别从点C 出发,P 以2个单位长度每秒的速度向右运动,Q 以4个单位长度每秒的速度向左运动,其中,小球P 在运动的过程中会碰到挡板,每次碰到挡板后按照原速度反弹(不考虑碰撞中能量的损失),按照此规律运动下去,试问:是否存在一个时间t ,使得PB =2QB ?若存在,求出所有满足条件的时间t ;若不存在,请说明理由.5、(2016武珞路期中)已知点A 、B 在数轴上表示的数分别为a ,b ,且满足()22900a b -+-=.(1) a 的值为_______,b 的值为________;(2) 一只电子狗P 从点A 出发,向右匀速运动,速度为每秒1个单位长度,另一电子狗Q 从点B 出发,向左匀速运动,速度为每秒3个单位长度,且Q 比P 先运动2秒,已知在原点O 处有病毒,若电子狗遇到病毒则停止运动,未遇到病毒则继续运动,问电子狗P 经过多长时间,有P 、Q 两只电子狗相距70个单位长度?(3) 求()()2222221912716189362114910329b x a x a x x ⎛⎫⎛⎫--+++--++ ⎪ ⎪⎝⎭⎝⎭的最大值.AB6、(2016洪山区期中)已知多项式2234x xy --的常数项是a ,次数是b .(1)直接写出a =________,b =________;并将这两数在数轴上所对应的点A 、B 表示出来;(2)数轴上A 、B 之间的距离定义记作AB,定义AB =a b -,设P 在数轴上对应的数为x ,当PA +PB =13时,直接写出x 的值_______________________;(3)若点A ,点B 同时沿数轴向正方向运动.点A 的速度是点B 的2倍,且3秒后,32OA=OB ,求点B 的速度.点为===秒或秒时,(2010秋•武昌区期末)如图,数轴上线段AB=2(单位长度),CD=4(单位长度),点A 在数轴上表示的数是﹣10,点C在数轴上表示的数是16.若线段AB以6个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.(1)问运动多少时BC=8(单位长度)?(2)当运动到BC=8(单位长度)时,点B在数轴上表示的数是4或16;(3)P是线段AB上一点,当B点运动到线段CD上时,是否存在关系式=3,若存在,求线段PD的长;若不存在,请说明理由.)存在关系式,即<,即时,有==时,有=当时,时,有=参考答案与试题解析一.解答题(共27小题)1.(2014秋•滕州市期末)如图,已知数轴上点A表示的为8,B是数轴上一点,且AB=14,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t >0)秒.(1)写出数轴上点B表示的数﹣6,点P表示的数8﹣5t(用含t的代数式表示);(2)动点H从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、H同时出发,问点P运动多少秒时追上点H?2.(2014秋•宝安区校级期末)已知:如图在数轴上有A,B两点,它们分别对应着﹣12和8.A、B两点同时出发,B点以每秒2个单位的速度向右运动,A点则已每秒4个单位的速度向右运动.(1)A点在多少秒后追上B点;(2)A点在什么坐标位置追上B点.3.(2013秋•江北区校级月考)已知a,b满足(a+2)2+|b﹣1|=0,请回答下列问题:(1)a=﹣2,b=1;(2)a,b在数轴上对应的点分别为A,B,在所给的数轴上标出点A,点B;(3)若甲、乙两个动点分别从A,B两点同时出发沿x轴正方向运动,已知甲的速度为每秒2个单位长度,乙的速度为每秒1个单位长度,请问经过多少秒甲追上乙?4.(2013秋•泰兴市校级期中)如图A、B两点在数轴上分别表示﹣10和20,动点P从点A 出发以10个单位每秒的速度向右运动,动点Q从点B出发以每秒5个单位的速度出向右运动.设运动时间为t.(1)当点P运动到B点时,求出t的值;(2)当t为何值时,P、Q两点相遇,并求出此时P点对应的数?(3)在此运动过程中,若P、Q相距10个单位,直接写出运动时间t?,,为秒或5.(2014秋•滨湖区期中)如图,点P、Q在数轴上表示的数分别是﹣8、4,点P以每秒2个单位的速度运动,点Q以每秒1个单位的速度运动.设点P、Q同时出发,运动时间为t 秒.(1)若点P、Q同时向右运动2秒,则点P表示的数为﹣4,点P、Q之间的距离是10个单位;(2)经过4或12秒后,点P、Q重合;(3)试探究:经过多少秒后,点P、Q两点间的距离为14个单位.;,,秒时,6.(2014秋•徐州期末)已知数轴上点A、B表示的数分别为﹣1、3、p为数轴上一动点,其表示的数为x.(1)若P到A、B的距离相等,则x=1;(2)是否存在点P,使P A+PB=6?若存在,写出x的值;若不存在,请说明理由;(3)若点M、N分别从A、B同时出发,沿数轴正方向分别以2个单位/秒、1个单位/秒的速度运动,则经过多长时间,M、N两点相距1个单位长度?7.(2014秋•成都期末)如图,数轴上点A,C对应的数分布是a,c,且a,c满足|a+4|+(c﹣1)2=0,点B对应的数是﹣3(1)求数a,c;(2)点A,B同时沿数轴向右匀速运动,点A的速度为每秒2个单位长度,点B的速度为每秒1个单位长度,若运动时间t秒,在运动过程中,点A,B到原点O的距离相等时,求t的值.;.8.已知点P、Q是数轴上的两个动点,且P、Q两点的速度比是1:3.(速度单位:单位长度/秒)(1)动点P从原点出发向数轴负方向运动,同时,动点Q也从原点出发向数轴正方向运动,4秒时,两点相距16个单位长度.求两个动点的速度,并在数轴上标出P、Q两点从原点出发运动4秒时的位置.(2)如果P、Q两点从(1)中4秒时的位置同时向数轴负方向运动,那么再经过几秒,点P、Q到原点的距离相等?.9.(2014秋•西城区校级期中)已知点P,Q是数轴上的两个动点,且P,Q两点的速度比是3:5.(速度单位:单位长度/秒)(1)动点P从原点出发向数轴正方向运动,同时,动点Q也从原点出发向数轴负方向运动,6秒时,两点相距96个单位长度.则动点P的速度是6单位长度/秒,此时点Q表示的有理数是60;(2)如果P,Q两点从(1)中6秒时的位置同时向数轴正方向运动,那么再经过1秒,点P,Q到数轴上表示有理数20的点的距离相等.×=10.(2013秋•江都市期末)如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,2秒后,两点相距16个单位长度.已知点B的速度是点A的速度的3倍.(速度单位:单位长度/秒)(1)求出点A、B运动的速度,并在数轴上标出A、B两点从原点出发运动2秒时的位置;(2)若A、B两点从(1)中标出的位置开始,仍以原来的速度同时沿数轴向左运动,经过几秒,点A、B之间相距4个单位长度?(3)若表示数0的点记为O,A、B两点分别从(1)中标出的位置同时沿数轴向左运动,经过多长时间,OB=2O A.=综上,运动s11.已知在数轴上有两个动点A、B,动点A从﹣1位置出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,4秒后两点相距25个单位长度,已知动点A、B的速度比是1:5(速度单位:1单位长度/秒).(1)求A、B两点从起始位置出发运动4秒后在数轴上分别对应的数是多少;(2)若A、B两点分别从(1)中所在的位置同时向数轴负方向运动,保持原来的速度不变,问经过几秒,点B到原点的距离恰好是点A到原点的距离的2倍?;答:经过12.(2014秋•商丘期末)已知数轴上三点M,O,N对应的数分别为﹣3,0,1,点P为数轴上任意一点,其对应的数为x.(1)如果点P到点M、点N的距离相等,那么x的值是﹣1;(2)当x=﹣3.5或1.5时,使点P到点M、点N的距离之和是5;(3)如果点P以每秒钟3个单位长度的速度从点O向左运动时,点M和点N分别以每秒钟1个单位长度和每秒钟4个单位长度的速度也向左运动,且三点同时出发,那么或2秒钟时点P到点M,点N的距离相等.或)13.数轴上两点A、B对应的数分别为﹣1,4,点P为数轴上一动点,其对应的数为x(1)如点P到点A,点B的距离相等,求点P在数轴上对应的数?(2)数轴上是否存在点P,使P到点A,点B的距离之和为7?若存在,请求出来x的值;若不存在,说明理由;(3)当点P以每分钟1个单位长度的速度从O点向左运动时点A以每分钟4个单位长度的速度向左运动,点B以每分钟12个单位的长度的速度向左运动,问它们同时出发,几分钟时点P到点A,点B的距离相等?=分钟时点=分钟时点分钟或分钟时点14.(2014春•万州区校级期中)如图:数轴上有A、B两点,分别对应的数为a,b,已知(a+1)2与|b﹣3|互为相反数.点P为数轴上一动点,对应为x.(1)若点P到点A和点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A和点B的距离之和为5?若存在,请求出x的值;若不存在,说明理由;(3)当点P以每分钟一个单位长度的速度从O点向左运动,点A以每分钟5各单位长度向左运动,问几分钟时点P到点A、点B的距离相等?=分钟时点15.已知A、B、C是数轴上的三点,点C表示的数是6,BC=4,AB=12,点P为数轴上一动点,其对应的数为x.(1)数轴上是否存在一点P,使点P到A、B的距离和为13?若存在,请求出x的值.若不存在,请说明理由;(2)当点P以每分钟1个长度单位的速度从C点向左运动时,点Q以每分钟2个长度单位的速度从点给A出发向左运动,点R从B点出发以每分钟5个长度单位的速度向右运动,向它们同时出发,几分钟后P点到点Q,点R的距离相等?=答:经过16.已知数轴上两个点A、B所对应的数为a、b,且a、b满足|a+3|+(b﹣4)2=0.(1)求AB的长;(2)若甲、乙分别从A、B两点同时在数轴上运动,甲的速度是2个单位/秒,乙的速度比甲的速度快3个单位/秒,求甲乙相遇点所表示的数;(3)若点C对应的数为﹣1,在数轴上A点的左侧是否存在一点P,使P A+PB=3PC?若存在,求出点P所对应的数;若不存在,请说明理由.=。
初一数学数轴上的动点问题专题辅导卷
初一數學數軸上の動點問題專題輔導卷1.已知數軸上有A、B、C三點,分別代表—24,—10,10,兩只電子螞蟻甲、乙分別從A、C兩點同時相向而行,甲の速度為4個單位/秒。
⑴問多少秒後,甲到A、B、Cの距離和為40個單位?⑵若乙の速度為6個單位/秒,兩只電子螞蟻甲、乙分別從A、C兩點同時相向而行,問甲、乙在數軸上の哪個點相遇?⑶在⑴⑵の條件下,當甲到A、B、Cの距離和為40個單位時,甲調頭返回。
問甲、乙還能在數軸上相遇嗎?若能,求出相遇點;若不能,請說明理由。
2.如圖,已知A、B分別為數軸上兩點,A點對應の數為—20,B點對應の數為100。
⑴求AB中點M對應の數;⑵現有一只電子螞蟻P從B點出發,以6個單位/秒の速度向左運動,同時另一只電子螞蟻Q恰好從A 點出發,以4個單位/秒の速度向右運動,設兩只電子螞蟻在數軸上のC點相遇,求C點對應の數;⑶若當電子螞蟻P從B點出發時,以6個單位/秒の速度向左運動,同時另一只電子螞蟻Q恰好從A點出發,以4個單位/秒の速度也向左運動,設兩只電子螞蟻在數軸上のD點相遇,求D點對應の數。
3.已知數軸上兩點A、B對應の數分別為—1,3,點P為數軸上一動點,其對應の數為x。
⑴若點P到點A、點Bの距離相等,求點P對應の數;⑵數軸上是否存在點P,使點P到點A、點Bの距離之和為5?若存在,請求出xの值。
若不存在,請說明理由?⑶當點P以每分鐘一個單位長度の速度從O點向左運動時,點A以每分鐘5個單位長度向左運動,點B 一每分鐘20個單位長度向左運動,問它們同時出發,幾分鐘後P點到點A、點Bの距離相等?4、如圖,有一數軸原點為O,點A所對應の數是-1 12,點A沿數軸勻速平移經過原點到達點B.(1)如果OA=OB,那麼點B所對應の數是什麼?(2)從點A到達點B所用時間是3秒,求該點の運動速度.(3)從點A沿數軸勻速平移經過點K到達點C,所用時間是9秒,且KC=KA,分別求點K和點C所對應の數。
七年级上册数轴上的动点压轴题专练
七年级上册数轴上的动点压轴题专练一、数轴上动点问题相关知识点回顾1. 数轴的三要素原点、正方向和单位长度。
在数轴上,数与点是一一对应的关系。
2. 两点间的距离公式设数轴上两点公式、公式所表示的数分别为公式、公式,则公式和公式两点间的距离公式。
例如,若公式表示公式,公式表示公式,则公式;若公式表示公式,公式表示公式,则公式。
3. 动点在数轴上的表示设动点公式从数轴上表示数公式的点出发,以速度公式沿数轴正方向运动,经过时间公式后,点公式所表示的数为公式;若沿数轴负方向运动,则点公式所表示的数为公式。
二、典型例题及解析1. 已知数轴上公式、公式两点对应的数分别为公式和公式,点公式为数轴上一动点,其对应的数为公式。
(1)若点公式到点公式、点公式的距离相等,求点公式对应的数。
解析:因为点公式到点公式、点公式的距离相等,根据两点间距离公式公式,公式。
又因为公式,所以公式。
当公式时,方程无解。
当公式时,公式,公式,解得公式。
所以点公式对应的数为公式。
(2)若点公式在点公式、点公式之间,且公式,求点公式对应的数。
解析:因为公式,公式,且公式,所以公式。
因为点公式在公式、公式之间,即公式,所以公式。
去括号得公式。
移项得公式。
合并同类项得公式,解得公式。
所以点公式对应的数为公式。
(3)点公式以每分钟公式个单位长度的速度从原点公式向左运动,同时点公式以每分钟公式个单位长度的速度向左运动,点公式以每分钟公式个单位长度的速度向左运动,设运动时间为公式分钟。
问公式为何值时,点公式到点公式、点公式的距离相等?解析:公式分钟后,点公式表示的数为公式,点公式表示的数为公式,点公式表示的数为公式。
根据公式,公式。
当公式时,即公式。
当公式时,公式,公式,解得公式。
当公式时,公式,公式,公式,解得公式。
2. 数轴上点公式表示的数为公式,点公式表示的数为公式。
(1)求线段公式的长。
解析:根据两点间距离公式公式。
(2)若点公式是线段公式的中点,则点公式表示的数为多少?解析:设点公式表示的数为公式,因为公式是公式中点,所以公式。
初中数学七年级数轴上的动点问题专题(压轴题练习)
数轴上的动点问题专题【例1】1.如图,已知数轴上点A表示的为8,B是数轴上一点,且AB=14,动点P从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点H从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、H同时出发,问点P运动多少秒时追上点H?【练】2.已知:如图在数轴上有A,B两点,它们分别对应着﹣12和8.A、B两点同时出发,B点以每秒2个单位的速度向右运动,A点则已每秒4个单位的速度向右运动.(1)A点在多少秒后追上B点;(2)A点在什么坐标位置追上B点.3.已知a,b满足(a+2)2+|b﹣1|=0,请回答下列问题:(1)a=,b=;(2)a,b在数轴上对应的点分别为A,B,在所给的数轴上标出点A,点B;(3)若甲、乙两个动点分别从A,B两点同时出发沿x轴正方向运动,已知甲的速度为每秒2个单位长度,乙的速度为每秒1个单位长度,请问经过多少秒甲追上乙?4.如图A、B两点在数轴上分别表示﹣10和20,动点P从点A出发以10个单位每秒的速度向右运动,动点Q从点B出发以每秒5个单位的速度出向左运动.设运动时间为t.(1)当点P运动到B点时,求出t的值;(2)当t为何值时,P、Q两点相遇,并求出此时P点对应的数?(3)在此运动过程中,若P、Q相距10个单位,直接写出运动时间t?【练】5.如图,点P、Q在数轴上表示的数分别是﹣8、4,点P以每秒2个单位的速度运动,点Q 以每秒1个单位的速度运动.设点P、Q同时出发,运动时间为t秒.(1)若点P、Q同时向右运动2秒,则点P表示的数为,点P、Q之间的距离是个单位;(2)经过秒后,点P、Q重合;(3)试探究:经过多少秒后,点P、Q两点间的距离为14个单位.6.已知数轴上点A、B表示的数分别为﹣1、3、P为数轴上一动点,其表示的数为x.(1)若P到A、B的距离相等,则x=;(2)是否存在点P,使P A+PB=6?若存在,写出x的值;若不存在,请说明理由;(3)若点M、N分别从A、B同时出发,沿数轴正方向分别以2个单位/秒、1个单位/秒的速度运动,则经过多长时间,M、N两点相距1个单位长度?7.如图,数轴上点A,C对应的数分布是a,c,且a,c满足|a+4|+(c﹣1)2=0,点B对应的数是﹣3(1)求数a,c;(2)点A,B同时沿数轴向右匀速运动,点A的速度为每秒2个单位长度,点B的速度为每秒1个单位长度,若运动时间t秒,在运动过程中,点A,B到原点O的距离相等时,求t的值.【练】8.已知点P、Q是数轴上的两个动点,且P、Q两点的速度比是1:3.(速度单位:单位长度/秒)(1)动点P从原点出发向数轴负方向运动,同时,动点Q也从原点出发向数轴正方向运动,4秒时,两点相距16个单位长度.求两个动点的速度,并在数轴上标出P、Q两点从原点出发运动4秒时的位置.(2)如果P、Q两点从(1)中4秒时的位置同时向数轴负方向运动,那么再经过几秒,点P、Q到原点的距离相等?9.已知点P,Q是数轴上的两个动点,且P,Q两点的速度比是3:5.(速度单位:单位长度/秒)(1)动点P从原点出发向数轴正方向运动,同时,动点Q也从原点出发向数轴负方向运动,6秒时,两点相距96个单位长度.则动点P的速度是,此时点Q表示的有理数是;(2)如果P,Q两点从(1)中6秒时的位置同时向数轴正方向运动,那么再经过秒,点P,Q到数轴上表示有理数20的点的距离相等.10.如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,2秒后,两点相距16个单位长度.已知点B的速度是点A的速度的3倍.(速度单位:单位长度/秒)(1)求出点A、B运动的速度,并在数轴上标出A、B两点从原点出发运动2秒时的位置;(2)若A、B两点从(1)中标出的位置开始,仍以原来的速度同时沿数轴向左运动,经过几秒,点A、B之间相距4个单位长度?(3)若表示数0的点记为O,A、B两点分别从(1)中标出的位置同时沿数轴向左运动,经过多长时间,OB=2O A.【练】11.已知在数轴上有两个动点A、B,动点A从﹣1位置出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,4秒后两点相距25个单位长度,已知动点A、B的速度比是1:5(速度单位:1单位长度/秒).(1)求A、B两点从起始位置出发运动4秒后在数轴上分别对应的数是多少;(2)若A、B两点分别从(1)中所在的位置同时向数轴负方向运动,保持原来的速度不变,问经过几秒,点B到原点的距离恰好是点A到原点的距离的2倍?12.已知数轴上三点M,O,N对应的数分别为﹣3,0,1,点P为数轴上任意一点,其对应的数为x.(1)如果点P到点M、点N的距离相等,那么x的值是;(2)当x=时,使点P到点M、点N的距离之和是5;(3)如果点P以每秒钟3个单位长度的速度从点O向左运动时,点M和点N分别以每秒钟1个单位长度和每秒钟4个单位长度的速度也向左运动,且三点同时出发,那么秒钟时点P到点M,点N的距离相等.【练】13.数轴上两点A、B对应的数分别为﹣1,4,点P为数轴上一动点,其对应的数为x(1)如点P到点A,点B的距离相等,求点P在数轴上对应的数?(2)数轴上是否存在点P,使P到点A,点B的距离之和为7?若存在,请求出来x的值;若不存在,说明理由;(3)当点P以每分钟1个单位长度的速度从O点向左运动时点A以每分钟4个单位长度的速度向左运动,点B以每分钟12个单位的长度的速度向左运动,问它们同时出发,几分钟时点P到点A,点B的距离相等?14.如图:数轴上有A、B两点,分别对应的数为a,b,已知(a+1)2与|b﹣3|互为相反数.点P为数轴上一动点,对应为x.(1)若点P到点A和点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A和点B的距离之和为5?若存在,请求出x的值;若不存在,说明理由;(3)当点P以每分钟一个单位长度的速度从O点向左运动,点A以每分钟5各单位长度向左运动,问几分钟时点P到点A、点B的距离相等?15.已知A、B、C是数轴上从左至右的三点,点C表示的数是6,BC=4,AB=12,点P为数轴上一动点,其对应的数为x.(1)数轴上是否存在一点P,使点P到A、B的距离和为13?若存在,请求出x的值.若不存在,请说明理由;(2)当点P以每分钟1个长度单位的速度从C点向左运动时,点Q以每分钟2个长度单位的速度从点给A出发向左运动,点R从B点出发以每分钟5个长度单位的速度向右运动,向它们同时出发,几分钟后P点到点Q,点R的距离相等?16.已知数轴上两个点A、B所对应的数为a、b,且a、b满足|a+3|+(b﹣4)2=0.(1)求AB的长;(2)若甲、乙分别从A、B两点同时在数轴上运动,甲的速度是2个单位/秒,乙的速度比甲的速度快3个单位/秒,求甲乙相遇点所表示的数;(3)若点C对应的数为﹣1,在数轴上A点的左侧是否存在一点P,使P A+PB=3PC?若存在,求出点P所对应的数;若不存在,请说明理由.17.如图,数轴上A,B,C,D四点,分别对应的数为a、b、c、d,且满足a、b是|x+5|=1的两个解(a<b),(c﹣6)2与|d﹣10|互为相反数.(1)直接写出a,b,c,d的值;(2)若A,B两点以4个单位长度/秒的速度向右匀速运动,设运动时间为t秒,问t为时,点B运动到点C,D的中点上;(3)在(2)中,A,B继续运动,当B运动到D的右侧时,问是否存在时间t,使B与C 的距离是A与D的距离的2倍?若存在,求时间t;若不存在,请说明理由.18.已知数轴上两点A,B对应的数分别用a和b表示,且a,b满足|a+1|+(b﹣3)2=0,点P为数轴上一动点,其对应的数为x.(1)请直接写出求a和b的值;(2)若点P到点A,点B的距离相等,请直接写出点P对应的数x;(3)数轴上是否存在点P,使点P到点A,点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由;(4)当点P以每分钟1个单位长的速度从O点向左运动时,点A以每分钟5个单位长的速度向左运动,点B以每分钟20个单位长的速度向左运动,问它们同时出发,几分钟后P点到点A、点B的距离相等?【例6】19.如图,数轴上有两点A,B,点A表示的数为4,点B在点A的左侧,且AB=10,动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0).(1)写出数轴上点B表示的数,点P表示的数用含t的代数式表示:.(2)设点M是AP的中点,点N是PB的中点.点P在线段AB上运动过程中,线段MN的长度是否发生变化?若变化,请说出理由;若不变,求线段MN的长度.(3)动点R从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P,R同时出发,问点P运动多少秒与点R距离为2个单位长度.【练】20.已知数轴上A,B两点所表示的数分别为a,b,且满足ab<0,|a|=2,|b|=7,(1)求线段AB的长度;(2)若a<b,P为射线上的一点(点P不与A、B两点重合),M为P A的中点,N为PB 的中点,当点P在射线BA上运动时,线段MN的长度是否发生改变?若不变,请求出线段MN的长;若改变,请说明理由.21.已知点A在数轴上对应的数为a,点B对应的数为b,且|a+4|+(b﹣1)2=0,A,B之间的距离记作|AB|.(1)设点P在数轴上对应的数为x,当|P A|﹣|PB|=2时,求x的值;(2)若点P在A的左侧,M,N分别是P A,PB的中点,当点P在A的左侧移动时,式子|PN|﹣|PM|的值是否发生改变?若不变,请求其值;若发生变化,请说明理由.22.如图,已知数轴上有A、B、C三个点,它们表示的数分别是﹣24,﹣10,10.(1)填空:AB=,BC=;(2)若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和7个单位长度的速度向右运动.设运动时间为t,用含t的代数式表示BC和AB的长,试探索:BC﹣AB的值是否随着时间t的变化而改变?请说明理由.(3)现有动点P、Q都从A点出发,点P以每秒1个单位长度的速度向终点C移动;当点P移动到B点时,点Q才从A点出发,并以每秒3个单位长度的速度向右移动,且当点P 到达C点时,点Q就停止移动.设点P移动的时间为t秒,问:当t为多少时P、Q两点相距6个单位长度?23.已知:A、B、C为数轴上三个运动的点,速度分别为a个单位/秒、b个单位/秒和c个单位/秒(a、b、c为正整数),且满足|5﹣a|+(b﹣3)2=1﹣c.(1)求A、B、C三点运动的速度;(2)若A、B两点分别从原点出发,向数轴正方向运动,C从表示+20的点出发同时向数轴的负方向运动,几秒后,C点恰好为AB的中点?(3)如图,若一把长16cm的直尺一端始终与C重合(另一端D在C的右边),且M、N 分别为OD、OC的中点,在C点运动过程中,试问:MN的值是否变化?若变化,求出其取值范围;若不变,请求出其值.24.阅读下面的内容并用此结论(或变形式)解答下面题目的三个问题: (1)若点P 为线段MN 的中点,则MP =PN =12MN(2)若点P 为线段MN 上任一点,则:MP =MN ﹣PN如图①,已知数轴上有三点A ,B ,C ,点B 为AC 的中点,C 对应的数为200. ①若BC =300,求点A 对应的数.②在①的条件下,如图②,动点P 、Q 分别从两点同时出发向左运动,同时动点R 从A 点出发向右运动,点P 、Q 、R 的速度分别为10个单位长度每秒,5个单位长度每秒,2个单位长度每秒,点M 为线段PR 的中点,点N 为RQ 的中点,多少秒时恰好满足MR =4RN (不考虑点R 和点Q 相遇之后的情形).③在①的条件下,如图③,若点E 、D 对应的数分别为﹣800,0,动点P 、Q 分别从E 、D 两点同时出发向左运动,点P 、Q 的速度分别为10个单位长度每秒,5个单位长度每秒,点M 为线段PQ 的中点,点Q 在从点D 运动到点A 的过程中,32QC ﹣AM 的值是否发生变化?若不变,求其值,若变,请说明理由.25.如图1,已知数轴上两点A 、B 对应的数分别为﹣1、3,点P 为数轴上的一动点,其对应的数为x .(1)P A = ;PB = (用含x 的式子表示)(2)在数轴上是否存在点P ,使P A +PB =5?若存在,请求出x 的值;若不存在,请说明理由.(3)如图2,点P 以1个单位/s 的速度从点D 向右运动,同时点A 以5个单位/s 的速度向左运动,点B 以20个单位/s 的速度向右运动,在运动过程中,M 、N 分别是AP 、OB 的中点,问:AB -OPMN的值是否发生变化?请说明理由.26.(2014秋•江岸区期中)如图,在数轴上A 点表示数a ,B 点表示数b ,AB 表示A 点和B 点之间的距离,C 是AB 的中点,且a 、b 满足|a +3|+(b +3a )2=0. (1)求点C 表示的数;(2)点P 从A 点以3个单位每秒向右运动,点Q 同时从B 点以2个单位每秒向左运动,若AP +BQ =2PQ ,求时间t ;(3)若点P 从A 向右运动,点M 为AP 中点,在P 点到达点B 之前:①P A +PBPC 的值不变;②2BM ﹣BP 的值不变,其中只有一个正确,请你找出正确的结论并求出其值.27.如图1,点A 、B 分别在数轴原点O 的左右两侧,且13OA +50=OB ,点B 对应数是90.(1)求A 点对应的数;(2)如图2,动点M 、N 、P 分别从原点O 、A 、B 同时出发,其中M 、N 均向右运动,速度分别为2个单位长度/秒,7个单位长度/秒,点P 向左运动,速度为8个单位长度/秒,设它们运动时间为t 秒,问当t 为何值时,点M 、N 之间的距离等于P 、M 之间的距离; (3)如图3,将(2)中的三动点M 、N 、P 的运动方向改为与原来相反的方向,其余条件不变,设Q 为线段MN 的中点,R 为线段OP 的中点,求22RQ ﹣28RO ﹣5PN 的值.28.如图,在数轴上有A ,B 两点,所表示的数分别为a ,a +4,A 点以每秒32个单位长度的速度向正方向运动,同时B 点以每秒1个单位的速度也向正方向运动,设运动时间为t 秒.(1)运动前线段AB 的长为_____,t 秒后,A 点运动的距离可表示为_____,B 点运动距离可表示为_____; (2)当t 为何值时,A 、B 两点重合,并求出此时A 点所表示的数(用含a 与t 的式子表示); (3)在上述运动的过程中,若P 为线段AB 的中点,O 为数轴的原点,当a =﹣8时,是否存在这样的t 值,使得线段PO =5?若存在,求出符合条件的t 值;若不存在,请说明理由.动点问题补充训练1、(2016江岸区期中)已知数轴上有A 、B 、C 三个点对应的数分别是a 、b 、c ,且满足0)10(10242=-++++c b a ;动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设移动时间为t 秒. (1)求a 、b 、c 的值;(2)若点P 到A 点距离是到B 点距离的2倍,求点P 的对应的数;(3)当点P 运动到B 点时,点Q 从A 点出发,以每秒3个单位的速度向C 点运动,Q 点到达C 点后,再立即以同样的速度返回,运动到终点A .在点Q 开始运动后第几秒时,P 、Q 两点之间的距离为4?请说明理由.2、(2016二十五中期中)已知:数轴上A 、B 两点表示的有理数为a 、b ,且(a -1)2+|b +2|=0(1) 求a 、b 的值(2) 点C 在数轴上表示的数是c ,且与A 、B 两点的距离和为9,求值:a (bc +3)-|3(a -31b 2)-b 2|(3) 蚂蚁甲以2个单位长度/秒的速度从点B 出发向其左边30个单位长度处的食物M 爬去,10秒后位于点A 的蚂蚁乙收到它的信号,以3个单位长度/秒的速度也迅速爬向食物.蚂蚁甲到达M 后用了2秒时间背上食物,立即返回,速度降为1个单位长度/秒,与蚂蚁乙在数轴上D 点相遇,求点D 表示的有理数是多少?从出发到此时,蚂蚁甲共用去时间为多少?3、(2016东湖高新区期中)如图,若数轴上的A 、B 两点对应的数分别为a 、b ,且a 、b 满足|a +3|+(b +3a )2=0,请回答下列问题: (1)求a 和b 的值.(2)若数轴上有一点C ,满足点C 到点B 的距离为点C 到点A 的距离的2倍,求点C 在数轴上所对应的数.(3)若数轴上有一点P 从A 点向B 点运动(只在A 、B 两点之间运动),同时,数轴上的点M 是线段AP 的中点,数轴上的点N 是线段BP 的中点,请问:当点P 运动时,点M 、N 之间的距离是否发生变化,若不变化,求出该距离;若变化,说明理由.4、(2016外校期中)已知点A 、点B 在数轴上分别对应有理数a ,b ,其中a ,b 满足:()2112602a b -++=. (1)求a ,b 的值;(2)如图所示,在点A 、点B 之间存在一点C (点C 不与A 、B 重合),现有一个小球从A 出发向左匀速运动,经过一秒到达AC 的中点,又经过三秒之后到达BC 的中点,试求点C 所对应的有理数;OCAB(3)在(2)的条件下,现在我们在C 、A 两个位置各放一块挡板,有两个小球P 和Q 分别从点C 出发,P 以2个单位长度每秒的速度向右运动,Q 以4个单位长度每秒的速度向左运动,其中,小球P 在运动的过程中会碰到挡板,每次碰到挡板后按照原速度反弹(不考虑碰撞中能量的损失),按照此规律运动下去,试问:是否存在一个时间t ,使得PB =2QB ?若存在,求出所有满足条件的时间t ;若不存在,请说明理由.5、(2016武珞路期中)已知点A 、B 在数轴上表示的数分别为a ,b ,且满足()22900a b -+-=.(1) a 的值为_______,b 的值为________;(2) 一只电子狗P 从点A 出发,向右匀速运动,速度为每秒1个单位长度,另一电子狗Q 从点B 出发,向左匀速运动,速度为每秒3个单位长度,且Q 比P 先运动2秒,已知在原点O 处有病毒,若电子狗遇到病毒则停止运动,未遇到病毒则继续运动,问电子狗P 经过多长时间,有P 、Q 两只电子狗相距70个单位长度?(3) 求()()2222221912716189362114910329b x a x a x x ⎛⎫⎛⎫--+++--++ ⎪ ⎪⎝⎭⎝⎭的最大值.AB6、(2016洪山区期中)已知多项式2234x xy --的常数项是a ,次数是b .(1)直接写出a =________,b =________;并将这两数在数轴上所对应的点A 、B 表示出来;(2)数轴上A 、B 之间的距离定义记作AB,定义AB =a b -,设P 在数轴上对应的数为x ,当PA +PB =13时,直接写出x 的值_______________________;(3)若点A ,点B 同时沿数轴向正方向运动.点A 的速度是点B 的2倍,且3秒后,32OA=OB ,求点B 的速度.点为===秒或秒时,(2010秋•武昌区期末)如图,数轴上线段AB=2(单位长度),CD=4(单位长度),点A 在数轴上表示的数是﹣10,点C在数轴上表示的数是16.若线段AB以6个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.(1)问运动多少时BC=8(单位长度)?(2)当运动到BC=8(单位长度)时,点B在数轴上表示的数是4或16;(3)P是线段AB上一点,当B点运动到线段CD上时,是否存在关系式=3,若存在,求线段PD的长;若不存在,请说明理由.)存在关系式,即<,即时,有==时,有=当时,时,有=参考答案与试题解析一.解答题(共27小题)1.(2014秋•滕州市期末)如图,已知数轴上点A表示的为8,B是数轴上一点,且AB=14,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t >0)秒.(1)写出数轴上点B表示的数﹣6,点P表示的数8﹣5t(用含t的代数式表示);(2)动点H从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、H同时出发,问点P运动多少秒时追上点H?2.(2014秋•宝安区校级期末)已知:如图在数轴上有A,B两点,它们分别对应着﹣12和8.A、B两点同时出发,B点以每秒2个单位的速度向右运动,A点则已每秒4个单位的速度向右运动.(1)A点在多少秒后追上B点;(2)A点在什么坐标位置追上B点.3.(2013秋•江北区校级月考)已知a,b满足(a+2)2+|b﹣1|=0,请回答下列问题:(1)a=﹣2,b=1;(2)a,b在数轴上对应的点分别为A,B,在所给的数轴上标出点A,点B;(3)若甲、乙两个动点分别从A,B两点同时出发沿x轴正方向运动,已知甲的速度为每秒2个单位长度,乙的速度为每秒1个单位长度,请问经过多少秒甲追上乙?4.(2013秋•泰兴市校级期中)如图A、B两点在数轴上分别表示﹣10和20,动点P从点A 出发以10个单位每秒的速度向右运动,动点Q从点B出发以每秒5个单位的速度出向右运动.设运动时间为t.(1)当点P运动到B点时,求出t的值;(2)当t为何值时,P、Q两点相遇,并求出此时P点对应的数?(3)在此运动过程中,若P、Q相距10个单位,直接写出运动时间t?,,为秒或5.(2014秋•滨湖区期中)如图,点P、Q在数轴上表示的数分别是﹣8、4,点P以每秒2个单位的速度运动,点Q以每秒1个单位的速度运动.设点P、Q同时出发,运动时间为t 秒.(1)若点P、Q同时向右运动2秒,则点P表示的数为﹣4,点P、Q之间的距离是10个单位;(2)经过4或12秒后,点P、Q重合;(3)试探究:经过多少秒后,点P、Q两点间的距离为14个单位.;,,秒时,6.(2014秋•徐州期末)已知数轴上点A、B表示的数分别为﹣1、3、p为数轴上一动点,其表示的数为x.(1)若P到A、B的距离相等,则x=1;(2)是否存在点P,使P A+PB=6?若存在,写出x的值;若不存在,请说明理由;(3)若点M、N分别从A、B同时出发,沿数轴正方向分别以2个单位/秒、1个单位/秒的速度运动,则经过多长时间,M、N两点相距1个单位长度?7.(2014秋•成都期末)如图,数轴上点A,C对应的数分布是a,c,且a,c满足|a+4|+(c﹣1)2=0,点B对应的数是﹣3(1)求数a,c;(2)点A,B同时沿数轴向右匀速运动,点A的速度为每秒2个单位长度,点B的速度为每秒1个单位长度,若运动时间t秒,在运动过程中,点A,B到原点O的距离相等时,求t的值.;.8.已知点P、Q是数轴上的两个动点,且P、Q两点的速度比是1:3.(速度单位:单位长度/秒)(1)动点P从原点出发向数轴负方向运动,同时,动点Q也从原点出发向数轴正方向运动,4秒时,两点相距16个单位长度.求两个动点的速度,并在数轴上标出P、Q两点从原点出发运动4秒时的位置.(2)如果P、Q两点从(1)中4秒时的位置同时向数轴负方向运动,那么再经过几秒,点P、Q到原点的距离相等?.9.(2014秋•西城区校级期中)已知点P,Q是数轴上的两个动点,且P,Q两点的速度比是3:5.(速度单位:单位长度/秒)(1)动点P从原点出发向数轴正方向运动,同时,动点Q也从原点出发向数轴负方向运动,6秒时,两点相距96个单位长度.则动点P的速度是6单位长度/秒,此时点Q表示的有理数是60;(2)如果P,Q两点从(1)中6秒时的位置同时向数轴正方向运动,那么再经过1秒,点P,Q到数轴上表示有理数20的点的距离相等.×=10.(2013秋•江都市期末)如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,2秒后,两点相距16个单位长度.已知点B的速度是点A的速度的3倍.(速度单位:单位长度/秒)(1)求出点A、B运动的速度,并在数轴上标出A、B两点从原点出发运动2秒时的位置;(2)若A、B两点从(1)中标出的位置开始,仍以原来的速度同时沿数轴向左运动,经过几秒,点A、B之间相距4个单位长度?(3)若表示数0的点记为O,A、B两点分别从(1)中标出的位置同时沿数轴向左运动,经过多长时间,OB=2O A.=综上,运动s11.已知在数轴上有两个动点A、B,动点A从﹣1位置出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,4秒后两点相距25个单位长度,已知动点A、B的速度比是1:5(速度单位:1单位长度/秒).(1)求A、B两点从起始位置出发运动4秒后在数轴上分别对应的数是多少;(2)若A、B两点分别从(1)中所在的位置同时向数轴负方向运动,保持原来的速度不变,问经过几秒,点B到原点的距离恰好是点A到原点的距离的2倍?;答:经过12.(2014秋•商丘期末)已知数轴上三点M,O,N对应的数分别为﹣3,0,1,点P为数轴上任意一点,其对应的数为x.(1)如果点P到点M、点N的距离相等,那么x的值是﹣1;(2)当x=﹣3.5或1.5时,使点P到点M、点N的距离之和是5;(3)如果点P以每秒钟3个单位长度的速度从点O向左运动时,点M和点N分别以每秒钟1个单位长度和每秒钟4个单位长度的速度也向左运动,且三点同时出发,那么或2秒钟时点P到点M,点N的距离相等.或)13.数轴上两点A、B对应的数分别为﹣1,4,点P为数轴上一动点,其对应的数为x(1)如点P到点A,点B的距离相等,求点P在数轴上对应的数?(2)数轴上是否存在点P,使P到点A,点B的距离之和为7?若存在,请求出来x的值;若不存在,说明理由;(3)当点P以每分钟1个单位长度的速度从O点向左运动时点A以每分钟4个单位长度的速度向左运动,点B以每分钟12个单位的长度的速度向左运动,问它们同时出发,几分钟时点P到点A,点B的距离相等?=分钟时点=分钟时点分钟或分钟时点14.(2014春•万州区校级期中)如图:数轴上有A、B两点,分别对应的数为a,b,已知(a+1)2与|b﹣3|互为相反数.点P为数轴上一动点,对应为x.(1)若点P到点A和点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A和点B的距离之和为5?若存在,请求出x的值;若不存在,说明理由;(3)当点P以每分钟一个单位长度的速度从O点向左运动,点A以每分钟5各单位长度向左运动,问几分钟时点P到点A、点B的距离相等?=分钟时点15.已知A、B、C是数轴上的三点,点C表示的数是6,BC=4,AB=12,点P为数轴上一动点,其对应的数为x.(1)数轴上是否存在一点P,使点P到A、B的距离和为13?若存在,请求出x的值.若不存在,请说明理由;(2)当点P以每分钟1个长度单位的速度从C点向左运动时,点Q以每分钟2个长度单位的速度从点给A出发向左运动,点R从B点出发以每分钟5个长度单位的速度向右运动,向它们同时出发,几分钟后P点到点Q,点R的距离相等?=答:经过16.已知数轴上两个点A、B所对应的数为a、b,且a、b满足|a+3|+(b﹣4)2=0.(1)求AB的长;(2)若甲、乙分别从A、B两点同时在数轴上运动,甲的速度是2个单位/秒,乙的速度比甲的速度快3个单位/秒,求甲乙相遇点所表示的数;(3)若点C对应的数为﹣1,在数轴上A点的左侧是否存在一点P,使P A+PB=3PC?若存在,求出点P所对应的数;若不存在,请说明理由.=。
(完整word版)七年级动点问题(已整理)
七年级数学上册动点问题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想数形结合思想转化思想1、如图,有一数轴原点为O,点A所对应的数是-12 或12,点A沿数轴匀速平移经过原点到达点B.(1)如果OA=OB,那么点B所对应的数是什么?(2)从点A到达点B所用时间是3秒,求该点的运动速度.(3)从点A沿数轴匀速平移经过点K到达点C,所用时间是9秒,且KC=KA,分别求点K 和点C所对应的数。
2、动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度.已知动点A、B的速度比是1:4.(速度单位:单位长度/秒)(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间;(3)在(2)中A、B两点继续同时向数轴负方向运动时,另一动点C同时从B点位置出发向A运动,当遇到A后,立即返回向B点运动,遇到B点后立即返回向A点运动,如此往返,直到B追上A时,C立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C 从开始到停止运动,运动的路程是多少单位长度.①3、已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,点B的距离相等,求点P 对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由;(3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?4、数轴上两个质点A、B所对应的数为-8、4,A、B两点各自以一定的速度在上运动,且A点的运动速度为2个单位/秒.(1)点A、B两点同时出发相向而行,在原点处相遇,求B点的运动速度;(2)A、B两点以(1)中的速度同时出发,向数轴正方向运动,几秒钟时两者相距6个单位长度;(3)A、B两点以(1)中的速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,且在运动过程中,始终有CB:CA=1:2,若干秒钟后,C停留在-10处,求此时B点的位置?②5、在数轴上,点A表示的数是-30,点B表示的数是170.(1)求A、B中点所表示的数.(2)一只电子青蛙m,从点B出发,以4个单位每秒的速度向左运动,同时另一只电子青蛙n,从A点出发以6个单位每秒的速度向右运动,假设它们在C点处相遇,求C点所表示的数.(3)两只电子青蛙在C点处相遇后,继续向原来运动的方向运动,当电子青蛙m处在A点处时,问电子青蛙n处在什么位置?(4)如果电子青蛙m从B点处出发向右运动的同时,电子青蛙n也向右运动,假设它们在D 点处相遇,求D点所表示的数6、已知数轴上有A、B、C三点,分别代表—24,—10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。
七年级数学上册数轴上的动点问题专题复习
七年级数学上册数轴上的动点问题专题复习七年级数学上册数轴上的动点问题专题复在数轴上处理动点问题,需要掌握以下处理策略:1、计算距离:数轴上两点间的距离,即为这两点所对应的坐标差的绝对值。
即数轴上两点间的距离=右边点表示的数-左边点表示的数。
2、表示运动过程中的数:点在数轴上运动时,向右运动的速度看作正速度,而向左运动的速度看作负速度。
在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。
即一个点表示的数为a,向左运动b个单位后表示的数为a-b;向右运动b个单位后所表示的数为a+b。
(简单说成左减右加)3、分类讨论的思想:数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,注意多种情况种的分类讨论。
4、绝对值策略:对于两个动点P,Q,若点P,Q的左右位置关系不明确或有多种情况,可用p,q两数差的绝对值表示P,Q两点距离,从而避免分复杂分类讨论。
5、中点公式:若数轴上点A,B表示的数分别为a,b,M 为线段AB中点,则M点表示的数为(a+b)/2.练题:1、已知数轴上A,B两点表示的数分别为-2和5,点P为数轴上一点1)若点P到A,B两点的距离相等,求P点表示的数。
2)若PA=2PB,求P点表示的数。
3)若点P到点A和点B的距离之和为13,求点P所表示的数。
2、已知数轴上A、B两点对应数分别为-2和4,P为数轴上一动点,对应数为x。
1)若P为线段AB的三等分点,则x的值为_________。
2)若线段PA=3PB,则P点表示的数为__________。
3)若点P到A点、B点距离之和为10,则P点表示的数为_________。
3、已知数轴上A,B两点表示的数分别为-8和20,点P,Q 分别从A,B两点同时出发,P点运动速度为每秒3个单位,Q 点运动速度为每秒1个单位,设运动时间为t秒。
1)点P向右运动,Q点向左运动,当t为何值时,P,Q两点之间距离为8?2)若P点和Q点都向右运动,多少秒后,P,Q两点之间距离为8?3)在(2)的条件下,另一动点M同时从O点出发,以每秒2个单位的速度向右运动,多少秒后,点M到点P和点Q的距离相等?已知数轴上有A,B两点,其中A对应的数为-8,B对应的数为4.动点P从点A以每秒2个单位长度的速度向右运动,动点Q从点B以每秒1个单位长度的速度向左运动。
初一数学数轴上的动点问题专题辅导卷
初一数学数轴上的动点问题专题辅导卷1.已知数轴上有A、B、C三点,分别代表—24,—10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。
⑴问多少秒后,甲到A、B、C的距离和为40个单位?⑵若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,问甲、乙在数轴上的哪个点相遇?⑶在⑴⑵的条件下,当甲到A、B、C的距离和为40个单位时,甲调头返回。
问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由。
2.如图,已知A、B分别为数轴上两点,A点对应的数为—20,B点对应的数为100。
⑴求中点M对应的数;⑵现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,求C点对应的数;⑶若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D点相遇,求D点对应的数。
3.已知数轴上两点A、B对应的数分别为—1,3,点P为数轴上一动点,其对应的数为x。
⑴若点P到点A、点B的距离相等,求点P对应的数;⑵数轴上是否存在点P,使点P到点A、点B的距离之和为5?若存在,请求出x的值。
若不存在,请说明理由?⑶当点P以每分钟一个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度向左运动,点B一每分钟20个单位长度向左运动,问它们同时出发,几分钟后P点到点A、点B的距离相等?4、如图,有一数轴原点为O,点A所对应的数是-1 12,点A沿数轴匀速平移经过原点到达点B.(1)如果,那么点B所对应的数是什么?(2)从点A到达点B所用时间是3秒,求该点的运动速度.(3)从点A沿数轴匀速平移经过点K到达点C,所用时间是9秒,且,分别求点K和点C所对应的数。
5、动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度.已知动点A、B的速度比是1:4.(速度单位:单位长度/秒)(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置同时向数轴负方向运动几秒后原点恰好处在两个动点正中间;(3)在(2)中A、B两点继续同时向数轴负方向运动时,另一动点C同时从B点位置出发向A运动,当遇到A后,立即返回向B点运动,遇到B点后立即返回向A点运动,如此往返,直到B追上A时,C立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始到停止运动,运动的路程是多少单位长度.6、已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由;(3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?6、数轴上两个质点A、B所对应的数为-8、4,A、B两点各自以一定的速度在上运动,且A点的运动速度为2个单位/秒.(1)点A、B两点同时出发相向而行,在原点处相遇,求B点的运动速度;(2)A、B两点以(1)中的速度同时出发向数轴正方向运动,几秒钟时两者相距6个单位长度;(3)A、B两点以(1)中的速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,且在运动过程中,始终有:1:2,若干秒钟后,C停留在-10处,求此时B点的位置?7、数轴上,点A表示的数是-30,点B表示的数是170.(1)求A、B中点所表示的数.(2)一只电子青蛙m,从点B出发,以4个单位每秒的速度向左运动,同时另一只电子青蛙n,从A点出发以6个单位每秒的速度向右运动,假设它们在C点处相遇,求C点所表示的数.(3)两只电子青蛙在C点处相遇后,继续向原来运动的方向运动,当电子青蛙m处在A点处时,问电子青蛙n处在什么位置?(4)如果电子青蛙m从B点处出发向右运动的同时,电子青蛙n也向右运动,假设它们在D点处相遇,求D点所表示的数8、已知数轴上有A、B、C三点,分别代表—24,—10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。
初中数学动点问题及练习题附参考答案(K12教育文档)
初中数学动点问题及练习题附参考答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(初中数学动点问题及练习题附参考答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为初中数学动点问题及练习题附参考答案(word版可编辑修改)的全部内容。
初中数学动点问题及练习题所谓“动点型问题"是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目。
解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题。
关键:动中求静.数学思想:分类思想函数思想方程思想数形结合思想转化思想注重对几何图形运动变化能力的考查。
从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理.选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程.在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.专题一:建立动点问题的函数解析式函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容。
(word版)七年级数学上册动点问题
七年级数学上册动点问题1、如图,有一数轴原点为 O,点A所对应的数是 -112,点A沿数轴匀速平移经过原点到达点B.〔1〕如果OA=OB,那么点B所对应的数是什么?〔2〕从点A到达点B所用时间是3秒,求该点的运动速度.〔3〕从点A沿数轴匀速平移经过点K到达点C,所用时间是9秒,且KC=KA,分别求点K和点C所对应的数。
2、动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度.动点A、B的速度比是1:4.〔速度单位:单位长度/秒〕〔1〕求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;〔2〕假设A、B两点从〔1〕中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间;〔3〕在〔2〕中A、B两点继续同时向数轴负方向运动时,另一动点当遇到A后,立即返回向B点运动,遇到B点后立即返回向A立即停止运动.假设点C一直以20单位长度/秒的速度匀速运动,是多少单位长度.C同时从B点位置出发向A运动,点运动,如此往返,直到B追上A时,C那么点C从开始到停止运动,运动的路程①3、数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为 x.〔1〕假设点P到点A,点B的距离相等,求点P对应的数;〔2〕数轴上是否存在点P,使点P到点A、点B的距离之和为6?假设存在,请求出x的值;假设不存在,说明理由;〔3〕点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A 与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?4、数轴上两个质点A、B所对应的数为-8、4,A、B两点各自以一定的速度在上运动,且A 点的运动速度为2个单位/秒.〔1〕点A、B两点同时出发相向而行,在原点处相遇,求B点的运动速度;〔2〕A、B两点以〔1〕中的速度同时出发,向数轴正方向运动,几秒钟时两者相距6个单位长度;②〔3〕A、B两点以〔1〕中的速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,且在运动过程中,始终有CB:CA=1:2,假设干秒钟后, C停留在-10处,求此时B 点的位置?5、在数轴上,点 A表示的数是-30,点B表示的数是170.〔1〕求A、B中点所表示的数.〔2〕一只电子青蛙 m,从点B出发,以4个单位每秒的速度向左运动,同时另一只电子青蛙n,从A点出发以6个单位每秒的速度向右运动,假设它们在C点处相遇,求C点所表示的数.〔3〕两只电子青蛙在C点处相遇后,继续向原来运动的方向运动,当电子青蛙m处在A 点处时,问电子青蛙n处在什么位置?〔4〕如果电子青蛙 m从B点处出发向右运动的同时,电子青蛙n也向右运动,假设它们在D点处相遇,求D点所表示的数6、数轴上有A、B、C三点,分别代表—24,—10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。
初一培优专题:数轴上动点问题(有答案)(推荐文档)
培优专题:借助方程求解数轴上的动点问题 (压轴题常考题型 )数轴上的动点问题离不开数轴上两点之间的距离。
为了便于初一年级学生对这种问题的剖析,不如先明确以下几个问题:1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,也即用右边的 数减去左边的数的差。
即数轴上两点间的距离=右边点表示的数—左边点表示的数。
2.点在数轴上运动时,因为数轴向右的方向为正方向,所以向右运动的速度看 作正速度, 而向作运动的速度看作负速度。
这样在起点的基础上加上点的运动行程就能够直接获得运动后点的坐标。
即一个点表示的数为 a ,向左运动 b 个单位后表示的数为 a — b ;向右运动 b 个单位后所表示的数为a+b 。
3.数轴是数形联合的产物,剖析数轴上点的运动要联合图形进行剖析,点在数 轴上运动形成的路径可看作数轴上线段的和差关系。
一、有关知识准备1. 数轴上表示 4 和 1 的两点之间的距离是 _____________。
2. 若数轴上点 A 表示的数为 x , 点 B 表示的数为 1,则 A 与 B 两点之间的距离用式子 能够表示为 _____________ ,若在数轴上点 A 在点 B 的右边,则式子能够化简为 _____________ 。
3.A 点在数轴上以 2 个单位长度 / 秒的速度向右运动,若运动时间为 t ,则 A 点运动的行程能够用式子表示为 ______________ 。
4. 若数轴上点 A 表示的数为 1 ,A 点在数轴上以 2 个单位长度 / 秒的速度向右运动, 若运动时间为 t ,则 A 点运动 t 秒后抵达的地点所表示的数能够用式子表示为______________。
答案: 1、3; 2 、 x 1 ,x+1; 3、2t ; 4 、 12t二、已做题再解:1、半期考卷的第 25 题: 如下图,在数轴上原点 O 表示数 0, A 点在原点的左边, 所表示的数是 a , B 点在原点的右边,所表示的数是b ,而且 a 、 b 知足a 16 (b) 2 0( 1)点 A 表示的数为 _________,点 B 表示的数为 ________。
七年级数学上册数轴上的动点压轴题专题练习
七年级数学上册数轴上的动点压轴题专题练习1.已知,在数轴上点 A 表示数 a,点B 表示数 b,且 a,b 满足a + 2 +b - 4 = 0 .(1)点A 表示的数为,点B 表示的数为;(2)设点A 与点C 之间的距离表示为AC,点B 与点C 之间的距离表示为BC.若在数轴上存在一点C,使BC=2AC,则点C 表示的数为;(3)若在原点处放一挡板,一小球甲从点 A 处以每秒 2 个单位长度的速度向左运动;同时另一小球乙从点 B 以每秒2 个单位长度的速度也向左运动,在碰到挡板后(忽略球的大小,可看做一点)以原来速度的两倍向相反的方向运动.设运动的时间为 t 秒,请用含 t 的代数式分别表示出甲、乙两小球到原点的距离.2.已知:c=10,且a,b 满足(a+26)2+|b+c|=0,请回答问题:(1)请直接写出a,b,c 的值:a= ,b=;(2)在数轴上a、b、c 所对应的点分别为A、B、C,记A、B 两点间的距离为AB,则AB=,AC=;(3)在(1)(2)的条件下,若点 M 从点A 出发,以每秒 1 个单位长度的速度向右运动,当点 M 到达点 C 时,点 M 停止;当点 M 运动到点B 时,点N 从点A 出发,以每秒 3 个单位长度向右运动,点 N 到达点 C 后,再立即以同样的速度返回,当点 N 到达点 A 时,点N 停止.从点 M 开始运动时起,至点 M、N 均停止运动为止,设时间为t 秒,请用含t 的代数式表示 M,N 两点间的距离.3.如图,点A、B 和线段MN 都在数轴上,点A、M、N、B 对应的数字分别为-1、0、2、11.线段MN 沿数轴的正方向以每秒1 个单位的速度移动,移动时间为t 秒.(1)用含有t 的代数式表示AM 的长为.(2)当t=秒时,AM+BN=11.(3)若点A、B 与线段MN 同时移动,点A 以每秒2 个单位的速度向数轴的正方向移动,点B 以每秒1 个单位的速度向数轴的负方向移动,在移动过程中,AM 和BN 可能相等吗?若相等,请求出t 的值,若不相等,请说明理由.A M N B-102114.如图,已知数轴上点A 表示的数为-7,点 B 表示的数为5,点 C 到点A,点 B 的距离相等,动点P 从点A 出发,以每秒2 个单位长度的速度沿数轴向右匀速运动,设运动的时间(>0)秒(1)点C 表示的数是.(2)求等于多少秒时,点P 到达点B 处.(3)点P 表示的数是(用含的代数式表示).(4)求当t 等于多少秒时,PC 之间的距离为2 个单位长度(只列式,不计算).5.已知:a 、b、c 满足 a=-b,|a+1|+(c-4)2=0,请回答问题:(1)请求出 a 、b、c 的值;(2)a、b、c 所对应的点分别为A、B、C ,P 为数轴上一动点,其对应的数为x,若点P 在线段BC 上时,请化简式子:|x+1|-|1-x|+2|x-4|(请写出化简过程);(3)若点 P 从A 点出发,以每秒2 个单位长度的速度向右运动,试探究当点 P 运动多少秒时,PC=3PB? 6.如图,点A、B 和线段MN 都在数轴上,点A、M、N、B 对应的数字分别为﹣1、0、2、11.线段MN 沿数轴的正方向以每秒1 个单位的速度移动,移动时间为t 秒.(1)用含有t 的代数式表示AM 的长为(2)当t=秒时,AM+BN=11.(3)若点A、B 与线段MN 同时移动,点A 以每秒2 个单位速度向数轴的正方向移动,点B 以每秒1 个单位的速度向数轴的负方向移动,在移动过程,AM 和BN 可能相等吗?若相等,请求出t 的值,若不相等,请说明理由.7.数轴上对应的数,对应的数,为数轴上一动点.(1)AB 的距离是.(2)①若到的距离比到的距离大1,对应的数为.②若其对应的数,数轴上是否存在,使到,的距离之和为8?若存在,请求的值;若不存在,请说明理由.(3)当以每秒个单位长度从原向右运动时,以每秒个单位长度的速度从向左运动,以每秒钟个单位长度的速度从点向右运动,问它们同时出发秒钟时,(直接写出答案即可).8.如图,在数轴上点 A 表示的有理数为﹣6,点 B 表示的有理数为 6,点 P 从点A 出发以每秒 4 个单位长度的速度在数轴上由A 向 B 运动,当点 P 到达点 B 后立即返回,仍然以每秒 4 个单位长度的速度运动至点 A 停止运动,设运动时间为 t(单位:秒).(1)求 t=1 时点 P 表示的有理数;(2)求点P 与点 B 重合时的 t 值;(3)在点P 沿数轴由点A 到点B 再回到点A 的运动过程中,求点P 与点A 的距离(用含t 的代数式表示);(4)当点P 表示的有理数与原点的距离是 2 个单位长度时,请求出所有满足条件的 t 值.9.阅读理解:已知Q、K、R 为数轴上三点,若点K 到点Q 的距离是点K 到点R 的距离的2 倍,我们就称点K 是有序点对[Q,R]的好点.根据下列题意解答问题:(1)如图1,数轴上点Q 表示的数为−1,点P 表示的数为0,点K 表示的数为1,点R表示的数为2.因为点K 到点Q 的距离是2,点K 到点R 的距离是1,所以点K 是有序点的好点,但点K 不是有序点的好点.同理可以判断:点P 有序点的好点,点R 有序点的好点(填“是”或“不是”);(2)如图2,数轴上点M 表示的数为-1,点N 表示的数为5,若点X 是有序点的好点,求点X 所表示的数,并说明理由?(3)如图3,数轴上点A 表示的数为−20,点 B 表示的数为10.现有一只电子蚂蚁C 从点B 出发,以每秒2 个单位的速度向左运动t 秒.当点A、B、C 中恰有一个点为其余两有序点对的好点,求t 的所有可能的值.10.如图,在一条不完整的数轴上从左到右有A、B、C 三个点,其中AB=3,BC=4,设点A、B、C 所对应的数的和是p.(1)若以B 为原点,写出点A、C 所对应的数,并计算p 的值;若以C 为原点,p 的值为.(2)若原点O 在图中数轴主点A 的左侧,且BO=22,求p 的值;(3)若原点O 在图中数轴上点B 的右侧,且CO=a(a>0),求p 的值(用含a 的代数式表示).11.已知数轴上有 A、B、C 三点,分别表示有理数-26、-10、10,动点 P 从A 出发,以每秒 1 个单位的速度向终点 C 移动,设点P 移动时间为 t 秒.(1)用含t 的代数式表示P 到点A 和点C 的距离:PA=,PC=(2)当点 P 运动到 B 点时,点Q 从A 点出发,以每秒 3 个单位的速度向 C 点运动,Q 点到达 C 点后,再立即以同样的速度返回点 A,当点 Q 开始运动后,请用 t 的代数式表示 P、Q 两点间的距离。
七年级数学上册数轴类动点问题综合题专题练习(二)
七年级数学上册数轴类动点问题综合题专题提高练习1.(请阅读下面的文字解题)如图1,在数轴上A点表示的数为a,B点表示的数为b,则线段AB的长可以用右边的数减去左边的数表示,即AB=b﹣a.请用这个知识解答下面的问题.已知数轴上A、B两点对应数分别为﹣2和4,P为数轴上一点,对应的数为x.(1)如图2,P为线段AB的三等分点,求P点对应的数.(2)如图3,数轴上是否存在点P,使P点到A,B两点的距离和为10?若存在,求出x的值;若不存在,请说明理由.(3)如图4,若P点表示的数为﹣0.5,点A、点B和P点同时向左运动,它们的速度分别是1、2、1个长度单位/分,则第几分钟时,P为AB的中点?并求出此时P点所对应的数.2.如图,在数轴上点A、B、C表示的数分别为﹣2、1、6,点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,点A与点C之间的距离表示为AC(1)请直接写出AB、BC、AC的长度;(2)若点D从A点出发,以每秒1个单位长度的速度向左运动,点E从B点出发以每秒2个单位长度的速度向右运动,点F从C点出发以每秒5个单位长度的速度向右运动.设点D、E、F同时出发,运动时间为t秒,试探索:EF﹣DE的值是否随着时间t 的变化而变化?请说明理由.(3)若点M以每秒4个单位的速度从A点出发,点N以每秒3个单位的速度运动从C 点出发,设点M、N同时出发,运动时间为t秒,试探究:经过多少秒后,点M、N两点间的距离为14个单位.3.已知:如图所示,O为数轴的原点,A,B分别为数轴上的两点,A点对应的数为﹣30,B点对应的数为100.(1)A、B间的距离是.(2)若电子蚂蚁P从B点出发,以8个单位长度/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从A点出,以4个单位长度/秒向左运动.请问:多少秒后两只电子蚂蚁之间的距离是610个单位长度?(3)若点C是数轴上原点左侧的点,C到B的距离是C到原点O的距离的3倍,求点C对应的数是多少?4.若A、B两点在数轴上所表示的数分别为a、b,则A、B两点间的距离可记为|a﹣b|:(1)如图:若A、B两点在数轴上所表示的数分别为﹣2、4,求A、B两点的距离为;(2)若A、B两点分别以每秒3个单位长度和每秒1个单位长度的速度同时沿数轴正方向运动,设运动时间为t秒,解答下列问题:①运动t秒后,A点所表示的数为,B点所表示的数为;(答案均用含t的代数式表示)②当t为何值时,A、B两点的距离为4?5.已知:如图1,数轴上有两点A、B,点C,D分别从原点O与点B出发,以1cm/s、3cm/s 的速度沿BA方向同时向左运动,运动方向如箭头所示.(1)若点A表示的数为﹣3,点B表示的数为9.①当点C、D运动了2秒时,点C表示的数为,点D表示的数为;②点C、D运动多长时间,C、D两点运动到原点的距离相等?(2)如图2,点C在线段OA上,点D在线段OB上运动,在点C、D运动的过程中,满足OD=3AC.①探究OA与AB满足的数量关系:OA=AB(直接写出结果);②利用上述结论解决问题:若N是直线AB上一点,且AN﹣BN=ON,求的值.6.如图,已知数轴上点A,B是数轴上的一点,AB=12,动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数为,经t秒后点P走过的路程为(用含t 的代数式表示);(2)若在动点P运动的同时另一动点Q从点B也出发,并以每秒4个单位长度的速度沿数轴向左匀速运动,问经多少时间点P就能追上点Q?(3)若M为AP的中点,N为BP的中点,点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长.7.在同一直线上的三点A、B、C,若满足点C到另两个点A、B的距离之比是2,则我们就称点C是其余两点的亮点(或暗点).具体地,(1)当点C在线段AB上时,若=2,则称点C是【A,B】的亮点;若=2,则称点C是【B,A】的亮点;(2)当点C在线段AB的延长线上时,若=2,称点C是【A,B】的暗点.例如:如图1,数轴上,点A、B、C、D分别表示数﹣1、2、1、0,则点C是【A,B】的亮点,又是【A,D】的暗点;点D是【B,A】的亮点,又是【B,C】的暗点.(1)如图2,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.【M,N】的亮点表示的数是;【N,M】的亮点表示的数是;【M,N】的暗点表示的数是;【N,M】的暗点表示的数是.(2)如图3,数轴上,点A所表示的数为﹣20,点B所表示的数为40.一只电子蚂蚁P从点B出发,以2个单位每秒的速度沿数轴向左运动,设运动时间为t秒.①求当t为何值时,P是【B,A】的暗点.②求当t为何值时,P、A、B三个点中恰有一个点为其余两点的亮点.(友情提醒:注意P是【A,B】的亮点与P是【B,A】的亮点不一样哦!)8.如图,点A从原点出发沿数轴向左运动,同时点B从原点出发沿数轴向右运动,4秒钟后,两点相距16个单位长度,已知点B的速度是点A的速度的3倍.(速度单位:单位长度/秒)(1)求出点A、点B运动的速度,并在数轴上标出点A、B两点运动4秒后所在的位置.(2)若A、B两点从(1)中位置开始,仍以原来的速度同时沿数轴向左运动,几秒时原点恰好处在点A点B的正中间?(3)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,几秒后两个点之间的距离是10个单位长度?9.如图,一只蜗牛A从原点出发向数轴负方向运动,同时另一只蜗牛B也从原点出发向数轴正方向运动,已知蜗牛A的速度为1个单位长度/秒,蜗牛B的速度为4个单位长度/秒.(1)在数轴上(图1)标出蜗牛A、B从原点出发运动3秒时的位置;(2)若蜗牛A、B从(1)中的位置同时向数轴负方向运动,爬行2秒时,①两蜗牛在数轴上所处的位置所对应的数分别是多少?②两蜗牛相距多少个单位长度?(3)若蜗牛A、B从(1)中的位置同时向数轴负方向运动时,则爬行多少秒时B蜗牛刚好追上A蜗牛?10.已知AB两地相距50单位长度,小明从A地出发去B地,以每分钟2个单位长度的速度行进,第一次他向左1单位长度,第二次他向右2单位长度,第三次再向左3单位长度,第四次又向右4单位长度…,按此规律行进,如果A地在数轴上表示的数为﹣16.(1)求出B地在数轴上表示的数;(2)若B地在原点的右侧,经过第八次行进后小明到达点P,此时点P与点B相距几个单位长度?八次运动完成后一共经过了几分?(3)若经过n次(n为正整数)行进后,小明到达的点Q,在数轴上点Q表示的数应如何表示?参考答案1.解:(1)设P点表示的数为x,由题意得①x﹣(﹣2)=×[4﹣(﹣2)],x+2=2,x=0;②4﹣x=×[4﹣(﹣2)]×4,﹣x=2,x=2;所以P点表示的数为0或者2.(2)AB=6,P点到A,B两点的距离和为10,所以P点不可能在AB之间;①当P点在A点的左边时,设P点表示的数为x,则有:﹣2﹣x+4﹣x=10,﹣2x=8,x=﹣4;②当P点在B点的右边时,设P点表示的数为y,则有:y﹣4+y﹣(﹣2)=10,2y﹣2=10,2y=12,y=6;综上所述,P表示的数为﹣4或者6(3)A、B、P是同向运动,速度分别为1、2、1个长度单位/分,则B相对于A、P的速度是1个长度单位/分,设运动x分钟后,P是AB的中点,则有:﹣0.5﹣(﹣2)=[4﹣(﹣0.5)]﹣1×x,1.5=4.5﹣x,x=3,﹣0.5﹣3×1=﹣3.5;则3分钟后,P是AB的中点,此时P点表示的数为﹣3.5.2.解:(1)∵在数轴上点A、B、C表示的数分别为﹣2、1、6,∴AB=1﹣(﹣2)=3,BC=6﹣1=5,AC=6﹣(﹣2)=8;(2)不变,点D、E、F同时出发,运动t秒时,D点表示的数为﹣2﹣t,E点表示的数为1+2t,F 点表示的数为6+5t,则EF=(6+5t)﹣(1+2t)=5+3t,DE=(1+2t)﹣(﹣2﹣t)=3+3t,EF﹣DE=(5+3t)﹣(3+3t)=2,故EF﹣DE的值不随着时间t的变化而改变;(3)①点M、N同时向左出发,依题意有4t﹣3t=14﹣8,解得t=6;②点M向左出发,点N向右出发,依题意有4t+3t=14﹣8,解得t=;③点M向右出发、点N向左出发,依题意有4t+3t=14+8,解得t=;④点M、N同时向右出发,依题意有4t﹣3t=14+8,解得t=22.故经过6秒或秒或秒或22秒后,点M、N两点间的距离为14个单位.3.解:(1)由题意知:AB=100﹣(﹣30)=130.故答案为130;(2)设t秒后两只电子蚂蚁间的距离为610,由题意得:130+12t=610,解得:t=40.答:40秒后两只电子蚂蚁之间的距离是610.(3)设C对应的数为x(x<0),根据题意得|x﹣100|=3|x|,解得x=﹣50或25(舍去),故C对应的数为﹣50.4.解:(1)AB=|4﹣(﹣2)|=|6|=6;故答案为:6.(2)①点A表示的数为﹣2+3×t=3t﹣2,点B表示的数为4+1×t=4+t;故答案为:3t﹣2;4+t.②∵A、B两点的距离为4,∴|3t﹣2﹣(t+4)|=4.整理得:2t﹣6=±4.解得:t=1或t=5.当t=1或t=5时,A、B两点的距离为4.5.(1)①当点C、D运动了2s时,OC=2cm,BD=6cm,∴OD=OB﹣BD=9﹣6=3cm,∴C表示的数为:﹣2,D表示的数为:3,故答案为﹣2,3;②设点C、D运动xs,C、D两点运动到原点的距离相等,根据题意:x=9﹣3x或x=3x﹣9,解得x=或,∴点C、D运动s或s,C、D两点运动到原点的距离相等;(2)①∵点C在线段OA上,点D在线段OB上运动,在点C、D运动的过程中,满足OD=3AC.∴3(OA﹣x)=OB﹣3x,∴3OA=OB,∴OA=AB,故答案为;②当点N在线段AB上时,如下图,∵AN﹣BN=ON,又∵AN﹣AO=ON∴BN=AO=AB,∴ON=AB,即=;当点N在线段AB的延长线上时,如下图∵AN﹣BN=ON,又∵AN﹣BN=AB,∴ON=AB,即=1,综上所述,=或1.6.解:(1)设B点表示x,则有AB=8﹣x=12,解得x=﹣4.∵动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,∴经t秒后点P走过的路程为6t.故答案为:﹣4;6t.(2)设经t秒后P点追上Q点,根据题意得:6t﹣4t=12,解得t=6.答:经过6秒时间点P就能追上点Q.(3)不论P点运动到哪里,线段MN都等于6.分两种情况分析:①点P在线段AB上时,如图1,MN=PM+PN=PA+PB=(PA+PB)=AB=×12=6;②点P在线段AB的延长线上时,如图2,MN=PM﹣PN=PA﹣PB=(PA﹣PB)=AB=×12=6.综上可知,不论P运动到哪里,线段MN的长度都不变,都等于6.7.解:(1)∵=2,=2,∴【M,N】的亮点表示的数是2;【N,M】的亮点表示的数是0,故答案为2,0;∵=2,=2,∴【M,N】的暗点表示的数是10;【N,M】的暗点表示的数为﹣8,故答案为10,﹣8;(2)①设运动时间为t秒,则PB=2t,易得方程2t=2(2t﹣60).所以t=60.②当P是【A,B】的亮点时,∵PA=2PB,∴2×2t=60﹣2t,解得t=10;当P是【B,A】的亮点时,∵PB=2PA,∴2t=2(60﹣2t),解得t=20;当A是[B、P]的亮点时,∵AB=2AP,∴60=2(2t﹣60)解得t=45;当A是[P、B]的亮点时,∵AP=2AB,∴2t﹣60=2×60,解得t=90;综上所述:当t为10,20,45,90时,P、A、B中恰有一个点为其余两点的亮点.8.解:(1)设点A的速度为每秒x个单位,则点B的速度为每秒3x个单位,由题意,得4x+3×4x=16,解得:x=1,3x=3点A的速度为每秒1个单位长度,则点B的速度为每秒3个单位长度.4秒后A点在﹣4的位置上,B点在12的位置上.如图:(2)设a秒时原点恰好在A、B的中间,由题意,得4+a=12﹣3a,解得:a=2.∴A、B运动2秒时,原点就在点A、点B的中间;(3)设m秒后两个点之间的距离是10个单位长度,当B在A之后10个单位长度,3x+10=x+16,解得x=3;B在A之前10个单位长度,3x﹣10=x+16,解得x=13;答:3秒或13秒后两个点之间的距离是10个单位长度.9.解:(1)∵蜗牛A的速度为1个单位长度/秒,蜗牛B的速度为4个单位长度/秒,∴A、B从原点出发运动3秒时,蜗牛A的位置在﹣3,蜗牛B的位置在12,在图上标注如下:(2)①A蜗牛:﹣3﹣1×2=﹣5,B蜗牛:12﹣4×2=4,答:A蜗牛在数轴上所处位置对应的数是﹣5,B蜗牛在数轴上所处的位置所对应的数是4;②4﹣(﹣5)=9.答:两蜗牛相距9个单位长度;(3)设y秒后蜗牛B追上蜗牛A,依题意得,4y﹣y=15,解得:y=5.答:爬行5秒时B蜗牛刚好追上A蜗牛.10.解:(1)∵AB两地相距50单位长度,A地在数轴上表示的数为﹣16,∴点B表示的数为:﹣16﹣50=﹣66或﹣16+50=34,即B地在数轴上表示的数是﹣66或34;(2)由题意可得,第一次运动到点:﹣16﹣1,第二次为:﹣16﹣1+2=﹣16+1,第三次为:﹣16+1﹣3=﹣16﹣2,第四次为:﹣16﹣2+4=﹣16+2,由上可得,第奇数次运动到点﹣16﹣,第偶数次运动到点:﹣16+,∴第八次运动到点P为:﹣16+,∵B地在原点的右侧,∴点B表示的数为:34,∴点P与点B相距的单位长度为:34﹣(﹣12)=46,∴八次运动完成后经过的时间为:(1+2+3+4+5+6+7+8)÷2=36÷2=18(分钟),即B地在原点的右侧,经过第八次行进后小明到达点P,此时点P与点B相距46个单位长度,八次运动完成后一共经过了18分钟;(3)由题意可得,第一次运动到点:﹣16﹣1,第二次为:﹣16﹣1+2=﹣16+1,第三次为:﹣16+1﹣3=﹣16﹣2,第四次为:﹣16﹣2+4=﹣16+2,由上可得,第奇数次运动到点﹣16﹣=﹣16﹣﹣=﹣16,第偶数次运动到点:﹣16+,即当n为奇数时,在数轴上点Q表示的数为:﹣16;当n为偶数时,在数轴上点Q 表示的数为:﹣16.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学数轴上的动点问题专题辅导卷1.已知数轴上有A、 B、C 三点,分别代表—24,— 10,10,两只电子蚂蚁甲、乙分别从A、 C 两点同时相向而行,甲的速度为 4 个单位 / 秒。
⑴问多少秒后,甲到A、 B、C 的距离和为40 个单位?⑵若乙的速度为 6 个单位 / 秒,两只电子蚂蚁甲、乙分别从A、 C 两点同时相向而行,问甲、乙在数轴上的哪个点相遇?⑶在⑴⑵的条件下,当甲到 A、B、 C 的距离和为 40 个单位时,甲调头返回。
问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由。
2.如图,已知A、 B 分别为数轴上两点, A 点对应的数为—20, B 点对应的数为100。
⑴求 AB 中点 M对应的数;⑵现有一只电子蚂蚁P 从 B点出发,以 6 个单位 / 秒的速度向左运动,同时另一只电子蚂蚁Q恰好从 A 点出发,以 4 个单位 / 秒的速度向右运动,设两只电子蚂蚁在数轴上的 C 点相遇,求 C 点对应的数;⑶若当电子蚂蚁P 从 B 点出发时,以 6 个单位 / 秒的速度向左运动,同时另一只电子蚂蚁Q恰好从 A 点出发,以 4 个单位 / 秒的速度也向左运动,设两只电子蚂蚁在数轴上的 D 点相遇,求 D 点对应的数。
3.已知数轴上两点A、 B 对应的数分别为—1, 3,点 P 为数轴上一动点,其对应的数为x。
⑴若点 P 到点 A、点 B 的距离相等,求点P 对应的数;⑵数轴上是否存在点 P,使点 P 到点 A、点 B 的距离之和为 5?若存在,请求出 x 的值。
若不存在,请说明理由?⑶当点 P 以每分钟一个单位长度的速度从O点向左运动时,点 A 以每分钟 5 个单位长度向左运动,点 B 一每分钟 20 个单位长度向左运动,问它们同时出发,几分钟后P 点到点 A、点 B 的距离相等?4、如图,有一数轴原点为O,点 A 所对应的数是 -1 12 ,点 A 沿数轴匀速平移经过原点到达点B.(1)如果 OA=OB,那么点 B 所对应的数是什么?(2)从点 A 到达点 B 所用时间是 3 秒,求该点的运动速度.(3)从点 A 沿数轴匀速平移经过点 K 到达点 C,所用时间是 9 秒,且 KC=KA,分别求点 K 和点 C 所对应的数。
5、动点 A 从原点出发向数轴负方向运动,同时,动点 B 也从原点出发向数轴正方向运动, 3 秒后,两点相距 15 个单位长度.已知动点A、 B 的速度比是1: 4.(速度单位:单位长度/ 秒)( 1)求出两个动点运动的速度,并在数轴上标出A、 B 两点从原点出发运动 3 秒时的位置;( 2)若 A、 B 两点从( 1)中的位置同时向数轴负方向运动几秒后原点恰好处在两个动点正中间;( 3)在( 2)中 A、 B 两点继续同时向数轴负方向运动时,另一动点 C 同时从 B 点位置出发向 A 运动,当遇到 A 后,立即返回向 B 点运动,遇到 B 点后立即返回向 A 点运动,如此往返,直到 B 追上 A 时, C 立即停止运动.若点 C 一直以 20 单位长度 / 秒的速度匀速运动,那么点 C 从开始到停止运动,运动的路程是多少单位长度.6、已知数轴上两点A、 B 对应的数分别为-1 、 3,点 P 为数轴上一动点,其对应的数为x.( 1)若点 P 到点 A,点 B 的距离相等,求点P 对应的数;( 2)数轴上是否存在点P,使点 P 到点 A、点 B 的距离之和为6?若存在,请求出x 的值;若不存在,说明理由;( 3)点 A、点 B 分别以 2 个单位长度 / 分、 1 个单位长度 / 分的速度向右运动,同时点P 以 6 个单位长度 / 分的速度从O点向左运动.当遇到 A 时,点 P 立即以同样的速度向右运动,并不停地往返于点 A 与点 B 之间,求当点 A 与点 B 重合时,点P 所经过的总路程是多少?6、数轴上两个质点A、B 所对应的数为 -8 、 4, A、 B 两点各自以一定的速度在上运动,且 A 点的运动速度为 2 个单位 / 秒.( 1)点 A、 B 两点同时出发相向而行,在原点处相遇,求B点的运动速度;( 2) A、 B 两点以( 1)中的速度同时出发向数轴正方向运动,几秒钟时两者相距 6 个单位长度;( 3) A、B 两点以( 1)中的速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,且在运动过程中,始终有CB: CA=1: 2,若干秒钟后, C 停留在 -10 处,求此时B 点的位置?7、数轴上,点 A 表示的数是 -30 ,点 B 表示的数是170.( 1)求 A、 B 中点所表示的数.( 2)一只电子青蛙m,从点 B 出发,以 4 个单位每秒的速度向左运动,同时另一只电子青蛙n,从 A 点出发以 6 个单位每秒的速度向右运动,假设它们在C点处相遇,求 C 点所表示的数.( 3)两只电子青蛙在 C 点处相遇后,继续向原来运动的方向运动,当电子青蛙m处在 A 点处时,问电子青蛙 n 处在什么位置?( 4)如果电子青蛙m从 B 点处出发向右运动的同时,电子青蛙n 也向右运动,假设它们在 D 点处相遇,求 D 点所表示的数8、已知数轴上有A、 B、C 三点,分别代表—24,— 10,10,两只电子蚂蚁甲、乙分别从A、 C 两点同时相向而行,甲的速度为 4 个单位 / 秒。
⑴问多少秒后,甲到A、 B、C 的距离和为40 个单位?⑵若乙的速度为 6 个单位 / 秒,两只电子蚂蚁甲、乙分别从A、 C 两点同时相向而行,问甲、乙在数轴上的哪个点相遇?⑶在⑴⑵的条件下,当甲到 A、 B、C 的距离和为 40 个单位时,甲调头返回。
问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由。
9、已知数上两点A、 B 的数分—1, 3,点 P 数上一点,其的数x。
⑴若点 P 到点 A、点 B 的距离相等,求点P 的数;⑵数上是否存在点P,使点 P 到点 A、点 B 的距离之和5?若存在,求出x 的。
若不存在,明理由?⑶当点 P 以每分一个位度的速度从O点向左运,点 A 以每分 5 个位度向左运,点 B 一每分 20 个位度向左运,它同出,几分后P 点到点 A、点 B 的距离相等?10、如 1,已知数上有三点 A、 B、 C, AB= 12AC,点 C 的数是 200.( 1)若 BC=300,求点 A 的数;( 2)如 2,在( 1)的条件下,点P、 Q分从 A、 C 两点同出向左运,同点R从 A 点出向右运,点 P、Q、R的速度分10 位度每秒、 5 位度每秒、 2 位度每秒,点M段 PR的中点,点 N 段 RQ的中点,多少秒恰好足MR=4RN(不考点 R 与点 Q相遇之后的情形);( 3)如 3,在( 1)的条件下,若点E、 D 的数分 -800 、0,点 P、Q 分从 E、 D 两点同出向左运,点P、 Q的速度分 10 位度每秒、 5 位度每秒,点 M段 PQ的中点,点 Q在从是点 D 运到点 A 的程中, 32QC-AM的是否生化?若不,求其;若不,明理由.11、思考下列并在横上填上答案.思考下列并在横上填上答案.( 1)数上表示 -3 的点与表示 4 的点相距 ________个位.( 2)数上表示 2 的点先向右移 2 个位,再向左移 5 个位,最后到达的点表示的数是______.( 3)数上若点A表示的数是 2,点 B 与点 A 的距离3,点 B 表示的数是_____.( 4)若 |a-3|=2 ,|b+2|=1 ,且数 a、 b 在数上表示的数分是点A、点 B, A、 B 两点的最大距离是______,最小距离是 _________.( 5)数上点 A 表示 8,点 B 表示 -8 ,点 C 在点 A 与点 B 之, A 点以每秒 0.5 个位的速度向左运,点 B 以每秒 1.5 个位的速度向右运,点C以每秒 3 个位的速度先向右运碰到点 A 后立即返回向左运,碰到点 B 后又立即返回向右运,碰到点 A 后又立即返回向左运⋯,三个点同开始运,_________ 秒三个点聚于一点,一点表示的数是________,点 C在整个运程中,移了_______ 个位.12、已知数轴上两点A、 B 对应的数分别为-1 、3,数轴上一动点P 对应的数为x.( 1)若点 P 到点 A,点 B 的距离相等,求点P 对应的数;( 2)当点 P 以每分钟 1 个单位长度的速度从O点向左运动时,点 A 以每分钟 5 个单位长度的速度向左运动,点 B 以每分钟20 个单位长度的速度向左运动,问几分钟时点P到点 A,点 B 的距离相等.13、如图,在射线 OM上有三点 A、B、 C,满足 OA=20cm, AB=60cm, BC=10cm(如图所示),点 P 从点 O 出发,沿 OM方向以 1cm/s 的速度匀速运动,点 Q 从点 C 出发在线段 CO上向点 O匀速运动(点 Q运动到点 O 时停止运动),两点同时出发.(1)当 PA=2PB时,点 Q运动到的位置恰好是线段 AB 的三等分点,求点 Q的运动速度.(2)若点 Q运动速度为 3cm/s ,经过多长时间 P、 Q两点相距 70cm.(3)当点 P 运动到线段 AB上时,分别取 OP和 AB 的中点 E、 F,求 OB-AP/EF 的值.14、甲、乙物体分别从相距 70 米的两处同时相向运动.甲第 1 分钟走 2 米,以后每分钟比前 1 分钟多走 1 米,乙每分钟走 5 米.( 1)甲、乙开始运动后几分钟相遇?( 2)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前 1 分钟多走 1 米,乙继续每分钟走 5 米,那么开始运动几分钟后第二相遇?15、如图,线段AB=20cm.( 1)点 P 沿线段 AB 自 A 点向 B 点以 2 厘米 / 秒运动,同时点Q沿线段 BA自 B点向 A 点以 3 厘米 / 秒运动,几秒钟后, P、 Q两点相遇?如图,已知数轴上A、 B 两点所表示的数分别为-2 和 8.(1)求线段 AB 的长;(2)若 P 为射线 BA 上的一点(点 P 不与 A、 B 两点重合, M为 PA的中点, N 为 PB的中点,当点 P 在射线BA上运动时; MN的长度是否发生改变?若不变,请你画出图形,并求出线段MN的长;若改变,请说明理由.16、已知:如图 1, M是定长线段 AB上一定点, C、D 两点分别从 M、B 出发以 1cm/s 、3cm/s 的速度沿直线BA 向左运动,运动方向如箭头所示( C 在线段 AM上, D在线段 BM上)(1)若 AB=10cm,当点 C、 D 运动了 2s,求 AC+MD的值.(2)若点 C、 D 运动时,总有 MD=3AC,直接填空:AM=________ AB.( 3)在( 2)的条件下,N 是直线 AB上一点,且AN-BN=MN,求 MNAB的值.17、如图, P 是定长线段 AB 上一点, C、D 两点分别从 P、 B 出发以 1cm/s 、 2cm/s 的速度沿直线 AB 向左运动( C 在线段 AP上, D 在线段 BP上)(1)若 C、 D 运动到任一时刻时,总有 PD=2AC,请说明 P 点在线段 AB 上的位置:(2)在( 1)的条件下, Q是直线 AB上一点,且 AQ-BQ=PQ,求 PQAB的值.( 3)在( 1)的条件下,若C、D 运动 5 秒后,恰好有CD=12AB,此时 C 点停止运动, D点继续运动( D 点在线段 PB上),M、N 分别是 CD、PD的中点,下列结论:① PM-PN的值不变;② MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.18 、如图,已知数轴上A、B 两点所表示的数分别为-2 和 8.(1)求线段 AB 的长;(2)若 P 为射线 BA上的一点(点 P 不与 A、B 两点重合), M为 PA 的中点, N 为 PB 的中点,当点 P 在射线 BA 上运动时,线段MN的长度是否发生改变?若不变,请你画出图形,并求出线段MN的长;若改变,请说明理由.( 3)若有理数a、 b、 c 在数轴上的位置如图所示:且d=|a+b|-|-2-b|-|a-2c|-5,试求7(d+2c)2+2(d+2c)-5(d+2c)2-3(d+2c)的值.19、已知数轴上A、B 两点对应数分别为—2, 4, P 为数轴上一动点,对应数为x。