初中数学 单元测试卷 九年《图形与坐标》 (2)

合集下载

(常考题)北师大版初中数学九年级数学上册第四单元《图形相似》测试题(含答案解析)(2)

(常考题)北师大版初中数学九年级数学上册第四单元《图形相似》测试题(含答案解析)(2)

一、选择题1.如图,A B C '''是ABC 以点O 为位似中心经过位似变换得到的,若A B C '''与ABC 的周长比是2:3,则它们的面积比为( )A .2:3B .4:5C .2:3D .4:92.如图,ABC 中,AD BC ⊥于点D ,下列条件中不.能判定ABC 是直角三角形的是( )A .B DAC ∠=∠ B .90B DAC ∠+∠=︒ C .2AB BD BC =⋅D .2AC CD BC =⋅3.如图,小颖身高为160cm ,在阳光下影长240AB cm =,当她走到距离墙角(点D )120cm 的C 处时,她的部分影子投射到墙上,则投射在墙上的影子DE 的长度为( )A .120cmB .80cmC .60cmD .40cm4.如图,在平面直角坐标系中,矩形ABCD 的对角线//BD x 轴,若(1,0),(0,2)A D ,则点C 的坐标为( )A .(4,3)B .(4,4)C .(3,4)D .(2.5,4)5.如图,4AB=,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,12BE DB=,作EF DE⊥并截取EF DE=,连结AF并延长交射线BM于点C.设BE x=,BC y=,则y关于x的函数解析式是()A.124xyx=--B.21xyx=--C.31xyx=--D.84xyx=--6.古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G 将一线段MN分为两线段MG、GN,使得其中较长的一段MG是全长MN与较短的一段GN的比例中项,即满足512MG GNMN MG-==,后人把512-这个数称为“黄金分割数”,把点G称为线段MN的“黄金分割点”.如图,在△ABC中,已知AB=AC=3,BC=4,若点D是边BC边上的一个“黄金分割点”,则△ADC的面积为()A.55-B.355-C.2085-D.1045-7.如图,乐器上的一根弦AB=80cm,两个端点A,B固定在乐器板面上,支撑点C是靠近点B的黄金分割点,支撑点D是靠近点A的黄金分割点,则C,D之间的距离为()A.(540)cm B.(540)cmC.(120﹣5cm D.(5160)cm8.如图,在△ABC中,中线AE、BD相交于点F,连接DE,则下列结论:①12DEAB=;②14CD CE DEAC BC AB++=++;③CD EFCA FA=;④13FDECDESS=△△.其中正确结论的个数是()A .1个B .2个C .3个D .4个9.《九章算术》是中国古代的数学专著,它奠定了中国古代数学的基本框架,以计算为中心,密切联系实际,以解决人们生产、生活中的数学问题为目的.书中记载了这样一个问题:“今有勾五步,股十二步,问勾中容方几何.”其大意是:如图,Rt ABC △的两条直角边的长分别为5和12,则它的内接正方形CDEF 的边长为( )A .2517B .6017C .10017D .1441710.如图,在平面直角坐标系xOy 中,已知△ABO 的两个顶点分别为A (﹣8,4),B (﹣2,﹣2),以原点O 为位似中心画△A B O '',使它与△ABO 位似,且相似比为12,则点A 的对应点A '的坐标为( )A .(4,2)B .(1,1)C .(﹣4,2)D .(4,﹣2)11.如图,线段1AB =,点1P 是线段AB 的黄金分割点(且11AP BP <),点2P 是线段1AP 的黄金分割点(212AP PP <),点3P 是线段3AP 的黄金分割点()323,,AP P P <依此类推,则线段2020AP 的长度是( )A .202051-⎝⎭B .202151-⎝⎭C .202035-⎝⎭D .202135-⎝⎭12.如图,在四边形ABCD 中,如果ADC BAC ∠=∠,那么下列条件中不能判定ADC 和BAC 相似的是( )A .DAC ABC ∠=∠B .CA 是BCD ∠的平分线C .AD DCAB AC= D .2AC BC CD =⋅二、填空题13.边长为4的正方形ABCD ,在BC 边上取一动点E ,连接AE ,作EF ⊥AE ,交CD 边于点F ,若CF 的长为34,则CE 的长为 _____ .14.如图,正方形ABCD 的边长为4,点E 为CD 中点,点F 为BC 边上一点,且CF=1,连接AF ,EG ⊥AF 交BC 于点G ,则BG=________.15.如图,在ABC 中,D 在AC 边上,:1:2AD DC =,O 是BD 的中点,连接AO 并延长交BC 于点E ,若3BE =,则EC 的长为____.16.如图,在菱形ABCD 中,AB =1,∠ADC =120°,以AC 为边作菱形ACC 1D 1,且∠AD 1C 1=120°;再以AC 1为边作菱形AC 1C 2D 2,且∠AD 2C 2=120°…;按此规律,菱形AC 2020C 2021D 2021的面积为_____.17.已知点D ,E 分别在△ABC 的边AB ,AC 上,△ADE ,△DEC ,△BCD 的面积之比为4:2:3,∠ACD=∠ADE ,CD=6,则BC 的长为_______.18.如图所示,在ABC 中,E 、F 分别是AC 、AB 的中点,已知FC 长是6,则线段OC 的长为______.19.在平面直角坐标系中,ABC 与DEF 是以坐标原点O 为位似中心的位似图形,相似比为1:2;若B 点的坐标为(2,1),则B 的对应点E 的坐标为________. 20.如图,在ABC 中,AB AC >,将ABC 以点A 为中心顺时针旋转,得到AED ,点D 在BC 上,DE 交AB 于点F .如下结论中:①DA 平分EDC ∠;②AEF DBF △∽△;③BDF CAD ∠=∠;④EF BD =.所有正确结论的序号是_____.三、解答题21.在矩形ABCD 的CD 边上取一点E ,将BCE ∆沿BE 翻折,使点C 恰好落在AD 边上点F 处.(1)如图1,若2BC BA =,求CBE ∠的度数; (2)如图2,当5AB =,且10AF FD =时,求BC 的长;22.已知ABC ∆中,90C =∠.你能画一条直线把它分割成两个相似三角形吗?如果可以,请用尺规作出这条分割线,保留作图痕迹,并说明两个三角形相似的理由.23.如图,已知O 为坐标原点,B ,C 两点坐标为(3,1)-,(2,1).(1)在y 轴的左侧以O 点为位似中心将OBC 放大到原来的2倍,画出放大后111O B C ;(2)写出11B C ,的坐标;(3)在(1)条件下,若OBC 内部有一点M 的坐标为(,)x y ,请直接写出M 的对应点1M 的坐标.24.如果两个相似三角形的对应边存在2倍关系,则称这两个相似三角形互为母子三角形.(1)如果DEF 与ABC 互为母子三角形,则DEAB的值可能为( )A.2 B.12C.2或12(2)已知:如图1,ABC中,AD是BAC∠的角平分线,2,AB AD ADE B=∠=∠.求证:ABD△与ADE互为母子三角形.(3)如图2,ABC中,AD是中线,过射线CA上点E作//EG BC,交射线DA于点G,连结BE,射线BE与射线DA交于点F,若AGE与ADC互为母子三角形.求AGGF的值.25.如图,在四边形ABCD中,AD∥BC,AC,BD交于点E,过点E作MN∥AD,分别交AB,CD于点M,N.(1)求证:△AME~△ABC;(2)求证:111 ME AD BC=+;(3)若AD=5,BC=7,求MN的长.26.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点、顶点都是格点的三角形称为格点三角形.如图,已知Rt△ABC是6×6网格图形中的格点三角形,则该图中所有与Rt△ABC相似的格点三角形中.求面积最大的三角形的斜边长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】直接利用位似是相似的特殊形式,利用相似的性质可知对应边A′B′与AB之比等于△A′B′C′的周长与△ABC 的周长之比为2:3,再根据面积比等于相似比的平方求解即可. 【详解】解:∵△A'B'C'是△ABC 以点O 为位似中心经过位似变换得到的,△A'B'C'的周长与△ABC 的周长比是2:3, ∴A B C '''∽ABC ,23A B AB ''=, ∴222439A B C ABC A S B S B A '''⎛''⎛⎫== ⎪⎝⎫= ⎪⎝⎭⎭. 故选:D . 【点睛】本题考查的是位似变换的概念、相似三角形的性质,掌握位似图形的对应边平行、相似三角形的面积比等于相似比的平方是解题的关键.2.B解析:B 【分析】根据已知对各个条件进行分析,从而得到答案. 【详解】 解:A.能, ∵AD ⊥BC , ∴∠B+∠BAD=90°, ∵∠B=∠DAC ,∴∠BAC=∠BAD+∠DAC=∠BAD+∠B=90°; ∴△ABC 是直角三角形; B.不能, ∵AD ⊥BC , ∴∠B+∠BAD=90°, ∵∠B+∠DAC=90°, ∴∠BAD=∠DAC , ∴△ABD ≌△ACD (ASA ), ∴AB=AC ,∴△ABC 是等腰三角形, ∴无法证明△ABC 是直角三角形; C.能,∵2AB BD BC =⋅ ∴AB BCBD AB= ∵∠B=∠B ∴△CBA ∽△ABD , ∴∠ADB=∠BAC ,∵AD⊥BC,∴∠ADB=∠ADC=90°,∴∠BAC=90°∴△ABC是直角三角形;D.能,∵2AC CD BC=⋅,∴AC BC=CD AC∵∠C=∠C∴△CBA∽△CAD,∴∠ADC=∠BAC=90°∴△ABC是直角三角形.故选:B【点睛】此题考查了相似三角形的判定与性质、直角三角形的判定与性质.此题难度适中,解题的关键是注意数形结合思想的应用,注意相似三角形的判定与性质的应用.3.B解析:B【分析】过E作EF⊥CG于F,利用相似三角形列出比例式求出投射在墙上的影子DE长度即可.【详解】解:如图,过E作EF⊥CG于F,设投射在墙上的影子DE长度为x,由题意得:△GFE∽△HAB,∴AB:FE=AH:(GC−x),则240:120=160:(160−x),解得:x=80.答:投射在墙上的影子DE长度为80cm.故选:B.【点睛】本题考查了相似三角形的应用,解题的关键是正确地构造直角三角形.4.B解析:B【分析】过点B 作BF ⊥x 轴,垂足为F ,证明△ADO ∽△BAF ,确定点B 的坐标,利用中点坐标公式确定点E 的坐标,二次运用中点中点坐标公式即可确定点C 的坐标. 【详解】如图,过点B 作BF ⊥x 轴,垂足为F , ∵四边形ABCD 是矩形, ∴∠DAB=90°, ∴∠DAO+∠BAF=90°, ∵∠DAO+∠ADO=90°, ∴∠ADO=∠BAF , ∴△ADO ∽△BAF , ∴OA :BF=OD :FA ,∵//BD x 轴,若(1,0),(0,2)A D , ∴OA=1,OD=2,BF=2, ∴1:2=2:FA , ∴FA=4, ∴点B (5,2), ∵四边形ABCD 是矩形, ∴点E 是BD 的,AC 的中点, ∴点E (52,2), 设点C 的坐标为(m ,n ),∴150,2,222m n ++== ∴m=4,n=4,∴点C 的坐标为(4,4), 故选C .【点睛】本题考查了矩形的性质,三角形相似的判定与性质,中点坐标公式,平行x 轴直线上点的坐标特点,构造辅助线证明三角形的相似,灵活运用中点坐标公式是解题的关键.5.A解析:A【分析】作FG ⊥BC 于G ,依据已知条件求得△DBE ≌△EGF ,得出FG =BE =x ,EG =DB =2x ,然后根据平行线的性质即可求得.【详解】解:作FG ⊥BC 于G ,∵∠DEB +∠FEC =90°,∠DEB +∠BDE =90°;∴∠BDE =∠FEG ,在△DBE 与△EGF 中,B FGE BDE FEG DE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DBE ≌△EGF ,∴EG =DB ,FG =BE =x ,∴EG =DB =2BE =2x ,∴GC =y -3x ,∵FG ⊥BC ,AB ⊥BC ,∴FG ∥AB ,CG :BC =FG :AB , 即34x y x y-=, ∴124x y x =--, 故选:A .【点睛】本题考查了三角形全等的判定和性质,以及平行线分线段成比例,辅助线的做法是解题的关键.6.A解析:A【分析】作AF ⊥BC ,根据等腰三角形ABC 的性质求出AF 的长,再根据黄金分割点的定义求出CD 的长度,利用三角形面积公式即可解题.【详解】解:过点A 作AF ⊥BC ,∵AB=AC ,∴BF=12BC=2, 在Rt ABF ,AF=2222325AB BF -=-=,∵D 是边BC 的两个“黄金分割”点,∴512CD BC -=即5142CD -=, 解得CD=252-,∴12ADC C AF S D ⨯⨯==()125252⨯-⨯=55-, 故选:A .【点睛】本题考查了“黄金分割比”的定义、等腰三角形的性质、勾股定理的应用以及三角形的面积公式,求出DC 和AF 的长是解题的关键.7.D解析:D【分析】根据黄金分割的概念和黄金比值求出AC =BD =540,进而得出答案.【详解】解:∵点C 是靠近点B 的黄金分割点,点D 是靠近点A 的黄金分割点,∴AC =BD =8051-=540, ∴CD =BD ﹣(AB ﹣BD )=2BD ﹣AB =5160,故选:D .【点睛】此题考查了黄金分割点的概念:把一条线段分成两部分,使其中较长的线段为全线段与较51-叫做黄金比. 8.C解析:C【分析】根据题意和相似三角形的判定与性质,可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】解:在△ABC 中,中线AE 、BD 相交于点F ,∴DE 是△ABC 的中位线,∴DE ∥AB ,DE AB =12,故①正确; ∴△CDE ∽△CAB , ∴12CD DE CA AB ==,12CD CE DE DE AC BC AB AB ++==++,故②错误; ∵DE ∥AB ,∴△DEF ∽△BAF , ∴12EF DE AF BA ==, ∴CD EF CA FA=,故③正确; ∵CD =DA ,12EF AF =, ∴S △CDE =S △ADE ,13DEF ADE S S ∆∆=, ∴FDE CDE S S ∆∆=13,故④正确; 故选:C .【点睛】本题考查了相似三角形的判定与性质、三角形的中位线,解答本题的关键是明确题意,利用数形结合的思想解答.9.B解析:B【分析】根据正方形的性质得:DE ∥BC ,则△ADE ∽△ACB ,列比例式可得结论.【详解】解:∵四边形CDEF 是正方形,∴CD=ED ,DE ∥CF ,设ED=x ,则CD=x ,AD=5-x ,∵DE ∥CF ,∴∠ADE=∠C ,∠AED=∠B ,∴△ADE ∽△ACB , ∴DE AD BC AC=,∴5125x x -=, ∴x=6017, ∴正方形CDEF 的边长为6017. 故选:B .【点睛】此题考查了相似三角形的判定和性质、正方形的性质,设未知数,构建方程是解题的关键.10.D解析:D【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k ,即可求得答案.【详解】解:∵△ABO 与A B O ''△的相似比为12,且A '在第四象限, ∴点A 的对应点A '的坐标为118,422⎛⎫⎛⎫⎛⎫-⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即(4,-2), 故选:D .【点睛】此题主要考查了位似变换,正确掌握位似图形的性质是解题关键.11.C解析:C【分析】根据把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,它们的比值12叫做黄金比进行解答即可. 【详解】解:根据黄金比的比值,1BP =则113122AP -=-=, 2323,,AP AP ==⎝⎭⎝⎭…依此类推,则线段20202020AP =⎝⎭,故选C .【点睛】 本题考查的是黄金分割的知识,理解黄金分割的概念,找出黄金分割中成比例的对应线段是解决问题的关键.12.D解析:D【分析】已知∠ADC =∠BAC ,则A 、B 选项可根据有两组角对应相等的两个三角形相似来判定;C 选项可以根据两组对应边的比相等且相应的夹角相等的两个三角形相似来判定;D 选项虽然也是对应边成比例但无法得到其夹角相等,所以不能推出两三角形相似.【详解】在△ADC 和△BAC 中,∠ADC =∠BAC ,如果△ADC ∽△BAC ,需满足的条件有:①∠DAC =∠ABC 或AC 是∠BCD 的平分线; ②AD DC AB AC=; 故选:D .【点睛】 此题主要考查了相似三角形的判定方法;熟记三角形相似的判定方法是解决问题的关键.二、填空题13.1或3【分析】由正方形的性质结合三角形内角和定理可得出结合可得出由可证出再利用相似三角形的性质可求出的长【详解】解:四边形为正方形即或故答案为:1或3【点睛】本题考查了相似三角形的判定与性质正方形的 解析:1或3.【分析】由正方形的性质结合三角形内角和定理可得出90BAE AEB ∠+∠=︒,结合90AEB CEF ∠+∠=︒可得出BAE CEF ∠=∠,由B C ∠=∠,BAE CEF ∠=∠可证出ABE ECF ∆∆∽,再利用相似三角形的性质可求出CE 的长.【详解】 解:四边形ABCD 为正方形,90B C ∴∠=∠=︒,90BAE AEB ∴∠+∠=︒.EF AE ⊥,90AEF ∴∠=︒,90AEB CEF ∴∠+∠=︒,BAE CEF ∴∠=∠,ABE ECF ∽, ∴CE CF BA BE ,即4344CE CE, 1CE ∴=或3CE =.故答案为:1或3.【点睛】本题考查了相似三角形的判定与性质、正方形的性质以及三角形内角和定理,利用“两角对应相等的三角形相似”找出ABE ECF ∆∆∽是解题的关键.14.【分析】证明△ECG △FBA 利用相似三角形的性质求解即可【详解】设EG 交AF 于点Q ∵EG ⊥AF ∴∠FQG=90∴∠QFG+∠QGF=90在正方形ABCD 中∠B=∠C=90∴∠QAB+∠AFB=90∴ 解析:43【分析】证明△ECG ~△FBA ,利用相似三角形的性质求解即可.【详解】设EG 交AF 于点Q ,∵EG ⊥AF ,∴∠FQG=90︒,∴∠QFG+∠QGF =90︒,在正方形ABCD 中,∠B=∠C =90︒,∴∠QAB+∠AFB =90︒,∴∠QGF =∠FAB ,在△ECG 和△FBA 中,∠B=∠C =90︒,∠QGF =∠FAB ,∴△ECG ~△FBA(两组对应角相等的三角形是相似三角形),∴EC CG BF AB =, ∴EC CF FG BF AB+=, ∵E 是CD 的中点,∴122CE CD ==, ∵CF=1,∴BF=3, ∴2134FG +=, 解得:FG=53, ∴43BG BF FG =-=, 故答案为:43. 【点睛】 本题考查了正方形的性质,相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形,利用相似三角形的性质解决问题.15.9【分析】过D 点作DF ∥CE 交AE 于F 如图先由DF ∥BE 根据平行线分线段成比例得到DF=BE=3再由DF ∥CE 得到然后利用比例的性质求CE 的长【详解】解:过D 点作DF ∥CE 交AE 于F 如图∵DF ∥BE解析:9【分析】过D 点作DF ∥CE 交AE 于F ,如图,先由DF ∥BE ,根据平行线分线段成比例得到DF=BE=3,再由DF ∥CE 得到DF AD CE AC=,然后利用比例的性质求CE 的长. 【详解】解:过D 点作DF ∥CE 交AE 于F ,如图,∵DF ∥BE ,∴DF DO BE BO=, ∵O 是BD 的中点,∴OB=OD ,∴DF=BE=3,∵DF ∥CE ,∴DF AD CE AC=,∵AD :DC=1:2,∴AD :AC=1:3, ∴13DF CE =, ∴CE=3DF=3×3=9.故答案为9.【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.16.【分析】根据题意可以求得菱形ABCD 的面积再根据题意可以知所有的菱形都相似即可得到菱形AC2020C2021D2021的面积【详解】解:作CE ⊥AB 交AB 的延长线于点E 如右图所示由已知可得∠ABC =解析:40412【分析】根据题意,可以求得菱形ABCD 的面积,再根据题意,可以知所有的菱形都相似,即可得到菱形AC 2020C 2021D 2021的面积.【详解】解:作CE ⊥AB 交AB 的延长线于点E ,如右图所示,由已知可得,∠ABC =120°,BC =1,∠CAB =30°,∴∠CBE =60°,∴∠BCE =30°,∴CE ∴AC∴菱形ABCD 的面积是1×2=2,∵AC AB =1,图中的菱形都是相似的,∴菱形AC2020C 2021D 2021的面积为:2×[(1)2]2020=2×4040=40412,【点睛】本题考查了图形的相似、菱形的性质、图形的变化类,解题的关键是明确题意,发现图形的变化特点,利用数形结合的思想解答.17.3【分析】根据△ADE△DEC△BCD的面积之比为4:2:3可得出AE:EC=2:1AD:BD=2:1则可证明DE∥BC利用平行线的性质与相似三角形的判定可得△ACD∽△ABC与△ACD∽△ADE根解析:3【分析】根据△ADE,△DEC,△BCD的面积之比为4:2:3,可得出AE:EC=2:1,AD:BD=2:1,则可证明DE∥BC,利用平行线的性质与相似三角形的判定可得△ACD∽△ABC与△ACD∽△ADE,根据相似三角形的判定可推出BC CDCD DE=,计算后即可得出结论.【详解】解:如图,∵S△ADE:S△DEC=4:2,∴AE:EC=2:1,∵S△ADE:S△DEC:S△BCD =4:2:3,∴S△ACD:S△BCD=6:3,∴AD:BD=2:1,∵AE ADEC BD=,∴DE ∥BC ,∴∠B=∠ADE ,∵∠ACD=∠ADE ,∴∠ACD=∠B ,∵∠A=∠A ,∴△ACD ∽△ABC , ∴BC AB AC CD AC AD==, 同理可证:△ACD ∽△ADE , ∴CD AC AD DE AD AE ==, ∴BC CD CD DE=, ∵DE ∥BC ,∴△ABC ∽△ADE ,, ∴DE AD BC AB=, ∵AD :BD=2:1, ∴23AD AB =, ∴23DE BC =, ∴23DE BC =, ∴223BC BC CD ⋅=, ∵,∴3BC =.故答案为:3.【点睛】此题主要考查了相似三角形的判定与性质,掌握平行线的判定与相似三角形的判定与性质是解题的关键.18.4【分析】根据已知利用相似三角形的判定可得到△EFO ∽△BCO 根据相似比可求得CO 的长即可【详解】解:∵点EF 分别是△ABC 中ACAB 边的中点∴EF 是△ABC 的中位线∴EF=BCEF ∥BC ∴△EFO解析:4【分析】根据已知利用相似三角形的判定可得到△EFO ∽△BCO ,根据相似比可求得CO 的长即可.【详解】解:∵点E、F分别是△ABC中AC、AB边的中点.∴EF是△ABC的中位线.∴EF=1BC,EF∥BC.2∴△EFO∽△BCO,且相似比为1:2.∴CO=2FO.∵FC=6.∴OC=2FO=4.故答案为4.【点睛】此题主要考查三角形的中位线的定理和相似三角形的判定方法的掌握.19.或【分析】根据位似图形的有两个在原点同侧或异侧分类讨论根据坐标变化规律求解即可【详解】解:与是以坐标原点为位似中心的位似图形分两种情况当与在原点同侧时E点坐标为:当与在原点异侧时E点坐标为:故答案为--解析:(4,2)或(4,2)【分析】根据位似图形的有两个,在原点同侧或异侧分类讨论,根据坐标变化规律求解即可.【详解】解:ABC与DEF是以坐标原点O为位似中心的位似图形,分两种情况,当ABC与DEF在原点同侧时,E点坐标为:(4,2),--,当ABC与DEF在原点异侧时,E点坐标为:(4,2)--.故答案为:(4,2)或(4,2)【点睛】本题考查了平面直角坐标系中位似图形的坐标变化规律,解题关键是注意分类讨论,熟记位似坐标变化规律.20.①②③【分析】由旋转性质得AD=AC∠ADE=∠C利用AD=AC得到∠ADC=∠C即可推出∠ADC=∠ADE判断①正确;根据∠E=∠B∠AFE=∠BFD即可证明△AEF∽△DBF判断②正确;利用三角解析:①②③【分析】由旋转性质得AD=AC,∠ADE=∠C,利用AD=AC得到∠ADC=∠C,即可推出∠ADC=∠ADE,判断①正确;根据∠E=∠B,∠AFE=∠BFD,即可证明△AEF∽△DBF,判断②正确;利用三角形的外角性质判断③正确;由∠FAD不一定等于∠CAD,不能证明△ADF全等于△ADC,故CD不一定等于DF,由此判断④错误.【详解】由旋转得:AD=AC,∠ADE=∠C,∵AD=AC,∴∠ADC=∠C,∴∠ADC=∠ADE ,即DA 平分∠EDC ,故①正确;∵∠E=∠B ,∠AFE=∠BFD ,∴△AEF ∽△DBF ,故②正确;∵∠ADB=∠ADE+∠BDF=∠C+∠CAD ,∠ADE=∠C ,∴BDF CAD ∠=∠,故③正确;∵∠FAD 不一定等于∠CAD ,AD=AD ,∠ADC=∠ADE ,∴不能证明△ADF 全等于△ADC ,故CD 不一定等于DF ,∴DE-DF 不一定等于BC-CD ,即无法证明EF=BD ,故④错误;故答案为:①②③.【点睛】此题考查旋转的性质,等腰三角形的性质,相似三角形的判定及性质,三角形的外角性质,是一道三角形的综合题.三、解答题21.(1)15°;(2)【分析】(1)由翻折易得BC BF =,FBE EBC ∠=∠,由2BF AB =及直角三角形的性质易得30AFB ∠=︒,再由矩形的对边平行即可得结论;(2)根据翻折易得FAB EDF ∆∆∽,从而有对应边成比例,由此可得DE 的长,从而可得EC 的长,即EF 的长,由勾股定理得DF ,最后可得AD 的长.【详解】(1)将BCE ∆沿BE 翻折,使点C 恰好落在AD 边上点F 处,BC BF ∴=,FBE EBC ∠=∠,2BC AB =,2BF AB ∴=,四边形ABCD 是矩形,∴∠A =90º,//AD BC ,30AFB ∴∠=︒,30AFB CBF ∴∠=∠=︒,1152CBE FBC ∴∠=∠=︒; (2)将BCE ∆沿BE 翻折,使点C 恰好落在AD 边上点F 处, 90BFE C ∴∠=∠=︒,CE EF =, 又矩形ABCD 中,90A D ∠=∠=︒,90AFB DFE ∴∠+∠=︒,90DEF DFE ∠+∠=︒,AFB DEF ∴∠=∠,FAB EDF ∴∆∆∽,∴AF AB DE DF =, AF DF AB DE ∴=,10AF DF =,5AB =, 2DE ∴=,523CE DC DE ∴=-=-=,3EF ∴=,2222325DF EF DE ∴=-=-=,255AF ∴==, 25535BC AD AF DF ∴==+=+=.【点睛】本题主要考查了矩形的性质、直角三角形的性质、相似三角形的判定与性质、图形的翻折,关键是图形的翻折这个条件,由它可得出对应线段相等、对应角相等,充分用好用足它们.22.图见解析;理由见解析【分析】作AB 的垂线即可;利用两个角对应相等的两个三角形相似即可判定.【详解】解:如图,作AB 的垂线,垂足为P ,直线CP 就是所求直线;证明:∵CP ⊥AB ,∴∠CPA=∠BPC=90°,∵90C =∠,∴∠A+∠B=90°,∠A+∠ACP=90°,∴∠ACP =∠B ,∴△CPA ∽△BPC .【点睛】本题考查了尺规作图和相似三角形的判定,解题关键是熟悉尺规作图的方法,根据相似确定如何作图.23.(1)见解析;(2)1(6,2)B -,1(4,2)C --;(3)1(2,2)M x y --.【分析】(1)先确定B ,C 的位置,再确定它们各自关于原点的对称点,最后把对称点的坐标各自扩大2倍即可;(2)点B 关于原点的对称点为(-3,1),扩大2倍,得到1B ;点C 关于原点的对称点为(-2,-1),扩大2倍,得到1C ;(3)利用原点对称原理计算,加上倍数即可.【详解】解:(1)如图,△111O B C 即为所求作.(2)∵点B (3,1)-,∴点B 关于原点的对称点为(-3,1),∴扩大2倍,得到1(6,2)B -;∵点C (2,1),∴点C 关于原点的对称点为(-2,-1),∴扩大2倍,得到1(4,2)C --.(3)∵点M (,)x y ,∴点M 关于原点的对称点为(,)x y --,∴扩大2倍,得到1(2,2)M x y --.【点睛】本题考查了位似的作图与计算问题,熟练将位似与原点的对称密切联系起来是解题的关键.24.(1)C ;(2)见解析;(3)13AG GF =或3. 【分析】(1)根据互为母子三角形的定义即可得出结论;(2)根据两角对应相等两三角形相似得出ABD ADE ∽△△,再根据2AB AD =从而得出结论;(3)根据题意画出图形,分当,G E 分别在线段,AD AC 上时和当,G E 分别在射线,DA CA 上时两种情况加以讨论;【详解】(1)∵DEF 与ABC 互为母子三角形, ∴1=2DE AB 或2 故选:C (2)AD 是BAC ∠的角平分线,BAD CAD ∴∠=∠,ADE B ∠=∠,ABD ADE ∴∽.又2AB AD =,ABD ∴与ADE 互为母子三角形.(3)如图,当,G E 分别在线段,AD AC 上时,AGE 与ADC 互为母子三角形,2CD AD GE AG∴==, AG DG ∴=, AD 是中线,BD CD ∴=,又//GE BC ,GEF DBF ∴∽△△.2DF DB CD GF GE GE∴===, 3DG GF ∴=,3AG GF∴=. 如图,当,G E 分别在射线,DA CA 上时,AGE 与ADC 互为母子三角形,2CD AD GE AG∴==, 1123AG AD DG ∴==,AD 是中线,BD CD ∴=,又//GE BC ,GEF DBF ∴∽△△.2DF DB CD GF GE GE ∴===, DG GF ∴=, 13AG GF ∴=. 综上所述,13AG GF =或3【点睛】本题主要考查了相似三角形的判定与性质、分类讨论的数学思想以及接受与理解新生事物的能力.准确理解题设条件中互为母子三角形的定义是正确解题的先决条件,在分析与解决问题的过程中,要考虑全面,进行分类讨论,避免漏解.25.(1)见详解;(2)见详解;(3)356 【分析】(1)利用相似三角形的判定定理直接证明即可(2)利用平行线分线段成比例定理,再证明,ABC DBC △AME ∽△△DEN ∽△,CEN AME ABC △∽CAD,△∽△,根据三角形相似的性质即可解答.(3)结合(2)的结论将AD=5,BC=7,代入即可求得MN 的长【详解】(1)//MN BCAME ABC ∴△∽△,(2)//AD MN ,//AD BCDE AE BD AC ∴= //MN BC,ABC DBC ∴△AME ∽△△DEN ∽△,AE ME DE NE AC BC BD CB ∴== ME NE BC BC∴= ME NE ∴=∴E 是MN 的中点,ME=NE=12MN //BC//AD MNCEN AME ABC ∴△∽CAD,△∽△,NE CE ME AE AD AC BC AC ∴== 1NE ME CE AE AC AD BC AC AC AC ∴+=+== 1NE ME AD BC∴+= 111ME AD BC∴=+ (3)结合(2)的结论,5,7AD BC == 11157MN ∴=+ 3512ME ∴=ME NE =7035126MN ME NE ∴=+== 【点睛】本题考查了相似三角形的判定和性质,平行线分线段成比例定理,解题关键是熟练掌握相似三角形的判定定理,利用比例的等量关系解题.26.【分析】根据相似三角形的性质确定两直角边的比值为1:2,以及6×6网格图形中,最长线段为【详解】解:∵在Rt△ABC中,AC=1,BC=2,∴AB=5,AC:BC=1∶2,∴与Rt△ABC相似的格点三角形的两直角边的比值为1∶2,若该三角形最短边长为4,则另一直角边长为8,但在6×6网格图形中,最长线段为2,但此时画出的直角三角形为等腰直角三角形,从而画不出端点都在格点且长为8的线段,故最短直角边长应小于4,在图中尝试,可画出DE10,EF=10,DF=2的三角形,∵102105210,5∴△ACB∽△DEF,∴∠DEF=∠C=90°,∴此时△DEF1010÷2=10,△DEF为面积最大的三角形,其斜边长为2.【点睛】本题考查了作图-应用与设计、相似三角形的判定和性质、勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题.。

(常考题)北师大版初中数学九年级数学上册第四单元《图形相似》测试题(答案解析)(2)

(常考题)北师大版初中数学九年级数学上册第四单元《图形相似》测试题(答案解析)(2)

一、选择题1.如图,在Rt ABC 中,90ACB D ∠=︒,是AB 边的中点,AF CD ⊥于点E ,交BC 边于点F ,连接DF ,则图中与ACE △相似的三角形共有( )A .2个B .3个C .4个D .5个2.如图,在ABC 中,D ,E 分别是AB,AC 上的点,且DE// BC ,若AE : EC=1: 4,那么:ADE BEC S S △△的值为( )A .1∶16B .1∶18C .1∶20D .1∶24 3.如图,ABC 中,AD BC ⊥于点D ,下列条件中不.能判定ABC 是直角三角形的是( )A .B DAC ∠=∠B .90B DAC ∠+∠=︒ C .2AB BD BC =⋅D .2AC CD BC =⋅ 4.如图,在▱ABCD 中,E 是BC 的中点,DE ,AC 相交于点F ,S △CEF =1,则S △ADC =( )A .3B .4C .5D .6 5.如图,在平面直角坐标系中,矩形ABCD 的对角线//BD x 轴,若(1,0),(0,2)A D ,则点C 的坐标为( )A .(4,3)B .(4,4)C .(3,4)D .(2.5,4) 6.如图,4AB =,射线BM 和AB 互相垂直,点D 是AB 上的一个动点,点E 在射线BM 上,12BE DB =,作EF DE ⊥并截取EF DE =,连结AF 并延长交射线BM 于点C .设BE x =,BC y =,则y 关于x 的函数解析式是( )A .124x y x =--B .21x y x =--C .31x y x =--D .84x y x =-- 7.点B 是线段AC 的黄金分割点,且AB <BC .若AC=4,则BC 的长为( ) A .252+ B .252- C .51- D .51- 8.如图,ABC 中,90ABC ∠=︒,点E 在CB 的延长线上,13BE AB =,过点E 作ED AC ⊥于D .若AD ED =,6AC =,则CD 的长为( )A .1.5B .2C .2.5D .4 9.若275x y z ==,则2x y z x z +-+的值是( ) A .67 B .13 C .49 D .410.如图,点D 、E 、F 分别是ABC 的边AB 、AC 、BC 上的点,若//DE BC ,//EF AB ,则下列比例式一定成立的是( )A .EF FC AD BF =B .AD DE DB BC = C .BF EF BC AD = D .EF DE AB BC = 11.若ad=bc ,则下列不成立的是( )A .a c b d =B .a c a b d b -=-C .a b c d b d ++=D . 1 111a c b d ++=++ 12.如图,直线123////l l l ,直线a 、b 与1l 、2l 、3l 分别交于点A 、B 、C 和点D 、E 、F ,若:1:2AB BC =,6DF =,则EF 的长为( )A .2B .3C .4D .5二、填空题13.如图,点P 是ABC 的重心,过P 作AB 的平行线DE ,分别交AC 于点D 、交BC 于点E ;作//DF BC ,交AB 于点F ,若ABC 的面积为36,则四边形BEDF 的面积为________.14.如图,在ABC 中,90ACB ∠=︒,30A ∠=︒,3BC =.点D 是AB 上一动点,以DC 为斜边向右侧作等腰直角三角形CDE ,使90CED ∠=︒,连接BE . (1)若点E 恰好落在AB 上,则AD 的值为______;(2)线段BE 的最小值为______.15.如图所示是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的半径为0.8m ,桌面距离地面1m ,若灯泡距离地面3m ,则地面上阴影部分的面积为_________m 2(结果保留)π.16.如图,已知在Rt ABC 中,C 90∠=︒,AC 3=,BC 4=,分别将Rt ABC 的三边向外平移2个单位并适当延长,得到111A B C △,则111A B C △的面积为______.17.如图,正方形ABCD 和正方形EFOG 是位似图形,其中点A 与点E 对应,点A 的坐标为()4,2-,点E 的坐标为()1,1-,则这两个正方形位似中心的坐标为______.18.在Rt △ABC 中,AB =6,AC =5,点D 在边AB 上,且AD =2,点E 在边AC 上,当△ADE ∽△ABC 时,AE =____.19.如图,有一个池塘,要测量池塘两端A 、B 的距离,可先在平地上取一点O ,从O 点不经过池塘可以直接到达点A 和点B ,连接AO 并延长到点C ,连接BO 并延长到点D ,使3AO BO CO DO==,测得36CD m =,则池塘两端AB 的距离为________m .20.如图,若ABC 与DEF 都是正方形网格中的格点三角形(顶点在格点上),则DEF 与ABC 的周长比为_________.三、解答题21.我国古代数学著作《九章算术》中有“井深几何”问题:“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深儿何?”它的大意是:如图,已知四边形BCDE 是矩形,5CD =尺,5AB =尺,0.4BF =尺,求井深BC 为多少尺?22.如图,在正方形ABCD 中,E 为边AD 上的点,点F 在边CD 上,∠BEF =90°且CF =3FD .(1)求证:△ABE ∽△DEF ;(2)若AB =4,延长EF 交BC 的延长线于点G ,求 CG 的长.23.如图,点C ,B ,E 在同一条直线上,AC ⊥BC ,BD ⊥DE ,BC =ED =6,BE =10,∠BAC =∠DBE .(1)求证:△ABC ≌△BED ;(2)求△ABD 的面积.24.如图,在△ABC 中,∠C =∠ADE ,AB =3,AD =2,CE =5,求证:(1)△ADE ∽△ACB ;(2)求AE 的长.25.如图1,在等边ABC 中,点D 是BC 边上的动点(不与点B 、C 重合),点E 、F 分别在AB 和AC 边上,且EDF=60.(1)求证:BDE CFD △∽△;(2)若点D 移至BC 的中点,如图2,求证:FD 平分EFC ∠.26.已知::2:3:4a b c =,且2316a b c -+=,求232a b c +-的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】利用直角三角形斜边上的高线模型,可判断有2个三角形与ACE △相似,利用直角三角形斜边上的中线等于斜边的一半,传递一组等角,得到第3个三角形.【详解】∵∠EAC=∠CAF ,∠AEC=∠ACF ,∴△ACE ∽△AFC ;∵∠EAC+∠AFC=90°,∠ECF+∠AFC=90°,∴∠EAC=∠ECF ,∵∠AEC=∠CEF ,∴△ACE ∽△CFE ;∵90ACB D ∠=︒,是AB 边的中点,∴DC=DB ,∴∠ECF=∠EAC=∠B ,∵∠AEC=∠BCA ,∴△ACE ∽△BAC ;共有3个,故选B.【点睛】本题考查了直角三角形的相似,熟练运用三角形相似的判定定理是解题的关键. 2.C解析:C【分析】 由已知条件可求得ABE EBC S S ∆∆,又由平行线分线段成比例可求得ADE BDES S ∆∆,结合S △BDE =S △ABE -S △ADE 可求得答案.【详解】解:∵AE 1EC 4=, ∴14ABE EBC S S ∆∆=, ∴14ABE EBC S S ∆∆=, ∵DE ∥BC ,∴14AD AE DB EC ==, ∴14ADE BDE S S ∆∆=, ∴S △BDE =4S △ADE ,又∵S △BDE =S △ABE -S △ADE ,∴4S △ADE =14S △EBC -S △ADE , ∴120ADE EBC S S ∆∆=, 故选:C .【点睛】本题主要考查了平行线分线段成比例的性质及三角形的面积,掌握同高三角形的面积比即为底的比是解题的关键.3.B解析:B【分析】根据已知对各个条件进行分析,从而得到答案.【详解】解:A.能,∵AD ⊥BC ,∴∠B+∠BAD=90°,∵∠B=∠DAC ,∴∠BAC=∠BAD+∠DAC=∠BAD+∠B=90°;∴△ABC 是直角三角形;B.不能,∵AD ⊥BC ,∴∠B+∠BAD=90°,∵∠B+∠DAC=90°,∴∠BAD=∠DAC ,∴△ABD ≌△ACD (ASA ),∴AB=AC ,∴△ABC 是等腰三角形,∴无法证明△ABC 是直角三角形;C.能,∵2AB BD BC =⋅ ∴AB BC BD AB= ∵∠B=∠B∴△CBA ∽△ABD ,∴∠ADB=∠BAC ,∵AD ⊥BC ,∴∠ADB=∠ADC=90°,∴∠BAC=90°∴△ABC 是直角三角形;D.能,∵2AC CD BC =⋅, ∴AC BC CD AC= ∵∠C=∠C ∴△CBA ∽△CAD ,∴∠ADC=∠BAC=90°∴△ABC 是直角三角形.故选:B【点睛】此题考查了相似三角形的判定与性质、直角三角形的判定与性质.此题难度适中,解题的关键是注意数形结合思想的应用,注意相似三角形的判定与性质的应用.4.D解析:D【分析】根据已知可得△CEF ∽△ADF ,及EF 和DF 的关系,从而根据相似三角形的性质和三角形的面积得到答案.【详解】解:∵四边形ABCD 是平行四边形∴AD=BC ,△CEF ∽△ADF , ∴EC EF AD DF= ∵E 是BC 的中点,∴EC=1122BC AD = ∴12EC EF AD DF == ∴2211()()24CEF ADF S EF S DF ∆∆=== ∵S △CEF =1,∴S △ADF =4, ∵12EF DF = ∴DF=2EF∴S △D CF =2 S △CEF =2,∴S △ADC =S △ADF + S △D CF =4+2=6故选:D .【点睛】本题主要考查了相似三角形的判定与性质,熟练掌握相似三角形的面积比等于相似比的平方是解答此题的关键.5.B解析:B【分析】过点B 作BF ⊥x 轴,垂足为F ,证明△ADO ∽△BAF ,确定点B 的坐标,利用中点坐标公式确定点E 的坐标,二次运用中点中点坐标公式即可确定点C 的坐标.【详解】如图,过点B 作BF ⊥x 轴,垂足为F ,∵四边形ABCD 是矩形,∴∠DAB=90°,∴∠DAO+∠BAF=90°,∵∠DAO+∠ADO=90°,∴∠ADO=∠BAF ,∴△ADO ∽△BAF ,∴OA :BF=OD :FA ,∵//BD x 轴,若(1,0),(0,2)A D ,∴OA=1,OD=2,BF=2,∴1:2=2:FA ,∴FA=4,∴点B (5,2),∵四边形ABCD 是矩形,∴点E 是BD 的,AC 的中点,∴点E (52,2), 设点C 的坐标为(m ,n ), ∴150,2,222m n ++== ∴m=4,n=4, ∴点C 的坐标为(4,4),故选C .【点睛】本题考查了矩形的性质,三角形相似的判定与性质,中点坐标公式,平行x 轴直线上点的坐标特点,构造辅助线证明三角形的相似,灵活运用中点坐标公式是解题的关键. 6.A解析:A【分析】作FG ⊥BC 于G ,依据已知条件求得△DBE ≌△EGF ,得出FG =BE =x ,EG =DB =2x ,然后根据平行线的性质即可求得.【详解】解:作FG ⊥BC 于G ,∵∠DEB +∠FEC =90°,∠DEB +∠BDE =90°;∴∠BDE =∠FEG ,在△DBE 与△EGF 中,B FGE BDE FEG DE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DBE ≌△EGF ,∴EG =DB ,FG =BE =x ,∴EG =DB =2BE =2x ,∴GC =y -3x ,∵FG ⊥BC ,AB ⊥BC ,∴FG ∥AB ,CG :BC =FG :AB , 即34x y x y-=, ∴124x y x =--, 故选:A .【点睛】本题考查了三角形全等的判定和性质,以及平行线分线段成比例,辅助线的做法是解题的关键.7.B解析:B【分析】根据黄金分割的定义可得出较长的线段BC=512AC,将AC=4代入即可得出BC的长度.【详解】解:∵点B是线段AC的黄金分割点,且AB<BC,∴BC=512AC,∵AC=4,∴BC=252.故选:B.【点睛】本题考查了黄金分割的定义:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中51-AB≈0.618AB,并且线段AB的黄金分割点有两个.8.B解析:B【分析】证明△ADF≌△EDC,得到DC=DF,设DC=x,再证明△EBF∽△ABC,求出x即可.【详解】解:∵∠ABC=90°,ED⊥AC,∴∠EBA=∠ADE=90°,又∠1=∠2,∴∠E=∠A,∵AD=ED,∴△ADF≌△EDC,∴DC=DF,设DC=x,∴DF=x,∴AD=ED=6-x ,∴EF=6-2x ,∵∠E=∠A ,∠FBE=∠ABC ,∴△EBF ∽△ABC , ∴BE EF AB AC =, ∵AC=6,BE=13AB , ∴163EF =, ∴EF=6-2x=2,∴x=2,∴CD=2,故选B .【点睛】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,解题的关键是掌握相应的判定方法,利用性质定理求出结果.9.C解析:C 【分析】 根据275x y z k ===,则x =2k ,y =7k ,z =5k ,代入2x y z x z+-+进行计算即可. 【详解】 解:275x y z k ===(k≠0), 则x =2k ,y =7k ,z =5k , ∴2x y z x z+-+=2754495k k k k k +-+=, 故选:C .【点睛】 本题考查了比例的性质,解题的关键是掌握比例的性质进行解题.10.A解析:A 【分析】根据平行可得EC FCAE BF=,EC BDAE DA=,再根据平行四边形的性质得EF=BD即可.【详解】解:∵//EF AB,∴EC FCAE BF=∵//DE BC,∴EC BDAE DA=,∴FC BDBF DA=∵//DE BC,//EF AB,∴四边形BFED是平行四边形,∴EF=BD,∴EF FCAD BF=,故选:A.【点睛】本题考查了平行线分线段成比例定理,解题关键是根据平行线列出恰当的比例式,再结合平行四边形性质进行推理.11.D解析:D【分析】根据比例和分式的基本性质,进行各种演变即可得到结论.【详解】A 由a cb d=可以得到ad=bc,故本选项正确,不符合题意;B、由a c ab d b-=-可得:(a-c)b=(b-d)a,即ad=bc,故本选项正确,不符合题意;C、由a b c db d++=可得(a+b)d=(c+d)b,即ad=bc,故本选项正确,不符合题意;D、由1?111a cb d++=++,可得(a+1)(d+1)=(b+1)(c+1),即ad+a+d=bc+c,不能得到ad=bc,故本选项错误,符合题意;故选:D.【点睛】本题考查了比例线段,根据比例的性质能够灵活对一个比例式进行变形.12.C解析:C【分析】连接AF 交2l 于点G ,根据平行线分线段成比例,得出12AB AG BC GF ==和21FG FE GA ED ==,则23EF DF =,即可求出结果. 【详解】 解:如图,连接AF 交2l 于点G ,∵23//l l , ∴12AB AG BC GF ==, ∵12l l //, ∴21FG FE GA ED ==, ∵6DF =,∴243EF DF ==. 故选:C .【点睛】 本题考查平行线分线段成比例,解题的关键是熟练掌握平行线分线段成比例的性质.二、填空题13.16【分析】延长CP 交AB 于G 由CP :PG=2:1推出CE :BC=2:3AD :AC=1:3由△CED ∽△CBA △AFD ∽△ABC 推出S △CED=×S △ABC=16S △AFD=×S △ABC=4由此即可解析:16【分析】延长CP 交AB 于G .由CP :PG =2:1,推出CE :BC =2:3,AD :AC =1:3,由△CED ∽△CBA ,△AFD ∽△ABC ,推出S △CED =49×S △ABC =16,S △AFD =19×S △ABC =4,由此即可解决问题.【详解】解:如图,延长CP 交AB 于G .∵点P 是△ABC 的重心,∴CP :PG =2:1,∵DE ∥AB ,∴CE :BE =2:1,AD :CD =1:2,∴CE :CB =2:3,AD :AC =1:3,∵ED ∥AB ,DF ∥BC ,∴△CED ∽△CBA ,△AFD ∽△ABC ,∴S △CED =49×S △ABC =16,S △AFD =19×S △ABC =4, ∴S 平行四边形BEDF =S △ABC -S △CED -S △AFD =36-16-4=16,故答案为:16. 【点睛】本题考查了三角形重心的性质,平行线分线段成比例定理,相似三角形的判定与性质,难度适中.准确作出辅助线是解题的关键.14.【分析】(1)根据含30°的直角三角形的性质可得AB=6BE=CE=再根据等腰直角三角形的性质得出CE=DE=最后依据AD=AB-BE-ED 得出结果;(2)以BC 为直角边向左构造以∠CBH 为直角的等 933-324 【分析】(1)根据含30°的直角三角形的性质可得AB=6,BE=32,33,再根据等腰直角三角形的性质得出CE=DE=332,最后依据AD=AB-BE-ED 得出结果; (2)以BC 为直角边向左构造以∠CBH 为直角的等腰直角三角形BCH ,先证明△CDH ∽△CEB ,得出2DH BE=DH 取最小值时,BE 边为最小值,当DH ⊥AB 时,DH最小,即图中的D H ',根据含30°的直角三角形的性质可得出结论.【详解】(1)如图所示:∵∠ACB=90°,∠A=30°,BC=3,∴AB=6,BE=32,CE=332, ∵△CDE 为等腰直角三角形,∴CE=DE=332, ∴AD=6-32-332=933- (2)以BC 为直角边向左构造以∠CBH 为直角的等腰直角三角形BCH ,∵△CDE 为等腰直角三角形,∴∠DCE=∠HCB=45°,∠DCH=∠HCB , ∵2CD CH CE CB== ∴△CDH ∽△CEB , ∴2DH BE= ∴当DH 取最小值时,BE 边为最小值,当DH ⊥AB 时,DH 最小,即图中的D H ',∵∠A=30°,∠ACB=90°∴∠ABC=60°∵∠CBH=90°∴D BH '∠=30°∵BH=BC=3 ∴32D H '= ∴3242BE '=最小值,故答案为933-,324.【点睛】本题考查了相似三角形的判定和性质,含30°的直角三角形的性质,等腰三角形的性质,解题的关键是证明△CDH ∽△CEB .15.44π【分析】证明△OBQ ∽△OAP 根据相似三角形的性质求出AP 根据圆的面积公式计算得到答案【详解】解:如图由题意得OB=08mOQ=OP-PQ=3-1=2(m )BQ ∥AP ∴△OBQ ∽△OAP ∴即解解析:44π【分析】证明△OBQ ∽△OAP ,根据相似三角形的性质求出AP ,根据圆的面积公式计算,得到答案.【详解】解:如图,由题意得,OB=0.8m ,OQ=OP-PQ=3-1=2(m ),BQ ∥AP , ∴△OBQ ∽△OAP ,∴BQ OQ AP OP =,即0.823AP =, 解得,AP=1.2(m ), 则地面上阴影部分的面积=π×1.22=1.44π(m 2),故答案为:1.44π.【点睛】本题考查的是相似三角形的应用,掌握相似三角形的判定定理和性质定理是解题的关键. 16.54【分析】作于点D 作于点E 作于点F 分别证明△和△求出和再根据三角形面积公式求解即可【详解】解:作于点D 作于点E 作于点F ∵三边向外平移个单位∴∵∴∠且∠∴△∴又∵∠且∠∴△∴∴∴又∵△∴∴∴【点睛】 解析:54【分析】作11CD B C ⊥于点D ,作11BE B C ⊥于点E ,作11BF A B ⊥于点F ,分别证明△ACB BFG ∆∽和△1GHB ACB ∆∽,求出11A C 和11B C ,再根据三角形面积公式求解即可.【详解】解:作11CD B C ⊥于点D ,作11BE B C ⊥于点E ,作11BF A B ⊥于点F ,∵Rt ABC ∆三边向外平移个单位,∴1=22,2,C D CD BE GH BF ====,∵11//AB A B∴∠ABC AGC =∠且∠90ACB BFG =∠=︒∴△ACB BFG ∆∽ ∴103BG = 又∵∠11B A GC ABC =∠=∠,且∠190GHB ACB =∠=︒∴△1GHB ACB ∆∽ ∴1AC GH BC B H= ∴183B H = ∴1111C B CD DE EH HB =+++ 1082433=+++ 12=又∵△111ABC A B C ∆∽ ∴1111AC B C AC BC= ∴119A C = ∴111111112A B C S AC B C ∆=⨯⨯ 11292=⨯⨯ 54=【点睛】此题主要考查了相似三角形的性质与判定,能正确作出辅助线证明三角形是解答此题的关键.17.【分析】连接AE 并延长交x 轴于H 求AE 解析式即可【详解】解:∵点与点对应∴点B 与点F 对应BF 都在x 轴上连接AE 并延长交x 轴于H 则点H 为位似中心∵点A 的坐标为(﹣42)点E 的坐标为(﹣11)设AE 的解解析:()2,0【分析】连接AE 并延长交x 轴于H ,求AE 解析式即可.【详解】解:∵点A 与点E 对应,∴点B 与点F 对应,B 、F 都在x 轴上,连接AE 并延长交x 轴于H ,则点H 为位似中心,∵点A 的坐标为(﹣4,2)点E 的坐标为(﹣1,1),设AE 的解析式为y=kx+b ,把(﹣4,2),(﹣1,1)代入得,421k b k b -+=⎧⎨-+=⎩, 解得,1323k b ⎧=-⎪⎪⎨⎪=⎪⎩AE 的解析式为1233y x =-+, 当y=0时,x=2,H 点坐标为(2,0),故答案为:(2,0)【点睛】本题考查的是位似变换的概念和性质、待定系数法求一次函数解析式,掌握位似图形的对应点连线的交点是位似中心是解题的关键.18.【分析】根据相似三角形的对应边成比例求解即可求得答案【详解】解:∵△ADE ∽△ABC ∴即解得:AE =;故答案为:【点睛】此题考查了相似三角形的性质掌握相似三角形的性质是解题的关键 解析:53【分析】根据相似三角形的对应边成比例求解,即可求得答案.【详解】解: ∵△ADE ∽△ABC , ∴AD AE AB AC =, 即265AE =, 解得:AE =53; 故答案为:53. 【点睛】此题考查了相似三角形的性质.掌握相似三角形的性质是解题的关键.19.108【分析】先证明△AOB ∽△COD 然后根据相似三角形的性质求解即可【详解】解:∵∠AOB=∠COD ∴△AOB ∽△COD ∴∵∴AB=36×3=108m 故答案为:108【点睛】本题考查了相似三角形的解析:108【分析】先证明△AOB ∽△COD ,然后根据相似三角形的性质求解即可.【详解】解:∵3AO BO CO DO==,∠AOB=∠COD , ∴△AOB ∽△COD ,∴3AO BO AB CO DO CD===, ∵36CD m =,∴AB=36×3=108m .故答案为:108.【点睛】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形. 20.【分析】设正方形网格的边长为1根据勾股定理求出△EFD △ABC 的边长运用三边对应成比例则两个三角形相似这一判定定理证明△EDF ∽△BAC 即可解决问题【详解】解:设正方形网格的边长为1由勾股定理得:D【分析】设正方形网格的边长为1,根据勾股定理求出△EFD 、△ABC 的边长,运用三边对应成比例,则两个三角形相似这一判定定理证明△EDF ∽△BAC ,即可解决问题.【详解】解:设正方形网格的边长为1,由勾股定理得:DE 2=22+22,EF 2=22+42,∴DE =EF =同理可求:AC ,BC∵DF =2,AB =2,∴1EF DE DF BC AB AC === ∴△EDF ∽△BAC ,∴DEF 与ABC,.【点睛】本题主要考查了勾股定理和相似三角形的判定及其性质,熟练掌握相似三角形的判定与性质是解题的关键.三、解答题21.井深BC 为57.5尺【分析】方法一:根据已知条件证明∽ABF ACD ,得到=AB BF AC CD,代入计算即可;方法二:根据已知条件证明ABF DEF ∽△△,得到AB BF DE EF =,代入计算即可 【详解】 解:方法一:四边形BCDE 是矩形,//BF CD ∴, ABF ACD ∴∽,AB BF AC CD∴=, 即5562.50.4AB CD AC BF ⋅⨯===. BC AC AB ∴=-62.55=-57.5=(尺).答:井深BC 为57.5尺.方法二:四边形BCDE 是矩形,//BF CD ∴,ABF DEF ∴∽,AB BF DE EF∴=, 即AB EF DE BF⋅= 5(50.4)57.50.4⨯-==. 57.5BC DE ∴==(尺). 答:井深BC 为57.5尺.【点睛】本题主要考查相似三角形的应用,准确计算是解题的关键.22.(1)见解析;(2)CG =6.【分析】(1)由正方形的性质得出∠A =∠D =90°,证出∠ABE =∠DEF ,即可得出△ABE ∽△DEF ; (2)求出DF =1,CF =3,由相似三角形的性质得出AE AB DF DE =,解得DE =2,证明△EDF ∽△GCF ,得出DE DF CG CF=,求出CG =6,即可得出答案. 【详解】(1)证明:∵四边形ABCD 为正方形,∴∠A =∠D =90°,∴∠ABE +∠AEB =90°,∵∠BEF =90°,∴∠DEF +∠AEB =90°,∴∠ABE =∠DEF ,∴△ABE ∽△DEF ;(2)解:∵AB =BC =CD =AD =4,CF =3FD ,∴DF =1,CF =3,∵△ABE ∽△DEF , ∴AE AB DF DE =,即441DE DE-=, 解得:DE =2,∵AD ∥BC ,∴△EDF ∽△GCF , ∴DE DF CG CF =,即213CG =, ∴CG =6.【点睛】 本题考查了相似三角形的判定与性质、正方形的性质、直角三角形的性质等知识;熟练掌握正方形的性质,证明三角形相似是解题的关键.23.(1)见解析,(2)ABD S40= 【分析】(1)由AC ⊥BC ,BD ⊥DE ,可得∠ACB=∠BDE=90°,可证△ACB ≌△BDE (AAS ); (2)由△ACB ≌△BDE ,可得AB=BE=10,,在Rt △BDE 中,由勾股定理8=,由∠CAB+∠ABC=90°可求∠ABD=180°-∠ABC-∠EBD=90°,可求S △ABD =1AB BD 2⋅即可. 【详解】解:(1)∵AC ⊥BC ,BD ⊥DE ,∴∠ACB=∠BDE=90°,在△ACB 和△BDE 中,ACB=BDE BAC=DBE BC=ED ∠∠⎧⎪∠∠⎨⎪⎩,∴△ACB ≌△BDE (AAS );(2)∵△ACB ≌△BDE ,∴AB=BE=10,在Rt △BDE 中,由勾股定理8==,又∵∠CAB+∠ABC=90°,∴∠ABC+∠EBD=90°,∴∠ABD=180°-∠ABC-∠EBD=90°,∴S △ABD =11AB BD=108=4022⋅⨯⨯. 【点睛】 本题考查三角形全等判定与性质,勾股定理,直角三角形面积,掌握三角形全等判定与性质,勾股定理应用方法,直角三角形面积的求法是解题关键.24.(1)见解析;(2)1【分析】(1)利用“两角法”进行证明;(2)利用(1)中相似三角形的对应边成比例来求AE 的长度.【详解】解:(1)证明:∵∠C =∠ADE ,∠A =∠A ,∴△ADE ∽△ACB(2)解:由(1)知,△ADE ∽△ACB , 则AD AE AC AB= ∵AB =3,AD =2,CE =5, ∴253AE AE =+, 得:121,6AE AE ==-(舍去)∴AE 的长是1【点睛】本题考查了相似三角形的判定与性质.本题关键是要懂得找相似三角形,利用相似三角形的性质求解.25.(1)见解析 (2)见解析【分析】(1)根据等腰三角形的性质得到∠B=∠C ,根据三角形的内角和定理和平角的定义得到∠BED=∠CDF ,于是得到△BDE ∽△CFD ;(2)根据相似三角形的性质得到对应边成比例,等量代换得到比例式,判定相似三角形,最后根据相似三角形的性质得出FD 平分∠EFC .【详解】解:(1)∵AB=AC=BC ,∴∠B=∠C=60°,∵∠BED=180°-∠B-∠BDE=120°-∠BDE ,∠CDF=180°-∠EDF-∠BDE=120°-∠BDE ,∴∠BED=∠CDF ,∴△BDE ∽△CFD ;(2)∵△BDE ∽△CFD , ∴BD DE CF DF=, ∵点D 是BC 的中点,∴BD=CD , ∴CD DE CF DF= ∵∠EDF=∠C=60°,∴△DEF ∽△CDF ,∴∠DFE=∠CFD ,∴FD 平分∠EFC .【点睛】本题考查了相似三角形的判定和性质,等腰三角形的性质,熟练掌握相似三角形的判定和性质是解题的关键.26.【分析】巧用未知数表示比值,转化为方程求解即可.【详解】::2:3:4a b c =,∴设2a k =,3b k =,4c k =,∵2316a b c -+=,261216k k k ∴-+=,解得2k =,4a ∴=, 6b =,8c =,2328181610a b c ∴+-=+-=.【点睛】本题考查了比例的性质,理解比例,合理引入未知数解题是解题的关键.。

初三数学图形与坐标试题答案及解析

初三数学图形与坐标试题答案及解析

初三数学图形与坐标试题答案及解析1.已知点A(a,2013)与点B(2014,b)关于x轴对称,则a+b的值为()A.﹣1B.1C.2D.3【答案】B.【解析】关于x轴对称的点的坐标特征是横坐标相同,纵坐标互为相反数,因此,∵A(a,2013)与点B(2014,b)关于x轴对称,∴a=2014,b=﹣2013.∴a+b=1,故选B.【考点】关于x轴对称的点的坐标特征.2.与在平面直角坐标系中的位置如图所示,它们关于点成中心对称,其中点,则点的坐标是()A.B.C.D.【答案】B.【解析】由于点A1与点A关于原点O成中心对称,点A(4,2),所以点A1的坐标为(-4,-2),故选B.【考点】中心对称.3.如果将点(-b,-a)称为点(a,b)的“反称点”,那么点(a,b)也是点(-b,-a)的“反称点”,此时,称点(a,b)和点(-b,-a)是互为“反称点”.容易发现,互为“反称点”的两点有时是重合的,例如(0,0)的“反称点”还是(0,0).请再写出一个这样的点:【答案】(3,-3).【解析】首先正确理解题意,然后再找出符合条件的点的坐标即可.试题解析:根据题意可得这样的点是(3,-3).【考点】关于原点对称的点的坐标.4.如图,在平面直角坐标系中,已知点P坐标为(1,0),将线段OP0绕点O顺时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;将线段OP1绕点O顺时针方向旋转45°,再将其长度伸长为OP1的2倍,得到线段OP2,…,这样依次得到线段OP3,OP4,…,OPn .则点P2的坐标为;当n=4m+1(m为自然数)时,点Pn的坐标为.【答案】(0,-4);或.【解析】根据点P0坐标求出OP,然后分别求出OP1,OP2,OP3,OP4,…,OPn,再根据点P2在y轴负半轴写出坐标即可;分m是奇数和偶数两种情况确定出点Pn所在的象限,然后根据等腰直角三角形的性质写出坐标即可:∵P0的坐标为(1,0),∴OP=1.∴OP1=2,OP2=2×2=22, OP3=22×2=23, OP4=23×2=24,…, OPn=2n-1×2=2n.∵每次旋转45°,点P0在x轴正半轴,∴点P2在y轴负半轴. ∴点P2的坐标为(0,-4).∵OPn为所在象限的平分线上,∴.①m为奇数时,点Pn在第二象限,点;②m为偶数时,点Pn在第四象限,综上所述,点Pn的坐标为或.【考点】1.探索规律题(图形的变化类):2.点的坐标;3.等腰直角三角形的性质;4.分类思想的应用.5.将点A(4,0)绕着原点O顺时针方向旋转300角到对应点A/,则点A/的坐标是()A.B.(4,-2)C.D.【答案】C.【解析】根据旋转中心为原点,旋转方向顺时针,旋转角度30°,作出点A的对称图形A′,作A′B⊥x轴于点B,利用30°的函数值求得OB,A′B的长,进而根据A′所在象限可得所求点的坐标.作A′B⊥x轴于点B,∵OA′=OA=4,∠AOA′=30°,∴A′B=OA′=2,OB=OA×cos30°=.所以点A′的坐标为(,-2)故选C.考点: 坐标与图形变化-旋转.6.如图,在平面直角坐标系中,一个质点从原点O出发,每次都沿着与轴成60°角的方向运动一个长度单位,依次向右上、右下、右上、右下…方向移动到A1、A2、A3、A4…,即△OA1A2、△A2A3A4、△A4A5A6…均为正三角形,则(1)点A2的坐标是;(2)点A2013的坐标是.【答案】(1)A2(1,0)(2).【解析】(1)第1次从原点O向右上方运动到点A1(,),第2次从点A1向右下方运动到点A2(1,0);(2)第3次从点A2向右上方运动到点A3(,),第4次从点A3向右下方运动到点A4(2,0),第5次从点A4向右上方运动到点A5( ,),…,以此规律进行下去.所以:.故答案是.【考点】点的坐标.7.如图,在平面直角坐标系中,已知点A(1,0)、B(0,2),如果将线段AB绕点B顺时针旋转90°至CB,那么点C的坐标是.【答案】.【解析】如图,根据旋转的性质和旋转角度为90°,得CD=OB=2,OD=OB-OD=2-1=1.根据平面直角坐标系中第二象限点的特征,点C的坐标是.【考点】1.旋转的性质;2.平面直角坐标系中点的特征.8.在平面直角坐标系中,已知线段MN的两个端点的坐标分别是M(-4,-1)、N(0,1),将线段MN平移后得到线段M′N′(点M、N分别平移到点M′、N′的位置),若点M′的坐标为(-2,2),则点N′的坐标为.【答案】(2,4) .【解析】从M(-4,-1)到,(-2,2),先向右移动2个单位,再向上移动3个单位,所以点N(0,1)进行同样的移动到达点(2,4).【考点】平面直角坐标系.9.已知点A(0,0),B(0,4),C(3,t+4),D(3,t).记N(t)为▱ABCD内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)所有可能的值为()A.6、7B.7、8C.6、7、8D.6、8、9【答案】C.【解析】当t=0时,A(0,0),B(0,4),C(3,4),D(3,0),此时整数点有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),共6个点;当t=1时,A(0,0),B (0,4),C(3,5),D(3,1),此时整数点有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),共8个点;当t=1.5时,A(0,0),B(0,4),C(3,5.5),D(3,1.5),此时整数点有(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),共7个点;当t=2时,A(0,0),B(0,4),C(3,6),D(3,2),此时整数点有(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(2,5),共8个点;故选项A错误,选项B错误;选项D错误,选项C正确;故选C.【考点】平面直角坐标系.10.如图1,已知四边形ABCD,点P为平面内一动点.如果∠PAD=∠PBC,那么我们称点P为四边形ABCD关于A、B的等角点. 如图2,以点B为坐标原点,BC所在直线为x轴建立平面直角坐标系,点C的横坐标为6.(1)若A、D两点的坐标分别为A(0,4)、D(6,4),当四边形ABCD关于A、B的等角点P在DC边上时,则点P的坐标为;(2)若A、D两点的坐标分别为A(2,4)、D(6,4),当四边形ABCD关于A、B的角点P 在DC边上时,求点P的坐标;(3)若A、D两点的坐标分别为A(2,4)、D(10,4),点P(x,y)为四边形ABCD关于A、B的等角点,其中x>2,y>0,求y与x之间的关系式.【答案】(1)(6,2);(2)(6,);(3)y=2x或.【解析】(1)画出点A、D坐标,根据四边形ABCD是矩形可得点P在CD的中点处,写出相应坐标即可;(2)易得点P的横坐标为6,利用△PAD∽△PBC可得点P的纵坐标;(3)可分点P在直线AD的上方,或下方两种情况进行探讨:当点P在直线AD的上方时,点P在线段BA的延长线上,利用点A的坐标可得相关代数式;当点P在直线AD的下方时,利用(2)中的相似可得相关代数式.试题解析:(1)(6,2).(2)依题意可得∠D=∠BCD=90°,∠PAD=∠PBC,AD=4,CD=4,BC=6.∴△PAD∽△PBC. ∴.∵PD+PC=CD=4,∴PC=.∴点P的坐标为(6,).(3)根据题意可知,不存在点P在直线AD上的情况;当点P不在直线AD上时,分两种情况讨论:①当点P在直线AD的上方时,点P在线段BA的延长线上,此时有y=2x.②当点P在直线AD的下方时,过点P作MN⊥x轴,分别交直线AD、BC于M、N两点,与(2)同理可得△PAM∽△PBN,PM+PN=4,由点P的坐标为P(x,y),可知M、N两点的坐标分别为M(x,4)、N(x,0).∴.可得,即,即.∴.综上所述,当x>2,y>0时,y与x之间的关系式为y=2x或.【考点】1.动点问题;2.新定义;3. 坐标与图形的对称变化;4.相似三角形的应用;5.数形结合和分类思想的应用.11.如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A,C分别在x,y 轴的正半轴上.点Q在对角线OB上,且OQ=OC,连接CQ并延长CQ交边AB于点P,则点P的坐标为(, ).【答案】。

初三数学图形与坐标试题答案及解析

初三数学图形与坐标试题答案及解析

初三数学图形与坐标试题答案及解析1.与在平面直角坐标系中的位置如图所示,它们关于点成中心对称,其中点,则点的坐标是()A.B.C.D.【答案】B.【解析】由于点A1与点A关于原点O成中心对称,点A(4,2),所以点A1的坐标为(-4,-2),故选B.【考点】中心对称.2.如图,点B在x轴上,∠ABO=90°,∠A=30°,OA=4,将△OAB饶点O按顺时针方向旋转120°得到△OA′B′,则点A′的坐标是()A.(2,﹣2)B.(2,﹣2)C.(2,﹣2)D.(2,﹣2)【答案】B.【解析】∵∠ABO=90°,∠A=30°,OA=4,∴∠AOB=60°,OB=OA=2,AB=OB=2,∴A点坐标为(2,2),∵△OAB饶点O按顺时针方向旋转120°得到△OA′B′,∴∠A′OA=120°,OA′=OA=4,∴∠A′OB=60°,∴点A′和点A关于x轴对称,∴点A′的坐标为(2,﹣2).故选B.【考点】坐标与图形变化-旋转.3.点P(3,-4)关于x轴对称的点的坐标为()A.(-3,-4)B.(4,3)C.(-3,4)D.(3,4)【答案】D.【解析】根据轴对称的性质,得点P(3,-4)关于x轴对称的点的坐标为(3,4).故选D.【考点】关于x轴、y轴对称的点的坐标.4.平面直角坐标系中,与点(2,-3)关于原点中心对称的点是()A.(-3,2)B.(3,-2)C.(-2,3)D.(2,3)【答案】C【解析】根据关于坐标原点对称的点的坐标的规律:横纵坐标互为相反数,所以(2,-3)关于原点对称的点为(-2,3).5.线段MN在直角坐标系中的位置如图所示,若线段M′N′与MN关于y轴对称,则点M的对应点M′的坐标为()A.(4,2)B.(-4,2)C.(-4,-2)D.(4,-2)【答案】D【解析】由图可知M(-4,-2),所以M′点的坐标为(4,-2).6.把点A(-2,1)向上平移2个单位,再向右平移3个单位后得到B,点B的坐标是 () A.(-5,3)B.(1,3)C.(1,-3)D.(-5,1)【答案】B【解析】根据点的平移引起坐标变化的规律,“上移纵坐标加,右移横坐标加”,可得B点的坐标为(1,3).7.已知点P(2a+1,2a-3)关于x轴的对称点在第一象限,则a的取值范围是.【答案】-<a<【解析】考查坐标轴对称的点的性质,点所在象限的符号特征,简单的不等式组的解法等知识.由对称性易知点P(2a+1,2a-3)在第四象限,则点P的横坐标为正,纵坐标为负,可得,易求得结果为-<a<.8.在平面直角坐标系中,点A(1,3)关于原点O对称的点A′的坐标为()A.(-1,3)B.(1,-3)C.(3,1)D.(-1,-3)【答案】D.【解析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数解答.点A(1,3)关于原点对称的点的坐标是(-1,-3).故选D.考点: 关于原点对称的点的坐标.9.如图,已知△ABC三个顶点的坐标分别是A(-2,3),B(-3,-1),C(-1,1)(1)画出△ABC绕点O逆时针旋转90°后的△A1B1C1,并写出点A1的坐标;(2)画出△ABC绕点O逆时针旋转180°后的△A2B2C2,并写出点A2的坐标;(3)直接回答:∠AOB与∠A2OB2有什么关系?【答案】(1)作图见解析,(-4,-2);(2)作图见解析,(2,-3);(3)相等.【解析】(1)根据旋转的性质作图,写出点的坐标;根据旋转的性质作图,写出点的坐标;(3)根据旋转的性质得出结论.试题解析:(1)作图如下,点A1的坐标(-4,-2).(2)作图如下,点A2的坐标(2,-3).(3)相等.【考点】1.旋转作图;2.旋转的性质.10.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,的顶点均在格点上,点的坐标为.①把向上平移5个单位后得到对应的,画出,并写出的坐标;②以原点为对称中心,画出与关于原点对称的,并写出点的坐标.③以原点O为旋转中心,画出把顺时针旋转90°的图形△A3B3C3,并写出C3的坐标.【答案】(1)作图见解析,(4,4);(2)作图见解析,(-4,1);(3)作图见解析;(-1,-4).【解析】(1)将A、B、C按平移条件找出它的对应点,顺次连接,即得到平移后的图形;(2)利用关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分,分别找出A、B、C的对应点,顺次连接,即得到相应的图形;(3)利用对应点到旋转中心的距离相等,以及对应点与旋转中心所连线段的夹角等于旋转角,即可作出判断.试题解析:(1)如图所示:C1的坐标为:(4,4);(2)如图所示:C2的坐标为:(-4,1);(3)如图所示:C3的坐标为:(-1,-4).考点: 1.作图-旋转变换;2.作图-平移变换.11.如图,在平面直角坐标系中,已知点,对△AOB连续作旋转变换,依次得到三角形(1)、(2)、(3)、(4)、…,则第(7)个三角形的直角顶点的坐标是;第(2013)个三角形的直角顶点的坐标是.【答案】(24,0);(8052,0).【解析】先计算出AB,然后根据旋转的性质观察△OAB连续作旋转变换,得到△OAB每三次旋转后回到原来的状态,并且每三次向前移动了3+4+5=12个单位,于是判断三角形(7)和三角形(4)的状态一样,三角形(2013)和三角形(3)的状态一样,然后可分别计算出它们的直角顶点的横坐标,从而得到其直角顶点的坐标:∵点,∴OB=3,OA=4,∴根据勾股定理,得:AB=5.∵对△OAB连续作如图所示的旋转变换,∴△OAB每三次旋转后回到原来的状态,并且每三次向前移动了3+4+5=12个单位.∵7=3×2+1,∴三角形(7)和三角形(4)的状态一样.∴三角形(7)的直角顶点的横坐标为2×12=24,纵坐标为0.∴三角形⑩的直角顶点的坐标为(24,0).∵2013=3×671,∴三角形(2013)和三角形(3)的状态一样.∴三角形(2013)的直角顶点的横坐标为671×12=8052,纵坐标为0.∴三角形⑩的直角顶点的坐标为(8052,0).【考点】1.探索规律题(图形的变化类——循环问题);2.勾股定理;3.旋转的性质.12.在平面直角坐标系中,正方形ABCD的顶点坐标分别为A(1,1),B(1,-1),C(-1,-1),D(-1,1),y轴上有一点P(0,2).作点P关于点A的对称点P1,作点P1关于点B的对称点 P2,作点P2关于点C的对称点P3,作点P3关于点D的对称点P4,作点P4关于点A的对称点P5,作点P5关于点B的对称点P6,…,按此操作下去,则点P2013的坐标为 .【答案】(2,0)【解析】如图,点P关于点A的对称点P1(2,0), 点P1关于点B的对称点 P2(0,-2), 点P2关于点C的对称点P3(-2,0), 点P3关于点D的对称点P4(0,2), P4与P重合, P5与P1重合,故对称点以4为一个循环, P1(2,0), P2(0,-2), P3(-2,0), P4(0,2),2013除以4余1,所以P2013与P1重合,故P2013(2,0).先求出几个对称点的坐标,然后找规律,由题,如图,点P关于点A的对称点P1(2,0), 点P1关于点B的对称点 P2(0,-2), 点P2关于点C的对称点P3(-2,0), 点P3关于点D的对称点P4(0,2), P4与P重合,P5与P1重合,故对称点以4为一个循环, P1(2,0), P2(0,-2), P3(-2,0), P4(0,2),2013除以4余1,所以P2013与P1重合,故P2013(2,0).【考点】点关于点的对称和找规律.13.如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点O出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P2013的坐标为.【答案】(0,﹣2)【解析】计算出前几次跳跃后,点P1,P2,P3,P4,P5,P6,P7的坐标,可得出规律,继而可求出点P2013的坐标:∵点P1(2,0),P2(﹣2,2),P3(0,﹣2),P4(2,2),P5(﹣2,0),P6(0,0),P7(2,0),∴6次跳跃一个循环。

(常考题)人教版初中数学九年级数学上册第四单元《圆》检测(答案解析)(2)

(常考题)人教版初中数学九年级数学上册第四单元《圆》检测(答案解析)(2)

一、选择题1.如图,AC 为半圆的直径,弦3AB =,30BAC ∠=︒,点E 、F 分别为AB 和AC 上的动点,则BF EF +的最小值为( )A .3B .332C .3D .332+ 2.如图,AB 是半圆O 的直径,20BAC =︒∠,则D ∠的度数是( )A .70°B .100°C .110°D .120°3.如图,分别以AB,AC 为直径的两个半圆,其中AC 是半圆O 的一条弦,E 是弧AEC 中点,D 是半圆ADC 中点.若DE=2,AB=12,且AC˃6,则AC 长为( )A .6+2B .8+2C . 6+22D .8+22 4.为落实好扶贫工作,某村驻村干部帮助村民修建了一个粮仓,该粮仓的屋顶是一个圆锥,为了合理购买、不浪费原材料,需要进行计算1个屋顶的侧面积大小,该圆锥母线长为5m ,底面圆周长为8m π,则1个屋顶的侧面积等于( )2m .(结果保留π)A .40πB .20πC .16πD .80π5.如图,在O 中,AB ,AC 为互相垂直且相等的两条弦,⊥OD AB ,OE AC ⊥,垂足分别为D ,E ,若4AB =,则O 的半径是( )A .22B .2C .3D .42 6.如图所示,AB 是O 的直径,点C ,D 在O 上,21BDC ∠=︒,则AOC ∠的度数是( )A .136°B .137°C .138°D .139°7.如图,大半圆中有n 个小半圆,若大半圆弧长为1L ,n 个小半圆弧长的和为2L ,大半圆的弦AB ,BC ,CD 的长度和为3L .则( )A .123L L L =>B .123L L L =<C .无法比较1L 、2L 、3L 间的大小关系D .132L L L >>8.如图,半径为1cm 的P 在边长为9πcm ,12πcm ,15πcm 的三角形外沿三遍滚动(没有滑动)一周,则圆P 所扫过的面积为( )cm 2A .73πB .75πC .76πD .77π9.如图,⊙O 的直径2AB AM =,和BN 是它的两条切线,DE 切⊙O 于E ,交AM 于D ,交BN 于C ,则四边形ABCD 的面积S 的最小值为( )A .1B .2C .2D .410.如图,C 、D 是以AB 为直径的O 上的两个动点(点C 、D 不与A 、B 重合),在运动过程中弦CD 始终保持长度不变,M 是弦CD 的中点,过点C 作CP AB ⊥于点P .若3CD =,5AB =,PM x =,则x 的最大值是( )A .4B .5C .2.5D .23 11.如图,P 与y 轴交于点()0,4M -,()0,10N -,圆心P 的横坐标为4-,则P 的半径为( )A .3B .4C .5D .6 12.在扇形中,∠AOB =90°,面积为4πcm 2,用这个扇形围成一个圆锥的侧面,这个圆锥的底面半径为 ( )A .1cmB .2cmC .3nD .4cm二、填空题13.如图,在平面直角坐标系xOy 中,点,,A B C 的坐标分别是(0,),(22,0),()4,0,M是ABC ∆的外接圆,则圆心M 的坐标为__________________,M 的半径为_______________________.14.如图,在平面直角坐标系中,点()3,4A ,()3,0B ,以A 为圆心,2为半径作A ,点P 为A 上一动点,M 为OP 的中点,连接BM ,设BM 的最大值为m ,最小值为n ,则m n -的值为_________.15.如图,已知O 是以数轴上原点O 为圆心,半径为2的圆,45AOB ∠=︒,点P 在x正半轴上运动,若过点P 与OA 平行的直线与O 有公共点,设P 点对应的数为x ,则x 的取值范围是______.16.如图,在扇形AOB 中90AOB ∠=︒,正方形CDEF 的顶点C 是AB 的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为22时,则阴影部分的面积为________.17.如图,若∠BOD =140°,则∠BCD=___________ .18.小明用一张扇形纸片做一个圆锥的侧面,已知该扇形的半径是10cm ,弧长是12πcm 2,那么这个圆锥的高是________cm .参考答案19.如图,ABC 是等边三角形,180BAD BCD ∠+∠=︒,8BD =,2CD =,则AD =________.20.如图,已知空间站A 与星球B 距离为a ,信号飞船C 在星球B 附近沿圆形轨道行驶,B ,C 之间的距离为b .数据S 表示飞船C 与空间站A 的实时距离,那么S 的最小值________.三、解答题21.如图,AB 是O 的直径,CD 是O 的一条弦,且CD AB ⊥于点E .(1)若50A ∠=︒,求OCE ∠的度数;(2)若42CD =,2AE =,求O 的半径.22.正方形ABCD 的四个顶点都在⊙O 上,E 是⊙O 上的一点.(1)如图1,若点E 在AB 上,F 是DE 上的一点,DF =BE .①求证:ADF ≌ABE ;②求证:DE ﹣BE =2AE .(2)如图2,若点E 在AD 上,直接写出线段DE 、BE 、AE 之间的等量关系.23.如图,已知,90Rt ABC ACB ∆∠=︒.(1)请在图中用无刻度的直尺和圆规作一个圆,使得圆心О在边AC 上,且与边,AB BC 所在直线相切(不写作法,保留作图痕迹);(2)在(1)的条件下,若9,12AC BC ==,求O 的半径.24.如图,AB 是圆的直径,且AD//OC ,求证:CD BC =.25.在学习《圆》这一章时,老师给同学们布置了一道尺规作图题.尺规作图:过圆外一点作圆的切线.已知:P 为O 外一点.求作:经过点P 的O 的切线. 小敏的作法如下: ①连接OP ,作线段OP 的垂直平分线MN 交OP 于点C ;②以点C 为圆心,CO 的长为半径作圆,交O 于,A B 两点; ③作直线,PA PB .所以直线,PA PB 就是所求作的切线.根据小敏设计的尺规作图过程.(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:由作图可知点,A B 在以C 为圆心,CO 为半径的圆上,OAP OBP ∴∠=∠= ︒.( )(填推理的依据),PA OA PB OB ∴⊥⊥,OA OB 为O 的半径∴直线,PA PB 是O 的切线,( )(填推理的依据)26.如图,长方形的长为a ,宽为2a ,用整式表示图中阴影部分的面积,并计算当2a =时阴影部分的面积(π取3.14).【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】作B 点关于直径AC 的对称点B′,过B′点作B′E ⊥AB 于E ,交AC 于F ,如图,利用两点之间线段最短和垂线段最短可判断此时FB +FE 的值最小,再判断△ABB′为等边三角形,然后计算出B′E 的长即可.【详解】解:作B 点关于直径AC 的对称点B′,过B′点作B′E ⊥AB 于E ,交AC 于F ,如图,则FB =FB′,∴FB +FE =FB′+FE =B′E ,此时FB +FE 的值最小,∵∠BAC =30°,∴∠B′AC =30°,∴∠BAB′=60°,∵AB =AB′,∴△ABB′为等边三角形,∵B′E ⊥AB ,∴AE =BE =32, ∴B′E 3=332, 即BF +EF 33. 故选:B .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了等腰三角形的性质.2.C解析:C【分析】先根据圆周角定理可得90ACB ∠=︒,再根据直角三角形的性质可得70B ∠=︒,然后根据圆内接四边形的性质即可得.【详解】AB 是半圆O 的直径,90ACB ∴∠=︒,20BAC ∠=︒,9070B BAC ∴∠=︒-∠=︒, 又四边形ABCD 是圆O 内接四边形,180110D B ∴∠=︒-∠=︒,故选:C .【点睛】本题考查了圆周角定理、直角三角形的性质、圆内接四边形的性质,熟练掌握圆周角定理是解题关键.3.D解析:D【分析】连接OE ,交AC 于点F ,由勾股定理结合垂径定理求出AF 的长,即可得到结论.【详解】解:连接OE ,交AC 于点F ,∵E 为AEC 的中点,∴OE AC ⊥,F 为AC 的中点,∵12AB =∴6OE AO ==设EF x =,则6OF x =-∵F 为AC 的中点,D 为半圆ADC 的中点,∴DF AC ⊥,DF AF =∵2DE =,∴2DF x AF =+=在Rt △AOF 中,222OA OF AF =+即2226(6)(2)x x =-++, ∴122x =,222x =∴2(2)822AC x =+=+822-∵6AC > ∴822AC =+故选:D【点睛】本题考查了垂径定理,熟练掌握垂径定理,运用勾股定理求出AF 是解题的关键.4.B解析:B【分析】先根据底面周长可求得底面圆的半径,再根据圆锥的侧面积公式计算即可求解.【详解】解:∵2πr=8π,∴r=4,又∵母线l=5,∴圆锥的侧面积=πrl =π×4×5=20π.故选:B .【点睛】本题考查了圆锥的侧面积计算方法,牢记有关圆锥和扇形之间的对应关系是解决本题的关键.5.A解析:A【分析】根据垂径定理可知,AE=CE ,AD=BD ,易证四边形ODAE 是正方形,即可求得.【详解】如图,连接OA∵⊥OD AB ,OE AC ⊥,AB ⊥AC∴四边形ODAE 是矩形,AE=CE ,AD=BD又∵4AB AC ==,∴AE=AD=2∴四边形ODAE 是正方形,且边长为2∴O 的半径OA=22故选A【点睛】本题考查垂径定理,掌握垂径定理的条件和结论是解题的关键.6.C解析:C【分析】利用圆周角定理求出∠BOC 即可解决问题.【详解】解:∵∠BOC=2∠BDC ,∠BDC=21°,∴∠BOC=42°,∴∠AOC=180°-42°=138°.故选:C .【点睛】本题考查了圆周角定理,解题的关键是熟练掌握圆周角定理,属于中考常考题型. 7.A解析:A【分析】利用圆周长公式计算1L 和2L 的长.根据圆周长公式分别写出1L 和2L 的表达式进行比较,再根据“两点之间线段最短的性质”得出13L L >,即可选出答案.【详解】解:设n 个小半圆半径依次为1r ,2r ,⋯,n r .则大圆半径为()12n r r r ++⋯+()112n L r r r π∴=++⋯+,212n L r r r πππ=++⋯+()12n r r r π=++⋯+,12L L ∴=;根据“两点之间线段最短的性质”可得:13L L >,123L L L ∴=>..故选A .【点睛】本题考查了半圆弧长的计算,两点之间线段最短的性质,是基础题,难度不大. 8.A解析:A【分析】圆在三角形的三个角的顶点处旋转的路线是弧,通过观察可以发现圆转动时在三个角上共转动了圆心角360°,所以在三个顶点处转了一个圆的面积,在三个边上滚过的图形是以三角形边长为长,圆的直径为宽的矩形,然就分别计算,最后求和.【详解】解:根据运动特点可知三个顶点处转了一个圆的面积,在三个边上滚过的图形矩形∴圆P所扫过的面积=π+(9π+12π+15π)×2=73π故选:A【点睛】解答本题的关键是,找出圆滚动一周的图形,并将图形进行分割,拼组,化难为易,列式解答即可.9.C解析:C【分析】由切线的性质得到AM、BN与AB垂直,过点D作DF⊥BC于F,,构造一个直角三角形DFC,再由切线长定理和勾股定理列方程,得出关于y的函数关系式,根据直角梯形的面积公式求解.【详解】∵AB是直径,AM、BN是切线,∴AM⊥AB,BN⊥AB,∴AM∥BN.过点D作DF⊥BC于F,则AB∥DF.∴四边形ABFD为矩形.∴DF=AB=2,BF=AD.∵DE、DA,CE、CB都是切线,∴根据切线长定理,设DE=DA=x,CE=CB=y.在Rt△DFC中,DF=2,DC=DE+CE=x+y,CF=BC﹣BF=y﹣x,∴(x+y)2=22+(y﹣x)2,∴y=1x,∴四边形的面积S=12AB(AD+BC)=12×2×(x+1x),即S=x+1x(x>0).∵(x+1x )﹣2=x﹣2+1xxx2≥0,当且仅当x=1时,等号成立.∴x +1x ≥2,即S ≥2, ∴四边形ABCD 的面积S 的最小值为2.故选:C .【点睛】考查了切线的性质、平行线的判定、矩形的性质和勾股定理,解题关键是作出辅助线. 10.C解析:C【分析】如图:延长CP 交O 于N ,连接DN ,易证12PM DN =,所以当DN 为直径时,PM 的值最大.【详解】解:如图:延长CP 交O 于N ,连接DN .AB CN ⊥,CP PN ∴=,CM DM =,12PM DN ∴=, ∴当DN 为直径时,PM 的值最大,最大值为52. 故选:C .【点睛】本题考查是圆的综合题,垂径定理,三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题.11.C解析:C【分析】过点P 作PD ⊥MN ,连接PM ,由垂径定理得DM =3,在Rt △PMD 中,由勾股定理可求得PM 为5即可.【详解】解:过点P 作PD ⊥MN ,连接PM ,如图所示:∵⊙P 与y 轴交于M (0,−4),N (0,−10)两点,∴OM =4,ON =10,∴MN =6,∵PD ⊥MN ,∴DM =DN =12MN =3, ∴OD =7,∵点P 的横坐标为−4,即PD =4,∴PM 22PD DM +2243+5,即⊙P 的半径为5,故选:C .【点睛】本题考查了垂径定理、坐标与图形性质、勾股定理等知识;熟练掌握垂径定理和勾股定理是解题的关键. 12.A解析:A【分析】圆锥的底面周长等于侧面展开图的扇形弧长,因而要先求扇形的弧长,根据扇形的面积公式2360n R S π=,可以求出扇形的半径,就可以求出弧长. 【详解】 解:根据扇形的面积公式2360n R S π=得到:2904360R ππ=; ∴R=4,则弧长9042180cm ππ⋅==, 设圆锥的底面半径为r ,则2π=2πr ;∴r=1cm .故选:A .【点睛】 本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.二、填空题13.【分析】M 点为BC 和AB 的垂直平分线的交点利用点ABC 坐标易得BC 的垂直平分线为直线x=3AB 的垂直平分线为直线y=x 从而得到M 点的坐标然后计算MB 得到⊙M 的半径【详解】解:∵点ABC 的坐标分别是(解析:()3,3【分析】M 点为BC 和AB 的垂直平分线的交点,利用点A 、B 、C 坐标易得BC 的垂直平分线为直线x=3,AB 的垂直平分线为直线y=x ,从而得到M 点的坐标,然后计算MB 得到⊙M 的半径.【详解】解:∵点A ,B ,C 的坐标分别是(0,2),(2,0),(4,0),∴BC 的垂直平分线为直线x=3,∵OA=OB ,∴△OAB 为等腰直角三角形,∴AB 的垂直平分线为第一、三象限的角平分线,即直线y=x ,∵直线x=3与直线y=x 的交点为M 点,∴M 点的坐标为(3,3),∵MB ==∴⊙M .故答案为(3,3.【点睛】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了坐标与图形的性质.14.2【分析】方法一:在轴上取一点连接可求由可得由点在上运动可知共线时可以取得最大值或最小值最大值最小值由最大值与最小值求出即可;方法二:连接取中点连接利用三角形三边关系有可得作差计算即可【详解】解:方 解析:2【分析】方法一:在x 轴上取一点()6,0E ,连接PE ,可求3OB BE ==,5AE =,由OM PM =,OB BE =,可得12BM PE =,由点P 在A 上运动,可知P 、A 、B 共线时,可以取得最大值或最小值,最大值'527EP ==+=,最小值''523EP =-=,由最大值与最小值求出72m =,32n =即可;方法二:连接PA 、OA ,取OA 中点N ,连接MN 、BN ,利用三角形三边关系有BN MN BM BN MN -≤≤+,可得m BN MN =+,n BN MN =-,作差计算22m n MN PA -===即可.【详解】解:方法一:在x 轴上取一点()6,0E ,连接PE ,∵()3,0B ,()3,4A ,∴3OB BE ==,22345AE =+=,∵OM PM =,OB BE =,∴12BM PE =, ∵点P 在A 上运动, ∴P 、A 、B 共线时,可以取得最大值或最小值,最大值'527EP ==+=,最小值''523EP =-=,∴72m =,32n =, ∴2m n -=, 故答案为2.方法二:连接PA 、OA ,取OA 中点N ,连接MN 、BN ,BN MN BM BN MN -≤≤+,m BN MN =+,n BN MN =-,22m n MN PA -===.故答案为:2.【点睛】本题考查三角形的中位线,勾股定理,三角形三边关系,线段和差,掌握三角形的中位线,勾股定理,三角形三边关系,线段和差,引辅助线构造准确图形是解题关键.15.【分析】根据题意知直线和圆有公共点则相切或相交相切时设切点为C连接OC根据等腰直角三角形的直角边是圆的半径2求得斜边是2所以x的取值范围是0<x≤2【详解】解:设切点为C连接OC则圆的半径OC=2O解析:022<≤x【分析】根据题意,知直线和圆有公共点,则相切或相交.相切时,设切点为C,连接OC.根据等腰直角三角形的直角边是圆的半径2,求得斜边是22.所以x的取值范围是0<x≤22.【详解】解:设切点为C,连接OC,则圆的半径OC=2,OC⊥PC,∵∠AOB=45°,OA//PC,∴∠OPC=45°,∴PC=OC=2,∴OP=2222+=22,所以x的取值范围是0<x≤22,故答案为0<x≤22.【点睛】此题主要考查了直线与圆的位置关系,勾股定理,作出切线找出直线与圆有交点的分界点是解决问题的关键.16.【分析】连结OC根据勾股定理可求OC的长根据题意可得出阴影部分的面积=扇形BOC的面积-三角形ODC的面积依此列式计算即可求解【详解】连接如图∵在扇形中又故答案为:【点睛】考查了正方形的性质和扇形面π-解析:24【分析】连结OC,根据勾股定理可求OC的长,根据题意可得出阴影部分的面积=扇形BOC的面积-三角形ODC的面积,依此列式计算即可求解.【详解】连接OC,如图,∵在扇形AOB 中,90AOB ∠=︒,AC BC =,45COD ∴∠=︒,又CD DE ⊥,45OCD COD ∴∠=∠=︒, 22OD CD ∴==,22(22)(22)4OC ∴=+=,224541(22)243602ODC BOC S S Sππ⨯∴=-=-⨯=-阴影扇形. 故答案为:24π-.【点睛】考查了正方形的性质和扇形面积的计算,解题的关键是得到扇形半径的长度. 17.【分析】如图(见解析)先根据圆周角定理可得再根据圆内接四边形的性质即可得【详解】如图在优弧上取一点E 连接BEDE 由圆内接四边形的性质得:故答案为:【点睛】本题考查了圆周角定理圆内接四边形的性质熟练掌 解析:110︒【分析】如图(见解析),先根据圆周角定理可得70BED ∠=︒,再根据圆内接四边形的性质即可得.【详解】如图,在优弧BD 上取一点E ,连接BE 、DE ,140BOD ∠=︒,1702BED BOD ∠∴∠==︒, 由圆内接四边形的性质得:180110BC ED D B ∠=︒-∠=︒,故答案为:110︒.【点睛】本题考查了圆周角定理、圆内接四边形的性质,熟练掌握圆周角定理是解题关键. 18.8【分析】设圆锥的底面半径为利用圆锥的侧面展开图为一个扇形这个扇形的弧长等于圆锥底面的周长圆的周长公式计算出然后利用勾股定理计算出圆锥的高【详解】解:设圆锥底面圆的半径为则有∴圆锥的高为故答案是:【 解析:8【分析】设圆锥的底面半径为r ,利用圆锥的侧面展开图为一个扇形、这个扇形的弧长等于圆锥底面的周长、圆的周长公式计算出r ,然后利用勾股定理计算出圆锥的高.【详解】解:设圆锥底面圆的半径为r ,则有,212r ππ=6r =∴圆锥的高为221068cm -=.故答案是:8【点睛】本题考查了平面图形与立体图形之间的互相转化、求圆锥的底面半径、圆的周长公式以及勾股定理等相关知识,能够利用“扇形的弧长等于圆锥底面的周长”求得圆锥的底面半径是解题的关键.19.6【分析】在线段BD 上取一点E 使得BE=CD 连接AE 由四点共圆得∠再证明△是等边三角形得再由线段的和差关系可得结论【详解】解:在线段BD 上取一点E 使得BE=CD 连接AE ∵∴四点共圆∴∠∴∠∵△是等边解析:6【分析】在线段BD 上取一点E ,使得BE=CD ,连接AE ,由,,,A B C D 四点共圆得∠ABE ACD =∠,再证明ABE ACD ≅∆,△ADE 是等边三角形,得AD DE AE ==,再由线段的和差关系可得结论.【详解】解:在线段BD 上取一点E ,使得BE=CD ,连接AE ,∵180BAD BCD ∠+∠=︒∴,,,A B C D 四点共圆,∴∠ABD ACD =∠∴∠ABE ACD =∠∵△ABC 是等边三角形,∴AB AC BC ==,60DAE ∠=︒,∴△ABE ACD ≅∆,∠60BAE CAF +∠=︒,∴,BAE CAD BAF CAD ∠=∠∠=∠,∴∠60CAD CAE +∠=︒,即60DAE ∠=︒,∴△ADE 是等边三角形,∴AD DE AE ==,∵=8BD ,2CD =,∴6DE BD BE BD CD =-=-=,∴6AD DE ==.【点睛】此题主要考查了全等三角形的判定与性质,以及四点共圆的判定,证明∠ABE ACD =∠是解答此题的关键.20.a-b 【分析】根据圆外一点到圆的最大距离是过圆心的直线与圆相交的最远的点到圆的最小距离是点与圆心的连线与圆相交的最近点求解即可【详解】解:空间站A 与星球B 飞船C 在同一直线上时S 取到最小值a-b 故答案 解析:a-b【分析】根据圆外一点到圆的最大距离是过圆心的直线与圆相交的最远的点,到圆的最小距离是点与圆心的连线与圆相交的最近点求解即可.【详解】解:空间站A 与星球B 、飞船C 在同一直线上时,S 取到最小值a-b .故答案为:a-b .【点睛】本题考查了圆外一点到圆的最大距离和最短距离,最大距离和最短距离都在过圆心的直线上.属于基础知识.三、解答题21.(1)10︒;(2)3【分析】(1)首先求出 ∠ADE 的度数,再根据圆周角定理求出 ∠AOC 的度数,最后求出 ∠OCE 的度数;(2)由弦CD 与直径 AB 垂直,利用垂径定理得到 E 为CD 的中点,求出 CE 的长,在直角三角形 OCE 中,设圆的半径 OC = r ,OE = OA-AE ,表示出 OE ,利用勾股定理列出关于 r 的方程,求出方程的解即可得到圆的半径 r 的值.【详解】解:()1CD AB ⊥,50A ∠=︒,40ADE ∴∠=︒.280AOC ADE∴∠=∠=︒,908010OCE∴∠=︒-︒=︒;()2因为AB是圆O的直径,且CD AB⊥于点E,所以11422222CE CD==⨯=,在Rt OCE中,222OC CE OE=+,设圆O的半径为r,则OC r=,2OE OA AE r=-=-,所以222(22)(2)r r=+-,解得:3r=.所以圆O的半径为3.【点睛】此题考查了垂径定理,勾股定理,以及圆周角定理,熟练掌握定理是解本题的关键.22.(1)①见解析;②见解析;(2)BE﹣DE=2AE【分析】(1)①易证AD=AB,EB=DF,所以只需证明∠ADF=∠ABE,利用同弧所对的圆周角相等不难得出,从而证明全等;②易证AEF是等腰直角三角形,所以EF=2AE,所以只需证明DE﹣BE=EF即可,由BE=DF不难证明此问题;(2)类比(1)不难得出(2)的结论.【详解】(1)①证明:在正方形ABCD中,AB=AD,∵∠1和∠2都对AE,∴∠1=∠2,在ADF和ABE中,12AB ADBE DF=⎧⎪∠=∠⎨⎪=⎩,∴ADF≌ABE(SAS);②由①有ADF≌ABE,∴AF=AE,∠3=∠4.在正方形ABCD中,∠BAD=90°.∴∠BAF+∠3=90°.∴∠BAF+∠4=90°.∴∠EAF=90°.∴EAF是等腰直角三角形.∴EF2=AE2+AF2.∴EF2=2AE2.∴EF=2AE.即DE﹣DF=2AE.∴DE﹣BE=2AE.(2)BE﹣DE=2AE.理由如下:在BE上取点F,使BF=DE,连接AF.∵AB=AD,BF=DE,∠ABE=∠EDA,∴ADE≌ABF(SAS),∴AF=AE,∠DAE=∠BAF.在正方形ABCD中,∠BAD=90°.∴∠BAF+∠DAF=90°.∴∠DAE+∠DAF=90°.∴∠EAF=90°.∴EAF是等腰直角三角形.∴EF2=AE2+AF2.∴EF2=2AE2.∴EF2AE.即BE﹣BF2AE.∴BE﹣DE2.【点睛】本题为圆的综合题,本题主要考查圆周角定理、全等三角形的判定及勾股定理的运用等,有一定的综合性,难度适中.23.(1)见解析;(2)O的半径为4【分析】(1)先作∠ABC的角平分线,交AC于点O,然后过O作AB的垂线,交AB于E,以O为圆心,OE 为半径作圆即可;(2)先利用勾股定理求出AB ,然后由OBC ABO ABC S S S ∆∆∆+=即可求出O 的半径.【详解】解:(1)如图所示:(2)设直线AB 与O 切于点D ,连接OD ,则,OD AB ⊥90,ACB ∴∠=︒22222291215AB AC BC ∴=+=+=.15,AB ∴=设O 的半径为,r由得OBC ABO ABC S S S ∆∆∆+=1215912,r r +=⨯4,r ∴=即O 的半径为4【点睛】本题考查了尺规作图,切线的性质,理解题意熟练掌握角平分线和垂线的作图是解题的关键.24.证明见解析.【分析】主要是根据弧相等只需要证明弧所对的圆周角相等或者弧所对的圆心角相等即可证明.连接AC或者OD都可以证明.【详解】解:连接ACAD//OC∴∠DAC=∠OCAOA=OC∴∠BAC=∠ACO∴∠DAC=∠BAC∴CD BC=.【点睛】主要是考察学生对圆周角定理的内容的掌握.同时角相等和弧相等之间的转化.25.(1)见解析;(2)90;直径所对的圆周角是直角;经过半径外端,且与半径垂直的直线是圆的切线.【分析】(1)根据题意画图即可;(2)分别利用圆周角定理以及切线的判定方法得出答案.【详解】(1)如图(2)如图,连接OA,OB后,由作图可知点,A B在以C为圆心,CO为半径的圆上,∴∠=∠=90︒.(直径所对的圆周角是直角)OAP OBP∴⊥⊥,PA OA PB OBOA OB为O的半径,∴直线,PA PB是O的切线,(经过半径外端,且与半径垂直的直线是圆的切线)【点睛】此题主要考查了切线的判定以及圆周角定理,正确把握切线的判定方法是解题关键.26.2(2)4a π-,1.14 【分析】根据对称性用a 表示出阴影的面积,再将a=2代入求解即可.【详解】解:由题意可知:S 阴=211442222a a a π⎡⎤⎛⎫-⋅⋅⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ 2(2)4a π-= 当2a =时,S 阴=(3.142)4 1.144-⨯=. 【点睛】本题考查列代数式、代数式求值、圆的面积公式、三角形的面积公式,解答的关键是找出面积之间的关系,利用基本图形的面积公式解决问题.。

初三数学图形与坐标试题答案及解析

初三数学图形与坐标试题答案及解析

初三数学图形与坐标试题答案及解析1.点P(2,3)关于x轴的对称点的坐标为.【答案】(2,-3).【解析】关于x轴对称的点的坐标特征是横坐标相同,纵坐标互为相反数,从而点P(2,3)关于x轴对称的点的坐标是(2,-3).【考点】关于x轴对称的点的坐标特征.2.与在平面直角坐标系中的位置如图所示,它们关于点成中心对称,其中点,则点的坐标是()A.B.C.D.【答案】B.【解析】由于点A1与点A关于原点O成中心对称,点A(4,2),所以点A1的坐标为(-4,-2),故选B.【考点】中心对称.3.在平面直角坐标系中,将点A(4,2)绕原点逆时针方向旋转90°后,其对应点A′的坐标为.【答案】(﹣2,4).【解析】如答图,A′的坐标为(﹣2,4).【考点】坐标与图形的旋转变化.4.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n 步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)【答案】C【解析】由题意得,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,∵100÷3=33余1,∴走完第100步,为第34个循环组的第1步,所处位置的横坐标为33×3+1=100,纵坐标为33×1=33,∴棋子所处位置的坐标是(100,33).故选C.【考点】1.坐标确定位置;2.规律型:点的坐标.5.如图,点B在x轴上,∠ABO=90°,∠A=30°,OA=4,将△OAB饶点O按顺时针方向旋转120°得到△OA′B′,则点A′的坐标是()A.(2,﹣2)B.(2,﹣2)C.(2,﹣2)D.(2,﹣2)【答案】B.【解析】∵∠ABO=90°,∠A=30°,OA=4,∴∠AOB=60°,OB=OA=2,AB=OB=2,∴A点坐标为(2,2),∵△OAB饶点O按顺时针方向旋转120°得到△OA′B′,∴∠A′OA=120°,OA′=OA=4,∴∠A′OB=60°,∴点A′和点A关于x轴对称,∴点A′的坐标为(2,﹣2).故选B.【考点】坐标与图形变化-旋转.6.如图,A、B的坐标分别为(1,0)、(0,2),若将线段AB平移到至A B, A、B的坐标分别为(2,a)、(b,3),则a+b= .【答案】2.【解析】根据平移前后的坐标变化,得到平移方向,从而求出a、b的值.∵A(1,0)转化为A(2,a)横坐标增加了1,1B(0,2)转化为B(b,3)纵坐标增加了1,1则a=0+1=1,b=0+1=1,故a+b=1+1=2.考点: 坐标与图形变化-平移.7.如图,在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点叫做整点.已知点A(0,3),点B是x轴正半轴上的整点,记△AOB内部(不包括边界)的整点个数为m.点B的横坐标为3n(n为正整数),当n=20时,则m= .【答案】58.【解析】根据题意,分别找出n=1、2、3、4时的整点的个数,不难发现n增加1,整点的个数增加3,然后写出横坐标为3n时的表达式即可求n=20时,m的值.试题解析:如图,n=1,即点B的横坐标为3时,整点个数为1,n=2,即点B的横坐标为6时,整点个数为4,n=3,即点B的横坐标为9时,整点个数为7,n=4,即点B的横坐标为12时,整点个数为10,…,所以,点B的坐标为3n时,整点个数为3n-2.故当n=20时,m=3×20-2=58.【考点】点的坐标.8.平面直角坐标系中,与点(2,-3)关于原点中心对称的点是()A.(-3,2)B.(3,-2)C.(-2,3)D.(2,3)【答案】C【解析】根据关于坐标原点对称的点的坐标的规律:横纵坐标互为相反数,所以(2,-3)关于原点对称的点为(-2,3).9.如图,在平面直角坐标系xOy中,点P(-3,5)关于y轴的对称点的坐标为 ()A.(-3,-5)B.(3,5)C.(3,-5)D.(5,-3)【答案】B【解析】∵P(x,y)关于y轴对称的点的坐标为(-x,y)∴P(-3,5)关于y轴对称的点的坐标为(3,5).10.将点A(2,1)向左平移2个单位长度得到点A′,则点A′的坐标是 ()A.(0,1)B.(2,-1)C.(4,1)D.(2,3)【答案】A【解析】根据坐标的平移变化的规律,左右平移只改变点的横坐标,左减右加.由此将点A的横坐减2,纵坐标不变可得A′的坐标(0,1).故选A.11.如图,在平面直角坐标系xOy中,点A(0,8),点B(6,8).(1)只用直尺(没有刻度)和圆规,求作一个点P,使点P同时满足下列两个条件(要求保留作图痕迹,不必写出作法):①点P到A,B两点的距离相等;②点P到∠xOy的两边的距离相等.(2)在(1)作出点P后,写出点P的坐标.【答案】(1)如图(2)P(3,3)【解析】(1)连接AB,作线段AB的垂直平分线MN,作∠xOy的平分线OQ,交MN于点P,P 就是所求的点.(2)∵MN∥y轴,且MN上点的横坐标都为3,∴P点的横坐标为3,又因P点到x轴和y轴的距离相等,∴P点的坐标为(3,3).12.如图,将四边形ABCD先向左平移3个单位,再向上平移2个单位,那么点A的对应点A′的坐标是()A.(6,1)B.(0,1)C.(0,-3)D.(6,-3)【答案】B【解析】∵四边形ABCD先向左平移3个单位,再向上平移2个单位,∴点A也先向左平移3个单位,再向上平移2个单位,∴由图可知,A′坐标为(0,1).13.如图,直线与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是.【答案】(7,3).【解析】旋转不改变图形的大小和性质,所得图形与原图形全等,根据全等三角形的性质,即可得到相应线段的长.试题解析:直线y=-x+4与x轴,y轴分别交于A(3,0),B(0,4)两点.旋转前后三角形全等.由图易知点B′的纵坐标为OA长,即为3,∴横坐标为OA+OB=OA+O′B′=3+4=7.∴点B′的坐标为(7,3).考点: 1.坐标与图形变化-旋转;2.一次函数的性质.14.如图,在直角坐标系中,矩形OABC的顶点A(10,0),C(0,4),点P是边OA上一点,若△OPC与△ABP相似,则满足条件的点P有____________________ (用坐标表示)【答案】(2,0),(5,0),(8,0).【解析】设P(x,0)则OP=x,AP=10-x.若△OCP∽△APB时,由对应边成比例可求出x的值;若△OCP∽△ABP时,由对应边成比例可求出x的值.试题解析:设P(x,0)则OP=x,AP=10-x.若△OCP∽△APB时,则即:解得:,.若△OCP∽△ABP时,则即:解得:x=5所以点P的坐标分别为(2,0),(5,0),(8,,0).考点: 相似三角形的性质.15.把ΔABC沿轴向下平移3个单位得到,如果A(2,4),则的坐标是().A.(5,4)B.(-1,4)C.(2,7)D.(2,1)【答案】A.【解析】根据图形的平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减可得答案.A(2,4),沿x轴向右平移3个单位之后可得A′的坐标为(2+3,4),即(5,4),故选A.考点: 坐标与图形变化-平移.16.将等腰直角三角形AOB按如图所示放置,然后绕点O逆时针旋转90°至△A′OB′的位置,点B的横坐标为2,则点A′的坐标为.【答案】(-1,1).【解析】过点A作AC⊥x轴于点C,过点A′作A′D⊥x轴,因为ΔOAB是等腰直角三角形,所以有OC="BC=AC=1," ∠AOB=∠AOB′=45°,则点A的坐标是(1,1),OA=,又∠A′OB′=45°,所以∠A′OD=45°,OA′=,在RtΔA′OD中,cos∠A′OD=,所以OD=1,A′D=1,所以点A′的坐标是(-1,1).【考点】1、旋转的性质;2、等腰三角形的性质.17.已知,则点P()关于原点的对称点P′在第_____象限【答案】四.【解析】点P()关于原点的对称点P′的坐标为()∵,∴,,∴点P′在第四象限.故答案为四.【考点】关于原点对称的点的坐标.18.如图是株洲市的行政区域平面地图,下列关于方位的说法明显错误的是A.炎陵位于株洲市区南偏东约35°的方向上B.醴陵位于攸县的北偏东约16°的方向上C.株洲县位于茶陵的南偏东约40°的方向上D.株洲市区位于攸县的北偏西约21°的方向上【答案】C【解析】根据方向角确定坐标位置对各选项分析判断后利用排除法求解:A、炎陵位于株洲市区南偏东约35°的方向上正确,故本选项错误;B、醴陵位于攸县的北偏东约16°的方向上正确,故本选项错误;C、应为株洲县位于茶陵的北偏西约40°的方向上,故本选项正确;D、株洲市区位于攸县的北偏西约21°的方向上正确,故本选项错误.。

新初中数学函数之平面直角坐标系单元检测附答案(2)

新初中数学函数之平面直角坐标系单元检测附答案(2)

新初中数学函数之平面直角坐标系单元检测附答案(2)一、选择题1.如果点P 在第三象限内,点P 到x 轴的距离是4,到y 轴的距离是5,那么点P 的坐标是( )A .(﹣4,﹣5)B .(﹣4,5)C .(﹣5,4)D .(﹣5,﹣4)【答案】D【解析】【分析】根据第三象限内点的横坐标是负数,纵坐标是负数以及点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值解答.【详解】解:∵第三象限的点P 到x 轴的距离是4,到y 轴的距离是5,∴点P 的横坐标是﹣5,纵坐标是﹣4,∴点P 的坐标为(﹣5,﹣4).故选:D.【点睛】本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值是解题的关键.2.如图,在平面直角坐标系中,点O 是坐标原点,四边形ABOC 是正方形,其中,点A 在第二象限,点,B C 在x 轴、y 轴上.若正方形ABOC 的面积为36,则点A 的坐标是( )A .()6,6-B .()6,6-C .(6,6-D .6,6- 【答案】B【解析】【分析】 由正方形的面积可以把正方形的边长计算出来,根据点A 在第二象限和,B C 在x 轴、y 轴上,可以得到点A 的坐标.【详解】解:∵正方形ABOC 的面积为36,∴假设正方形ABOC 的边长为x ,则236x =,解得6x =或者6x =-(舍去),又∵点A 在第二象限,因此,A 点坐标为()6,6-,点,B C 在x 轴、y 轴上,故B 为答案.【点睛】本题主要考查了正方形的性质、正方形的面积公式以及直角坐标系的基本特点,知道正方形面积能反过来求正方形的边长是解题的关键.3.若点P(x ,y)在第三象限,且点P 到x 轴的距离为3,到y 轴的距离为2,则点P 的坐标是( )A .(-2,3)B .(-2,-3)C .(2,-3)D .(2,3)【答案】B【解析】【分析】根据点P 到x 轴的距离为3,则这一点的纵坐标是3或-3,到y 轴的距离为2,那么它的横坐标是2或-2,再根据点P 所处的象限即可确定点P 的坐标.【详解】∵点P 到x 轴的距离为3,∴点的纵坐标是3或-3,∵点P 到y 轴的距离为2,∴点的横坐标是2或-2,又∵点P 在第三象限,∴点P 的坐标为:(-2,-3),故选B.【点睛】本题考查了点的坐标的几何意义,横坐标的绝对值就是点到y 轴的距离,纵坐标的绝对值就是到x 轴的距离.4.下列说法正确的是( )A .相等的角是对顶角B .在同一平面内,不平行的两条直线一定互相垂直C .点P(2,﹣3)在第四象限D .一个数的算术平方根一定是正数【答案】C【解析】【分析】直接利用对顶角的性质以及算术平方根和平行线的性质以及坐标与图形的性质分别分析得出答案.【详解】解:A 、相等的角是对顶角,错误;B 、在同一平面内,不平行的两条直线一定相交,故此选项错误;C 、点P (2,﹣3)在第四象限,正确;D 、一个数的算术平方根一定是正数或零,故此选项错误.故选:C .此题主要考查了坐标与图形的性质、对顶角的性质等知识,正确把握相关性质是解题关键.5.如图,ABCDEF 是中心为原点O ,顶点A ,D 在x 轴上,半径为4的正六边形,则顶点F 的坐标为( )A .()2,23B .()2,2-C .()2,23-D .()1,3- 【答案】C【解析】【分析】 连接OF ,设EF 交y 轴于G ,那么∠GOF=30°;在Rt △GOF 中,根据30°角的性质求出GF ,根据勾股定理求出OG 即可.【详解】解:连接OF ,在Rt △OFG 中,∠GOF=13603026⨯=oo ,OF=4. ∴GF=2,3∴F (-2,3).故选C .【点睛】本题利用了正六边形的对称性,直角三角形30°的角所对的边等于斜边的一半,勾股定理等知识,熟练掌握正六边形的对称性是解答本题的关键.6.如图,点P 在第二象限,OP 与x 轴负半轴的夹角是α,且35,cos 5OP α==,则P 点的坐标为()A .()3,4B .()3,4-C .()4,3-D .()3,5-【答案】B【解析】【分析】 过点P 作PA ⊥x 轴于A ,利用35,cos 5OP α==求出OA ,再根据勾股定理求出PA 即可得到点P 的坐标.【详解】过点P 作PA ⊥x 轴于A ,∵35,cos 5OP α==, ∴3cos 535OA OP α=⋅=⨯=, ∴22PA OP OA =-=4,∵点P 在第二象限,∴点P 的坐标是(-3,4)故选:B.【点睛】此题考查三角函数,勾股定理,直角坐标系中点的坐标特点,解题中注意点所在象限的坐标的符号特点.7.若点M 的坐标为2-a b |+1),则下列说法中正确的是 ( )A.点M在x轴正半轴上B.点M在x轴负半轴上C.点M在y轴正半轴上D.点M在y轴负半轴上【答案】C【解析】【分析】首先根据二次根式的定义及绝对值的性质分别判断出点M的横、纵坐标的符号;然后根据坐标轴上点的坐标特征进行分析即可作出判断.【详解】有意义,则-a2≥0,∴a=0.∵|b|≥0,∴|b|+1>0,∴点M在y轴的正半轴上.故选C.【点睛】本题考查的是点的坐标的知识,解题关键是熟练掌握坐标轴上点的坐标特征.8.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( )A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣5【答案】A【解析】分析:根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a+2|,a+2≠3,解得:a=−3,故选A.点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.9.如图,在平面直角坐标系上有个点(1,0)P,点P第1次向上跳动1个单位至点1(1,1)P,紧接着第2次向左跳动2个单位至点2(1,1)P-,第3次向上跳动1个单位到达3(1,2)P-,第4次向右跳动3个单位到达4(2,2)P,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点2019P的坐标为().A .(505,1010)B .(505,505)-C .(505,1010)-D .(505,505)-【答案】C【解析】【分析】 设第n 次跳动至点Pn ,根据部分点An 坐标的变化找出变化规律“P 4n (n +1,2n ),P 4n +1(n +1,2n +1),P 4n +2(−n−1,2n +1),P 4n +3(−n−1,2n +2)”,依此规律结合2019=504×4+3即可得出点P 2019的坐标.【详解】设第n 次跳动至点Pn ,观察发现:P (1,0),P 1(1,1),P 2(−1,1),P 3(−1,2),P 4(2,2),P 5(2,3),P 6(−2,3),P 7(−2,4),P 8(3,4),P 9(3,5),…,∴P 4n (n +1,2n ),P 4n +1(n +1,2n +1),P 4n +2(−n−1,2n +1),P 4n +3(−n−1,2n +2)(n 为自然数).∵2019=504×4+3,∴P 2019(-504-1,504×2+2),即(505,1010)-.故选:C .【点睛】本题考查了规律型中点的坐标,根据部分点An 坐标的变化找出变化规律“P 4n (n +1,2n ),P 4n +1(n +1,2n +1),P 4n +2(−n−1,2n +1),P 4n +3(−n−1,2n +2)(n 为自然数)”是解题的关键.10.在平面直角坐标系中,点A 的坐标是(3a ﹣5,a +1).若点A 到x 轴的距离与到y 轴的距离相等,且点A 在y 轴的右侧,则a 的值为( )A .1B .2C .3D .1 或 3【答案】C【解析】【分析】根据题意可知:点A 的横、纵坐标相等或互为相反数,然后列出方程即可求出a 的两个值,最后根据点A 在y 轴的右侧,即可得出结论.【详解】解:∵点A 到x 轴的距离与到y 轴的距离相等,∴3a ﹣5=a +1或3a ﹣5=﹣(a +1),解得:a =3或1,∵点A 在y 轴的右侧,∴点A 的横坐标为正数,∴3a ﹣5>0,∴a >53, ∴a =3,故选:C .【点睛】 此题考查的是点的坐标特征,掌握点到x 轴的距离与到y 轴的距离相等则点的横、纵坐标相等或互为相反数是解决此题的关键.11.在平面直角坐标系中,A ,B ,C 三点坐标分别是(0,0),(4,0),(3,2),以A ,B ,C 三点为顶点画平行四边形,则第四个顶点不可能在( ).A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】A 点在原点上,B 点在横轴上,C 点在第一象限,根据平行四边形的性质:两组对边分别平行,可知第四个顶点可能在第一、二、四象限,不可能在第三象限,故选C12.在平面直角坐标系中,已知Rt ABC ∆中的直角顶点C 落在第一象限,()0,0A ,()10,0B ,且6BC =,则C 点的坐标是( )A .()6.4,4.8B .()8,6C .()8,4.8D .()3.6,4.8【答案】A【解析】【分析】作CD ⊥OB 交OB 于D ,由勾股定理求出AC 的长,根据面积法求出CD 的长,再根据勾股定理求出OD 的长,即可求出点C 的坐标.【详解】作CD ⊥OB 交OB 于D ,∵()10,0B ,∴OB=10,∵∠C=90°,∴8=, ∵1122OC BC OB CD ⋅=⋅, ∴8×6=10CD ,∴CD=4.8,∴OD= 228 4.8 6.4-=,∴C 点的坐标是 ()6.4,4.8.故选A.【点睛】本题考查了图形与坐标的性质,勾股定理,以及面积法求线段的长,根据面积法求出CD 的长是解答本题的关键.13.如图,在菱形OABC 中,30AOC ∠=︒,4OA =,以O 为坐标原点,以OA 所在的直线为x 轴建立平面直角坐标系,如图.按以下步骤作图:①分别以点A ,B 为圆心,以大于2AB 的长为半径作弧,两弧相交于点M ,N ;②作直线MN 交BC 于点P .则点P 的坐标为( )A .(4,2)B .4382⎛⎫ ⎪ ⎪⎝⎭C .2342⎛⎫+ ⎪ ⎪⎝⎭D .()33,2 【答案】C【解析】【分析】 延长BC 交y 轴于点D 可求OD ,CD 的长,进一步求出BD 的长,再解直角三角形BPE ,求得BP 的长,从而可确定点P 的坐标.【详解】延长BC 交y 轴于点D ,MN 与AB 将于点E ,如图,∵四边形OABC 是菱形,∠AOC=30°,∴OA=OC=AB=BC=4,BC ∥OA ,∠ABC=30°,∴∠OCD=∠AOC=30°,∴OD=12OC=2,即点P 的纵坐标是2. ∴3∴3∵MN 是AB 的垂直平分线,∴BE=12AB=2, ∴BP=43cos303BE ==︒ ∴34323. ∴点P 的坐标为23423⎛⎫+ ⎪ ⎪⎝⎭故选C.【点睛】此题主要考查了坐标与图形的性质,也考查了菱形的性质和解直角三角形.14.如果(,)p a b ab +在第二象限,那么点(,)Q a b -在第( )象限A .一B .二C .三D .四【答案】D【解析】【分析】由点P 在第二象限得到a+b<0,ab>0,即可得到a 与b 的符号,由此判断点Q 所在的象限.【详解】∵点P 在第二象限,∴a+b<0,ab>0,∴a<0,b<0,∴-a>0,∴点(,)Q a b -在第四象限,故选:D.【点睛】此题考查象限中点的坐标特点,熟记每个象限中的点坐标特点是解题的关键.15.如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标变为原来的13,则点A 的对应点A′的坐标是( )A .(2,3)B .(6,1)C .(2,1)D .(3,3)【答案】A【解析】 【分析】 先写出点A 的坐标为(6,3),纵坐标保持不变,横坐标变为原来的13,即可判断出答案.【详解】 点A 变化前的坐标为(6,3),将纵坐标保持不变,横坐标变为原来的13, 则点A 的对应点A ′坐标是(2,3).故选A.【点睛】本题考查的是坐标,熟练掌握坐标是解题的关键.16.P 在第二象限,P 到x 轴的距离是2,到y 轴的距离是3,则P 点的坐标是( ) A .()2,3-B .()3,2-C .()3,2D .()2,3 【答案】B【解析】【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度求解即可.【详解】解:∵点P 在第二象限,且到x 轴的距离为2,到y 轴的距离为3,∴点P 的横坐标为-3,纵坐标为2,∴点P 的坐标是(-3,2).【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.17.在平面直角坐标系中,以A(0,2),B(﹣1,0),C(0.﹣2),D为顶点构造平行四边形,下列各点中,不能作为顶点D的坐标是()A.(﹣1,4)B.(﹣1,﹣4)C.(﹣2,0)D.(1,0)【答案】C【解析】【分析】根据平行四边形的判定,可以解决问题.【详解】若以AB为对角线,则BD∥AC,BD=AC=4,∴D(-1,4)若以BC为对角线,则BD∥AC,BD=AC=4,∴D(-1,-4)若以AC为对角线,B,D关于y轴对称,∴D(1,0)故选C.【点睛】本题考查了平行四边形的判定,关键是熟练利用平行四边形的判定解决问题.18.会议室2排3号记作(2,3),那么3排2号记作()A.(3,2)B.(2,3)C.(-3,-2) D.(-2,-3)【答案】A【解析】【分析】根据有序数对的意义求解.【详解】会议室2排3号记作(2,3),那么3排2号记作(3,2).故选:A【点睛】关键是理解题意,理解有序数对的意义..19.若点A(a+2,b-1)在第二象限,则点B(-a,b-1)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】【详解】解:因为点A(a+2,b-1)在第二象限,所以a+2<0,b-1>0,则-a>2,,b-1>0,即点B的横坐标为正数,纵坐标为正数,所以点B在第一象限,故选A20.下列说法中,正确的是()A.点P(3,2)到x轴距离是3B.在平面直角坐标系中,点(2,﹣3)和点(﹣2,3)表示同一个点C.若y=0,则点M(x,y)在y轴上D.在平面直角坐标系中,第三象限内点的横坐标与纵坐标同号【答案】D【解析】【分析】根据点的坐标到坐标轴的距离、坐标轴上点的坐标特点及第三象限内点的坐标符号特点逐一判断可得.【详解】A、点P(3,2)到x轴距离是2,此选项错误;B、在平面直角坐标系中,点(2,﹣3)和点(﹣2,3)表示不同的点,此选项错误;C、若y=0,则点M(x,y)在x轴上,此选项错误;D、在平面直角坐标系中,第三象限内点的横坐标与纵坐标同为负号,此选项正确;故选D.【点睛】本题主要考查点的坐标,解题的关键是掌握点的坐标到坐标轴的距离、坐标轴上点的坐标特点及第三象限内点的坐标符号特点.。

(精)新人教版九年级数学上册全单元测试卷(含答案)

(精)新人教版九年级数学上册全单元测试卷(含答案)

新人教版九年级数学上个单元测试卷(含答案)第二十一章过关自测卷 (100分,45分钟)一、选择题(每题3分,共21分)1.下列方程是关于x 的一元二次方程的是( ) A.ax 2+bx +c =0 B.211x x=2 C.x 2+2x =y 2-1 D.3(x +1)2=2(x +1)2.若一元二次方程ax 2+bx +c =0有一根为0,则下列结论正确的是( ) A.a =0 B.b =0 C.c =0 D.c ≠03.一元二次方程x 2-2x -1=0的根的情况为( ) A.有两个相等的实数根 B.有两个不相等的实数根 C.只有一个实数根 D.没有实数根4.方程x 2+6x =5的左边配成完全平方式后所得方程为( ) A.(x +3)2=14 B.(x -3)2=14C.(x +6)2=12D.以上答案都不对 5.已知x =2是关于x 的方程32x 2-2a =0的一个根,则2a -1的值是( ) A.3 B.4 C.5 D.66.某县为发展教育事业,加强了对教育经费的投入,2012年投入3亿元,预计2014年投入5亿元.设教育经费的年平均增长率为x ,根据题意,下面所列方程正确的是( ) A .3(1+x )2=5 B .3x 2=5C. 3(1+x %)2=5D. 3(1+x ) +3(1+x )2=57.使代数式x 2-6x -3的值最小的x 的取值是( ) A.0 B.-3 C.3 D.-9 二、填空题(每题3分,共18分)8.已知x =1是一元二次方程x 2+mx +n =0的一个根,则m 2+2mn +n 2的值为________. 9.如果方程ax 2+2x +1=0有两个不等实数根,则实数a 的取值范围是____________.10.已知α、β是一元二次方程x 2-4x -3=0的两实数根,则代数式(α-3)(β-3)=________.11.在一幅长50 cm ,宽30 cm 的风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图1所示,如果要使整个挂图的面积是1 800 cm 2,设金色纸边的宽为x cm ,那么x 满足的方程为________________.112.已知x 是一元二次方程x 2+3x -1=0的实数根,那么代数式2352362x x x x x -⎛⎫÷+- ⎪--⎝⎭的值为________.13.三角形的每条边的长都是方程x 2-6x +8=0的根,则三角形的周长是_______________.三、解答题(14、19题每题12分,15题8分,16题9分,其余每题10分,共61分)14.我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请从以下一元二次方程中任选一个..,并选择你认为适当的方法解这个方程. ①x 2-3x +1=0;②(x -1)2=3;③x 2-3x =0;④x 2-2x =4.15.已知关于x 的方程x 2+kx -2=0的一个解与方程11x x +-=3的解相同. (1)求k 的值;(2)求方程x 2+kx -2=0的另一个解.16.关于x的一元二次方程x2-3x-k=0有两个不相等的实数根.(1)求k的取值范围;(2)请选择一个k的负整数值,并求出方程的根.17.〈绍兴〉某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5 000元,少租出商铺1间.该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5 000元.(1)当每间商铺的年租金定为13万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金-各种费用)为275万元?18.中秋节前夕,旺客隆超市采购了一批土特产,根据以往销售经验,每天的售价与销售量之间有如下表的关系:(2)如果这种土特产的成本价是20元/千克,为使某一天的利润为780元,那么这一天的销售价应为多少元/千克?(利润=销售总金额-成本)19.如图2,A、B、C、D为矩形的四个顶点,AB=16 cm,AD=6 cm,动点P、Q分别从点A、C同时出发,点P以3 cm/s的速度向点B移动,一直到达B为止,点Q以2 cm/s的速度向点D移动.(1)P、Q两点从出发开始到几秒时四边形PBCQ的面积为33 cm2?图2 (2)P、Q两点从出发开始到几秒时,点P和点Q的距离是10 cm?第二十二章过关自测卷(100分,45分钟)一、选择题(每题4分,共32分)1.抛物线y=ax2+bx-3过点(2,4),则代数式8a+4b+1的值为()A.-2B.2C.15D.-152.图1是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2 m,水面宽4 m.如图2建立平面直角坐标系,则抛物线的关系式是()图1 图2A.y=-2x2B.y=2x2C.y=-12x2 D.y=12x23.〈恩施州〉把抛物线y=12x2-1先向右平移1个单位,再向下平移2个单位,得到的抛物线的解析式为()A.y=12(x+1)2-3B.y=12(x-1)2-3C.y=12(x+1)2+1D.y=12(x-1)2+12a≠0)中的x与y的部分对应值如下表:给出了结论:(1)二次函数y=ax2+bx+c有最小值,最小值为-3;(2)当-12<x<2时,y<0;(3)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧.则其中正确结论的个数是()A.3 B.2C.1D.05.〈舟山〉若一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(-2,0),则抛物线y=ax2+bx的对称轴为()A.直线x=1B.直线x=-2C.直线x=-1D.直线x=-46.设一元二次方程(x-1)(x-2)=m(m>0)的两实根分别为α,β,且α<β,则α,β满足()C.α<1<β<2D.α<1且β>27.〈内江〉若抛物线y=x2-2x+c与y轴的交点为(0,-3),则下列说法不正确的是()A.抛物线开口向上B.抛物线的对称轴是直线x=1C.当x=1时,y的最大值为-4D.抛物线与x轴的交点为(-1,0),(3,0)8.〈南宁〉已知二次函数y=ax2+bx+c(a≠0)的图象如图3所示,下列说法错误的是()A.图象关于直线x=1对称B.函数y=ax2+bx+c(a≠0)的最小值是-4C.-1和3是方程ax2+bx+c=0(a≠0)的两个根D.当x<1时,y随x的增大而增大图3二、填空题(每题4分,共32分)9.已知抛物线y=-13x2+2,当1≤x≤5时,y的最大值是______.10.已知二次函数y=x2+bx-2的图象与x轴的一个交点为(1,0),则它与x轴的另一个交点坐标是__________.11.已知函数y=(k-3)x2+2x+1的图象与x轴有公共点,则k的取值范围是________.12.一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关系式:h=-5(t-1)2+6,则小球距离地面的最大高度是________.13.二次函数y=ax2+bx的图象如图4,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为__________.图4 图514.如图5,已知函数y=-3x与y=ax2+bx(a>0,b>0)的图象交于点P,点P的纵坐标为1,则关于x的方程ax2+bx+3x=0的解为_______.15.将一条长为20 cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是__________ cm2.16.如图6,把抛物线y=12x2平移得到抛物线m,抛物线m经过点A(-6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=12x2交于点Q,则图中阴影部分的面积为__________.图6三、解答题(每题12分,共36分)17.〈牡丹江〉如图7,已知二次函数y=x2+bx+c的图象过点A(1,0),C(0,-3). (1)求此二次函数的解析式;(2)在抛物线上存在一点P使△ABP的面积为10,请求出点P的坐标.图718.在平面直角坐标系xOy中,O为坐标原点,已知抛物线y=x2-(k+2)x+14k2+1.(1)k取什么值时,此抛物线与x轴有两个交点?(2)若此抛物线与x轴交于A(x1,0)、B(x2,0)两点(点A在点B左侧),且x1+x2=3,求k的值.19.〈广州〉已知抛物线y 1=ax 2+bx +c 过点A (1,0),顶点为B ,且抛物线不经过第三象限. (1)使用a 、c 表示b ;(2)判断点B 所在象限,并说明理由;(3)若直线y 2=2x +m 经过点B ,且与该抛物线交于另一点C ,8c b a ⎛⎫+ ⎪⎝⎭,求当x ≥1时y 1的取值范围.第二十三章过关自测卷(100分,45分钟)一、选择题(每题3分,共24分)1.已知下列命题:①关于一点对称的两个图形一定不全等;②关于一点对称的两个图形一定是全等图形;③两个全等的图形一定关于一点对称.其中真命题的个数是()A.0 B.1 C.2 D.32.〈江苏泰州〉下列标志图(图1)中,既是轴对称图形,又是中心对称图形的是()图13.如图2,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为()图2A.10°B.15°C.20°D.25°4.如图3①,将正方形纸片两次对折,并剪出一个菱形小洞后铺平,得到的图形是图3②中的()图35.如图4所示的图案中,绕自身的某一点旋转180°后还能与自身重合的图形的个数是()图4A.1B.2C.3D.4C.第三象限D.第四象限7.将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图5①.在图5②中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图5①所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是()图5A.6 B.5 C.3 D.28.如图6,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,将△ABC绕点C按顺时针方向旋转n度后,得到△EDC,此时,点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为()A. 30,2B.60,2C.60D.60图6二、填空题(每题4分,共24分)9.如图7,E、F分别是正方形ABCD的边BC、CD上的点,BE=CF,连接AE、BF.将△ABE绕正方形的中心按逆时针方向旋转到△BCF,旋转角为α(0°<α<180°),则α=_______.图710.如图8,△ABC的顶点坐标分别为A(4,6)、B(5,2)、C(2,1),如果将△ABC绕点C按逆时针方向旋转90°,得到△A′B′C,那么点A的对应点A′的坐标是_______.图8A′、C′仍落在格点上,则线段AB扫过的图形的面积是_______平方单位(结果保留π).图9 图1012.直线y=x+3上有一点P(3,n),则点P关于原点的对称点P′为_______.13.如图10,△ABC是直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,若AP=3,则PP′的长是_______.14.如图11①,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图11②、图11③、…,则旋转得到的图11⑩的直角顶点的坐标为_______.图11三、解答题(17题10分,18题12分,19题14分,其余每题8分,共52分)15.如图12,在平面直角坐标系中,三角形②③是由三角形①依次旋转后所得的图形.图12(1)在图中标出旋转中心P的位置,并写出它的坐标;(2)在图中画出再次旋转后的三角形④.16.如图13所示,(1)观察图①~④中阴影部分构成的图案,请写出这四个图案都具有的两个共同特征:图13(2)借助图⑤的网格,请设计一个新的图案,使该图案同时具有你在解答(1)中所给出的两个共同特征.(注意:①新图案与图①~④的图案不能重合;②只答第(2)问而没有答第(1)问的解答不得分)17.如图14,矩形ABCD和矩形AEFG关于点A中心对称,(1)四边形BDEG是菱形吗?请说明理由;图14(2)若矩形ABCD面积为2,求四边形BDEG的面积.18.如图15,在平面直角坐标系中,O为坐标原点,每个小方格的边长为1个单位长度.正方形ABCD顶点都在格点上,其中,点A的坐标为(1,1).(1)若将正方形ABCD绕点A顺时针方向旋转90°,点B到达点B1,点C到达点C1,点D到达点D1,求点B1、C1、D1的坐标;图15(2)若线段AC1的长度与点D1的横坐标的差恰好是一元二次方程x2+ax+1=0的一个根,求a的值.19.〈潍坊〉如图16①所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至长方形CE′F′D′,旋转角为α.图16(1)当点D′恰好落在EF边上时,求旋转角α的值;(2)如图16②,G为BC中点,且0°<α<90°,求证:GD′= E′D;(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角α的值;若不能,说明理由.第二十四章过关自测卷(100分,45分钟)一、选择题(每题4分,共32分)1.〈重庆〉如图1,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=40°,则∠OCB的度数为()A.40°B.50°C.65°D.75°图1 图22.〈甘肃兰州〉如图2是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8 cm,水面最深地方的高度为2 cm,则该输水管的半径为()A.3 cm B.4 cm C.5 cm D.6 cm3.〈甘肃兰州〉圆锥底面圆的半径为3 cm,其侧面展开图是半圆,则圆锥母线长为()A.3 cm B.6 cm C.9 cm D.12 cm图3 图44.如图3,边长为a的六角螺帽在桌面上滚动(没有滑动)一周,则它的中心O点所经过的路径长为()A.6a B.5a C.2aπD aπEB的中点,则下列结论不成立的是()5.〈山东泰安〉如图4,已知AB是⊙O的直径,AD切⊙O于点A,点C是⌒A.OC//AE B.EC=BCC.∠DAE=∠ABE D.AC⊥OE6.〈2013,晋江市质检〉如图5,动点M,N分别在直线AB与CD上,且AB//CD,∠BMN与∠MND的平分线相交于点P,若以MN为直径作⊙O,则点P与⊙O的位置关系是()图5A.点P在⊙O外B.点P在⊙O内C.点P在⊙O上D.以上都有可能7.△ABC中,AB=AC,∠A为锐角,CD为AB边上的高,I为△ACD的内切圆圆心,则∠AIB的度数是()A.120°B.125°C.135°D.150°8.〈贵州遵义〉如图6,将边长为1 cm的等边三角形ABC沿直线l向右翻动(不滑动),点B从开始到结束,所经过路径的长度为()图6A.32πcm B.322⎛⎫+⎪⎝⎭πcm C.43πcm D.3 cm二、填空题(每题4分,共24分)9.〈四川巴中〉如图7,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD 等于________.图7 图810.〈重庆〉如图8,一个圆心角为90°的扇形,半径OA=2,那么图中阴影部分的面积为________(结果保留π).11.〈贵州遵义〉如图9,在Rt△ABC中,∠ACB=90°,AC=BC=1,E为BC边上的一点,以A为圆心,AE为半径的圆弧交AB于点D,交AC的延长于点F,若图中两个阴影部分的面积相等,则AF的长为________(结果保留根号).图9 图1012.如图10,△ABC为等边三角形,AB=6,动点O在△ABC的边上从点A出发沿着A→C→B→A的路线匀速运动一周,速度为每秒1个单位长度,以O ABC的边第二次相切时是出发后第________秒.13.如图11,正六边形ABCDEF中,AB=2,P是ED的中点,连接AP,则AP的长为________.图11 图1214.如图12,AB为半圆O的直径,C为半圆的三等分点,过B,C两点的半圆O的切线交于点P,若AB的长是2a,则P A的长是________.三、解答题(15题9分,16题10分,17题11分,18题14分,共44分)15. 如图13所示,△ABC中,∠ACB=90°,AC=2 cm,BC=4 cm,CM是AB边上的中线,以C长为半径画圆,则点A,B,M与⊙C的位置关系如何?图1316. 如图14,已知CD是⊙O的直径,点A为CD延长线上一点,BC=AB,∠CAB=30°.(1)求证:AB是⊙O的切线;图14(2)若⊙O的半径为2,求⌒BD的长.17.如图15,从一个直径为4的圆形铁片中剪下一个圆心角为90°的扇形ABC.(1)求这个扇形的面积;图15(2)在剩下的材料中,能否从③中剪出一个圆作为底面,与扇形ABC围成一个圆锥?若不能,请说明理由;若能,请求出剪的圆的半径是多少.18. 如图16,在平面直角坐标系中,以坐标原点O为圆心,2为半径画⊙O,P是⊙O上一动点,且P在第一象限内,过点P作⊙O的切线与x轴相交于点A,与y轴相交于点B.(1)点P在运动时,线段AB的长度也在发生变化,请写出线段AB长度的最小值,并说明理由;图16(2)在⊙O上是否存在一点Q,使得以Q,O,A,P为顶点的四边形是平行四边形?若存在,请求出Q点的坐标;若不存在,请说明理由.第二十五章过关自测卷(100分,45分钟)一、选择题(每题3分,共24分)1.〈大连〉一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全相同.从袋子中随机摸出一个球,它是黄球的概率为()A.13B.25C.12D.352.〈牡丹江〉小明制作了十张卡片,上面分别标有1~10这十个数.从这十张卡片中随机抽取一张恰好能被4整除的概率是()A.110B.25C.15D.3103.〈贵阳〉一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是()A.6 B.10 C.18 D.204.一纸箱内有红、黄、蓝、绿四种颜色的纸牌,且图1所示为各颜色纸牌数量的统计图.若小华自箱内抽出一张牌,且每张牌被抽出的机会相等,则他抽出红色牌或黄色牌的机(概)率为()A.15B.25C.13D.12图15.小江玩投掷飞镖的游戏,他设计了一个如图2所示的靶子,点E、F分别是矩形ABCD的两边AD、BC上的点,EF∥AB,点M、N是EF上任意两点,则投掷一次,飞镖落在阴影部分的概率是()A. 13B.23C.12D.34图26.〈临沂〉如图3,在平面直角坐标系中,点A1,A2在x轴上,点B1,B2在y轴上,其坐标分别为A1(1,0),A2(2,0),B1(0,1),B2(0,2),分别以A1、A2、B1、B2其中的任意两点与点O为顶点作三角形,所作三角形是等腰三角形的概率是()A. 34B.13C.23D.12图3 图47.在学习概率时,老师说:“掷一枚质地均匀的硬币,正面朝上的概率是12”,小明做了下列三个模拟试验来验证.①取一枚新硬币,在桌面上进行抛掷,计算正面朝上的次数与总次数的比值;②把一个质地均匀的圆形转盘平均分成偶数份,并依次标上奇数和偶数,转动转盘,计算指针落在奇数区域的次数与总次数的比值;③将一个圆形纸板放在水平的桌面上,纸板正中间放一个圆锥(如图4),从圆锥的正上方往下撒米粒,计算其中一半纸板上的米粒数与纸板上总米粒数的比值.上面的试验中,不科学的有()A.0个B.1个C.2个D.3个8.小强、小亮、小文三位同学玩投硬币游戏.三人同时各投出一枚均匀硬币,若出现三个正面向上或三个反面向上,则小强赢;若出现两个正面向上一个反面向上,则小亮赢;若出现一个正面向上两个反面向上,则小文赢.下面说法正确的是()A.小强赢的概率最小B.小文赢的概率最小C.小亮赢的概率最小D.三人赢的概率相等二、填空题(每题3分,共18分)9.〈长沙〉在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是_______.10.一只昆虫在如图5所示的树枝上爬行,假定昆虫在每个岔路口都会随机地选择一条路径,则它停留在A 叶面的概率是_______.图5 图611.如图6,电路图上有编号为①②③④⑤⑥共6个开关和一个小灯泡,闭合开关①或同时闭合开关②③或同时闭合开关④⑤⑥都可使这个小灯泡发光,问任意闭合电路上其中的两个开关,小灯泡发光的概率为_______.12.王红和刘芳两人在玩转盘游戏,如图7,把转盘甲、乙分别分成3等份,并在每一份内标上数字,游戏规则是:转动两个转盘,停止后,指针所指的两个数字之和为7时,王红胜;数字之和为8时,刘芳胜.那么这二人中获胜可能性较大的是_______.图713.〈重庆〉在平面直角坐标系xOy中,直线y=-x+3与两坐标轴围成一个△AOB.现将背面完全相同,正面分别标有数1、2、3、12、13的5张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点P的横坐标,将该数的倒数作为点P的纵坐标,则点P落在△AOB内的概率为_______.14.〈济宁〉甲、乙、丙三人站成一排合影留念,则甲、乙二人相邻的概率是_______.三、解答题(18题10分,19,20题每题12分,其余每题8分,共58分)15.已知口袋内装有黑球和白球共120 个,请你设计一个方案估计一下口袋内有多少个黑球,多少个白球?16.在一个口袋中有4个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸出一个小球然后放回,再随机地摸出一个小球,求下列事件的概率:(1)两次摸出的小球的标号相同;(2)两次摸出的小球标号的和等于4.17.〈扬州〉端午节期间,扬州某商场为了吸引顾客,开展有奖促销活动,设立了一个可以自由转动的转盘,转盘被分成4个面积相等的扇形,四个扇形区域里分别标有“10元”、“20元”、“30元”、“40元”的字样(如图8).规定:同一日内,顾客在本商场每消费满100元就可以转转盘一次,商场根据转盘指针指向区域所标金额返还相应数额的购物券,某顾客当天消费240元,转了两次转盘.(1)该顾客最少可得_______元购物券,最多可得______元购物券;(2)请用画树状图或列表的方法,求该顾客所获购物券金额不低于50元的概率.图818.〈包头〉甲、乙两人在玩转盘游戏时,把两个可以自由转动的转盘A、B分成4等份、3等份的扇形区域,并在每一小区域内标上数字(如图9所示),指针的位置固定.游戏规则:同时转动两个转盘,当转盘停止后,若指针所指两个区域的数字之和为3的倍数,则甲胜;若指针所指两个区域的数字之和为4的倍数,则乙胜.如果指针落在分割线上,则需要重新转动转盘.(1)试用列表或画树状图的方法,求甲获胜的概率;图9(2)请问这个游戏规则对甲、乙双方公平吗?试说明理由.19.有三张正面分别写有数-2 ,-1,1的卡片,它们的背面完全相同,将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数作为x的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数作为y的值,两次结果记为(x,y).(1)用画树状图法或列表法表示(x,y)所有可能出现的结果;(2)求使代数式2223x xy yx y x y-+--有意义的(x ,y )出现的概率;(3)化简代数式2223x xy yx y x y-+--,并求使代数式的值为整数的(x ,y )出现的概率.20.〈潍坊〉 随着我国汽车产业的发展,城市道路拥堵问题日益严峻,某部门对15个城市的交通状况进行了调查,得到的数据如下表所示.(1)根据上班花费时间,将下面的频数分布直方图(如图10)补充完整;图10(2)求15个城市的平均上班堵车时间(计算结果保留一位小数);(3)规定:城市的堵车率=-上班堵车时间上班花费时间上班堵车时间×100%,比如,北京的堵车率=145214-×100%≈36.8%;沈阳的堵车率=123412-×100%≈54.5%,某人欲从北京,沈阳,上海,温州四个城市中任意选取两个作为出发目的地,求选取的两个城市的堵车率都超过30%的概率.期末选优拔尖测试(120分,90分钟)一、选择题(每题3分,共24分)1.如图1所示的图形中,既是轴对称图形又是中心对称图形的是( )图12.下列成语所描述的事件是必然事件的是()A.水中捞月B.拔苗助长C.守株待兔D.瓮中捉鳖3.如图2,AB是⊙O的直径,∠ACD=15°,则∠BAD的度数为()A.75°B.72°D.65°图2 图34.有一块长为30 m,宽为20 m的矩形菜地,准备修筑同样宽的三条直路(如图3),把菜地分成六块作为试验田,种植不同品种的蔬菜,并且种植蔬菜面积为矩形菜地面积的34,设道路的宽度为x m,下列方程:①30x+20x×2=30×20×14;②30x+20x×2-2x2=30×20×14;③(30-2x)(20-x)=30×20×34,其中正确的是()A.①②B.①③C.②③D.①②③5.已知关于x的一元二次方程x2-2x=m有两个不相等的实数根,则m的取值范围是()A.m<1 B.m<-2C.m=0 D.m>-16.半径相等的圆内接正三角形、正方形、正六边形的边长之比为()A.1B∶1C.3∶2∶1 D.1∶2∶3图47.如图4,点A、B、C、D为圆O的四等分点,动点P从圆心O出发,沿O-C-D-O的路线作匀速运动.设运动时间为t秒,∠APB的度数为y度,则如图5所示图象中表示y与t之间函数关系最恰当的是()图5 图68.二次函数y=ax2+bx+c(a≠0)的图象如图6所示,则下列5个代数式:ab,ac,a-b+c,b2-4ac,2a+b中,值大于0的个数为()A.5 B.4 C.3 D.2二、填空题(每题3分,共21分)9.(陕西)在平面直角坐标系中,将抛物线y=x2-x-6向上(下)或向左(右)平移m个单位,使平移后的抛物线恰好经过原点,则m的最小值为_______.10.已知点P(a,-3)关于原点的对称点为P1(-2,b),则a+b的值是_______.11.已知2x2-4x+c=0的一个根,则方程的另一个根是_______.12.如图7所示,某工厂的大门是抛物线形水泥建筑物,大门的地面宽度为8 m,两侧距地面3 m高处各有一壁灯,两壁灯间的水平距离为6 m,则厂门的高度约为_______.(精确到0.1 m)图713.一圆锥的侧面展开后是扇形,该扇形的圆心角为120°,半径为6 cm,则此圆锥的表面积为_______cm2.14.已知⊙O1和⊙O2的半径分别是一元二次方程x2-5x+6=0的两根,且O1O2=1,则⊙O1和⊙O2的位置关系是_______.15.如图8,Rt△ABC的边BC位于直线l上,AC∠ACB=90°,∠A= 30°;若Rt△ABC由现在的位置向右无滑动地翻转,当点A第3次落在直线l上时,点A所经过的路线的长为_______ (结果用含π的式子表示).图8三、解答题(16~18题每题6分,19~22题每题8分,23题11分,24题14分,共75分)16.已知抛物线经过两点A(1,0),B(0,-3),且对称轴是直线x=2,求此抛物线的解析式.17.解方程x2-4x+2=0.(用配方法)18.已知:△ABC的两边AB、AC的长是关于x的一元二次方程x2-(2k+1)x+k(k+1)=0的两个实数根,第三边BC的长为5.(1)k为何值时,△ABC是以BC为斜边的直角三角形?(2)k为何值时,△ABC是等腰三角形?并求△ABC的周长.19.现有形状、大小和颜色完全一样的三张卡片,上面分别标有数字“1”“2”“3”,第一次从这三张卡片中随机抽取一张,记下数字后放回;第二次再从这三张卡片中随机抽取一张并记下数字.请用列表或画树状图的方法表示出上述试验所有可能的结果,并求第二次抽取的数字大于第一次抽取的数字的概率.20.已知正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.(1)如图9(1),连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断命题:“在旋转的过程中线段DF与BF的长始终相等.”是否正确,若正确请说明理由,若不正确请举反例说明;图9(2)若将正方形AEFG绕点A按顺时针方向旋转,连接DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长始终相等.并以图9(2)为例说明理由.21.如图10,AC是⊙O的直径,P A切⊙O于点A,点B是⊙O上的一点,且∠BAC=30°,∠APB=60°.(1)求证:PB是⊙O的切线;图10(2)若⊙O的半径为2,求弦AB及P A,PB的长.22.“五一”期间,小明和同学一起到游乐场游玩.如图11为某游乐场大型摩天轮的示意图,其半径是20m,它匀速旋转一周需要24分钟,最底部点B离地面1m.小明乘坐的车厢经过点B时开始计时.(1)计时4分钟后小明离地面的高度是多少?图11 (2)在旋转一周的过程中,小明将有多长时间连续保持在离地面31m以上的空中?23.为了实现“畅通市区”的目标,市地铁一号线准备动工,市政府现对地铁一号线第15标段工程进行招标,施工距离全长为300米.经招标协定,该工程由甲、乙两公司承建,甲、乙两公司施工方案及报价分别为:(1)甲公司施工单价y1(万元/米)与施工长度x(米)之间的函数关系为y1=27.8-0.09x,(2)乙公司施工单价y2(万元/米)与施工长度x(米)之间的函数关系为y2=15.8-0.05x.(注:工程款=施工单价×施工长度)(1)如果不考虑其他因素,单独由甲公司施工,那么完成此项工程需工程款多少万元?(2)考虑到设备和技术等因素,甲公司必须邀请乙公司联合施工,共同完成该工程.因设备共享,两公司联合施工时市政府可节省工程款140万元(从工程款中扣除).①如果设甲公司施工a米(0<a<300),那么乙公司施工______米,其施工单价y2=_______万元/米,试求市政府共支付工程款P(万元)与a(米)之间的函数关系式;②如果市政府支付的工程款为2 900万元,那么应将多长的施工距离安排给乙公司施工?24.如图12,y关于x的二次函数y=-3m (x+m)(x-3m)图象的顶点为M,图象交x轴于A、B两点,交y轴正半轴于点D.以AB为直径作圆,圆心为点C,定点E的坐标为(-3,0),连接ED.(m>0)(1)写出A、B、D三点的坐标;。

第四章 图形与坐标单元测试卷(标准难度)(含答案)

第四章 图形与坐标单元测试卷(标准难度)(含答案)

浙教版初中数学八年级上册第四章《图形与坐标》单元测试卷考试范围:第四章;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36分。

在每小题列出的选项中,选出符合题目的一项)1.在平面直角坐标系中,点A(m,2)是由点B(3,n)向上平移2个单位得到,则( )A. m=3,n=0B. m=3,n=4C. m=1,n=2D. m=5,n=22.如图,平面直角坐标系中,已知点A(−3,0),B(0,5),以点A为圆心,AB长为半径画弧,交x轴的正半轴于点C,则C点的横坐标位于( )A. 4和5之间B. 3和4之间C. 5和6之间D. 2和3之间3.如图,将线段AB向右平移2个单位长度,再向下平移3个单位长度,得到线段A′B′,则点B的对应点B′的坐标是( )A. (−1,−2)B. (1,2)C. (0,−2)D. (−1,4)4.点P(2,−3)向左平移3个单位,向上平移2个单位到点Q,则点Q的坐标为( )A. (−1,−1)B. (−1,−5)C. (5,−1)D. (5,−5)5.在平面直角坐标系中,将点P向上平移3个单位得到点P′(1,2),则点P在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限6.在平面直角坐标系中,将点A(m,n+2)先向左平移3个单位,再向上平移2个单位,得到点A′,若点A′位于第二象限,则m、n的取值范围分别是( )A. m<0,n>0B. m<3,n>−4C. m<0,n<−2D. m<−3,n<−47.如图,在平面直角坐标系中,等边△OAB的顶点B的坐标为(2,0),点A在第一象限内,将△OAB沿直线OA的方向平移至△O′A′B′的位置,此时点A′的横坐标为3,则点B′的坐标为( )A. (4,2√3)B. (3,3)C. (4,3)D. (3,2)8.如图,线段AB经过平移得到线段A1B1,其中点A,B的对应点分别为点A1,B1,这四个点都在格点上.若线段AB上有一个点P(a,b),则点P在A1B1上的对应点P1的坐标为A. (a−2,b+3)B. (a−2,b−3)C. (a+2,b+3)D. (a+2,b−3)9.如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2),把一条长为2016个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A→B→C→D→A…的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是( )A. (-1,0)B. (1,-2)C. (1,1)D. (0,-2)10.已知点P(2a,1−3a)在第二象限,且点P到x轴的距离与到y轴的距离之和为6,则a的值为( )A. −1B. 1C. −5D. 511.如图,在平面直角坐标系xOy中,将四边形ABCD先向上平移,再向左平移得到四边形A1B1C1D1,已知A1(−3,5),B1(−4,3),A(3,3),则点B坐标为( )A. (1,2)B. (2,1)C. (1,4)D. (4,1)12.如图,已知一个斜边长为2的直角三角板的直角顶点与原点重合,两直角边分别落在两个坐标轴上.现将该三角板向右平移使点A与点O重合,得到△OCB′,则点B的对应点B′的坐标是( )A. (1,0)B. (√3,√3)C. (1,√3)D. (−1,√3)第II卷(非选择题)二、填空题(本大题共4小题,共12分)13.如图:在直角坐标系中,设一动点自P0(1,0)处向上运动1个单位至P1(1,1),然后向左运动2个单位至P2处,再向下运动3个单位至P3处,再向右运动4个单位至P4处,再向上运动5个单位至P5处,如此继续运动下去.设P n(x n,y n),n=1,2,3…,则x1+x2+x3+⋯+x2021+x2021+x2022=______.14.已知△ABC三个顶点的坐标分别是A(0,3)、B(2,−2)、C(−5,1),将△ABC平移后顶点A的对应点A1的坐标是(2,4),则顶点B的对应点B1的坐标是______.15.如图,直角坐标系中,点A(1,4),点B(1,0),点C(0,3),点M(m,0)是x轴上一动点,点N是线段AB上一动点,若∠MNC=90°,则m的取值范围是______.16.点C在第三象限,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为______.三、解答题(本大题共9小题,共72分。

九年级上册数学《旋转》单元检测题(含答案)

九年级上册数学《旋转》单元检测题(含答案)

人教版数学九年级上学期《旋转》单元测试(满分120分,考试用时120分钟)一、选择题(共14 小题,每小题 3 分,共42 分)1.…依次观察左边的三个图形,并判断照此规律从左向右的第四个图形是( )A...B...C...D.2.在下列四个图案中既是轴对称图形,又是中心对称图形的是( )A...B...C...D.3.已知平面直角坐标系中的三个点,,,将绕点按顺时针方向旋转度,则点的对应点的坐标为( )A...B...C...D.4.在平面直角坐标系中,点绕原点顺时针旋转后得到点( )A...B...C...D.5.如图,在中,,,,由绕点顺时针旋转得到,其中点与点、点与点是对应点,连接,且、、在同一条直线上,则的长为( )A...B...C...D.6.已知点是点关于原点的对称点,则的值为( )A...B.-..C...D.±67.如图,已知与关于点成中心对称图形,则下列判断不正确的是( )A.∠ABC=∠A'B'C..B.∠BOC=∠B'A'C.. C.AB=A'B..D.OA=OA'8.在如图的正方形网格上画有两条线段. 现在要再画一条,使图中的三条线段组成一个轴对称图形,能满足条件的线段有( )A.2..B.3..C.4..D.5条9.观察下列四个图案,它们分别绕中心旋转一定的角度后,都能和原来的图形重合,其中旋转的角度最大的是( )A...B...C...D.10.如图,在的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形). 若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有( )A.2..B.3..C.4..D.5种11.下列所给的正方体的展开图中,是中心对称图形的是图( )A.①②..B.①②..C.②③..D.①②③④12.如图,矩形的边,分别在坐标轴上,且点的坐标为,将矩形沿轴正方向平移个单位,得到矩形,再以点为旋转中心,把矩形顺时针方向旋转,得到矩形″″″″″,″,″,″,则点所经过的路线为″的长为( )A.1..B.1..C.4+5..D.4+13.如图,三个顶点的坐标分别为,,,将绕点按顺时针方向旋转,得到,则点的坐标为( )A.(1, 2..B.(2, 1..C.(1, 1..D.(2, 2)14.下面、、、四个图形中的哪个图案可以通过旋转图案①得到( )A...B...C...D.二、填空题(共6 小题,每小题 3 分,共18 分)15.一个图形绕某一点旋转后与另一个图形重合,则这两个图形成________,这个点叫________.16.如图,在网格中有一个四边形和两个三角形.①请你画出这三个图形关于点成中心对称的图形;②将原图和画出后的图形看成一个整体图形,它有________条对称轴;它至少旋转________度后与自身重合.17.在平面直角坐标系中,若与点关于原点对称,则点在第________象限.18.对于平面图形上的任意两点, ,如果经过某种变换(如:平移、旋转、轴对称等)得到新图形上的对应点, ,保持,我们把这种对应点连线相等的变换称为“同步变换”. 对于三种变换:①平移、②旋转、③轴对称,其中一定是“同步变换”的有________(填序号).19.在图中,是由基本图案多边形旋转而成的,它的旋转角为________.20.如图,将绕点逆时针方向旋转,得到,看点的坐标为,则点坐标为________.三、解答题(共4 小题,每小题10 分,共40 分)21.如图所示,是一块边长为的正方形瓷砖,其中瓷砖的阴影部分是半径为的扇形. 请你用这种瓷砖拼出三种不同的图案. 使拼成的图案既是轴对称图形又是中心对称图形,把它们分别画在下面边长为的正方形中(要求用圆规画图).22.如图所示,每个小正方形的边长为个单位长度,作出关于原点对称的并写出、、的坐标.23.如图,已知, 绕点逆时针旋转得到,恰好在上,连接.(1) 与有何关系?并说明理由;线段与在位置上有何关系?为什么?24.如图所示的网格中,每个小方格都是边长为的小正方形,,把绕点按顺时针旋转后得到,请画出这个三角形并写出点的坐标;以点为位似中心放大,得到,使放大前后的面积之比为,请在下面网格内出.参考答案一、选择题(共14 小题,每小题 3 分,共42 分)1.…依次观察左边的三个图形,并判断照此规律从左向右的第四个图形是()A...B...C...D.【答案】D【解析】试题分析: 根据图形,由规律可循. 从左到右是顺时针方向可得到第四个图形是D.故选D.考点: 生活中的旋转现象.2.在下列四个图案中既是轴对称图形,又是中心对称图形的是()A...B...C...D.【答案】B【解析】试题分析: 根据轴对称图形和中心对称图形的定义可得选项B正确.故选B.考点: 1.轴对称图形;2.中心对称图形.3.已知平面直角坐标系中的三个点,,,将绕点按顺时针方向旋转度,则点的对应点的坐标为()A...B...C...D.【答案】D【解析】【分析】把△ABO绕点O按顺时针方向旋转45°,就是把它上面的各个点按顺时针方向旋转45度. 点A 在第二象限的角平分线上,且OA= ,正好旋转到y轴正半轴. 则A点的对应点A1的坐标是(0, ).【详解】∵A的坐标是(-1,1),∴OA= ,且A1在y轴正半轴上,∴A1点的坐标是(0, ).【点睛】考查了坐标与图形变化-旋转,解答本题要能确定A的位置,只有这样才能确定点A的对应点A1的位置,求出坐标.4.在平面直角坐标系中,点绕原点顺时针旋转后得到点()A...B...C...D.【答案】A【解析】【分析】设A( ,1),过A作AB⊥x轴于B,于是得到AB=1,OB= ,根据边角关系得到∠AOB=30°,由于点( ,1)绕原点顺时针旋转60°,于是得到∠AOA′=60°,得到∠A′OB=30°,于是结论即可求出.【详解】设A( ,1),过A作AB⊥x轴于B,则AB=1,OB= ,∴tan∠AOB= == ,∴∠AOB=30°,∵点( ,1)绕原点顺时针旋转60°,∴∠AOA′=60°,∴∠A′OB=30°,∴点( ,1)绕原点顺时针旋转60°后得到点是( ,-1),故选: A.【点睛】考查了坐标与图形的变换-旋转,特殊角的三角函数,正确的画出图形是解题的关键.5.如图,在中,,,,由绕点顺时针旋转得到,其中点与点、点与点是对应点,连接,且、、在同一条直线上,则的长为()A...B...C...D.【答案】A【分析】先利用互余计算出∠BAC=30°,再根据含30度的直角三角形三边的关系得到AB=2BC=2,接着根据旋转的性质得A′B′=AB=2,B′C=BC=1,A′C=AC,∠A′=∠BAC=30°,∠A′B′C=∠B=60°,于是可判断△CAA′为等腰三角形,所以∠CAA′=∠A′=30°,再利用三角形外角性质计算出∠B′CA=30°,可得B′A=B′C=1,然后利用AA′=AB′+A′B′进行计算.【详解】∵∠ACB=90°,∠B=60°,∴∠BAC=30°,∴AB=2BC=2×1=2,∵△ABC绕点C顺时针旋转得到△A′B′C′,∴A′B′=AB=2,B′C=BC=1,A′C=AC,∠A′=∠BAC=30°,∠A′B′C=∠B=60°,∴△CAA′为等腰三角形,∴∠CAA′=∠A′=30°,∵A.B′、A′在同一条直线上,∴∠A′B′C=∠B′AC+∠B′CA,∴∠B′CA=60°-30°=30°,∴B′A=B′C=1,∴AA′=AB′+A′B′=2+1=3.故选: A.【点睛】考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等. 也考查了含30度的直角三角形三边的关系.6.已知点是点关于原点的对称点,则的值为()A...B.-..C...D.±6【答案】C【解析】【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数,结合题意可得ab的值,代入a+b可得答案.【详解】根据题意,有点A(a,-3)是点B(-2,b)关于原点O的对称点,则a=-(-2)=2,b=-(-3)=3,则a+b=3+2=5.【点睛】考查平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系.7.如图,已知与关于点成中心对称图形,则下列判断不正确的是()A.∠ABC=∠A'B'C..B.∠BOC=∠B'A'C.. C.AB=A'B..D.OA=OA'【答案】B【解析】【分析】根据中心对称的定义: 把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,来求解即可.【详解】因为△ABC与△A′B′C′关于点O成中心对称图形,所以可得∠ABC=∠A′B′C′,AB=A′B′,OA=OA',故选: B.【点睛】考查了中心对称的定义,解题的关键是熟记中心对称的定义. 也可用三角形全等来求解.8.在如图的正方形网格上画有两条线段. 现在要再画一条,使图中的三条线段组成一个轴对称图形,能满足条件的线段有( )A.2..B.3..C.4..D.5条【答案】C【解析】试题分析: 直接利用轴对称图形的性质分别得出符合题意的答案.解: 如图所示: 能满足条件的线段有4条.故选:C.考点: 利用轴对称设计图案.9.观察下列四个图案,它们分别绕中心旋转一定的角度后,都能和原来的图形重合,其中旋转的角度最大的是()A...B...C...D.【答案】A【解析】【分析】求出各旋转对称图形的最小旋转角度,再比较即可.【详解】A选项: 最小旋转角度= =120°;B.最小旋转角度= =90°;C.最小旋转角度= =72°;D.最小旋转角度= =60°;综上可得: 旋转的角度最大的是A.故选: A.【点睛】考查了旋转对称图形中旋转角度的确定,求各图形的最小旋转角度时,关键要看各图形可以被平分成几部分,被平分成n部分,旋转的最小角度就是.10.如图,在的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形). 若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有( )A.2..B.3..C.4..D.5种【答案】C【解析】试题分析: 利用轴对称图形的性质以及中心对称图形的性质分析得出符合题意的图形即可.解: 如图所示: 组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有4种.故选:C.点评: 此题主要考查了利用轴对称以及旋转设计图案,正确把握相关定义是解题关键.【此处有视频,请去附件查看】11.下列所给的正方体的展开图中,是中心对称图形的是图()A.①②..B.①②..C.②③..D.①②③④【答案】B【解析】【分析】根据中心对称图形的概念(在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形,这个旋转点就叫做中心对称点)求解.【详解】根据中心对称图形的概念可是: ①②④是中心对称图形;而③不是中心对称图形.故选: B.【点睛】考查了中心对称图形的概念. 在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形,这个旋转点就叫做中心对称点.12.如图,矩形的边,分别在坐标轴上,且点的坐标为,将矩形沿轴正方向平移个单位,得到矩形,再以点为旋转中心,把矩形顺时针方向旋转,得到矩形″″″″″,″,″,″,则点所经过的路线为″的长为()A.1..B.1..C.4+5..D.4+【答案】D【解析】【分析】利用平移变换和弧长公式计算.【详解】此题平移规律是(x+4,y),照此规律计算可知点B平移的距离是5个单位长度.把矩形O′A′B′C′顺时针方向旋转90°,点B′走过的路程是半径为5,圆心角是90度的弧长为,所以点B所经过的路线为B⇒B′⇒B″的长为4+.故选: D.【点睛】考查图形的平移变换和弧长公式的运用. 在平面直角坐标系中,图形的平移与图形上某点的平移相同. 平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.13.如图,三个顶点的坐标分别为,,,将绕点按顺时针方向旋转,得到,则点的坐标为()A.(1, 2..B.(2, 1..C.(1, 1..D.(2, 2)【答案】B【解析】【分析】直接利用旋转的性质得出对应点位置进而得出答案;【详解】∵A(-2,5),B(-5,1),C(-2,1),∴AC=4,AC∥y轴,∵△ABC绕点C按顺时针方向旋转90°,得到△DEC,∴∠DCE=∠ACB=90°,CD=AC=4,∴B,C,D三点在一条直线上,∴D(2,1),故选: B.【点睛】考查了旋转变换以及扇形面积求法,正确得出对应点位置是解题关键.14.下面、、、四个图形中的哪个图案可以通过旋转图案①得到()A...B...C...D.【答案】B【解析】【分析】根据旋转的性质旋转变化前后,图形的相对位置不变,注意时针与分针的位置关系,分析选项.【详解】根据旋转的性质(旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等)可得: 图案①顺时针旋转90°得到B.故选B.【点睛】考查旋转的性质:旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等. 要注意旋转的三要素: ①定点为旋转中心;②旋转方向;③旋转角度.二、填空题(共6 小题,每小题 3 分,共18 分)15.一个图形绕某一点旋转后与另一个图形重合,则这两个图形成________,这个点叫________.【答案.. (1).中心对.. (2).对称中心【解析】【分析】根据中心对称图形的概念求解.【详解】一个图形绕某一点旋转180°后与另一个图形重合,则这两个图形成中心对称,这个点叫对称中心. 故答案是: 中心对称,对称中心.【点睛】考查了中心对称图形的概念: 把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.16.如图,在网格中有一个四边形和两个三角形.①请你画出这三个图形关于点成中心对称的图形;②将原图和画出后的图形看成一个整体图形,它有________条对称轴;它至少旋转________度后与自身重合.【答案】(1)详见解析,(2)4,90【解析】【分析】(1)将图形的各顶点与点O连线并延长相同长度找对应点,然后顺次连接得中心对称图形;(2)根据轴对称的性质,找对称轴,只要连接两组对应点,作出对应点所连线段的两条垂直平分线.【详解】(1)如图所示,共有4条对称轴;(2)4条对称轴,这个整体图形至少旋转90度.故答案为: 4,90.【点睛】考查了轴对称图形和旋转变换图形的方法,注意,做这类题时,掌握旋转与轴对称的性质是解决问题的关键.17.在平面直角坐标系中,若与点关于原点对称,则点在第________象限.【答案】四【解析】【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数求出点P的坐标,再根据各象限内点的坐标特征解答.【详解】∵P(m,n)与点Q(-2,3)关于原点对称,∴m=2,n=-3,∴点P的坐标为(2,-3),∴点P在第四象限.故答案是: 四.【点睛】考查了关于原点对称的点的坐标,两点关于原点对称,则两点的横、纵坐标都是互为相反数.18.对于平面图形上的任意两点, ,如果经过某种变换(如:平移、旋转、轴对称等)得到新图形上的对应点, ,保持,我们把这种对应点连线相等的变换称为“同步变换”. 对于三种变换:①平移、②旋转、③轴对称,其中一定是“同步变换”的有________(填序号).【答案】①【解析】【分析】根据平移变换、旋转变换和轴对称变换的性质,依据“同步变换”的定义判断可得.【详解】平移的性质是把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的所有点平移的方向和距离都相等,故平移变换一定是“同步变换”;若将线段PQ绕点P旋转,则PP′=0,而QQ′≠0,故旋转变换不一定是“同步变换”;将相对于直线倾斜的线段PQ经过该直线的轴对称变换,所得PP′≠QQ′,故轴对称变换不一定是“同步变换”,故答案是: ①.【点睛】考查几何变换的类型,熟练掌握平移变换、旋转变换和轴对称变换的性质是解题的关键.19.在图中,是由基本图案多边形旋转而成的,它的旋转角为________.【答案】【解析】【分析】由于图形是基本图案多边形ABCDE旋转而成的,根据图形可以得到旋转形成的图形是一个正六边形,由此即可确定旋转角的度数.【详解】∵图形是基本图案多边形ABCDE旋转而成的,而根据图形知道旋转形成的图形是一个正六边形,∴它的旋转角是: 60°.【点睛】考查了旋转的性质,主要利用了旋转角的定义和正六边形的性质解决问题.20.如图,将绕点逆时针方向旋转,得到,看点的坐标为,则点坐标为________.【答案】【解析】【分析】利用旋转的性质得OB′=OB=2,A′B′=AB=1,∠BOB′=90°,∠OB′A′=∠OBA=90°,然后利用第二象限内点的坐标特征写出点A′坐标.【详解】∵A(2,1),∴AB=1,OB=2,∵△AOB绕点O逆时针方向旋转90°,得到△A′OB′,∴OB′=OB=2,A′B′=AB=1,∠BOB′=90°,∠OB′A′=∠OBA=90°,∴点A′坐标为(-1,2).故答案是: (-1,2).【点睛】考查了坐标与图形变化:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标. 常见的是旋转特殊角度如:30°,45°,60°,90°,180°.三、解答题(共4 小题,每小题10 分,共40 分)21.如图所示,是一块边长为的正方形瓷砖,其中瓷砖的阴影部分是半径为的扇形. 请你用这种瓷砖拼出三种不同的图案. 使拼成的图案既是轴对称图形又是中心对称图形,把它们分别画在下面边长为的正方形中(要求用圆规画图).【答案】见解析.【解析】图形(1)既轴对称(对称轴为正方形对角线所在的直线),又中心对称(对称中心为正方形的中心),根据小正方形的对称性,将小正方形换动不同方向,得出既轴对称图形又中心对称的图形.【详解】既轴对称图形又中心对称的图形如图所示. 答案不唯一.【点睛】考查了运用旋转,轴对称方法设计图案的问题. 关键是熟悉有关图形的对称性,利用中心对称性拼图.22.如图所示,每个小正方形的边长为个单位长度,作出关于原点对称的并写出、、的坐标.【答案】见解析.【解析】【分析】根据直角坐标系中,关于原点对称的两个点的坐标特点是: 横坐标,纵坐标都互为相反数,根据点的坐标就确定原图形的顶点的对应点,进而即可作出所求图形.【详解】解: 根据图形可知: , , ,各点关于原点对称的点的坐标分别是: , , ,然后连接点再依次连接可得所求图形.【点睛】考查了关于原点对称的知识,要求学生会画图,会表示点的坐标. 关键是掌握关于原点对称的两个点的坐标特点是: 横坐标,纵坐标都互为相反数,根据点的坐标就可以画出对称图形.23.如图,已知, 绕点逆时针旋转得到,恰好在上,连接.(1) 与有何关系?并说明理由;线段与在位置上有何关系?为什么?【答案】(1)互补;(2) .【解析】(1)根据旋转的性质可得∠BAC=∠DAE=90°,然后表示出∠CAE,再根据∠BAE=∠BAC+∠CAE列式整理即可得解;(2)根据旋转的性质可得∠BAD=∠CAE,AB=AD,AC=AE,再利用等腰三角形两底角相等表示出∠B.∠ACE,然后求出∠BCE=90°,根据垂直的定义即可得解.【详解】解:与互补. 理由如下:由旋转的性质知: ,∴,∵,∴,因此与互补;线段. 理由如下:由旋转知: , , ,∴,,∴,∵,∴,∴,∴.【点睛】考查了旋转的性质,等腰三角形两底角相等的性质,垂直的定义,熟练掌握旋转的性质是解题的关键.24.如图所示的网格中,每个小方格都是边长为的小正方形,,把绕点按顺时针旋转后得到,请画出这个三角形并写出点的坐标;以点为位似中心放大,得到,使放大前后的面积之比为,请在下面网格内出.【答案】见解析.【分析】(1)直接利用旋转的性质得出对应点位置进而得出答案;(2)利用位似图形的性质进而得出对应点位置即可得出答案.【详解】如图所示: ,即为所求,点的坐标为: ;如图所示:.【点睛】考查了位似变换和旋转变换,解题关键是正确得出对应点位置.。

初中数学 单元测试卷 九年《图形与坐标》

初中数学 单元测试卷 九年《图形与坐标》

图形与坐标单元测试卷(满分:150分 时间:120分钟)一、选择题(每小题3分,共30分)1.在平面直角坐标系中,点()51-,所在的象限是( ) A .第一象限 B.第二象限 C.第三象限 D.第四象限2.已知点P ()3,2-关于y 轴的对称点为Q ()b a ,,则a+b 的值是( ) A.1 B.-1 C.5 D.-53.在平面直角坐标系中,点()2,3-关于原点对称的点是( ) A. ()3,2- B. ()2,3-- C. ()2,3 D. ()2,3-4.在平面直角坐标系中,若点P ()1,3-+m m 在第四象限,则m 的取值范围为( )A .−3<m <1 B. m >1 C. m <−3 D. m >−35.若线段CD 是由线段AB 平移得到的,点A ()3,1-的对应点为C ()2,2,则点B()1,3--的对应点D 的坐标是()A.()2,0-B.()2,1-C.()0,2-D.()6,4 6.已知点A ()b a b a -+,与B ()1,5-关于x 轴对称,则()b a -2020的值为( ) A.1 B.-1 C.-52020D.520207.在平面直角坐标系中,如图已知点E ()2,4-,F ()2,2--,以原点O 为位似中心,相似比为2:1,把△EFO 缩小,则点E 的对应点E 1的坐标是( )A. ()1,2-B. ()4,8-C.()1,2-或()1,2- D ()4,8-或()4,8-8.将含有30∘角的直角三角板OAB 如图所示放置在平面直角坐标系中,OB 在x 轴上,若OA =2,将三角板绕原点O 顺时针旋转75∘,求点A 的对应点A ′的坐标( )A.()2,3- B.()3,2- C.()2,2- D.()2,2-9.如图,已知菱形OABC 的顶点O ()0,0,B ()2,2,若菱形绕点O 逆时针旋转,每秒旋转45∘,则第60秒时,菱形的对角线交点D 的坐标为( ) A. ()1,1- B. ()1,1-- C.()0,2 D.()2,0-10.如图所示的抛物线对称轴是直线1=x ,与x 轴有两个交点,与y 轴交点坐标是(0,3),把它向下平移2个单位后,得到新的抛物线解析式是c bx ax y ++=2,以下四个结论:①b 2−4ac <0, ②abc <0, ③4a+2b+c =1, ④a −b+c >0中, 判断正确的有( )A. ②③④B. ①②③C. ②③D. ①④二、填空题(每小题4分,共24分)11.已知P ₁点关于x 轴的对称点P ₂()52,23--a a 是第三象限内的整点(横、纵坐标都为整数的点,称为整点),则点P ₁的坐标是 .12.已知A ()3,0,B ()3,2是抛物线c bx x y ++-=2上的两点,该抛物线的顶点坐标是 .13.若M ()1,1+-k k 关于y 轴的对称点在第四象限内,则一次函数()k x k y +-=1的图象不经过第 象限.14.在平面直角坐标系中,对于平面内任一点()b a ,,若规定以下三种变换:①△()b a ,=()b a ,-; ②○()b a ,=()b a --,; ③Ω()b a ,=()b a -,;按照以上变换有:△(○()2,1)= ()2,1-,那么○(Ω()4,3)等于 . 15.已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A,C的坐标分别为A()0,10,C()4,0,点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为 . 16.如图,将边长为1的正三角形OAP沿x轴正方向连续翻转2020次,点P依次落在点P₁,P₂,P₃……P2020的位置,则点P2020的横坐标为.三、解答题(第17小题8分,第18、19、20、21、22小题各10分,共58分)17.(本小题8分)如图,在平面直角坐标系中,△ABC和△A1B1C1关于点E成中心对称.(1)画出对称中心E,并写出点E、A、C的坐标;(2)P ()ba,是△ABC的边AC上一点,△ABC经平移后点P的对应点为P 2()2,6+ +ba,请画出上述平移后的△A2B2C2,并写出点A2、C2的坐标;(3)判断△A2B2C2和△A1B1C1的位置关系(直接写出结果).如图,某城市A地和B地之间经常有车辆来往,C地和D地之间也经常有车辆来往,建立如图所示的直角坐标系,四个地方的坐标分别为 A ()2,3-,B ()4-,,C1-()3-,,D ()1,1,要拟建一个加油站,那么加油站建在哪里,对大家都方便?给出5-具体位置.19.(本小题10分)如图,在平面直角坐标系中,已知A ()0,1,B ()0,2,四边形ABCD是正方形.(1)写出C,D两点坐标;(2)将正方形ABCD绕O点逆时针旋转90º后所得四边形的四个顶点的坐标分别是多少?(3)若将(2)所得的四边形再绕O点逆时针旋转90º后,所得四边形的四个顶点坐标又分别是多少?如图,在平面直角坐标系中,已知Rt △AOB 的两直角边OA ,OB 分别在x 轴,y 轴的正半轴上(OA <OB ),且OA ,OB 的长分别是一元二次方程048142=+-x x 的两个根。

初三数学图形与坐标试题答案及解析

初三数学图形与坐标试题答案及解析

初三数学图形与坐标试题答案及解析1.与在平面直角坐标系中的位置如图所示,它们关于点成中心对称,其中点,则点的坐标是()A.B.C.D.【答案】B.【解析】由于点A1与点A关于原点O成中心对称,点A(4,2),所以点A1的坐标为(-4,-2),故选B.【考点】中心对称.2.如图,在平面直角坐标系中,点A(1,0),B(2,0),正六边形ABCDEF沿x轴正方向无滑动滚动,当点D第一次落在x轴上时,点D的坐标为:;在运动过程中,点A的纵坐标的最大值是;保持上述运动过程,经过的正六边形的顶点是 .【答案】(4,0);2;B,F.【解析】根据题意,当点D第一次落在x轴上时,点D距开始时点B的位置2个单位,故此时点D的坐标为:(4,0).在运动过程中,点A的纵坐标的最大值是AD⊥x轴时的y值,为2.∵如图,在运动过程中,经过的正六边形的顶点是D,F;经过的正六边形的顶点是E,A;经过的正六边形的顶点是F,B;经过的正六边形的顶点是A,C;经过的正六边形的顶点是B,D;经过的正六边形的顶点是C,E;经过的正六边形的顶点是D,F,∴正六边形滚动6个单位长度时正好滚动一周.∴从点开始到点正好滚动个单位长度,∵,∴经过的正六边形的顶点与经过的正六边形的顶点一样,为B,F.【考点】1.探索规律题(图形的变化类—循环问题);2.正多边形和圆;3.坐标与图形性质;4.旋转的性质.3.已知线段CD是由线段AB平移得到的,点A(–1,4)的对应点为C(4,7),则点B(–4,–1)的对应点D的坐标为()A.(1,2)B.(2,9)C.(5,3)D.(–9,–4)【答案】A.【解析】由于线段CD是由线段AB平移得到的,而点A(-1,4)的对应点为C(4,7),比较它们的坐标发现横坐标增加5,纵坐标增加3,利用此规律即可求出点B(-4,-1)的对应点D的坐标:∵线段CD是由线段AB平移得到的,而点A(-1,4)的对应点为C(4,7),∴由A平移到C点的横坐标增加5,纵坐标增加3.∴点B(-4,-1)的对应点D的坐标为(-4+5,-1+3),即(1,2).故选A.【考点】坐标与图形变化-平移.4.如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角. 当小球第1次碰到矩形的边时的点为P1,第2次碰到矩形的边时的点为P2,……第n次碰到矩形的边时的点为Pn. 则点P3的坐标是,点P2014的坐标是 .【答案】(8,3);(5,0).【解析】如图,根据反射角与入射角的定义作出图形,可知:(1)当点P第3次碰到矩形的边时,点P的坐标为(8,3);(2)每6次反弹为一个循环组依次循环,经过6次反弹后动点回到出发点(0,3),∵2014÷6=335…4,∴当点P第2014次碰到矩形的边时为第336个循环组的第4次反弹,点P的坐标为(5,0).【考点】1.探索规律题(图形的变化类);2.跨学科问题;3.点的坐标.5.点P(4,-5)关于原点对称的点的坐标是A.(4,5)B.(4,-5)C.(-4,5)D.(-4,-5)【答案】C.【解析】∵关于原点对称的点的纵横坐标互为相反数;∴点P(4,-5)关于原点对称的点的坐标是(-4,5).故选C.【考点】关于原点对称的点的坐标.6.在平面直角坐标系中,点A(2,-3)在第()象限.A.一B.二C.三D.四【答案】D【解析】根据各象限内点的坐标特征解答即可.解:点A(2,-3)在第四象限.故选D.7.如图,矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(3,2).点D、E分别在AB、BC边上,BD=BE=1.沿直线DE将△BDE翻折,点B落在点B′处,则点B′的坐标为()A.(1,2) B.(2,1) C.(2,2) D.(3,1)【答案】B.【解析】∵矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(3,2),∴CB=3,AB=2,又根据折叠得B′E=BE,B′D=BD,而BD=BE=1,∴CE=2,AD=1,∴B′的坐标为(2,1).故选B.【考点】1.翻折变换(折叠问题)2.坐标与图形性质.8.已知点P的坐标为(m,n),O为坐标原点,连结OP,将线段OP绕O点顺时针旋转90°得OP′,则点P′的坐标为________.【答案】(n,-m)【解析】对于坐标平面上的点顺时针旋转90°后的坐标变化是纵坐标变为横坐标,横坐标变为纵坐标的相反数.9.将等边三角形ABC放置在如上中图的平面直角坐标系中,已知其边长为2,现将该三角形绕点C按顺时针方向旋转90°,则旋转后点A的对应点A’的坐标为()A.(1+,1)B.(﹣1,1-)C.(﹣1,-1)D.(2,)【答案】A.【解析】∵△ABC为等边三角形,∴CA=CB=AB=2,∠CAB=∠CBA=∠BCA=60°,如图过A′作A′D⊥x轴,垂足为D.则∠A′CD=30°,CA′=2由勾股定理知:A′D=1,CD=,∴OD=1+∴A′的坐标为(1+,1)故选A.考点: 1.坐标与图形变化-旋转;2.等边三角形的性质.10.已知点P(2a-3,a+1)在第二象限,则a的取值范围是()A.a>B.a<-1C.−1<a<D.1<a<【答案】C.【解析】∵点P(2a-3,a+1)在第二象限,∴,解得:-1<a<,故选C.考点: 1.点的坐标;2.解一元一次不等式组;11.如图,直线与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是.【答案】(7,3).【解析】旋转不改变图形的大小和性质,所得图形与原图形全等,根据全等三角形的性质,即可得到相应线段的长.试题解析:直线y=-x+4与x轴,y轴分别交于A(3,0),B(0,4)两点.旋转前后三角形全等.由图易知点B′的纵坐标为OA长,即为3,∴横坐标为OA+OB=OA+O′B′=3+4=7.∴点B′的坐标为(7,3).考点: 1.坐标与图形变化-旋转;2.一次函数的性质.12.将点A(4,0)绕着原点O顺时针方向旋转300角到对应点A/,则点A/的坐标是()A.B.(4,-2)C.D.【答案】C.【解析】根据旋转中心为原点,旋转方向顺时针,旋转角度30°,作出点A的对称图形A′,作A′B⊥x轴于点B,利用30°的函数值求得OB,A′B的长,进而根据A′所在象限可得所求点的坐标.作A′B⊥x轴于点B,∵OA′=OA=4,∠AOA′=30°,∴A′B=OA′=2,OB=OA×cos30°=.所以点A′的坐标为(,-2)故选C.考点: 坐标与图形变化-旋转.13.在平面直角坐标系中,△ABC的顶点坐标是A(-7,1),B(1,1),C(1,7).线段DE的端点坐标是D(7,-1),E(-1,-7).(1)试说明如何平移线段AC,使其与线段ED重合;(2)将△ABC绕坐标原点O逆时针旋转,使AC的对应边为DE,请直接写出点B的对应点F的坐标;(3)画出(2)中的△DEF,并和△ABC同时绕坐标原点O逆时针旋转90°,画出旋转后的图形.【答案】(1)将线段AC先向右平移6个单位;(2)F(-1,-1).【解析】(1)按照“左减右加,上加下减”的移动法则,可知将线段AC先向右平移6个单位,(2)按照中心对称的定义,可知F(-1,-1).试题解析:(1)将线段AC先向右平移6个单位,再向下平移8个单位.(其它平移方式也可).(2)F(-1,-1).(3)画出如图所示的正确图形.【考点】平面直角坐标系.14.已知点P(x,),则点P一定()A.在第一象限B.在第一或第二象限C.在x轴上方D.不在x轴下方【答案】D.【解析】:已知点P(x,|x|),∵|x|≥0,∴当|x|>0时,点P在x轴的上方;当|x|=0时,点P在x轴上.只有D符合条件.故选D.【考点】点的坐标.15.点(3,2)关于x轴的对称点为A.(3,﹣2)B.(﹣3,2)C.(﹣3,﹣2)D.(2,﹣3)【答案】A【解析】关于x轴对称的点的坐标特征是横坐标相同,纵坐标互为相反数,从而点(3,2)关于x轴对称的点的坐标是(3,-2)。

第4章 图形与坐标单元测试卷(标准难度 含答案)

第4章 图形与坐标单元测试卷(标准难度 含答案)

浙教版初中数学八年级上册第四单元《图形与坐标》单元测试卷考试范围:第四单元;考试时间:120分钟;分数:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36分。

在每小题列出的选项中,选出符合题目的一项)1.如图是象棋棋盘的一部分,若“将”位于点(1,−2)上,“相”位于点(3,−2)上,则“炮”的位置是( )A. (−1,1)B. (−1,2)C. (−2,1)D. (−2,2)2.以下是甲、乙、丙三人看地图时对四个地标的描述:甲:从学校向北直走500米,再向东直走100米可到图书馆.乙:从学校向西直走300米,再向北直走200米可到邮局.丙:邮局在火车站西方200米处.根据三人的描述,若从图书馆出发,则能走到火车站的走法是( )A. 向南直走300米,再向西直走200米B. 向南直走300米,再向西直走600米C. 向南直走700米,再向西直走200米D. 向南直走700米,再向西直走600米3.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的坐标分别为A(−2,1)和B(−2,−3),那么轰炸机C的坐标是( )A.(−2,3)B. (2,−1)C. (−2,−1)D. (−3,2)4.根据下列表述,能确定一个点位置的是( )A. 北偏东40°B. 某地江滨路C. 光明电影院6排D. 东经116°,北纬42°5.下列说法中,错误的是( )A. 平行于x轴的直线上的所有点的纵坐标相同B. 平行于y轴的直线上的所有点的横坐标相同C. 若点P(a,b)在x轴上,则a=0D. (−3,4)与(4,−3)表示两个不同的点6.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字−1,1,2,3.若转动转盘两次,每次转盘停止后指针所指区域的数字分别记为m,n(当指针恰好指在分界线上时,不记,重转),则点(m,n)在第四象限的概率为( )A. 18B. 316C. 14D. 127.已知点P的坐标为(1−a,2a+4),且点P到两坐标轴距离相等,则a的值为( )A. −5B. −3C. −1或−5D. −1或−38.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(−1,1),第2次接着运动到点(−2,0),第3次接着运动到点(−3,2),…,按这样的运动规律,经过第2021次运动后,动点P的坐标是( )A. (2021,0)B. (−2021,0)C. (−2021,1)D. (−2021,2)9.如图,画在透明胶片上的四边形ABCD,点A的坐标是(0,2).现将这张胶片平移,使点A落在点A′(4,−1)处,则下列平移不正确的是( )A. 先向右平移4个单位,再向下平移3个单位B. 向AA′方向平移5个单位C. 先向下平移3个单位,再向右平移4个单位D. 先向左平移4个单位,再向上平移3个单位10.如图,把三角形ABC先向右平移3个单位长度,再向上平移2个单位长度得到三角形DEF,则顶点C(0,−1)对应点的坐标为( )A. (0,0)B. (1,2)C. (1,3)D. (3,1)11.如图所示,三架飞机P,Q,R保持编队飞行,某时刻在坐标系中的坐标分别为(−1,1),(−3,1),(−1,−1).30秒后,飞机P飞到P′(4,3)位置,则飞机Q,R的位置Q′,R′分别为( )A. Q′(2,3),R′(4,1)B. Q′(2,3),R′(2,1)C. Q′(2,2),R′(4,1)D. Q′(3,3),R′(3,1)12.点A(3,4)关于x轴对称的是点B,关于y轴对称的是点C,则BC的长为( )A. 6B. 8C. 12D. 10第II卷(非选择题)二、填空题(本大题共4小题,共12分)13.如图1,将射线Ox按逆时针方向旋转角β,得到射线Oy,如果P为射线Oy上的一点,且OP=a,那么我们规定用(a,β)表示点P在平面内的位置.例如,图2中,如果OM=8,∠xOM=110∘,那么点M在平面内的位置记为M(8,110∘).如果点A,B在平面内的位置分别记为A(5,30∘),B(12,120∘),那么AB的长为.14.周日,小华做作业时,把老师布置的一个正方形忘了画下来,打电话给小云,小云在电话中答复他:“你可以这样画,正方形ABCD的顶点A,B,C的坐标分别是(1,2),(−2,2),(−2,−1),顶点D的坐标你自己想吧!”那么顶点D的坐标是.15.如图,在直角坐标系中,以点A(3,1)为端点的四条射线AB,AC,AD,AE分别过点B(1,1),点C(1,3),点D(4,4),点E(5,2),则∠BAC______ ∠DAE(填“>”、“=”、“<”中的一个).16.点P(a+2,2a+1)向右平移3个单位长度后,正好落在y轴上,则a=______.三、解答题(本大题共9小题,共72分。

初中数学 单元测试卷 九年《图形与坐标》 (4)

初中数学 单元测试卷 九年《图形与坐标》 (4)

图形与坐标 (满分150分 时间120分钟)一、 选择题 (本题共计 10 小题,每题 3 分,共计30分 )1. 在平面直角坐标系中,点P(−3,−5)关于原点对称的点的坐标是( )A.(3,-5)B.(-3,5)C.(3,5)D.(-3,-5)2. 如图,在平面直角坐标系中,矩形ABCD 的顶点B 的坐标为(2,1),顶点A ,C 分别在y 轴和x 轴上.沿过点B 的直线翻折矩形,使点A 落在OC 上的点E 处,折痕为BD .则点E 的坐标为( )A.(0.5,0)B.(1,0)C.(2-√3,0)D.(√3,0) 3. 已知点A(a +2, 5),B(−4, 1−2a),若直线AB//x 轴,则a 的值为( )A.-2B.-6C.2D.34. 点A(−3, 3)与点B(−3, −1)两点之间的距离为( )A.1B.2C.3D.45. 点P(2, 1)关于直线y =x 对称的点的坐标是( )A.(-2, 1)B.(2, -1)C.(-2, -1)D.(1, 2)6. 在直角坐标系中A (1,2)点的横坐标乘以−1,纵坐标不变,得到A ’点,则A 与A’的关系是( )A.关于x 轴对称B.关于y 轴对称C.关于原点对称D.将A 点向x 轴负方向平移一个单位7. 如图,在平面直角坐标系中,∆ABC 绕某一点P 旋转一定的角度得到∆A ′B ′C′,根据图形变换前后的关系可得点P 的坐标为( )A.(0, 1)B.(1, -1)C.(0, -1)D.(1, 0)8. 如图,在平面直角坐标系中,有两点A(4, 2),B(3, 0),以原点O 为位似中心,A ′B ′与AB 的相似比为12,得到线段A′B′,正确的画法是( )A. B. C. D.9. 如图所示,在平面直角坐标系中,已知点A(2,4),过点A 作AB ⊥x轴于点B .将∆AOB 以坐标原点O 为位似中心缩小为原图形的12,得到∆COD ,则CD 的长度是( )A.2B.1C.4D.2√510. 如图,动点P 从(0, 3)出发,沿所示的方向运动,到(3, 0)时记为第一次反弹,以后每当碰到矩形的边时记一次反弹,反弹时反射角等于入射角.那么点P 第2020次反弹时碰到矩形边上的点的坐标为( )A.(1, 4)B.(8, 3)C.(7, 4)D.(5, 0)二、填空题(本题共6道小题,每小题4分,共计24分)11. 已知点A(x ,4-y)与点B(1-y ,2x)关于y 轴对称,则点(x ,y)的坐标为_______.第7题图 第2题图第10题图 第9题图12. 如图,象棋盘上,若“将”位于点(1,−2),“车”位于点(−3,−2),则“马”位于点_______.13. 若点 A (a ,2)B (-3,b )在第二、第四象限的角平分线上,则 a =_______,b =_______.14. 如图,平面直角坐标系中,等腰三角形∆OPQ 的顶点P 的坐标为(4,3),腰长OP =5,点Q 位于y 轴正半轴上,则点Q 的坐标为_______.15. 已知点A (1,0) ,B (0,2),点P 在x 轴上,且∆PAB 的面积6,则点P 的坐标为_______.16. 如图,等边三角形的顶点A (1,1),B (3,1),规定把等边∆ABC “先沿x 轴翻折,再向左平移1个单位”为一次变换,如果这样连续经过2018次变换后,等边∆ABC 的顶点C 的坐标为_______.三、解答题(本题共9小题,17题8分;18—22题每题10分;23,24题每题12分;25题14分)17.(8分)如图,在平面直角坐标系xOy 中,点A 的坐标为(4,−3),在坐标轴上确定一点P ,使∆AOP 为等腰三角形.(1)求出符合题意的以OA 为底边的点P 的坐标;(2)请在图中画出以OA 为腰的符合条件的∆AOP ,并直接写出这样的点P 的坐标 .18.(10分)如图,已知A (2,3),B (1,1),C (4,1)是平面直角坐标系中的三点.(1)请画出∆ABC 关于y 轴对称的∆A 1B 1C 1;(2)画出∆A 1B 1C 1向下平移3个单位得到的∆A 2B 2C 2,并写出点B 2的坐标;(3)画出∆ABC 绕点O 顺时针旋转90°得到的图形∆ABC ,并直接写出线段AB 扫过的图形的面积.19.(10分)如图,在平面直角坐标系中,∆ABC 的三个顶点坐标分别为A (2,1),B (1,−2),C (3,−1),P (m ,n)是∆ABC的边AB 上一点.(1)画出∆A 1B 1C 1,使∆A 1B 1C 1与△ABC 关于O 成中心对称,并写出点A ,P 的对应点A 1,P 1 的坐标;(2)以原点O 为位似中心,位似比为1:2,在y 的左侧,画出将∆A 1B 1C 1放大后的∆A 2B 2C 2 ,并分别写出点A 1,P 1的对应点A 2,P 2坐标;(3)求sin ∠B 2A 2C 2的值. 第12题图 第16题图 第14题图 第17题图第18题图 第19题图20.(10分)关于确定线段之和最小值问题,我们已经知道:当直线l的同侧有A,B两点,在直线l上确定一点P,使PA+PB的值最小时,只要作出点A关于直线l的对称点A',连接A'B,A'B与直线l的交点即为所求的点P(如图1 所示).解决问题:如图2,已知:在平面直角坐标系中,A(2,7),B(4,1),请你在坐标轴上确定两点C,D,使AC+CD+DB的值最小.(1)叙述作图过程,保留作图痕迹,不说作图依据;(2)求AC+CD+DB的最小值.第20题图21.(10分)如图,▱ABCD水平放置在平面直角坐标系中,点A,D的坐标分别为(−2,5),(0,1),点B(3,5)在函数y=kx(k>0)的图象上.(1)求函数y=kx的表达式;(2)求点C的坐标;(3)将▱ABCD沿x轴正方向平移10个单位后,判断点C能否落在函数y=kx(k>0)的图象上,请说明理由.第21题图22.(10分)如图,在∆ABC中,BC=AC=10,AB=16,CD为AB边的高,点A在x 轴上,点B在y轴上,点C在第一象限,若A从原点出发,沿x轴向右以每秒1单位长的速度运动,则点B随之沿y轴下滑,并带动∆ABC在平面内滑动,设运动时间为t秒,当B到达原点时停止运动(1)连接OC,线段OC的长随t的变化而变化,求出当OC最大时t的值;(2)直接写出当∆ABC的边与坐标轴平行时t的值.第22题图23.(12分)如图,已知四边形ABCD和四边形DEFG为正方形,点E在线段DC上,点A,D,G在同一直线上,且AD=3,DE=1,连接AC,CG,AE,并延长AE交OG于点H.(1)求证:∠DAE=∠DCG;(2)求sin∠EAC的值;(3)求线段AH的长.第23题图24.(12分)如图,已知二次函数y=−x2+bx+c(b,c为常数)的图象经过点A(3,1),点C(0,4),顶点为点M,过点A作AB //x轴,交y轴于点D,交该二次函数图象于点B,连结BC.(1)求该二次函数的解析式及点M的坐标;(2)若将该二次函数图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在∆ABC的内部(不包括∆ABC的边界),求m的取值范围;(3)点P是直线AC上的动点,若点P,C,M所构成的三角形与∆BCD相似,请直接写出所有满足条件的点P的坐标(直接写出结果,不必写解答过程).第24题图25.(14分)如图,抛物线y=−x2+bx+c经过A(−1,0),B(3,0)两点,且与y 轴交于点C,点D是抛物线的顶点,抛物线的对称轴DE交x轴于点E,连接BD.(1)求经过A,B,C三点的抛物线的函数表达式;(2)点P是线段BD上一点,当PE=PC时,求点P的坐标;(3)在(2)的条件下,过点P做PF⊥Ox于点F,G为抛物线上一动点,M为x 轴上一动点,N为直线PF上一动点,当以点F,M,G,N为顶点的四边形是正方形时,请直接写出点M的坐标.图形与坐标单元测试卷答案一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1.C2.C3.A4.D5.D6.B7.B8.D9.A 10.C二、填空题(本题共计6小题,每题4分,共计24分)11.(1,2) 12.(4,1) 13.-2 314.(0,5)或(0,6) 15.(-5,0)或(7,0) 16.(﹣2016)三、解答题(本题共9小题,17题8分;18—22题每题10分;23,24题每题12分;25题14分)17(8分).解:(1)(258,0),(0,-256)-------------------------------------------------------------4分 (2)(0,5),(0,-5),(5,0),(-5,0),(8,0),(0,-6)-------------------------------------------8分 18(10分).解:(1)如图△A 1B 1C 1即为所求--------------------------------------------------------2分--(2)如图△A 2B 2C 2即为所求 B 2(-1,-2)-------------------------------------------------------6分(3)如图△A 3B 3C 3即为所求 114π ----------------------------------------------------------------10分19(10分).(1)如图△A 1B 1C 1即为所求 A 1(-2,-1) P 1(-m ,-n )-----------------------4分(2)如图△A 2B 2C 2即为所求 A 2(-4,-2) P 2(-2m ,-2n )---------------------------------8分(3)sin ∠B 2A 2C 2的值是√22- ----------------------------------------------10分 20(10分).解:(1)①作点A 关于y 轴的对称点M ,②作点B 关于x 轴的对称点N ,③作直线MN 分别交x 轴,y 轴于点C ,D ,④点C ,D 即为所求作的点.------------------------------------5分(2)构造以线段MN 为斜边,两条直角边平行于坐标轴的直角三角形,再利用勾股定理可求出AC+CD+DB =10---------------------------10分21(10分).解:(1)y=15x ---------------------------------------------4分 (2)C (5,1)----------------------------------------------------------------------------------------------------8分(3)在 ---------------------------------------------------------------------------------------------------------10分 22(10分).解:(1)当点O ,D ,C 三点在同一条直线上时OC 最大,此时t =8√2 ------6分(2)485,645 -------------------------------------------------------------------------------------------------------10分 23(12分).解:(1)证明:∵四边形ABCD ,四边形DEFG 为正方形∴AD=DC DE=GD ∠ADC=∠CDG =900∴△ADE ≌△CDG∴∠DAE=∠DCG ----------------------------------------------------------------------------------------------------4分(2)∵∠DAE=∠DCG ,∠DEA=∠HEC∴1800-∠DAE-∠DEA=1800-∠DCG-∠HEC∴∠EHC=∠ADC=900=∠GDC∵∠ECH=∠GCD∴△EHC ∽△GDC --------------------------------------------------------------------------------------------------6分∴ EH GD =CH CD =CE GC∴ EH 1 =CH 3 =√10 ∴EH =√105,CH =3√105------------------------------------------------------------------------------------------8分 ∵AC =3√2∴sin ∠EAC=CH AC =√55 ---------------------------------------------------------------------------------------------9分(3)AH=AE+EH =6√105 ---------------------------------------------------------------------------------------12分 24(12分).解:(1)y=-x 2+2x +4 M (1,5) -------------------------------------------------------4分(2)设AC 直线解析式为y=kx+n将A (3,1)C (0,4)代入y=kx+n 得{1=3k +n 4=n解得{k =−1n =4∴y=-x +4 -------------------------------------------------------------------------------------------------------6分 当x =1 y =3设M (1,5—m )∵M 点落在△ABC 的内部∴1<5—m <3∴2<m <4 ---------------------------------------------------------------------------------------------------8分(3)P 1(-3,7)P 2(-13,133)P 3(13,113)P 4(3,1)----------------------------------------12分 25(14分).解:(1)y=-x 2+2x +3 ---------------------------------------------------------------------3分(2)∵y=-x 2+2x +3=-(x 2—2x +1)+4=-(x —1)2+4∴D (1,4)--------------------------------------------------------------------------------------------------4分 设直线BD 的解析式y=kx+n把B (3,0),D (1,4)代入得{4=k +n 0=3k +n解得{k =−2n =6∴y =-2x +6 -----------------------------------------------------------------------------------------------------6分 ∵P 在BD 上--∴设P (t ,-2t +6)--------------------------------------------------------------------------------------------7分 过P 作PH ⊥OC 于H ,PF ⊥OB 于F∵PE=PC∵PE 2=PC 2∴(t —1)2+(-2t +6)2=t 2+(3+2t —6)2解得 t =2 ----------------------------------------------------------------------------------------------------9分 ∴P (2,2)--------------------------------------------------------------------------------------------------10分(3)M 1(3+√132,0),M 2(3−√132,0),M 3(1+√212,0),M 4(1−√212,0)-------------14分。

初中数学 单元测试卷 九年《图形与坐标》 (1)

初中数学 单元测试卷 九年《图形与坐标》 (1)

《图形与坐标》测试题一、选择题(本大题共10道小题,每小题3分,共30分.)A.第一象限B.第二象限C.第三象限D.第四象限A.(2,1)B.(﹣2,﹣1)C.(2,﹣1)D.(1,﹣2)A.(-1,0)B. (0,-1)C. (1,0)D. (0,1)4.正方形ABCD在平面直角坐标系中的位置如图,将正方形ABCD绕D点顺时针方向旋转90°后,BA.(﹣2,2)B.(4,1)C.(3,1)D.(4,0)5.如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABO与△A′B′O′是以点P为位似中心的位似图形,它们的顶点均在格点(网格线的交点)上,则点P的坐标为()A.(0,0) B.(0,1) C.(﹣3,2) D.(3,﹣2)6.点E(a,b)到x轴的距离是4,到y轴距离是3,则有()A.a=3, b=4 B.a=±3,b=±4 C.a=4, b=3 D.a=±4,b=±37.以方程组的解为坐标的点(x,y)在平面直角坐标系中的位置是()A A.第一象限B.第二象限C.第三象限D.第四象限A A.(4,3)B.(3,4)C.(﹣1,﹣2)D.(﹣2,﹣1)9.将△ABC的各顶点的横坐标都乘以,则所得三角形与△ABC的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.将△ABC向左平移了一个单位10.如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是()A. (6,0)B. (6,3)C.(6,5)D.(4,2)1第4题图第5题图二、填空题(本大题共6道小题,每小题4分,共24分.)11. 如果用(7,8)表示七年级八班,那么八年级七班可表示成 .12. 在平面直角坐标系中,点A (-2,0),动点P 在直线y =-√3x 上,若△APO 为等腰三角形,则点P 的坐标是 .13. 在平面直角坐标系中,点A,B 的坐标分别为(m ,3),(3m -1,3).若线段AB 与直线y =2x +1相交,则m 的取值范围为 .14. 如图,点P 是正比例函数y =x 与反比例函数y = kx 在第一象限内的交点,PA ⊥OP 交x 轴于点A ,△POA 的面积为2,则k 的值是 .15.在平面直角坐标系中,已知点A (4,0),B (-6,0),点C 是y 轴上一动点,当∠BCA =45°时,求点C 的坐标为 .16.如图,点B 1在直线l :y =x 上,点B 1的横坐标为2,过B 1作B 1A 1⊥1,交x 轴于点A 1,以A 1B 1为边,向右作正方形A 1B 1B 2C 1,延长B 2C 1交x 轴于点A 2;以A 2B 2为边,向右作正方形A 2B 2B 3C 2,延长B 3C 2交x 轴于点A 3;以A 3B 3为边,向右作正方形A 3B 3B 4C 3延长B 4C 3交x 轴于点A 4;…;按照这个规律进行下去,点∁n的横坐标为(结果用含正整数n 的代数式表示)第16题图第14题图三、解答题(第17题8分,第18题10分,第19题10分,共28分.)17.(8分)王霞和爸爸、妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如图所示。

《第6章+图形与坐标》2013年单元测试卷(2)

《第6章+图形与坐标》2013年单元测试卷(2)

《第6章图形与坐标》2013年单元测试卷(2)一、选择题(共10小题,每小题3分,共30分)温馨提示:每小题四个答案中,只有一个是正确的请将正确的答案选出来.4.(3分)(2008•扬州)在平面直角坐标系中,将点A(1,2)的横坐标乘以﹣1,纵坐标不变,得到点A′,则点A和点A′的关系是26.(3分)如图,下列各点在阴影区域内的是()8.(3分)(2005•枣庄)在直角坐标系中,O为坐标原点,已知点A(1,1),在x轴上确定点P,使△AOP为等腰10.(3分)(2005•辽宁)若式子有意义,则点P(a,b)在()二、填空题(共6小题,每小题4分,共24分)温馨提示:填空题应当是填最简洁,最正确的答案!11.(4分)已知点A(4,y),B(x,﹣3),若AB∥x轴,且线段AB的长为5,x=_________,y=_________.12.(4分)(2010•南岗区一模)将点P(﹣3,y)向下平移3个单位,向左平移2个单位后得到点Q(x,﹣1),则xy=_________.13.(4分)已知线段MN平行于y轴,且MN的长度为3,若M(2,﹣2),那么点N的坐标是_________.14.(4分)(2007•泸州)在平面直角坐标中,已知点P(3﹣m,2m﹣4)在第一象限,则实数m的取值范围是_________.15.(4分)正三角形OAB的顶点O是原点,A点坐标是(﹣2,0),B点在第二象限,则B点的坐标是_________.16.(4分)(2005•枣庄)在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第10个正方形(实线)四条边上的整点个数共有_________个.三、解答题(共8题,共66分)温馨提示:解答题应把必要的解答过程表述出来!17.(6分)试判断以A(﹣1,﹣1)、B(5,﹣1)、C(2,2)为顶点的三角形的形状.18.(6分)如图所示的直角坐标系中,四边形ABCD各顶点的坐标分别为A(0,0)、B(9,0)、C(7,5)、D(2,7).求四边形ABCD的面积.这个数记作什么?(1)在下面的直角坐标系中画出线段AB;(2)把线段AB向左平移5个单位,得到线段CD,请你写出线段CD上任意一点的坐标.21.(8分)如图,梯形OABC是正六边形的一部分,画出它关于x轴对称的其余部分,如果AB的长为2,求出各顶点的坐标.22.(10分)(2008•贵阳)如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积.(2)在图中作出△ABC关于y轴的对称图形△A1B1C1.(3)写出点A1,B1,C1的坐标.23.(10分)(2008•梅州)如图,图形中每一小格正方形的边长为1,已知△ABC.(1)AC的长等于_________;(2)先将△ABC向右平移2个单位得到△A′B′C′,则A点的对应点A′的坐标是_________;(3)再将△ABC绕点C按逆时针方向旋转90°后得到△A1B1C1,则A点对应点A1的坐标是_________.24.(12分)(1)在直角坐标系中,将坐标为(1,1),(2,1),(2,2),(1,2),(1,3),(2,3)的点依次连接起来,组成一个图形;(2)作出(1)所得图形关于x轴的轴对称图形,并说明所得图形的各点的坐标与原图形上各点的坐标之间有什么关系?(3)画出将(1)中各点纵坐标加1,横坐标减去3后的所得图形,并说明所得图形可由原图形经怎样的变换得到?《第6章图形与坐标》2013年单元测试卷(2)参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)温馨提示:每小题四个答案中,只有一个是正确的请将正确的答案选出来..故选4.(3分)(2008•扬州)在平面直角坐标系中,将点A(1,2)的横坐标乘以﹣1,纵坐标不变,得到点A′,则点A和点A′的关系是26.(3分)如图,下列各点在阴影区域内的是()8.(3分)(2005•枣庄)在直角坐标系中,O为坐标原点,已知点A(1,1),在x轴上确定点P,使△AOP为等腰10.(3分)(2005•辽宁)若式子有意义,则点P(a,b)在()二、填空题(共6小题,每小题4分,共24分)温馨提示:填空题应当是填最简洁,最正确的答案!11.(4分)已知点A(4,y),B(x,﹣3),若AB∥x轴,且线段AB的长为5,x=9或﹣1,y=﹣3.12.(4分)(2010•南岗区一模)将点P(﹣3,y)向下平移3个单位,向左平移2个单位后得到点Q(x,﹣1),则xy=﹣10.13.(4分)已知线段MN平行于y轴,且MN的长度为3,若M(2,﹣2),那么点N的坐标是(2,1)或(2,﹣5).14.(4分)(2007•泸州)在平面直角坐标中,已知点P(3﹣m,2m﹣4)在第一象限,则实数m的取值范围是2<m<3.,解即可.∴15.(4分)正三角形OAB的顶点O是原点,A点坐标是(﹣2,0),B点在第二象限,则B点的坐标是.,,16.(4分)(2005•枣庄)在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第10个正方形(实线)四条边上的整点个数共有40个.三、解答题(共8题,共66分)温馨提示:解答题应把必要的解答过程表述出来!17.(6分)试判断以A(﹣1,﹣1)、B(5,﹣1)、C(2,2)为顶点的三角形的形状.AC==3BC==318.(6分)如图所示的直角坐标系中,四边形ABCD各顶点的坐标分别为A(0,0)、B(9,0)、C(7,5)、D(2,7).求四边形ABCD的面积.×EF+××这个数记作什么?20.(8分)已知线段AB的两个端点A,B的坐标分别为(2,3),(2,﹣1).(1)在下面的直角坐标系中画出线段AB;(2)把线段AB向左平移5个单位,得到线段CD,请你写出线段CD上任意一点的坐标.21.(8分)如图,梯形OABC是正六边形的一部分,画出它关于x轴对称的其余部分,如果AB的长为2,求出各顶点的坐标.BN=,,,22.(10分)(2008•贵阳)如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积.(2)在图中作出△ABC关于y轴的对称图形△A1B1C1.(3)写出点A1,B1,C1的坐标.×3=23.(10分)(2008•梅州)如图,图形中每一小格正方形的边长为1,已知△ABC.(1)AC的长等于;(2)先将△ABC向右平移2个单位得到△A′B′C′,则A点的对应点A′的坐标是(1,2);(3)再将△ABC绕点C按逆时针方向旋转90°后得到△A1B1C1,则A点对应点A1的坐标是(﹣3,﹣2).的长等于=24.(12分)(1)在直角坐标系中,将坐标为(1,1),(2,1),(2,2),(1,2),(1,3),(2,3)的点依次连接起来,组成一个图形;(2)作出(1)所得图形关于x轴的轴对称图形,并说明所得图形的各点的坐标与原图形上各点的坐标之间有什么关系?(3)画出将(1)中各点纵坐标加1,横坐标减去3后的所得图形,并说明所得图形可由原图形经怎样的变换得到?。

初三数学图形与坐标试题

初三数学图形与坐标试题

初三数学图形与坐标试题1.在如图的平面直角坐标系中,已知点A(-2,-1),B(0,-3),C(1,-2),请在如图上画出△ABC和与△ABC关于x轴对称的△A1B1C1.【答案】作图见解析.【解析】根据平面直角坐标系找出点A、B、C的位置,然后顺次连接即可,再根据网格结构找出点A、B、C关于x轴对称点A1、B1、C1的位置,然后顺次连接即可.试题解析:△ABC和与△ABC关于x轴对称的△A1B1C1如图所示.【考点】作图-轴对称变换.2.点P(5,-3)关于原点的对称点的坐标为【答案】(-5,3)【解析】两点关于原点对称,横坐标互为相反数,纵坐标互为相反数.试题解析:∵5的相反数是-5,-3的相反数是3,∴点P(5,-3)关于原点的对称点的坐标为(-5,3),【考点】关于原点对称的点的坐标.3.如图,在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O逆时针旋转90°至OA′,则点A′的坐标是.【答案】(﹣4,3).【解析】解:如图,过点A作AB⊥x轴于B,过点A′作A′B′⊥x轴于B′,∵OA绕坐标原点O逆时针旋转90°至OA′,∴OA=OA′,∠AOA′=90°,∵∠A′OB′+∠AOB=90°,∠AOB+∠OAB=90°,∴∠OAB=∠A′OB′,在△AOB和△OA′B′中,,∴△AOB≌△OA′B′(AAS),∴OB′=AB=4,A′B′=OB=3,∴点A′的坐标为(﹣4,3).故答案为:(﹣4,3).【考点】坐标与图形变化-旋转4.对平面上任意一点(a,b),定义f,g两种变换:f(a,b)=(a,-b).如f(1,2)=(1,-2);g(a,b)=(b,a).如g(1,2)=(2,1).据此得g(f(5,-9))=()A.(5,-9)B.(-9,-5)C.(5,9)D.(9,5)【答案】D【解析】根据两种变换的规则,先计算f(5,-9)=(5,9),再计算g(5,9)即可.解:g(f(5,-9))=g(5,9)=(9,5).故选D.5.在平面直角坐标系中,点P(-1,2)关于x轴的对称点的坐标为()A.(-1,-2)B.(1,-2)C.(2,-1)D.(-2,1)【答案】A【解析】关于x轴对称的点横坐标不变纵坐标相反,所以选A.6.将点A(4,0)绕着原点按顺时针旋转45°得到点B,则B点坐标是()A.(4, 4)B.(4,-4)C.(2, 4)D.(2,-4)【答案】B.【解析】作出图形,过点B作BC⊥x轴于点C,判断出△OBC是等腰直角三角形,根据等腰直角三角形的性质求出OC=BC=4,再写出点B的坐标即可.如图,过点B作BC⊥x轴于C,∵点A(4,0),∴OB=OA=4,∵旋转角是45°,∴△OBC是等腰直角三角形,∴OC=BC=4×=4,∴点B的坐标为(4,-4).故选B.考点: 旋转的性质.7.如图,在平面直角坐标系中,点O是原点,点B(0,),点A在第一象限且AB⊥BO,点E是线段AO的中点,点M在线段AB上.若点B和点E关于直线OM对称,则点M的坐标是(,).【答案】(1,)【解析】∵点B(0,),∴OB=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题六图形与坐标
(考试时间120分钟,试卷满分120分)
一、选择题(在每一小题给出的四个选项中,只有一个是正确的.每小题3分,共45分)
1. 若平面直角坐标系内的点M满足横、纵坐标都为整数,则把点M叫做“整点”.例如:P(1,0)Q(2,−2)都是“整点”.抛物线y=mx2−6mx+9m+2 (m<0)与x轴交于点A、B两点,若该抛物线在A、B之间的部分与线段AB所围成的区域(包括边界)恰有七个整点,则m的取值范围是()
A.−2<m≤−1
B.−2≤m<−1
C.−1<m<−1
2D.−1≤m<−1
2
2. 已知点A(2, −3),线段AB与坐标轴平行,则点B的坐标可能是()
A.(−1, −2)
B.(3, −2)
C.(1, 2)
D.(−2, −3)
3. 象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4, 3),(−2, 1),则表示棋子“炮”的点的坐标为()
A.(−3, 3)
B.(3, 2)
C.(0, 3)
D.(1, 3)
4. 如图,AB⊥BC,AB=BC,点D在BC上.以D为直角顶点作等腰直角△ADE,则当D从B运动到C的过程中,点E的运动轨迹是()
A.圆弧
B.抛物线
C.线段
D.双曲线
5. 已知点P(x, y)在第四象限,且x2=9,|y|=5,则P点的坐标是()
A.(−3, −5)
B.(5, −3)
C.(3, −5)
D.(−3, 5)
6. 点M在y轴的左侧,到x轴,y轴的距离分别是3和5,则点M的坐标是()
A.(−5, 3)
B.(−5, −3)
C.(5, 3)或(−5, 3)
D.(−5, 3)或(−5, −3)
7. 如图,动点P从(1, 2)出发,沿图中箭头所示方向运动,每当碰到长方形的边时反弹(反弹时反射角等于入射角),假设反弹可以无限进行下去,则在点P运动路径上的
点是()
A.(0, 5)
B.(5, 0)
C.(3, 3)
D.(7, 3)
8. 如图,一个机器人从O点出发,向正东方向走3米到达A1点,再向正北方向走6米到达A2点,再向正西方向走9米到达A3点,再向正南方向走12米到达A4点,再向正东方向走15米到达A5点,按如此规律走下去,当机器人走到A6点时,则A6的坐标为()
A.(9, 15)
B.(6, 15)
C.(9, 9)
D.(9, 12)
9. 如图,在平面直角坐标系中,四边形MNPO的顶点P的坐标是(3, 4),且OM= OP,则顶点M的坐标是()
A.(3, 0)
B.(4, 0)
C.(5, 0)
D.(6, 0)
10. 在直角坐标系中,点M1(a, b)是某平面图形上的一点,当将这个图形沿横向、纵向都拉伸至原图形的2倍时,与点M1(a, b)对应的点M2的坐标为()
A.(a+2, b+2)
B.(2a, 2b)
C.(2a, b+2)
D.(a+2, 2b)
11. 已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a、b的值是()A.a=5,b=1 B.a=-5,b=1
C.a=5,b=-1 D.a=-5,b=-1
12. 平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()
A.5 B.6 C.7
D.8
13.如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是()
A.(2,﹣3)B.(2,3)C.(3,2)D.(3,﹣2)
14.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()
A.2 B.3 C.4 D.5
15.如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是()
A.(﹣2,﹣4)B.(﹣2,4)C.(2,﹣3)D.(﹣1,﹣3)
二、填空题(每小题4分,共40分)
16. 如图,菱形ABCD的边长为8cm,∠BAD=120∘,半径为√3cm的⊙O在其内部逆时针连续滚动,且总是保持与菱形ABCD的边相切,当⊙O第一次回到起始位置时,圆心O所走过的路程长度为________cm.
17. 如图,已知A1(1, 0),A2(1, −1),A3(−1, −1),A4(−1, 1),A5(2, 1),…,则点A2010的坐标是________.
18. 如图,在平面直角坐标系中,A(1, 1),B(−1, 1),C(−1, −2),D(1, −2).用一条长为a个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A−B−C−D−A−B…的规律紧绕在四边形ABCD的边上.
(1)若a=10,则细线另一端所在位置的点的坐标是________;(1,1)
(2)若a=2017,则细线另一端所在位置的点的坐标是________.(1,-2)
19.如图,在平面直角坐标系中,有若干个整数点(横、纵坐标均为整数),其顺序按
图中方向排列,如(1, 0),(2, 0 ),( 2,1),(3,1),(3, 0)……根据这个规律探索可得,第 2019 个点的坐标为 .
20.如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次変换,如果这样连续经过2016次变换后,等边
△ABC的顶点C的坐标为.
21.如图,△ABC的顶点都在方格线的交点(格点)上,如果将△ABC绕C点按逆时针方向旋转90°,那么点B的对应点B′的坐标是.
22. 如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1:,点A的坐标为(0,1),则点E的坐标是.
23.在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:
(1)f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);
(2)g(m,n)=(﹣m,﹣n),如g(2,1)=(﹣2,﹣1)
按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(﹣3,
2)]=.
24.如图,在平面直角坐标系xOy中,已知点M0的坐标为(1,0),将线段OM0绕原点O逆时针方向旋转45°,再将其延长到M1,使得M1M0⊥OM0,得到线段OM1;又将线段OM1绕原点O逆时针方向旋转45°,再将其延长到M2,使得M2M1⊥OM1,得到线段OM2;如此下去,得到线段OM3,OM4,OM5,…
根据以上规律,请直接写出OM2014的长度为.
25. 已知在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点B1在y 轴上且坐标是(0,2),点C1、E1、E2、C2、E3、E4、C3在x轴上,C1的坐标是(1,0).B1C1△B2C2△B3C3,以此继续下去,则点A2014到x轴的距离是.
三、解答题(本题满分35分)
26.(本题5分)若点P到x轴的距离为a,到y轴的距离为b,且满足条件的点P有且只有2个,求a或b应满足的条件.
27.(本题15分)在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示.
(1)填写下列各点的坐标:A4________,A8________;
(2)写出点A4n的坐标(n为正整数);
(3)指出蚂蚁从点A100到点A101的移动方向.
28.(本题15分)如图,已知点A(-4,2)、B(-1,-2),□ABCD的对角线交于坐标原点O
(1) 请直接写出点C、D的坐标
(2) 写出从线段AB到线段CD的变换过程
(3) 直接写出□ABCD的面积
专题六图形与坐标
一、选择题
1. D
2. D
3. D
4. C
5. C
6. D
7. B
8. D
9. C 10. B 11. D 12. A 13.C 14.A
15. A
二、填空题
16. 16 17. (503,-503) 18.(1,1)(1,-2) 19.(64,
30) 20.(-2014,+1). 21.(1,0) 22. (,) 23.(3,2)
24. 2100725.
三、解答题
26. 解:由点P到x轴距离为a,到y轴距离为b,且满足条件的P有有且只有2个.
当a=0,b≠0时,(b,0)或(-b,0);
当a≠0,b=0时,(b,0)或(-b,0);
综上,a=0且b≠0或a≠0且b=0.
27.解:(1)由图可知,A4,A8都在x轴上,∵小蚂蚁每次移动1个单位,∴OA4=2,
OA8=4,∴A4(2,0),A8(4,0);故答案为:2,0;4,0;
(2)根据(1)OA4n=4n÷2=2n,∴点A4n的坐标(2n,0);
(3)∵100÷4=25,∴从点A100到点A101的移动方向与从点O到A1的方向一致,为↑.
28.解:(1)C(4,-2)、D(1,2);
(2)AB绕点O旋转180°得到线段CD,或作AB关于原点O的中心对称图形得到线段CD;
(3)BC=5,BC上的高为4,所以平行四边形ABCD的面积为5×4=20.。

相关文档
最新文档