初中数学圆的经典测试题及解析
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【详解】
解:如图所示,正六边形的边长为2cm,OG⊥BC,
∵六边形ABCDEF是正六边形,
∴∠BOC=360°÷6=60°,
∵OB=OC,OG⊥BC,
∴∠BOG=∠COG= ∠BOC =30°,
∵OG⊥BC,OB=OC,BC=2cm,
∴BG= BC= ×2=1cm,
∴OB= =2cm,
∴OG= ,
∴圆形纸片的半径为 cm,
∵OC=5cm,
∴MC=5−3=2cm,
在Rt△AMC中,AC= cm.
故选C.
11.我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(如图 ),它是分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形.图 是等宽的勒洛三角形和圆形滚木的截面图.
∴∠B=∠D,即sinB=sinD= ,
∵半径AO=5,
∴CD=10,
∴ ,
∴AC=4,
故选:C.
【点睛】
本题考查了同弧所对的圆周角相等,以及三角函数的内容,注意到直径所对的圆周角是直角是解题的关键.
6.如图, , ,以 为直径作半圆,圆心为点 ;以点 为圆心, 为半径作 ,过点 作 的平行线交两弧于点 、 ,则图中阴影部分的面积是()
A.8Baidu NhomakorabeaB.8C.3πD.4π
【答案】D
【解析】
【分析】
由题意可得翻转一次中心O经过的路线长就是1个半径为1,圆心角是90°的弧长,然后进行计算即可解答.
【详解】
解:∵正方形ABCD的边长为 cm,
∴对角线的一半=1cm,
则连续翻动8次后,正方形的中心O经过的路线长=8× =4π.
故选:D.
【点睛】
【详解】
解:连接OB,
∵AB=AC,
∴∠ABC=∠ACB=56°,
∴∠A=180°-56°-56°=68°= ∠BOC,
∴∠BOC=68°×2=136°,
∵OB=OC,
∴∠OBC=∠OCB=(180°-136°)÷2=22°,
∴∠OBE=∠EBC-∠OBC=56°-22°=34°,
∴∠AED=∠BEC=∠BOC-∠OBE=136°-34°=102°.
故选:C.
【点睛】
本题考查了圆的综合,解答本题的关键是设出点P坐标,将所求代数式的值转化为求解OP的最小值,难度较大.
4.已知下列命题:
①若a>b,则ac>bc;
②若a=1,则 =a;
③内错角相等;
④90°的圆周角所对的弦是直径.
其中原命题与逆命题均为真命题的个数是( )
A.1个B.2个C.3个D.4个
故选D.
【点睛】
本题考查了圆周角定理,等腰三角形的性质,外角的性质,解题的关键是作出辅助线OB,得到∠BOC的度数.
16.如图,已知某圆锥轴截面等腰三角形的底边和高线长均为10cm,则这个圆锥的侧面积为( )
A.50cm2B.50πcm2C.25 cm2D.25 πcm2
【答案】D
【解析】
【分析】
根据勾股定理求出圆锥的母线长,求出底面圆周长,根据扇形面积公式计算即可.
【详解】
解:如图所示,
∵等腰三角形的底边和高线长均为10cm,
∴等腰三角形的斜边长= =5 ,即圆锥的母线长为5 cm,圆锥底面圆半径为5,
A.1B.2C.4D.5
【答案】C
【解析】
【分析】
首先连接CO并延长交⊙O于点D,连接AD,由CD是⊙O的直径,可得∠CAD=90°,又由⊙O的半径是5,sinB= ,即可求得答案.
【详解】
解:连接CO并延长交⊙O于点D,连接AD,
由CD是⊙O的直径,可得∠CAD=90°,
∵∠B和∠D所对的弧都为弧AC,
故选D.
【点睛】
本题考查了真假命题,熟练掌握正多边形与圆、中心角、多边形的外角和等知识是解本题的关键.
9.用一个直径为 的玻璃球和一个圆锥形的牛皮纸纸帽制作一个不倒翁玩具,不倒翁轴截面如图所示,圆锥的母线 与 相切于点 ,不倒翁的顶点 到桌面 的最大距离是 .若将圆锥形纸帽表面全涂上颜色,则涂色部分的面积为()
【答案】A
【解析】
【分析】
先对原命题进行判断,再判断出逆命题的真假即可.
【详解】
解:①若a>b,则ac>bc是假命题,逆命题是假命题;
②若a=1,则 =a是真命题,逆命题是假命题;
③内错角相等是假命题,逆命题是假命题;
④90°的圆周角所对的弦是直径是真命题,逆命题是真命题;
其中原命题与逆命题均为真命题的个数是1个;
∴∠ACB=90°,OB=OC=OD=4,BC=CE=8.
又∵OE∥AC,
∴∠ACB=∠COE=90°.
∴在Rt△OEC中,OC=4,CE=8,
∴∠CEO=30°,∠ECB=60°,OE=4 ,
∴S阴影=S扇形BCE−S扇形BOD−S△OCE
=
=
故选:A.
【点睛】
本题考查了扇形面积的计算.不规则图形的面积一定要注意分割成规则图形的面积进行计算.
【详解】
设P(x,y),
∵PA2=(x+1)2+y2,PB2=(x﹣1)2+y2,
∴PA2+PB2=2x2+2y2+2=2(x2+y2)+2,
∵OP2=x2+y2,
∴PA2+PB2=2OP2+2,
当点P处于OC与圆的交点上时,OP取得最值,
∴OP的最小值为CO﹣CP=3﹣1=2,
∴PA2+PB2最小值为2×22+2=10.
∴S阴影=S△OAB﹣S扇形OMN= ×2× ﹣ = .故选A.
8.下列命题是假命题的是( )
A.三角形两边的和大于第三边
B.正六边形的每个中心角都等于
C.半径为 的圆内接正方形的边长等于
D.只有正方形的外角和等于
【答案】D
【解析】
【分析】
根据三角形三边关系、中心角的概念、正方形与圆的关系、多边形的外角和对各选项逐一进行分析判断即可.
形纸帽的表面 .
故选: .
【点睛】
本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆锥的计算.
10.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC的长为( )
A.2 cmB.4 cmC.2 cm或4 cmD.2 cm或4 cm
本题考查了弧长的计算,审清题意、确定点O的路线和长度是解答本题的关键.
15.如图, 是 的内接三角形,且 , , 的直径 交 于点 ,则 的度数为()
A. B. C. D.
【答案】D
【解析】
【分析】
连接OB,根据等腰三角形的性质得到∠A,从而根据圆周角定理得出∠BOC,再根据OB=OC得出∠OBC,即可得到∠OBE,再结合外角性质和对顶角即可得到∠AED的度数.
【详解】
A、三角形两边的和大于第三边,A是真命题,不符合题意;
B、正六边形 条边对应 个中心角,每个中心角都等于 ,B是真命题,不符合题意;
C、半径为 的圆内接正方形中,对角线长为圆的直径 ,设边长等于 ,则: ,解得边长为 ,C是真命题,不符合题意;
D、任何凸 边形的外角和都为 , 是假命题,符合题意,
3.如图,在平面直角坐标系中,点P是以C(﹣ , )为圆心,1为半径的⊙C上的一个动点,已知A(﹣1,0),B(1,0),连接PA,PB,则PA2+PB2的最小值是( )
A.6B.8C.10D.12
【答案】C
【解析】
【分析】
设点P(x,y),表示出PA2+PB2的值,从而转化为求OP的最值,画出图形后可直观得出OP的最值,代入求解即可.
初中数学圆的经典测试题及解析
一、选择题
1.如图,有一个边长为 的正六边形纸片,若在该纸片上沿虚线剪一个最大圆形纸片,则这个圆形纸片的半径是()
A. B. C. D.
【答案】A
【解析】
【分析】
根据题意画出图形,再根据正多边形圆心角的求法求出∠AOB的度数,最后根据等腰三角形及直角三角形的性质解答即可.
【答案】C
【解析】
连接AC,AO,
∵O的直径CD=10cm,AB⊥CD,AB=8cm,
∴AM= AB= ×8=4cm,OD=OC=5cm,
当C点位置如图1所示时,
∵OA=5cm,AM=4cm,CD⊥AB,
∴OM= =3cm,
∴CM=OC+OM=5+3=8cm,
∴AC= cm;
当C点位置如图2所示时,同理可得OM=3cm,
【详解】
①勒洛三角形不是中心对称图形,故①错误;
②图 中,点 到 上任意一点的距离都相等,故②正确;
③图 中,设圆的半径为r
∴勒洛三角形的周长=
圆的周长为
∴勒洛三角形的周长与圆的周长相等,故③正确;
④使用截面是勒洛三角形的滚木来搬运东西,不会发生上下抖动,故④错误
故选B
【点睛】
本题主要考查中心对称图形,弧长公式等,掌握中心对称图形和弧长公式是解题的关键.
A. B. C. D.
【答案】C
【解析】
【分析】
连接 ,如图,利用切线的性质得 ,在 中利用勾股定理得 ,利用面积法求得 ,然后利用圆锥的侧面展开图为扇形和扇形的面积公式计算圆锥形纸帽的表面.
【详解】
解:连接 ,作 于 ,如图,
圆锥的母线 与 相切于点 ,
,
在 中, , ,
,
,
,
圆锥形纸帽的底面圆的半径为 ,母线长为12,
【详解】连接OA、OB,
∵正方形ABCD内接于⊙O,
∴AB=BC=DC=AD,
∴ ,
∴∠AOB= ×360°=90°,
在Rt△AOB中,由勾股定理得:2AO2=(2 )2,
解得:AO=2,
∴ 的长为 =π,
故选A.
【点睛】本题考查了弧长公式和正方形的性质,求出∠AOB的度数和OA的长是解此题的关键.
故选A.
点评:主要考查命题与定理,用到的知识点是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题,判断命题的真假关键是要熟悉课本中的性质定理.
5.如图,△ABC的外接圆是⊙O,半径AO=5,sinB= ,则线段AC的长为()
12.如图,7×5的网格中的小正方形的边长都为1,小正方形的顶点叫格点,△ABC的三个顶点都在格点上,过点C作△ABC外接圆的切线,则该切线经过的格点个数是( )
A.1B.2C.3D.4
【答案】C
【解析】
【分析】
作△ABC的外接圆,作出过点C的切线,两条图象法即可解决问题.
【详解】
如图⊙O即为所求,
观察图象可知,过点C作△ABC外接圆的切线,则该切线经过的格点个数是3个,
选:C.
【点睛】
考查三角形的外接圆与外心,切线的判定和性质等知识,解题的关键是理解题意.
13.如图,将△ABC绕点C旋转60°得到△A′B′C′, 已知AC=6,BC=4,则线段AB扫过的图形面积为( )
A. B. C.6πD.以上答案都不对
图 图
有如下四个结论:
①勒洛三角形是中心对称图形
②图 中,点 到 上任意一点的距离都相等
③图 中,勒洛三角形的周长与圆的周长相等
④使用截面是勒洛三角形的滚木来搬运东西,会发生上下抖动
上述结论中,所有正确结论的序号是()
A.①②B.②③C.②④D.③④
【答案】B
【解析】
【分析】
逐一对选项进行分析即可.
故选:A.
【点睛】
本题考查的是正多边形和圆,根据题意画出图形,利用直角三角形的性质及正六边形的性质解答是解答此题的关键.
2.如图,正方形ABCD内接于⊙O,AB=2 ,则 的长是( )
A.πB. πC.2πD. π
【答案】A
【解析】
【分析】连接OA、OB,求出∠AOB=90°,根据勾股定理求出AO,根据弧长公式求出即可.
7.如图, 的外切正六边形ABCDEF的边长为2,则图中阴影部分的面积为
A.
B.
C.
D.
【答案】A
【解析】
【分析】
【详解】
解:∵六边形ABCDEF是正六边形,
∴∠AOB=60°,∴△OAB是等边三角形,OA=OB=AB=2,
设点G为AB与⊙O的切点,连接OG,则OG⊥AB,
∴OG=OA•sin60°=2× = ,
A. B. C. D.
【答案】A
【解析】
【分析】
如图,连接CE.图中S阴影=S扇形BCE−S扇形BOD−S△OCE.根据已知条件易求得OB=OC=OD=4,BC=CE=8,∠ECB=60°,OE=4 ,所以由扇形面积公式、三角形面积公式进行解答即可.
【详解】
解:如图,连接CE.
∵AC⊥BC,AC=BC=8,以BC为直径作半圆,圆心为点O;以点C为圆心,BC为半径作弧AB,
【答案】D
【解析】
【分析】
从图中可以看出,线段AB扫过的图形面积为一个环形,环形中的大圆半径是AC,小圆半径是BC,圆心角是60度,所以阴影面积=大扇形面积-小扇形面积.
【详解】
阴影面积= π.
故选D.
【点睛】
本题的关键是理解出,线段AB扫过的图形面积为一个环形.
14.如图,将边长为 cm的正方形ABCD沿直线l向右翻动(不滑动),当正方形连续翻动8次后,正方形的中心O经过的路线长是()cm.
解:如图所示,正六边形的边长为2cm,OG⊥BC,
∵六边形ABCDEF是正六边形,
∴∠BOC=360°÷6=60°,
∵OB=OC,OG⊥BC,
∴∠BOG=∠COG= ∠BOC =30°,
∵OG⊥BC,OB=OC,BC=2cm,
∴BG= BC= ×2=1cm,
∴OB= =2cm,
∴OG= ,
∴圆形纸片的半径为 cm,
∵OC=5cm,
∴MC=5−3=2cm,
在Rt△AMC中,AC= cm.
故选C.
11.我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(如图 ),它是分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形.图 是等宽的勒洛三角形和圆形滚木的截面图.
∴∠B=∠D,即sinB=sinD= ,
∵半径AO=5,
∴CD=10,
∴ ,
∴AC=4,
故选:C.
【点睛】
本题考查了同弧所对的圆周角相等,以及三角函数的内容,注意到直径所对的圆周角是直角是解题的关键.
6.如图, , ,以 为直径作半圆,圆心为点 ;以点 为圆心, 为半径作 ,过点 作 的平行线交两弧于点 、 ,则图中阴影部分的面积是()
A.8Baidu NhomakorabeaB.8C.3πD.4π
【答案】D
【解析】
【分析】
由题意可得翻转一次中心O经过的路线长就是1个半径为1,圆心角是90°的弧长,然后进行计算即可解答.
【详解】
解:∵正方形ABCD的边长为 cm,
∴对角线的一半=1cm,
则连续翻动8次后,正方形的中心O经过的路线长=8× =4π.
故选:D.
【点睛】
【详解】
解:连接OB,
∵AB=AC,
∴∠ABC=∠ACB=56°,
∴∠A=180°-56°-56°=68°= ∠BOC,
∴∠BOC=68°×2=136°,
∵OB=OC,
∴∠OBC=∠OCB=(180°-136°)÷2=22°,
∴∠OBE=∠EBC-∠OBC=56°-22°=34°,
∴∠AED=∠BEC=∠BOC-∠OBE=136°-34°=102°.
故选:C.
【点睛】
本题考查了圆的综合,解答本题的关键是设出点P坐标,将所求代数式的值转化为求解OP的最小值,难度较大.
4.已知下列命题:
①若a>b,则ac>bc;
②若a=1,则 =a;
③内错角相等;
④90°的圆周角所对的弦是直径.
其中原命题与逆命题均为真命题的个数是( )
A.1个B.2个C.3个D.4个
故选D.
【点睛】
本题考查了圆周角定理,等腰三角形的性质,外角的性质,解题的关键是作出辅助线OB,得到∠BOC的度数.
16.如图,已知某圆锥轴截面等腰三角形的底边和高线长均为10cm,则这个圆锥的侧面积为( )
A.50cm2B.50πcm2C.25 cm2D.25 πcm2
【答案】D
【解析】
【分析】
根据勾股定理求出圆锥的母线长,求出底面圆周长,根据扇形面积公式计算即可.
【详解】
解:如图所示,
∵等腰三角形的底边和高线长均为10cm,
∴等腰三角形的斜边长= =5 ,即圆锥的母线长为5 cm,圆锥底面圆半径为5,
A.1B.2C.4D.5
【答案】C
【解析】
【分析】
首先连接CO并延长交⊙O于点D,连接AD,由CD是⊙O的直径,可得∠CAD=90°,又由⊙O的半径是5,sinB= ,即可求得答案.
【详解】
解:连接CO并延长交⊙O于点D,连接AD,
由CD是⊙O的直径,可得∠CAD=90°,
∵∠B和∠D所对的弧都为弧AC,
故选D.
【点睛】
本题考查了真假命题,熟练掌握正多边形与圆、中心角、多边形的外角和等知识是解本题的关键.
9.用一个直径为 的玻璃球和一个圆锥形的牛皮纸纸帽制作一个不倒翁玩具,不倒翁轴截面如图所示,圆锥的母线 与 相切于点 ,不倒翁的顶点 到桌面 的最大距离是 .若将圆锥形纸帽表面全涂上颜色,则涂色部分的面积为()
【答案】A
【解析】
【分析】
先对原命题进行判断,再判断出逆命题的真假即可.
【详解】
解:①若a>b,则ac>bc是假命题,逆命题是假命题;
②若a=1,则 =a是真命题,逆命题是假命题;
③内错角相等是假命题,逆命题是假命题;
④90°的圆周角所对的弦是直径是真命题,逆命题是真命题;
其中原命题与逆命题均为真命题的个数是1个;
∴∠ACB=90°,OB=OC=OD=4,BC=CE=8.
又∵OE∥AC,
∴∠ACB=∠COE=90°.
∴在Rt△OEC中,OC=4,CE=8,
∴∠CEO=30°,∠ECB=60°,OE=4 ,
∴S阴影=S扇形BCE−S扇形BOD−S△OCE
=
=
故选:A.
【点睛】
本题考查了扇形面积的计算.不规则图形的面积一定要注意分割成规则图形的面积进行计算.
【详解】
设P(x,y),
∵PA2=(x+1)2+y2,PB2=(x﹣1)2+y2,
∴PA2+PB2=2x2+2y2+2=2(x2+y2)+2,
∵OP2=x2+y2,
∴PA2+PB2=2OP2+2,
当点P处于OC与圆的交点上时,OP取得最值,
∴OP的最小值为CO﹣CP=3﹣1=2,
∴PA2+PB2最小值为2×22+2=10.
∴S阴影=S△OAB﹣S扇形OMN= ×2× ﹣ = .故选A.
8.下列命题是假命题的是( )
A.三角形两边的和大于第三边
B.正六边形的每个中心角都等于
C.半径为 的圆内接正方形的边长等于
D.只有正方形的外角和等于
【答案】D
【解析】
【分析】
根据三角形三边关系、中心角的概念、正方形与圆的关系、多边形的外角和对各选项逐一进行分析判断即可.
形纸帽的表面 .
故选: .
【点睛】
本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆锥的计算.
10.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC的长为( )
A.2 cmB.4 cmC.2 cm或4 cmD.2 cm或4 cm
本题考查了弧长的计算,审清题意、确定点O的路线和长度是解答本题的关键.
15.如图, 是 的内接三角形,且 , , 的直径 交 于点 ,则 的度数为()
A. B. C. D.
【答案】D
【解析】
【分析】
连接OB,根据等腰三角形的性质得到∠A,从而根据圆周角定理得出∠BOC,再根据OB=OC得出∠OBC,即可得到∠OBE,再结合外角性质和对顶角即可得到∠AED的度数.
【详解】
A、三角形两边的和大于第三边,A是真命题,不符合题意;
B、正六边形 条边对应 个中心角,每个中心角都等于 ,B是真命题,不符合题意;
C、半径为 的圆内接正方形中,对角线长为圆的直径 ,设边长等于 ,则: ,解得边长为 ,C是真命题,不符合题意;
D、任何凸 边形的外角和都为 , 是假命题,符合题意,
3.如图,在平面直角坐标系中,点P是以C(﹣ , )为圆心,1为半径的⊙C上的一个动点,已知A(﹣1,0),B(1,0),连接PA,PB,则PA2+PB2的最小值是( )
A.6B.8C.10D.12
【答案】C
【解析】
【分析】
设点P(x,y),表示出PA2+PB2的值,从而转化为求OP的最值,画出图形后可直观得出OP的最值,代入求解即可.
初中数学圆的经典测试题及解析
一、选择题
1.如图,有一个边长为 的正六边形纸片,若在该纸片上沿虚线剪一个最大圆形纸片,则这个圆形纸片的半径是()
A. B. C. D.
【答案】A
【解析】
【分析】
根据题意画出图形,再根据正多边形圆心角的求法求出∠AOB的度数,最后根据等腰三角形及直角三角形的性质解答即可.
【答案】C
【解析】
连接AC,AO,
∵O的直径CD=10cm,AB⊥CD,AB=8cm,
∴AM= AB= ×8=4cm,OD=OC=5cm,
当C点位置如图1所示时,
∵OA=5cm,AM=4cm,CD⊥AB,
∴OM= =3cm,
∴CM=OC+OM=5+3=8cm,
∴AC= cm;
当C点位置如图2所示时,同理可得OM=3cm,
【详解】
①勒洛三角形不是中心对称图形,故①错误;
②图 中,点 到 上任意一点的距离都相等,故②正确;
③图 中,设圆的半径为r
∴勒洛三角形的周长=
圆的周长为
∴勒洛三角形的周长与圆的周长相等,故③正确;
④使用截面是勒洛三角形的滚木来搬运东西,不会发生上下抖动,故④错误
故选B
【点睛】
本题主要考查中心对称图形,弧长公式等,掌握中心对称图形和弧长公式是解题的关键.
A. B. C. D.
【答案】C
【解析】
【分析】
连接 ,如图,利用切线的性质得 ,在 中利用勾股定理得 ,利用面积法求得 ,然后利用圆锥的侧面展开图为扇形和扇形的面积公式计算圆锥形纸帽的表面.
【详解】
解:连接 ,作 于 ,如图,
圆锥的母线 与 相切于点 ,
,
在 中, , ,
,
,
,
圆锥形纸帽的底面圆的半径为 ,母线长为12,
【详解】连接OA、OB,
∵正方形ABCD内接于⊙O,
∴AB=BC=DC=AD,
∴ ,
∴∠AOB= ×360°=90°,
在Rt△AOB中,由勾股定理得:2AO2=(2 )2,
解得:AO=2,
∴ 的长为 =π,
故选A.
【点睛】本题考查了弧长公式和正方形的性质,求出∠AOB的度数和OA的长是解此题的关键.
故选A.
点评:主要考查命题与定理,用到的知识点是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题,判断命题的真假关键是要熟悉课本中的性质定理.
5.如图,△ABC的外接圆是⊙O,半径AO=5,sinB= ,则线段AC的长为()
12.如图,7×5的网格中的小正方形的边长都为1,小正方形的顶点叫格点,△ABC的三个顶点都在格点上,过点C作△ABC外接圆的切线,则该切线经过的格点个数是( )
A.1B.2C.3D.4
【答案】C
【解析】
【分析】
作△ABC的外接圆,作出过点C的切线,两条图象法即可解决问题.
【详解】
如图⊙O即为所求,
观察图象可知,过点C作△ABC外接圆的切线,则该切线经过的格点个数是3个,
选:C.
【点睛】
考查三角形的外接圆与外心,切线的判定和性质等知识,解题的关键是理解题意.
13.如图,将△ABC绕点C旋转60°得到△A′B′C′, 已知AC=6,BC=4,则线段AB扫过的图形面积为( )
A. B. C.6πD.以上答案都不对
图 图
有如下四个结论:
①勒洛三角形是中心对称图形
②图 中,点 到 上任意一点的距离都相等
③图 中,勒洛三角形的周长与圆的周长相等
④使用截面是勒洛三角形的滚木来搬运东西,会发生上下抖动
上述结论中,所有正确结论的序号是()
A.①②B.②③C.②④D.③④
【答案】B
【解析】
【分析】
逐一对选项进行分析即可.
故选:A.
【点睛】
本题考查的是正多边形和圆,根据题意画出图形,利用直角三角形的性质及正六边形的性质解答是解答此题的关键.
2.如图,正方形ABCD内接于⊙O,AB=2 ,则 的长是( )
A.πB. πC.2πD. π
【答案】A
【解析】
【分析】连接OA、OB,求出∠AOB=90°,根据勾股定理求出AO,根据弧长公式求出即可.
7.如图, 的外切正六边形ABCDEF的边长为2,则图中阴影部分的面积为
A.
B.
C.
D.
【答案】A
【解析】
【分析】
【详解】
解:∵六边形ABCDEF是正六边形,
∴∠AOB=60°,∴△OAB是等边三角形,OA=OB=AB=2,
设点G为AB与⊙O的切点,连接OG,则OG⊥AB,
∴OG=OA•sin60°=2× = ,
A. B. C. D.
【答案】A
【解析】
【分析】
如图,连接CE.图中S阴影=S扇形BCE−S扇形BOD−S△OCE.根据已知条件易求得OB=OC=OD=4,BC=CE=8,∠ECB=60°,OE=4 ,所以由扇形面积公式、三角形面积公式进行解答即可.
【详解】
解:如图,连接CE.
∵AC⊥BC,AC=BC=8,以BC为直径作半圆,圆心为点O;以点C为圆心,BC为半径作弧AB,
【答案】D
【解析】
【分析】
从图中可以看出,线段AB扫过的图形面积为一个环形,环形中的大圆半径是AC,小圆半径是BC,圆心角是60度,所以阴影面积=大扇形面积-小扇形面积.
【详解】
阴影面积= π.
故选D.
【点睛】
本题的关键是理解出,线段AB扫过的图形面积为一个环形.
14.如图,将边长为 cm的正方形ABCD沿直线l向右翻动(不滑动),当正方形连续翻动8次后,正方形的中心O经过的路线长是()cm.