华师大版八年级数学下册第20章数据的整理与初步处理单元测试题学生版无答案

合集下载

华师大版数学八下第20章《数据的整理与初步处理》单元测试

华师大版数学八下第20章《数据的整理与初步处理》单元测试

第20章数据的整理与初步处理检测题(时间:90分钟满分:120分)城区二中编写老师:王启修一、选择题(每题3分,共27分)1. 实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为()A.4,5 B.5,4 C.4,4 D.5,52. 在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的().A.众数B.方差C.平均数D.中位数3.在统计中,样本的方差可以近似地反映总体的()A.平均状态 B.波动大小 C.分布规律 D.最大值,最小值4.某人对去莫干山旅游的游客人数进行了统计:10天中,有3•天每天的游客人数为400人,有2天每天的游客人数为600人,•有5•天每天的游客人数为350人,那么这10天中平均每天的游客人数为()A.415人 B.425人 C.450人 D.400人5.某青年排球队则这12A.众数是20(岁),中位数是19(岁);B.众数是19(岁),中位数是19(岁);C.众数是19(岁),中位数是20.5(岁);D.众数是19(岁),中位数是20(岁)6.在共有15人参加的“我爱家乡──争做‘五小’公民”演讲比赛中,参赛选手的成绩各不相同,因此选手要想知道自己是否进入前8名,•只需要了解自己的成绩以及全部成绩的()A.平均数 B.众数 C.中位数 D.方差7.下列说法错误的是()A.如果一组数据的众数是5,那么这组数据中出现次数最多的是5;B.一组数据的平均数一定大于其中的每一个数据;C.一组数据的平均数,众数,中位数有可能相同;D.一组数据的中位数有且只有一个8.甲、乙两名学生在参加今年的体育中考前各作了5次立定跳远,两人平均成绩相同,其中甲所测得成绩的方差是0.005,乙所测得的成绩如下:2.20m,2.30m,2.30m,2.40m,2.30m,那么甲、乙的成绩比较()A.甲的成绩更稳定; B.乙的成绩更稳定;C.甲、乙的成绩一样稳定; D.不能确定谁的成绩更稳定9.某同学使用计算器求出30个数据的平均数时,错将其中的一个数据105输入为15,那么由此求出的平均数与实际平均数的差是()A.3.5 B.3 C.0.5 D.-3二、填空题(每小题3分,计27分)10.一组数据38,45,-27,0_______.11.鸿运公司有一名经理和10名雇员共11名员工,他们的月工资情况如下(单位:元):30000,2350,2350,2250,2250,2250,2250,2150,2050,1950,1850,•上述数据的平均数是______元,中位数是______元,通过上面得到的结果不难看出,用______•更能准确地反映出该公司全体员工的月人均收入水平.12.某班50名学生的年龄统计结果如下表所示,这个班学生年龄的众数是____中位数是______.13100•个节约用水模范户,4则10014.在数据-1,0,4,5,8中插入一数据x使得该数据组的中位数为3,则x=_____.15.一组数据是20.1,20.2,19.9,19.8,19.9,20.1,则其平均数是x=______,方差S2=_______.16.一个样本方差S2=110 [(x1-8)2+(x2-8)2+……+(x10-8)2]•,那么这个样本的平均数x=_______.17.若10个数的平均数是3,极差是4,则将这10个数都扩大10倍,则这组数据的平均数是________,极差是______.18.•某校规定学生的学期体育成绩由三部分组成:•体育课外活动占学期成绩的10%,理论测试占30%,体育技能测试占60%,一名同学上述三项成绩依次为90分,92分,73分,则该同学这学期的体育成绩为_______分.三、解答题(共66分)19.(10分)某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为100分.前6名选手的得分如下:(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比.(3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.20.(8(1)若这20y 的值.(2)在(1)的条件下,设这20名学生本次测验的众数为a ,中位数为b ,求a ,b ,的值.21.(10分) 如图,四边形ABCD 是等腰梯形,∠ABC=60°,若其四边满足长度的众数为5,平均数为,上、下底之比为1:2,则求BD 的值.22.(9分)某乡镇企业生产部有技术工人15人,•生产部为了合理制定产品的(1(2)假如生产部负责人把每位工人的月加工零件数定为260(件),•你认为这个定额是否合理,为什么?23.(9分)某中学开展“中国梦”演讲比赛活动,初三(1),初三(2)•班根据初赛成绩各选出5名选手参加复赛成绩如下图所示.(1)(2(3)如果在每班参加复赛的选手中分别选出2人参加决赛,•你认为哪个班的实力更强一些,并说明理由.24.(11分)甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示.(1(2①从平均数和方差相结合看;②从平均数和中位数相结合看(分析谁的成绩好些);③从平均数和命中9环以上的次数相结合看(分析谁的成绩好些);④从折线图上两人射击命中环数的走势看(分析谁更有潜力).25. (9分)某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为6种型号).根据以上信息,解答下列问题:(1)该班共有多少名学生?其中穿175型校服的学生有多少?(2)在条形统计图中,请把空缺部分补充完整.(3)在扇形统计图中,请计算185型校服所对应的扇形圆心角的大小;(4)求该班学生所穿校服型号的众数和中位数.答案第二十章数据的整理与初步分析一.选择题:1.A 2. D 3.B 4.A 5.D 6.C 7.B 8.B 9.D二.10.72 11.4700 2250 •中位数 12.15岁,14岁 13.1.15 14.2 15.20.0,0.02 16.8 17.•30,•40 • 18.80.4三.解答题:19.解:(1)把这组数据从小到大排列为,80,84,84,85,90,92,最中间两个数的平均数是(84+85)÷2=84.5(分),则这6名选手笔试成绩的中位数是84.5,84出现了2次,出现的次数最多,则这6名选手笔试成绩的众数是84;故答案为:84.5,84;(2)设笔试成绩和面试成绩各占的百分百是x ,y ,根据题意得:1859088x y x y +=+=⎧⎨⎩, 解这个方程组,得0.40.6x y ==⎧⎨⎩, ∴笔试成绩和面试成绩各占的百分比是40%,60%;(3)2号选手的综合成绩是92×0.4+88×0.6=89.6(分),3号选手的综合成绩是84×0.4+86×0.6=85.2(分),4号选手的综合成绩是90×0.4+90×0.6=90(分),5号选手的综合成绩是84×0.4+80×0.6=81.6(分), 6号选手的综合成绩是80×0.4+85×0.6=83(分),∴综合成绩排序前两名人选是4号和2号.20.(1)•根据题意,得:152205:607058090100282207x y x x y y ++++==⎧⎧⎨⎨+⨯+++⨯=⨯=⎩⎩求得 (2)a=90,b=80 21.x A =179,x B =178.8,因为x A >x B ,所以A 校队员更高些;S A 2=10.3,S B 2=64.3,因为S A 2<S B 2,所以,A 校的队员身高更整齐21. 解析:设梯形的四边长为5,5,x ,2x ,则=,x=5,则AB=CD=5,AD=5,BC=10,∵AB=AD ,∴∠ABD=∠ADB ,∵AD ∥BC ,∴∠ADB=∠DBC ,∴∠ABD=∠DBC ,∵∠ABC=60°,∴∠DBC=30°,∵等腰梯形ABCD ,AB=DC ,∴∠C=∠ABC=60°,∴∠BDC=90°,∴在Rt △BDC 中,由勾股定理得:BD==5.22.(1)平均数:260(件),中位数:240(件),众数:240(件)(2)不合理,因为表中数据显示,每月能完成260件的人数一共是4人,还有11人不能达到此定额,尽管260是平均数,•但不利于调动多数员的积极性,因为240既是中位数,又于众数,是大多数人能达到的定额,•故定额为240较合理23.(1)85;100(2)两班的平均数相同,初三(1)班,初三(2)班前两名选手的平均分分别为92.5,100分,∴在每班参加复赛的选手中分别选出2人参加决定,•初三(2)班的实力更强一些24.(1)平均数7,中位数7,7.5,命中9环以上次数3次,•(2)①平均数相同,S甲2<S乙2,∴甲成绩比乙稳定;②甲乙平均数相同,甲的中位数<•乙的中位数,则乙的成绩比甲好些.③因为平均数相同,命中9环以上的次数甲比乙少,•则乙成绩比甲好些.④甲成绩在平均数上下波动,而乙成绩处于上升势头,从第4次以后就没有比甲少的情况发生,则乙有潜力.25.解:(1)15÷30%=50(名),50×20%=10(名),即该班共有50名学生,其中穿175型校服的学生有10名;(2)185型的学生人数为:50﹣3﹣15﹣15﹣10﹣5=50﹣48=2(名),补全统计图如图所示:(3)185型校服所对应的扇形圆心角为:×360°=14.4°;(4)165型和170型出现的次数最多,都是15次,故众数是165和170;共有50个数据,第25、26个数据都是170,故中位数是170.。

华东师大版2019-2020学年八年级数学 下学期第20章数据的整理与初步处理单元测试题(含答案)

华东师大版2019-2020学年八年级数学 下学期第20章数据的整理与初步处理单元测试题(含答案)

第20章数据的整理与初步处理一、选择题1.制鞋厂准备生产一批男皮鞋,经抽样120名中年男子,得知所需鞋号和人数如下:并求出鞋号的中位数是24,众数是25,平均数是24,下列说法正确的是()A. 所需27cm鞋的人数太少,27cm鞋可以不生产B. 因为平均数24,所以这批男鞋可以一律按24cm的鞋生产C. 因为中位数是24,故24cm的鞋的生产量应占首位D. 因为众数是25,故25cm的鞋的生产量要占首位2.体育课上,九年级2名学生各练习10次立定跳远,要判断哪一名学生的成绩比较稳定,通常需要比较这两名学生立定跳远成绩的( )A. 平均数B. 众数C. 中位数D. 方差3.已知n个数据的和为108,平均数为12,则n为()A. 7B. 8C. 9D. 104.要反映2015年末嘉兴市各个县(区)常住人口占嘉兴市总人口的比例,宜采用()A. 条形统计图B. 折线统计图C. 扇形统计图D. 频数直方图5.某校是海安三门球特色学校,现准备从该校九年级四个班中选出一个班的7名学生组建三门球队,根据各班选出的学生,测量其身高,计算得到的数据如下表所示,表:九年级(1~4班)学生平均身高统计表要求各班选出的学生身高较为整齐,且平均身高约为1.6m.学校应选择()A. 九(1)班B. 九(2)班C. 九(3)班D. 九(4)班6.甲、乙、丙三名射击运动员在某场测试中各射击20次,3人的测试成绩如下表,则甲、乙、丙3名运动员测试成绩最稳定的是()A. 甲B. 乙C. 丙D. 3人成绩稳定情况相同7.要了解全区八年级学生身高在某一范围内的学生所占比例的大小,需知道相应的样本的( )A. 平均数B. 频率C. 众数D. 方差8.天籁音乐行出售三种音乐CD,即古典音乐,流行音乐,民族音乐,为了表示这三种唱片的销售量占总销售的百分比,应该用()A. 扇形统计图B. 折线统计图C. 条形统计图D. 以上都可以9.某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002、s乙2=0.03,则()A. 甲比乙的产量稳定B. 乙比甲的产量稳定C. 甲、乙的产量一样稳定D. 无法确定哪一品种的产量更稳定10.为纪念雷锋逝世52周年暨毛主席号召“向雷锋同志学习”49周年,育才中学举行了“学雷锋”演讲比赛.下面是8位评委为其中一名参赛者的打分:9.4,9.6,9.8,9.9,9.7,9.9,9.8,9.5.若去掉一个最高分,一个最低分,这名参赛者的最后得分是()A. 9.70B. 9.72C. 9.74D. 9.6811.甲、乙两学生在军训打靶训练中,打靶的总次数相同,且所中环数的平均数也相同,但甲的成绩比乙的成绩稳定,那么两者的方差的大小关系是()A. s2甲>s2乙B. s2甲=s2乙C. s2甲<s2乙D. 不能确定12.若一组数据x1、x2、x3、x4、x5的平均数是a,则另一组数据x1、x2+1、x3+2、x4+3、x5+4的平均数是()A. aB. a+2C. a+D. a+10二、填空题13.某招聘考试分笔试和面试两种.其中笔试按60%、面试按40%计算加权平均数作为总成绩.小明笔试成绩为90分.面试成绩为85分,那么小明的总成绩为________ 分.14.某校体育期末考核“立定跳远”、“800米”、“仰卧起坐”三项,并按3:5:2的比重算出期末成绩.已知小林这三项的考试成绩分别为80分、90分、100分,则小林的体育期末成绩为________分.15.某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:如果公司认为,作为公关人员面试的成绩比笔试的成绩更重要,并分别赋予它们6和4的权,根据四人各自的平均成绩,公司将录取________.16.我们进入中学以来,已经学习过不少有关数据的统计量,例如________ 等,它们分别从不同的侧面描述了一组数据的特征.17.有一组数据:3,a,4,6,7.它们的平均数是5,那么这组数据的方差是________18.利用计算器求标准差和方差时,首先要进入________计算状态,再依次输入每一个数据,最后按求方差的功能键________,即可得出结果.19.在一次青年歌手大赛上,七位评委为某歌手打出的分数如下:9.5,9.4,9.6,9.9,9.3,9.7,9.0,去掉一个最高分和一个最低分后,所剩数据的平均数为________ .20.在一次函数y=﹣2x+3中,一组自变量x1、x2、…x n的平均数为a,则这组自变量对应的函数值y1、y2、…y n 的平均数为________.21.已知一组数据x1,x2,x3,平均数和方差分别是2,,那么另一组数据2x1﹣1,2x2﹣1,2x3﹣1的平均数和方差分别是,________.三、解答题22.计算数据5,9,8,10,3的平均数.23.为了考察甲、乙两种小麦的长势,分别从中抽取5株麦苗,测得苗高(单位:cm)如下:甲:6、8、9、9、8;乙:10、7、7、7、9.(Ⅰ)分别计算两种小麦的平均苗高;(Ⅱ)哪种小麦的长势比较整齐?为什么?24.在一次期中考试中,(1)一个班级有甲、乙、丙三名学生,分别得到70分、80分、90分.这三名同学的平均得分是多少?(2)一个班级共有40名学生,其中5人得到70分,20人得到80分,15人得到90分.求班级的平均得分.(3)一个班级中,20%的学生得到70分,50%的学生得到80分,30%的学生得到90分.求班级的平均得分.(4)中考的各学科的分值依次为:数学150分,语文150分,物理100分,政治50分,历史50分,合计总分为500分.在这次期中考试中,各门学科的总分都设置为100分,现已知甲、乙两名学生的得分如下表:你认为哪名同学的成绩更理想,写出你的理由.25.某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了这15人某月的加工零件个数.(如下表)(1)写出这15人该月加工零件数的平均数、中位数和众数;(2)假设生产部负责人把每位工人的月加工零件数定为24件,你认为是否合理?为什么?如果不合理,请你设计一个较为合理的生产定额,并说明理由.参考答案一、选择题D D C C C A B A A B C B二、填空题13.8814.8915.乙16.平均数、众数、中位数、极差、方差、标准差17.218.MODE;19.9.520.﹣2a+321.3;6三、解答题22.解:数据5,9,8,10,3的平均数是:(5+9+8+10+3)÷5=7.23.解:(Ⅰ)= (6+8+9+9+8)=8,= (10+7+7+7+9)=8;(Ⅱ)S2甲= [(6﹣8)2+(8﹣8)2+(9﹣8)2+(9﹣8)2+(8﹣8)2]=1.2,S2乙= [(,10﹣8)2+(7﹣8)2+(7﹣8)2+(7﹣8)2+(9﹣8)2]=1.6,∵S2甲<S2乙,∴甲种小麦的长势比较整齐.24.解:(1)这三名同学的平均得分是(70+80+90)÷3=80(分);(2)班级的平均得分是(5×70+20×80+15×90)=82.5(分);(3)班级的平均得分是70×20%+80×50%+90×30%=81(分);(4)考虑各学科在中考中所占“权”.甲的均分为80×30%+90×30%+80×20%+80×10%+70×10%=82(分),乙的均分为80×30%+80×30%+70×20%+80×10%+95×10%=79.5(分),因为甲的均分比乙的均分高,所以甲的成绩更为理想.25.(1)解:平均数= = =26(件),将表中的数据按照从大到小的顺序排列,可得出第8名工人的加工零件数为24件,且零件加工数为24的工人最多,故中位数为:24件,众数为:24件.答:这15人该月加工零件数的平均数为26件,中位数为24件,众数为24件.(2)解:24件较为合理,24既是众数,也是中位数,且24小于人均零件加工数,是大多数人能达到的定额.。

华东师大版2019-2020学年八年级数学 下学期第20章数据的整理与初步处理单元测试卷(含答案)

华东师大版2019-2020学年八年级数学 下学期第20章数据的整理与初步处理单元测试卷(含答案)

第20章数据的整理与初步处理一、选择题1.制鞋厂准备生产一批男皮鞋,经抽样120名中年男子,得知所需鞋号和人数如下:并求出鞋号的中位数是24,众数是25,平均数是24,下列说法正确的是()A. 所需27cm鞋的人数太少,27cm鞋可以不生产B. 因为平均数24,所以这批男鞋可以一律按24cm的鞋生产C. 因为中位数是24,故24cm的鞋的生产量应占首位D. 因为众数是25,故25cm的鞋的生产量要占首位2.体育课上,九年级2名学生各练习10次立定跳远,要判断哪一名学生的成绩比较稳定,通常需要比较这两名学生立定跳远成绩的( )A. 平均数B. 众数C. 中位数D. 方差3.已知n个数据的和为108,平均数为12,则n为()A. 7B. 8C. 9D. 104.要反映2015年末嘉兴市各个县(区)常住人口占嘉兴市总人口的比例,宜采用()A. 条形统计图B. 折线统计图C. 扇形统计图D. 频数直方图5.某校是海安三门球特色学校,现准备从该校九年级四个班中选出一个班的7名学生组建三门球队,根据各班选出的学生,测量其身高,计算得到的数据如下表所示,表:九年级(1~4班)学生平均身高统计表要求各班选出的学生身高较为整齐,且平均身高约为1.6m.学校应选择()A. 九(1)班B. 九(2)班C. 九(3)班D. 九(4)班6.甲、乙、丙三名射击运动员在某场测试中各射击20次,3人的测试成绩如下表,则甲、乙、丙3名运动员测试成绩最稳定的是()A. 甲B. 乙C. 丙D. 3人成绩稳定情况相同7.要了解全区八年级学生身高在某一范围内的学生所占比例的大小,需知道相应的样本的( )A. 平均数B. 频率C. 众数D. 方差8.天籁音乐行出售三种音乐CD,即古典音乐,流行音乐,民族音乐,为了表示这三种唱片的销售量占总销售的百分比,应该用()A. 扇形统计图B. 折线统计图C. 条形统计图D. 以上都可以9.某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002、s乙2=0.03,则()A. 甲比乙的产量稳定B. 乙比甲的产量稳定C. 甲、乙的产量一样稳定D. 无法确定哪一品种的产量更稳定10.为纪念雷锋逝世52周年暨毛主席号召“向雷锋同志学习”49周年,育才中学举行了“学雷锋”演讲比赛.下面是8位评委为其中一名参赛者的打分:9.4,9.6,9.8,9.9,9.7,9.9,9.8,9.5.若去掉一个最高分,一个最低分,这名参赛者的最后得分是()A. 9.70B. 9.72C. 9.74D. 9.6811.甲、乙两学生在军训打靶训练中,打靶的总次数相同,且所中环数的平均数也相同,但甲的成绩比乙的成绩稳定,那么两者的方差的大小关系是()A. s2甲>s2乙B. s2甲=s2乙C. s2甲<s2乙D. 不能确定12.若一组数据x1、x2、x3、x4、x5的平均数是a,则另一组数据x1、x2+1、x3+2、x4+3、x5+4的平均数是()A. aB. a+2C. a+D. a+10二、填空题13.某招聘考试分笔试和面试两种.其中笔试按60%、面试按40%计算加权平均数作为总成绩.小明笔试成绩为90分.面试成绩为85分,那么小明的总成绩为________ 分.14.某校体育期末考核“立定跳远”、“800米”、“仰卧起坐”三项,并按3:5:2的比重算出期末成绩.已知小林这三项的考试成绩分别为80分、90分、100分,则小林的体育期末成绩为________分.15.某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:如果公司认为,作为公关人员面试的成绩比笔试的成绩更重要,并分别赋予它们6和4的权,根据四人各自的平均成绩,公司将录取________.16.我们进入中学以来,已经学习过不少有关数据的统计量,例如________ 等,它们分别从不同的侧面描述了一组数据的特征.17.有一组数据:3,a,4,6,7.它们的平均数是5,那么这组数据的方差是________18.利用计算器求标准差和方差时,首先要进入________计算状态,再依次输入每一个数据,最后按求方差的功能键________,即可得出结果.19.在一次青年歌手大赛上,七位评委为某歌手打出的分数如下:9.5,9.4,9.6,9.9,9.3,9.7,9.0,去掉一个最高分和一个最低分后,所剩数据的平均数为________ .20.在一次函数y=﹣2x+3中,一组自变量x1、x2、…x n的平均数为a,则这组自变量对应的函数值y1、y2、…y n 的平均数为________.21.已知一组数据x1,x2,x3,平均数和方差分别是2,,那么另一组数据2x1﹣1,2x2﹣1,2x3﹣1的平均数和方差分别是,________.三、解答题22.计算数据5,9,8,10,3的平均数.23.为了考察甲、乙两种小麦的长势,分别从中抽取5株麦苗,测得苗高(单位:cm)如下:甲:6、8、9、9、8;乙:10、7、7、7、9.(Ⅰ)分别计算两种小麦的平均苗高;(Ⅱ)哪种小麦的长势比较整齐?为什么?24.在一次期中考试中,(1)一个班级有甲、乙、丙三名学生,分别得到70分、80分、90分.这三名同学的平均得分是多少?(2)一个班级共有40名学生,其中5人得到70分,20人得到80分,15人得到90分.求班级的平均得分.(3)一个班级中,20%的学生得到70分,50%的学生得到80分,30%的学生得到90分.求班级的平均得分.(4)中考的各学科的分值依次为:数学150分,语文150分,物理100分,政治50分,历史50分,合计总分为500分.在这次期中考试中,各门学科的总分都设置为100分,现已知甲、乙两名学生的得分如下表:你认为哪名同学的成绩更理想,写出你的理由.25.某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了这15人某月的加工零件个数.(如下表)(1)写出这15人该月加工零件数的平均数、中位数和众数;(2)假设生产部负责人把每位工人的月加工零件数定为24件,你认为是否合理?为什么?如果不合理,请你设计一个较为合理的生产定额,并说明理由.参考答案一、选择题D D C C C A B A A B C B二、填空题13.8814.8915.乙16.平均数、众数、中位数、极差、方差、标准差17.218.MODE;19.9.520.﹣2a+321.3;6三、解答题22.解:数据5,9,8,10,3的平均数是:(5+9+8+10+3)÷5=7.23.解:(Ⅰ)= (6+8+9+9+8)=8,= (10+7+7+7+9)=8;(Ⅱ)S2甲= [(6﹣8)2+(8﹣8)2+(9﹣8)2+(9﹣8)2+(8﹣8)2]=1.2,S2乙= [(,10﹣8)2+(7﹣8)2+(7﹣8)2+(7﹣8)2+(9﹣8)2]=1.6,∵S2<S2乙,甲∴甲种小麦的长势比较整齐.24.解:(1)这三名同学的平均得分是(70+80+90)÷3=80(分);(2)班级的平均得分是(5×70+20×80+15×90)=82.5(分);(3)班级的平均得分是70×20%+80×50%+90×30%=81(分);(4)考虑各学科在中考中所占“权”.甲的均分为80×30%+90×30%+80×20%+80×10%+70×10%=82(分),乙的均分为80×30%+80×30%+70×20%+80×10%+95×10%=79.5(分),因为甲的均分比乙的均分高,所以甲的成绩更为理想.25.(1)解:平均数= = =26(件),将表中的数据按照从大到小的顺序排列,可得出第8名工人的加工零件数为24件,且零件加工数为24的工人最多,故中位数为:24件,众数为:24件.答:这15人该月加工零件数的平均数为26件,中位数为24件,众数为24件.(2)解:24件较为合理,24既是众数,也是中位数,且24小于人均零件加工数,是大多数人能达到的定额.。

华师大版八年级数学初二下册:第20章 数据的整理与初步处理测试卷及参考答案

华师大版八年级数学初二下册:第20章 数据的整理与初步处理测试卷及参考答案

第4题图55%25%20%4元3元2元③②①③②①八年级数学第20章 数据的整理与初步处理测试题班级 姓名 得分一、 选择题(本大题共分12小题,每小题3分共30分)1.某班七个兴趣小组人数分别为:3,3,4,4,5,5,6,则这组数据的中位数是( )A. 2B. 4C. 4.5D. 5 2.数据2、4、4、5、5、3、3、4的众数是( )A. 2B. 3C. 4D. 5 3.已知样本x 1,x 2,x 3,x 4的平均数是2,则x 1+3,x 2+3,x 3+3,x 4+3的平均数是( )A. 2B. 2.75C. 3D. 5 4.学校食堂有2元,3元,4元三种价格的饭菜供师生选择(每人限购一份).如图是某月的销售情况统计图,则该校师生购买饭菜费用的平均数和众数是( ) A. 2.95元,3元 B. 3元,3元 C. 3元,4元 D. 2.95元,4元 5.如果a 、b 、c 的中位数与众数都是5,平均数是4,那么a 可能是( )A. 2B. 3C. 4D. 5 6.已知甲、乙两组数据的平均数相等,若甲组数据的方差=0.055,乙组数据的方差=0.105,则( )A.甲组数据比乙组数据波动大B. 乙组数据比甲组数据波动大C.甲组数据与乙组数据的波动一样大D. 甲、乙两组数据的数据波动不能比较7.样本数据3,6,a ,4,2的平均数是4,则这个样本的方差是( ) A. 2 B. C. 3 D. 28.某同学5次上学途中所花的时间(单位:分钟)分别为x ,y ,10,11,9,已知这组数据的平均数为10,方差为2,则的值为( )A. 1B. 2C. 3D. 4 9.若样本x 1+1,x 2+1,x 3+1,…,x n +1的平均数为18,方差为2,则对于样本x 1+2,x 2+2,x 3+2,…,x n +2,下列结论正确的是( ) A.平均数为18,方差为2 B.平均数为19,方差为3 C.平均数为19,方差为2 D.平均数为20,方差为4 10.小波同学将某班级毕业升学体育测试成绩(满分30分)统计整理,得到下表,则下列说法错误的是( ) 分数 20 21 22 23 24 25 26 27 28 人数2438109631A.该组数据的众数是24分B.该组数据的平均数是25分C.该组数据的中位数是24分歧D.该组数据的极差是8分 二、填空题(本大题共8小题,每小题3分,共24分)11.有10个数据的平均数为12,另有20个数据的平均数为15,那么所有这30个数据的平均数是 .12.若x 1,x 2,x 3的平均数为7,则x 1+3,x 2+5,x 3+4的平均数为 . 13.一组数据1,6,x ,5,9的平均数是5,那么这组数据的中位数是 . 14. 五个数1,2,4,5,a 的平均数是3,则a = ,这五个数的方差为 . 15.若10个数的平均数是3,极差是4,则将这10个数都扩大10倍,则这组数据的平均数是 ,极差是 .16.如图是某同学6次数学测验成绩统计表,则该同学6次成绩的中位数是23862人数108642714163锻炼时间小时()学生人数人()10987201510517. 已知数据3x 1,3x 2,3x 3,…,3x n 的方差为3,则一组新数据6x 1,6x 2,…,6x n 的方差是 .18.已知样本99,101,102,x ,y (x ≤y )的平均数为100,方差为2,则x = ,y = .三、 解答题(本大题共46分) 19.计算题(每小题6分,共12分)(1)若1,2,3,a 的平均数是3;4,5,a ,b 的平均数是5.求:0,1,2,3,4,a ,b 的方差是多少?(2)有七个数由小到大依次排列,其平均数是38,如果这组数的前四位数的平均数是33,后四个数的平均数是42.求它们的中位数.20.(本小题10分)如图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图.那么该班学生每周锻炼时间的中位数是多少?21.(本小题12分)如图是某中学乒乓球队队员年龄分布的条形图. ⑴计算这些队员的平均年龄; ⑵大多数队员的年龄是多少? ⑶中间的队员的年龄是多少?22.(本小题12分)为了普及环保知识,增强环保意识,某中学组织了环保知识竞赛,初中三个年级根据初赛成绩分别选出了10名同学参加决赛,这些选手的决赛成绩(满分为100分)如下表所示: 年级 决赛成绩(单位:分) 七年级 80 86 88 80 88 99 80 74 91 89 八年级 85 85 87 97 85 76 88 77 87 88 九年级82807878819697888986⑴ 请你填写下表:⑵ 请从以下两个不 同的角度对三个年级 的决赛成绩进行分析: ① 从平均数和众数相结合看(分析哪个年级成绩好些);② 从平均数和中位数相结合看(分析哪个年级成绩好些)③ 如果在每个年级分别选出3人参加决赛,你认为哪个年级的实力更强一些?并说明理由.年级 平均数 众数中位数 七年级 85.5 87八年级 85.585九年级84参考答案:一、1.B;2.C;3.D;4.A;5.A;6.B;7.A;8.D;9.C;10.B;二、11.14;12.10;13.5;14.3,2;15.30,40;16.75分;17.12;18.98,100;三、19. ⑴由=3 得 a=6;由=5 得 b=50,1,2,3,4,6,5的平均数为3,∴=4.⑶设七个数为 a,b,c,d,e,f,g, a<b<c<d<e<f<g依题意得=38 ①,=33 ②,=42 ③,由①、②得 e+f+g=7×38-33×4 ④,将④代入③得d=34.20.因为有40名学生,所以中位数应是从小到大排列后的第20、第21个数据的平均数.因为从图中可以看到锻炼时间是7小时的有3人;锻炼8小时的有16人,3+16=19人;锻炼9小时的有14人;所以,该班学生的每周锻炼时间中位数是9小时.21. ⑴这些队员平均年龄是:=15⑵大多数队员是15岁⑶中间的队员的年龄是15岁22.⑴七年级众数是80;八年级中位数是86;九年级的平均数为85.5,众数为78.⑵①从平均数和众数相结合看,八年级的成绩好些.②从平均数和中位数相结合看,七年级成绩好些.⑶九年级.。

华东师大版八年级数学下册 第20章 数据的整理与初步处理 单元测试题(无答案)

华东师大版八年级数学下册 第20章  数据的整理与初步处理 单元测试题(无答案)

第20章数据的整理与初步处理单元测试题一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 关于2,6,1,10,6这组数据,下列说法正确的是()A.这组数据的平均数是6B.这组数据的中位数是1C.这组数据的众数是6D.这组数据的方差是10.22. 某餐饮公司为一所学校提供午餐,有10元、12元、15元三种价格的盒饭供师生选择,每人选一份,该校师生某一天购买的这三种价格盒饭数依次占50%、30%、20%,那么这一天该校师生购买盒饭费用的平均数和中位数分别是()A.12元、12元B.12元、11元C.11.6元、12元D.11.6元、11元3. 已知下面的一组数据:1,7,10,8,x,6,0,3,它们的平均数为5,那么x应等于()A.6B.5C.4D.34. 有一组数据:3,4,5,6,6,则这组数据的平均数、众数、中位数分别是()A.4.8,6,6B.5,5,5C.4.8,6,5D.5,6,6这10名学生所得分数的平均数是()A.86B.88C.90D.926. 某校九年级在开展“学会感恩“的活动月中,对九年级(2)班40人一周内(周一至周五)零花钱的使用情况进行调查,结果如下表:那么学生使用零花钱的众数和中位数分别是()A.15和35B.20和20C.15和20D.20和257. 东门中学有学生对到浏阳大围山旅游的游客进行了统计:10天中,有3天每天的游客人数为400人,有2天每天的游客人数为500人,有5天每天的游客人数为300人,那么10天中平均每天的游客人数为()A.400B.350C.370D.4208. 数据3,2,7,6,5,2的中位数是()A.2B.3C.4D.5则这组数据的中位数和平均数分别为()A.90,89B.90,90C.85,89D.90,87.5A.方差是13%B.众数是25%C.中位数是25%D.平均数是26.2%二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 数据1,0,2,3,4,2中众数是________.12. 某中学九年级三班五名同学一周踢足球的时间分别为4小时,3小时,5小时,4小时,2小时,则数据4,3,5,4,2的方差为________.13. 有13位同学参加学校组织的才艺表演比赛,已知他们所得的分数互不相同,共设7个获奖名额,某同学知道自己的比赛分数后,要判断自己能否获奖,在这13名同学成绩的统计量中只需知道一个量,它是________(填众数或方差或中位数或平均数)14. 校运动会上,八年级16位参加百米半决赛同学的成绩各不相同,按成绩取前8位进入决赛.如果小红知道了自己的成绩后,要判断自己能否进入决赛,她还需要知道其他15位同学成绩的________.(平均数、中位数、众数)15. 甲、乙两名射击运动员在某场测试中各射击10次,两人的测试成绩如下:甲778889991010乙7778899101010这两人10次射击命中的环数的平均数x甲=x乙=8.5,则测试成绩比较稳定的是________.(填“甲”或“乙”)16. 5个数据,各数都减去200,所得的差分别是8,6,−2,3,0,这5个数的平均数x=________.17. 已知一组数据1,2,x,5的平均数是4,则这组数据的方差是________.18. 已知一组数据−2,−1,0,x,1的平均数是0,那么这组数据的方差是________.19. 今年体育学业考试增加了跳绳测试项目,下面是测试时记录员记录的一组(10名)同学的测试成绩(单位:个/分钟):176,180,184,180,170,176,172,164,186,180,该组数据的众数、中位数、平均数分别为________.20. 学校规定每期每位同学的总评成绩=平时测试成绩的平均分×10%+期中测试成绩×30%+期末测试成绩×60%,小明同学平时三次测试成绩分别为82,85,85,期中测试成绩为92,期末测试成绩为95,那么小明的总评成绩为________.三、解答题(本题共计6 小题,共计60分,)21. 某市对八年级综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100分)两部分组成,其中测试成绩占80%,平时成绩占20%,当综合评价得分大于或等于80分时,该生的综合评价为A等.(1)某同学的测试成绩为70分,他的综合评价得分有可能达到A等吗?为什么?(2)如果一个同学的综合评价要达到A等,那么他的测试成绩至少为多少分?22. 某公司需招聘一名员工,对应聘者甲、乙、丙、丁从笔试、面试三个方面进行量化考核.甲、乙、丙、丁两项得分如下表:(单位:分)(1)这4名选手笔试成绩的中位数是________分,面试的众数是________分;(2)该公司规定:笔试、面试分别按40%,60%的比例计入总分,请比较甲、乙的总分的大小.(1)甲队成绩的中位数是________分,乙队成绩的众数是________分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是哪个队?24. 绥棱县第六中学和第一中学联合举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.25. 三五三七鞋厂为了了解初中学生穿鞋的鞋号情况,对红华中学初二120(2)在平均数,中位数和众数中,鞋厂最感兴趣的是什么?26. 某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为1006根据规定,笔试成绩和面试成绩分别按一定的百分比折和成综合成绩(综合成绩的满分仍为100分)(1)这6名选手笔试成绩的中位数是________分,众数是________分.(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比.(3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.。

华师大版初中数学八年级下册《第20章 数据的整理与初步处理》单元测试卷(含答案解析

华师大版初中数学八年级下册《第20章 数据的整理与初步处理》单元测试卷(含答案解析

华师大新版八年级下学期《第20章数据的整理与初步处理》单元测试卷一.选择题(共15小题)1.小明测得一周的体温并登记在下表(单位:℃)其中星期四的体温被墨迹污染.根据表中数据,可得此日的体温是()A.36.6℃B.36.7℃C.36.8℃D.37.0℃2.在黑板上从1开始,写出一组相继的正整数,然后擦去一个数,其余数的平均值为35,擦去的数是()A.5B.6C.7D.83.某单位有1名经理、2名主任、2名助理和11名普通职员,他们的月工资各不相同.若该单位员工的月平均工资是1500元,则下列说法中正确的是()A.所有员工的月工资都是1500元B.一定有一名员工的月工资是1500元C.至少有一名员工的月工资高于1500元D.一定有一半员工的月工资高于1500元4.某汽车从甲地以速度v1匀速行驶至乙地后,又从乙地以速度v2匀速返回甲地,则汽车在整个行驶过程中的平均速度为()A.B.C.D.5.已知数据:x1+3,x2+3,x3+3,x4+3的平均数是9,则数据x1,x2,x3,x4的平均数是()A.5B.6C.7D.86.某同学使用计算器计算30个数据的平均数时,错将其中一个数据15输入为150,那么由此求出的平均数与实际相差()A.5B.4.5C.﹣5D.﹣4.57.数学课上,全班同学每人各报一个数.如果男生所报的数之和与女生所报的数之和相等,且男生所报数的平均值是,女生所报数的平均值是,那么全班同学所报数的平均值是()A.B.C.D.8.综合实践活动中,同学们做泥塑工艺制作.小明将各同学的作品完成情况绘成了如图的条形统计图.根据图表,我们可以知道平均每个学生完成作品()A.12件B.8.625件C.8.5件D.9件9.有甲、乙两个箱子,其中甲箱内有98颗球,分别标记号码1~98,且号码为不重复的整数,乙箱内没有球.已知小育从甲箱内拿出49颗球放入乙箱后,乙箱内球的号码的中位数为40.若此时甲箱内有a颗球的号码小于40,有b 颗球的号码大于40,则关于a、b之值,下列何者正确?()A.a=16B.a=24C.b=24D.b=3410.某班随机抽取6名同学的一次地生测试成绩如下:82,95,82,76,76,82.数据中的众数和中位数分别是()A.82,76B.76,82C.82,79D.82,8211.漳州中闽百汇某服装专柜在进行市场占有情况的调查时,他们应该最关注已售出服装型号的()A.中位数B.众数C.平均数D.方差12.鞋厂生产不同号码的鞋,其中,生产数量最多的鞋号是调查不同年龄的人的鞋号所构成的数据的()A.平均数B.众数C.中位数D.众数或中位数13.在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于本次训练,有如下结论:①S甲2>S乙2;②S甲2<S乙2;③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定,由统计图可知正确的结论是()A.①③B.①④C.②③D.②④14.已知样本x1,x2,x3,…,x n的方差是1,那么样本2x1+3,2x2+3,2x3+3,…,2x n+3的方差是()A.1B.2C.3D.415.数据8,10,12,9,11的平均数和方差分别是()A.10和B.10和2C.50和D.50和2二.填空题(共12小题)16.某工厂生产同一型号的电池.现随机抽取了6节电池,测试其连续使用时间(小时)分别为:47,49,50,51,50,53.这6节电池连续使用时间的平均数为小时.17.如果一组数据:2,4,6,x,y的平均数为4.8,那么x,y的平均数为.18.在一次捐款活动中,某班50名同学人人拿出自己的零花钱,有捐5元、10元、20元的,还有捐50元和100元的.如图统计图反映了不同捐款数的人数比例,那么该班同学平均每人捐款元.19.已知一组数据1,2,3,…,n(从左往右数,第1个数是1,第2个数是2,第3个数是3,依此类推,第n个数是n).设这组数据的各数之和是s,中位数是k,则s=(用只含有k的代数式表示).20.已知一组数据:0,2,x,4,5的众数是4,那么这组数据的平均数是.21.某校举办“汉字听写大赛”,7名学生进入决赛,他们所得分数互不相同,比赛共设3个获奖名额,某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是(填“平均数”、“众数”或“中位数”).22.一组数据:1、﹣1、0、4的方差是.23.学校篮球队五名队员的年龄分别为17,15,17,16,15,其方差为0.8,则三年后这五名队员年龄的方差为.24.用科学记算器求得271,315,263,289,300,277,286,293,297,280的平均数为,标准差为.(精确到0.1)25.五个正整数从小到大排列,若这组数据的中位数是4,唯一众数是5,则这五个正整数的和为.26.小明同学5次数学单元测试成绩(分数取整数)的平均分是90分,且每次测试都没有低于80分得成绩,中位数是93分,唯一众数是96分,则最低的一次成绩可能是分.27.在一次中学生田径运动会上,参加男子跳高的14名运动员的成绩如下表:这些运动员跳高成绩的中位数是,众数是.三.解答题(共7小题)28.某开发公司现有员工50名,所有员工的月工资情况如下表:请你根据上述内容,解答下列问题:(1)该公司“高级技工”有人;(2)该公司的工资极差是元;(3)小张到这家公司应聘普通工作人员,咨询过程中得到两个答案,你认为用哪个数据向小张介绍员工的月工资实际水平更合理些?(4)去掉最高工资的前五名,再去掉最低工资的后五名,然后算一算余下的40人的平均工资,说说你的看法.29.荆州古城是闻名遐迩的历史文化名城,下表图是荆州古城某历史景点一周的抽样统计参观人数和门票价格.(1)把上表中一周的参观人数作为一个样本,直接指出这个样本的中位数,众数和平均数,分析表中数据还可得到一些信息,如双休日参观人数远远高于平时等,请你尝试再写出两条相关信息;(2)若“五•一”黄金周有甲,乙两个旅行团到该景点参观,两团人数之和恰为上述样本数据的中位数,乙团不超过50人,设两团分别购票共付W元,甲团人数x人,①求W与x的函数关系式;②若甲团人数不超过100人,请说明两团合起来购票比分开购票最多可节约多少元?30.某私立中学准备招聘教职员工60名,所有员工的月工资情况如下:请根据上表提供的信息,回答下列问题:(1)如果学校准备招聘“高级教师”和“中级教师”共40名(其他员工人数不变),其中高级教师至少要招聘13人,而且学校对高级、中级教师的月支付工资不超过83000元,按学校要求,对高级、中级教师有几种招聘方案?(2)(1)中的哪种方案对学校所支付的月工资最少?并说明理由;(3)在学校所支付的月工资最少时,将上表补充完整,并求所有员工月工资的中位数和众数.31.一个公司的所有员工的月收入情况如下:(1)该公司所有员工月收入的平均数是元,中位数是元,众数是元.(2)你觉得用以上三个数据中的哪一个来描述该公司员工的月收入水平更为恰当?说明理由.(3)某天,一个员工辞职了,若其他员工的月收入不变,但平均收入下降了,你认为辞职的可能是哪个岗位上的员工?说明理由.32.小红的奶奶开了一个金键牛奶销售店,主要经营“金键学生奶”、“金键酸牛奶”、“金键原味奶”,可奶奶经营不善,经常有品种的牛奶滞销(没卖完)或脱销(量不够),造成了浪费或亏损,细心的小红结合所学的统计知识帮奶奶统计了一个星期牛奶的销售情况,并绘制了下表:(1)计算各品种牛奶的日平均销售量:金键学生奶,金键酸牛奶,金键原味奶;根据计算结果分析,你认为哪种牛奶销量最高;(2)计算各品种牛奶的方差(保留两位小数),并比较哪种牛奶销量最稳定.金键学生奶,金键酸牛奶,金键原味奶;(3)根据计算结果分析,你认为哪种牛奶销量最稳定.33.我市今年体育中考于5月18日开始,考试前,九(2)班的王茜和夏洁两位同学进行了8次50m短跑训练测试,她们的成绩分别如下:(单位:秒)(1)王茜和夏洁这8次训练的平均成绩分别是多少?(2)按规定,女同学50m短跑达到8.3秒就可得到该项目满分15分,如果按她们目前的水平参加考试,你认为王茜和夏洁在该项目上谁得15分的可能性更大些?请说明理由.34.某校七年级学生开展踢毽子比赛活动,每班派5名同学参加,按团体总分多少排列名次,在规定的时间内每人踢100个以上(含100)为优秀.下表是甲班和乙班成绩最好的5名学生的比赛数据(单位:个)统计发现两班总分相等,S,此时有同学建议,可以通过考查数据中的其他信息作为参考,请你解答下列问题:(1)计算两班的优秀率;(2)求两班比赛数据的中位数;(3)根椐以上信息,你认为应该把冠军奖状发给哪一个班?简述理由.华师大新版八年级下学期《第20章数据的整理与初步处理》单元测试卷参考答案与试题解析一.选择题(共15小题)1.小明测得一周的体温并登记在下表(单位:℃)其中星期四的体温被墨迹污染.根据表中数据,可得此日的体温是()A.36.6℃B.36.7℃C.36.8℃D.37.0℃【分析】设星期四的体温是x℃,根据平均数的概念列出方程求解.【解答】解:设星期四的体温是x℃,依题意可得:(36.6+36.7+37.0+37.3+x+36.9+37.1)÷7=36.9,解得,x=36.7(℃).故选:B.【点评】本题考查了平均数的概念和一元一次方程的解法.熟记公式:是解决本题的关键.2.在黑板上从1开始,写出一组相继的正整数,然后擦去一个数,其余数的平均值为35,擦去的数是()A.5B.6C.7D.8【分析】设n个数,因为其余数的平均值为35,所以n﹣1是17的倍数,确定n个数的取值范围,计算求解.【解答】解:设一共有n个数,∵擦去一个其余数的平均值为35,∴n﹣1是17的倍数,即17个,34个,51个,68个,85个等,显然只有68个时所得平均数与35相差无几,∴n=69,则1+2+…+69==2415,那么n﹣1=68,则其他数的和是68×35=2408,∵2415﹣2408=7,∴擦去的数是7.故选:C.【点评】本题考查了平均数的综合运用,正确运用分类讨论的思想是解答本题的关键.3.某单位有1名经理、2名主任、2名助理和11名普通职员,他们的月工资各不相同.若该单位员工的月平均工资是1500元,则下列说法中正确的是()A.所有员工的月工资都是1500元B.一定有一名员工的月工资是1500元C.至少有一名员工的月工资高于1500元D.一定有一半员工的月工资高于1500元【分析】算术平均数:对于n个数x1,x2,…,x n,则x¯=(x1+x2+…+x n)就叫做这n个数的算术平均数,依此即可作出选择.【解答】解:∵某单位有1名经理、2名主任、2名助理和11名普通职员,普通职员的人数占多数,该单位员工的月平均工资是1500元,∴至少有一名员工的月工资高于1500元是正确的.故选:C.【点评】考查了算术平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.4.某汽车从甲地以速度v1匀速行驶至乙地后,又从乙地以速度v2匀速返回甲地,则汽车在整个行驶过程中的平均速度为()A.B.C.D.【分析】由题意知,设两地距离为S,从甲地行驶至乙地的时间为T1,从乙地返回甲地的时间为T2,则关键时间的计算公式求得T1及T2,再关键平均速度的计算公式即可求得平均速度.【解答】解:设两地距离为S,从甲地行驶至乙地的时间为T1,从乙地返回甲地的时间为T2,则有T1=,T2=;∴平均速度===;故选:D.【点评】本题考查了平均数实际中的运用.平均速度=总路程÷总时间.5.已知数据:x1+3,x2+3,x3+3,x4+3的平均数是9,则数据x1,x2,x3,x4的平均数是()A.5B.6C.7D.8【分析】根据平均数的计算公式即可求解.先求出数据x1+3,x2+3,x3+3,x4+3的和,然后利用平均数的计算公式表示数据x1,x2,x3,x4的平均数,经过代数式的变形可得答案.【解答】解:∵x1+3,x2+3,x3+3,x4+3的平均数是9.∴x1+3,x2+3,x3+3,x4+3的和是4×9=36.∴x1,x2,x3,x4的平均数是:(x1+x2+x3+x4)=[(x1+3)+(x2+3)+(x3+3)+(x4+3)﹣3×4]=(36﹣12)=×24=6.故选:B.【点评】本题主要考查了平均数的计算.正确理解公式是解题的关键,在计算中正确使用整体代入的思想.6.某同学使用计算器计算30个数据的平均数时,错将其中一个数据15输入为150,那么由此求出的平均数与实际相差()A.5B.4.5C.﹣5D.﹣4.5【分析】因为错将其中一个数据15输入为150,可求出多加了的数,进而即可求出答案.【解答】解:由题意知,错将其中一个数据15输入为150,则多加了150﹣15=9135,所以平均数多了135÷30=4.5.故选:B.【点评】本题考查了平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标.7.数学课上,全班同学每人各报一个数.如果男生所报的数之和与女生所报的数之和相等,且男生所报数的平均值是,女生所报数的平均值是,那么全班同学所报数的平均值是()A.B.C.D.【分析】可设男生人数为x人,根据平均数公式即可求出男生所报的数之和为x;由于男生所报的数之和与女生所报的数之和相等,则女生人数可求,再根据平均数公式即可求出全班同学所报数的平均值.【解答】解:设男生人数为x人,则女生人数为:x÷()=x.全班同学所报数的平均值为:x×2÷(x+x)=.故选:C.【点评】本题考查了平均数的求法.解题关键是先设男生人数为x人,再用x表示女生人数,从而得出全班同学的人数.8.综合实践活动中,同学们做泥塑工艺制作.小明将各同学的作品完成情况绘成了如图的条形统计图.根据图表,我们可以知道平均每个学生完成作品()A.12件B.8.625件C.8.5件D.9件【分析】根据加权平均数的计算方法,用作品的总件数除以总人数,计算即可得解.【解答】解:==8.625(件).故选:B.【点评】本题考查了加权平均数的计算,要注意作品件数相应的权重.9.有甲、乙两个箱子,其中甲箱内有98颗球,分别标记号码1~98,且号码为不重复的整数,乙箱内没有球.已知小育从甲箱内拿出49颗球放入乙箱后,乙箱内球的号码的中位数为40.若此时甲箱内有a颗球的号码小于40,有b 颗球的号码大于40,则关于a、b之值,下列何者正确?()A.a=16B.a=24C.b=24D.b=34【分析】先求出甲箱的球数,再根据乙箱中位数40,得出乙箱中小于、大于40的球数,从而得出甲箱中小于40的球数和大于40的球数,即可求出答案.【解答】解:甲箱98﹣49=49(颗),∵乙箱中位数40,∴小于、大于40各有(49﹣1)÷2=24(颗),∴甲箱中小于40的球有39﹣24=15(颗),大于40的有49﹣15=34(颗),即a=15,b=34.故选:D.【点评】此题考查了中位数,掌握中位数的定义是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.10.某班随机抽取6名同学的一次地生测试成绩如下:82,95,82,76,76,82.数据中的众数和中位数分别是()A.82,76B.76,82C.82,79D.82,82【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:在这一组数据中82是出现次数最多的,故众数是82;而将这组数据从小到大的顺序排列(76,76,82,82,82,95),处于中间位置的两个数的平均数是,那么由中位数的定义可知,这组数据的中位数是82.故选:D.【点评】此题考查了中位数、众数的意义,解题的关键是正确理解各概念的含义.11.漳州中闽百汇某服装专柜在进行市场占有情况的调查时,他们应该最关注已售出服装型号的()A.中位数B.众数C.平均数D.方差【分析】们应该最关注的是哪种服装售出的最多,因而最关心的是众数.【解答】解:漳州中闽百汇某服装专柜在进行市场占有情况的调查时,他们应该最关注的是哪种服装售出的最多,因而最关心的是众数.故选:B.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.12.鞋厂生产不同号码的鞋,其中,生产数量最多的鞋号是调查不同年龄的人的鞋号所构成的数据的()A.平均数B.众数C.中位数D.众数或中位数【分析】根据众数也是数据的一种代表数,反映了一组数据的集中程度,众数可作为描述一组数据集中趋势的量进行解答即可.【解答】解:生产数量最多的鞋号是调查不同年龄的人的鞋号所构成的数据的众数.故选:B.【点评】本题考查统计量的选择,关键是根据众数就是出现次数最多的数,反映了一组数据的集中程度.13.在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于本次训练,有如下结论:①S甲2>S乙2;②S甲2<S乙2;③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定,由统计图可知正确的结论是()A.①③B.①④C.②③D.②④【分析】从折线图中得出甲乙的射击成绩,再利用方差的公式计算,即可得出答案.【解答】解:由图中知,甲的成绩为7,7,8,9,8,9,10,9,9,9,乙的成绩为8,9,7,8,10,7,9,10,7,10,甲=(7+7+8+9+8+9+10+9+9+9)÷10=8.5,乙=(8+9+7+8+10+7+9+10+7+10)÷10=8.5,甲的方差S甲2=[2×(7﹣8.5)2+2×(8﹣8.5)2+(10﹣8.5)2+5×(9﹣8.5)2]÷10=0.85,乙的方差S乙2=[3×(7﹣8.5)2+2×(8﹣8.5)2+2×(9﹣8.5)2+3×(10﹣8.5)2]÷10=1.45∴S2甲<S2乙,∴甲的射击成绩比乙稳定;故选:C.【点评】本题考查方差的定义与意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14.已知样本x1,x2,x3,…,x n的方差是1,那么样本2x1+3,2x2+3,2x3+3,…,2x n+3的方差是()A.1B.2C.3D.4【分析】根据方差的意义分析,数据都加3,方差不变,原数据都乘2,则方差是原来的4倍.【解答】解:设样本x1,x2,x3,…,x n的平均数为m,则其方差为S12=[(x1﹣m)2+(x2﹣m)2+…+(x n﹣m)2]=1,则样本2x1+3,2x2+3,2x3+3,…,2x n+3的平均数为2m+3,其方差为S22=4S12=4.故选:D.【点评】本题考查方差的计算公式及其运用:一般地设有n个数据,x1,x2,…x n,若每个数据都放大或缩小相同的倍数后再同加或同减去一个数,其平均数也有相对应的变化,方差则变为这个倍数的平方倍.15.数据8,10,12,9,11的平均数和方差分别是()A.10和B.10和2C.50和D.50和2【分析】应用平均数计算公式和方差的计算公式求平均数和方差.【解答】解:平均数=(8+10+12+9+11)=10,方差是S2=[(8﹣10)2+(10﹣10)2+(12﹣10)2+(9﹣10)2+(11﹣10)2]=×10=2.故选:B.【点评】正确理解平均数和方差的概念.掌握求平均数和方差的公式,是解决本题的关键.二.填空题(共12小题)16.某工厂生产同一型号的电池.现随机抽取了6节电池,测试其连续使用时间(小时)分别为:47,49,50,51,50,53.这6节电池连续使用时间的平均数为50小时.【分析】只要运用求平均数公式:即可求出,为简单题.【解答】解:本组数据分别为:47,49,50,51,50,53,故平均数==50(小时).故答案为50.【点评】本题考查的是样本平均数的求法.熟记公式是解决本题的关键.17.如果一组数据:2,4,6,x,y的平均数为4.8,那么x,y的平均数为6.【分析】首先运用求平均数公式:得出x与y的和,再运用此公式求出x,y的平均数.【解答】解:由题意知,(2+4+6+x+y)=4.8,∴x+y=24﹣2﹣4﹣6=12,∴x,y的平均数=×12=6.故答案为6.【点评】本题考查的是样本平均数的求法.熟记公式是解决本题的关键.18.在一次捐款活动中,某班50名同学人人拿出自己的零花钱,有捐5元、10元、20元的,还有捐50元和100元的.如图统计图反映了不同捐款数的人数比例,那么该班同学平均每人捐款31.2元.【分析】根据扇形统计图的定义,各部分占总体的百分比之和为1,用捐的具体钱数乘以所占的百分比,再相加,即可得该班同学平均每人捐款数.【解答】解:该班同学平均每人捐款:100×12%+50×16%+20×44%+10×20%+5×8%=31.2元.故答案为:31.2.【点评】本题主要考查扇形统计图的定义.统计的思想就是用样本的信息来估计总体的信息,本题体现了统计思想,考查了用样本估计总体.19.已知一组数据1,2,3,…,n(从左往右数,第1个数是1,第2个数是2,第3个数是3,依此类推,第n个数是n).设这组数据的各数之和是s,中位数是k,则s=2k2﹣k(用只含有k的代数式表示).【分析】由于已知一组数据1,2,3,…,n(从左往右数,第1个数是1,第2个数是2,第3个数是3,依此类推,第n个数是n),所以这组数据的中位数与平均数相等,即可求出这组数据的各数之和s的值.【解答】解:∵一组数据1,2,3,…,n(从左往右数,第1个数是1,第2个数是2,第3个数是3,依此类推,第n个数是n),∴这组数据的中位数与平均数相等,∵这组数据的各数之和是s,中位数是k,∴s=nk.∵=k,∴n=2k﹣1,∴s=nk=(2k﹣1)k=2k2﹣k,故答案为:2k2﹣k.【点评】本题考查了中位数与平均数的定义,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是所有数据的和除以数据的个数.20.已知一组数据:0,2,x,4,5的众数是4,那么这组数据的平均数是3.【分析】先根据众数的定义求出x的值,再根据平均数的计算公式列式计算即可.【解答】解:∵0,2,x,4,5的众数是4,∴x=4,∴这组数据的平均数是(0+2+4+4+5)÷5=3;故答案为:3;【点评】此题考查了众数和平均数,根据众数的定义求出x的值是本题的关键,众数是一组数据中出现次数最多的数.21.某校举办“汉字听写大赛”,7名学生进入决赛,他们所得分数互不相同,比赛共设3个获奖名额,某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是中位数(填“平均数”、“众数”或“中位数”).【分析】由于比赛设置了3个获奖名额,共有7名选手参加,故应根据中位数的意义分析.【解答】解:因为3位获奖者的分数肯定是7名参赛选手中最高的,而且7个不同的分数按从小到大排序后,中位数及中位数之后的共有3个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故答案为:中位数.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.22.一组数据:1、﹣1、0、4的方差是.【分析】先求出该组数据的平均数,再根据方差公式求出其方差.【解答】解:∵=(1﹣1+0+4)=1,∴S2=[(1﹣1)2+(1+1)2+(0﹣1)2+(4﹣1)2]=(4+1+9)=,故答案为.【点评】本题考查方差的定义与意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.23.学校篮球队五名队员的年龄分别为17,15,17,16,15,其方差为0.8,则三年后这五名队员年龄的方差为0.8.【分析】方差是用来衡量一组数据波动大小的量,每个数都加了3所以波动不会变,方差不变.【解答】解:由题意知,原来的平均年龄为,每位同学的年龄三年后都变大了3岁,则平均年龄变为+3,则每个人的年龄相当于加了3岁,原来的方差s12=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]=0.8,现在的方差s22=[(x1+3﹣﹣3)2+(x2+3﹣﹣3)2+…+(x n+3﹣﹣3)2]=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]=0.8,方差不变.故填0.8.【点评】本题说明了当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变.24.用科学记算器求得271,315,263,289,300,277,286,293,297,280的平均数为287.1,标准差为14.4.(精确到0.1)【分析】根据平均数、标准差的概念计算.方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],标准差是方差的算术平方根.【解答】解:由题意知,数据的平均数=(271+315+263+289+300+277+286+293+297+280)=287.1方差S2=[(271﹣287.1)2+(315﹣287.1)2+(263﹣287.1)2+(289﹣287.1)2+(300﹣287.1)2+(277﹣287.1)2+(286﹣287.1)2+(293﹣287.1)2+(297﹣287.1)2+(280﹣287.1)2]=207.4标准差为≈14.4.故填287.1,14.4.【点评】本题考查了平均数,方差和标准差的概念.标准差是方差的算术平方根.25.五个正整数从小到大排列,若这组数据的中位数是4,唯一众数是5,则这五个正整数的和为17或18或19.【分析】将五个正整数从小到大重新排列后,有5个数,中位数一定也是数组中的数,根据中位数与众数就可以确定数组中的后三个数.而另外两个不相等且是正整数,就可以确定这两个数,进而得到这五个数.【解答】解:将五个正整数从小到大重新排列后,最中间的那个数是这组数据的中位数,即4;唯一的众数是5,最多出现两次,即第四、五两个数都是5.第一二两个数不能相等,可以为1与2或1与3或2与3;则这五个正整数的和为17或18或19.【点评】本题考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数。

第20章 数据的整理与初步处理 单元测试卷 2021-2022学年华东师大版数学八年级下册

第20章 数据的整理与初步处理 单元测试卷 2021-2022学年华东师大版数学八年级下册

2021-2022学年华东师大新版八年级下册数学《第20章数据的整理与初步处理》单元测试卷一.选择题(共8小题,满分32分)1.在共有15人参加的“我爱祖国”演讲比赛中,参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的()A.平均数B.众数C.中位数D.最高分与最低分数的差2.2022年北京冬奥会激起我校学生学习冬奥知识的热情.为了引领学生更深入地学习,组织了一次知识竞赛,随机抽取6名同学的分数(单位:分)如下:80,90,85,92,86,88,则这6个数据的中位数是()A.85B.86C.87D.88.53.一组数据40,37,x,64的平均数是53,则x的值是()A.67B.69C.71D.724.利用计算器求一组数据的平均数.其按键顺序如下:,则输出的结果为()A.1B.3.5C.4D.95.某快递员五月份送餐统计数据如下表:送餐距离小于等于3公里大于3公里占比70%30%送餐费4元/单6元/单则该快递员五月份平均每单送餐费是()A.5元B.4.6元C.5.4元D.不能确定6.一组数据为:1,1,x,4,4,7,7.已知这组数据的平均数为4,则这组数据的众数与中位数分别是()A.4,4B.1,4C.7,4D.1,77.中国代表队在北京冬奥会中取得9金4银2铜的好成绩,该成绩也是亚洲国家参加冬奥会的最佳成绩.中国代表队近5届冬奥会奖牌数(单位:枚)分别是11,11,9,9,15,关于这组数据,下列说法正确的是()A.方差是4.8B.中位数是9C.平均数是10D.众数是118.一般具有统计功能的计算器可以直接求出()A.平均数和标准差B.方差和标准差C.众数和方差D.平均数和方差二.填空题(共8小题,满分32分)9.小明在计算一组数据的方差时,列出的算式如下:,根据算式信息,这组数据的众数是.10.已知一组数据10、3、a、5的平均数为5,那么a为.11.初三(8)班体委用划记法统计本班40名同学投掷实心球的成绩,结果如表所示:成绩(分)678910人数正一正正一正正正则这40名同学投掷实心球的成绩的众数是,中位数是.12.某同学在体育备考训练期间,参加了六次测试,成绩依次为(单位:分)12,13,14,15,14,13,则这组数据的中位数分别是.13.某校评选先进班集体,从“学习”、“卫生”、“纪律”、“活动参与”四个方面考核打分,各项满分均为100,八年级2班这四项得分依次为80,90,84,70,若按下表所占比例进行折分,则该班四项折分后的综合得分为.项目学习卫生纪律活动参与所占比例40%25%25%10%14.(1)用计算器进行统计算时,样本数据输入完后,求标准差应按键;(2)数据9.9、9.8、10.1、10.4、9.8的方差是.(结果保留两个有效数字)15.在某校举行的“人人崇尚美,个个奉献爱”的演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同,其中一位同学想知道自己是否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的(填“平均数”“中位数”或“众数”)16.选作题(要求在①、②中任选一题作答,若多选,则按第①题计分)①如图,AB∥CD,EF⊥DB,垂足为点E,∠1=50°,则∠2的度数是;②用计算器求一组数据71,75,63,89,100,77,86的平均数为(精确到0.1).三.解答题(共6小题,满分86分)17.简约、安全、精彩的北京冬季奥林匹克运动盛会,是一届真正无与伦比的冬奥会,中国运动员取得了骄人的成绩,冬奥奖牌数进入世界前三,中国成为了真正冰雪运动的大国.为了增强青少年对冰雪运动知识的学习,某中学七、八年级举办了冰雪运动知识问答竞赛.现从七、八年级各随机抽取了20名学生的知识竞赛分数(满分为100分,分数用x表示,共分成四组:A:0≤x<80,B:80≤x<90,C:90≤x<95,D:95≤x≤100)进行整理、描述和分析,当分数不低于90分为优秀,下面给出部分信息.七年级随机抽取了20名学生的知识竞赛分数是:65,80,81,84,87,88,90,90,91,91,a,92,92,97,97,98,98,99,100,100八年级随机抽取了20名学生的知识竞赛分数中,A、D两组数据个数相等,B、C两组的数据是:92,94,88,92,90,94,92,92,91,93,92,93根据以上信息,回答下列问题:年级七年级八年级平均数90.690.6中位数91.5b众数9292优秀率70%m%(1)填空:a=;b=;m%=;n=;(2)若该校七、八年级各有1800名学生,估计这两个年级的学生冰雪运动知识竞赛成绩为优秀(分数不低于90分为优秀)的一共有多少人?(3)根据以上数据分析,你认为七、八年级哪个年级冰雪运动知识掌握得更好?请说明理由(写出一条理由即可).18.对于三个数a,b,c用M{a,b,c}表示a,b,c这三个数的平均数,用min{a,b,c}表示a,b,c这三个数中最小的数.例如:M{﹣1,2,3}==,min{﹣1,2,3}=﹣1.(1)若M{x﹣1,﹣5,2x+3}=(1+3x),求x的值;(2)是否存在一个x的值,使得M{2x,2﹣x,3}=×min{﹣1,0,4x+1),若存在,请求出x的值;若不存在,请说明理由.19.“一盔一带”安全守护行动是公安部在全国开展的一项安全守护行动,其中要求骑行摩托车、电动车需要佩戴头盔,戴头盔对保护骑电动车人的安全尤为重要,某日一志愿者在某市区随机抽取部分骑电动车的人,对此人群进行佩戴头盔情况调查(调查内容为:“很少戴头盔”、“有时戴头盔”、“常常戴头盔”、“总是戴头盔”).将调查数据整理后,绘制成部分统计图如图所示.请根据图中信息,解答下列问题:(1)该调查的样本容量为;(2)“总是戴头盔”的人数占被调查人数的百分比为;(3)请对此次佩戴头盔情况调查作出评价,并对该市公安部门提出一条合理化建议.20.近年来网约车十分流行,初三某班学生对“美团”和“滴滴”两家网约车公司各10名司机月收入进行了一项抽样调查,司机月收入(单位:千元)如图所示:根据以上信息,整理分析数据如下:(1)完成表格填空;平均月收入/千元中位数/千元众数/千元方差/千元2“美团”①66 1.2“滴滴”6②4③(2)根据以上数据,若从两家公司中选择一家做网约车司机,你会选哪家公司,并说明理由.21.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输成了15,则由此求出的平均数与实际平均数的差是多少?22.我国规定视力达到4.8及以上为标准视力(视力达标),近年来我国青少年的视力大受电子产品的影响.为了保护视力,学校开展了全校性的视力保健活动,活动前,随机抽取部分学生,检查他们的视力,结果如图所示(数据包括左端点不包括右端点,精确到0.1);活动后,再次检查这部分学生的视力,结果如表所示.抽取的学生活动后视力频数分布表分组频数4.0≤x<4.224.2≤x<4.434.4≤x<4.654.6≤x<4.884.8≤x<5.0a5.0≤x<5.25(1)求a的值;(2)①估计活动前该校学生的视力达标率;②若该校有2000名学生,参加视力保健活动后不达标的学生会减少多少人;(3)请选择适当的统计量,分析活动前后相关数据,并评价视力保健活动的效果.参考答案与试题解析一.选择题(共8小题,满分32分)1.解:由于总共有15个人,第8位选手的成绩是中位数,要判断是否进入前8名,故应知道自己的成绩和中位数.故选:C.2.解:将这组数据从小到大排列为:80,85,86,88,90,92,最中间两个数的平均数是:(86+88)÷2=87,则中位数是87;故选:C.3.解:∵数据40,37,x,64的平均数是53,∴=53,解得x=71,故选:C.4.解:由题意得:(1+4+3+8)÷4=16÷4=4,∴输出的结果为4,故选:C.5.解:该快递员五月份平均每单送餐费是:4×70%+6×30%=4.6(元),故选:B.6.解:根据平均数的含义得:(1+1+x+4+4+7+7)=4,所以x=4;将这组数据从小到大的顺序排列:1,1,4,4,4,7,7:,处于中间位置的数是4,那么这组数据的中位数是4;在这一组数据中4是出现次数最多的,故众数是4.故选:A.7.解:将这组数据重新排列为9、9、11、11、15,∴这组数据的众数是9和11,中位数是11,平均数为=11,方差为×[2×(9﹣11)2+2×(11﹣11)2+(15﹣11)2]=4.8,故选:A.8.解:根据计算器的功能可得答案为A.故选:A.二.填空题(共8小题,满分32分)9.解:由题意知,这组数据为7、7、8、8、8、9,所以这组数据的众数为8,故答案为:8.10.解:根据题意知=5,解得a=2,故答案为:2.11.解:投掷实心球的成绩最多的是9分,共有14人,所以,众数是9分,把这40名同学投掷实心球的成绩从小到大排列,第20,21人的成绩是8分,所以中位数是8分.故答案为:9分,8分.12.解:将数据重新排列为12,13,13,14,14,15,所以这组数据的中位数为=13.5(分),故答案为:13.5分.13.解:由题意可得,该班四项折分后的综合得分为:80×40%+90×25%+84×25%+70×10%=32+22.5+21+7=82.5(分),故答案为:82.5分.14.解:(1)计算器按键顺序可知按2ndF;(2)平均数=(9.9+9.8+10.1+10.4+9.8)=10,方差S2=[(9.9﹣10)2+(9.8﹣10)2+(10.1﹣10)2+(10.4﹣10)2+(9.8﹣10)2]=0.052.故填2ndF,0.052.15.解:由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故答案为:中位数.16.解:①∵EF⊥DB,∴∠FED=90°,∴∠1+∠D=90°,∵∠1=50°,∴∠D=40°,∵AB∥CD,∴∠2=∠D=40°,故答案为:40°.②≈80.1,故答案为:80.1.三.解答题(共6小题,满分86分)17.解:(1)a=90.6×20﹣(65+80+81+84+87+88+90+90+91+91+92+92+97+97+98+98+99+100+100)=92,八年级测试成绩的中位数b==92,八年级测试成绩分数不低于90分的人数所占百分比为×100%=75%,∴m=75,八年级测试成绩C组人数所占的比例为,∴n=360×=198,故答案为:92,92,75%,198;(2)估计这两个年级的学生冰雪运动知识竞赛成绩为优秀(分数不低于90分为优秀)的一共有1800×2×=2610(人);(3)八年级学生冰雪运动知识掌握得更好,理由如下:①八年级测试成绩的中位数大于七年级,②八年级测试成绩的优秀率大于七年级.18.解:(1)由题意:M{x﹣1,﹣5,2x+3}==x﹣1,∴x﹣1=(1+3x),解得:x=﹣3.(2)由题意:M{2x,﹣x+2,3}==,若4x+1≥﹣1,则2×=﹣1.解得x=﹣.此时4x+1=﹣25<﹣1.与条件矛盾;若4x+1<﹣1,则2×=4x+1.解得x=.此时4x+1=>﹣1.与条件矛盾;∴不存在.19.解:(1)该调查的样本容量为:75÷37.5%=200;故答案为:200;(2)“总是戴头盔”的人数占被调查人数的百分比为:×100%=15%;故答案为:15%;(3)由于“总是戴头盔”的人数占被调查人数的百分比为15%,可推断出该市骑电动车佩戴头盔的人数较少,戴头盔对保护骑电动车人的安全非常重要,所以公安部门应全面强制骑电动车的市民佩戴头盔.20.解:(1)①“美团”的平均数是:7×20%+8×10%+4×10%+5×20%+6×(1﹣20%﹣10%﹣10%﹣20%)=1.4+0.8+0.4+1+2.4=6(千元);②把这些数从小到大排列,中位数是第5、第6个数的平均数,则中位数是:(4+5)÷2=4.5(千元);③==7.6;故答案为:6;4.5;7.6.(2)选美团,平均数一样,中位数,众数美团均大于滴滴,且美团方差小,更稳定.21.解:该数据相差105﹣15=90,∴平均数与实际平均数相差=3.答:求出的平均数与实际平均数的差是3.22.解:(1)∵频数之和=3+6+7+9+10+5=40,∴所抽取的学生人数为40人,∴a=40﹣(2+3+5+8+5)=17;(2)①活动前该校学生的视力达标率=×100%=37.5%.②2000×(﹣)=350(名),答:参加视力保健活动后不达标的学生会减少350人;(3)视力4.2≤x<4.4之间活动前有6人,活动后只有3人,人数明显减少.活动前达标率37.5%,活动后达标率55%,视力保健活动的效果比较好.(可以从不同方面分析).。

华东师大版八年级下册数学 第20章数据的整理与初步处理 单元测试(无答案)-教育文档

华东师大版八年级下册数学 第20章数据的整理与初步处理 单元测试(无答案)-教育文档

第20章数据的整理与初步处理一、选择题1.同学在“心连心”献爱心捐助活动中都捐了款,他们分别捐了5元、5元、10元、6元、4元,那么这5位同学平均每人捐款()A. 4元B. 5元C. 6元D. 8元2.要反映平潭县一周内每天最高气温的变化情况,宜采用()A. 条形统计图B. 折线统计图C. 扇形统计图D. 频数分布直方图3.若甲组数据的方差比乙组数据的方差大,那么下列说法正确的是( )A. 甲组数据的平均数比乙组数据的平均数大B. 甲组数据比乙组数据稳定C. 乙组数据比甲组数据稳定D. 甲、乙组的稳定性不能确定4.甲、乙两人各射靶5次,已知甲所中环数是8,7,9,7,9,乙所中环数的平均数, =8,方差 =0.4,那么,对甲、乙的射击成绩的正确判断是()A. 甲的射击成绩较稳定B. 乙的射击成绩较稳定C. 甲、乙的射击成绩同样稳定D. 甲、乙的射击成绩无法比较5.学生经常玩手机游戏会影响学习和生活,某校调查了20名同学某一周玩手机游戏的次数,调查结果如表所示,那么这20名同学玩手机游戏的平均数为()A. 5B. 5.5C. 6D. 6.56.数据2,﹣1,0,﹣3,﹣2,3,1的方差为()A. 4B. 2C. 3D. 17.空气是由多种气体混合而成,为了简明扼要地说明空气的组成情况,使用的统计图最好是()A. 扇形统计图B. 条形统计图C. 折线统计图D. 频数分布直方图8.某特警队为了选拔“神枪手”,甲、乙、丙、丁四人进人射击比赛,每人10次射击成绩的平均数都是9.8环,方差分别为S甲2=0.63,S乙2=0.51,S丙2=0.42,S丁2=0.45,则四人中成绩最稳定的是()A. 甲B. 乙C. 丙D. 丁9.有一组数据如下:3,a,4,6,7,若它们的平均数是5,则这组数据的方差是()A. 10B.C.D. 210.甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是8.9环,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则射箭成绩最稳定的是()A. 甲B. 乙C. 丙D. 丁11.某同学在本学期的前四次数学测验中得分依次是95、82、76、88,马上要进行第五次测验了,他希望五次成绩的平均分能达到85分,那么这次测验他应得()分.A. 84B. 85C. 86D. 8712.露西和杰克在初三以来的6次大型综合考试中,平均成绩都一样,但露西成绩的方差为1.2,杰克成绩的方差为0.8,则下列对露西、杰克这6次大型综合考试成绩的描述,正确的是()A. 露西的成绩更稳定B. 杰克的成绩更稳定C. 露西、杰克的成绩一样稳定D. 不能判断露西、杰克谁的成绩更稳定二、填空题13.要反映一感冒病人一天的体温的变化情况,宜采用________统计图.14.如果一组数据:5,x,9,4的平均数为6,那么x的值是________15.一组数据:2,3,4,5,6的方差是________.16.甲乙两地9月上旬的日平均气温如图所示,则甲乙两地这10天日平均气温方差大小关系为________ (填>或<).17.某老师为了了解学生周末利用网络进行学习的时间,在所任教班级随机调查了10名学生,其统计数据如表:则这10名学生周末利用网络进行学习的平均时间是________小时.18.学校以德智体三项成绩来计算学生的平均成绩,三项成绩的比例依次为1:3:1,小明德智体三项成绩分别为98分,95分,96分,则小明的平均成绩为________分.19.某校广播体操比赛,六位评委对九年(2)班的打分如下(单位:分):9.5,9.3,9.1,9.5,9.4,9.3.若规定去掉一个最高分和一个最低分,余下分数的平均值作为班级的最后得分,则九年(2)班的最后得分是________ 分.(结果精确到0.1分)20.一个小组有10名学生,他们年龄构成如下表,(单位:岁)则这个小组学生平均年龄为________.21.八(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):那么乙队的平均成绩是________,方差是________.三、解答题22.某次数学测验中,10位同学某题的得分情况如下2,3,4,6,7,7,7,8,9,10求这组数据的平均数、众数和中位数.23.下表是某班5名同学某次数学测试成绩.根据信息完成下表,并回答问题.五人中分数最高的是谁?分数最低的是谁?谁的分数与全班平均分最接近?。

华东师大版八年级下册数学单元练习题:第20章 数据的整理与初步处理(无答案)

华东师大版八年级下册数学单元练习题:第20章 数据的整理与初步处理(无答案)

第20章数据的整理与初步处理一、选择题1.为了比较甲、乙两块地的小麦哪块长得更整齐,应选择的统计量为()A. 平均数B. 中位数C. 众数D. 方差2.增城市4月份前5天的最高气温如下(单位:℃):27,30,24,30,31,对这组数据,下列说法正确的是()A. 平均数为28B. 众数为30C. 中位数为24D. 方差为53.某班有48人,在一次数学测验中,全班平均分为81分,已知不及格人数为6人,他们的平均分为46分,则及格学生的平均分是()A. 78分B. 86分C. 80分D. 82分4.一家鞋店在一段时间内销售了某种女鞋30双,各种尺码的鞋销售量如下表:鞋店老板比较关注哪种尺码的鞋最畅销,也就是关注卖出鞋的尺码组成一组数据的()A. 平均数B. 中位数C. 众数D. 方差5.甲、乙两名学生的十次数学考试成绩的平均分分别是145和146,成绩的方差分别是8.5和60.5,现在要从两人中选择一人参加数学竞赛,下列说法正确的是()A. 甲、乙两人平均分相当,选谁都可以B. 乙的平均分比甲高,选乙C. 乙的平均分和方差都比甲高,选乙D. 两人的平均分相当,甲的方差小,成绩比乙稳定,选甲6.小璇5次仰卧起坐的测试成绩(单位:个)分别为:48、50、52、50、50,对此成绩描述错误的是()A. 平均数是50B. 众数是50C. 方差是0D. 中位数是507.有下列说法:其中正确的有()①一组数据的中位数只有一个;②一组数据的众数肯定只有一个;③一组数据中的一个数大小发生了变化,一定会影响这组数据的平均数、众数和中位数;④一组数据中的一个数大小发生了变化,不一定会影响这组数据的方差.A. 1个B. 2个C. 3个D. 4个8.某汽车从甲地以速度v1匀速行驶至乙地后,又从乙地以速度v2匀速返回甲地,则汽车在整个行驶过程中的平均速度为()A. B. C. D.9.甲、乙、丙三个旅行团的游客人数都相等,且毎团游客的平均年龄都是32岁,这三个团游客年龄的方差分别是S甲2=27,S乙2=19.6,S丙2=1.6,导游小王最喜欢带游客年龄相近的团队,若在三个团中选择一个,则他应选()A. 甲团B. 乙团C. 丙团D. 甲或乙团10.在因此女子体操比赛中,8名运动员的年龄(单位:岁)分别为:14,12,12,15,14,15,14,16.这组数据的中位数和方差分别为()A. 14和2B. 14.5和1.75C. 14和1.75D. 15和211.某小组同学在一周内参加家务劳动时间与人数情况如表所示:下列关于“劳动时间”这组数据叙述正确的是()A. 中位数是2B. 众数是2C. 平均数是3D. 方差是0二、填空题12.用计算器进行统计计算时,在输入数据的过程中,如果发现刚输入的数据有错误可按键________将它清除,再重新输入正确数据.13.五名学生一分钟跳绳的次数分别为189,195,163,184,201,该组数据的中位数是________.14.计算器进入统计计算状态后,先按,再按,荧光屏显示的是________.15.一组数据:2017、2017、2017、2017、2017,它的方差是________.16.已知某次测验的最高分、最低分、平均分、中位数、众数,同学甲要知道自己的成绩,属于班级中较高的一半还是较低的一半,应该利用上述数值中的________ .17.已知一组从小到大排列的数据:1,,,2 ,6,10的平均数与中位数都是5,则这组数据的众数是________.18.已知数据9.9,10.3,9.8,10.1,10.4,10,9.8,9.7,利用计算器求得这组数据的平均数是________19.为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s2如下表所示:如果选拔一名学生去参赛,应派________去.20.某校2018(3)班的四个小组中,每个小组同学的平均身高大致相同,若:第一小组同学身高的方差为1.7,第二小组同学身高的方差为1.9,第三小组同学身高的方差为2.3,第四小组同学身高的方差为2.0,则在这四个小组中身高最整齐的是第________小组.21.甲、乙、丙三台机床生产直径为60mm的螺丝,为了检验产品质量,从三台机床生产的螺丝中各抽取了20个测量其直径,进行数据处理后,发现三组数据的平均数都是60mm,它们的方差依次为,,,根据以上提供的信息,你认为生产螺丝的质量最好的是________机床.三、解答题22.某地区前两周从星期一到星期五各天的最低气温依次是(单位:℃):,,,,和,,,,,若第一周这五天的平均最低气温为7℃,则第二周这五天的平均最低气温为多少?23.甲、乙两名射手在相同条件下打靶,射中的环数如图所示,利用图中提供的信息,解答下列问题:(1)分别求甲、乙两名射手中环数的众数和平均数;(2)如果从甲、乙两名射手中选一名去参加射击比赛,你选谁去?为什么?24.某校八年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总数排列名次,在规定时间内每人踢100个以上(含100个)为优秀,下表是成绩最好的甲、乙两班各5名学生的比赛数据.(单位:个)统计发现两班总数相等,此时有人建议,可以通过考查数据中的其他信息来评判.试从两班比赛数据的中位数、方差、优秀率三个方面考虑,你认为应该选定哪一个班为冠军?25.某校七年级学生开展踢毽子比赛活动,每班派5名同学参加,按团体总分多少排列名次,在规定的时间内每人踢100个以上(含100)为优秀.下表是甲班和乙班成绩最好的5名学生的比赛数据(单位:个)统计发现两班总分相等,S S,此时有同学建议,可以通过考查数据中的其他信息作为参考,请你解答下列问题:(1)计算两班的优秀率;(2)求两班比赛数据的中位数;(3)根椐以上信息,你认为应该把冠军奖状发给哪一个班?简述理由.26.某校八年级(1)班组织了一次朗读比赛,A队10人的比赛成绩(10分制)分别是:10、8、7、9、8、10、10、9、10、9.(1)计算A队的平均成绩和方差;(2)已知B队成绩的方差是1.4,问哪一队成绩较为整齐?27.甲、乙两名同学进入初三后,某科6次考试成绩如图:(1)请根据下图填写如表:(2)请你分别从以下两个不同的方面对甲、乙两名同学6次考试成绩进行分析:①从平均数和方差相结合看;②从折线图上两名同学分数的走势上看,你认为反映出什么问题?。

华师大版八年级数学下册 第20章 数据的整理与初步处理 单元测试题(无答案)

华师大版八年级数学下册 第20章  数据的整理与初步处理 单元测试题(无答案)

第20章数据的整理与初步处理单元测试题(满分120分;时间:120分钟)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!题号一二三总分得分一、选择题(本题共计小题,每题分,共计分,)1. 对于一组数据−1,−1,4,2,下列结论不正确的是()A.平均数是1B.众数是−1C.中位数是0.5D.方差是3.52. 一组数据1,5,7,x的众数与中位数相等,则这组数据的平均数是()A.6B.5C.4.5D.3.53. 某同学用计算器计算30个数据时,错将其中一个数据105输入15,那么由此求出的平均数与实际平均数的差是()A.3.5B.3C.−3D.0.54. 甲、乙两同学近期5次百米跑测试成绩的平均数相同,甲同学成绩的方差S甲2=4,乙同学成绩的方差S乙2=3.1,则对他们测试成绩的稳定性判断正确的是()A.甲的成绩较稳定B.乙的成绩较稳定C.甲、乙成绩的稳定性相同D.甲、乙成绩的稳定性无法比较5. 一辆汽车以每小时60千米的速度从A地开往B地,它又以每小时40千米的速度从B地返回A地,则汽车行驶的平均速度为()千米/时.A.48B.49C.50D.516. 为了了解某校学生的课外阅读情况,随机抽查了10学生周阅读用时数,结果如下表:周阅读用时数(小时)45812学生人数(人)3421则关于这名学生周阅读所用时间,下列说法正确的是()A.中位数是6.5B.众数是12C.平均数是3.9D.方差是67. 某外贸公司要出口一批食品罐头,标准质量为每听454克,现抽去10听样品进行检测,它们的质量与标准质量的差值(单位:克)如下:−10,+5,0,+5,0,0,−5,0,+5,+10.则这10听罐头质量的平均数及众数为()A.454,454B.455,454C.454,459D.455,08. 若数据2,x,4,8的平均数是4,则这组数据的中位数和众数是()A.3和2B.2和3C.2和2D.2和49. 有甲、乙两个箱子,其中甲箱内有98颗球,分别标记号码1∼98,且号码为不重复的整数,乙箱内没有球.已知小育从甲箱内拿出49颗球放入乙箱后,乙箱内球的号码的中位数为40.若此时甲箱内有a颗球的号码小于40,有b颗球的号码大于40,则关于a、b之值,下列何者正确?()A.a=16B.a=24C.b=24D.b=34二、填空题(本题共计9 小题,每题3 分,共计27分,)10. 已知一个样本1,3,2,2,a,b,c的众数为3,平均数为2,则该样本的方差为________.11. 有13位同学参加学校组织的才艺表演比赛,已知他们所得的分数互不相同,共设7个获奖名额,某同学知道自己的比赛分数后,要判断自己能否获奖,在这13名同学成绩的统计量中只需知道一个量,它是________(填众数或方差或中位数或平均数)12. 已知某次测验的最高分、最低分、平均分、中位数、众数,同学甲要知道自己的成绩,属于班级中较高的一半还是较低的一半,应该利用上述数值中的________.13. 为了调查某小区居民的用水情况,随机抽查了10户家庭的月用水量,结果如下表:则关于这户家庭的月用水量的中位数是,平均数是,众数是.14. 已知一组数据:3,4,5,5,8,则这组数据的方差是________.15. 已知一组数据1,2,x,5的平均数是4,则这组数据的方差是________.16. 五个数据:2,x,3,4,5的平均数是4,则这组数据的中位数是________.17. 一次体检中,某班学生视力结果如下表:从表中看出全班视力数据的众数是________.18. 从甲、乙、丙三个厂家生产的同一种产品中各抽取8件,对它们的使用寿命进行跟踪调查,结果如下:(单位:年)甲:4,6,6,6,8,9,12,13.乙:3,3,4,7,9,10,11,12.丙:3,4,5,6,8,8,8,10.三个厂家在广告中都称该产品的使用寿命是8年.请根据结果判断,厂家在广告中分别运用了平均数、众数、中位数中的哪一种集中趋势的特征数:甲:________,乙:________,丙:________.三、解答题(本题共计8 小题,共计66分,)19. 某教育局为了了解本地区八年级学生数学基本情况,从两所不同的学校分别抽取一部分学生进行数学基本功比赛,其中A校40人,平均成绩为85分;B校50人,平均成绩为95分.(1)求两个学校的平均成绩;(精确到0.1分)(2)其他条件不变,当A校抽查的人数为多少时,所抽查两校学生的平均成绩才是90分?(3)根据(1)(2)的结论,已知数据:a1,a2...a m;b1b2...b n,每组的平均数分别为a、b,问当m、n满足什么条件时,将这两组数据合并为一组.(1)甲队成绩的中位数是分,乙队成绩的众数是分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是哪个队?(2)指出乙队成绩的众数;(3)若计算出方差为:S 2甲 =1.84,S 2乙 =1.04,判断哪队的成绩更整齐?22. 九年级(1)班数学活动选出甲、乙两组各10名学生,进行趣味数学答题比赛,共10题,答对题数统计如表一:(表二)()根据表一中统计的数据,完成表二;(2)请你从平均数和方差的角度分析,哪组的成绩更好些?23. 某单位招聘员工两名,采取笔试与面试相结合的方式进行,两项成绩的原始分满分均根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩(综合成绩的满分仍为100分)(1)这6名选手笔试成绩的中位数是________分,众数是________分.(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比.(3)在(2)的情况下,________(填序号)选手会被录取.24. 某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如下:(1)根据上述信息可知:甲命中环数的中位数是________环,乙命中环数的众数是________环;(2)试通过计算说明甲、乙两人的成绩谁比较稳定?(3)如果乙再射击1次,命中8环,那么乙射击成绩的方差会________.(填“变大”、“变小”或“不变”)(2)若老师计算学生的学期总评成绩按照如下的标准:单元测验1占10%,期中考试占30%,单元测验2占10%,期末考试成绩占50%.请你通过计算,比较谁的学期总评成绩高?26. 某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为100根据规定,笔试成绩和面试成绩分别按一定的百分比折和成综合成绩(综合成绩的满分仍为100分)(1)这6名选手笔试成绩的中位数是________分,众数是________分.(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比.(3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.。

华师大版初中数学八年级下册《第20章 数据的整理与初步处理》单元测试卷

华师大版初中数学八年级下册《第20章 数据的整理与初步处理》单元测试卷

华师大新版八年级下学期《第20章数据的整理与初步处理》2016年单元测试卷一.选择题(共10小题)1.用计算器计算数据13.49,13.53,14.07,13.51,13.84,13.98,14.67,14.80,14.61,14.60,14.41,14.31,14.38,14.02,14.17的平均数约为()A.14.15B.14.16C.14.17D.14.202.初三(1)班12名同学练习定点投篮,每人各投10次,进球数统计如下:这12名同学进球数的众数是()A.3.75B.3C.3.5D.73.甲、乙、丙、丁四名射击队员考核赛的平均成绩(环)及方差统计如表,现要根据这些数据,从中选出一人参加比赛,如果你是教练员,你的选择是()A.甲B.乙C.丙D.丁4.一组数据7,8,10,12,13的平均数是()A.7B.9C.10D.125.某老师为了解学生周末学习时间的情况,在所任班级中随机调查了10名学生,绘成如图所示的条形统计图,则这10名学生周末学习的平均时间是()A.4B.3C.2D.16.一组数据2,3,5,4,4,6的中位数和平均数分别是()A.4.5和4B.4和4C.4和4.8D.5和47.某人一周内爬楼的层数统计如表关于这组数据,下列说法错误的是()A.中位数是22B.平均数是26C.众数是22D.极差是158.将甲乙两数据进行比较,如果甲的波动性大,那么()A.甲的标准差小B.乙的方差小C.甲的平均数大D.乙的中位数小9.要判断一个学生的数学考试成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的()A.平均数B.中位数C.众数D.方差10.一般具有统计功能的计算器可以直接求出()A.平均数和标准差B.方差和标准差C.众数和方差D.平均数和方差二.填空题(共10小题)11.某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是岁.12.已知一组数据为1,2,3,4,5,则这组数据的方差为.13.一组数据﹣1、x、3、1、﹣3的平均数为0,则这组数据的标准差为.14.某学习小组有8人,在一次数学测验中的成绩分别是:102,115,100,105,92,105,85,104,则他们成绩的平均数是.15.某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:则这50名学生这一周在校的平均体育锻炼时间是小时.16.对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如表:则这些学生年龄的众数是.17.某市6月上旬前5天的最高气温如下(单位:℃):28,29,31,29,32,对于这组数据,众数是,中位数是,极差是.18.某饮料公司生产多种饮料,为了了解大众更喜欢哪种饮料,公司组织了“你投票,我送礼”的活动,投票者只要在选票所列举的每种饮料后都写上一个1到10之间的评价数即可获利,活动结束后,在平均数、众数、中位数和方差四个统计量中,公司应该关注的一个统计量是.19.用科学记算器求得271,315,263,289,300,277,286,293,297,280的平均数为,标准差为.(精确到0.1)20.某同学用计算器求30个数据的平均数时,错将其中的一个数据105输入成15,则由此求出的平均数与实际平均数的差是.三.解答题(共10小题)21.甲、乙两名同学参加学校组织的100米短跑集训,教练把10天的训练结果用折线图进行了记录.(1)请你用已知的折线图所提供的信息完成下表:(2)学校欲从两人中选出一人参加市中学生运动会100米比赛,请你帮助学校作出选择,并简述你的理由.22.“五一”期间,新华商场贴出促销海报,内容如图1.在商场活动期间,王莉和同组同学随机调查了部分参与活动的顾客,统计了200人次的摸奖情况,绘制成如图2所示的频数分布直方图.(1)补齐频数分布直方图;(2)求所调查的200人次摸奖的获奖率;(3)若商场每天约有2000人次摸奖,请估算商场一天送出的购物券总金额是多少元?23.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输成了15,则由此求出的平均数与实际平均数的差是多少?24.自2010年4月1日起,新修订的《机动车驾驶证申领和使用规定》正式实施了.新规定为保障公民的人身安全,对被查酒后驾驶机动车(血液酒精含量超过20毫克/百毫升)的驾驶员加大了处罚力度.某交警大队于4月4日~4月10日这7天共查到12起酒后驾车事件,这12位驾车者血液酒精含量(单位:毫克/百毫升)如下:26,58,29,92,21,43,24,27,36,46,23,31.(1)请计算这些数据的平均数与极差;(2)请你运用所学到的统计知识估计新规定实施之后一年内(按365天计算),该交警大队能查到多少起酒后驾车事件?(精确到1起)(3)该交警大队在新规定实施前的某一周7天内共查到38名司机血液酒精含量超过20毫克/百毫升,平均含量为56毫克/百毫升,请结合相关数据谈谈你的想法.25.某公司内设四个部门,2015年各部门人数及相应的每人所创年利润如表所示,求该公司2015年平均每人所创年利润.26.在一次男子马拉松长跑比赛中,随机抽得12名选手所用的时间(单位:分钟)得到如下样本数据:140 146 143 175 125 164 134 155 152 168 162 148(1)计算该样本数据的中位数和平均数;(2)如果一名选手的成绩是147分钟,请你依据样本数据中位数,推断他的成绩如何?27.甲、乙两位同学参加数学综合素质测试,各项成绩如下(单位:分)(1)分别计算甲、乙成绩的中位数;(2)如果数与代数、空间与图形、统计与概率、综合与实践的成绩按3:3:2:2计算,那么甲、乙的数学综合素质成绩分别为多少分?28.某校为了预测九年级男生“排球30秒”对墙垫球的情况,从本校九年级随机抽取了n 名男生进行该项目测试,并绘制出如下的频数分布直方图,其中从左到右依次分为七个组(每组含最小值,不含最大值).根据统计图提供的信息解答下列问题:(1)求n的值.(2)这个样本数据的中位数落在第组.(3)若测试九年级男生“排球30秒”对墙垫球个数不低于10个为合格,根据统计结果,估计该校九年级450名男同学成绩合格的人数.29.某校为了进一步改进本校七年级数学教学,提高学生学习数学的兴趣,校教务处在七年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查.我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A﹣非常喜欢”、“B﹣比较喜欢”、“C﹣不太喜欢”、“D﹣很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计,现将统计结果绘制成如下两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生对数学学习喜欢程度的众数是;(3)若该校七年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?30.某校九年级有24个班,共1000名学生,他们参加了一次数学测试,学校统计了所有学生的成绩,得到下列统计图.(1)求该校九年级学生本次数学测试成绩的平均数;(2)下列关于本次数学测试说法正确的是A.九年级学生成绩的众数与平均数相等B.九年级学生成绩的中位数与平均数相等C.随机抽取一个班,该班学生成绩的平均数等于九年级学生成绩的平均数D.随机抽取300名学生,可以用他们成绩的平均数估计九年级学生成绩的平均数华师大新版八年级下学期《第20章数据的整理与初步处理》2016年单元测试卷参考答案与试题解析一.选择题(共10小题)1.用计算器计算数据13.49,13.53,14.07,13.51,13.84,13.98,14.67,14.80,14.61,14.60,14.41,14.31,14.38,14.02,14.17的平均数约为()A.14.15B.14.16C.14.17D.14.20【分析】本题要求同学们,熟练应用计算器.【解答】解:借助计算器,先按MOOE按2再按1,会出现一竖,然后把你要求平均数的数字输进去,好了之后按AC键,再按shift再按1,然后按5,就会出现平均数的数值.故选:B.【点评】本题要求同学们能熟练应用计算器,会用科学记算器进行计算.2.初三(1)班12名同学练习定点投篮,每人各投10次,进球数统计如下:这12名同学进球数的众数是()A.3.75B.3C.3.5D.7【分析】根据统计表找出各进球数出现的次数,根据众数的定义即可得出结论.【解答】解:观察统计表发现:1出现1次,2出现1次,3出现4次,4出现2次,5出现3次,7出现1次,故这12名同学进球数的众数是3.故选:B.【点评】本题考查了众数的定义以及统计表,解题的关键是找出哪个进球数出现的次数最多.本题属于基础题,难度不大,解决该题型题目时,根据统计表中得数据,结合众数的定义找出该组数据的众数是关键.3.甲、乙、丙、丁四名射击队员考核赛的平均成绩(环)及方差统计如表,现要根据这些数据,从中选出一人参加比赛,如果你是教练员,你的选择是()A.甲B.乙C.丙D.丁【分析】首先比较平均数,然后比较方差,方差越小,越稳定.【解答】解:∵==9.7,S2甲>S2丙,∴选择丙.故选:C.【点评】此题考查了方差的知识.注意方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.4.一组数据7,8,10,12,13的平均数是()A.7B.9C.10D.12【分析】根据平均数的定义:平均数是指在一组数据中所有数据之和再除以数据的个数进行计算即可.【解答】解:(7+8+10+12+13)÷5=50÷5=10答:一组数据7,8,10,12,13的平均数是10.故选:C.【点评】本题考查了平均数的知识,掌握一组数据平均数的求解方法是解题关键.5.某老师为了解学生周末学习时间的情况,在所任班级中随机调查了10名学生,绘成如图所示的条形统计图,则这10名学生周末学习的平均时间是()A.4B.3C.2D.1【分析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数.本题利用加权平均数的公式即可求解.【解答】解:根据题意得:(1×1+2×2+4×3+2×4+1×5)÷10=3(小时),答:这10名学生周末学习的平均时间是3小时;故选:B.【点评】此题考查了加权平均数,本题易出现的错误是求1,2,4,2,1这五个数的平均数,对平均数的理解不正确.6.一组数据2,3,5,4,4,6的中位数和平均数分别是()A.4.5和4B.4和4C.4和4.8D.5和4【分析】根据中位数和平均数的定义结合选项选出正确答案即可.【解答】解:这组数据按从小到大的顺序排列为:2,3,4,4,5,6,故中位数为:(4+4)÷2=4;平均数为:(2+3+4+4+5+6)÷6=4.故选:B.【点评】本题考查了中位数的定义和平均数的求法,解题的关键是牢记定义.平均数是指在一组数据中所有数据之和再除以数据的个数.中位数是将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.某人一周内爬楼的层数统计如表关于这组数据,下列说法错误的是()A.中位数是22B.平均数是26C.众数是22D.极差是15【分析】根据表格中的数据,求出中位数,平均数,众数,极差,即可做出判断.【解答】解:这个人一周内爬楼的层数按从小到大的顺序排列为21,22,22,24,26,31,36,中位数为24;平均数为(21+22+22+24+26+31+36)÷7=26;众数为22;极差为36﹣21=15;所以B、C、D正确,A错误.故选:A.【点评】此题考查了极差,平均数,中位数,众数,熟练掌握各自的求法是解本题的关键.8.将甲乙两数据进行比较,如果甲的波动性大,那么()A.甲的标准差小B.乙的方差小C.甲的平均数大D.乙的中位数小【分析】根据方差的意义即方差大小代表数据的波动大小,方差越大代表这组数据波动越大,方差越小波动越小,从而得出答案.【解答】解:甲乙两数据进行比较,如果甲的波动性大,就说明甲的方差大,乙的方差小;故选:B.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.9.要判断一个学生的数学考试成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的()A.平均数B.中位数C.众数D.方差【分析】根据方差的意义:方差是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.标准差是方差的平方根,也能反映数据的波动性;故要判断他的数学成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的方差.【解答】解:方差是衡量波动大小的量,方差越小则波动越小,稳定性也越好.故选:D.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.10.一般具有统计功能的计算器可以直接求出()A.平均数和标准差B.方差和标准差C.众数和方差D.平均数和方差【分析】根据科学记算器的功能回答.【解答】解:根据计算器的功能可得答案为A.故选:A.【点评】本题要求同学们能熟练应用计算器,会用科学记算器进行计算.二.填空题(共10小题)11.某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是15岁.【分析】根据中位数的定义找出第20和21个数的平均数,即可得出答案.【解答】解:∵该班有40名同学,∴这个班同学年龄的中位数是第20和21个数的平均数,∵15岁的有21人,∴这个班同学年龄的中位数是15岁;故答案为:15.【点评】此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),熟练掌握中位数的定义是本题的关键.12.已知一组数据为1,2,3,4,5,则这组数据的方差为2.【分析】先求出这5个数的平均数,然后利用方差公式求解即可.【解答】解:平均数为=(1+2+3+4+5)÷5=3,S2=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=2.故答案为:2.【点评】本题考查了方差的知识,牢记方差的计算公式是解答本题的关键,难度不大.13.一组数据﹣1、x、3、1、﹣3的平均数为0,则这组数据的标准差为2.【分析】先根据平均数是3,求出x的值,再求出这组数据的方差,然后求出方差的算术平方根即可.【解答】解:∵数据﹣1、x、3、1、﹣3的平均数是10,∴(﹣1+x+3+1﹣3)÷5=0,解得:x=0,∴这组数据的方差是:S2=[(﹣1﹣0)2+(0﹣0)2+(3﹣0)2+(1﹣0)2+(﹣3﹣0)2]=4,∴这组数据的标准差等于2.故答案为:2.【点评】此题考查了标准差,用到的知识点是方差、标准差、平均数,关键是根据平均数求出x的值.14.某学习小组有8人,在一次数学测验中的成绩分别是:102,115,100,105,92,105,85,104,则他们成绩的平均数是101.【分析】根据算术平均数的计算公式列式计算即可得解.【解答】解:=(102+115+100+105+92+105+85+104)=×808=101.故答案为:101.【点评】本题考查了算术平均数,是基础题,准确计算是解题的关键.15.某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:则这50名学生这一周在校的平均体育锻炼时间是 6.4小时.【分析】根据平均数的计算方法是求出所有数据的和,然后除以数据的总个数进行计算.【解答】解:=6.4.故答案为:6.4.【点评】此题考查了加权平均数,用到的知识点是加权平均数的计算公式,根据加权平均数的计算公式列出算式是解题的关键.16.对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如表:则这些学生年龄的众数是17岁.【分析】根据众数是出现次数最多的数就可以求解.【解答】解:∵在这一组数据中17是出现次数最多的,出现了7次,∴这些学生年龄的众数是17岁;故答案为:17岁.【点评】此题考查了众数,众数是一组数据中出现次数最多的数.解题的关键是理解众数的意义,正确认识表格.17.某市6月上旬前5天的最高气温如下(单位:℃):28,29,31,29,32,对于这组数据,众数是29,中位数是29,极差是4.【分析】根据众数、众位和极差的定义分别进行解答即可.【解答】解:∵29出现了2次,出现的次数最多,∴众数是29;把这些数从小到大排列为:28,29,29,31,32,最中间的数是29,则中位数是29;极差是32﹣28=4.故答案为:29,29,4.【点评】此题考查了众数、众位和极差,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数;求极差的方法是用一组数据中的最大值减去最小值.18.某饮料公司生产多种饮料,为了了解大众更喜欢哪种饮料,公司组织了“你投票,我送礼”的活动,投票者只要在选票所列举的每种饮料后都写上一个1到10之间的评价数即可获利,活动结束后,在平均数、众数、中位数和方差四个统计量中,公司应该关注的一个统计量是众数.【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.既然是对该饮料销售情况作调查,那么应该关注那种饮料的最多,故值得关注的是众数.【解答】解:由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.故答案为:众数.【点评】此题主要考查统计的有关知识,关键是根据平均数、中位数、众数、方差的意义解答.19.用科学记算器求得271,315,263,289,300,277,286,293,297,280的平均数为287.1,标准差为14.4.(精确到0.1)【分析】根据平均数、标准差的概念计算.方差S2=[(x1﹣)2+(x2﹣)2+…+(x n ﹣)2],标准差是方差的算术平方根.【解答】解:由题意知,数据的平均数=(271+315+263+289+300+277+286+293+297+280)=287.1方差S2=[(271﹣287.1)2+(315﹣287.1)2+(263﹣287.1)2+(289﹣287.1)2+(300﹣287.1)2+(277﹣287.1)2+(286﹣287.1)2+(293﹣287.1)2+(297﹣287.1)2+(280﹣287.1)2]=207.4标准差为≈14.4.故填287.1,14.4.【点评】本题考查了平均数,方差和标准差的概念.标准差是方差的算术平方根.20.某同学用计算器求30个数据的平均数时,错将其中的一个数据105输入成15,则由此求出的平均数与实际平均数的差是﹣3.【分析】根据平均数的公式求解即可.前后数据的和相差90,则平均数相差90÷30.【解答】解:求30个数据的平均数时,错将其中的一个数据105输入成15,即少加了90;则由此求出的平均数与实际平均数的差是﹣=﹣3.故答案为﹣3.【点评】本题考查的是样本平均数的求法及运用.三.解答题(共10小题)21.甲、乙两名同学参加学校组织的100米短跑集训,教练把10天的训练结果用折线图进行了记录.(1)请你用已知的折线图所提供的信息完成下表:(2)学校欲从两人中选出一人参加市中学生运动会100米比赛,请你帮助学校作出选择,并简述你的理由.【分析】(1)观察图表,从中找出乙同学参加学校组织的100米短跑集训10天的训练结果,从而得出乙同学在15秒内的次数,运用平均数、方差的定义得出乙同学的平均数、方差.(2)从平均数、方差等不同角度分析,可得不同结果,关键是看参赛的需要.【解答】解:(1)乙=(17+16+15+15+14+15+14+14+15+15)=15(秒).S乙2=[(17﹣15)2+(16﹣15)2+…+(15﹣15)2]=0.8.所以乙的平均数为15(秒),方差为0.8,10天中成绩在15秒以下的有3天;即表中从左到右依次应填15,0.8,3.(2)如果学校要求成绩稳定,应选乙.因为在平均成绩相同的情况下乙的成绩比甲的稳定;如果学校想夺冠,应选甲,因为甲在15秒内的次数比乙的多,有可能夺冠.【点评】此题是一道实际问题,将统计学知识与实际生活相联系,有利于培养学生学数学、用数学的意识,同时体现了数学来源于生活、应用于生活的本质.22.“五一”期间,新华商场贴出促销海报,内容如图1.在商场活动期间,王莉和同组同学随机调查了部分参与活动的顾客,统计了200人次的摸奖情况,绘制成如图2所示的频数分布直方图.(1)补齐频数分布直方图;(2)求所调查的200人次摸奖的获奖率;(3)若商场每天约有2000人次摸奖,请估算商场一天送出的购物券总金额是多少元?【分析】(1)先求出获得20元购物券的人次,然后以它为高补齐频数分布直方图;(2)获奖率=获奖的人数÷总的抽查人数,计算求解;(3)先计算出抽查人次中获得购物券金额的平均数,然后再乘以2000.【解答】解:(1)获得20元购物券的人次:200﹣(122+37+11)=30(人次).补齐频数分布直方图,如图所示:;(2)摸奖的获奖率:;(3)==6.675.6.675×2000=13350(元).答:估计商场一天送出的购物券总金额是13350元.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输成了15,则由此求出的平均数与实际平均数的差是多少?【分析】本题知道30个数据中的一个的相应误差,求平均数的误差,只需看它对平均数产生的“影响”.【解答】解:该数据相差105﹣15=90,∴平均数与实际平均数相差=3.答:求出的平均数与实际平均数的差是﹣3.【点评】熟练掌握平均数的计算.24.自2010年4月1日起,新修订的《机动车驾驶证申领和使用规定》正式实施了.新规定为保障公民的人身安全,对被查酒后驾驶机动车(血液酒精含量超过20毫克/百毫升)的驾驶员加大了处罚力度.某交警大队于4月4日~4月10日这7天共查到12起酒后驾车事件,这12位驾车者血液酒精含量(单位:毫克/百毫升)如下:26,58,29,92,21,43,24,27,36,46,23,31.(1)请计算这些数据的平均数与极差;(2)请你运用所学到的统计知识估计新规定实施之后一年内(按365天计算),该交警大队能查到多少起酒后驾车事件?(精确到1起)(3)该交警大队在新规定实施前的某一周7天内共查到38名司机血液酒精含量超过20毫克/百毫升,平均含量为56毫克/百毫升,请结合相关数据谈谈你的想法.【分析】(1)利用平均数的求法直接求出即可;(2)利用7天共查到12起酒后驾车事件,进而估计出全年的酒后驾车事件数量;(3)利用已知数据进而结合实际说明即可.【解答】解:(1)平均数=(26+58+29+92+21+43+24+27+36+46+23+31)=38(毫克/百毫升),极差=92﹣21=71(毫克/百毫升);(2)365÷7×12≈626(起),答:该交警大队能查到626起酒后驾车事件;(3)与新规定实施前相比,抽查到的司机血液酒精平均含量大大减少,说明人们法律意识增强了,但还要提高认识.【点评】此题主要考查了算术平均数以及利用样本估计总体、极差的定义,正确求出平均数是解题关键.25.某公司内设四个部门,2015年各部门人数及相应的每人所创年利润如表所示,求该公司2015年平均每人所创年利润.【分析】利用加权平均数的计算公式计算即可.【解答】解:该公司2015年平均每人所创年利润为:=21,答:该公司2015年平均每人所创年利润为21万元.【点评】本题考查的是加权平均数的计算,掌握加权平均数的计算公式是解题的关键.26.在一次男子马拉松长跑比赛中,随机抽得12名选手所用的时间(单位:分钟)得到如下样本数据:140 146 143 175 125 164 134 155 152 168 162 148(1)计算该样本数据的中位数和平均数;(2)如果一名选手的成绩是147分钟,请你依据样本数据中位数,推断他的成绩如何?【分析】(1)根据中位数和平均数的概念求解;(2)根据(1)求得的中位数,与147进行比较,然后推断该选手的成绩.【解答】解:(1)将这组数据按照从小到大的顺序排列为:125,134,140,143,146,148,152,155,162,164,168,175,则中位数为:=150,平均数为:=151;(2)由(1)可得,中位数为150,可以估计在这次马拉松比赛中,大约有一半选手的成绩快于150分钟,有一半选手的成绩慢于150分钟,这名选手的成绩为147分钟,快于中位数150分钟,可以推断他的成绩估计比一半以上选手的成绩好.【点评】本题考查了中位数和平均数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.27.甲、乙两位同学参加数学综合素质测试,各项成绩如下(单位:分)(1)分别计算甲、乙成绩的中位数;(2)如果数与代数、空间与图形、统计与概率、综合与实践的成绩按3:3:2:2计算,那么甲、乙的数学综合素质成绩分别为多少分?【分析】(1)将一组数据按照从小到大(或从大到小)的顺序排列,处于中间位置的数就是这组数据的中位数进行分析;(2)数学综合素质成绩=数与代数成绩×+空间与图形成绩×+统计与概率成绩×+综合与实践成绩×,依此分别进行计算即可求解.【解答】解:(1)甲的成绩从小到大的顺序排列为:89,90,90,93,中位数为90;乙的成绩从小到大的顺序排列为:86,92,94,94,中位数为(92+94)÷2=93.答:甲成绩的中位数是90,乙成绩的中位数是93;(2)3+3+2+2=10甲90×+93×+89×+90×=27+27.9+17.8+18=90.7(分)乙94×+92×+94×+86×=28.2+27.6+18.8+17.2=91.8(分)答:甲的数学综合素质成绩为90.7分,乙的数学综合素质成绩为91.8分.【点评】此题考查了中位数和加权平均数,用到的知识点是中位数和加权平均数,掌握它们的计算公式是本题的关键.。

华东师大版八年级数学下册第二十章数据的整理与初步处理章节测试试卷(含答案详解)

华东师大版八年级数学下册第二十章数据的整理与初步处理章节测试试卷(含答案详解)

八年级数学下册第二十章数据的整理与初步处理章节测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、甲、乙、丙、丁四名同学进行立定跳远测试,每人10次立定跳远成绩的平均数都是2.25米,方差分别是20.72S =甲,20.75S =乙,20.68S =丙,20.61S =丁,则这四名同学立定跳远成绩最稳定的是( ).A .甲 B .乙 C .丙 D .丁2、某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如下表:根据统计表中的数据,这20名同学读书册数的众数,中位数分别是( )A .3,3B .3,7C .2,7D .7,33、某校八年级进行了三次数学测试,甲、乙、丙、丁4名同学三次数学成绩的平均分都是109分,方差分别是22223.6, 4.6, 6.3,7.3S S S S ====甲乙丁丙,则这4名同学三次数学成绩最稳定的是( )A .甲B .乙C .丙D .丁4、垃圾分类是对垃圾进行有效处置的一种科学管理方式,是对垃圾收集处置传统方式的改革,甲乙两班各有40名同学参加了学校组织的2020年“生活垃圾分类回收”的考试.考试规定成绩大于等于96分为优异,两个班成绩的平均数、中位数、方差如表所示,则下列说法正确的是()A.甲班的成绩比乙班的成绩稳定B.甲班成绩优异的人数比乙班多C.甲,乙两班竞褰成绩的众数相同D.小明得94分将排在甲班的前20名5、在某中学举行的“筑梦路上”演讲比赛中,八年级5名参赛选手的成绩分别为:90,93,89,90,88.关于这5名选手的成绩,下列说法正确的是()A.平均数是89 B.众数是93C.中位数是89 D.方差是2.86、在春季运动会中,有9名学生参加100米比赛,并且他们的最终成绩各不相同,若一名学生想知道自己能否进入前5名,除了要了解自己的成绩外,还要了解这9名学生成绩的()A.众数B.中位数C.平均数D.方差7、鞋厂生产不同号码的鞋,其中,生产数量最多的鞋号是调查不同年龄的人的鞋号所构成的数据的()A.平均数B.众数C.中位数D.众数或中位数8、甲、乙、丙、丁四名学生近4次数学测验成绩的平均数都是90分,方差分别是S甲2=5,S乙2=20,S丙2=23,S丁2=32,则这四名学生的数学成绩最稳定的是()A.甲B.乙C.丙D.丁9、某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)依次为95,90,88,则小彤这学期的体育成绩为( )A .89B .90C .91D .9210、某校航模兴趣小组共有50位同学,他们的年龄分布如表:由于表格污损,15和16岁人数不清,则下列关于年龄的统计量可以确定的是( )A .平均数、众数B .众数、中位数C .平均数、方差D .中位数、方差第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题4分,共计40分)1、从甲、乙两块试验田各随机抽取100株麦苗测量高度(单位:cm ),计算它们的平均数和方差,结果为:13x =甲,13x =乙,2=3.6S 甲,215.8S =乙.则麦苗长势比较整齐的试验田是________(填“甲”或“乙”).2、(1)如果所考察的对象很多,或对考察对象具有破坏性,统计中常常用_____估计总体平均数.(2)组中值:为了更好地了解一组数据的平均水平,往往把数据进行分组,分组后,一个小组的两个端点的数的平均数叫做这个小组的_____.(3)在频数分布表中,常用各组的_____代表各组的实际数据,把各组的_____看作相应组中值的权.3、八年级某班的教室里,三位同学正在为谁的数学成绩好而争论,他们的五次数学成绩分别是: 小华:62;94;95;98;98小明:62;62;98;99;100小丽:40;62;85;99;99他们都认为自己的数学成绩比其他两位同学好, 他们的依据是什么?分析:小华成绩的众数是_____,中位数是_____,平均数是_____;小明成绩的众数是_____,中位数是_____,平均数是_____;小丽成绩的众数是_____,中位数是_____,平均数是_____.解:因为他们之中,小华的_____最大,小明的_____最大,小丽的_____最大,所以都认为自己的成绩比其他两位同学好.4、若多项式5x2+17x﹣12可因式分解成(x+a)(bx+c),其中a、b、c均为整数,则a,b,c的中位数是_____5、一组数据:3、4、4、5、5、6、8,这组数据的中位数是 _____.6、5月1日至7日,某市每日最高气温如图所示,则中位数是 ______.7、小丽的笔试成绩为90分,面试成绩为95分,若笔试成绩、面试成绩按6:4计算平均成绩,则小丽的平均成绩是 _______分.8、某运动队要从甲、乙、丙、丁四名跳高运动员中选拔一人参加比赛,教练组统计了最近几次队内选拔赛的成绩并进行了分析,得到表:根据表中数据,教练组应该选择________参加比赛(填“甲”或“乙”或“丙”或“丁”).9、在统计学中,样本的方差可以近似地反映总体的______.(在①“集中趋势”,②“波动大小”,③“平均值”,④“最大值”中选择合适的序号填写在横线上)10、某中学期中考试,八(1)班第一小组10人数学考试的成绩为:100分3人,90分5人,80分2人,则全组数学平均成绩为_____分.三、解答题(5小题,每小题6分,共计30分)1、我校举行“庆祝建党一百周年”歌手大赛,高、初中部根据初赛成绩,各选出5名选于组成初中代表队和高中代表队参学校决赛.两个队各选出的5名选手的决赛成绩如图所示.a_______,b=________,c=________,d=_________.(1)根据图示填写下表:=(2)请选择某个标准,说明哪个参赛队获胜.2、某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的满分均为100分,前6名选手的得分如下:根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩.(1)这6名选手笔试成绩的众数是分.(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比.(3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.3、5,16,16,28,32,51,51的众数是什么?4、根据下列统计图,写出相应分数的平均数、众数和中位数.(1)(2)5、某校举办弘扬中华传统知识演讲比赛,八(1)班计划从甲、乙两位同学中选出一位参加学校的决赛,已知这两位同学在预赛中各项成绩如表图:(1)表中a的值为_________;b的值为_________.(2)把图中的统计图补充完整;(3)若演讲内容、语言表达、形象风度、现场效果四项得分按30%、50%、10%、10%的权重比例计算两人的最终得分,并选择最终得分较高的同学作为代表参赛,那么谁将代表八(1)班参赛?请说明理由.-参考答案-一、单选题1、D【分析】平均数相同,方差值越小越稳定,比较四名同学方差值的大小即可.【详解】解:∵2222S S S S >>>乙甲丁丙∴丁同学的成绩最稳定故选D .【点睛】本题考查了方差.解题的关键在于理解方差值越小的数据越稳定.2、A【解析】【分析】根据众数、中位数的定义解答.【详解】解:读书册数的众数是3;第10个数据是3,第11个数据是3,故中位数是3,故选:A .【点睛】此题考查了统计中的众数和中位数的定义,数据定义并应用是解题的关键.3、A【解析】【分析】先比较方差的值的大小,根据方差的意义选取方差的值最小的可得.解:∵S甲2=3.6,S乙2=4.6,S丙2=6.3,S丁2=7.3,且平均数相等,∴S甲2<S乙2<S丙2<S丁2,∴这4名同学3次数学成绩最稳定的是甲,故选A.【点睛】本题主要考查方差,解题的关键是掌握方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.4、D【解析】【分析】分别根据方差的意义、中位数意义、众数的定义及平均数的意义逐一判断即可.【详解】A.乙班成绩的方差小于甲班成绩的方差,所以乙班成绩稳定,此选项错误,不符合题意;B.乙班成绩的中位数大于甲班,所以乙班成绩不低于95分的人数多于甲班,此选项错误,不符合题意;C.根据表中数据无法判断甲、乙两班成绩的众数,此选项错误,不符合题意;D.因为甲班共有40名同学,甲班的中位数是93分,所以小明得94分将排在甲班的前20名,此选项正确,符合题意;故选:D.【点睛】本题考查了平均数、中位数、方差及众数的概念,平均数、中位数及众数反映的是一组数据的平均趋势及水平,平均数与每个数据有关;方差反映的是一组数据的波动程度,在平均数相同的情况下,方差越小,说明数据的波动程度越小,也就是说这组数据更稳定.5、D【解析】【分析】根据平均数、众数、中位数的定义以及方差公式计算即可得出答案.【详解】∵八年级5名参赛选手的成绩分别为:90,93,89,90,88,从小到大排列为88,89,90,90,93, ∴平均数为8889909093905++++=,众数为90,中位数为90, 故选项A 、B 、C 错误; 方差为222221[(8890)(8990)(9090)(9090)(9390)] 2.85⨯-+-+-+-+-=, 故选项D 正确.故选:D .【点睛】本题考查平均数,众数和中位数,方差,掌握相关定义是解题的关键.6、B【解析】【分析】根据众数、中位数、平均数及方差的意义知,只要知道了中位数即可知道自己能否进入前5名.【详解】众数表示一组数据中出现次数最多的数,知道众数无法知道自己能否进入前5名;平均数表示的是一组数据的平均水平,方差反映的是一组数据的波动程度,它们都不能知道自己能否进入前5名,只有中位数,才能知道自己能否进入前5名,9名学生中,成绩按高低排列第5位学生的成绩是中位数,若该学生的成绩等于或高于中位数,则进入前5名,否则没有.故选:B【点睛】本题考查了众数、中位数、平均数及方差这四个统计量,前三个反映的是数据的平均水平,后一个反映的是数据的波动程度,理解这四个概念是关键.7、B【解析】【分析】由鞋厂关心的数据,即大众买的最多的鞋号,也就是出现次数最多的数据,从而可得所构成的数据是众数.【详解】解:生产数量最多的鞋号是调查不同年龄的人的鞋号所构成的数据的众数,故选B【点睛】本题考查的是众数的含义及众数表示的意义,理解众数的含义及在生活中的应用是解本题的关键.8、A【解析】【分析】根据方差的意义求解即可.【详解】解:∵S甲2=5,S乙2=20,S丙2=23,S丁2=32,∴S甲2<S乙2<S丙2<S丁2,∴这四名学生的数学成绩最稳定的是甲,故选:A.【点睛】本题主要考查了方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.9、B【解析】【分析】根据加权平均数的计算公式列出算式,再进行计算即可.【详解】解:根据题意得:95×20%+90×30%+88×50%=90(分).即小彤这学期的体育成绩为90分.故选:B.【点睛】此题考查了加权平均数,掌握加权平均数的计算公式是本题的关键,是一道常考题.10、B【解析】【分析】根据众数、中位数的定义进行判断即可.【详解】解:一共有50人,中位数是从小到大排列后处在第25、26位两个数的平均数,而13岁的有5人,14岁的有23人,因此从小到大排列后,处在第25、26位两个数都是14岁,因此中位数是14岁,不会受15岁,16岁人数的影响;因为14岁有23人,而13岁的有5人,15岁、16岁共有22人,因此众数是14岁;故选:B .【点睛】此题考查应用统计量解决实际问题,正确掌握众数的定义,中位数的定义是解题的关键.二、填空题1、甲【解析】【分析】根据题意可得:22S S <甲乙,即可求解.【详解】 解:∵13x =甲,13x =乙,2=3.6S 甲,215.8S =乙. ∴22S S <甲乙,∴甲试验田麦苗长势比较整齐.故答案为:甲【点睛】本题主要考查了利用方差判断稳定性,熟练掌握一组数据方差越小越稳定是解题的关键.2、 样本平均数 组中值 组中值 频数【解析】【分析】(1)由样本平均数的适用条件即可得;(2)根据组中值的定义(组中值是上下限之间的中点数值,以代表各组标志值的一般水平),即可得(3)权数,指变量数列中各组标志值出现的频数,据此即可得.【详解】解:(1)如果所考察的对象很多,或对考察对象具有破坏性,统计中常常用样本平均数估计总体平均数;(2)组中值是上下限之间的中点数值,以代表各组标志值的一般水平,可得一个小组的两个端点的数的平均数叫做这个小组的组中值;(3)在频数分布表中,常用各组的组中值代表各组的实际数据,把各组的频数看作相应组中值的权,故答案为:①样本平均数;②组中值;③组中值;④频数.【点睛】题目主要考查样本平均数,组中值,权数的定义及适用条件,熟练掌握这几个定义是解题关键.3、 98 95 89.4 62 98 84.2 99 85 77 平均数 中位数 众数【解析】略4、4【解析】【分析】首先利用十字交乘法将5x 2+17x -12因式分解,继而求得a ,b ,c 的值.【详解】利用十字交乘法将5x 2+17x -12因式分解,可得:5x 2+17x -12=(x +4)(5x -3)=(x +a )(bx +c ).∴4,5,3a b c ===-,∵453 、、的中位数是4 ∴a ,b ,c 的中位数是4故答案为:4.【点睛】本题考查十字相乘法分解因式以及中位数,掌握十字相乘法是正确分解因式的前提,确定a 、b 、c 的值是得出正确答案的关键.5、5【解析】【分析】根据中位数的定义:将一组数据按从大到小(或从小到大)的顺序进行排列,处在中间的数或者中间两个数的平均数称为这组数据的中位数,据此进行解答即可.【详解】解:把这组数据从小到大排列:3、4、4、5、5、6、8,最中间的数是5,则这组数据的中位数是5.故答案为:5.【点睛】本题考查了中位数的定义,熟记定义是解本题的关键.6、27℃【解析】【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】解:把这些数从小到大排列为:23,25,26,27,30,33,33,∴最中间的数是27,则中位数是27℃.故答案为:27℃.【点睛】本题主要考查中位数,熟练掌握求一组数据的中位数是解题的关键.7、92【解析】【分析】根据加权平均数的定义和计算公式计算可得.【详解】解:小丽的平均成绩是90695464⨯+⨯+=92(分).故答案为:92.【点睛】本题主要考查加权平均数,解题的关键是熟练掌握加权平均数的定义和计算公式.8、丁【解析】【分析】根据平均数及方差分析解答.【详解】解:根据表格可得,四人的平均成绩中丙和丁的平均数大,故从平均数来看,应选择丙和丁参加比赛;根据方差来看,甲和丁的方差相等,且最小,故从方差来看,应选择甲或丁参加比赛;故教练组应选择丁参加比赛,故答案为:丁.【点睛】此题考查了由平均数作决策,由方差作决策,正确掌握分析的方法是解题的关键.9、②【解析】【分析】根据方差反映数据的波动大小解答.【详解】解:在统计学中,样本的方差可以近似地反映总体的波动大小,故答案为:②.【点睛】此题考查了方差的性质:方差反映了数据的波动差异水平是否稳定.10、91【解析】【分析】根据平均数公式计算.【详解】解:1(1003905802)9110=⨯⨯+⨯+⨯=x(分),故答案为:91.【点睛】此题考查平均数的计算公式,熟记计算公式是解题的关键.三、解答题1、 (1)85,80,85,160(2)见解析【解析】【分析】(1)根据平均数、众数、中位数、方差的定义分别计算即可;(2)根据平均数、众数、中位数、方差的意义选择一个标准进行判断.(1)解:初中代表队的平均成绩是:(75+80+85+85+100)÷5=85(分),即a =85,把高中代表队的成绩从小到大排列为:70,75,80,100,100,最中间的数是80,则中位数是80分,即b =80,在初中代表队中85出现了2次,出现的次数最多,则众数是85分,即c =85, 高中部成绩的方差为:()()()()()22222170851008510085758580855⎡⎤⨯-+-+-+-+-⎣⎦=160,即d =160, 故答案为:85,80,85,160;(2)因为两个队的平均数都相同,而高中部的众数较高,说明高中部获胜.【点睛】本题考查了方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好也考查了平均数、中位数和众数.2、(1)84;(2)笔试成绩和面试成绩各占的百分比是40%,60%;(3)2号:89.6分,3号:85.2分,4号:90分,5号:81.6分,6号:83分,综合成绩排序前两名人选是4号和2号【解析】【分析】(1)根据中位数和众数的定义即把这组数据从小到大排列,再找出最中间两个数的平均数就是中位数,再找出出现的次数最多的数即是众数;(2)先设笔试成绩和面试成绩各占的百分百是x ,y ,根据题意列出方程组,求出x ,y 的值即可;(3)根据笔试成绩和面试成绩各占的百分比,分别求出其余五名选手的综合成绩,即可得出答案.【详解】解:(1)把这组数据从小到大排列为,80,84,84,85,90,92,84出现了2次,出现的次数最多,则这6名选手笔试成绩的众数是84分;故答案为:84;(2)设笔试成绩和面试成绩各占的百分比是x ,y ,根据题意得:1859088x y x y +=⎧⎨+=⎩, 解得40%60%x y =⎧⎨=⎩, ∴笔试成绩和面试成绩各占的百分比是40%,60%.(3)2号选手的综合成绩是92×0.4+88×0.6=89.6(分),3号选手的综合成绩是84×0.4+86×0.6=85.2(分),4号选手的综合成绩是90×0.4+90×0.6=90(分),5号选手的综合成绩是84×0.4+80×0.6=81.6(分),6号选手的综合成绩是80×0.4+85×0.6=83(分).∴综合成绩排序前两名人选是4号和2号.【点睛】本题考查了众数、二元一次方程组的实际应用,加权平均数等知识点,依据题意,正确建立方程求出题(2)中的笔试成绩和面试成绩各占的百分比是解题的关键.3、16和51【解析】【分析】根据众数的定义:在一组数据中出现次数最多的数据,由此可求解.【详解】解:因为5,16,16,28,32,51,51中出现最多的数据为16和51,分别为两次,所以这组数据的众数是16和51.【点睛】本题主要考查众数,熟练掌握求一组数据的众数是解题的关键.4、(1)平均数为3分,众数为3分,中位数为3分;(2)平均数为3.42分,众数为3分,中位数为3分【解析】【分析】(1)从条形统计图中得出相应的信息,然后根据算数平均数(总分数除以总人数)、众数(出现次数最多得数)、中位数(排序后中间两个数得平均数)的算法直接进行计算即可;(2)从扇形统计图中读取相关的信息,然后根据加权平均数、中位数、众数的计算方法计算即可.【详解】解:(1)平均分数为:021*******3272110⨯+⨯+⨯+⨯=+++,从图中可得:有21人得3分,众数为3分,共有40人,将分数从小到大排序后,第20和21位都是3分,∴中位数为3分,∴平均分数为3分,众数为3分,中位数为3分;(2)平均分数为:13%24%351%432%510% 3.42⨯+⨯+⨯+⨯+⨯=,扇形统计图中3分占比51%,大于其他分数的占比,众数为3分;中位数在51%的比例中,中位数为3分;∴平均分数为3.42分,众数为3分,中位数为3分.【点睛】题目主要考查算数平均数、加权平均数、众数、中位数的计算方法,根据图象得出相应的信息进行计算是解题关键.5、(1)a=90 ,b=90 ;(2)见解析;(3)推荐甲同学,理由见解析【解析】【分析】(1)根据平均数的计算方法求得a、b的值;(2)由(1)求得的结果补全统计图即可;(3)四项得分按30%、50%、10%、10%的权重比例计算两人的最终得分,比较结果即可.【详解】解:(1)甲同学的成绩的平均分95908590904a+++==,乙同学的成绩的平均分:908595904b+++=,解得:b=90;故答案为:90,90(2)由(1)求得乙同学的形象风度为90分,如图所示:(3)推荐甲同学,理由如下:由题意得,甲同学的成绩:950.3900.5850.1900.1=+++=(分)⨯+⨯+⨯+⨯28.5458.5991乙同学的成绩:900.3850.5900.1950.1=+++=(分)⨯+⨯+⨯+⨯2742.599.588故甲同学的成绩比乙同学好,应该选甲.【点睛】本题考查的是统计表,条形统计图,平均数和加权平均数.条形统计图能清楚地表示出每个项目的数据,掌握加权平均数的计算方法是解题的关键.。

2022年最新华东师大版八年级数学下册第二十章数据的整理与初步处理单元测试试题(含详细解析)

2022年最新华东师大版八年级数学下册第二十章数据的整理与初步处理单元测试试题(含详细解析)

八年级数学下册第二十章数据的整理与初步处理单元测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知一组数据:49,50,54,50,55,这组数据的众数是( )A .49B .50C .54D .552、为了解学生的睡眠状况,调查了一个班50名学生每天的睡眠时间,绘成睡眠时间条形统计图如图所示,则所调查学生睡眠时间的众数,中位数分别为( )A .7h ,7hB .8h ,7.5hC .7h ,7.5hD .8h ,8h3、13名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前6名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这13名同学成绩的( )A .方差B .众数C .平均数D .中位数4、某校八年级人数相等的甲、乙、丙三个班,同时参加了一次数学测试,对成绩进行了统计分析,平均分都是72分,方差分别为2206S =甲,2198S =乙,2156S =丙,则成绩波动最小的班级( )A.甲B.乙C.丙D.无法确定5、为庆祝中国共产党建党一百周年,某班50名同学进行了党史知识竞赛,测试成绩统计如表,其中有两个数据被遮盖.下列关于成的统计量中、与被遮盖的数据无关的是()A.平均数B.中位数C.中位数、众数D.平均数、众数6、已知一组数据85,80,x,90的平均数是85,那么x等于()A.80 B.85 C.90 D.957、为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为:x x=甲丙=13,x x=乙丁=15:2S甲=2S丁=3.6,2S乙=2S丙=6.3.则麦苗又高又整齐的是()A.甲B.乙C.丙D.丁8、在一次射击训练中,甲、乙两人各射击10次,两人10次射击成绩的平均数均是9.1环,方差分别是2S甲=1.2,2S乙=1.1,则关于甲、乙两人在这次射击训练中成绩稳定的描述正确的是()A.乙比甲稳定B.甲比乙稳定C.甲和乙一样稳定D.甲、乙稳定性没法对比9、若一组数据3,x,4,5,7的平均数为5,则这组数据中x的值和方差为()A.3和2 B.4和3 C.5和2 D.6 和210、如图所示是根据某地某月10天的每天最高气温绘成的折线统计图,那么这段时间该地最高气温的平均数、众数、中位数依次是()A .4,5,4B .4.5,5,4.5C .4,5,4.5D .4.5,5,4第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题4分,共计40分)1、在5个正整数a 、b 、c 、d 、e 中,中位数是4,唯一的众数是6,则这5个数的和最大值是________.2、数据3、1、x 、1-、3-的平均数是1,则这组数据的中位数是__________.3、我区“引进人才”招聘考试分笔试和面试.其中笔试按60%、面试按40%计算加权平均数作为总成绩.吴老师笔试成绩为95分,面试成绩为85分,那么吴老师的总成绩为__________分.4、某公司招聘员工,对应聘者进行三项素质测试:创新能力、综合知识、语言表达,某应聘者三项得分分别为70分、80分、90分,如果将这三项成绩按照5:3:2计入总成绩,则他的总成绩为 _____分.5、某单位拟招聘一个管理员,其中某位考生笔试、试讲、面试三轮测试得分分别为92分,85分,90分,若依次按40%,40%,20%的比例确定综合成绩,则该名考生的综合成绩为______分.6、一组数据:2,2,3,3,2,4,2,5,1,1,它们的众数为_____.7、2021年徐州某一周各日的空气污染指数为127,98,78,85,95,191,70,这组数据的中位数是______.8、一组数据7,2,1,3的极差为______.9、一般地,若n 个数x 1,x 2,…,xn 的权分别是w 1,w 2,…,wn ,则:112212n n nx w x w x w w w w++++++叫做这n 个数的_____.当一组数据中各个数据重要程度不同时,_____能更好地反映这组数据的平均水平.______反映数据的重要程度,数据权的改变一般会影响这组数据的平均水平.10、一组数据4,3,6,x的平均数是4,则这组数据的方差是_________.三、解答题(5小题,每小题6分,共计30分)1、为积极响应“弘扬传统文化”的号召,某校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”.根据调查结果绘制成的统计图(部分)如下图所示:大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表:请根据调查的信息分析:(1)补全频数分布直方图.(2)活动启动之初学生“一周诗词诵背数量”的中位数为______首.(3)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数.(4)选择适当的统计量,从某一个角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.2、某中学为选拔一名选手参加我市“学宪法讲宪法”主题演讲比赛,经研究,按表所示的项目和权数对选拔赛参赛选手进行考评.下图分别是是小明、小华在选拔赛中的得分表和各项权数分布表: 得分表结合以上信息,回答下列问题:(1)小明在选拔赛中四个项目所得分数的众数是 ,中位数是 ;(2)评分时按统计表中各项权数考评.①求出演讲技巧项目对应扇形的圆心角的大小.②如此考评,小明和小华谁更优秀,派出哪位同学代表学校参加比赛呢?3、姚明在2005~2006赛季美国职业篮球联赛常规赛中表现优异,下面是他在这个赛季中,分别与“超音速”和“快船”队各四场比赛中的技术统计.(1)姚明在对阵“超音速”和“快船”两队各四场比赛中,平均每场得分是多少?(2)请你从得分的角度分析:姚明在与“超音速”和“快船”队的比赛中,对阵哪一个队的发挥比较稳定?(3)如果规定“综合得分”为:平均每场得分1+⨯平均每场篮板 1.2⨯+平均每场失误()1⨯-,且综合得分越高表现越好,那么请你利用这种评价方法,比较姚明在对阵哪一个队时表现更好.4、为弘向善、为善优秀品质,助力爱心公益事业,某校组织开展“人间自有真情在,爱心助力暖人心”慈善捐款活动,八年级全体同学参加了此次活动.随机抽查了部分同学捐款的情况,统计结果如图1和图2所示.(1)本次抽查的学生人数是多少?补全条形统计图.(2)本次捐款金额的众数为元,中位数为元.(3)若全校八年级学生为400名,捐款总金额约有多少元?5、乒乓球,被称为“国球”,在中华大地有着深厚的群众基础.2000年2月23日,国际乒联特别大会决定从2000年10月1日起,乒乓球比赛将使用直径40mm、重量2.7g的大球,以取代38mm的小球.某工厂按要求加工一批标准化的直径为40mm乒乓球,但是实际生产的乒乓球直径可能会有一些偏差.随机抽查检验该批加工的10个乒乓球直径并记录如下:﹣0.4,﹣0.2,﹣0.1,﹣0.1,﹣0.1,0,+0.1,+0.2,+0.3,+0.5(“+”表示超出标准;“﹣”表示不足标准).(1)其中偏差最大的乒乓球直径是 mm;(2)抽查的这10个乒乓球中,平均每个球的直径是多少mm?(3)若误差在“±0.25mm”以内的球可以作为合格产品,误差在“±0.15mm”以内的球可以作为良好产品,这10个球的合格率是;良好率是.-参考答案-一、单选题1、B【解析】【分析】根据众数的定义解答即可.【详解】解:50出现的次数最多,所以众数是50.故选:B.【点睛】主要考查了众数的概念.注意众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.2、C【解析】【分析】权数最大的数据是众数,第25个,26个数据的平均数是中位数,计算即可.【详解】∵7的权数是19,最大,∴所调查学生睡眠时间的众数是7小时,根据条形图,得第25个数据是7小时,第26个数据是8小时,∴所调查学生睡眠时间的中位数是782=7.5小时,故选C.【点睛】本题考查了条形统计图,中位数即数据排序后,中间的数或中间两位数的平均数;众数即数据中出现次数最多的数据,正确计算中位数是解题的关键.3、D【解析】【分析】由于有13名同学参加歌咏比赛,要取前6名参加决赛,故应考虑中位数的大小.【详解】解:共有13名学生参加比赛,取前6名,所以小红需要知道自己的成绩是否进入前六.我们把所有同学的成绩按大小顺序排列,第7名学生的成绩是这组数据的中位数,所以小红知道这组数据的中位数,才能知道自己是否进入决赛.故选:D.【点睛】本题考查了用中位数的意义解决实际问题.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4、C【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵2206S =甲,2198S =乙,2156S =丙,∴222S S S >>甲乙丙,∴成绩波动最小的班级是:丙班.故选:C .【点睛】此题主要考查了方差的意义,正确理解方差的意义是解题关键.5、C【解析】【分析】通过计算成绩为91、92分的人数,进行判断,不影响成绩出现次数最多的结果,因此不影响众数,同时不影响找第25、26位数据,因此不影响中位数的计算,进而进行选择.【详解】解:由表格数据可知,成绩为91分、92分的人数为50-(12+10+8+6+5+3+2+1)=3(人),成绩为100分的,出现次数最多,因此成绩的众数是100,成绩从小到大排列后处在第25、26位的两个数都是98分,因此中位数是98,因此中位数和众数与被遮盖的数据无关,故选:C.【点睛】本题主要考查中位数、众数、方差、平均数的意义和计算方法,理解各个统计量的实际意义,以及每个统计量所反应数据的特征,是正确判断的前提.6、B【解析】【分析】由平均数的公式建立关于x的方程,求解即可.【详解】解:由题意得:(85+x+80+90)÷4=85解得:x=85.故选:B.【点睛】本题考查了平均数,应用了平均数的计算公式建立方程求解.7、D【解析】【分析】方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定,据此判断出小麦长势比较整齐的是哪种小麦即可.【详解】解:x x x x=>=乙丁甲丙,∴乙、丁的麦苗比甲、丙要高,2222s s s s=<=乙甲丁丙,∴甲、丁麦苗的长势比乙、丙的长势整齐,综上,麦苗又高又整齐的是丁,故选:D.【点睛】本题主要考查了方差的意义和应用,解题的关键是要明确:方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定.8、A【解析】【分析】根据方差的性质解答.【详解】解:∵甲乙两人的方差分别是2S甲=1.2,2S乙=1.1,∴乙比甲稳定,故选:A.【点睛】此题考查了方差的性质:方差越小越稳定.9、D【解析】先根据平均数定义求出x,再根据方差公式计算即可求解.【详解】解:由题意得345755x++++=,解得x=6,∴这组数据的方差是()()()()()22222 356545557525-+-+-+-+-=.故选:D【点睛】本题考查了平均数的定义和求一组数据的方差,熟知平均数的定义和方差公式是解题关键.10、C【解析】【分析】根据平均数的计算公式、众数的定义、中位数的定义解答.【详解】解:平均数=2556454621410+++++++++=,数据有小到大排列为1、2、2、4、4、5、5、5、6、6,则这组数据的众数为5,中位数为454.52+=,故选:C.【点睛】此题考查平均数的计算公式,众数的定义、中位数的定义,熟记公式及各定义是解题的关键.1、21【解析】【分析】根据题意设出五个数,由此求出符合题意的五个数的可能取值,计算其和即可.【详解】设五个数从小到大为a1,a2,a3,a4,a5,依题意得a3=4,a4=a5=6,a1,a2是1,2,3中两个不同的数,符合题意的五个数可能有三种情形:“1,2,4,6,6”,“1,3,4,6,6”,“2,3,4,6,6”,1+2+4+6+6=19,1+3+4+6+6=20,2+3+4+6+6=21,则这5个数的和最大值是21.故答案为21.【点睛】本题考查了根据一组数据的中位数和众数来确定数据的能力.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.2、1【解析】【分析】因为3,1,x, -1,-3的平均数是1,可求出x,再根据中位数定义,将一组数据从小到大排序后,处于中间位置或中间位置上两个数据的平均数即可.【详解】解:依题意得:311315x ++--=, 3、91【解析】【分析】 根据笔试和面试所占的百分比以及吴老师的笔试成绩和面试成绩,列出算式,进行计算即可.【详解】解:吴老师的总成绩为95×60%+85×40%=57+34=91(分).故答案是91.【点睛】本题主要题考查了加权平均数,根据加权平均数的计算公式列出算式是解答本题的关键. 4、77【解析】【分析】利用加权平均数的计算方法进行计算即可得出答案.【详解】 解:他的总成绩为是272505803930⨯⨯⨯++++=77(分), 故答案为:77.【点睛】此题考查了加权平均数的意义和计算方法,掌握计算方法是正确解答的关键.5、88.8【解析】【分析】根据加权平均数的求解方法求解即可.【详解】解:根据题意,该名考生的综合成绩为92×40%+85×40%+90×20%=88,8(分),故答案为:88.8.【点睛】本题考查加权平均数,熟知加权平均数的求解方法是解答的关键.6、2【解析】【分析】根据“一组数据出现次数最多的叫做众数”可直接进行求解.【详解】解:由题意得:数据2出现了4次,数据1、3出现了2次,数据4、5出现1次;∴它们的众数为2;故答案为2.【点睛】本题主要考查众数,熟练掌握求一组数据的众数是解题的关键.7、95【解析】【分析】先将数据按从小到大排列,取中间位置的数,即为中位数.【详解】解:将这组数据从小到大排列得:70,78,85,95,98,127,191,中间位置的数为:95,所以中位数为95.故答案为:95.【点睛】本题主要是考查了中位数的定义,熟练掌握地中位数的定义,是求解该类问题的关键.8、6【解析】【分析】根据极差的定义:一组数据中,最大值与最小值的差即为极差,进行解答即可.【详解】解:一组数据7,2,1,3的极差为716-=,故答案为:6.【点睛】本题考查了极差的定义,熟记定义是解本题的关键.9、加权平均数加权平均数权【解析】略10、3 2【解析】【分析】先根据平均数的定义求出x的值,再利用方差的定义列式计算即可.【详解】解:因为数据4,3,6,x 的平均数是4, 可得:43644x +++=, 解得:x =3, 方差为:22221(44)(34)(64)(34)4⎡⎤-+-+-+-⎣⎦=32, 故答案为:32. 【点睛】本题主要考查方差及算术平均数,解题的关键是掌握方差和平均数的定义.三、解答题1、 (1)见解析(2)4.5(3)850(4)见解析【解析】【分析】(1)根据5首的人数和圆心角的度数求出抽取的学生数量,再求出4首的人数即可;(2)把数据从小到大排列,求中间两个数的平均数即可;(3)求出大赛后一个月一周诗词诵背6首(含6首)以上的比例,乘以全校学生数即可;(4)求出两次调查的平均数,比较大小即可.(1)解:由题意得抽查的这部分学生的数量为20÷60360=120(名),大赛启动之初,一周诗词诵背数量为4首的人数为120×135360=45(名),补全统计图如图所示:(2)解:活动启动之初学生“一周诗词诵背数量”共抽样调查了120人,处在第60位和第61位的数据分别为4首和5首,中位数为(4+5)÷2=4.5(首),故答案为:4.5.(3)解:大赛后一个月,一周诗词诵背6首(含6首)以上的的人数为4025201200850120++⨯=(人),答:估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数为850人.(4)解:活动启动之初的平均数为1534542051661371185120⨯+⨯+⨯+⨯+⨯+⨯=(首);大赛后一个月的平均数为1031041554062572086120⨯+⨯+⨯+⨯+⨯+⨯=(首);大赛后一个月学生“一周诗词诵背数量”的平均数高于活动启动之初学生“一周诗词诵背数量”的平均数,该校经典诗词诵背系列活动的效果非常好,提高了学生背诵诗词的能力.【点睛】本题考查条形统计图、扇形统计图以及平均数和中位数的计算公式,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.2、(1)85分,82.5分;(2)①144°;②小明更优秀,应派出小明代表学校参加比赛【解析】【分析】(1)根据众数和中位数的定义求解即可;(2)①根据扇形统计图中的数据,可以得到演讲技巧项目的百分比,进而求出圆心角大小;②根据加权平均数的定义列式计算出小明、小华的成绩,从而得出答案.【详解】解:(1)小明在选拔赛中四个项目所得分数的众数是85分,中位数是85802+=82.5(分);(2)①1-5%-15%-40%=40%360⨯40%=144°答:演讲技巧项目对应扇形的圆心角为144°;②小明分数为:855%7015%8040%8540%80.75⨯+⨯+⨯+⨯=小华分数为:905%7515%7540%8040%77.75⨯+⨯+⨯+⨯=80.75>77.75∴小明更优秀,应派出小明代表学校参加比赛【点睛】本题考查了众数、中位数、加权平均数,解题的关键是掌握众数、中位数、加权平均数的定义.3、(1)25.25分,23.25分;(2)姚明在对阵“超音速”的比赛中发挥更稳定;(3)姚明在对阵“快船”的比赛中表现更好.【解析】【分析】(1)根据平均数的计算方法,先求和,再除比赛次数即可得出平均每场的得分;(2)计算并比较得分的方差,根据方差的意义,即可得出结论;(3)根据“综合得分”的规定,分别计算姚明在比赛中的“综合得分”,再进行比较即可.【详解】解:(1)姚明在对阵“超音速”的四场比赛中平均得分为:()22292426425.25+++÷=(分); 在对阵“快船”的四场比赛中平均得分为:()25291722423.25+++÷=(分);(2)姚明在对阵“超音速”队的四场比赛中得分的方差为:2222211 (2222.25)(2922.25)(2422.25)(2622.25) 6.68754S ⎡⎤=-+-+-+-=⎣⎦, 姚明在对阵“快船”队的四场比赛中得分的方差为:2222221 (2523.25)(2923.25)(1723.25)(2223.25)19.18754S ⎡⎤=-+-+-+-=⎣⎦, ∵s 12<s 22,∴从得分的角度看,姚明在对阵“超音速”的比赛中发挥更稳定;(3)姚明在对阵“超音速”的四场比赛中综合分为:()25.251111.2 2.75135.7⨯+⨯+⨯-=(分);在对阵“快船”的四场比赛中综合得分为:()23.25112.75 1.22136.55⨯+⨯+⨯-=(分),从综合得分看,姚明在对阵“快船”的比赛中表现更好.【点睛】本题考查了平均数和方差的计算方法及意义.一般地设n 个数据,x 1,x 2,…xn 的平均数为x ,则方差为(2222121[()())n S x x x x x x n ⎤=-+-++-⎦ ,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.4、 (1)50人,见解析(2)15,15(3)约有5360元【解析】【分析】(1)先根据A的条形统计图和扇形统计图信息即可得抽查的总人数,再求出C的学生人数,由此补全条形统计图即可得;(2)根据众数的定义(众数就是一组数据中出现次数最多的那个数据)和中位数的定义(将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数)即可得;(3)利用抽查的学生捐款金额的平均数乘以400即可得.(1)解:本次抽查的学生人数是816%50÷=(人),C的学生人数为508146418----=(人),由此补全条形统计图如下:(2)解:因为15元出现的次数最多,是18次,所以众数是15元,因为这组数据按从小到大进行排序后,处在第25和第26个数都是15, 所以中位数是1515152+=(元), 故答案为:15,15;(3) 解:1(8514101815620425)400536050⨯+⨯+⨯+⨯+⨯⨯⨯=(元), 答:捐款总金额约有5360元.【点睛】本题考查了条形统计图和扇形统计图的信息关联、众数和中位数、平均数等知识点,熟练掌握统计调查的相关知识是解题关键.5、(1)40.5mm ;(2)40.02mm ;(3)70%,50%【解析】【分析】(1)根据题意列式计算即可;(2)根据平均数的定义即可得到结论;(3)根据误差在“±0.25mm”以内的球可以作为合格产品,误差在“±0.15mm”以内的球可以作为良好产品分别占总数的百分比,即可求解.【详解】解:(1)其中偏差最大的乒乓球的直径是400.540.5mm mm mm +=故答案为40.5mm(2)这10乒乓球平均每个球的直径是()()()()1400.40.20.10.10.100.10.20.30.5400.0240.0210mm ⎡⎤+-+-+-+-+-+++++=+=⎣⎦ 故答案为40.02mm(3)这些球的合格率是7100%70%10⨯= 良好率为5100%50%10⨯= 故答案为70%,50%【点睛】此题考查了正数和负数的意义,解题的关键是理解正和负的相对性,明确什么是一对具有相反意义的量.。

华东师大版八年级数学下册第20章 数据的整理与初步处理 单元测试题

华东师大版八年级数学下册第20章 数据的整理与初步处理 单元测试题

第20章数据的整理与初步处理一、选择题(每小题5分,共20分)1.在某次数学测验中,随机抽取了10份试卷,其成绩(单位:分)如下:73,78,79,81,81,81,83,83,85,91,则这组数据的众数、中位数分别为()A.81,82B.83,81C.81,81D.83,822.在端午节到来之前,儿童福利院对全体小朋友爱吃哪几种粽子做了调查,以决定最终买哪种粽子.下面的调查数据中最值得关注的是()A.方差B.平均数C.中位数D.众数3.小明记录了临沂市五月份某周每天的日最高气温(单位:℃),列成下表:天数(天) 1 2 1 3最高气温(℃) 22 26 28 29则这周日最高气温的平均值是()A.26.25 ℃B.27 ℃C.28 ℃D.29 ℃4.一组数据2,x,4,3,3的平均数是3,则这组数据的众数、方差分别是()A.2,0.4B.3,0.2C.3,0.4D.3,25 在一次“爱心互助”捐款活动中,某班第一小组8名同学捐款的金额(单位:元)如下表所示:这8A.3.5元B.6元C.6.5元D.7元二、填空题(每小题5分,共35分)6.某校举行演讲比赛,七位评委对小明的打分如下:9,8,7,6,9,9,7,这组数据的中位数是.图20-Z-17.八(1)班举行投篮比赛,每人投5球.如图20-Z-1是全班学生投进球数的扇形统计图,则投进球数的众数是.8.某校女子排球队队员的年龄分布如下表:年龄(岁) 13 14 15人数 4 7 4则该校女子排球队队员的平均年龄是岁.9.甲、乙两名同学参加古诗词大赛.五次比赛成绩的平均分都是88分,且甲、乙两人的方差分别为15.6,20.8,那么成绩比较稳定的是.(填“甲”或“乙”)10.一组正整数2,3,4,x从小到大排列,已知这组数据的中位数和平均数相等,那么x的值是.11.某班6名同学在一次“1分钟仰卧起坐”测试中,成绩为(单位:次):39,42,42,37,41,39.这组数据的方差是.12.某校欲招聘一名数学教师,甲、乙两位应试者经审查符合基本条件,参加了笔试和面试,他们的成绩如下表所示.请你按笔试成绩占40%,面试成绩占60%选出综合成绩较高的应试者是.应试者笔试成绩(分) 面试成绩(分)甲80 90乙85 86三、解答题(共45分)13.(15分)一次安全知识测验中,学生得分均为整数,满分10分,这次测验中甲、乙两组学生人数都为5人,成绩如下(单位:分):甲:8,8,7,8,9;乙:5,9,7,10,9.(1)填写下表(单位:分):平均数众数中位数甲组8 8乙组9(2)乙组学生说他们的众数高于甲组,所以他们的成绩好于甲组,但甲组学生不同意乙组学生的说法,认为他们组的成绩要好于乙组,请你给出一条支持甲组学生观点的理由.14.(15分)在学校组织的“学习强国”阅读知识竞赛中,每班参加比赛的人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为100分,90分,80分和70分.年级组长张老师将901班和902班的成绩进行整理并绘制成如20-Z-2的统计图:图20-Z-2(1)在本次竞赛中,902班C级及以上的人数有多少?(2)请你将下面的表格补充完整:B级及以平均数(分) 中位数(分) 众数(分)上人数(人) 901班87.6 90 18902班87.6 100(3)请你对901班和902班在本次竞赛中的成绩进行比较.15.(15分)为响应某市创建国家文明城市的号召,某校举办了一次以“包容天下,崛起江淮”为主题的演讲比赛,满分10分,得分均为整数,成绩大于或等于6分为合格,大于或等于9分为优秀.这次竞赛中甲、乙两组学生(各10名学生)成绩的条形统计图如图20-Z-3.图20-Z-3(1)完成下面的成绩统计分析表:组别平均分(分) 中位数(分)众数(分)方差合格率优秀率甲 6.7 6 3.41 90% 20% 乙7.1 7.5 1.69 80% 10% (2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是组的学生;(填“甲”或“乙”)(3)从两个小组的整体情况来看,组的成绩更加稳定一些;(填“甲”或“乙”)(4)结合两个小组的成绩分析,你觉得哪个组的成绩更好一些?说说你的理由.答案1.C2.D3.B4.C5.C6.87.3球8.149.甲10.514.10312.甲=8(分).13.解:(1)甲组的平均数=8+8+7+8+95乙组的平均数=5+9+7+10+9=8(分),5乙组的中位数为9分.故答案为8,8,9.[(8-8)2+(8-8)2+(7-8)2+(8-8)2+(9-8)2]=0.4,(2)甲组的方差=15[(5-8)2+(9-8)2+(7-8)2+(10-8)2+(9-8)2]=3.2.乙组的方差=15∵甲、乙两组的平均数相同,甲组的方差小,∴甲组成绩比较稳定,故甲组的成绩好于乙组.14.解:(1)901班人数有6+12+2+5=25(人).∵每班参加比赛的人数相同,∴902班有25人,∴C级及以上的人数=25×(44%+4%+36%)=21(人).(2)901班成绩的众数为90分,902班A级学生人数=25×44%=11(人),B级学生人数=25×4%=1(人),C级学生人数=25×36%=9(人),D级学生人数=25×16%=4(人),902班中位数为C级学生成绩,即80分,902班B级及以上人数为11+1=12(人).补全表格如下:平均数(分) 中位数(分) 众数(分) B级及以上人数(人) 901班87.6 90 90 18902班87.6 80 100 12(3)(答案不唯一)①从平均数的角度看两班成绩一样,从中位数的角度看901班比902班的成绩好,所以901班成绩好.②从平均数的角度看两班成绩一样,从众数的角度看902班比901班的成绩好,所以902班成绩好.15.解:(1)∵甲组的成绩(单位:分)为3,6,6,6,6,6,7,8,9,10,∴甲组的中位数为6分.∵乙组的成绩(单位:分)为5,5,6,7,7,8,8,8,8,9,∴乙组的众数为8分,故答案分别为6,8.(2)∵小明的成绩为7分,属中游略偏上,甲组的中位数是6, ∴小明在甲组.故答案为甲.(3)乙组的成绩更加稳定一些.(4)略.。

华东师大版八年级数学下册第二十章数据的整理与初步处理单元测试卷(包含答案卷)

华东师大版八年级数学下册第二十章数据的整理与初步处理单元测试卷(包含答案卷)

华师大版八年级数学下册第20章《数据的整理与初步处理》单元测试卷整理:键盘手一、选择题1. 一组数据20,21,22,23,23的中位数和众数分别是()A.20,23B.21,23C.21,22D.22,232.为参加全市中学生足球赛,某中学从全校学生中选拔22名足球运动员组建足球队,这22名运动员的年龄(岁)如下表所示,该足球队队员的平均年龄是()年龄(岁)12131415人数71032A.12岁B.13岁C.14岁D.15岁3.甲、乙、丙、丁四人各进行了10次射击测试,他们的平均成绩相同,方差分别是1.2,1.1,0.6,0.9,则射击成绩最稳定的是()A.甲B.乙C.丙D.丁4.已知一组数据5,4,x,3,9的平均数为5,则这组数据的中位数是()A.3B.4C.5D.65.已知一组数据为7,2,5,x,8,它们的平均数是5,则这组数据的方差为()A.3B.4.5C.5.2D.66.帅帅收集了南街米粉店今年6月1日至6月5日每天的用水量(单位:吨),整理并绘制成如图a的折线统计图.下列关于这组数据的结论正确的是()图aA.最大值与最小值的差是6B.众数是7C.中位数是5D.方差是87.一次数学测试,某小组5名同学的成绩统计如下(有两个数据被遮盖):组员甲乙丙丁戊平均成绩众数得分8177■808280■则被遮盖的两个数据依次是()A.80,80B.81,80C.80,2D.81,28.某排球队6名场上队员的身高(单位:cm)是:180,184,188,190,192,194.现用一名身高为186 cm的队员换下场上身高为192 cm的队员,与换人前相比,场上队员的身高()A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大二、填空题9.一组数据2,1,2,5,3,2的众数是.10.下表是某养殖户的500只鸡出售时质量的统计数据.质量/kg 1.0 1.2 1.4 1.6 1.8 2.0频数/只561621121204010则500只鸡质量的中位数为.11.已知一组数据1,3,5,7,9,则这组数据的方差是.12.一组数据4,3,x,1,5的众数是5,则x=.13.已知一组数据x1,x2,x3,…,x n的方差为2,则另一组数据3x1,3x2,3x3,…,3x n的方差为.三、解答题14.某校欲招聘一名教师,现有甲、乙、丙三人通过专业知识、讲课、答辩三项测试.他们各自的成绩(单位:分)如下表所示:专业知讲课答辩应聘者识甲708580乙908575丙809085按照招聘简章要求,对专业知识、讲课、答辩三项赋权5∶4∶1,请计算三名应聘者的平均成绩,从成绩看,应该录取谁?15.为了调查甲、乙两台包装机分装标准质量为400 g奶粉的情况,质检员进行了抽样调查,过程如下,请补全表一、表二中的空白,并回答提出的问题.收集数据:从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:g)如下:甲:400,400,408,406,410,409,400,393,394,395;乙:403,404,396,399,402,402,405,397,402,398.整理数据:表一质量频数(g) 种类393≤x<396396≤x<399399≤x<402402≤x<405405≤x<408408≤x<411甲30013乙0150分析数据:表二种类平均数(g)中位数(g)众数(g)方差甲401.540036.85乙400.84028.56得出结论:包装机分装情况比较好的是(填“甲”或“乙”),说明你的理由.16.车间有20名工人,某一天他们生产的零件个数统计如下表.车间20名工人某一天生产的零件个数统计表生产零件91011121315161920的个数(个)工人人数(人)116422211(1)求这一天20名工人生产零件的平均个数;(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?华师大版八年级数学下册第20章《数据的整理与初步处理》单元测试答案卷整理:键盘手一、选择题1.一组数据20,21,22,23,23的中位数和众数分别是(D)A.20,23B.21,23C.21,22D.22,232.为参加全市中学生足球赛,某中学从全校学生中选拔22名足球运动员组建足球队,这22名运动员的年龄(岁)如下表所示,该足球队队员的平均年龄是(B)年龄(岁)12131415人数71032A.12岁B.13岁C.14岁D.15岁3.甲、乙、丙、丁四人各进行了10次射击测试,他们的平均成绩相同,方差分别是1.2,1.1,0.6,0.9,则射击成绩最稳定的是(C)A.甲B.乙C.丙D.丁4.已知一组数据5,4,x,3,9的平均数为5,则这组数据的中位数是(B)A.3B.4C.5D.65.已知一组数据为7,2,5,x,8,它们的平均数是5,则这组数据的方差为(C)A.3B.4.5C.5.2D.66.帅帅收集了南街米粉店今年6月1日至6月5日每天的用水量(单位:吨),整理并绘制成如图a的折线统计图.下列关于这组数据的结论正确的是(D)图aA.最大值与最小值的差是6B.众数是7C.中位数是5D.方差是87.一次数学测试,某小组5名同学的成绩统计如下(有两个数据被遮盖):组员甲乙丙丁戊平均成绩众数得分8177■808280■则被遮盖的两个数据依次是(A)A.80,80B.81,80C.80,2D.81,28.某排球队6名场上队员的身高(单位:cm)是:180,184,188,190,192,194.现用一名身高为186 cm的队员换下场上身高为192 cm的队员,与换人前相比,场上队员的身高(A)A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大二、填空题9.一组数据2,1,2,5,3,2的众数是2.10.下表是某养殖户的500只鸡出售时质量的统计数据.质量/kg 1.0 1.2 1.4 1.6 1.8 2.0频数/只561621121204010则500只鸡质量的中位数为 1.4.11.已知一组数据1,3,5,7,9,则这组数据的方差是8.12.一组数据4,3,x,1,5的众数是5,则x=5.13.已知一组数据x1,x2,x3,…,x n的方差为2,则另一组数据3x1,3x2,3x3,…,3x n的方差为18.三、解答题14.某校欲招聘一名教师,现有甲、乙、丙三人通过专业知识、讲课、答辩三项测试.他们各自的成绩(单位:分)如下表所示:应聘者专业知讲课答辩识甲708580乙908575丙809085按照招聘简章要求,对专业知识、讲课、答辩三项赋权5∶4∶1,请计算三名应聘者的平均成绩,从成绩看,应该录取谁?解:甲的平均成绩为77分,乙的平均成绩为86.5分,丙的平均成绩为84.5分应录取乙15.为了调查甲、乙两台包装机分装标准质量为400 g奶粉的情况,质检员进行了抽样调查,过程如下,请补全表一、表二中的空白,并回答提出的问题.收集数据:从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:g)如下:甲:400,400,408,406,410,409,400,393,394,395;乙:403,404,396,399,402,402,405,397,402,398.整理数据:表一质量频数(g) 种类393≤x<396396≤x<399399≤x<402402≤x<405405≤x<408408≤x<411甲30013乙0150分析数据:表二种类平均数(g)中位数(g)众数(g)方差甲401.540036.85乙400.84028.56得出结论:包装机分装情况比较好的是(填“甲”或“乙”),说明你的理由.解:整理数据:表一质量(g)频数种类393≤x<396396≤x<399399≤x<402402≤x<405405≤x<408408≤x<411甲303013乙031510分析数据:将甲组数据重新排列为393,394,395,400,400,400,406,408,409,410,∴甲组数据的中位数为400.∵乙组数据中402出现的次数最多,有3次,∴乙组数据的众数为402.填表如下:表二众数种类平均数(g)中位数(g)方差(g)甲401.540040036.85乙400.84024028.56得出结论:甲,理由:从中位数(众数)角度说,甲的中位数(众数)为标准质量400 g.乙,理由:从方差角度说,乙的方差小,分装情况更稳定.从平均数角度说,乙的平均数更接近标准质量400 g.16.车间有20名工人,某一天他们生产的零件个数统计如下表.车间20名工人某一天生产的零件个数统计表生产零件91011121315161920的个数(个)工人人数(人)116422211(1)求这一天20名工人生产零件的平均个数;(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?×(9×1+10×1+11×6+12×4+13×2+15×2+16×2+19×1+20×1)=13(个).解:(1)x̅=120答:这一天20名工人生产零件的平均个数为13个.=12(个),众数为11个,(2)中位数为12+122当定额为13个时,有8人达标,6人获奖,不利于提高大多数工人的积极性;当定额为12个时,有12人达标,8人获奖,不利于提高大多数工人的积极性;当定额为11个时,有18人达标,12人获奖,有利于提高大多数工人的积极性.∴定额为11个时,有利于提高大多数工人的积极性.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华东师大版八年级下册第20章数据的整理与初步处理单元测试题
一、选择题(每小题3分,共30分)
1.某组7名同学在一学期里阅读课外书籍的册数分别是:14,12,13,12,17,18,16,则这组数据的中位数是( )
A.13 B.14 C.16 D.17
2.已知小明在一次面试中的成绩为创新:87,唱功:95,综合知识:89;若三项测试得分分别赋予权重3,6,1,则小明的平均成绩是( )
A.90 B.90.3 C.91 D.92
3.某特警部队为了选拔“神枪手”,举行了1000米射击比赛,最后由甲、乙两名战士进入决赛,在相同条件下,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99.68环,甲的方差是0.28,乙的方差是0.21,则下列说法中,正确的是( ) A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定
C.甲、乙两人成绩的稳定性相同D.无法确定谁的成绩更稳定
4.四名运动员参加了射击比赛,他们成绩的平均成绩x与方差s2如下表所示,如果要选择一个成绩好且状态稳定的人去参赛,那么应选( )
A.甲B.乙C
5.在共有15人参加的“我爱祖国”演讲比赛中,参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的( )
A.平均数B.众数C.中位数D.方差
6.某学校在开展“节约每一滴水”的活动中,从七年级的200名同学中任选出十名同
请你估计这200)
A.180吨B.200吨C.240吨D.360吨
7.实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,学习委员
A.88 B.95 C.90 D.92
8.某中学初三(1)班的一次数学测试的平均成绩为80分,男生的平均成绩为82分,
女生平均成绩为77分,则该班男、女生的人数之比为( )
A.1∶2 B.2∶1 C.3∶2 D.2∶3
9.若干名工人某天生产同一种零件,生产的零件数整理成条形图(如图所示),设他们生产零件的平均数为a,中位数为b,众数为c,则有( )
A.b>a>c B.c>a>b
C.a>b>c D.b>c>a
10.小明等五位同学以他们的年龄为一组数据,计算出这组数据的方差是0.5,则10年后小明等五位同学年龄的方差将( )
A.增大B.保持不变C.减小D.无法确定
二、填空题(每小题3分,共24分)
11.有10个数据的平均数是12,另有20个数据的平均数为15,那么这30个数的平均数是____.
12.某小组在体育课的体能测试成绩是:45分3人,44分3人,43分2人,41分2人(满分为45分),则小组体能测试的中位数是____分.
13.某中学规定:学生的学期体育综合成绩满分为100分,其中,期中考试成绩占40%,期末考试成绩占60%,小海这个学期的期中、期末成绩(百分制)分别是80分、90分,则小海这个学期的体育综合成绩是____分.
14.小明和小华做投掷飞镖游戏各5次,两人成绩(单位:环)如图所示,根据图中的信息可以确定成绩更稳定的是____.(填“小明”或“小华”)
,第14题
图),第16题图)
,第18题图)
15.一组数据5,4,7,2,2,7,y,x的众数是5,则x=____,y=____,中位数是
____.
16.为响应“书香成都”建设的号召,在全校形成良好的人文阅读风尚,成都市某中学随机调查了部分学生平均每天的阅读时间,统计结果如图所示,则在本次调查中,阅读时间的中位数是____小时,众数是____小时.
17.在植树节当天,某校一个班同学分成10个小组参加植树造林活动,10个小组植树的株数如下表:
则这10
18.在一次捐款活动中,某班50名同学捐出自己的零花钱,有捐5元、10元、20元的,还有捐50元和100元的,如图所示的统计图反映了不同的捐款数的人数比例,那么该班同学平均每人捐款____元.
三、解答题(共66分)
19.(7分)设一组数据x1,x2,…,x n的平均数为m,求下列各组数据的平均数:
(1)x1+3,x2+3,…,x n+3;
(2)2x1,2x2,…,2x n.
20.(8分)某公司欲招聘一名工作人员,对甲、乙两位应聘者进行面试和笔试,他们的成绩(百分制)如表所示.
谁将被录取?
21.(9分)(2015·淄博)在学校组织的社会实践活动中,甲、乙两人参加了射击比赛,每人射击七次,命中的环数如表:。

相关文档
最新文档