初中数学--圆单元测试题

合集下载

(常考题)人教版初中数学九年级数学上册第四单元《圆》测试题(答案解析)

(常考题)人教版初中数学九年级数学上册第四单元《圆》测试题(答案解析)

一、选择题1.如图,AB 、AC 是⊙O 的切线,B 、C 为切点,∠A =50°,点P 是圆上异于B 、C 的点,则∠BPC 的度数是( )A .65°B .115°C .115°或65°D .130°或65° 2.如图,点A 、B 、C 在⊙O 上,∠ACB =54°,则∠ABO 的度数是( )A .54°B .30°C .36°D .60°3.如图,AB 是半圆O 的直径,20BAC =︒∠,则D ∠的度数是( )A .70°B .100°C .110°D .120° 4.已知O 的直径10CD cm ,AB 是O 的弦,AB CD ⊥,垂足为M ,且8AB cm =,则AC 的长为( ) A .25 B .43 C .25或45 D .23或43 5.如图,在ABC 中,90C ∠=︒,7AB =,4AC =,以点C 为圆心、CA 为半径的圆交AB 于点D ,求弦AD 的长为( )A 433B .327C 233D .1676.若圆锥的底面半径为5cm ,侧面积为265cm π,则该圆锥的高是( )A .13cmB .12cmC .11cmD .10cm 7.中国美食讲究色香味美,优雅的摆盘造型也会让美食锦上添花,图①中的摆盘,其形状是扇形的一部分,图②是其几何示意图(阴影部分为摆盘),通过测量得到12AC BD cm ==,C ,D 两点之间的距离为3cm ,圆心角为60︒,则图中摆盘的面积是( )A .212cm πB .224cm πC .236cm πD .248cm π 8.如图,在⊙O 中,AB 是直径,弦AC=5,∠BAC=∠D .则AB 的长为( )A .5B .10C .52D .102 9.已知O 的半径为4,点P 在O 外,OP 的长可能是( )A .2B .3C .4D .5 10.如图,PA 、PB 、CD 是O 的切线,切点分别是A 、B 、E ,CD 分别交PA 、PB 于C 、D 两点,若60APB ∠=︒,则COD ∠的度数( )A .50°B .60°C .70°D .75° 11.如图,AB 是⊙的直径,DB 、DE 分别切⊙O 于点B 、C ,若∠ACE =35°,则∠D 的度数是( )A .65°B .55°C .60°D .70° 12.如图,AB 为圆O 的直径,点C 在圆O 上,若∠OCA =50°,OB =2,则弧BC 的长为( )A .103πB .59π C .109π D .518π 二、填空题13.已知ABC 的周长为30,面积为20,其内角平分线交于点O ,则点O 到边BC 的距离为________.14.如图,AB 、AC 、BD 是O 的切线,P 、C 、D 为切点,如果8AB =,5AC =,则BD 的长为_______.15.如图,点A ,B ,C 在O 上,顺次连接A ,B ,C ,O .若四边形ABCO 为平行四边形,则AOC ∠=________︒.16.如图,⊙O 是ABC 的外接圆,64A ∠=︒,则OBC ∠=______°.17.如图,点C ,D 是半圈O 的三等分点,直径43AB =.连结AC 交半径OD 于E ,则阴影部分的面积是_______.18.如图,△ABC 中,∠A=60°,若O 为△ABC 的内心,则∠BOC 的度数为______度.19.如图,已知AD 为半圆形O 的直径,点B ,C 在半圆形上,AB BC =,30BAC ∠=︒,8AD =,则AC 的长为________.20.如图,AB 是O 的直径,CD AB ⊥于E ,24CD =,8BE =,则AB =__________.三、解答题21.如图,在矩形ABCD 中,4AB =,6BC =.E 为CD 边上的一个动点(不与C 、D 重合),⊙O 是BCE 的外接圆.(1)若2CE =,⊙O 交AD 于点F 、G .求FG 的长度;(2)若CE 的长度为m ,⊙O 与AD 的位置关系随着m 的值变化而变化,试探索⊙O 与AD 的位置关系及对应的m 的取值范围.22.如图,已知圆内接四边形ABDC 中,∠BAC =60°,AB =AC ,AD 为它的对角线. 求证:AD =BD+CD .23.如图,已知在△ABC 中,∠A =90°.(1)作∠ABC 的角平分线交AC 于点P ,以点P 为圆心,PA 长为半径作⊙P ,则⊙P 与BC 的位置关系是 .(2)在(1)的条件下,若AB=3,BC=5,求⊙P 的面积.24.如图,四边形ABCD 为菱形,且120BAD ∠=,以AD 为直径作O ,与CD 交于点P .请仅用无刻度的直尺按下列要求画图.(保留作图痕迹)(1)在图1中,过点O 作AB 边的平行线OE ;(2)在图2中,过点C 作AB 边上的高CF .25.如图,在ABC 中,45C ∠=︒,以AB 为直径的O 经过BC 的中点D . (1)求证:AC 是O 的切线;(2)取AD 的中点E ,连接OE ,延长OE 交AC 于点F ,若2EF =,求O 的半径.26.图①、图②均为 4×4 的正方形网格,线段 AB 、BC 的端点均在格点上,按要求在图①、图②中作图并计算其面积.(1)在图①中画一个四边形 ABCD ,点D 在格点上,使四边形 ABCD 有一组对角相等,并求=四边形ABCD S .(2)在图②中画一个四边形 ABCE ,点E 在格点上,使四边形 ABCE 有一组对角互补,并求ABCE S =四边形 .【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据切线的性质得到OB ⊥AB ,OC ⊥AC ,求出∠BOC ,分点P 在优弧BC 上、点P 在劣弧BC 上两种情况,根据圆周角定理、圆内接四边形的性质计算即可.【详解】解:∵AB 、AC 是⊙O 的切线,∴OB ⊥AB ,OC ⊥AC ,∴∠OBA =90°,∠OCA =90°∵∠A =50°,∴∠BOC =360°﹣90°﹣90°﹣50°=130°,如图,当点P 在优弧BPC 上时,∠BPC =12∠BOC =65°, 当点P ′在劣弧BC 上时,∠BP ′C =180°﹣65°=115°,故选:C .【点睛】本题考查的是切线的性质、圆周角定理、圆内接四边形的性质,掌握圆的切线垂直于经过切点的半径及圆周角定理是解题的关键.2.C解析:C【分析】根据圆周角定理求出∠AOB ,根据等腰三角形的性质求出∠ABO=∠BAO ,根据三角形内角和定理求出即可.【详解】解:∵∠ACB =54°,∴圆心角∠AOB =2∠ACB =108°,∵OB =OA ,∴∠ABO =∠BAO =12(180°﹣∠AOB )=36°, 故选:C .【点睛】本题考查了圆周角定理,圆心角、弧、弦之间的关系,等腰三角形的性质和三角形的内角和定理等知识点,能求出圆心角∠AOB 的度数是解此题的关键. 3.C解析:C【分析】先根据圆周角定理可得90ACB ∠=︒,再根据直角三角形的性质可得70B ∠=︒,然后根据圆内接四边形的性质即可得.【详解】AB 是半圆O 的直径,90ACB ∴∠=︒,20BAC ∠=︒,9070B BAC ∴∠=︒-∠=︒, 又四边形ABCD 是圆O 内接四边形,180110D B ∴∠=︒-∠=︒,故选:C .【点睛】本题考查了圆周角定理、直角三角形的性质、圆内接四边形的性质,熟练掌握圆周角定理是解题关键.4.C解析:C【分析】连结OA ,由AB CD ⊥,根据垂径定理可以得到4AM =,结合勾股定理可以得到3OM =.在分类讨论,如图,当8CM =和2CM =时,再结合勾股定理即可求出AC .【详解】连结OA ,∵AB CD ⊥, ∴118422AM BM AB ===⨯=, 在Rt OAM 中,5OA =,∴223OA OM AM -==,当如图时,538CM OC OM =+=+=,在Rt ACM △中,2245AC AM CM =+=,当如图时,532CM OC OM =-=-=,在Rt ACM △中,2225AC AM CM +=故选C .【点睛】 本题考查垂径定理“垂直于弦的直径平分弦且平分这条弦所对的两条弧”.分类讨论思想也是解决本题的关键.5.B解析:B【分析】过C 作CF ⊥AB 于F ,根据垂径定理得出AD=2AF ,根据勾股定理求BC ,根据三角形面积公式求出CF ,根据勾股定理求出AF 即可.【详解】过C 作CF ⊥AB 于F ,∵CF⊥AB,CF过圆心C,∴AD=2AF.∵△ABC中,∠ACB是直角,AC=4,AB=7,∴由勾股定理得:22227433AB AC-=-=由三角形的面积公式得:AC×BC=AB×CF,即33=7CF,∴433在△AFC中,由勾股定理得:222243316477 AC CF⎛⎫-=-=⎪⎪⎝⎭,∴AD=2AF=327.故选:B.【点睛】本题考查了勾股定理,垂径定理,三角形的面积等知识点的应用,关键是求出AF的长.6.B解析:B【分析】先根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到12•2π•5•OA=65π,可求出OA=13,然后利用勾股定理计算圆锥的高.【详解】解:根据题意得12•2π•5•OA=65π,解得:OA=13,所以圆锥的高2213512.故选:B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.7.C解析:C【分析】首先证明△OCD 是等边三角形,求出OC=OD=CO=3cm ,再根据S 阴影=S 扇形OAB -S 扇形OCD ,求解即可.【详解】解:如图,连结CD .∵OC=OD ,∠O=60°,∴△OCD 是等边三角形,∴OC=OD=CO=3cm ,∴OA=OC+AC=15cm ,∴OB=OA=15cm ,∴S 阴影=S 扇形OAB -S 扇形OCD =226015603360360ππ⋅⋅⋅⋅-=236cm π. 故选C .【点睛】本题考查了扇形的面积,等边三角形的性质与判定等知识.扇形的面积=2360n r π︒. 8.C解析:C【分析】根据圆周角定理得出∠D=∠B ,得出△ABC 是等腰直角三角形,进而解答即可.【详解】∵AC=AC ,∴∠D=∠B ,∵∠BAC=∠D ,∴∠B=∠BAC ,∴△ABC 是等腰三角形,∵AB 是直径,∴△ABC 是等腰直角三角形,∵AC=5,∴AB=52故选:C .【点睛】本题考查了圆周角定理,等腰直角三角形的判定和性质,勾股定理的应用,关键是根据圆周角定理得出∠D=∠B .9.D解析:D【分析】根据题意可以求得OP 的取值范围,从而可以解答本题.【详解】解:∵O 的半径为4,点P 在⊙O 外,∴OP >4,故选:D .【点睛】本题考查点和圆的位置关系,解答本题的关键是明确题意,求出OP 的取值范围. 10.B解析:B【分析】连接AO ,BO ,OE 由切线的性质可得90PAO PBO ︒∠=∠=,结合已知条件和四边形的内角和为360°可求出AOB 的度数,再由切线长定理即可求出COD 的度数.【详解】如图,连接AO ,BO ,OE ,∵PA 、PB 是O 的切线,∴∠PAO =∠PBO =90∘,∵60APB ∠=︒,∴36029060120AOB ∠=︒-⨯︒-︒=︒,∵PA 、PB 、CD 是⊙O 的切线,∴∠ACO =∠ECO ,∠DBO =∠DEO ,∴∠AOC =∠EOC ,∠EOD =∠BOD , ∴1602COD COE EOD AOB ∠=∠+∠=∠=︒, 故选B.【点睛】本题考查了切线的性质及切线长定理,解答本题的关键是熟练掌握:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.11.D解析:D【分析】连结BC ,则由已知可以求得∠BCD 与∠CBD 的度数,最后由三角形的内角和定理可以得到∠D 的度数.【详解】解:如图,连结BC ,则由弦切角定理可知:∠ABC=∠ACE=35°,∵DB 与⊙O 相切,∴∠CBD=90°-∠ABC=90°-35°=55°,∵AB 是⊙的直径,∴∠ACB=90°,∴∠BCD=180°-∠ACE-∠90°=55°,∴∠D=180°-∠BCD-∠CBD=70°,故选D .【点睛】本题考查圆的应用,灵活运用直线与圆相切的性质求解是解题关键.12.C解析:C【分析】先根据等腰三角形的性质求出∠A ,再利用圆周角定理求得∠BOC ,最后根据弧长公式求求解即可.【详解】解:∵∠OCA =50°,OA =OC ,∴∠A =50°,∴∠BOC =100°∵BO =2, ∴1002101809BC l ππ⨯==. 故答案为C .【点睛】 本题主要考查了弧长公式应用以及圆周角定理,根据题意求得∠BOC 是解答本题的关键.二、填空题13.【分析】过O 作OD ⊥BC 于DOE ⊥AB 于EOF ⊥AC 于F 连接OAOBOC 根据三角形的内心和角平分线的性质得出OE=OD=OF 再根据三角形的面积公式求出即可【详解】如图过O 作OD ⊥BC 于DOE ⊥AB 于解析:4 3【分析】过O作OD⊥BC于D,OE⊥AB于E,OF⊥AC于F,连接OA、OB、OC,根据三角形的内心和角平分线的性质得出OE=OD=OF,再根据三角形的面积公式求出即可.【详解】如图,过O作OD⊥BC于D,OE⊥AB于E,OF⊥AC于F,连接OA、OB、OC,∵O是△ABC内角平分线的交点,∴OE=OF=OD,∵△ABC的面积是20,∴S△AOB+S△BOC+S△AOC=20,∴111AB OE BC OD222⨯⨯+⨯⨯+×AC×OF=20,∴(AB+BC+AC)×OD=40,∵△ABC的周长为30,∴AB+BC+AC=30,∴OD=404303=,∴即O到BC的距离是43,故答案为:43.【点睛】本题考查了三角形的内心,角平分线的性质和三角形的面积等知识点,能求出OD=OE=OF 是解此题的关键.14.【分析】由于ABACBD是⊙O的切线则AC=APBP=BD求出BP的长即可求出BD的长【详解】解:∵ACAP为⊙O的切线∴AC=AP∵BPBD为⊙O的切线∴BP=BD∴BD=PB=AB-AP=8-5解析:3【分析】由于AB、AC、BD是⊙O的切线,则AC=AP,BP=BD,求出BP的长即可求出BD的长.【详解】解:∵AC、AP为⊙O的切线,∴AC=AP,∵BP、BD为⊙O的切线,∴BP=BD,∴BD=PB=AB-AP=8-5=3.故答案为:3.【点睛】本题考查了切线长定理,两次运用切线长定理并利用等式的性质是解题的关键.15.120【分析】连接OB先证明四边形ABCD是菱形然后再说明△AOB△OBC 为等边三角形最后根据等边三角形的性质即可解答【详解】解:如图:连接OB∵点在上∴OA=OC=OB∵四边形为平行四边形∴四边形解析:120【分析】连接OB,先证明四边形ABCD是菱形,然后再说明△AOB、△OBC为等边三角形,最后根据等边三角形的性质即可解答.【详解】解:如图:连接OB∵点A,B,C在O上∴OA=OC=OB∵四边形ABCO为平行四边形∴四边形ABCO是菱形∴OA=OC=OB=AB=BC∴△AOB、△OBC为等边三角形∴∠AOB=∠BOC=60°∴∠AOC=120°.故答案为120.【点睛】本题主要考查了圆的性质和等边三角形的性质,根据题意证得△AOB、△OBC为等边三角形是解答本题的关键.16.26【分析】先利用圆周角定理得到∠BOC=2∠A=128°然后根据等腰三角形的性质和三角形内角和定理计算∠OBC的度数【详解】解:∵∠A=64°∴∠BOC=2∠A=128°∵OB=OC∴∠OBC=∠解析:26【分析】先利用圆周角定理得到∠BOC=2∠A=128°,然后根据等腰三角形的性质和三角形内角和定理计算∠OBC的度数.【详解】解:∵∠A=64°,∴∠BOC=2∠A=128°,∵OB=OC,∴∠OBC=∠OCB,∴∠OBC=12(180°-128°)=26°.故答案为26.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.17.【分析】连接OC由点CD是半圆O的三等分点得到根据垂径定理得到OD⊥AC∠DOC=60°求得OE=CE=3根据扇形和三角形的面积公式即可得到结论【详解】解:连接OC∵点CD是半圆O的三等分点∴∴OD解析:33 2π-【分析】连接OC,由点C,D是半圆O的三等分点,得到AD CD CB==,根据垂径定理得到OD⊥AC,∠DOC=60°,求得OE=3,CE=3,根据扇形和三角形的面积公式即可得到结论.【详解】解:连接OC,∵点C,D是半圆O的三等分点,∴AD CD CB ==,∴OD ⊥AC ,∠DOC=60°,∴∠OCE=30°, ∵AB =∴∴CE=3,∴S阴影=S 扇形COD -S △OCE =2601236022ππ⋅⋅-⨯=-.故答案为:22π-. 【点睛】本题考查了扇形的面积的计算,垂径定理,含30°角的直角三角形的性质,正确的识别图形是解题的关键. 18.120【分析】根据三角形的内心是三角形角平分线的交点结合公式求出即可【详解】解:为的内心故答案是:120【点睛】注意此题中的结论:若是内心则熟记公式可简化计算解析:120【分析】 根据三角形的内心是三角形角平分线的交点,结合公式1902BOC A ∠=+∠︒求出即可. 【详解】解:60A ∠=︒,O 为ABC ∆的内心, 1190906012022BOC A , 故答案是:120.【点睛】注意此题中的结论:若O 是内心,则1902BOC A ∠=+∠︒.熟记公式可简化计算. 19.【分析】连接CD 由已知可以得到∠B=120°所以∠D=60°然后在Rt △ACD 中计算AC 即可【详解】解:如图所示连接CD ∵∴∠B=120°∴∠D=60°∵AD 为直径∴∠ACD=90°∴CD=4∴AC解析:【分析】连接CD ,由已知可以得到∠B=120°,所以∠D=60°,然后在Rt △ACD 中计算AC 即可.【详解】解:如图所示,连接CD∵AB BC =,30BAC ∠=︒∴∠B=120°∴∠D=60°∵AD 为直径∴∠ACD=90°∴CD=4 ∴AC=43【点睛】本题主要考查圆的内接四边形对角性质,掌握直径所对的圆周角是90°和圆的内接四边形对角互补是解题的关键.20.【分析】连接OD 设的半径为r 则OE=r-8再根据勾股定理求出r 最后根据直径和半径的关系即可解答【详解】解:如图:设的半径为r 则OE=r-8∵AB ⊥CD 于E 且CD=24∴DE=CD=12在Rt △ODE解析:26【分析】连接OD ,设O 的半径为r ,则OE=r-8,再根据勾股定理求出r ,最后根据直径和半径的关系即可解答. 【详解】解:如图:设O 的半径为r ,则OE=r-8,∵AB ⊥CD 于E ,且CD=24,∴DE=12CD=12, 在Rt △ODE 中,OD=r ,OE=r-8,DE=12,∴OE 2+DE 2=OD 2,∴(r-8)2+122=r 2,解得r=13∴AB=2r=26.故答案为26.【点睛】本题主要考查了垂径定理,正确作出辅助线、构造出直角三角形是解答本题的关键.三、解答题21.(1)2FG =;(2)当704m <<时,⊙O 与AD 相离;当74m =时,⊙O 与AD 相切;当744m <<时,⊙O 与AD 相交 【分析】(1)过点O 作OM FG ⊥于点M ,延长MO 交BC 于点N ,连接OG .在Rt BCE ∆中,利用勾股定理求出BE ,再在Rt OMG ∆中求出MG 即可解决问题.(2)如图1中,当O 与AD 相切于点M 时,连接OM 并反向延长交BC 于点N .求出相切时,m 的值即可判断.【详解】解:(1)解:过点O 作OM FG ⊥于点M ,延长MO 交BC 于点N ,连接OG ,四边形ABCD 是矩形,90C D ∴∠=∠=︒,BE ∴是O 的直径.90C D DMN ∠=∠=∠=︒,∴四边形MNCD 是矩形,MN BC ∴⊥,4MN CD AB ===,BN CN ∴=.OB OE =,ON ∴是BCE ∆的中位线,112ON CE ∴==, 413OM ∴=-=,在Rt BCE ∆中,22210+=BE BC CE1102OG BE ∴==, 在Rt OMG ∆中,221-=MG OG OM ,22FG MG ∴==.(2)解:如图1中,当O 与AD 相切于点M 时,连接OM 并反向延长交BC 于点N .由(1)易得1122==ON CE m ,142==-OB OM m ,3BN =, 在Rt BON ∆中,222+=ON BN OB ,即22211()3(4)22m m +=-, 解得74m =, ∴当704m <<时,O 与AD 相离, 当74m =时,O 与AD 相切, 当744m <<时,O 与AD 相交. 【点睛】本题考查直线与圆的位置关系,矩形的性质,垂径定理,三角形的外心等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.见解析.【分析】连接BC ,证明∠ADB =∠ADC =60°,在AD 上取点E 、F ,使DE =DB 、DF =DC ,连接BE 、CF ,证明△BDE 、△CDF 为正三角形,再证明∠AEB =∠CFA =120°,∠EAB =∠FCA ,证明△ABE ≌△CAF ,可得AE =CF ,从而可得结论.【详解】解:连接BC , ∠BAC =60°,AB =AC ,∴ △ABC 为等边三角形,∴ ∠ABC =∠ACB =60°,,,AC AC AB AB ==∴ ∠ADC =∠ABC 60,=︒ ∠ADB =∠ACB 60,=︒在AD 上取点E 、F ,使DE =DB 、DF =DC ,连接BE 、CF ,∴△BDE 、△CDF 为等边三角形,∴∠DEB =∠DFC =60°,,,DE BD CF DC ==∴∠AEB =∠CFA =120°,又∠FAC+∠FCA =∠DFC =60°、∠FAC+∠EAB =∠BAC =60°,∴∠EAB =∠FCA ,在△ABE 和△CAF 中,∵EAB FCA AEB CFA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CAF (AAS ),∴AE =CF ,∴AD =DE+AE =BD+FC =BD+CD .【点睛】本题考查的是等边三角形的性质与判定,全等三角形的判定与性质,圆周角定理,掌握以上知识是解题的关键.23.(1)相切;(2)94π 【分析】(1)先利用角平分线的性质得到点P 到BC 的距离等于PA ,然后根据直线与圆的位置关系进行判断.(2)由全等三角形的性质,先求出CD=2,由勾股定理求出AC=4,再利用勾股定理求出PD 的长度即可.【详解】解:(1)作PD ⊥BC ,交BC 于点D ,如图:∵PB 平分∠ABC ,∴点P 到BC 的距离等于PA ,∴PA=PD ,∴BC 为⊙P 的切线.故答案为:相切.(2)由(1)可知,易得△ABP ≌△DBP ,∴BD=AB=3,∴CD=5-3=2,∵在直角△ABC 中,由勾股定理,得 22534AC =-=,设PA PD r ==,∴4PC r =-,在直角△PDC 中,由勾股定理,则()22242r r -=+, 解得:32r =, ∴圆的面积为:223924S r πππ==•=(). 【点睛】 本题考查了圆的定义,勾股定理,角平分线的性质,全等三角形的判定和性质,解题的关键是熟练掌握所学的知识,正确的进行解题.24.(1)见解析;(2)见解析【分析】(1)连接BD 、AC 交于点E ,连接OE ;(2)连接BD ,则点P 和BD 与O 的交点的延长线与AB 的交点即为F 点.【详解】(1)如图所示,∵四边形ABCD 是菱形,∴E 是BD 中点,∵O 是DA 中点,∴//OE AB ;(2)如图所示,∵120BAD ∠=,∴60ADC ∠=︒,∵AD CD =,∴ACD △是等边三角形,∵AD 是直径,∴90APD ∠=︒,即AP DC ⊥,∴P 是CD 中点,通过如图所示找到的点F 是AB 的中点,∵ABC 也是等边三角形,∴CF AB ⊥.【点睛】本题考查作图,解题的关键是要熟悉各种几何的性质,比如:等边三角形的性质,中位线的性质,菱形的性质,圆的性质.25.(1)见解析;(2)22+ 【分析】(1)连接AD ,先由圆周角定理得∠ADB =90°,则AD ⊥BC ,再由线段垂直平分线的性质得AB =AC ,则∠B =∠C =45°,求得∠BAC =90°,即可得出结论;(2)作EH ⊥OF 交AF 于H ,则EH 是⊙O 的切线,先由垂径定理得OE ⊥AD ,AG =DG ,再证出△EFH 是等腰直角三角形,得EH =EF =2,则FH =2EF =2,然后由切线长定理得AH =EH =2,则AF =AH +FH =2+2,最后由等腰直角三角形的性质得OA =AF =2+2即可.【详解】(1)证明:连接AD ,如图所示:∵AB 是⊙O 的直径,∴∠ADB =90°,OA 是⊙O 的半径,∴AD ⊥BC ,∵D 是BC 的中点,∴AB =AC ,∴∠B =∠C =45°,∴∠BAC =180°−45°−45°=90°,∴AC ⊥OA ,∴AC 是⊙O 的切线;(2)解:作EH ⊥OF 交AF 于H ,如图所示:则EH 是⊙O 的切线,∵E是AD的中点,∴OE⊥AD,AG=DG,∵AD⊥BC,∴OF∥BC,∴∠EFH=∠C=45°,∵EH⊥OF,∴△EFH是等腰直角三角形,∴EH=EF2FH2EF=2,∵AC是⊙O的切线,∴AH=EH2∴AF=AH+FH2+2,由(1)得:∠BAC=90°,∴△AOF是等腰直角三角形,∴OA=AF2+2,即⊙O2+2.【点睛】本题考查了切线的判定与性质、圆周角定理、垂径定理、线段垂直平分线的性质、等腰三角形的判定与性质等知识;熟练掌握切线的判定与性质、垂径定理和圆周角定理是解题的关键.26.(1)图见详解,6 ;(2)图见详解,4.5【分析】(1)过C画AB的平行线,过A画BC的平行线,两线交于一点D,根据平行四边形的判定定理可得四边形ABCD是平行四边形,由平行四边形的性质可知∠CBA=∠CDA,然后用用割补法求出面积即可;(2)根据图中正方形网格和∠B的特点,作出∠E与∠B互补,然后用割补法求面积即可.【详解】解:(1)如图,S四边形ABCD=3×4-122⨯×2-222⨯-112⨯=6;(2)如图,S四边形ABCE=3×3-122⨯×2-222⨯-112⨯=92.【点睛】此题主要考查了应用设计作图,首先要理解题意,弄清问题中对所作图形的要求,然后利用割补法求面积.。

初中数学圆单元测试卷基础

初中数学圆单元测试卷基础

初中数学圆单元测试卷基础一、选择题(每题3分,共30分)1. 圆的周长公式是()A. C = πdB. C = 2πrC. C = πr²D. C = 2πd2. 圆的面积公式是()A. S = πr²B. S = πd²C. S = 2πrD. S = πd3. 半径为5厘米的圆的面积是()A. 25π cm²B. 50π cm²C. 75π cm²D. 100π cm²4. 圆的直径是半径的()A. 2倍B. π倍C. 1/2倍D. 1/π倍5. 圆的切线与半径垂直,垂足在()A. 圆心B. 圆周上C. 圆内D. 无法确定6. 圆的内接四边形的对角线()A. 相等B. 垂直C. 平行D. 无法确定7. 一个圆的半径增加2厘米,那么它的面积将增加()A. 4π cm²B. 8π cm²C. 12π cm²D. 16π cm²8. 如果一个圆的周长是12π厘米,那么它的半径是()A. 3厘米B. 6厘米C. 9厘米D. 12厘米9. 圆心角的度数是圆周角的()A. 1/2倍B. 2倍C. 4倍D. 无法确定10. 圆的内接正多边形的边数越多,其形状越接近()A. 正方形B. 正三角形C. 圆D. 椭圆二、填空题(每空2分,共20分)1. 半径为r的圆的直径是______。

2. 如果一个圆的面积是π平方厘米,那么它的半径是______厘米。

3. 一个圆的半径为7厘米,那么它的周长是______厘米。

4. 一个圆的周长是20π厘米,那么它的直径是______厘米。

5. 圆的切线与圆心的距离等于______。

三、解答题(共50分)1.(10分)已知一个圆的半径为4厘米,求这个圆的周长和面积。

2.(10分)一个圆的周长是25.12厘米,求这个圆的直径。

3.(15分)一个圆的内接正六边形的边长是5厘米,求这个圆的半径。

人教版初中数学九年级数学上册第四单元《圆》测试(包含答案解析)

人教版初中数学九年级数学上册第四单元《圆》测试(包含答案解析)

一、选择题1.如图,在平面直角坐标系中,P 是直线y =2上的一个动点,⊙P 的半径为1,直线OQ 切⊙P 于点Q ,则线段OQ 的最小值为( )A .1B .2C .3D .52.如图,,AB AC 分别是O 的直径和弦,OD AC ⊥于点,D 连接,BD BC .若10,8AB AC ==,则BD 的长是( )A .25B .4C .213D .2453.如图,四个水平放置正方形的边长都为4,顶点A 、B 、C 是圆上的点,则此圆的面积为( )A .72πB .85πC .100πD .104π 4.点P 到圆上各点的最大距离为10cm ,最小距离为6cm ,则此圆的半径为( )A .8cmB .5cm 或3cmC .8cm 或2cmD .3cm 5.如图,一条公路的拐弯处是一段圆弧AB ,点O 是这段弧所在的圆的圆心,20cm AB =,点C 是AB 的中点,点D 是AB 的中点,且5cm CD =,则这段弯路所在圆的半径为( )A .10cmB .12.5cmC .15cmD .17cm 6.在平面直角坐标系中,以点()3,4-为圆心,半径为5作圆,则原点一定( ) A .与圆相切 B .在圆外 C .在圆上 D .在圆内 7.下列事件属于确定事件的为( )A .氧化物中一定含有氧元素B .弦相等,则所对的圆周角也相等C .戴了口罩一定不会感染新冠肺炎D .物体不受任何力的时候保持静止状态 8.如图,⊙O 的直径12CD =,AB 是⊙O 的弦,AB CD ⊥,垂足为P ,:1:2CP PO =,则AB 的长为( )A .45B .215C .16D .89.如图,A 、B 、C 三点在O 上,D 是CB 延长线上的一点,40ABD ∠=︒,那么AOC ∠的度数为( ).A .80°B .70°C .50°D .40° 10.如图,⊙O 的半径为2,四边形ADBC 为⊙O 的内接四边形,AB =AC ,∠D =112.5°,则弦BC 的长为( )A .2B .2C .22D .23 11.如图,大半圆中有n 个小半圆,若大半圆弧长为1L ,n 个小半圆弧长的和为2L ,大半圆的弦AB ,BC ,CD 的长度和为3L .则( )A .123L L L =>B .123L L L =<C .无法比较1L 、2L 、3L 间的大小关系D .132L L L >>12.如图,ABC 的顶点A 是O 上的一个动点,90ACB ∠=︒,30BAC ∠=︒,边AC ,AB 分别交O 于点E ,D ,分别过点E ,D 作O 的切线交于点F ,且点F 恰好在边BC 上,连接OC ,若O 的半径为6,则OC 的最大值为( )A 393B .2103C .353D .53二、填空题13.如图,在扇形AOB 中,90AOB ∠=︒正方形CDEF 的顶点C 是弧AB 的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为2时,阴影部分的面积为_______.14.如图,等腰直角△ABC中,∠BAC=90°,AB=AC=4.平面内的直线l经过点A,作CE⊥l 于点E,连接BE.则当直线l绕着点A转动时,线段BE长度的最大值是________.15.已知O的面积为π,则其内接正六边形的边长为______.16.如图,△ABC中,∠A=60°,若O为△ABC的内心,则∠BOC的度数为______度.17.已知,O的弦AB与O的半径相等,则弦AB所对的圆周角的度数为______.18.如图,AB是⊙O的直径,C是BA延长线上一点,点D在⊙O上,且CD=OA,CD的延长线交⊙O于点E,若∠BOE=54°,则∠C=______.19.如图,AB是O的直径,CD是O的弦,AB、CD的延长线交于点E,已知∠的度数为______︒.=,若CODAB DE2∆为直角三角形,则E20.如图,△ABC内接于O,∠BAC=45°,AD⊥BC于D, BD=6,DC=4,则AD的长是_____.三、解答题21.在平面直角坐标系中,ABC 的三个顶点分别为()5,2A -,()1,2B -,()4,5C -.(1)画出ABC 关于原点成中心对称的图形111A B C △,并写出点1B 的坐标; (2)将ABC 绕点B 顺时针旋转90°,求旋转过程中点A 走过的路径长.22.如图所示,AB 是⊙O 的直径,AC 是⊙O 的弦,∠ACB 的平分线交⊙O 于点D .若AB =10,AC =6,求BC 、BD 的长.23.已知:△ABC .(1)求作:△ABC 的外接圆⊙O (要求:尺规作图,保留作图痕迹,不写作法);(2)若已知△ABC 的外接圆的圆心O 到BC 边的距离OD =8,BC =12,求⊙O 的半径.24.如图,已知直线PT 与⊙O 相交于点T ,直线PO 与⊙O 相交于A 、B 两点,已知PTA B ∠=∠.(1)求证:PT 是⊙O 的切线;(2)若3PT BT ==,求图中阴影部分的面积. 25.如图,在Rt △ABC 中,∠C =90°,以BC 为直径的圆O 交AB 于点D ,切线DE 交AC 于点E .(1)求证:∠A =∠ADE ;(2)若AD =8,DE =5,求BC 的长.26.如图,AB 为O 的直径,C 为O 上一点,AD 和过点C 的切线互相垂直,垂足为D .(1)求证:AC 平分DAB ∠;(2)若4CD =,8AD =,试求O 的半径.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】连接PQ 、OP ,如图,根据切线的性质得:PQ ⊥OQ ,再利用勾股定理得出OQ ,利用垂线段最短,当OP 最小时,OQ 最小,即可求解.【详解】连接PQ 、OP ,如图,∵直线OQ 切⊙P 于点Q ,∴PQ ⊥OQ ,在直角OPQ △中,2221OQ OP PQ OP =-=-,当OP 最小时,OQ 最小,当OP ⊥直线y =2时,OP 有最小值2,∴OQ 的最小值为2213-=,故选:C .【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径,也考查了勾股定理,熟练掌握切线的性质以及勾股定理是解答本题的关键.2.C解析:C【分析】先根据圆周角定理得∠ACB=90°,则利用勾股定理计算出BC=6,再根据垂径定理得到CD=AD=12AC=4,然后利用勾股定理计算BD 的长. 【详解】解:∵AB 为直径,∴∠ACB=90°, ∴22221086BC AB AC =-=-=,∵OD ⊥AC , ∴CD=AD=12AC=4, 在Rt △CBD 中,222246213BD BC CD =++=故选:C .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理.3.B解析:B【分析】连接BC,作AB,BC的垂直平分线,交点为点O,连接OB,OC,根据垂直平分线可得AE=BE=2,DE=4×4=16,DC=4+2=6,设OD=x,则OE=16-x,再根据OB=OC即可列出方程求得x=7,最后再根据圆的面积公式计算即可.【详解】解:如图,连接BC,作AB,BC的垂直平分线,交点为点O,连接OB,OC,则OB=OC,AE=BE=2,DE=4×4=16,DC=4+2=6,设OD=x,则OE=16-x,∵OB=OC,∴OB2=OC2,∴22+(16-x) 2=62+x2,解得x=7,∴r2=OB2=22+92=85,∴圆的面积S=πr2=85π,故选:B.【点睛】本题考查了作三角形的外心,垂径定理的应用,圆的面积公式,熟练掌握垂径定理是解决本题的关键.4.C解析:C【分析】分析题意,本题应分两种情况讨论:(1)点P在圆内;(2)点P在圆外;根据“一个点到圆的最大距离和最短距离都在过圆心的直线上”可知,点P到圆的最大距离与最小距离的和或差即是圆的直径,进而即可得出半径的长.【详解】当点P在圆内时,圆的直径是10+6=16cm,所以半径是8cm.当点P在圆外时,圆的直径是10-6=4cm,所以半径是2cm.故选C.【点睛】本题考查了圆的有关性质,熟知一个点到圆的最大距离和最短距离都在过圆心的直线上是解题的关键.5.B解析:B【分析】根据题意,可以推出AD=BD=10,若设半径为r,则OD=r﹣5,OA=r,结合勾股定理可推出半径r的值.【详解】解:∵OC⊥AB,AB=20,∴AD=DB=10,在Rt AOD中,OA2=OD2+AD2,设半径为r得:r2=(r﹣5)2+102,解得:r=12.5,∴这段弯路的半径为12.5,故选:B.【点睛】本题主要考查垂径定理的应用、勾股定理的应用,关键在于设出半径为r后,用r表示出OD、OA的长度.6.C解析:C【分析】设点(-3,4)为点P,原点为点O,先计算出OP的长,然后根据点与圆的位置关系的判定方法求解.【详解】解:∵设点(-3,4)为点P,原点为点O,∴OP5,而⊙P的半径为5,∴OP等于圆的半径,∴点O在⊙P上.故选:C.【点睛】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.7.A解析:A【分析】根据确定事件的概念,可知需找出必然事件或不可能事件即可.【详解】A、氧化物是含有两种元素其中一种是氧元素的化合物,必然事件;B、在同圆或等圆中,弦相等所对的圆周角相等或互补,不确定事件;C、戴了口罩一定不会感染新冠肺炎,不确定事件;D、物体不受任何力的时候保持静止状态或匀速运动,不确定事件.故选A.【点睛】本题考查事件的划分,必然事件和不可能事件统称为确定事件,确定事件中,必然出现的事情称为必然事件;不可能出现的事情称为不可能事件.8.A解析:A【分析】连接OA,先根据⊙O的直径CD=12,CP:PO=1:2求出CO及OP的长,再根据勾股定理可求出AP的长,进而得出结论.【详解】连接OA,∵⊙O的直径CD=12,CP:PO=1:2,∴CO=6,PO=4,∵AB⊥CD,∴22-22OA OP-5,64⨯=∴AB=2AP=22545故选:A.【点睛】本题考查了垂径定理和勾股定理的应用,解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,若设圆的半径为r,弦长为a,这条弦的弦心距为d,则有等式2222ar d⎛⎫=+⎪⎝⎭成立,知道这三个量中的任意两个,就可以求出另外一个.9.A解析:A【分析】作弧ABC所对的圆周角∠AEC,如图,先利用邻补角计算出∠ABC=140°,再利用圆内接四边形的性质计算出∠E=40°,然后根据圆周角定理得到∠AOC的度数.【详解】解:作弧ABC所对的圆周角∠AEC,∵∠ABD=40°,∴∠ABC=180°-40°=140°,∵∠AEC+∠ABC=180°,∴∠E=40°,∴∠AOC=2∠AEC=2×40°=80°.故选:A.【点睛】本题考查了圆内接四边形对角互补,以及圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.C解析:C【分析】如图:连接OB、O C,先根据圆的内接四边形对角互补得到∠C=67.5°,再利用等腰三角形的性质和三角形内角和计算出∠BAC=45°,再根据圆周角定理可得∠BOC=90°,最后根据勾股定理求解即可.【详解】解:∵四边形ADBC为⊙O的内接四边形,∠D=112.5°∴∠C=180°-∠D=180°-112.5°=67.5°∵AC=AB∴∠BAC=180°-2∠C=45°∴∠BOC=90°∴22222222OB OC+=+=故答案为C .【点睛】本题考查了圆内接四边形的性质、等腰直角三角形的性质和圆周角定理,掌握圆内接四边形的对角互补是解答本题的突破口.11.A解析:A【分析】利用圆周长公式计算1L 和2L 的长.根据圆周长公式分别写出1L 和2L 的表达式进行比较,再根据“两点之间线段最短的性质”得出13L L >,即可选出答案.【详解】解:设n 个小半圆半径依次为1r ,2r ,⋯,n r .则大圆半径为()12n r r r ++⋯+()112n L r r r π∴=++⋯+,212n L r r r πππ=++⋯+()12n r r r π=++⋯+,12L L ∴=;根据“两点之间线段最短的性质”可得:13L L >,123L L L ∴=>..故选A .【点睛】本题考查了半圆弧长的计算,两点之间线段最短的性质,是基础题,难度不大. 12.A解析:A【分析】先推出∠DOE=2∠DAE=60°,连接OE,OD,OF,证明Rt△EFO≌Rt△DFO,得到∠EOF=∠DOF=30°,根据EO=6,在Rt△EFO中,∠EOF=30°,得出EF=23,推出点C在以EF为直径的半圆上,设EF中点为G,得出当OC经过半圆圆心G时,OC最长,即OC的值最大,求出OG,CG即可得出答案.【详解】在△ABC中,∠ACB=90°,∠BAC=30°,∠DAE是DE所对的圆周角,∠DOE是DE所对的圆心角,∴∠DOE=2∠DAE=60°,连接OE,OD,OF,∵过点E,D作O的切线交于点F,∴∠FEO=∠FDO=90°,∴在Rt△EFO和Rt△DFO中EO DO FO FO=⎧⎨=⎩,∴Rt△EFO≌Rt△DFO(HL),∴∠EOF=∠DOF=30°,又∵EO=6,在Rt△EFO中,∠EOF=30°,∴EF=23又∵点F恰好是腰BC上的点,∠ECF=90°,∴点C在以EF为直径的半圆上,∴设EF中点为G,则EG=FG=CG=12EF=12×233,∴当OC经过半圆圆心G时,OC最长,即OC的值最大,在Rt△OEG中,OE=6,3∴22OE EG+39,∴393故选:A.【点睛】本题考查了圆周角定理,全等三角形的判定和性质,勾股定理,圆的性质,证明Rt△EFO≌Rt△DFO是解题关键.二、填空题13.π﹣2【分析】连结OC根据勾股定理可求OC的长根据题意可得出阴影部分的面积=扇形BOC的面积﹣三角形ODC的面积依此列式计算即可求解【详解】解:连接OC∵在扇形AOB中∠AOB=90°正方形CDEF解析:π﹣2【分析】连结OC,根据勾股定理可求OC的长,根据题意可得出阴影部分的面积=扇形BOC的面积﹣三角形ODC的面积,依此列式计算即可求解.【详解】解:连接OC,∵在扇形AOB中,∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,∴∠COD=45°,∴OC=2CD=22,∴阴影部分的面积=扇形BOC的面积﹣三角形ODC的面积=245(22)360π⨯⨯﹣12×22=π﹣2.故答案为:π﹣2..【点睛】本题考查了扇形面积的计算以及正方形的性质,解题的关键是得到扇形半径的长度.14.【分析】以AC为直径作圆O连接BO并延长交圆O于点可得BO+O>B从而可得BO+OE>B即BE为最大值再由勾股定理求出BO的长即可解决问题【详解】解:由题意知CE⊥l于点E∴以AC为直径作圆O∵CE解析:225+【分析】以AC为直径作圆O,连接BO,并延长交圆O于点E',可得BO+O E'>B E',从而可得BO+OE>B E',即BE为最大值,再由勾股定理求出BO的长即可解决问题.【详解】解:由题意知,CE⊥l于点E,∴以AC为直径作圆O,∵CE⊥AE,∴点E在圆O上运动,连接BO,并延长交圆O于点E',如图,∴BO+O E '>B E ',∵OE=O E ',∴BO+OE >B E ',∴BE 的长为最大值,∵AO=OC=OE ,且AB=AC=4, ∴122OE AC == 又∵∠BAC=90° ∴222224220BO AO AB =+=+=∴25BO =∴BE=252BO OE +=+故答案为:225+【点睛】此题主要考查了求线段的最大值,构造出△ACE 的外接贺是解答本题的关键. 15.1【分析】首先根据圆的面积求出圆的半径再证明△AOB 是等边三角形即可得到结论【详解】解:如图的面积为设半径为r ∴解得∵OA=OB 为等边三角形故故答案为:1【点睛】本题考查的是正多边形和圆熟知正六边形解析:1【分析】首先根据圆的面积求出圆的半径,再证明△AOB 是等边三角形即可得到结论.【详解】解:如图,O 的面积为π,设半径为r ,2S r ππ∴==,∴21r =,解得,1r =,∵360606AOB ︒∠==︒,OA=OB AOB ∴为等边三角形,故1AB OA ==.故答案为:1【点睛】本题考查的是正多边形和圆,熟知正六边形的半径与边长相等是解答此题的关键. 16.120【分析】根据三角形的内心是三角形角平分线的交点结合公式求出即可【详解】解:为的内心故答案是:120【点睛】注意此题中的结论:若是内心则熟记公式可简化计算解析:120【分析】根据三角形的内心是三角形角平分线的交点,结合公式1902BOC A ∠=+∠︒求出即可. 【详解】解:60A ∠=︒,O 为ABC ∆的内心,1190906012022BOC A , 故答案是:120.【点睛】注意此题中的结论:若O 是内心,则1902BOC A ∠=+∠︒.熟记公式可简化计算. 17.或【分析】由的半径为厘米弦的长为厘米可得等边三角形因此再利用圆周角定理和圆内接四边形的性质求出弦所对的圆周角注意所对的圆周角有两种情形【详解】解:如图为等边三角形则设弦所对的圆周角为当点在弦所对的优 解析:30或150︒【分析】由O 的半径为r 厘米,弦AB 的长为r 厘米,可得OAB 等边三角形,因此60AOB ∠=︒,再利用圆周角定理和圆内接四边形的性质求出弦AB 所对的圆周角.注意AB 所对的圆周角有两种情形.【详解】解:如图,OA OB AB r ===,ABO ∴为等边三角形,则60AOB ∠=︒.设弦AB 所对的圆周角为ACB ∠,当点C 在弦AB 所对的优弧上,则60230ACB ∠=︒÷=︒;当点C 在弦AB 所对的劣弧上,则18030150ACB ∠=︒-︒=︒.所以弦AB 所对的圆周角为30或150︒,故答案为:30或150︒.【点睛】本题考查了圆周角定理.同弧所对的圆周角相等,并且等于它所对的圆心角的一半.同时考查了圆内接四边形的对角互补和等边三角形的性质.18.18°【分析】连接OD 利用半径相等和等腰三角形的性质以及三角形的外角性质得到∠BOE=3∠C 即可解决问题【详解】连接OD ∵CD=OA=OD ∴∠C=∠DOC ∴∠ODE=∠C+∠DOC=2∠C ∵OD=O解析:18°.【分析】连接OD ,利用半径相等和等腰三角形的性质以及三角形的外角性质得到∠BOE=3∠C ,即可解决问题.【详解】连接OD ,∵CD=OA=OD ,∴∠C=∠DOC ,∴∠ODE=∠C+∠DOC=2∠C ,∵OD=OE ,∴∠E=∠EDO=2∠C ,∴∠EOB=∠C+∠E=3∠C=54°,∴∠C=18°,故答案为:18°.【点睛】本题考查了圆的认识及等腰三角形的性质及三角形的外角性质,熟练掌握等腰三角形的性质和三角形外角性质是关键.19.【分析】由于AB 是⊙O 的直径则AB =2DO 而AB =2DE 可得DO =DE 根据等腰三角形的性质得到∠DOE =∠E 又由于△COD 为直角三角形而OC =OD 所以△COD 为等腰直角三角形于是可得∠CDO =45°解析:22.5︒【分析】由于AB是⊙O的直径,则AB=2DO,而AB=2DE,可得DO=DE,根据等腰三角形的性质得到∠DOE=∠E,又由于△COD为直角三角形,而OC=OD,所以△COD为等腰直角三角形,于是可得∠CDO=45°,利用三角形外角性质有∠CDO=∠DOE+∠E,则∠E=1 2∠CDO=22.5°.【详解】解:∵AB是⊙O的直径,∵AB=2DO,而AB=2DE,∴DO=DE,∴∠DOE=∠E,∵△COD为直角三角形,而OC=OD,∴△COD为等腰直角三角形,∴∠CDO=45°,∵∠CDO=∠DOE+∠E,∴∠E=12∠CDO=22.5°.故答案为:22.5°.【点睛】本题考查了圆的认识:圆上任意两点的连线段叫圆的弦;过圆心的弦叫圆的直径;直径的长等于半径的2倍.也考查了等腰直角三角形的判定与性质以及等腰三角形的性质.20.12【分析】连接OAOBOC过点O作OE⊥AD于EOF⊥BC于F根据圆周角定理得到∠BOC=90°再根据等腰直角三角形的性质计算求出OB再由DF=BD-BF得出DF然后等腰直角三角形的性质求出OF根解析:12【分析】连接OA、OB、OC过点O作OE⊥AD于E,OF⊥BC于F,根据圆周角定理得到∠BOC=90°,再根据等腰直角三角形的性质计算,求出OB,再由DF=BD-BF得出DF,然后等腰直角三角形的性质求出OF,根据勾股定理求出AE,再根据AD=AE+OF得到答案.【详解】解:∵BD=6,DC=4,∴BC=BD+DC=10∵∠BAC=45°,∴∠BOC=90°,∴==OB BC连接OA 、OB 、OC 过点O 作OE ⊥AD 于E ,OF ⊥BC 于F ,∴BF=FC=5,∴DF=BD-BF=1,∵∠BOC=90°,BF=FC∴OF=12BC=5, ∵AD ⊥BC ,OE ⊥AD ,OF ⊥BC ,∴四边形OFDE 为矩形,∴OE=DF=1,DE=OF=5,在Rt △AOE 中,227,=-=AE OA OE∴AD=AE+DE=12.【点睛】本题考查的是三角形的外接圆,掌握圆周角定理、垂径定理、等腰直角三角形的性质是解题的关键.三、解答题21.(1)见解析,点1B 的坐标为()1,2-;(2)2π【分析】(1)根据中心对称的定义即可求解;(2)根据弧长公式即可求解.【详解】解:(1)111A B C △如图所示点1B 的坐标为()1,2-(2)∵()5,2A -,()1,2B -∴4AB =∴ABC 绕点B 顺时针旋转90°过程中,点A 走过的路径长为:9042180ππ⨯⨯=. 【点睛】 本题考查中心对称的定义、弧长公式,掌握以上基本概念是解题的关键. 22.BC =8,BD =52【详解】解:连接BD ,如图,∵AB 是直径,∴∠ACB =∠ADB =90°,在Rt △ABC 中,AB =10,AC =6,∴BC 22AB AC -22106-8,即BC =8;∵∠ACB 的平分线交⊙O 于点D ,∴∠DCA=∠BCD,∴AD BD=,∴AD=BD,∴在Rt△ABD中,AD=BD=22AB=22×10=52,即BD=52.【点睛】本题考查了勾股定理,圆周角定理,解题的关键是求出∠ACB=∠ADB=90°.23.(1)作图见解析;(2)10.【分析】(1)分别做AB、BC的垂直平分线且交于O,然后以O为圆心、OA为半径画圆即可;(2)如图:连接OB,然后根据垂径定理求得BD,最后根据勾股定理解答即可.【详解】解:(1)如图所示∴⊙O即为所求作的外接圆;(2)如图:连接OB∵已知△ABC的外接圆的圆心O到BC边的距离OD=8∵线段BC的垂直平分线交BC于点D,∴BD=CD=12BC=6,在Rt△BOD中,OB=2286+=10,∴⊙O的半径长10.【点睛】本题考查了三角形的外接圆的作法和垂径定理的应用,灵活应用相关知识成为解答本题的关键.24.(1)证明见解析;(2)3 64π-【分析】(1)先根据圆周角定理得:∠ATB=90°,则∠B+∠OAT=90°,根据同圆的半径相等和等腰三角形的性质得:∠OAT=∠2,从而得∠PTA+∠2=90°,即∠OTP=90°,所以直线PT与⊙O相切;(2)利用TP=TB 得到∠P=∠B ,而∠OAT=2∠P ,所以∠OAT=2∠B ,则利用∠ATB=90°可计算出∠B=30°,∠POT=60°,利用含30度的直角三角形三边的关系得到AT=12AB ,△AOT 为等边三角形,然后根据扇形的面积公式和图中阴影部分的面积=S 扇形OAT -S △AOT 进行计算.【详解】(1)证明:连接OT ,∵AB 是⊙O 的直径,∴∠ATB=90°,∴∠B+∠OAT=90°,∵OA=OT ,∴∠OAT=∠2,∵∠PTA=∠B ,∴∠PTA+∠2=90°,即∠OTP=90°,∴直线PT 与⊙O 相切;(2)∵3PT BT ==∴∠P=∠B=∠PTA ,∵∠TAB=∠P+∠PTA ,∴∠TAB=2∠B ,∵∠TAB+∠B=90°,∴∠TAB=60°,∠B=30°,在Rt △ABT 中,设AT=a ,则AB=2AT=2a ,∴a 232=(2a)2,解得:a=1,∴AT=1, ∵OA=OT ,∠TAO=60°,∴△AOT 为等边三角形, 1331224AOT S ∴=⨯⨯=. ∴阴影部分的面积2Δ 601333606AOT AOTS S ππ⨯=-==-扇形. 【点睛】本题考查了切线的判定、勾股定理,此类题常与方程结合,列方程求圆的半径和线段的长,也考查了扇形的面积公式.25.(1)证明见解析;(2)152. 【分析】 (1)只要证明90A B ∠+∠=︒,90ADE B ∠+∠=︒,即可解决问题;(2)首先证明210AC DE ==,在Rt △ADC 中,6DC =,设BD x =,在Rt △BDC 中,2226BC x =+,在Rt △ABC 中,()222810BC x =+-,可得()22226810x x +=+-,解方程即可解决问题;【详解】(1)证明:连接OD ,∵DE 是切线,∴90ODE ∠=︒,∴90ADE BDO ∠+∠=︒,∵90ACB ∠=︒,∴90A B ∠+∠=︒,∵OD=OB ,∴B BDO ∠=∠,∴ADE A ∠=∠;(2)连接CD ,∵ADE A ∠=∠,∴AE=DE ,∵BC 为圆O 的直径,90ACB ∠=︒,∴EC 是O 的切线,∴ED=EC ,∴AE=EC ,∵5DE =,∴210AC DE ==,在Rt △ADC 中,6DC =,设BD x =,在Rt △BDC 中,222=6BC x +,在Rt △ABC 中,()222810BC x =+-,∴()22226810x x +=+-, 解得:92x =,∴152BC ==.【点睛】本题主要考查了圆的基本性质,切线的性质,准确分析计算是解题的关键.26.(1)证明见解析;(2)5.【分析】(1)连接OC ,根据切线的性质可得OC CD ⊥,再证//AD OC ,然后再根据平行线的性质和等腰三角形的性质说明12∠=∠即可;(2)作OE AD ⊥于点E ,设O 的半径为x ,先证四边形OEDC 是矩形,进而求得OE 和AE ,然后根据勾股定理解答即可.【详解】(1)证明:如图1:连接OC ,∵CD 是切线,∴OC CD ⊥.∵AD CD ⊥,∴//AD OC ,∴13∠=∠.∵OA OC =,∴23∠∠=,∴12∠=∠,∴AC 平分DAB ∠;(2)解:如图2,作OE AD ⊥于点E ,设O 的半径为x .∵AD CD ⊥,OE AD ⊥,∴90OED EDC DCO ∠=∠=∠=︒,∴四边形OEDC 是矩形,∴4OE CD ==,8AE AD DE x =-=-,∴()22248x x +-=, ∴228016x x x -+=,解得5x =,∴O 的半径是5.【点睛】本题考查了圆的切线的性质、等腰三角形的性质、平行线的性质以及勾股定理等内容,灵活应用所学知识成为解答本题的关键.。

初三数学圆测试题及答案

初三数学圆测试题及答案

初三数学圆测试题及答案一、选择题(每题3分,共30分)1. 已知圆的半径为2,圆心在原点,下列哪个点在圆上?A. (3, 0)B. (2, 2)C. (2, 0)D. (0, 2)2. 圆的标准方程是 (x-a)^2 + (y-b)^2 = r^2,其中a和b是圆心的坐标,r是半径。

如果圆心在(1, 1),半径为3,那么圆的方程是什么?A. (x-1)^2 + (y-1)^2 = 9B. (x+1)^2 + (y+1)^2 = 9C. (x-1)^2 + (y+1)^2 = 9D. (x+1)^2 + (y-1)^2 = 93. 已知圆的直径为6,那么圆的半径是多少?A. 3B. 6C. 9D. 124. 如果一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π5. 圆的切线垂直于经过切点的半径,那么切线与半径的夹角是多少?A. 0°B. 90°C. 180°D. 360°6. 如果两个圆的半径分别为3和5,且它们外切,那么两圆心之间的距离是多少?A. 2B. 8C. 10D. 127. 圆的周长公式是C = 2πr,如果一个圆的周长为12π,那么它的半径是多少?A. 3B. 4C. 6D. 128. 已知圆的半径为4,圆心在点(2, 3),那么圆上一点(5, 7)到圆心的距离是多少?A. 3B. 4C. 5D. 69. 圆的面积公式是A = πr^2,如果一个圆的面积为16π,那么它的半径是多少?A. 2B. 3C. 4D. 510. 如果一个圆的半径为2,那么它的直径是多少?A. 4B. 6C. 8D. 10二、填空题(每题4分,共20分)1. 已知圆的半径为r,那么它的直径是________。

2. 圆的周长公式为C = 2πr,如果一个圆的半径为4,那么它的周长是________。

3. 圆的面积公式为A = πr^2,如果一个圆的半径为5,那么它的面积是________。

【单元练】人教版初中九年级数学上册第二十四章《圆》测试卷(含答案解析)(1)

【单元练】人教版初中九年级数学上册第二十四章《圆》测试卷(含答案解析)(1)

一、选择题1.如图,在平行四边形ABCO 中,45C ∠=︒,点A ,B 在⊙O 上,点D 在优弧ADB 上,DA DB =,则AOD ∠的度数为( )A .165°B .155°C .145°D .135°D解析:D【分析】 连接OB ,根据平行四边形的性质可得∠OAB=∠C=45°,再根据等腰三角形的等边对等角得∠OBA=∠OAB=45°,则∠AOB=90°,由DA=DB 得∠AOD=∠BOD ,进而可求得∠AOD 的度数.【详解】解:连接OB ,∵四边形ABCO 是平行四边形,∴∠OAB=∠C=45°,∵OA=OB ,∴∠OBA=∠OAB=45°,∴∠AOB=90°,∵DA=DA ,∴∠AOD=∠BOD=12(360°﹣90°)=135°, 故选:D .【点睛】本题考查平行四边形的性质,等腰三角形的性质,圆心角、弧、弦的关系等知识,熟练掌握平行四边形的性质和等腰三角形的性质,熟知等弦所对的圆心角相等是解答的关键. 2.如图,AB 、AC 是⊙O 的切线,B 、C 为切点,∠A =50°,点P 是圆上异于B 、C 的点,则∠BPC 的度数是( )A .65°B .115°C .115°或65°D .130°或65°C解析:C【分析】根据切线的性质得到OB ⊥AB ,OC ⊥AC ,求出∠BOC ,分点P 在优弧BC 上、点P 在劣弧BC 上两种情况,根据圆周角定理、圆内接四边形的性质计算即可.【详解】解:∵AB 、AC 是⊙O 的切线,∴OB ⊥AB ,OC ⊥AC ,∴∠OBA =90°,∠OCA =90°∵∠A =50°,∴∠BOC =360°﹣90°﹣90°﹣50°=130°,如图,当点P 在优弧BPC 上时,∠BPC =12∠BOC =65°, 当点P ′在劣弧BC 上时,∠BP ′C =180°﹣65°=115°,故选:C .【点睛】本题考查的是切线的性质、圆周角定理、圆内接四边形的性质,掌握圆的切线垂直于经过切点的半径及圆周角定理是解题的关键.3.已知正方形的边长a ,其内切圆的半径为r ,外接圆的半径为R ,则::R r a ( ) A 22B 2C 2D .224A 解析:A【分析】经过圆心O 作正方形一边AB 的垂线OC ,垂足是C .连接OA ,则在直角△OAC 中,∠AOC=45°.OC 是边心距r ,OA 即半径R ,进而即可求解【详解】如图:作出正方形的边心距,连接正方形的一个顶点和中心可得到一直角三角形 在中心的直角三角形的角为360°÷4÷2=45°,∴内切圆的半径为2a ,外接圆的半径为22a ,∴::R r a 22a :2a :a=2:1:2 故选A【点睛】本题主要考查正多边形的外接圆与内切圆的半径,掌握相关概念,作出图形,是解题的关键.4.下列事件属于确定事件的为( )A .氧化物中一定含有氧元素B .弦相等,则所对的圆周角也相等C .戴了口罩一定不会感染新冠肺炎D .物体不受任何力的时候保持静止状态A解析:A【分析】根据确定事件的概念,可知需找出必然事件或不可能事件即可.【详解】A 、氧化物是含有两种元素其中一种是氧元素的化合物,必然事件;B 、在同圆或等圆中,弦相等所对的圆周角相等或互补,不确定事件;C 、戴了口罩一定不会感染新冠肺炎,不确定事件;D 、物体不受任何力的时候保持静止状态或匀速运动,不确定事件.故选A.【点睛】本题考查事件的划分,必然事件和不可能事件统称为确定事件,确定事件中,必然出现的事情称为必然事件;不可能出现的事情称为不可能事件.5.以O 为中心点的量角器与直角三角板ABC 如图所示摆放,直角顶点B 在零刻度线所在直线DE 上,且量角器与三角板只有一个公共点P ,∠POB =40°,则∠CBD 的度数是( )A .50°B .45°C .35°D .40°D解析:D【分析】 根据切线的性质得到∠OPB =90°,证出OP //BC ,根据平行线的性质得到∠POB =∠CBD ,于是得到结果.【详解】∵AB是⊙O的切线,∴∠OPB=90°,∵∠ABC=90°,∴OP//BC,∴∠CBD=∠POB=40°,故选D.【点睛】本题考查了切线的性质,平行线的判定和性质,熟练掌握切线的判定和性质是解题的关键.6.如图,在等边ABC中,点O在边AB上,O过点B且分别与边AB BC、相交于点D、E,F是AC上的点,判断下列说法错误的是()A.若EF AC⊥,则EF是O的切线B.若EF是O的切线,则EF AC⊥C.若32BE EC=,则AC是O的切线D.若BE EC=,则AC是O的切线D解析:D【分析】A、如图1,连接OE,根据同圆的半径相等得到OB=OE,根据等边三角形的性质得到∠BOE=∠BAC,求得OE∥AC,于是得到A选项正确;B、由于EF是⊙O的切线,得到OE⊥EF,根据平行线的性质得到B选项正确;C、根据等边三角形的性质和圆的性质得到AO=OB,如图2,过O作OH⊥AC于H,根据三角函数得到OH=32AO≠OB,于是得到C选项正确;由于C正确,D自然就错误了.【详解】解:A、如图,连接OE,则OB=OE,∵∠B=60°∴∠BOE=60°,∵∠BAC=60°,∴∠BOE=∠BAC,∴OE∥AC,∵EF⊥AC,∴OE⊥EF,∴EF是⊙O的切线∴A选项正确B、∵EF是⊙O的切线,∴OE⊥EF,由A知:OE∥AC,∴AC⊥EF,∴B选项正确;C、如图,∵BE=,2∴CE=BE,3∵AB=BC,BO=BE,∴OB,∴,∴AC是⊙O的切线,∴C选项正确.D、∵∠B=60°,OB=OE,∴BE=OB,∵BE=CE,∴BC=AB=2BO,∴AO=OB,如图,过O作OH⊥AC于H,∵∠BAC=60°,∴,∴D选项错误;故选:D.【点睛】本题考查了切线的判定和性质,等边三角形的性质,正确的作出辅助线是解题的关键. 7.如图,A 、B 、C 三点在O 上,D 是CB 延长线上的一点,40ABD ∠=︒,那么AOC ∠的度数为( ).A .80°B .70°C .50°D .40°A解析:A【分析】 作弧ABC 所对的圆周角∠AEC ,如图,先利用邻补角计算出∠ABC=140°,再利用圆内接四边形的性质计算出∠E=40°,然后根据圆周角定理得到∠AOC 的度数.【详解】解:作弧ABC 所对的圆周角∠AEC ,∵∠ABD=40°,∴∠ABC=180°-40°=140°,∵∠AEC+∠ABC=180°,∴∠E=40°,∴∠AOC=2∠AEC=2×40°=80°.故选:A .【点睛】本题考查了圆内接四边形对角互补,以及圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8.如图,PA 切O 于点,A PB 切O 于点B PO ,交O 于点C ,下列结论中不一定成立的是( )A .PA PB =B .PO 平分APB ∠C .AB OP ⊥D .2PAB APO ∠=∠D解析:D【分析】 利用切线长定理证明△PAG ≌△PBG 即可得出.【详解】解:连接OA ,OB ,AB ,AB 交PO 于点G ,由切线长定理可得:∠APO =∠BPO ,PA =PB ,又∵PG=PG ,∴△PAG ≌△PBG ,从而AB ⊥OP .因此A .B .C 都正确.无法得出AB =PA =PB ,可知:D 是错误的.综上可知:只有D 是错误的.故选:D .【点睛】本题考查了切线长定理、全等三角形的判定和性质,关键是利用切线长定理解答. 9.点A ,B 的坐标分别为A (4,0),B (0,4),点C 为坐标平面内一点,BC ﹦2,点M 为线段AC 的中点,连接OM ,则OM 的最大值为( )A .2 1B .2+2C .2+1D .2-2A解析:A【分析】根据同圆的半径相等可知:点C 在半径为2的B 上,通过画图可知,C 在BD 与圆B 的交点时,OM 最小,在DB 的延长线上时,OM 最大,根据三角形的中位线定理可得结论.【详解】解:如图,点C 为坐标平面内一点,2BC =,C ∴在B 上,且半径为2,取4OD OA ,连接CD , AM CM =,OD OA =,OM ∴是ACD ∆的中位线, 12OM CD , 当OM 最大时,即CD 最大,而D ,B ,C 三点共线时,当C 在DB 的延长线上时,OM 最大, 4OB OD ,90BOD ∠=︒,42BD ∴= 422CD , 1142222122OM CD , 即OM 的最大值为221;故选:A .【点睛】本题考查了坐标和图形的性质,三角形的中位线定理等知识,确定OM 为最大值时点C 的位置是解题的关键.10.如图,AB 为圆O 的直径,点C 在圆O 上,若∠OCA =50°,OB =2,则弧BC 的长为( )A .103πB .59π C .109π D .518πC 解析:C【分析】先根据等腰三角形的性质求出∠A ,再利用圆周角定理求得∠BOC ,最后根据弧长公式求求解即可.【详解】解:∵∠OCA =50°,OA =OC ,∴∠A =50°,∴∠BOC =100°∵BO =2,∴1002101809BC l ππ⨯==. 故答案为C .【点睛】 本题主要考查了弧长公式应用以及圆周角定理,根据题意求得∠BOC 是解答本题的关键.二、填空题11.如图,PA 、PB 是⊙O 的切线,切点分别为A 、B ,若OA=2,∠P=60°,则AB 的长为________【分析】连接AB 并延长BO 交圆于C 连接ACPAPB 是⊙O 的切线由切线长定理知PA=PB ;又∠P=60°则等腰三角形APB 是等边三角形则有∠ABP=60°BC 是直径;由直径对的圆周角是直角得∠PBC= 解析:3【分析】连接AB ,并延长BO 交圆于C ,连接AC ,PA 、PB 是⊙O 的切线,由切线长定理知PA=PB ;又∠P=60°,则等腰三角形APB 是等边三角形,则有∠ABP=60°,BC 是直径;由直径对的圆周角是直角得∠PBC=90°,则在Rt △ABC 中,有∠ABC=30°,进而可知AB 的长.【详解】解:连接AB ,并延长BO 交圆于C ,连接AC ,∵PA 、PB 是⊙O 的切线,∴PA=PB ,又∵∠P=60°,∴∠PBA=60°;又∵BC 是圆的直径,∴CB ⊥PB ,∠BAC=90°,∴∠ABC=30°,而BC=4,∴在Rt △ABC 中,cos30°=AB BC , ∴AB=4×32=23. 故答案为:23【点睛】本题利用了切线长定理,等边三角形的判定和性质,弦切角定理,直角三角形的性质,正弦的概念求解.注意本题的解法不唯一.掌握相关知识是解题的关键.12.如图,在扇形AOB 中,90AOB ∠=︒正方形CDEF 的顶点C 是弧AB 的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为2时,阴影部分的面积为_______.π﹣2【分析】连结OC 根据勾股定理可求OC的长根据题意可得出阴影部分的面积=扇形BOC 的面积﹣三角形ODC 的面积依此列式计算即可求解【详解】解:连接OC ∵在扇形AOB 中∠AOB =90°正方形CDEF解析:π﹣2【分析】连结OC ,根据勾股定理可求OC 的长,根据题意可得出阴影部分的面积=扇形BOC 的面积﹣三角形ODC 的面积,依此列式计算即可求解.【详解】解:连接OC ,∵在扇形AOB 中,∠AOB =90°,正方形CDEF 的顶点C 是弧AB 的中点,∴∠COD =45°,∴OC =2CD =22,∴阴影部分的面积=扇形BOC 的面积﹣三角形ODC 的面积=245(22)360π⨯⨯﹣12×22 =π﹣2. 故答案为:π﹣2..【点睛】本题考查了扇形面积的计算以及正方形的性质,解题的关键是得到扇形半径的长度. 13.已知扇形的圆心角为120︒,面积为π,则扇形的半径是___________.【分析】根据扇形的面积公式S 扇形=即可求得【详解】解:∵S 扇形=∴r2==3∴r=(负值舍去)故答案为:【点睛】本题主要考查扇形面积的计算解题的关键是掌握扇形面积的计算公式:S 扇形= 3【分析】根据扇形的面积公式S 扇形=2360n r π 即可求得. 【详解】解:∵S 扇形=2360n r π, ∴r 2=360360 120S n πππ==3, ∴3(负值舍去),3【点睛】本题主要考查扇形面积的计算,解题的关键是掌握扇形面积的计算公式:S 扇形=2360n r π.14.将面积为3πcm 2的扇形围成一个圆锥的侧面,若扇形的圆心角是120°,则该圆锥底面圆的半径为_____cm .1【分析】直接利用已知得出圆锥的母线长再利用圆锥侧面展开图与各部分对应情况得出答案【详解】解:设圆锥的母线长为Rcm 底面圆的半径为rcm ∵面积为3πcm2的扇形围成一个圆锥的侧面扇形的圆心角是120 解析:1【分析】直接利用已知得出圆锥的母线长,再利用圆锥侧面展开图与各部分对应情况得出答案.【详解】解:设圆锥的母线长为Rcm ,底面圆的半径为rcm ,∵面积为3πcm 2的扇形围成一个圆锥的侧面,扇形的圆心角是120°, ∴2120360R π⨯=3π, 解得:R =3,由题意可得:2πr =1203180π⨯, 解得:r =1.故答案为:1. 【点睛】此题主要考查了圆锥的计算,正确得出母线长是解题关键.15.如图,在半径为3的⊙O 中,AB 是直径,AC 是弦,D 是AC 的中点,AC 与BD 交于点E .若E 是BD 的中点,则AC 的长是____________. 【分析】连接DO 交AC 于点F 由垂径定理得F 是AC 中点再由中位线定理得接着证明得到DF=CB 就可以求出OF 的长就得到BC 的长最后用勾股定理求出AC 的长【详解】解:如图连接DO 交AC 于点F ∵D 是的中点∴ 解析:2【分析】连接DO ,交AC 于点F ,由垂径定理得F 是AC 中点,再由中位线定理得12OF BC =,接着证明()EFD ECB AAS ≅,得到DF=CB ,就可以求出OF 的长,就得到BC 的长,最后用勾股定理求出AC 的长.【详解】解:如图,连接DO ,交AC 于点F ,∵D 是AC 的中点,∴OD AC ⊥,AF CF =,∴90DFE ∠=︒,∵OA OB =,AF CF =, ∴12OF BC =, ∵AB 是直径, ∴90ACB ∠=︒,在EFD △和ECB 中,90DFE BCE DEF BECDE BE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ∴()EFD ECB AAS ≅,∴DF BC =, ∴12OF DF =, ∵3OD =, ∴1OF =,∴2BC =,在Rt ABC 中,2242AC AB BC =-=. 故答案是:2【点睛】本题考查垂径定理,解题的关键是熟练运用垂径定理.16.已知,O 的弦AB 与O 的半径相等,则弦AB 所对的圆周角的度数为______.或【分析】由的半径为厘米弦的长为厘米可得等边三角形因此再利用圆周角定理和圆内接四边形的性质求出弦所对的圆周角注意所对的圆周角有两种情形【详解】解:如图为等边三角形则设弦所对的圆周角为当点在弦所对的优 解析:30或150︒【分析】由O 的半径为r 厘米,弦AB 的长为r 厘米,可得OAB 等边三角形,因此60AOB ∠=︒,再利用圆周角定理和圆内接四边形的性质求出弦AB 所对的圆周角.注意AB 所对的圆周角有两种情形.【详解】解:如图,OA OB AB r ===,ABO ∴为等边三角形,则60AOB ∠=︒.设弦AB 所对的圆周角为ACB ∠,当点C 在弦AB 所对的优弧上,则60230ACB ∠=︒÷=︒;当点C 在弦AB 所对的劣弧上,则18030150ACB ∠=︒-︒=︒.所以弦AB 所对的圆周角为30或150︒,故答案为:30或150︒.【点睛】本题考查了圆周角定理.同弧所对的圆周角相等,并且等于它所对的圆心角的一半.同时考查了圆内接四边形的对角互补和等边三角形的性质.17.如图,若∠BOD =140°,则∠BCD=___________ .【分析】如图(见解析)先根据圆周角定理可得再根据圆内接四边形的性质即可得【详解】如图在优弧上取一点E 连接BEDE 由圆内接四边形的性质得:故答案为:【点睛】本题考查了圆周角定理圆内接四边形的性质熟练掌解析:110︒【分析】如图(见解析),先根据圆周角定理可得70BED ∠=︒,再根据圆内接四边形的性质即可得.【详解】如图,在优弧BD 上取一点E ,连接BE 、DE ,140BOD ∠=︒,1702BED BOD ∠∴∠==︒,由圆内接四边形的性质得:180110BC ED D B ∠=︒-∠=︒,故答案为:110︒.【点睛】本题考查了圆周角定理、圆内接四边形的性质,熟练掌握圆周角定理是解题关键. 18.已知⊙O 的半径为3,圆心O 到直线l 的距离为m ,若m 满足方程290x ,则⊙O 与直线l 的位置关系是________相切【分析】先解一元二次方程求出m 的值再根据圆与直线的位置关系即可得【详解】由得:是圆心O 到直线的距离又满足方程的半径为3与直线的位置关系是相切故答案为:相切【点睛】本题考查了解一元二次方程圆与直线解析:相切【分析】先解一元二次方程求出m 的值,再根据圆与直线的位置关系即可得.【详解】由290x 得:123,3x x ==-, m 是圆心O 到直线l 的距离,0m ∴≥,又m 满足方程290x ,3m ∴=, O 的半径为3,O ∴与直线l 的位置关系是相切,故答案为:相切.【点睛】本题考查了解一元二次方程、圆与直线的位置关系、点到直线的距离,熟练掌握圆与直线的位置关系是解题关键.19.如图,ABC 是等边三角形,180BAD BCD ∠+∠=︒,8BD =,2CD =,则AD =________.6【分析】在线段BD 上取一点E 使得BE=CD 连接AE 由四点共圆得∠再证明△是等边三角形得再由线段的和差关系可得结论【详解】解:在线段BD 上取一点E 使得BE=CD 连接AE ∵∴四点共圆∴∠∴∠∵△是等边 解析:6【分析】在线段BD 上取一点E ,使得BE=CD ,连接AE ,由,,,A B C D 四点共圆得∠ABE ACD =∠,再证明ABE ACD ≅∆,△ADE 是等边三角形,得AD DE AE ==,再由线段的和差关系可得结论.【详解】解:在线段BD 上取一点E ,使得BE=CD ,连接AE ,∵180BAD BCD ∠+∠=︒∴,,,A B C D 四点共圆,∴∠ABD ACD =∠∴∠ABE ACD =∠∵△ABC 是等边三角形,∴AB AC BC ==,60DAE ∠=︒,∴△ABE ACD ≅∆,∠60BAE CAF +∠=︒,∴,BAE CAD BAF CAD ∠=∠∠=∠,∴∠60CAD CAE +∠=︒,即60DAE ∠=︒,∴△ADE 是等边三角形,∴AD DE AE ==,∵=8BD ,2CD =,∴6DE BD BE BD CD =-=-=,∴6AD DE ==.【点睛】此题主要考查了全等三角形的判定与性质,以及四点共圆的判定,证明∠ABE ACD =∠是解答此题的关键.20.如图,MN 是O 的直径,2MN =,点A 在O 上,30AMN ∠=︒,B 为弧AN 的中点,点P 是直径MN 上的一个动点,则PA PB +的最小值为_______.【分析】作点A 的对称点根据中位线可知最小时P 正好在上在根据圆周角定理和等弧所对圆心角相等求得再利用勾股定理即可求解【详解】如图作点关于的垂线交圆与连接交于点连接则此时的值最小∵∴∵点是的中点∴∵关于 解析:2【分析】作点A 的对称点,根据中位线可知PA PA =' ,PA PB +最小时P 正好在A B '上,在根据圆周角定理和等弧所对圆心角相等求得90AOB ∠'=︒,再利用勾股定理即可求解.【详解】如图,作点A 关于MN 的垂线交圆与A ' ,连接A B ' 交MN 于点P ,连接AP OB OA OA '、、、 ,则此时AP BP + 的值最小A B =' ,∵30AMN ∠=︒,∴60AON ∠=︒,∵点B 是AN 的中点,∴30BON ∠=︒ ,∵A A '、 关于MN 对称,∴60AON AON ∠'=∠=︒,∴306090AOB ∠'=︒+︒=︒,又∵112122OA OB MN '===⨯=, 在RT A OB '△中 ∴221+1=2A B '=AP BP + 的值最小22.【点睛】本题主要考查了圆心角、弧、弦之间的关系、圆周角定理、垂直平分线定理、勾股定理等.在同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的一半.本题是与圆有关的将军饮马模型. 三、解答题21.如图,已知正方形ABCD 的边长为1,正方形BEFG 中,点E 在AB 的延长线上,点G 在BC 上,点O 在线段AB 上,且AO BO ≥.以OF 为半径的O 与直线AB 交于点M、N.(1)如图1,若点O为AB中点,且点D,点C都在O上,求正方形BEFG的边长.(2)如图2,若点C在O上,求证:以线段OE和EF为邻边的矩形的面积为定值,并求出这个定值.(3)如图3,若点D在O上,求证:DO FO.解析:(1)12;(2)见解析;12;(3)证明见解析【分析】(1)连接OC,设BE=EF=x,则OE=x+12,得出(x+12)2+x2=(12)2+12,解得:x=12,则答案求出;(2)连接OC,设OB=y,BE=EF=x,同(1)可得,OE2+EF2=OF2,OB2+BC2=OC2,得出x2+(x+y)2=y2+12,即x(x+y)=12,则结论可得证;(3)连接OD,设OA=a,BE=EF=b,则OB=1-a,则OE=1-a+b,可得出12+a2=(1-a+b)2+b2,得出a=b,则OA=EF,证明Rt△AOD≌Rt△EFO(HL),则得出∠FOE=∠ODA,结论得出.【详解】解:(1)连接OC∵四边形ABCD和四边形BEFG为正方形,∴AB=BC=1,BE=EF,∠OEF=∠ABC=90°,∵点O为AB中点,∴OB=12AB=12,设BE=EF=x,则OE=x+12,在Rt△OEF中,∵OE2+EF2=OF2,∴(x+12)2+x2=OF2,在Rt△OBC中,∵OB2+BC2=OC2,∴(12)2+12=OC2,∵OC,OF为⊙O的半径,∴OC=OF,∴(x+12)2+x2=(12)2+12,解得:x=12,∴正方形BEFG的边长为12;(2)证明:如图2,连接OC,设OB=y,BE=EF=x,同(1)可得,OE2+EF2=OF2,OB2+BC2=OC2,∴OF2=x2+(x+y)2,OC2=y2+12∵OC,OF为⊙O的半径,∴OC=OF,∴x2+(x+y)2=y2+12,∴2x2+2xy=1,∴x2+xy=12,即x(x+y)=12,∴EF×OE=12,∴以线段OE和EF为邻边的矩形的面积为定值,这个定值为12.(3)证明:连接OD,设OA=a,BE=EF=b,则OB=1-a,则OE=1-a+b,∵∠DAO=∠OEF=90°,∴DA 2+OA 2=OD 2,OE 2+EF 2=OF 2,∴12+a 2=OD 2,(1-a+b )2+b 2=OF 2,∵OD=OF ,∴12+a 2=(1-a+b )2+b 2,∴(b+1)(a-b )=0,∵b+1≠0,∴a-b=0,∴a=b ,∴OA=EF ,在Rt △AOD 和Rt △EFO 中,OD OF OA EF ⎧⎨⎩==, ∴Rt △AOD ≌Rt △EFO (HL ),∴∠FOE=∠ODA ,∵∠DAO=90°,∴∠ODA+∠AOD=90°,∴∠FOE+∠AOD=90°,∴∠DOF=90°,∴DO ⊥FO .【点睛】本题是圆的综合题,考查了圆的性质,正方形的性质,全等三角形的判定与性质,矩形的面积等知识,熟练运用方程的思想是解题的关键.22.如图,AB 为量角器(半圆O )的直径,等腰直角△BCD 的斜边BD 交量角器边缘于点G ,直角边CD 切量角器于读数为60°的点E 处(即弧AE 的度数为60°),第三边交量角器边缘于点F 处.(1)求量角器在点G 处的读数α(0°<α<90°);(2)若AB =12cm ,求阴影部分面积.解析:(1)30°;(2)6π﹣3【分析】(1)如图,连接OE ,OF ,利用切线的性质、等腰直角三角形的性质以及平行线的判定证得OE ∥BC ,则同位角∠ABC=∠AOE=60°,所以由图形中相关角与角间的和差关系即可得到∠ABG=15°;然后由圆周角定理可以求得量角器在点G 处的读数α(0°<α<90°);(2)根据扇形和三角形的面积公式即可得到结论.【详解】解:(1)如图,连接OE ,OF .∵CD 切半圆O 于点E ,∴OE ⊥CD ,∵BD 为等腰直角△BCD 的斜边,∴BC ⊥CD ,∠D =∠CBD =45°,∴OE ∥BC ,∴∠ABC =∠AOE =60°,∴∠ABG =∠ABC ﹣∠CBD =60°﹣45°=15°∴弧AG 的度数=2∠ABG =30°,∴量角器在点G 处的读数α=弧AG 的度数=30°;(2)∵AB =12cm ,∴OF =OB =6cm ,∠ABC =60°,∴△OBF 为正三角形,∠BOF =60°,∴S 扇形=2606360π⋅⨯=6π(cm 2),S △OBF =93, ∴S 阴影=S 扇形﹣S △OBF =6π﹣93.【点睛】本题考查了切线的性质,扇形面积的计算,圆周角定理.求(2)题时,利用了“分割法”求得图中阴影部分的面积.23.在O 中,弦CD 与直径AB 相交于点,62P ABC ∠=︒.(1)如图1,若100APC ∠=︒,求BAD ∠和CDB ∠的大小;(2)如图2,若CD AB ⊥,过点D 作O 的切线,与AB 的延长线相交于点E ,求E∠的大小.解析:(1)3828BAD CDB ∠=∠=,;(2)34E ∠=.【分析】(1)首先利用三角形外角的性质即可求出∠BAD 的度数,然后利用圆周角定理及其推论即可求出∠CDB 的度数;(2)首先根据直角三角形两锐角互余得出∠PCB 的度数,然后根据切线的性质及圆周角定理即可得出答案.【详解】(1)如图1,,APC ABC BCP ∠=∠+∠又100,62APC ABC ∠=︒∠=︒,38,BCD ∴∠=︒38,BAD BCD ∴∠=∠=︒ AB 是O 的直径,90,ADB ∴∠=︒62,ADC ABC ∠=∠=︒28CDB ∴∠=.(2)如图2,连接,OD AD ,则,A ADO ∠=∠,CD AB ⊥90,BPC APD ∴∠=∠=︒62,ABC ∠=︒28BCP DAP ∴∠=∠=.56,DOP ∴∠=︒34,ODP ∴∠=︒ DE 是O 的切线,90,ODE ∴∠=︒34E ODP ∴∠=∠=.【点睛】本题主要考查圆的综合问题,掌握切线的性质,圆周角定理及其推论是解题的关键. 24.如图,O 的直径AB 为10cm ,弦BC 为5cm ,D .E 分别是∠ACB 的平分线与O ,AB 的交点,P 为AB 延长线上一点,且PC=PE .(1)求AC 、AD 的长;(2)试判断直线PC 与O 的位置关系,并说明理由.解析:(1)3AC =AD =522)直线PC 与圆相切,理由见解析【分析】(1)连结BD ,如图,根据圆周角定理由AB 为直径得∠ACB =90°,利用勾股定理计算出AC =8;由DC 平分∠ACB 得∠ACD =∠BCD =45°,根据圆周角定理得∠DAB =∠DBA =45°,则ΔADB 为等腰直角三角形,由勾股定理即可得出AD 的长;(2)连结OC ,由PC =PE 得∠PCE =∠PEC ,利用三角形外角性质得∠PEC =∠EAC+∠ACE =∠EAC+45°,在直角三角形ACB 中,AB=10,BC=5,可求出∠CAB=30º,进而求出∠ABC=∠OCB,于是可得到∠PCE=90°﹣∠OCB+45°=90°﹣(∠OCE+45°)+45°,则∠OCE+∠PCE=90°,于是根据切线的判定定理可得PC为O的切线.【详解】(1)连结BD,如图所示,∵AB为直径,∴∠ACB=90°,在Rt△ACB中,AB=10cm,BC=5cm,∴AC2253-=cm);AB BC∵DC平分∠ACB,∴∠ACD=∠BCD=45°,∴∠DAB=∠DBA=45°,∴△ADB为等腰直角三角形,∴AD=2=52cm);(2)直线PC与圆相切,理由:连接OC,在直角三角形ACB中,AB=10,BC=5,∴30∠=,BAC︒∵OA=OC,∴∠=∠=,30OCA OAC︒∴60∠=,COB︒∵45︒ACD,∠=∴453015∠=-=,OCD︒︒︒∴∠=∠+∠=+=,156075CEP COB OCD︒︒︒∵PC=PE,∴75∠=∠=,PCE CEP︒∴∠=∠+∠=+=,OCP OCD ECP︒︒︒751590∴直线PC是圆O的切线.【点睛】本题考查了切线的判定,圆周角定理,是圆的综合题,综合性比较强,难度适中,熟练掌握直线与圆的位置关系的判定方法是解题的关键.25.如图,已知A、B、C、D四点都在⊙O上.(1)若∠ABC=120°,求∠AOC的度数;(2)在(1)的条件下,若点B是弧AC的中点,求证:四边形OABC为菱形.解析:(1)∠AOC=120°;(2)见解析【分析】(1)先由圆内接四边形的性质得∠ADC=60°,再由圆周角定理即可得出答案;(2)证△OAB和△OBC都是等边三角形,则AB=OA=OC=BC,根据菱形的判定方法即可得到结论.【详解】(1)∵A、B、C、D四点都在⊙O上∴∠ABC+∠ADC=180°,∵∠ABC=120°,∴∠ADC=60°,∴∠AOC=2∠ADC=120°;(2)连接OB,如图所示:∵点B是弧AC的中点,∠AOC=l20°,∴∠AOB=∠BOC=60°,又∵OA=OC=OB ,∴△OAB 和△OBC 都是等边三角形,∴AB=OA=OC=BC ,∴四边形OABC 是菱形.【点睛】本题考查了圆内接四边形的性质,圆周角定理,圆心角、弧、弦的关系:在同圆或等圆中,相等的弧所对的圆心角相等.也考查了等边三角形的判定与性质以及菱形的判定. 26.如图,O 的半径为2,四边形ABCD 内接于O ,圆心O 到AC 的距离等于3. (1)求AC 的长;(2)求ADC ∠的度数.解析:(1)2;(2)150︒【分析】(1)过点O 作OE AC ⊥于点E ,根据勾股定理求出CE ,即可得出答案;(2)连接OA ,先求出60AOC ∠=︒,根据同弧所对的圆周角是圆心角的一半得出∠B=30°,即可得出答案.【详解】(1)过点O 作OE AC ⊥于点E ,如图,则在Rt OCE 中,3OE =2OC =,∴()2222231CE OC OE =-=-=∴22AC CE ==;(2)连接OA ,如图:∵由(1)知,在AOC △中,AC OA OC ==,∴60AOC ∠=︒,∵弧AC =弧AC , ∴1302B AOC ∠=∠=︒, ∴180********ADC B ︒︒∠=-∠=-=︒︒.【点睛】 本题考查了垂径定理,同弧所对的圆周角是圆心角的一半,掌握这些知识点是解题关键. 27.如图,半径为2的⊙O 与正五边形ABCDE 的边AB 、AE 相切于点M 、N ,求劣弧MN 的长度.解析:45π 【分析】如图(见解析),先根据圆的切线的性质可得,OM AB ON AE ⊥⊥,再根据正五边形的内角和可得108A ∠=︒,然后根据四边形的内角和可得72MON ∠=︒,最后弧长公式即可得.【详解】如图:连接OM ,ON ,∵O 与正五边形ABCDE 的边AB 、AE 相切于点M 、N ,∴,OM AB ON AE ⊥⊥,90AMO ANO ∴∠=∠=︒,∵正五边形的每个内角为(52)1801085-⨯︒=︒, 108A ∴∠=︒,∴在四边形AMON 中,36072AMO ANO A MON ∠-∠=-∠∠︒-=︒,∵O 的半径为2,∴劣弧MN 的长度为72241805ππ⨯=.【点睛】本题考查了正五边形的内角和、圆的切线的性质、弧长公式等知识点,熟练掌握正五边形的内角和是解题关键.28.如图,⊙O 是△ABC 的外接圆,AB 为直径,∠BAC 的平分线交⊙O 于点D ,过点D 作DE ⊥AC ,分别交AC 、AB 的延长线于点E ,F .(1)求证:EF 是⊙O 的切线;(2)若AC =6,CE =2,求CB 的长.解析:(1)见解析;(2)8【分析】(1)连接OD 交BC 于H ,证出OD ∥AE ,得出OD ⊥EF ,即可得出结论;(2)证四边形CEDH 是矩形,得HD =CE =2,由三角形中位线定理得OH =12AC =3,则OB =OD =OH +HD =5,得AB =2OB =10,由勾股定理即可得出答案.【详解】(1)证明:连接OD 交BC 于H ,如图所示:∵OA =OD ,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠OAD=∠DAC,∴∠ODA=∠DAC,∴OD∥AE,∵DE⊥AC,∴OD⊥EF,∵OD是⊙O的半径,∴EF是⊙O的切线;(2)解:∵AB为⊙O的直径,∴∠ACB=90°,∴∠HCE=90°,又∵DE⊥AC,∴∠E=90°,由(1)得:OD⊥EF,∴∠HDE=90°,∴四边形CEDH是矩形,∴HD=CE=2,∴∠CHD=90°,∴∠OHB=90°,∴OD⊥BC,∴OH平分BC,∴OH是△ABC的中位线,∴OH=1AC=3,2∴OB=OD=OH+HD=5,∴AB=2OB=10,∴CB2-=8.AC【点睛】本题考查了切线的判定与性质、圆周角定理、等腰三角形的性质、平行线的判定与性质、垂径定理、三角形中位线定理、矩形的判定与性质、勾股定理等知识;解题的关键是掌握切线的判定与性质和圆周角定理.。

人教版苏科版初中数学—圆(单元测试卷)

人教版苏科版初中数学—圆(单元测试卷)

班级小组姓名成绩(满分100)一、填空题.(共16分,每空2分)1.圆的直径扩大4倍,它的周长就扩大倍,它的面积就扩大倍.2.在长8分米、宽6分米的长方形中画一个最大的圆,圆的周长是分米,面积是平方分米.π取3.14)3.画圆时,圆规两脚之间的距离为4厘米,那么这个圆的直径是厘米,周长是厘米,面积是平方厘米.(π取3.14)4.一根铁丝刚好可以围成一个边长是0.785米的正方形,用这根铁丝围成一个圆,这个圆的半径是米.(π取 3.14)5.一个半圆形的花坛周长是30.84米,这个半圆形花坛的面积是平方米.π取3.14)6.把一头牛用3米长的绳系在一根木桩上,这头牛吃草的最大面积是平方米.(π取3.14)二、判断题.(对的打“√”错的打“×”)(共8分,每题2分)1.周长相等的两个圆,它们的面积也一定相等.()2.半径是2厘米的圆,在数值上,它的周长和面积相等.()3.大圆的圆周率比小圆的圆周率要大.()4.一个圆的直径等于一个正方形的边长,那么正方形面积小于圆的面积.()三、选择题(把正确答案的序号填在括号里)(共10分,每题2分)1.车轮滚动一周,所行的路程是求车轮的()A、周长B、半径C、直径2.设C为圆的周长,12cπ⨯=()A、圆的面积B、圆的直径C、圆的半径3.如图是一个半圆,那它的周长的正确计算算式是()3.1415+152C⨯⨯、4.小圆的直径是2厘米,大圆的半径是2厘米,小圆的面积是大圆面积的().A、21B、41C、815.用同样长的铁丝围成的正方形、圆形,其面积().A、相等B、正方形大C、圆形四、求阴影部分的面积.(共24分,每题8分)1.下图中正方形的边长为10厘米,求出阴影部分的面积.(π取3.14)2.下图中正方形的边长为4厘米,求出阴影部分的面积.π取3.14)3.已知图中三角形为等腰直角三角形,请根据图中数据,求出阴影部分的面积.(π取3.14)五、解决问题我能行.(共42分,每题8分)1.在一个半径是20米的圆形苗圃边沿修一条2米宽的环行路.这条路的面积是多少平方米?(π取 3.14)2.通过一座桥,直径是1.5米的车轮需转500圈,这座桥长多少米?(π取3.14)3.一块圆形菜地,直径20米,现在要在菜地上覆盖一层塑料薄膜,至少需要薄膜多少平方米?如果每平方米薄膜价格0.5元,这些薄膜要花多少元?(π取 3.14)4.一只大钟,它的时针长40厘米.当从中午12时到下午3时,这根时针的尖端所走的路程是多少米?(π取3.14)5.给直径为0.75米的水缸做一个木盖,木盖的直径比缸口直径大5厘米,这个木盖的面积是多少平方米?周长是多少米?(π取3.14)6.在一个半径是4分米的圆内画一个最大的正方形,这个正方形的面积是多少平方分米?(π取3.14)。

初三圆单元测试题及答案

初三圆单元测试题及答案

初三圆单元测试题及答案一、选择题(每题3分,共30分)1. 若圆的半径为r,则圆的面积为()A. πr²B. 2πrC. πrD. 4πr²2. 圆的周长公式为()A. 2πrB. πrC. 2πr²D. πr²3. 圆的直径是半径的()A. 1倍B. 2倍C. 3倍D. 4倍4. 圆的切线垂直于()A. 半径B. 直径C. 弦D. 切点5. 圆的内接四边形的对角线()A. 相等B. 互补C. 垂直D. 平行6. 圆的外切四边形的对角线()A. 相等B. 互补C. 垂直D. 平行7. 圆的切线与半径的关系是()A. 垂直B. 平行C. 相交D. 重合8. 圆的弦中,最长的弦是()A. 直径B. 半径C. 切线D. 弦9. 圆的半径增加1倍,面积增加()A. 1倍B. 2倍C. 3倍D. 4倍10. 圆的半径减少1倍,面积减少()A. 1倍B. 2倍C. 3倍D. 4倍二、填空题(每题3分,共30分)1. 圆的周长公式为C=2πr,其中C表示______,r表示______。

2. 圆的面积公式为A=πr²,其中A表示______,r表示______。

3. 直径是圆的两个点之间的最长距离,它的计算公式为d=______。

4. 圆的切线与半径的关系是______。

5. 圆的内接四边形的对角线具有______的性质。

6. 圆的外切四边形的对角线具有______的性质。

7. 圆的切线与半径垂直,即切线与半径的夹角为______度。

8. 圆的弦中,直径是______的弦。

9. 圆的半径增加1倍,面积增加到原来的______倍。

10. 圆的半径减少1倍,面积减少到原来的______倍。

三、解答题(每题20分,共40分)1. 已知圆的半径为5cm,求该圆的周长和面积。

2. 已知圆的周长为31.4cm,求该圆的半径,并计算其面积。

答案:一、选择题1-5:A A B A B6-10:A B A A D二、填空题1. 周长,半径2. 面积,半径3. 2r4. 垂直5. 互补6. 垂直7. 908. 最长9. 410. 1/4三、解答题1. 周长:C=2πr=2×3.14×5=31.4cm;面积:A=πr²=3.14×5²=78.5cm²。

(常考题)人教版初中数学九年级数学上册第四单元《圆》测试(含答案解析)(1)

(常考题)人教版初中数学九年级数学上册第四单元《圆》测试(含答案解析)(1)

一、选择题1.在ABC 中,90,4,3C AC BC ∠=︒==,把它绕AC 旋转一周得一几何体,该几何体的表面积为( )A .24πB .21πC .16.8πD .36π2.如图,AC 为半圆的直径,弦3AB =,30BAC ∠=︒,点E 、F 分别为AB 和AC 上的动点,则BF EF +的最小值为( )A .3B .332C .3D .332+ 3.如图,A 是B 上任意一点,点C 在B 外,已知2AB =,4BC =,ACD △是等边三角形,则BCD △的面积的最大值为( )A .434+B .43C .438+D .63 4.如图,ABC 为O 的一个内接三角形,过点B 作O 的切线PB 与OA 的延长线交于点P .已知34ACB ∠=︒,则P ∠等于( )A .17°B .27°C .32°D .22°5.如图,AB 是⊙O 的切线,B 为切点,AC 经过点O ,与⊙O 分别相交于点D 、C .若∠ACB=30°,AB= 3 )A.32B.33C.3π26-D.3π36-6.已知△ABC的外心为O,连结BO,若∠OBA=18°,则∠C的度数为()A.60°B.68°C.70°D.72°7.如图,ABC的三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将ABC绕点B顺时针旋转到A B C'''的位置,且点A'、C'仍落在格点上,则线段AB扫过的图形的面积是()平方单位(结果保留)A.254πB.134πC.132πD.136π8.已知⊙O的直径为6,圆心O到直线l的距离为3,则能表示直线l与⊙O的位置关系的图是()A.B.C.D.9.在下列命题中,正确的是( )A.弦是直径B.半圆是弧C.经过三点确定一个圆D.三角形的外心一定在三角形的外部10.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为BD的中点.若50A ∠=︒,则B 的度数是( )A .50︒B .55︒C .60︒D .65︒11.如图,⊙O 是四边形 ABCD 的内切圆,连接 OA 、OB 、OC 、OD .若∠AOB =110°,则∠COD 的度数是( )A .60°B .70°C .80°D .45°12.如图,点M 是矩形ABCD 的边BC 、CD 上的点,过点B 作BN ⊥AM 于点P ,交矩形ABCD 的边于点N ,连接DP ,若AB=6,AD=4,则DP 的长的最小值为( )A .2B .121313C .4D .5二、填空题13.如图,等腰直角△ABC 中,∠BAC=90°,AB=AC=4.平面内的直线l 经过点A ,作CE ⊥l 于点E ,连接BE.则当直线l 绕着点A 转动时,线段BE 长度的最大值是________.14.如图所示,在平面直角坐标系中,正六边形OABCDE 边长是6,则它的外接圆圆心P 的坐标是______.15.如图,正六边形ABCDEF 的边长为2,分别以点A ,D 为圆心,以AB ,DC 为半径作扇形ABF ,扇形DCE .则图中阴影部分的面积是______.16.如图,点C ,D 是半圈O 的三等分点,直径43AB =.连结AC 交半径OD 于E ,则阴影部分的面积是_______.17.如图,△ABC 中,∠A=60°,若O 为△ABC 的内心,则∠BOC 的度数为______度.18.在矩形ABCD 中,43AB =6BC =,若点P 是矩形ABCD 上一动点,要使得60APB ∠=︒,则AP 的长为__________.19.如图,四边形ABCD 内接于O ,若76A ∠=︒,则C ∠=_______ °.20.如图所示,在⊙O中,AB为弦,交AB于AB点D,且OD=DC,P为⊙O上任意一点,连接PA,PB,若⊙O的半径为1,则S△PAB的最大值为_____.三、解答题21.如图,AB为量角器(半圆O)的直径,等腰直角△BCD的斜边BD交量角器边缘于点G,直角边CD切量角器于读数为60°的点E处(即弧AE的度数为60°),第三边交量角器边缘于点F处.(1)求量角器在点G处的读数α(0°<α<90°);(2)若AB=12cm,求阴影部分面积.22.如图,AB是圆的直径,且AD//OC,求证:CD BC.23.已知:△ABC.(1)求作:△ABC的外接圆⊙O(要求:尺规作图,保留作图痕迹,不写作法);(2)若已知△ABC的外接圆的圆心O到BC边的距离OD=8,BC=12,求⊙O的半径.24.如图,以点O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,点P为切点.求证:AP=BP.25.如图,长方形ABCD的长是a,宽是b,分别以A、C为圆心作扇形,用代数式表示阴影部分的周长L和面积S(结果中保留π).⨯的网格中有一个圆,请仅用无刻度直尺作图(保留画图痕迹).26.如图,在33(1)在图1中,圆过格点A,B,请作出圆心O;=,请作一个45圆周角.(2)在图2中,⊙O的两条弦AB CD【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】以直线AC为轴旋转一周所得到的几何体的表面积是圆锥的侧面积加底面积,根据圆锥的侧面积公式计算即可.【详解】解:根据题意得:圆锥的底面周长6π=, 所以圆锥的侧面积165152ππ=⨯⨯=, 圆锥的底面积239ππ=⨯=,所以以直线AC 为轴旋转一周所得到的几何体的表面积15924πππ=+=.故选:A .【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了扇形的面积公式.2.B解析:B【分析】作B 点关于直径AC 的对称点B′,过B′点作B′E ⊥AB 于E ,交AC 于F ,如图,利用两点之间线段最短和垂线段最短可判断此时FB +FE 的值最小,再判断△ABB′为等边三角形,然后计算出B′E 的长即可.【详解】解:作B 点关于直径AC 的对称点B′,过B′点作B′E ⊥AB 于E ,交AC 于F ,如图,则FB =FB′,∴FB +FE =FB′+FE =B′E ,此时FB +FE 的值最小,∵∠BAC =30°,∴∠B′AC =30°,∴∠BAB′=60°,∵AB =AB′,∴△ABB′为等边三角形,∵B′E ⊥AB ,∴AE =BE =32, ∴B′E =3AE =332, 即BF +EF 的最小值为332. 故选:B .【点睛】 本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了等腰三角形的性质.3.A解析:A【分析】以BC 为边作等边BCM ,连接DM ,则DCM CAB ≅△△,根据全等三角形的性质得到DM=AB=2为定值,即点D 在以M 为圆心,半径为2的圆上运动,当点D 运动至BC 为中垂线与圆的交点时,BC 边上的高取最大值为232+,根据三角形的面积即可得到结论.【详解】解:以BC 为边作等边BCM ,连接DM ,∵60DCA MCB ==∠∠,∴DCM ACB =∠∠,∵DC=AC ,MC=BC ,∴DCM CAB ≅△△(SAS ),∴DM=AB=2为定值,即点D 在以M 为圆心,半径为2的圆上运动,当点D 运动至BC 为中垂线与圆的交点时,BC 边上的高取最大值为232,此时面积为:434故选:A【点睛】本题考查了等边三角形的性质,三角形面积的计算,找出点D 的位置是解题的关键.4.D解析:D【分析】连接OB,利用圆周角定理求得∠AOB,再根据切线性质证得∠OBP=90°,利用直角三角形的两锐角互余即可求解.【详解】解:连接OB,∵∠ACB=34°,∴∠AOB=2∠ACB=68°,∵PB为O的切线,∴OB⊥PB,即∠OBP=90°,∴∠P=90°﹣∠AOB=22°,故选:D.【点睛】本题考查了切线的性质、圆周角定理、直角三角形的两锐角互余,熟练掌握切线的性质和圆周角定理是解答的关键.5.C解析:C【分析】首先求出∠AOB,OB,然后利用S阴=S△ABO−S扇形OBD计算即可.【详解】连接OB.∵AB是⊙O切线,∴OB⊥AB,∵OC=OB,∠C=30°,∴∠C=∠OBC=30°,∴∠AOB=∠C+∠OBC=60°,在Rt△ABO中,∵∠ABO=90°,AB=3,∠A=30°,∴OB=ABtan30°=1,∴S阴=S△ABO−S扇形OBD=12×1×3−2601360π⋅=3π26-.故选:C.【点睛】本题考查切线的性质、等腰三角形的性质、勾股定理,直角三角形30度角性质,解题的关键是学会分割法求面积,记住扇形面积公式,属于中考常考题型.6.D解析:D【分析】连接OA,则OA=OB,可得∠OBA=∠OAB,再结合∠OBA=18°即可求得∠AOB=144°,再根据圆周角的性质即可求得∠C=72°.【详解】解:如图,连接OA,∵点O为ABC的外心,∴OA=OB,∴∠OBA=∠OAB,又∵∠OBA=18°,∴∠OAB=∠OBA=18°,∴∠AOB=180°-∠OAB-∠OBA=144°,∴∠C=12∠AOB=72°,故选:D.【点睛】本题考查了三角形的外心,圆周角定理,熟练掌握相关定义及性质是解决本题的关键.7.B解析:B【分析】在Rt△ABC中,由勾股定理求AB,观察图形可知,线段AB扫过的图形为扇形,旋转角为90°,根据扇形面积公式求解.【详解】解:在Rt△ABC中,由勾股定理,得==由图形可知,线段AB扫过的图形为扇形ABA′,旋转角为90°,∴线段AB扫过的图形面积=2290n13= 3603604AB⨯=πππ.故选:B.【点睛】本题考查了旋转的性质,扇形面积公式的运用,关键是理解题意,明确线段AB扫过的图形是90°的扇形,难度一般.8.C解析:C【分析】因为⊙O的直径为6,所以圆的半径是3,圆心O到直线l的距离为3即d=3,所以d=r,所以直线l与⊙O的位置关系是相切.【详解】解:∵⊙O的直径为6,∴r=3,∵圆心O到直线l的距离为3即d=3,∴d=r∴直线l与⊙O的位置关系是相切.故选:C.【点睛】本题考查直线与圆的位置关系,若圆的半径为r,圆心到直线的距离为d,d>r时,圆和直线相离;d=r时,圆和直线相切;d<r时,圆和直线相交.9.B解析:B【分析】根据命题的“真”“假”进行判断即可.【详解】解:A、弦不一定是直径,原说法错误,不符合题意;B、半圆是弧,说法正确,符合题意;C、不在同一直线上的三点确定一个圆,原说法错误,不符合题意;D、三角形的外心不一定在三角形的外部,原说法错误,不符合题意;故选:B.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.10.D解析:D【分析】连接AC ,根据圆心角、弧、弦的关系求出∠BAC ,根据圆周角定理求出∠ACB=90°,根据三角形内角和定理计算即可.【详解】解:连接AC ,∵点C 为BD 的中点,∴∠BAC=12∠BAD=25°, ∵AB 为⊙O 的直径,∴∠ACB=90°,∴∠B=90°-∠BAC=65°,故选:D .【点睛】本题考查的是圆心角、弧、弦的关系、圆周角定理的应用,掌握圆心角、弧、弦的关系定理和圆周角定理是解题的关键.11.B解析:B【分析】设四个切点分别为E 、F 、G 、H ,分别连接切点和圆心,利用切线性质和HL 定理可以得到4对全等三角形,进而可得∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8,根据8个角之和为360°即可求解.【详解】解:设四个切点分别为E 、F 、G 、H ,分别连接切点和圆心,则OE ⊥AB ,OF ⊥BC ,OG ⊥CD ,OH ⊥AD ,OE=OF=OG=OH ,在Rt △BEO 和△BFO 中,OE OF OB OB =⎧⎨=⎩, ∴Rt △BEO ≌△BFO (HL )∴∠1=∠2,同理可得:∠3=∠4,∠5=∠6,∠7=∠8,∴∠1+∠8=∠2+∠7,∠4+∠5=∠3+∠6,∵∠1+∠2+∠3+∠4+∠5+∠6+∠7+∠8=360°,∴∠1+∠8+∠4+∠5=180°,即∠AOB+∠COD=180°,∵∠AOB=110°,∴∠COD=180°﹣∠AOB=180°﹣110°=70°,故选:B.【点睛】本题考查了圆的切线性质、全等三角形的判定与性质,利用圆的的切线性质,添加辅助线构造全等三角形是解答的关键.12.A解析:A【分析】易证∠APB=90°,则P点的运动轨迹是以AB为直径,在AB上方的半圆,取AB的中点为O,连接OD,OD与半圆的交点P′就是DP的长的最小值时的位置,OP′=OA=12AB=3,OD=5,DP′=OD−OP′=2,即可得出结果.【详解】解:∵BN⊥AM,∴∠APB=90°,∵AB=6为定长,则P点的运动轨迹是以AB为直径,在AB上方的半圆,取AB的中点为O,连接OD,OD与半圆的交点P′就是DP长的最小值时的位置,如图所示:∵AB=6,AD=4,∴OP′=OA=12AB=3,OD22AD+OA224+3=5,∴DP′=OD−OP′=5−3=2,∴DP的长的最小值为2,故选:A .【点睛】本题考查了矩形的性质、勾股定理、轨迹等知识;判断出P 点的运动轨迹,找出DP 长的最小值时的位置是解题的关键.二、填空题13.【分析】以AC 为直径作圆O 连接BO 并延长交圆O 于点可得BO+O >B 从而可得BO+OE >B 即BE 为最大值再由勾股定理求出BO 的长即可解决问题【详解】解:由题意知CE ⊥l 于点E ∴以AC 为直径作圆O ∵CE 解析:225+【分析】以AC 为直径作圆O ,连接BO ,并延长交圆O 于点E ',可得BO+O E '>B E ',从而可得BO+OE >B E ',即BE 为最大值,再由勾股定理求出BO 的长即可解决问题.【详解】 解:由题意知,CE ⊥l 于点E ,∴以AC 为直径作圆O ,∵CE ⊥AE,∴点E 在圆O 上运动,连接BO ,并延长交圆O 于点E ',如图,∴BO+O E '>B E ',∵OE=O E ',∴BO+OE >B E ',∴BE 的长为最大值, ∵AO=OC=OE ,且AB=AC=4,∴122OE AC == 又∵∠BAC=90° ∴222224220BO AO AB =+=+=∴25BO =∴BE=252BO OE +=故答案为:225+【点睛】此题主要考查了求线段的最大值,构造出△ACE 的外接贺是解答本题的关键.14.【分析】如图所示连接POPA 过点P 作PG ⊥OA 于点G 由正六边形推出为等边三角形进而求出OGPG 的长度即可求得P 点坐标【详解】解:如图所示连接POPA 过点P 作PG ⊥OA 于点G 则∵多边形为正六边形∴∵∴ 解析:()3,33 【分析】 如图所示,连接PO ,PA ,过点P 作PG ⊥OA 于点G ,由正六边形OABCDE 推出OPA 为等边三角形,进而求出OG 、PG 的长度即可求得P 点坐标.【详解】解:如图所示,连接PO ,PA ,过点P 作PG ⊥OA 于点G ,则90OGP ∠=︒,∵多边形OABCDE 为正六边形,∴60OPA ∠=︒,∵PO PA =, ∴OPA 为等边三角形,又∵PG ⊥OA ,∴PG 平分OPA ∠,∴30OPG ∠=︒,又∵OA=6,∴11163222OG OP OA ===⨯=, ∴由勾股定理得:22226333PG OP OG =-=-=,∴P 的坐标是()3,33,故答案为:()3,33【点睛】本题考查正多边形外接圆的问题,熟练掌握正多边形的性质,灵活运用三角形相关知识解决边角关系是本题的关键.15.﹣【分析】根据题意和图形可知阴影部分的面积是正六边形的面积减去两个扇形的面积从而可以解答本题【详解】解:∵正六边形ABCDEF 的边长为2∴正六边形ABCDEF 的面积是:6××22=∠FAB =∠EDC解析:63﹣83π 【分析】 根据题意和图形可知阴影部分的面积是正六边形的面积减去两个扇形的面积,从而可以解答本题. 【详解】解:∵正六边形ABCDEF 的边长为2,∴正六边形ABCDEF 的面积是:6×34×22=63,∠FAB =∠EDC =120°, ∴图中阴影部分的面积是:63﹣2×21202360π⋅⋅=63﹣83π, 故答案为:63﹣83π. 【点睛】本题考查正多边形和圆、扇形面积的计算,解答本题的关键是明确题意,利用数形结合的思想解答. 16.【分析】连接OC 由点CD 是半圆O 的三等分点得到根据垂径定理得到OD ⊥AC ∠DOC=60°求得OE=CE=3根据扇形和三角形的面积公式即可得到结论【详解】解:连接OC ∵点CD 是半圆O 的三等分点∴∴OD解析:332π-【分析】连接OC ,由点C ,D 是半圆O 的三等分点,得到AD CD CB ==,根据垂径定理得到OD ⊥AC ,∠DOC=60°,求得OE=3,CE=3,根据扇形和三角形的面积公式即可得到结论.【详解】解:连接OC ,∵点C ,D 是半圆O 的三等分点,∴AD CD CB ==,∴OD ⊥AC ,∠DOC=60°,∴∠OCE=30°,∵3AB =∴3∴CE=3,∴S阴影=S 扇形COD -S △OCE =2601236022ππ⋅⋅-⨯=-.故答案为:22π-. 【点睛】本题考查了扇形的面积的计算,垂径定理,含30°角的直角三角形的性质,正确的识别图形是解题的关键. 17.120【分析】根据三角形的内心是三角形角平分线的交点结合公式求出即可【详解】解:为的内心故答案是:120【点睛】注意此题中的结论:若是内心则熟记公式可简化计算解析:120【分析】 根据三角形的内心是三角形角平分线的交点,结合公式1902BOC A ∠=+∠︒求出即可. 【详解】解:60A ∠=︒,O 为ABC ∆的内心, 1190906012022BOC A , 故答案是:120.【点睛】注意此题中的结论:若O 是内心,则1902BOC A ∠=+∠︒.熟记公式可简化计算. 18.或4或8【分析】取CD 中点P1连接AP1BP1由勾股定理可求AP1=BP1=4即可证△AP1B 是等边三角形可得∠AP1B =60°过点A 点P1点B 作圆与ADBC 各有一个交点即这样的P 点一共3个再运用勾解析:4或8.【分析】取CD 中点P 1,连接AP 1,BP 1,由勾股定理可求AP 1=BP 1=△AP 1B 是等边三角形,可得∠AP 1B =60°,过点A ,点P 1,点B 作圆与AD ,BC 各有一个交点,即这样的P 点一共3个.再运用勾股定理求解即可.【详解】解:如图,取CD 中点P 1,连接AP 1,BP 1,如图1,∵四边形ABCD 是矩形∴AB =CD =43,AD =BC =6,∠D =∠C =90°∵点P 1是CD 中点∴CP =DP 1=23∴AP 1=221AD DP +=43, BP 1=221BC CP +=43 ∴AP 1=P 1B =AB∴△APB 是等边三角形∴∠AP 1B =60°,过点A ,点P 1,点B 作圆与AD ,BC 的相交,∴这样的P 点一共有3个当点P 2在AD 上时,如图2,∵四边形ABCD 是矩形,∴3,43,90AB A CD AD =∠===︒∵260,AP B ∠=︒∴221,2P A P B = 即222,P B P A =在2Rt P AB ∆中,22222,P B P A AB -=∴222222(43),P A P A -=∴24AP =;当点P 3在BC 上时,如图3,∵四边形ABCD 是矩形,∴∠B=90°∵∠360,AP B =︒∴∠3390906030,P AB AP B =︒-∠=︒-︒=︒ ∴331,2BP AP = 在3Rt ABP ∆中,22233,AP BP AB -=222331()(43),2AP AP -= 23348,4AP = ∴8,AP =综上所述,AP 的长为:34或8. 故答案为:34或8.【点睛】本题考查了矩形的性质,勾股定理,等边三角形的判定和性质,灵活运用这些性质进行推理是本题的关键.19.104【分析】根据圆内接四边形的对角互补列式计算即可【详解】解:∵四边形ABCD 内接于⊙O ∴∠A+∠C =180°∴∠C =180°﹣∠A =180°﹣76°=104°故答案为:104【点睛】本题考查的是解析:104【分析】根据圆内接四边形的对角互补列式计算即可.【详解】解:∵四边形ABCD 内接于⊙O ,∴∠A +∠C =180°,∴∠C =180°﹣∠A=180°﹣76°=104°,故答案为:104.【点睛】本题考查的是圆内接四边形的性质,掌握圆内接四边形的对角互补是解题的关键. 20.【分析】作直径CE 连OAAEBE 利用垂经定理的AD=BD 在利用勾股定理计算出AD 则AB=2AD 当点P 与点E 重合时P 点到AB 的距离最大然后根据三角形面积公式求解即可【详解】延长CD 交⊙O 于点E 连接OA【分析】作直径CE ,连OA 、AE 、BE ,利用垂经定理的AD=BD ,在利用勾股定理计算出AD ,则AB=2AD ,当点P 与点E 重合时,P 点到AB 的距离最大,然后根据三角形面积公式求解即可.【详解】延长CD 交⊙O 于点E ,连接OA ,AE ,BE 如图,∵OA=OC=1,OD=CD ,∴OD=CD=12OC=12, ∵OC ⊥AB ,∴2=, AD=BD=12AB ,,∴sin ∠OAD=12OD OA =, ∴∠OAD=30º, ∴∠AOD =90º-∠OAD =60º,∵OA =OE ,∴∠OAE=∠OEA ,∵∠AOD=∠OAE+∠OEA ,∴∠OAE=∠OEA=30º,∵CE ⊥AB ,∴AE=BE ,∴∠OEB=∠OEA=30º,∴∠AEB=∠OEB+∠OEA=60º,∴△ABE 是等边三角形,∴DE=223 2AE AD-=,S△ABE=133 24AB DE=,∵在△ABP中,当点P与点E重合时,AB边上的高取最大值,此时△ABP的面积最大,∴S△ABP的最大值=334.故答案为:334.【点睛】本题考查三角形面积,掌握垂经定理,勾股定理,和引辅助线构造图形,找到当点P与点E重合时,P点到AB的距离最大,然后根据三角形面积公式求解是解题关键.三、解答题21.(1)30°;(2)6π﹣93【分析】(1)如图,连接OE,OF,利用切线的性质、等腰直角三角形的性质以及平行线的判定证得OE∥BC,则同位角∠ABC=∠AOE=60°,所以由图形中相关角与角间的和差关系即可得到∠ABG=15°;然后由圆周角定理可以求得量角器在点G处的读数α(0°<α<90°);(2)根据扇形和三角形的面积公式即可得到结论.【详解】解:(1)如图,连接OE,OF.∵CD切半圆O于点E,∴OE⊥CD,∵BD为等腰直角△BCD的斜边,∴BC⊥CD,∠D=∠CBD=45°,∴OE ∥BC ,∴∠ABC =∠AOE =60°,∴∠ABG =∠ABC ﹣∠CBD =60°﹣45°=15°∴弧AG 的度数=2∠ABG =30°,∴量角器在点G 处的读数α=弧AG 的度数=30°;(2)∵AB =12cm ,∴OF =OB =6cm ,∠ABC =60°,∴△OBF 为正三角形,∠BOF =60°,∴S 扇形=2606360π⋅⨯=6π(cm 2),S △OBF =93, ∴S 阴影=S 扇形﹣S △OBF =6π﹣93.【点睛】本题考查了切线的性质,扇形面积的计算,圆周角定理.求(2)题时,利用了“分割法”求得图中阴影部分的面积.22.证明见解析.【分析】主要是根据弧相等只需要证明弧所对的圆周角相等或者弧所对的圆心角相等即可证明.连接AC 或者OD 都可以证明.【详解】解:连接ACAD//OC∴∠DAC=∠OCAOA=OC∴∠BAC=∠ACO∴∠DAC=∠BAC∴CD BC =.【点睛】主要是考察学生对圆周角定理的内容的掌握.同时角相等和弧相等之间的转化. 23.(1)作图见解析;(2)10.【分析】(1)分别做AB 、BC 的垂直平分线且交于O ,然后以O 为圆心、OA 为半径画圆即可; (2)如图:连接OB ,然后根据垂径定理求得BD ,最后根据勾股定理解答即可.【详解】解:(1)如图所示∴⊙O 即为所求作的外接圆;(2)如图:连接OB∵已知△ABC 的外接圆的圆心O 到BC 边的距离OD =8∵线段BC 的垂直平分线交BC 于点D ,∴BD =CD =12BC=6, 在Rt △BOD 中,OB =2286+=10,∴⊙O 的半径长10.【点睛】本题考查了三角形的外接圆的作法和垂径定理的应用,灵活应用相关知识成为解答本题的关键.24.见解析【分析】根据切线的性质得出OP ⊥AB ,根据垂径定理得出即可.【详解】证明:如图,连接OP ,∵大圆的弦AB 是小圆的切线,点P 为切点,∴OP ⊥AB ,∵OP 过O ,∴AP=BP .【点睛】本题考查了切线的性质和垂径定理的应用,主要考查学生的推理能力,题目比较好,难度适中.25.22L b a b π=+-;212S ab b π=-.【分析】由已知图知,阴影部分的周长是()12πb 22a b ⨯+-; 阴影部分的面积为,长方形的面积减去两个14圆的面积(半圆的面积). 【详解】 阴影部分的周长()122222L b a b b a b ππ=⨯+-=+-; 阴影部分的面积221=1242S ab b ab b ππ=-⨯-. 【点睛】此题考查的是列代数式,用到的知识点是半圆的周长和面积的计算方法.26.(1)见解析;(2)见解析.【分析】(1)如图3,连接AN 、BM ,通过圆内接三角形是直角三角形时,斜边就是直径来确定圆心位置;(2)连接BC 、AD 、BD ,通过同(等)弧所对圆周角相等推出ABD CDB ∠=∠,进而推出45BDC ∠=︒.【详解】(1)如图3,连接AN 、BM 交点O 即为圆心∵9090ABN BAM ∠=︒∠=︒,,∴AN 、BM 是直径,∴直径交点O 就是圆心.(2)如图4,连接BC 、AD 、BD∵AB=CD ,∴AB CD =,∴ADB CBD ∠=∠,又∵AC CA =,∴ABC CDA ∠=∠,∴ABD CDB ∠=∠,又∵90BED ∠=︒,∴45ABD CDB ∠=∠=︒,故连接BD ,则45BDC ∠=︒.【点睛】本题考查确定圆心和确定圆弧圆周角等问题,解题的关键是圆内接三角形是直角三角形时,斜边就是直径以及同(等)弧所对圆周角相等.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学--圆单元测试题1.某品牌婴儿罐装奶粉圆形桶口如图所示,它的内直径(⊙O 直径)为10cm,弧AB 的度数约为90°,则弓形铁片ACB(阴影部分)的面积约为( )A .B .C .D .2.Rt △ABC 中,∠C=90º,AC=8cm ,BC=6cm ,以点C 为圆心,5cm 为半径的圆与直线AB 的位置关系是( )A . 相切B . 相交C . 相离D . 无法确定3.圆锥体的高h =2 cm ,底面圆半径r =2 cm ,则圆锥体的全面积为( )A . 4π cm 2B . 8π cm 2C . 12π cm 2D . (4+4)π cm 24.如图,扇形折扇完全打开后,如果张开的角度(∠BAC )为120°,骨柄AB 的长为30 cm ,扇面的宽度BD 的长为20 cm ,那么这把折扇的扇面面积为( )A . cm 2B . cm 2C . cm 2D . 300πcm 25.如图,在⊙O , AB 为直径,点C 为圆上一点,将劣弧AC 沿弦AC 翻折交AB 于点D ,连接CD ,如果18BAC ∠=︒,则BDC ∠=( ).A . 62︒B . 72︒C . 60︒D . 52︒6.如图,在半径为6cm 的⊙O 中,点A 是劣弧BC 的中点,点D 是优弧BC 上一点,且∠D =30º下列四个结论:①OA ⊥BC ;②BC =63cm ;③cos ∠AOB=3;④四边形ABOC 是菱形. 其中正确结论的序号是( )A . ①③B . ①②③④C . ①②④D . ②③④7.如图,⊙O 的半径为1,△ABC 是⊙O 的内接三角形,连接OB 、OC ,若∠BAC与∠BOC 互补,则弦BC 的长为( )A .B . 2C . 3D . 1.58.如图,中,弦与半径相交于点,连接,.若,,则的度数是()A. B. C. D.9.如图,AB为⊙0的弦,AB=6,点C是⊙0上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN长的最大值是()A.22 B.3 C.32 D.3310.已知正方形的边长为2cm,那么它外接圆的半径长是_______cm.11.如图,在Rt△ABC中,∠B=90°,∠C=30°,BC=3,以点B为圆心,AB为半径作弧交AC于点E,则图中阴影部分面积是____________。

12.如图,用一个半径为30cm扇形铁皮,制作一个无底的圆锥(不计损耗),经测量圆锥的底面半径r为10cm,则扇形铁皮的面积为________ cm2.(结果保留π)13.如图,AB是⊙O的直径,且经过弦CD的中点H,过CD延长线上一点E作⊙O的切线,切点为F,若∠ACF=64°,则∠E=______.14.14.如图,△ABC的外接圆的圆心坐标为_____.15.如图半径为30cm的转动轮转过80°时,传送带上的物体A平移的距离为_____.16.如图,点E在y轴上,⊙E与x轴交于点A、B,与y轴交于点C、D,若C(0,16),D(0,﹣4),则线段AB的长度为_________.17.如图,△ABC内接于⊙O,要使过点A的直线EF与⊙O相切于A点,则图中的角应满足的条件是________(只填一个即可).18.如图,已知AB是⊙O的直径,CD是⊙O的切线,C为切点,且∠BAC=50°,则∠ACD=______°.19.如图,矩形ABCD的边AB=1,BE平分∠ABC,交AD于点E,若点E是AD的中点,以点B为圆心,BE为半径画弧,交BC于点F,则图中阴影部分的面积是_____.20.如图,AB是⊙O的直径,AE交⊙O于点F,且与⊙O的切线CD互相垂直,垂足为D.(1)求证:∠EAC=∠CAB;(2)若CD=4,AD=8,求⊙O的半径.21.如图所示,AC为⊙O的直径且PA⊥AC,BC是⊙O的一条弦,直线PB交直线AC于点D,.(1)求证:直线PB是⊙O的切线;(2)求cos∠BCA的的值.22.如图,有一长为4 cm,宽为3 cm的长方形木板在桌面上做无滑动的翻滚(顺时针方向),木板上的顶点A的位置变化为A→A1→A2,其中第二次翻滚被桌面上一小木块挡住,使木板边沿A2C 与桌面成30°角,则点A翻滚到A2位置时,共走过的路径长为____.23.如图,已知圆的半径为r,求外接正六边形的边长.24.如图,己知AB是⊙O 的直径,C是⊙O 上一点,∠ACB的平分线交⊙O 于点D,作PD∥AB,交CA的延长线于点P.连结AD,BD.求证:(1)PD是⊙O 的切线;(2)△PAD△DBC.25.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E.过点D作DF⊥AC 交AC于点F.(1)求证:DF是⊙O的切线;(2)若⊙O的半径为8,∠CDF=22.5°,求阴影部分的面积.26.如图,正六边形ABCDEF内接于⊙O,若⊙O的内接正三角形ACE的面积为48,试求正六边形的周长.27.如图,已知正五边形ABCDE,M是CD的中点,连接AC,BE,AM. 求证:(1)AC=BE;(2)AM⊥CD.答案:1.A分析:连接OA 、OB ,根据三角形的面积公式求出S△AOB,根据扇形面积公式求出弓形铁片ACB 的面积,计算即可.详解:连接OA 、OB ,∵弧AB 的度数约为90°,∴∠AOB =90°,∴S △AOB =××=,扇形ACB (阴影部分)=,则弓形铁片ACB(阴影部分)的面积为(+)cm²,故选A.2.B 解:过C 点作CD ⊥AB ,垂足为D .∵∠C =90°,BC =6,AC =8,由勾股定理得:AB 22BC AC +,根据三角形计算面积的方法可知:BC ×AC =AB ×CD ,∴CD =6810⨯=4.8<5,∴⊙C 与直线AB 相交.故选B .3.C分析:先利用勾股定理求出圆锥的母线长,然后根据表面积=底面积+侧面积计算即可. 详解:底面圆的半径为2,∵底面半径为2cm 、高为2cm , ∴圆锥的母线长为=4cm ,∴侧面面积=π×2×4=8π;底面积为=π×22=4π,全面积为:8π+4π=12πcm 2.故选C .4.C解:∵AB =30cm ,BD =20cm ,∴AD =30﹣20=10(cm ),∴S 阴影=S 扇形BAC ﹣S 扇形DAE ===cm 2.故选C .5.B如图,连接BC ,∵AB 是直径, ∴90ACB ∠=︒,∵18BAC ∠=︒,∴9072B BAC ∠=︒-∠=︒,根据折叠的性质, AC ADC =,∴180ADC B ∠+∠=︒,∴180********ADC B ∠=︒-∠=︒-︒=︒,∴72BDC ∠=︒.故选B.6.C如图,在半径为6cm的⊙O中,点A是劣弧BC的中点,点D是优弧BC上一点,且∠D=30º下列四个结论:①OA⊥BC;②BC=63cm;③cos∠AOB=3;④四边形ABOC是菱形. 其中正确结论的序号是()A. ①③B. ①②③④C. ①②④D. ②③④试题解析:∵点A是劣弧BC的中点,OA过圆心,∴OA⊥BC,故①正确;∵∠D=30°,∴∠ABC=∠D=30°,∴∠AOB=60°,∵点A是劣弧BC的中点,∴BC=2CE,∵OA=OB,∴OA=OB=AB=6cm,∴BE=AB•cos30°=6×323,∴3cm,故②正确;∵∠AOB=60°,∴sin∠AOB=sin60°=3,故③错误;∵∠AOB=60°,∴AB=OB,∵点A是劣弧BC的中点,∴AC=AB,∴AB=BO=OC=CA,∴四边形ABOC是菱形,故④正确.故选C.7.A分析:作OH⊥BC于H,首先证明∠BOC=120,在Rt△BOH中,BH=OB•sin60°=1×,即可推出BC=2BH=,详解:作OH⊥BC于H.∵∠BOC=2∠BAC,∠BOC+∠BAC=180°,∴∠BOC=120°,∵OH⊥BC,OB=OC,∴BH=HC,∠BOH=∠HOC=60°,在Rt△BOH中,BH=OB•sin60°=1×=,∴BC=2BH=.故选A.8.D分析: 直接利用三角形外角的性质以及邻补角的关系得出∠B以及∠ODC度数,再利用圆周角定理以及三角形内角和定理得出答案.详解: ∵∠A=60°,∠ADC=85°,∴∠B=85°-60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°-95°-50°=35°故选:D.9.C解:∵点M,N分别是AB,BC的中点,∴MN=12AC,∴当AC取得最大值时,MN就取得最大值,当AC时直径时,最大,如图,∵∠ACB=∠D=45°,AB=6,∴AD=62,∴MN=12AD=32,故选C.10.分析:运用正方形的性质,以及与外接圆的关系,可求出外接圆半径.详解:∵正方形的边长为2,由中心角只有四个可得出:∴中心角是:正方形的外接圆半径是:sin∠AOC∵ ∴故答案为:11.36π- 解:连接BE .∵∠B =90°,∠C =30°,BC =3,∴∠A =60°,AB =1.∵AB =EB ,∴△ABE 是等边三角形,∴∠ABE =60°,∴S 弓形=S 扇形ABE ﹣S △ABE =260113113602π⨯-⨯⨯⨯=36π-.故答案为: 36π-.12.300π扇形铁皮的面积即为圆锥的侧面积,圆锥的侧面积=π×底面圆半径×母线长,所以扇形铁皮的面积为:π×10×30=300π(cm 2),故答案为:300π.13.52°.试题解析:连接OF ,∵EF是⊙O切线,∴OF⊥EF,∵AB是直径,AB经过CD中点H,∴OH⊥EH,又∵∠AOF=2∠ACF=128°,在四边形EFOH中,∵∠OFE+∠OHE=180°∴∠E=180°-∠AOF=180°-128°=52°故答案为:52°14.(6,2).设圆心坐标为(x,y);依题意得,A(4,6),B(2,4),C(2,0)则有,即(4﹣x)2+(6﹣y)2=(2﹣x)2+(4﹣y)2=(2﹣x)2+y2,化简后得x=6,y=2,因此圆心坐标为(6,2).故答案是:(6,2).15.40 3π解:由题意得,R=30cm,n=80°,故l= 8030180π⨯=403π(cm).故答案为:403π.点睛:本题考查了弧长公式的运用,关键是理解传送带上的物体A平移的距离为半径为30cm 的转动轮转过80°角的扇形的弧长.16.连接BE,∵C(0,16),D(0,﹣4),∴OC=16,OD=4,∴CD=20,∴ED=EB=10,∴EO=6,∴BO=8.∵ED⊥AB,∴AO=BO=8,∴AB=16.故答案为16.17.∠BAE=∠C或∠CAF=∠B所填写的条件只需要使EF垂直于过点A的半径即可.故答案为∠BAE=∠C或∠CAF=∠B.18.40.解:连接OC.∵OA=OC,∴∠OCA=∠BAC=50°.∵CD是⊙O的切线,∴∠OCD=90°,∴∠ACD=∠OCD ﹣∠OCA=40°.故答案为:40.19.1 2242π-∵四边形ABCD为矩形,∴∠ABC=90°,∵BE平分∠ABC,∴∠ABE=∠EBF=45°,∵AD∥BC,∴∠AEB=∠EBF,∴∠ABE=∠AEB,∴AE=AB=1,由勾股定理得,BE=2,∵点E是AD的中点,∴AD=22,∴阴影部分的面积=22×1﹣()2452111122360242ππ⨯-⨯⨯=--,故答案为:1 2242π--.20.(1)证明见解析;(2)⊙O的半径为5.试题分析:(1)首先连接OC,由CD是O的切线,CD⊥OC,又由CD⊥AE,即可判定OC∥AE,根据平行线的性质与等腰三角形的性质,即可证得∠EAC=∠CAB;(2)连接BC,易证得△ACD∽△ABC,根据相似三角形的对应边成比例,即可求得AB的长,继而可得⊙O的半径长.(1)证明:连接OC.∵CD是⊙O的切线,∴CD⊥OC,又∵CD⊥AE,∴OC∥AE,∴∠1=∠3,∵OC=OA,∴∠2=∠3,∴∠1=∠2,即∠EAC=∠CAB;(2)解:连接BC.∵AB是⊙O的直径,CD⊥AE于点D,∴∠ACB=∠ADC=90°,∵∠1=∠2,∴△ACD∽△ABC,∴AD AC AC AB=,∵AC2=AD2+CD2=42+82=80,∴AB=2808ACAD==10,∴⊙O的半径为10÷2=5.21.(1)证明见解析;(2)cos∠BCA =分析:(1)连接OB、OP,如图,结合相似三角形的性质可推出△BDC∽△PDO,进一步分析可得BC∥OP,由此通过角之间的等量转化便不难得到△BOP≌△AOP,至此结合全等三角形的性质,问题(1)便可得以解决;(2)设PB=a,则BD=2a,根据切线长定理得到PA=PB=a,由此借助勾股定理以及线段间的比例关系即可用含a的代数式表示出OP以及OA的长.详解:(1)证明:连接OB、OP .∵且∠D=∠D,∴△BDC∽△PDO ,∴∠DBC=∠DPO ,∴ BC∥OP,∴∠BCO=∠POA , ∠CBO=∠BOP.∵ OB=OC ,∴ ∠OCB=∠CBO ,∴ ∠BOP=∠POA.又∵ OB=OA , OP=OP ,∴ △BOP ≌△AOP ,∴ ∠PBO=∠PAO.又∵ PA ⊥AC ,∴ ∠PBO=90° ,∴ 直线PB 是⊙O 的切线.(2)由(1)知∠BCO=∠POA ,设PB ,则. 又∵,∴ . 又∵ BC ∥OP ,∴ ,∴ ,∴ ,∴ ,∴ cos ∠BCA=cos ∠POA= .22.3.5πcm试题解析:由勾股定理,得2234 5(cm).第一次翻滚,点A 绕点B 转到点A 1的位置,转过的圆心角为90°,半径是线段AB 的长度;第二次翻滚,点A 1绕点C 转到点A 2的位置,转过的圆心角为90°-30°=60°,半径是3 cm,两次翻滚点A共走过的路径长是两次转过的弧长之和,为90π560π3180180⨯⨯+=3.5π(cm).故答案为: 3.5πcm.23.首先连接OA,OB,OC,由外接正六边形的性质,可证得△OAB是等边三角形,继而求得答案.解:如图,连接OA,OB,OC,则∠AOB==60°,∵⊙O是内切圆,∴OC⊥AB,∵OA=OB,∴△AOB是等边三角形,∴OA=AB=OB,∠OAB=60°,∵OC=r,∴OA==r,∴AB=r.即外接正六边形的边长为:r.24.见解析分析:(1)根据角平分线的定义得出∠1=∠3,得出弧AD=弧BD,根据垂径定理可得出OD⊥AB,再根据PD∥AB,就可证得OD⊥PD,即可得证;(2)根据圆内接四边形的定理,可证得∠2=∠CBD,再根据圆周角定理及等腰直角三角形的性质,可证得∠ADP=∠1,然后根据相似三角形的判定定理,可证得结论.详解:(1)证明:如图,连接OD∵CD平分∠ACB∴∠1=∠3∴弧AD=弧BD∴OD⊥AB∵PD∥AB∴OD⊥PD∵OD是半径∴PD是⊙O的切线(2)证明:∵四边形ADBC是圆的内接四边形,∴∠CAD+∠CBD=180°∵∠2+∠CAD=180°∴∠2=∠CBD∵AB是圆的直径∴∠ADO+∠BDO=90°,∠1+∠3=90°,即∠1=45°∵弧AD=弧BD,OD⊥AB∴AD=BD∴∠ADO=45°∵∠ADO+∠ADP=90°∴∠ADP=45°=∠1∴△PAD∽△DBC25.(1)证明见解析;(2)S= 16π﹣32.阴影试题分析:(1)连接OD,AD,由AB是⊙O的直径可得∠ADB=90°,结合AB=AC可得点D是BC的中点,结合点O是AB中点可得OD是△ABC的中位线,由此可得OD∥AC,结合DF⊥AC即可得到DF⊥OD,由此可得DF是⊙O的切线;(2)连接OE ,由DF ⊥AC 于点F 结合∠CDF=22.5°可得∠C=67.5°,这样结合AB=AC 可得∠B=67.5°,从而可得∠BAC=45°,再结合AO=EO 即可得到∠AOE=90°,这样就可由S 阴影=S 扇形AOE -S △AOE 求出S 阴影的大小了.试题解析:(1)连接OD ,AD .∵AB 是⊙O 的直径,∴∠ADB=90°,∵AB=AC ,∠ADB=90°,∴BD=CD ,∵AO=BO ,∴OD 是△ABC 的中位线,∴OD ∥AC ,∵DF ⊥AC ,∴半径OD ⊥DF ,∴DF 是⊙O 的切线.(2)连接OE .∵DF ⊥AC ,∠CDF=22.5°,∴∠C=67.5°,∵AB=AC ,∴∠C=∠B=67.5°,∴∠BAC=45°,∵OA=OE ,∴∠AOE =90°,又∵⊙O 的半径为8,∴S 阴影=S 扇形AOE ﹣S △AOE =16π﹣32.26.正六边形的周长为48.连接OA,作OH⊥AC于点H,则∠OAH=30°.连接OA,作OH⊥AC于点H,则∠OAH=30°.由△ACE的面积是△OAH面积的6倍,即6××R×R=48,解得R,可求出周长.解: 如图,连接OA,作OH⊥AC于点H,则∠OAH=30°.在Rt△OAH中,设OA=R,则OH=R,AH==而△ACE的面积是△OAH面积的6倍,即6××R×R=48,解得R=8,即正六边形的边长为8,所以正六边形的周长为48.27.见解析(1)先证明△ABC≌△EAB:AB=BC,AE=BA,∠ABC=∠EAB,所以全等,所以AC=BE;(2)连接AD,易证AC=AD(三角形ABC全等于三角形AED),所以三角形ACD为等腰三角形,又M为CD中点,所以AM垂直于CD解:(1)由五边形ABCDE是正五边形,得AB=AE,∠ABC=∠BAE,AB=BC,∴△ABC≌△EAB,∴AC=BE.(2)连接AD,由五边形ABCDE是正五边形,得AB=AE,∠ABC=∠AED,BC=ED,∴△ABC≌△AED,∴AC=AD.又∵M是CD的中点,∴AM⊥CD.。

相关文档
最新文档