2010年武汉市中考数学试卷详解(完整版)

合集下载

2010年—2015年历年武汉中考数学真题专题3(解一元一次不等式组)

2010年—2015年历年武汉中考数学真题专题3(解一元一次不等式组)

2010年—2015年历年武汉中考数学真题专题3(含解答)解一元一次不等式组如何验证某知识点学员已经掌握?现在的教育体系下是通过考题来证明。

武汉数学中考真题也符合2-8法则。

经过本人统计与整理,武汉中考真题共存在28个专题,也就是只要将这28个专题上反复练习,可以将武汉中考数学考满分。

而在有限的时间上,有针对性的对这28个专题的反复练习,也是最快速度提高中考数学成绩的方式。

经过统计,简单的中考数学题一共涉及22个专题,分值92分。

中等难度分值16分,难度较高分值12分。

历史总会不断的重演,真题具备的参考价值都大于所有其他资料。

真题为本人整理,如有进一步需要请联系QQ:284943387序号考点6年总分值均分频度难度3解一元一次方程组、不等式组(结合数轴)3T153T33T33T33T315 2.50112015年2014年2013年2012年2011年2010年15.(3分)(2015•武汉)定义运算“*”,规定x*y=ax2+by,其中a、b为常数,且1*2=5,2*1=6,则2*3=.3.(3分)(2013•武汉)不等式组的解集是()A.﹣2≤x≤1 B.﹣2<x<1 C.x≤﹣1 D.x≥23.(2012武汉)在数轴上表示不等式x﹣1<0的解集,正确的是()A.B.C.D.3.(2011•武汉)如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是()A.B.C.D.3.(2010•武汉)如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是()A.B.C.D.15.(3分)(2015•武汉)定义运算“*”,规定x*y=ax2+by,其中a、b为常数,且1*2=5,2*1=6,则2*3=10.解:根据题中的新定义化简已知等式得:,解得:a=1,b=2,则2*3=4a+3b=4+6=10,故答案为:10.3.(3分)(2013•武汉)不等式组的解集是()A.﹣2≤x≤1 B.﹣2<x<1 C.x≤﹣1 D.x≥2考点:解一元一次不等式组.专题:计算题.分析:分别解出每个不等式的解集,再求其公共部分.解答:解:,由①得,x≥﹣2;由②得,x≤1;故不等式组的解集为﹣2≤x≤1.故选A.点评:本题考查了解一元一次不等式,会找其公共部分是解题的关键.3.(2012武汉)在数轴上表示不等式x﹣1<0的解集,正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式。

【真题】武汉市中考数学试卷含答案解析

【真题】武汉市中考数学试卷含答案解析

湖北省武汉市中考数学试卷(解析版)一、选择题(共10小题,每小题3分,共30分)1.(3分)温度由﹣4℃上升7℃是()A.3℃ B.﹣3℃C.11℃D.﹣11℃【分析】根据题意列出算式,再利用加法法则计算可得.【解答】解:温度由﹣4℃上升7℃是﹣4+7=3℃,故选:A.【点评】本题主要考查有理数的加法,解题的关键是熟练掌握有理数的加法法则.2.(3分)若分式在实数范围内有意义,则实数x的取值范围是()A.x>﹣2 B.x<﹣2 C.x=﹣2 D.x≠﹣2【分析】直接利用分式有意义的条件分析得出答案.【解答】解:∵代数式在实数范围内有意义,∴x+2≠0,解得:x≠﹣2.故选:D.【点评】此题主要考查了分式有意义的条件,正确把握定义是解题关键.3.(3分)计算3x2﹣x2的结果是()A.2 B.2x2C.2x D.4x2【分析】根据合并同类项解答即可.【解答】解:3x2﹣x2=2x2,故选:B.【点评】此题考查合并同类项,关键是根据合并同类项的法则解答.4.(3分)五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A.2、40 B.42、38 C.40、42 D.42、40【分析】根据众数和中位数的定义求解.【解答】解:这组数据的众数和中位数分别42,38.故选:B.【点评】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.5.(3分)计算(a﹣2)(a+3)的结果是()A.a2﹣6 B.a2+a﹣6 C.a2+6 D.a2﹣a+6【分析】根据多项式的乘法解答即可.【解答】解:(a﹣2)(a+3)=a2+a﹣6,故选:B.【点评】此题考查多项式的乘法,关键是根据多项式乘法的法则解答.6.(3分)点A(2,﹣5)关于x轴对称的点的坐标是()A.(2,5)B.(﹣2,5)C.(﹣2,﹣5)D.(﹣5,2)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【解答】解:点A(2,﹣5)关于x轴的对称点B的坐标为(2,5).故选:A.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.7.(3分)一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是()A.3 B.4 C.5 D.6【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【解答】解:结合主视图和俯视图可知,左边上层最多有2个,左边下层最多有2个,右边只有一层,且只有1个.所以图中的小正方体最多5块.故选:C.【点评】此题主要考查了由三视图判断几何体,考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.8.(3分)一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()A.B.C.D.【分析】画树状图展示所有16种等可能的结果数,再找出两次抽取的卡片上数字之积为偶数的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为12,所以两次抽取的卡片上数字之积为偶数的概率==.故选:C.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.9.(3分)将正整数1至按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是()A.B.C.D.【分析】设中间数为x,则另外两个数分别为x﹣1、x+1,进而可得出三个数之和为3x,令其分别等于四个选项中数,解之即可得出x的值,由x为整数、x 不能为第一列及第八列数,即可确定x值,此题得解.【解答】解:设中间数为x,则另外两个数分别为x﹣1、x+1,∴三个数之和为(x﹣1)+x+(x+1)=3x.根据题意得:3x=、3x=、3x=、3x=,解得:x=673,x=672(舍去),x=672,x=671.∵673=84×8+1,∴不合题意,舍去;∵672=84×8,∴不合题意,舍去;∵671=83×7+7,∴三个数之和为.故选:D.【点评】本题考查了一元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.10.(3分)如图,在⊙O中,点C在优弧上,将弧沿BC折叠后刚好经过AB的中点D.若⊙O的半径为,AB=4,则BC的长是()A.B.C.D.【分析】连接OD、AC、DC、OB、OC,作CE⊥AB于E,OF⊥CE于F,如图,利用垂径定理得到OD⊥AB,则AD=BD=AB=2,于是根据勾股定理可计算出OD=1,再利用折叠的性质可判断弧AC和弧CD所在的圆为等圆,则根据圆周角定理得到=,所以AC=DC,利用等腰三角形的性质得AE=DE=1,接着证明四边形ODEF为正方形得到OF=EF=1,然后计算出CF后得到CE=BE=3,于是得到BC=3.【解答】解:连接OD、AC、DC、OB、OC,作CE⊥AB于E,OF⊥CE于F,如图,∵D为AB的中点,∴OD⊥AB,∴AD=BD=AB=2,在Rt△OBD中,OD==1,∵将弧沿BC折叠后刚好经过AB的中点D.∴弧AC和弧CD所在的圆为等圆,∴=,∴AC=DC,∴AE=DE=1,易得四边形ODEF为正方形,∴OF=EF=1,在Rt△OCF中,CF==2,∴CE=CF+EF=2+1=3,而BE=BD+DE=2+1=3,∴BC=3.故选:B.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和垂径定理.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算的结果是【分析】根据二次根式的运算法则即可求出答案.【解答】解:原式=+﹣=故答案为:【点评】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.12.(3分)下表记录了某种幼树在一定条件下移植成活情况移植总数n40015003500700090001400成活数m325133632036335807312628成活的频率(精确到0.01)0.8130.8910.9150.9050.8970.902由此估计这种幼树在此条件下移植成活的概率约是0.9(精确到0.1)【分析】概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率.【解答】解:概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率∴这种幼树移植成活率的概率约为0.9.故答案为:0.9.【点评】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.13.(3分)计算﹣的结果是.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=+=故答案为:【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.14.(3分)以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是30°或150°.【分析】分等边△ADE在正方形的内部和外部两种情况分别求解可得.【解答】解:如图1,∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD=AE=DE,∠BAD=∠ABC=∠BCD=∠ADC=90°,∠AED=∠ADE=∠DAE=60°,∴∠BAE=∠CDE=150°,又AB=AE,DC=DE,∴∠AEB=∠CED=15°,则∠BEC=∠AED﹣∠AEB﹣∠CED=30°.如图2,∵△ADE是等边三角形,∴AD=DE,∵四边形ABCD是正方形,∴AD=DC,∴DE=DC,∴∠CED=∠ECD,∴∠CDE=∠ADC﹣∠ADE=90°﹣60°=30°,∴∠CED=∠ECD=(180°﹣30°)=75°,∴∠BEC=360°﹣75°×2﹣60°=150°.故答案为:30°或150°.【点评】本题考查了正方形的性质,等边三角形的性质,等腰三角形的判定与性质,熟记各性质并准确识图是解题的关键.15.(3分)飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣.在飞机着陆滑行中,最后4s滑行的距离是216m.【分析】求出t=4时的函数值即可;【解答】解:根据对称性可知,开始4秒和最后4秒的滑行的距离相等,t=4时,y=60×4﹣×42=240﹣24=216m,故答案为216.【点评】本题考查二次函数的应用,解题的关键是理解题意,属于中考基础题.16.(3分)如图.在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.若DE平分△ABC的周长,则DE的长是.【分析】延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,根据题意得到ME=EB,根据三角形中位线定理得到DE=AM,根据等腰三角形的性质求出∠ACN,根据正弦的概念求出AN,计算即可.【解答】解:延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,∵DE平分△ABC的周长,∴ME=EB,又AD=DB,∴DE=AM,DE∥AM,∵∠ACB=60°,∴∠ACM=120°,∵CM=CA,∴∠ACN=60°,AN=MN,∴AN=AC•sin∠ACN=,∴AM=,∴DE=,故答案为:.【点评】本题考查的是三角形中位线定理、等腰三角形的性质、解直角三角形,掌握三角形中位线定理、正确作出辅助性是解题的关键.三、解答题(共8题,共72分)17.(8分)解方程组:【分析】方程组利用加减消元法求出解即可.【解答】解:,②﹣①得:x=6,把x=6代入①得:y=4,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(8分)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE 交于点G,求证:GE=GF.【分析】求出BF=CE,根据SAS推出△ABF≌△DCE,得对应角相等,由等腰三角形的判定可得结论.【解答】证明:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中∴△ABF≌△DCE(SAS),∴∠GEF=∠GFE,∴EG=FG.【点评】本题考查了全等三角形的判定与性质,等腰三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.19.(8分)某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图.学生读书数量统计表阅读量/本学生人数1152a3b45(1)直接写出m、a、b的值;(2)估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?【分析】(1)根据题意和统计图中的数据可以求得m、a、b的值;(2)根据统计图中的数据可以求得该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本.【解答】解:(1)由题意可得,m=15÷30%=50,b=50×40%=20,a=50﹣15﹣20﹣5=10,即m的值是50,a的值是10,b的值是20;(2)(1×15+2×10+3×20+4×5)×=1150(本),答:该年级全体学生在这次活动中课外阅读书籍的总量大约是1150本.【点评】本题考查扇形统计图、用样本估计总体、统计表,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20.(8分)用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C型钢板和3块D型钢板.现准备购买A、B型钢板共100块,并全部加工成C、D型钢板.要求C型钢板不少于120块,D型钢板不少于250块,设购买A型钢板x块(x为整数)(1)求A、B型钢板的购买方案共有多少种?(2)出售C型钢板每块利润为100元,D型钢板每块利润为120元.若童威将C、D型钢板全部出售,请你设计获利最大的购买方案.【分析】(1)根据“C型钢板不少于120块,D型钢板不少于250块”建立不等式组,即可得出结论;(2)先建立总利润和x的关系,即可得出结论.【解答】解:设购买A型钢板x块,则购买B型钢板(100﹣x)块,根据题意得,,解得,20≤x≤25,∵x为整数,∴x=20,21,22,23,24,25共6种方案,即:A、B型钢板的购买方案共有6种;(2)设总利润为w,根据题意得,w=100(2x+100﹣x)+120(x+300﹣3x)=100x+10000﹣240x+36000=﹣14x+46000,∵﹣14<0,∴当x=20时,w max=﹣14×20+46000=45740元,即:购买A型钢板20块,B型钢板80块时,获得的利润最大.【点评】此题主要考查了二元一次不等式组的应用,一次函数的性质,根据题意得出正确的等量关系是解题关键.21.(8分)如图,PA是⊙O的切线,A是切点,AC是直径,AB是弦,连接PB、PC,PC交AB于点E,且PA=PB.(1)求证:PB是⊙O的切线;(2)若∠APC=3∠BPC,求的值.【分析】(1)想办法证明△PAO≌△PBO.可得∠PAO=∠PBO=90°;(2)首先证明BC=2OK,设OK=a,则BC=2a,再证明BC=PB=PA=2a,由△PAK∽△POA,可得PA2=PK•PO,设PK=x,则有:x2+ax﹣4a2=0,解得x=a (负根已经舍弃),推出PK=a,由PK∥BC,可得==;【解答】(1)证明:连接OP、OB.∵PA是⊙O的切线,∴PA⊥OA,∴∠PAO=90°,∵PA=PB,PO=PO,OA=OB,∴△PAO≌△PBO.∴∠PAO=∠PBO=90°,∴PB⊥OB,∴PB是⊙O的切线.(2)设OP交AB于K.∵AB是直径,∴∠ABC=90°,∴AB⊥BC,∵PA、PB都是切线,∴PA=PB,∠APO=∠BPO,∵OA=OB,∴OP垂直平分线段AB,∴OK∥BC,∵AO=OC,∴AK=BK,∴BC=2OK,设OK=a,则BC=2a,∵∠APC=3∠BPC,∠APO=∠OPB,∴∠OPC=∠BPC=∠PCB,∴BC=PB=PA=2a,∵△PAK∽△POA,∴PA2=PK•PO,设PK=x,则有:x2+ax﹣4a2=0,解得x=a(负根已经舍弃),∴PK=a,∵PK∥BC,∴==.【点评】本题考查相似三角形的判定和性质、圆周角定理、切线的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题,学会利用参数解决问题,属于中考常考题型.22.(10分)已知点A(a,m)在双曲线y=上且m<0,过点A作x轴的垂线,垂足为B.(1)如图1,当a=﹣2时,P(t,0)是x轴上的动点,将点B绕点P顺时针旋转90°至点C,①若t=1,直接写出点C的坐标;②若双曲线y=经过点C,求t的值.(2)如图2,将图1中的双曲线y=(x>0)沿y轴折叠得到双曲线y=﹣(x <0),将线段OA绕点O旋转,点A刚好落在双曲线y=﹣(x<0)上的点D (d,n)处,求m和n的数量关系.【分析】(1)①如图1﹣1中,求出PB、PC的长即可解决问题;②图1﹣2中,由题意C(t,t+2),理由待定系数法,把问题转化为方程解决即可;(2)分两种情形①当点A与点D关于x轴对称时,A(a,m),D(d,n),可得m+n=0.②当点A绕点O旋转90°时,得到D′,D′在y=﹣上,作D′H⊥y轴,则△ABO≌△D′HO,推出OB=OH,AB=D′H,由A(a,m),推出D′(m,﹣a),即D′(m,n),由D′在y=﹣上,可得mn=﹣8;【解答】解:(1)①如图1﹣1中,由题意:B(﹣2,0),P(1,0),PB=PC=3,∴C(1,3).②图1﹣2中,由题意C(t,t+2),∵点C在y=上,∴t(t+2)=8,∴t=﹣4 或2,(2)如图2中,①当点A与点D关于x轴对称时,A(a,m),D(d,n),∴m+n=0.②当点A绕点O旋转90°时,得到D′,D′在y=﹣上,作D′H⊥y轴,则△ABO≌△D′HO,∴OB=OH,AB=D′H,∵A(a,m),∴D′(m,﹣a),即D′(m,n),∵D′在y=﹣上,∴mn=﹣8,综上所述,满足条件的m、n的关系是m+n=0或mn=﹣8.【点评】本题考查反比例函数综合题、旋转变换、待定系数法、全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加辅助线,构造全等三角形解决问题,属于中考压轴题.23.(10分)在△ABC中,∠ABC=90°.(1)如图1,分别过A、C两点作经过点B的直线的垂线,垂足分别为M、N,求证:△ABM∽△BCN;(2)如图2,P是边BC上一点,∠BAP=∠C,tan∠PAC=,求tanC的值;(3)如图3,D是边CA延长线上一点,AE=AB,∠DEB=90°,sin∠BAC=,,直接写出tan∠CEB的值.【分析】(1)利用同角的余角相等判断出∠BAM=∠CBN,即可得出结论;(2)先判断出△ABP∽△PQF,得出=,再判断出△ABP∽△CQF,得出CQ=2a,进而建立方程用b表示出a,即可得出结论;(3)先判断出=,再同(2)的方法,即可得出结论.【解答】解:(1)∵AM⊥MN,CN⊥MN,∴∠AMB=∠BNC=90°,∴∠BAM+∠ABM=90°,∵∠ABC=90°,∴∠ABM+∠CBN=90°,∴∠BAM=∠CBN,∵∠AMB=∠NBC,∴△ABM∽△BCN;(2)如图2,过点P作PF⊥AP交AC于F,在Rt△AFP中,tan∠PAC===,同(1)的方法得,△ABP∽△PQF,∴=,设AB=a,PQ=2a,BP=b,FQ=2b(a>0,b>0),∵∠BAP=∠C,∠B=∠CQF=90°,∴△ABP∽△CQF,∴,∴CQ==2a,∵BC=BP+PQ+CQ=b+2a+2a=4a+b∵∠BAP=∠C,∠B=∠B=90°,∴△ABP∽△CBA,∴=,∴BC===,∴4a+b=,a=b,∴BC=4×b+b=b,AB=a=b,在Rt△ABC中,tanC==;(3)在Rt△ABC中,sin∠BAC==,过点A作AG⊥BE于G,过点C作CH⊥BE交EB的延长线于H,∵∠DEB=90°,∴CH∥AG∥DE,∴=同(1)的方法得,△ABG∽△BCH∴,设BG=4m,CH=3m,AG=4n,BH=3n,∵AB=AE,AG⊥BE,∴EG=BG=4m,∴GH=BG+BH=4m+3n,∴,∴n=2m,∴EH=EG+GH=4m+4m+3n=8m+3n=8m+6m=14m,在Rt△CEH中,tan∠BEC==.【点评】此题是相似形综合题,主要考查了同角的余角相等,相似三角形的判定和性质,锐角三角函数,平行线分线段成比例定理,构造图1是解本题的关键.24.(12分)抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B.(1)直接写出抛物线L的解析式;(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.若△BMN 的面积等于1,求k的值;(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标.【分析】(1)根据对称轴为直线x=1且抛物线过点A(0,1)求解可得;(2)根据直线y=kx﹣k+4=k(x﹣1)+4知直线所过定点G坐标为(1,4),从而得出BG=2,由S△BMN=S△BNG﹣S△BMG=BG•x N﹣BG•x M=1得出x N﹣x M=1,联立直线和抛物线解析式求得x=,根据x N﹣x M=1列出关于k的方程,解之可得;(3)设抛物线L1的解析式为y=﹣x2+2x+1+m,知C(0,1+m)、D(2,1+m)、F(1,0),再设P(0,t),分△PCD∽△POF和△PCD∽△POF两种情况,由对应边成比例得出关于t与m的方程,利用符合条件的点P恰有2个,结合方程的解的情况求解可得.【解答】解:(1)由题意知,解得:b=2、c=1,∴抛物线L的解析式为y=﹣x2+2x+1;(2)如图1,∵y=kx﹣k+4=k(x﹣1)+4,∴当x=1时,y=4,即该直线所过定点G坐标为(1,4),∵y=﹣x2+2x+1=﹣(x﹣1)2+2,∴点B(1,2),则BG=2,∵S△BMN=1,即S△BNG﹣S△BMG=BG•x N﹣BG•x M=1,∴x N﹣x M=1,由得x2+(k﹣2)x﹣k+3=0,解得:x==,则x N=、x M=,由x N﹣x M=1得=1,∴k=±3,∵k<0,∴k=﹣3;(3)如图2,设抛物线L1的解析式为y=﹣x2+2x+1+m,∴C(0,1+m)、D(2,1+m)、F(1,0),设P(0,t),①当△PCD∽△FOP时,=,∴=,∴t2﹣(1+m)t+2=0;②当△PCD∽△POF时,=,∴=,∴t=(m+1);(Ⅰ)当方程①有两个相等实数根时,△=(1+m)2﹣8=0,解得:m=2﹣1(负值舍去),此时方程①有两个相等实数根t1=t2=,方程②有一个实数根t=,∴m=2﹣1,此时点P的坐标为(0,)和(0,);(Ⅱ)当方程①有两个不相等的实数根时,把②代入①,得:(m+1)2﹣(m+1)+2=0,解得:m=2(负值舍去),此时,方程①有两个不相等的实数根t1=1、t2=2,方程①有一个实数根t=1,∴m=2,此时点P的坐标为(0,1)和(0,2);综上,当m=2﹣1时,点P的坐标为(0,)和(0,);当m=2时,点P的坐标为(0,1)和(0,2).【点评】本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式、利用割补法求三角形的面积建立关于k的方程及相似三角形的判定与性质等知识点.。

2010年湖北各中考数学试题12套打包湖北随州

2010年湖北各中考数学试题12套打包湖北随州

随州市2010年初中毕业生升学考试数学试题(考试时间120分钟 满分120分) 一、填空题(共10道题,每小题3分,共30分)1. 2的平方根是 __________ .22. 分解因式:x - x = ______________ .3 .函数 y =血的自变量 x 的取值范围是 ___________________________ .x +14. _________________________________________________________________ 如图,O O 中,MAN 的度数为320°,则圆周角/ MAN = ____________________________________________________b a 8 已知,ab = T,a=b=2,则式子一十一= _________________.a b9.如图矩形纸片 ABCD , AB = 5cm , BC = 10cm , CD 上有一点 E , ED = 2cm , AD 上有一点 P , PD = 3cm , 过P作PF 丄AD 交BC 于F ,将纸片折叠,使 P 点与E 点重合,折痕与 PF 交于Q 点,则PQ 的长是___________ cm.10•将半径为4cm 的半圆围成一个圆锥,在圆锥内接一个圆柱(如图示),当圆柱的侧面的面积最大时, 圆柱的底面半径是 ______________________ cm.25. _____________________________________________________________________________ 如6•通信市场竞争日益激烈,某通信公司的手机市话费标准按原标准每分钟降低现在收费标准是每分钟 b 元,则原收费标准每分钟是 a 元后,再次下调了 20% ,_______ 元. 7•如图是由棱长为1的正方体搭成的积木三视图,则图中棱长为1的正方体的个数是左视图第7题第5题图俯视图15 .如图,过边长为 1的等边△ ABC 的边AB 上一点P ,作PE 丄AC 于E , Q 为BC 延长线上一点,当=CQ 时,连PQ 交AC 边于D ,贝U DE 的长为( )11A .B .C .D .不能确定3 2 3第15题图16 .已知四条直线 y = kx — 3, y =- 1, y = 3和x = 1所围成的四边形的面积是12,则k 的值为(A .1或—2B . 2 或—1C . 3D . 4三、解答题(共9道大题,共72分)18 . ( 6分)如图,一个含 45°的三角板HBE 的两条直角边与正方形 ABCD 的两邻边重合,过 E 点作EF二、选择题(A , B , C , 11.下列运算正确的是(A . 3 -3=1B .第10题图D 四个答案中,有且只有一个是正确的,每小题 )T a 2=a C . 3.14—兀=3.14— 兀3分,共18分)132(严12.化简:(丄 x —3 B . x -1x 亠1孚丄)*x-3)的结果是(x -1 2C .13.在△ ABC 中,/ C = 90°, D . 口x -3x -14 小 sinA = ,贝V tanB =5 D.-514.若函数yX 2 2 2x(x <2)(x>2)'则当函数值y = 8时,自变量 x 的值是(4 C .±或 4 D . 4 或- .6PA17 . ( 6分)解不等式组计03_4(x_1) 119. (6分)如图是我市某校八年级学生为玉树灾区捐款情况抽样调查的条形图和扇形统计图(1)求该样本的容量;(2)在扇形统计图中,求该样本中捐款15元的人数所占的圆心角度数;(3)若该校八年级学生有800人,据此样本求八年级捐款总数.20. (6分)如图,点P ABC的内心,延长AP交厶ABC的外接圆于D,在AC延长线上有一点E, 满足AD 2=AB • AE,求证:DE是O O的切线.21. (7分)黄冈某地“杜鹃节”期间,某公司70名职工组团前往参观欣赏,旅游景点规定:①门票每人60元,无优惠;②上山游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10元•公司职工正好坐满每辆车且总费用不超过5000元,问公司租用的四座车和十一座车各多少辆?22. (6分)甲、乙两同学投掷一枚骰子,用字母p、q分别表示两人各投掷一次的点数(1)求满足关于x的方程x2px 0有实数解的概率•(2)求(1)中方程有两个相同实数解的概率23.( 9分)如图,某天然气公司的主输气管道从 A 市的东偏北30°方向直线延伸,测绘员在 A 处测得要安装天然气的 M 小区在A 市东偏北60°方向,测绘员沿主输气管道步行 2000米到达C 处,测得小区 M 位于C 的北偏西60。

武汉中学九年级2010年十月月考数学试卷

武汉中学九年级2010年十月月考数学试卷

武汉中学九年级2010年十月月考数学试卷(时间120分钟 满分120分)注意:1、试卷分卷Ⅰ、卷Ⅱ,请把卷Ⅰ的选择题、填空题的答案填写在答题卡上。

2、请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、卷Ⅰ上答题无效。

3、祝你心情愉快,考试成功!第 Ⅰ 卷一、选择题:(每题3分,共36分)1.下列计算正确的是( )A .3+3= 6B .23-3= 3C .3·3=9D .(-3)2=-3 2. 计算:)27)(27(-+的结果是( ) A 、53 B 、5 C 、5 D 、5- 3.用配方法解一元二次方程x 2-4x+3=0时可配方得( )A .(x -2)2=7B .(x -2)2=1C .(x+2)2=1D .(x+2)2=2 4. 下列方程中,有两个不相等实数根的是( )A .x 2-2x -1=0B .x 2-2x+3=0C .x 2-23x+3=0D .x 2-4x+4=0 5. 在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转.下列图案中,不能由一个图形通过旋转而构成的是( )6.如右上图,圆和圆的位置关系是( )A.相切B.外离C.相交D.内含7. 如图,点A 、C 、B 在⊙O 上,已知∠AOB = 140°,则∠ACB 的值为( )A. 110°B. 120°C. 130°D. 140°8. 设m 、n 是方程220090x x +-=的两个实数根,则m+n-mn 的值为( )A .2007B .2008C .2009D .20109. 有1个人得了H1N1流感,经过两轮传染共有121人患流感,则第三轮传染后共有( )人患流感. A .1000 B .1210C .1331D .144010.如图,Rt △ABC 中,∠C=90°,∠A=45°,点P 是它的内切圆⊙O 两切点F 、G 之间劣弧上任一点,过P 作⊙O 的切线交AC 、AB 于D 、E ,当⊙O 的半径为1时,△ADE 的周长为( ) A .4B .22C .2+2D .2+2211.对于一元二次方程ax 2+bx+c=0,下列说法:①若b=a+c,则方程必有一根为x=-1; ②若c 是方程ax 2+bx+c=0的一个根,则一定有ac+b+1=0成立; ③若b>4ac,则方程ax 2+bx+c=0一定有两个不相等实数根;其中正确结论有( )个 A. 0 B. 1 C. 2 D. 312.如图,⊙O 是等腰梯形ABCD 的内切圆,切点分别为E 、F 、G 、H ,其中AB//CD ,连接OB 交⊙O 于点P ,连接OC 、OG 、OE 、FG 、FP ,下列结论:①EG 为⊙O 的直径;②∠OGF=∠OCF ;③若∠A=60°,则四边形OPFG 是菱形;④直线EG 是以BC 为直径的外接圆的切线。

2010年湖北省武汉市中考数学试卷(学生版) 电子版

2010年湖北省武汉市中考数学试卷(学生版)  电子版

2010年湖北省武汉市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)﹣2的相反数是( )A.B.﹣2C.D.22.(3分)在函数中,自变量x的取值范围是( )A.x≥1B.x≥1﹣﹣C.x≤1D.x≤13.(3分)如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是( )A.B.C.D.4.(3分)下列说法:①“掷一枚质地均匀的硬币一定是正面朝上”;②“从一副普通扑克牌中任意抽取一张,点数一定是6”( )A.①②都正确B.只有①正确C.只有②正确D.①②都不正确5.(3分)2010年上海世博会开园第一个月共售出门票664万张,664万用科学记数法表示为( )A.664×104B.66.4×105C.6.64×106D.0.664×107 6.(3分)如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC的大小是( )A.100°B.80°C.70°D.50°7.(3分)若x1,x2是方程x2=4的两根,则x1+x2的值是( )A.8B.4C.2D.08.(3分)如图所示,李老师办公桌上放着一个圆柱形茶叶盒和一个正方体的墨水盒,小芳从上面看,看到的图形是( )A.B.C.D.9.(3分)如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,则顶点A55的坐标是( )A.(13,13)B.(﹣13,﹣13)C.(14,14)D.(﹣14,﹣14)10.(3分)如图,⊙O的直径AB的长为10,弦AC长为6,∠ACB的平分线交⊙O于D,则CD长为( )A.7B.C.D.911.(3分)随着经济的发展,人们的生活水平不断提高.下图分别是某景点20072009﹣年游客总人数和旅游收入年增长率统计图.已知该景点2008年旅游收入4500万元.下列说法:①三年中该景点2009年旅游收入最高;②与2007年相比,该景点2009年的旅游收入增加[4500×(1+29%)﹣4500×(1﹣33%)]万元;③若按2009年游客人数的年增长率计算,2010年该景点游客总人数将达到万人次.其中正确的个数是( )A.0B.1C.2D.312.(3分)如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,BD⊥DC,BD=DC,CE平分∠BCD,交AB于点E,交BD于点H,EN∥DC交BD于点N.下列结论:①BH=DH;②CH;③.其中正确的是( )A.①②③B.只有②③C.只有②D.只有③二、填空题(共4小题,每小题3分,满分12分)13.(3分)计算:sin30°= ,(﹣3a2)2= , .14.(3分)某校八年级(2)班四名女生的体重(单位:kg)分别是:35,36,38,40.这组数据的中位数是 .15.(3分)如图,直线y1=kx+b过点A(0,2),且与直线y2=mx交于点P(1,m),﹣的解集是 .则不等式组mx>kx+b>mx216.(3分)如图,直线与y轴交于点A,与双曲线在第一象限交于B、C两点,且AB•AC=4,则k= .三、解答题(共9小题,满分72分)﹣=0.17.(6分)解方程:x2+x118.(6分)先化简,再求值:,其中.19.(6分)如图.点B,F,C,E在同一条直线上,点A,D在直线BE的两侧,AB∥DE,AC∥DF,BF=CE.求证:AC=DF.20.(7分)小伟和小欣玩一种抽卡片游戏:将背面完全相同,正面分别写有:1,2,3,4的四张卡片混合后,小伟从中随机抽取一张.记下数字后放回,混合后小欣再随机抽取一张,记下数字.如果所记的两数字之和大于4,则小伟胜;如果所记的两数字之和不大于4,则小欣胜.(1)请用列表或画树形图的方法.分别求出小伟,小欣获胜的概率;(2)若小伟抽取的卡片数字是1,问两人谁获胜的可能性大?为什么?21.(7分)(1)在平面直角坐标系中,将点A(﹣3,4)向右平移5个单位到点A1,再将点A1绕坐标原点顺时针旋转90°到点A2.直接写出点A1,A2的坐标;(2)在平面直角坐标系中,将第二象限内的点B(a,b)向右平移m个单位到第一象限点B1,再将点B1绕坐标原点顺时针旋转90°到点B2,直接写出点B1,B2的坐标;(3)在平面直角坐标系中.将点P(c,d)沿水平方向平移n个单位到点P1,再将点P1绕坐标原点顺时针旋转90°到点P2,直接写出点P2的坐标.22.(8分)如图,点O在∠APB的平分线上,⊙O与P A相切于点C.(1)求证:直线PB与⊙O相切;(2)PO的延长线与⊙O交于点E.若⊙O的半径为3,PC=4.求弦CE的长.23.(10分)某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价增加x元(x为10的正整数倍).(1)设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围;(2)设宾馆一天的利润为w元,求w与x的函数关系式;(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?24.(10分)已知:线段OA⊥OB,点C为OB中点,D为线段OA上一点.连接AC,BD 交于点P.(1)如图1,当OA=OB,且D为OA中点时,求的值;(2)如图2,当OA=OB,且时,求tan∠BPC的值.(3)如图3,当AD:AO:OB=1:n:时,直接写出tan∠BPC的值.25.(12分)如图,抛物线y1=ax22﹣ax+b经过A(﹣1,0),C(0,)两点,与x轴交于另一点B.(1)求此抛物线的解析式;(2)若抛物线的顶点为M,点P为线段OB上一动点(不与点B重合),点Q在线段MB上移动,且∠MPQ=45°,设线段OP=x,MQ y2,求y2与x的函数关系式,并直接写出自变量x的取值范围;(3)在同一平面直角坐标系中,两条直线x=m,x=n分别与抛物线交于点E、G,与(2)中的函数图象交于点F、H.问四边形EFHG能否成为平行四边形?若能,求m、n之间的数量关系;若不能,请说明理由.。

2010中考数学

2010中考数学

2010中考数学介绍2010年中考数学试题是中国教育系统中的一项重要考试。

这篇文档将介绍2010年中考数学试题的主要内容和解题方法,并提供一些参考答案和解析。

希望通过本文档的阅读,读者能对2010年中考数学试题有更深入的了解。

题目1:代数式计算题目描述已知a=3,b=4,则a^2 - b^2 = ?解题思路根据题目中的给定信息,我们可以直接利用代数式计算的方法来求解。

根据公式 (a + b)(a - b) = a^2 - b^2 ,将已知的a和b代入,我们可以得到:(3 + 4)(3 - 4) = 7 * -1 = -7所以a^2 - b^2的值为-7。

参考答案和解析答案:-7解析:根据代数式计算的方法,将已知的a和b代入公式(a + b)(a - b) = a^2 - b^2 ,我们可以得到a^2 - b^2 = -7。

题目2:几何图形与计算题目描述如下图所示,ABCD为一个平行四边形,AD=BC,M为AB 的中点。

那么,AM的长度等于?B _______ C|\\ /|| \\ / || \\ / |A|___X___|D解题思路根据题目中的给定信息,我们需要利用几何图形的性质来求解AM的长度。

首先,根据平行四边形的性质,我们知道AD与BC平行且等长,所以△ABM 与△CDM 是全等三角形。

由于M是AB的中点,所以AM与MB的长度是相等的。

根据全等三角形的性质,△ABM和△CDM的对应边长也是相等的,所以AM与MD的长度也是相等的。

所以,AM的长度等于MD的长度。

参考答案和解析答案:MD解析:根据几何图形的性质,我们可以得出结论:AM的长度等于MD的长度。

题目3:函数与方程题目描述若函数 f(x) = 2x + 1,求使得 f(x) = 5 的解 x 的值。

解题思路根据题目中的给定函数,我们需要求出满足f(x) = 5的解x 的值。

将给定函数的表达式 f(x) = 2x + 1 代入方程 f(x) = 5 ,可以得到:2x + 1 = 5解这个一元一次方程,我们可以得到:2x = 4x = 2所以,使得 f(x) = 5 的解 x 的值为2。

2010年湖北省黄冈市中考数学试卷及答案

2010年湖北省黄冈市中考数学试卷及答案

2010年湖北省黄冈市中考数学试卷及答案一、填空题(共10小题,每小题3分,满分30分)1.(3分)2的平方根是.2.(3分)分解因式:a2﹣1=.3.(3分)函数的自变量x的取值范围是.4.(3分)如图,⊙O中,的度数为320°,则圆周角∠MAN=度.5.(3分)如图,在等腰梯形ABCD中,AC⊥BD,AC=6cm,则等腰梯形ABCD的面积为cm2.6.(3分)通信市场竞争日益激烈,某通信公司的手机市话费标准按原标准每分钟降低a元后,再次下调了20%,现在收费标准是每分钟b元,则原收费标准每分钟是元.7.(3分)如图是由棱长为1的正方体搭成的积木三视图,则图中棱长为1的正方体的个数是.8.(3分)已知,ab=﹣1,a+b=2,则式子+=.9.(3分)如图,在矩形纸片ABCD中,AB=5cm,BC=10cm,CD上有一点E,ED=2cm,AD上有一点P,PD=3cm,过P作PF⊥AD交BC于F,将纸片折叠,使P点与E点重合,折痕与PF交于Q点,则PQ的长是cm.10.(3分)将半径为4cm的半圆围成一个圆锥,在圆锥内接一个圆柱(如图示),当圆柱的侧面的面积最大时,圆柱的底面半径是cm.二、选择题(共6小题,每小题3分,满分18分)11.(3分)下列运算正确的是()A.3﹣1÷3=1 B.C.|3.14﹣π|=3.14﹣πD.12.(3分)化简:的结果是()A.2 B. C. D.13.(3分)在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.14.(3分)若函数,则当函数值y=8时,自变量x的值是()A.±B.4 C.±或4 D.4或﹣15.(3分)如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为()A.B.C.D.不能确定16.(3分)已知四条直线y=kx﹣3,y=﹣1,y=3和x=1所围成的四边形的面积是12,则k的值为()A.1或﹣2 B.2或﹣1 C.3 D.4三、解答题(共9小题,满分72分)17.(6分)解不等式组:.18.(6分)如图,一个含45°的三角板HBE的两条直角边与正方形ABCD的两邻边重合,过E点作EF⊥AE交∠DCE的角平分线于F点,试探究线段AE与EF的数量关系,并说明理由.19.(6分)如图是我市某校八年级学生为玉树灾区捐款情况抽样调查的条形图和扇形统计图.(1)求该样本的容量;(2)在扇形统计图中,求该样本中捐款5元的圆心角度数;(3)若该校八年级学生有800人,据此样本求八年级捐款总数.20.(6分)如图,点P为△ABC的内心,延长AP交△ABC的外接圆于D,在AC延长线上有一点E,满足AD2=AB•AE.求证:DE是⊙O的切线.21.(7分)黄冈某地“杜鹃节”期间,某公司70名职工组团前往参观欣赏,旅游景点规定:①门票每人60元,无优惠;②上山游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10元.公司职工正好坐满每辆车且总费用不超过5000元,问公司租用的四座车和十一座车各多少辆?22.(6分)甲、乙两同学投掷一枚骰子,用字母p、q分别表示两人各投掷一次的点数.(1)求满足关于x的方程x2+px+q=0有实数解的概率;(2)求(1)中方程有两个相同实数解的概率.23.(9分)如图,某天然气公司的主输气管道从A市的东偏北30°方向直线延伸,测绘员在A处测得要安装天然气的M小区在A市东偏北60°方向,测绘员沿主输气管道步行2000米到达C处,测得小区M 位于C的北偏西60°方向,请你在主输气管道上寻找支管道连接点N,使到该小区铺设的管道最短,并求AN的长?24.(11分)某同学从家里出发,骑自行车上学时,速度v(米/秒)与时间t(秒)的关系如图a,A(10,5),B(130,5),C(135,0).(1)求该同学骑自行车上学途中的速度v与时间t的函数关系式;(2)计算该同学从家到学校的路程(提示:在OA和BC段的运动过程中的平均速度分别等于它们中点时刻的速度,路程=平均速度×时间);(3)如图b,直线x=t(0≤t≤135),与图a的图象相交于P、Q,用字母S表示图中阴影部分面积,试求S与t的函数关系式;(4)由(2)(3),直接猜出在t时刻,该同学离开家所走过的路程与此时S的数量关系?25.(15分)已知抛物线y=ax2+bx+c(a≠0)顶点为C(1,1)且过原点O.过抛物线上一点P(x,y)向直线作垂线,垂足为M,连FM(如图).(1)求字母a,b,c的值;(2)在直线x=1上有一点,求以PM为底边的等腰三角形PFM的P点的坐标,并证明此时△PFM为正三角形;(3)对抛物线上任意一点P,是否总存在一点N(1,t),使PM=PN恒成立?若存在请求出t值,若不存在请说明理由.2010年湖北省黄冈市中考数学试卷参考答案与试题解析一、填空题(共10小题,每小题3分,满分30分)1.(3分)(2012•恩施州)2的平方根是±.【分析】直接根据平方根的定义求解即可(需注意一个正数有两个平方根).【解答】解:2的平方根是±.故答案为:±.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.(3分)(2013•上海)分解因式:a2﹣1=(a+1)(a﹣1).【分析】符合平方差公式的特征,直接运用平方差公式分解因式.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:a2﹣1=(a+1)(a﹣1).故答案为:(a+1)(a﹣1).【点评】本题主要考查平方差公式分解因式,熟记公式是解题的关键.3.(3分)(2010•黄冈)函数的自变量x的取值范围是x≥3.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x﹣3≥0且x+1≠0,解得:x≥3.故函数的自变量x的取值范围是x≥3.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.(3分)(2010•随州)如图,⊙O中,的度数为320°,则圆周角∠MAN=20度.【分析】根据圆周角定理先求出=40°,再可求∠MAN=20°.【解答】解:∵的度数为320°,∴=40°,∴∠MAN=20°.故答案为:20.【点评】此题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5.(3分)(2010•随州)如图,在等腰梯形ABCD中,AC⊥BD,AC=6cm,则等腰梯形ABCD的面积为18 cm2.【分析】通过作辅助线,把等腰梯形ABCD的面积转化成直角三角形的面积来完成.【解答】解:方法一:过点B作BE∥AC,交DC的延长线于点E,又AB∥CE,∴四边形ACEB是平行四边形,又等腰梯形ABCD∴BE=AC=DB=6cm,AB=CE,∵AC⊥BD,∴BE⊥BD,∴△DBE是等腰直角三角形,∴S=等腰梯形ABCD===S△DBE==6×6÷2=18(cm2).方法二:∵BD是△ADB和△CDB的公共底边,又AC⊥BD,∴AC=△ADB的高﹢△CDB的高,∴梯形ABCD的面积=△ADB面积+△CDB面积=BD×AC=6×=18(cm2).故答案为:18.【点评】本题考查了梯形面积的计算,以及它的性质,还运用了转化的思想.6.(3分)(2010•随州)通信市场竞争日益激烈,某通信公司的手机市话费标准按原标准每分钟降低a 元后,再次下调了20%,现在收费标准是每分钟b元,则原收费标准每分钟是(a+1.25b)元.【分析】可设原收费标准每分钟是x元,根据降价a元后,再次下调了20%后是b元/分作为相等关系列出方程,用含a,b的代数式表示x即可求解.【解答】解:设原收费标准每分钟是x元,则(x﹣a)(1﹣20%)=b,解得x=a+1.25b.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.7.(3分)(2010•随州)如图是由棱长为1的正方体搭成的积木三视图,则图中棱长为1的正方体的个数是6.【分析】易得这个几何体共有2层,由俯视图可得第一层正方体的个数,由主视图和左视图可得第二层正方体的个数,相加即可.【解答】解:由俯视图易得最底层有5个正方体,第二层有1个正方体,那么共有5+1=6个正方体组成.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.8.(3分)(2010•黄冈)已知,ab=﹣1,a+b=2,则式子+=﹣6.【分析】先通分,然后进行同分母分式加减运算,此时分母是ab,分子是a2+b2,运用完全平方公式将其变形为(a+b)2﹣2ab,最后把已知条件代入即可.【解答】解:∵ab=﹣1,a+b=2,∴+====﹣6.【点评】分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等.9.(3分)(2010•黄冈)如图,在矩形纸片ABCD中,AB=5cm,BC=10cm,CD上有一点E,ED=2cm,AD 上有一点P,PD=3cm,过P作PF⊥AD交BC于F,将纸片折叠,使P点与E点重合,折痕与PF交于Q 点,则PQ的长是cm.【分析】过Q点作QG⊥CD,垂足为G点,连接QE,设PQ=x,根据折叠及矩形的性质,用含x的式子表示Rt△EGQ的三边,再用勾股定理列方程求x即可.【解答】解:过Q点作QG⊥CD,垂足为G点,连接QE,设PQ=x,由折叠及矩形的性质可知,EQ=PQ=x,QG=PD=3,EG=x﹣2,在Rt△EGQ中,由勾股定理得EG2+GQ2=EQ2,即:(x﹣2)2+32=x2,解得:x=,即PQ=.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后对应线段相等.10.(3分)(2010•随州)将半径为4cm的半圆围成一个圆锥,在圆锥内接一个圆柱(如图示),当圆柱的侧面的面积最大时,圆柱的底面半径是1cm.【分析】易得扇形的弧长,除以2π也就得到了圆锥的底面半径,再加上母线长,利用勾股定理即可求得圆锥的高,利用相似可求得圆柱的高与母线的关系,表示出侧面积,根据二次函数求出相应的最值时自变量的取值即可.【解答】解:扇形的弧长=4πcm,∴圆锥的底面半径=4π÷2π=2cm,∴圆锥的高为=2cm,设圆柱的底面半径为rcm,高为Rcm.=,解得:R=2﹣r,∴圆柱的侧面积=2π×r×(2﹣r)=﹣2πr2+4πr(cm2),∴当r==1cm时,圆柱的侧面积有最大值.【点评】用到的知识点为:圆锥的弧长等于底面周长;圆锥的高,母线长,底面半径组成直角三角形;相似三角形的相似比相等及二次函数最值相应的自变量的求法等知识.二、选择题(共6小题,每小题3分,满分18分)11.(3分)(2010•随州)下列运算正确的是()A.3﹣1÷3=1 B.C.|3.14﹣π|=3.14﹣πD.【分析】根据同底数幂的乘法与除法,幂的乘方与积的乘方的运算法则以及绝对值的性质进行计算即可.【解答】解:A、3﹣1÷31=3﹣1﹣1=3﹣2,错误;B、=|a|,错误;C、∵3.14<π,∴|3.14﹣π|=π﹣3.14,错误;D、(a3b)2=a3×2b2=a6b2,正确;故选D.【点评】本题综合考查了整式运算的多个考点,包括绝对值的性质、同底数幂的乘法和除法,需熟练掌握且区分清楚,才不容易出错.同底数幂的乘(除)法:底数不变,指数相加(减);幂的乘方:底数不变指数相乘;绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.12.(3分)(2010•随州)化简:的结果是()A.2 B. C. D.【分析】先把括号中的第二个分式约分,再利用乘法分配律把(x﹣3)分别与括号中的式子相乘可使计算简便.【解答】解:=(﹣)•(x﹣3)=•(x﹣3)﹣•(x﹣3)=1﹣=.故选B.【点评】归纳提炼:对于一般的分式混合运算来讲,其运算顺序与整式混合运算一样,是先乘方,再乘除,最后算加减,如果遇括号要先算括号里面的.在此基础上,有时也应该根据具体问题的特点,灵活应变,注意方法.13.(3分)(2010•黄冈)在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.【分析】本题可以利用锐角三角函数的定义求解,也可以利用互为余角的三角函数关系式求解.【解答】解:由题意,设BC=4x,则AB=5x,AC==3x,∴tanB===.故选B.【点评】本题利用了勾股定理和锐角三角函数的定义.通过设参数的方法求三角函数值.14.(3分)(2015•甘南州)若函数,则当函数值y=8时,自变量x的值是()A.±B.4 C.±或4 D.4或﹣【分析】把y=8直接代入函数即可求出自变量的值.【解答】解:把y=8代入函数,先代入上边的方程得x=,∵x≤2,x=不合题意舍去,故x=﹣;再代入下边的方程x=4,∵x>2,故x=4,综上,x的值为4或﹣.故选:D.【点评】本题比较容易,考查求函数值.(1)当已知函数解析式时,求函数值就是求代数式的值;(2)函数值是唯一的,而对应的自变量可以是多个.15.(3分)(2010•黄冈)如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC 延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为()A.B.C.D.不能确定【分析】过P作BC的平行线,交AC于M;则△APM也是等边三角形,在等边三角形APM中,PE是AM上的高,根据等边三角形三线合一的性质知AE=EM;易证得△PMD≌△QCD,则DM=CD;此时发现DE的长正好是AC的一半,由此得解.【解答】解:过P作PM∥BC,交AC于M;∵△ABC是等边三角形,且PM∥BC,∴△APM是等边三角形;又∵PE⊥AM,∴AE=EM=AM;(等边三角形三线合一)∵PM∥CQ,∴∠PMD=∠QCD,∠MPD=∠Q;又∵PA=PM=CQ,在△PMD和△QCD中∴△PMD≌△QCD(AAS);∴CD=DM=CM;∴DE=DM+ME=(AM+MC)=AC=,故选B.【点评】此题考查了平行线的性质、等边三角形的性质、全等三角形的判定和性质;能够正确的构建出等边三角形△APM是解答此题的关键.16.(3分)(2010•随州)已知四条直线y=kx﹣3,y=﹣1,y=3和x=1所围成的四边形的面积是12,则k 的值为()A.1或﹣2 B.2或﹣1 C.3 D.4【分析】首先用k表示出直线y=kx﹣3与y=﹣1,y=3和x=1的交点坐标,即可用看表示出四边形的面积.得到一个关于k的方程,解方程即可解决.【解答】解:在y=kx﹣3中,令y=﹣1,解得x=;令y=3,x=;当k<0时,四边形的面积是:[(1﹣)+(1﹣)]×4=12,解得k=﹣2;当k>0时,可得[(﹣1)+(﹣1)]×4=12,解得k=1.即k的值为﹣2或1.故选A.【点评】解决本题的关键是利用梯形的面积公式,把求值的问题转化为方程问题.三、解答题(共9小题,满分72分)17.(6分)(2010•随州)解不等式组:.【分析】先求出各不等式的解集,再求出其公共解集即可.【解答】解:由(1)得,≤1,x≤2;由(2)得,3﹣4x+4<1,﹣4x<1﹣7,x>;故原不等式组的解集为:<x≤2.【点评】求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.18.(6分)(2010•随州)如图,一个含45°的三角板HBE的两条直角边与正方形ABCD的两邻边重合,过E点作EF⊥AE交∠DCE的角平分线于F点,试探究线段AE与EF的数量关系,并说明理由.【分析】AE=EF.根据正方形的性质推出AB=BC,∠BAD=∠HAD=∠DCE=90°,推出∠HAE=∠CEF,根据△HEB是以∠B为直角的等腰直角三角形,得到BH=BE,∠H=45°,HA=EC,根据CF平分∠DCE推出∠HAE=∠CEF,根据ASA证△HAE≌△CEF即可得到答案.【解答】线段AE与EF的数量关系为:AE=EF.证明:∵四边形ABCD是正方形,∴AB=BC,∠BAD=∠HAD=∠DCE=90°,又∵EF⊥AE,∴∠AEF=90°,∵AD∥BC∴∠DAE=∠AEB(两直线平行,内错角相等)∴∠HAE=∠HAD+∠DAE=∠AEF+∠BEA=∠CEF,又∵△HEB是以∠B为直角的等腰直角三角形,∴BH=BE,∠H=45°,HA=BH﹣BA=BE﹣BC=EC,又∵CF平分∠DCE,∴∠FCE=45°=∠EHA,在△HAE和△CEF中∴△HAE≌△CEF(ASA),∴AE=EF.【点评】此题考查线段相等的证明方法,可以通过全等三角形来证明.要判定两个三角形全等,先根据已知条件或求证的结论确定三角形,再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.19.(6分)(2010•随州)如图是我市某校八年级学生为玉树灾区捐款情况抽样调查的条形图和扇形统计图.(1)求该样本的容量;(2)在扇形统计图中,求该样本中捐款5元的圆心角度数;(3)若该校八年级学生有800人,据此样本求八年级捐款总数.【分析】(1)样本的容量=;(2)捐款5元的人数所占的圆心角度数=捐款5元的人数所占的百分比×360°;(3)先算出50人捐款的平均数,再算八年级捐款总数.【解答】解:(1)15÷30%=50(人),答:该样本的容量是50;(2)30%×360°=108°;(3)×800=16×475=7600元.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.本题还考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.20.(6分)(2010•随州)如图,点P为△ABC的内心,延长AP交△ABC的外接圆于D,在AC延长线上有一点E,满足AD2=AB•AE.求证:DE是⊙O的切线.【分析】要证DE是⊙O的切线,只要连接DC,DO并延长交⊙O于F,连接AF.根据已知再证∠FDE=90°即可.【解答】证明:连接DC,DO并延长交⊙O于F,连接AF.∵P点为△ABC的内心,∴∠BAD=∠DAE,又∵AD2=AB•AE,即=,∴△BAD∽△DAE,∴∠ADB=∠E.又∵∠ADB=∠ACB,∴∠ACB=∠E,BC∥DE,∴∠CDE=∠BCD=∠BAD=∠DAC,又∵∠CAF=∠CDF,∴∠FDE=∠CDE+∠CDF=∠DAC+∠CAF=∠DAF=90°,故DE是⊙O的切线.【点评】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.21.(7分)(2010•随州)黄冈某地“杜鹃节”期间,某公司70名职工组团前往参观欣赏,旅游景点规定:①门票每人60元,无优惠;②上山游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10元.公司职工正好坐满每辆车且总费用不超过5000元,问公司租用的四座车和十一座车各多少辆?【分析】设四座车租x辆,十一座车租y辆,先根据“共有70名职员”作为相等关系列出x,y的方程,再根据“公司职工正好坐满每辆车且总费用不超过5000元”作为不等关系列不等式,求x,y的整数解即可.注意求得的解要代入实际问题中检验.【解答】解:设四座车租x辆,十一座车租y辆,则有:,将4x+11y=70变形为:4x=70﹣11y,代入70×60+60x+11y×10≤5000,可得:70×60+15(70﹣11y)+11y×10≤5000,解得y≥,又∵x=≥0,∴y≤,故y=5,6.当y=5时,x=(不合题意舍去).当y=6时,x=1.答:四座车租1辆,十一座车租6辆.【点评】本题考查二元一次方程组与一元一次不等式的综合应用,将现实生活中的事件与数学思想联系起来,列出关系式即可求解.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的关系式.22.(6分)(2010•随州)甲、乙两同学投掷一枚骰子,用字母p、q分别表示两人各投掷一次的点数.(1)求满足关于x的方程x2+px+q=0有实数解的概率;(2)求(1)中方程有两个相同实数解的概率.【分析】(1)方程x2+px+q=0有实数解,则p2﹣4q≥0,把投掷骰子的36种p、q对应值,代入检验,找出符合条件的个数;(2)方程x2+px+q=0有相同实数解,则p2﹣4q=0,把投掷骰子的36种p、q对应值,代入检验,找出符合条件的个数.【解答】解:两人投掷骰子共有36种等可能情况,(1)其中使方程有实数解共有19种情况:p=6时,q=6、5、4、3、2、1;p=5时,q=6、5、4、3、2、1;p=4时,q=4、3、2、1;p=3时,q=2、1;p=2时,q=1;故其概率为.(2)使方程有相等实数解共有2种情况:p=4,q=4;p=2,q=1;故其概率为.【点评】本题考查一元二次方程根的判别式和概率关系,同时考查了学生的综合应用能力及推理能力.用到的知识点为:概率=所求情况数与总情况数之比;一元二次方程有实数根,判别式为非负数.23.(9分)(2010•随州)如图,某天然气公司的主输气管道从A市的东偏北30°方向直线延伸,测绘员在A处测得要安装天然气的M小区在A市东偏北60°方向,测绘员沿主输气管道步行2000米到达C处,测得小区M位于C的北偏西60°方向,请你在主输气管道上寻找支管道连接点N,使到该小区铺设的管道最短,并求AN的长?【分析】过M作MN⊥AC,由垂线段最短可知此时MN最小.进而根据直角三角形的性质可求出AN的长度.【解答】解:作MT∥AB.根据题意,∠5=∠2=90°﹣60°=30°,∠TMC=∠1=60°,∴∠AMC=30°+60°=90°.过M作MN⊥AC,垂足为N,此时MN最小.在Rt△ACM中,∠3=60°﹣∠4=30°,∴CM=AC=1000米,在Rt△NCM中,∠CMN=30°,∴CN=CM=500米,所以AN=AC﹣CN=2000﹣500=1500(米)【点评】此题结合方向角,考查了垂线段最短、含30度角的直角三角形等相关知识,难度不大.24.(11分)(2010•随州)某同学从家里出发,骑自行车上学时,速度v(米/秒)与时间t(秒)的关系如图a,A(10,5),B(130,5),C(135,0).(1)求该同学骑自行车上学途中的速度v与时间t的函数关系式;(2)计算该同学从家到学校的路程(提示:在OA和BC段的运动过程中的平均速度分别等于它们中点时刻的速度,路程=平均速度×时间);(3)如图b,直线x=t(0≤t≤135),与图a的图象相交于P、Q,用字母S表示图中阴影部分面积,试求S与t的函数关系式;(4)由(2)(3),直接猜出在t时刻,该同学离开家所走过的路程与此时S的数量关系?【分析】(1)此函数图象分段,因此这个函数为分段函数,求出各个段的函数表达式联立即可;(2)根据图象,分别得出各段路程相加即为从家到学校的路程;(3)x=t函数不定,t从0变化到135,分段求阴影面积;(4)设该同学离开家所走过的路程为l.由于路程=速度×时间,则①0≤t<10,l=vt=(t)×t=t2;②10≤t<130,l为前10分钟匀加速所走的路程加上后(t﹣10)分钟匀速所走的路程,即l=;③130≤t<135,l为前10分钟匀加速所走的路程加上接着的120分钟匀速所走的路程再加上后(t﹣130)分钟匀减速所走的路程,即l=.∴该同学离开家所走过的路程与所围的阴影面积相等.【解答】解:(1)v与时间t的函数关系式:;(2)OA段平均速度为2.5m/s,BC段的为2.5m/s,S=2.5×10+5×(130﹣10)+2.5×5=637.5m;(3)①0≤t<10,s=;②10≤t<130,s=;③130≤t≤135,s=.∴S与t的函数关系式:;(4)相等的关系.【点评】此题为函数图象与实际结合的题型,考查了学生对图象包含信息的认识,同学们应加强这方面能力的培养.25.(15分)(2010•随州)已知抛物线y=ax2+bx+c(a≠0)顶点为C(1,1)且过原点O.过抛物线上一点P(x,y)向直线作垂线,垂足为M,连FM(如图).(1)求字母a,b,c的值;(2)在直线x=1上有一点,求以PM为底边的等腰三角形PFM的P点的坐标,并证明此时△PFM为正三角形;(3)对抛物线上任意一点P,是否总存在一点N(1,t),使PM=PN恒成立?若存在请求出t值,若不存在请说明理由.【分析】(1)由抛物线y=ax2+bx+c(a≠0)顶点为C(1,1)且过原点O,可得a,b,c的值.(2)过P作直线x=1的垂线,可求P纵坐标,知道M、P、F三点坐标,就能求出三角形各边的长.(3)存在,Rt△PNH中,利用勾股定理建立起y与t的关系式,推出t的值,即可得知存在这样的点.【解答】解:(1)抛物线y=ax2+bx+c(a≠0)顶点为C(1,1)且过原点O,可得﹣=1,=1,c=0,∴a=﹣1,b=2,c=0.(2)由(1)知抛物线的解析式为y=﹣x2+2x,故设P点的坐标为(m,﹣m2+2m),则M点的坐标(m,),∵△PFM是以PM为底边的等腰三角形∴PF=MF,即(m﹣1)2+(﹣m2+2m﹣)2=(m﹣1)2+(﹣)2∴﹣m2+2m﹣=或﹣m2+2m﹣=﹣,①当﹣m2+2m﹣=时,即﹣4m2+8m﹣5=0∵△=64﹣80=﹣16<0∴此式无解②当﹣m2+2m﹣=﹣时,即m2﹣2m=﹣∴m=1+或m=1﹣Ⅰ、当m=1+时,P点的坐标为(1+,),M点的坐标为(1+,)Ⅱ、当m=1﹣时,P点的坐标为(1﹣,),M点的坐标为(1﹣,),经过计算可知PF=PM,∴△MPF为正三角形,∴P点坐标为:(1+,)或(1﹣,).(3)当t=时,即N与F重合时PM=PN恒成立.证明:过P作PH与直线x=1的垂线,垂足为H,在Rt△PNH中,PN2=(x﹣1)2+(t﹣y)2=x2﹣2x+1+t2﹣2ty+y2,PM2=(﹣y)2=y2﹣y+,P是抛物线上的点,∴y=﹣x2+2x;∴PN2=1﹣y+t2﹣2ty+y2=y2﹣y+,∴1﹣y+t2﹣2ty+y2=y2﹣y+,移项,合并同类项得:﹣y+2ty+﹣t2=0,∴y(2t﹣)+(﹣t2)=0对任意y恒成立.∴2t﹣=0且﹣t2=0,∴t=,故t=时,PM=PN恒成立.∴存在这样的点.【点评】本题是二次函数的综合题,考查了二次函数图象的对称轴问题,判定三角形是正三角形的方法,综合性强,能力要求极高.。

2010-2013湖北省武汉市中考数学试题及答案

2010-2013湖北省武汉市中考数学试题及答案

二0一0年湖北省武汉市中考数学真题第Ⅰ卷(选择题,共36分)一、选择题(共12小题。

每小题3分。

共36分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的代号涂黑.1.有理数-2的相反数是()(A)2 (B)-2 (C)11 (D)-222.函数y?x的取值范围是()(A)x≥1. (B)x≥-1. (C)x≤1. (D)x≤-1.3.如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是()(A)x>-1,x>2 (B)x>-1,x<2(C)x<-1, x<2 (D)x<-1,x>24.下列说法:①“掷一枚质地均匀的硬币一定是正面朝上”;②“从一副普通扑克牌中任意抽取一张,点数一定是6”.(A) ①②都正确. (B)只有①正确.(C)只有②正确.(D)①②都正确.5. 2010年上海世博会开园第一个月共售出门票664万张,664万用科学计数法表示为( )(A)664×10 (B)66.4×l0 (C)6.64×10 (D)0.664×l06.如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC的大小是()(A)100° (B)80° (C)70° (D)50°7.若x1,x2是方程x=4的两根,则x1+x2的值是( )(A)8. (B)4. (C)2. (D)0.8.如图所示,李老师办公桌上放着一个圆柱形茶叶盒和一个正方体的墨水盒,小芳从上面看,看到的图形是24567(A) (B) (C) (D)9.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,?,顶点依次用A1,A2,A3,A4,?表示,则顶点A55的坐标是()(A)(13,13) (B)(―13,―13) (C)(14,14) (D)(-14,-14)1 / 37。

2010年湖北各地中考数学试卷及答案集锦(12套)(WORD版)

2010年湖北各地中考数学试卷及答案集锦(12套)(WORD版)

ABCF EAB C GFEDO鄂州市2010年初中毕业及高中阶段招生考试数学试卷一、选择题(每小题3分,共30分)1.为了加强农村教育,2009年中央下拨了农村义务教育经费665亿元.665亿元用科学记数法表示正确的是( )A .6.65×109元B .66.5×1010元C .6.65×1011元D .6.65×1012元 2.下列数据:23,22,22,21,18,16,22的众数和中位数分别是( ) A .21,22 B .22,23 C .22,22 D .23,21 3.下面图中几何体的主视图是( )4.如图,AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 交AB 于点E ,DF ⊥AC 交AC 于点F .若S △ABC =7,DE =2, AB =4,则AC =( )A .4B .3C .6D .55.正比例函数y =x 与反比例函数y = kx (k ≠0)的图象在第一象限交于点A ,且OA =2,则k 的值为( )A .22 B .1 C . 2 D .2 6.庆“五一”,市工会组织篮球比赛,赛制为单循环形式(每两队之 间都赛一场),共进行了45场比赛.这次参赛队数目为( ) A .12 B .11 C .9 D .107.如图,平面直角坐标系中,∠ABO =90º,将△AOB 绕点O 顺时 针旋转,使点B 落在点B 1处,点A 落在点A 1处.若B 点的坐标 为( 16 5, 125),则点A 1的坐标为( ) A .(3,-4) B .(4,-3) C .(5,-3) D .(3,-5) 8.如图,AB 为⊙O 的直径,C 是⊙O 上一点,连接AC ,过点 C 作直线CD ⊥AB 交AB 于点D ,E 是OB 上一点,直线CE 与⊙O 交于点F ,连接AF 交直线CD 于点G .若AC =22, 则AG ·AF =( )A .10B .12C .8D .169.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论: ①a 、b 异号;②当x =1和x =3时,函数值相等; ③4a +b =0;④当y =4时,x 的取值只能为0. 其中正确的结论有( )A .1个B .2个C .3个D .4个 10.如图,正方形OABC 的边长为6,点A 、C 分别在x 轴、y轴的正半轴上,点D (2,0)在OA 上,P 是OB 上一动点,则A .B .C .D .A BCDDA .210B .10C .4D .6二、填空题(每小题3分,共18分)11.5的算术平方根是 .12.圆锥的底面直径是2m ,母线长4m ,则圆锥的侧面积是 m 2.13.已知α、β是方程x 2―4x ―3=0的两个实数根,则(α―3)(β―3)= .14.在一个黑色的袋子中装有除颜色外其他均相同的3个红球和6个白球,从中任意摸出1个球,摸出的球是白球的概率是 . 15.已知⊙O 的半径为10,弦AB =103,⊙O 上的点C 到弦AB 所在直线的距离为5,则以O 、A 、B 、C为顶点的四边形的面积是 .16.如图,四边形ABCD 中,AB =AC =AD ,E 是BC 的中点,AE =CE ,∠BAC =3∠CBD ,BD =62+66,则AB = .三、解答题(共72分)17.(8分)解不等式组⎪⎩⎪⎨⎧-<--≥--,,13524)2(3x x x x 并写出该不等式组的整数解.18.(8分)先化简2211112-÷⎪⎭⎫ ⎝⎛+--x x x x ,然后从-1、1、2中选取一个数作为x 的值代入求值.19.(8分)我市第四高级中学与第六高级中学之间进行一场足球比赛,邀请某校两位体育老师及两位九年级足球迷当裁判,九年级的一位足球迷设计了开球方式.(1)两位体育老师各抛掷一枚硬币,两枚硬币落地后正面朝上,则第四高级中学开球;否则,第六高级中学开球.请用树状图或列表的方法,求第四高级中学开球的概率.(2)九年级的另一位足球迷发现前面设计的开球方式不合理,他修改规则:如果两枚硬币都朝上时,第四高级中学得8分;否则,第六高级中学得4分.根据概率计算,谁的得分高,谁开球.你认为修改后的规则公平吗?若公平,请说明理由;若不公平,请你设计对双方公平的开球方式.20.(8分)春节期间,某客运站旅客流量不断增大,旅客往往需要长时间排队等候购票.经过调查发现,每天开始售票时,约有400人排队购票,同时又有新的旅客不断进入售票厅排队等候购票.售票时售A B C D EG H M A B C D E 60º30º与售票时间x (分钟)的关系如图所示,已知售票的前a 分钟只开放了两个售票窗口(规定每人只能购票一张).(1)求a 的值.(2)求售票到第60分钟时,售票厅排队等候购票的旅客人数.(3)若要在开始售票后半小时内让所有的排队旅客都能够购到票,以便后来到站的旅客随到随购,至少需要同时开放几个售票窗口?21.(8分)如图,一艘潜艇在海面下500m A 点处测得俯角为30º前下方的海底C 处有黑匣子信号发出,继续在同一深度直线航行4000m 后再次在B 点处测得俯角为60º前下方的海底C 处有黑匣子信号发出,求海底黑匣子C 点距离海面的深度(结果保留根号).22.(10分)工程师有一块长AD =12分米,宽AB =8分米的铁板,截去长AE =2分米、AF =4分米的直角三角形,在余下的五边形中,截得矩形MGCH ,其中点M 在线段EF 上. (1)若截得矩形MGCH 的面积为70平方分米,求矩形MGCH 的长与宽. (2)当EM 为多少时,矩形MGCH 的面积最大?并求此时矩形的周长.23.(10分)如图,一面利用墙,用篱笆围成的矩形花圃ABCD 的面积为S m 2,平行于墙的BC 边长为x m .(1)若墙可利用的最大长度为10m ,篱笆长为24m ,花圃中间用一道篱笆隔成两个小矩形,求S 与x 之间的函数关系式.(2)在(1)的条件下,围成的花圃的面积为45m 2时,求AB 的长.能否围成面积比45m 2更大的花圃?如果能,应该怎样围?如果不能,请说明理由.(3)若墙可利用最大长度为40m ,篱笆长77m ,中间用n 道篱笆隔成小矩形,且当这些小矩形为正方形和x 为正整数时,请直接写出一组满足条件的x 、n 的值.24.(12分)如图,在直角坐标系中,已知点A (-1,0)、B (0,2),动点P 沿过B 点且垂直于AB 的射线BM 运动,其运动的速度为每秒1个单位长度,射线BM 与x 轴交于点C . (1)求点C 的坐标.(2)求过A 、B 、C 三点的抛物线的解析式. (3)若点P 开始运动时,点Q 也同时从C 点出发,以点P 相同的速度沿x 轴负方向向点A 运动,t 秒后,以P 、Q 、C 为顶点的三角形为等腰三角形(点P 到点C 时停止运动,点Q 也同时停止运动),求t 的值.(4)在(2)(3)的条件下,当CQ =CP 时,求直线OP 与抛物线的交点坐标.A D BCA BD C…图1图22010年恩施自治州初中毕业及高中招生考试数 学 试 题注意事项:1.本试卷分试题卷和答题卡两部分,考试时间为120分钟,满分为120分.2.考生在答题前请阅读答题卡中的“注意事项”,然后按要求答题. 3.所有答案均须做在答题卡相应区域,做在其它区域无效.一、填空题:(本大题共8个小题,每小题3分,共24分) 1.9的相反数是 .2.据有关部门预测,恩施州煤炭总储量为2.91亿吨,用科学记数法表示这个数是 吨(保留两个有效数字). 3. 分解因式:=+-b ab b a 22 .4.在一个不透明的盒子里装有5个黑球,3个红球和2个白球,它们除颜色外其余都相同,从中随机摸出一个球,摸到红球的概率是 . 5.在同一直角坐标系中,正比例函数x k y 1=的图象与反比例函数xk y 2=的图象有公共点,则21k k 0(填“>”、“=”或“<”).6.如图1,在ABCD 中,已知AB=9㎝,AD=6㎝,BE 平分∠ABC 交DC 边于点E ,则DE 等 于 ㎝.7.如图2,在矩形ABCD 中,AD =4,DC =3,将△ADC 按逆时针方向绕点A 旋转到△AEF (点A 、B 、E 在同一直线上),连结CF ,则CF = .8.如图3,有一个形如六边形的点阵,它的中心是一个点,作为第一层,第二层每边有两个点,第三层每边有三个点,依次类推,如果n 层六边形点阵的总点数为331, 则n 等于 .二、选择题:(下列各小题都给出四个选项,其中只有一项是符合题目要求的.本大题共8个小题,每小题3分,共24分) 9.()24-的算术平方根是:A. 4B. 4±C. 2D. 2± 10.下列计算正确的是:()223()3图3图2图111.用4个棱长为1的正方体搭成一个几何体模型,其主视图与左视图如图4所示,则该立方体的俯视图不可..能.是:12.不等式组⎩⎨⎧≤-<+5148x x x 的解集是:A. 5≤xB. 53≤<-xC.53≤<xD. 3-<x13.某品牌商品,按标价九折出售,仍可获得20%的利润.若该商品标价为28元,则商品的进价为:A. 21元B. 19.8元C. 22.4元D. 25.2元 14.如图5,EF 是△ABC 的中位线,将△AEF 沿中线AD 方向平移到△A 1E 1F 1的位置,使E 1F 1与BC 边重合,已知△AEF 的面积为7,则图中阴影部分的面积为: A. 7 B. 14 C. 21 D. 2815.某班随机抽取6名同学的一次地生测试成绩如下:82,95,82,76,76,82.数据中的众数和中位数分别是:A. 82,76B. 76,82C. 82,79D. 82,82 16.如图6, 已知圆锥的高为8,底面圆的直径为12,则此圆锥的侧面积是A .24πB .30πC .48πD .60π 三、解答题(本大题共8个小题,满分72分) 17.(6分) 计算:2+()()()121212010-++--313⨯-18.(8分)解方程:14143=-+--xx x19.(8分)如图7,已知,在ABCD 中,AE=CF ,M 、N 分别是DE 、BF 的中点.求证:四边形MFNE 是平行四边形 .20.(8分)2010年4月14日青海玉树发生7.1级地震,地震灾情牵动全国人民的心.某社区响应恩施州政府的号召,积极组织社区居民为灾区人民献爱心活动.为了解该社区居民捐款情况,对社区部分捐款户数进行分组统计(统计表如下),数据整理成如图8所示的不完整统计图.已知A、B两组捐款户数直图7 图4图6图5⑴ A 组的频数是多少?本次调查样本的容量是多少? ⑵ 求出C 组的频数并补全直方图.⑶ 若该社区有500户住户,请估计捐款不少于300元的户数是多少?21.(10分) 如图9,已知,在△ABC 中,∠ABC=090,BC 为⊙O 的直径, AC 与⊙O 交于点D,点E 为AB 的中点,PF ⊥BC 交BC 于点G,交AC 于点F. (1)求证:ED 是⊙O 的切线. (2)如果CF =1,CP =2,sinA =54,求⊙O 的直径BC.22.(10分) 恩施州绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在我州收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.(1)若存放x 天后,将这批香菇一次性出售,设这批香菇的销售总金额为y 元,试写出y 与x 之间的函数关系式.(2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润=销售总金额-收购成本-各种费用)(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少? 图8 图923.(10分)(1)计算:如图10①,直径为a 的三等圆⊙O 1、⊙O 2、⊙O 3两两外切,切点分别为A 、B 、C ,求O 1A 的长(用含a 的代数式表示).(2)探索:若干个直径为a 的圆圈分别按如图10②所示的方案一和如图10③所示的方案二的方式排放,探索并求出这两种方案中n 层圆圈的高度n h和(用含n 、a 的代数式表示). (3)应用:现有长方体集装箱,其内空长为5米,宽为3.1米,高为3.1米.用这样的集装箱装运长为5米,底面直径(横截面的外圆直径)为0.1米的圆柱形钢管,你认为采用(2)中的哪种方案在该集装箱中装运钢管数最多?并求出一个这样的集装箱最多能装运多少根钢管?(3≈1.73)24.(12分) 如图11,在平面直角坐标系中,二次函数c bx x y ++=2的图象与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),与y 轴交于C (0,-3)点,点P 是直线BC 下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连结PO 、PC ,并把△POC 沿CO 翻折,得到四边形POP /C , 那么是否存在点P ,使四边形POP /C 为菱形?若存在,请求出此时点P 的坐标;若不存在,请说明理由.(3)当点P 运动到什么位置时,四边形 ABPC 的面积最大并求出此时P 点的坐标和四边形ABPC 的最大面积.②③①图11图10数学试题卷注意事项:1. 本试卷分为试题卷和答题卷两部分。

湖北省武汉市2010年中考模拟数学试题11

湖北省武汉市2010年中考模拟数学试题11

武汉市2010年中考数学模拟试卷一、选择题(共12小题,每小题3分,共36分)1、A 地的海拔高度是4600米,B 地的海拔高度是-100米,则A 地比B 地高 A 、4600米 B 、100米 C 、4500米 D 、4700米2、在函数y=11-x 中,自变量x 的取值范围是A 、x ≥1B 、x >1C 、x ≠1D 、x ≠03、把不等式组 的解集表示在数轴上,正确的是4、下列计算,正确的是 A 、1)12(2=- B 、41123=C 、123=-D 、3)3(2=- 5、若方程x-1=0的解是方程a+2x=6的解,则a 的值为 A 、-4 B 、4 C 、1 D 、66、我国自行研制的“银河”计算机运算速度为每秒384000000000次,保留四个有效数字,用科学记数法表示每秒钟的计算次数为A 、3.84×1011B 、3.840×1011C 、3.84×1012D 、3.840×10127、如图,△ABC 中,AB=AC ,BD 是△ABC 的高,将△BCD 沿BD 折叠,使C 点落在AC 上的E 处,若∠C=750,则∠ABE 的度数为 A 、750B 、300C 、450D 、37.508、下图中的俯视图是9、某校一篮球爱好者将姚明在NBA 中六场的得分情况绘制了频率分布直方图如下,已知从左至右各长方形的高的比为2:3:4:6:4:1,第二组的频数为18,那么这六场比赛中平均每场得分为A 、23分B 、22分C 、20分D 、18分10、如图,AB 是半圆O 的直径,C 为半圆上一点,E 是弧BC 的中点,AE 交BC 于点D ,若AC=4,COS ∠CAB=54,则CD 的长为: A 、34 B 、35 C 、1 D 、23 11、2008年4月15日武汉机场第二航站楼正式投入运营,预计全年旅客吞吐量达1300万人次,成为华中第一大机场,下面两图反映了近几年武汉机场旅客吞吐量及各航空公司所占吞吐量的比例。

湖北省武汉市2010年中考数学试题

湖北省武汉市2010年中考数学试题

2010年武汉市中考数学试题第Ⅰ卷(选择题,共36分)一、选择题(共12小题。

每小题3分。

共36分)下列各题中均有四个备选答案,其中有且只有一个正确,1.有理数-2的相反数是()(A)2 (B)-2 (C)12(D)-122.函数y=x的取值范围是()(A)x≥1.(B)x≥-1.(C)x≤1.(D)x≤-1.3.如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是()(A)x>-1,x>2 (B)x>-1,x<2(C)x<-1,x<2 (D)x<-1,x>24.下列说法:①“掷一枚质地均匀的硬币一定是正面朝上”;②“从一副普通扑克牌中任意抽取一张,点数一定是6”.(A) ①②都正确.(B)只有①正确.(C)只有②正确.(D)①②都正确.5.2010年上海世博会开园第一个月共售出门票664万张,664万用科学计数法表示为( )(A)664×104(B)66.4×l05(C)6.64×106(D)0.664×l076.如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC的大小是()(A)100°(B)80°(C)70°(D)50°7.若x1,x2是方程x2=4的两根,则x1+x2的值是( )(A)8.(B)4.(C)2.(D)0.8.如图所示,李老师办公桌上放着一个圆柱形茶叶盒和一个正方体的墨水盒,小芳从上面看,看到的图形是(A) (B) (C) (D)9.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,则顶点A55的坐标是()(A)(13,13)(B)(―13,―13)(C)(14,14)(D)(-14,-14)10.如图,⊙O的直径AB的长为10,弦AC长为6,∠AC'B的平分线交⊙O于D,则CD长为()(A) 7 (B)(C) (D) 911.随着经济的发展,人们的生活水平不断提高.下图分别是某景点2007—2009年游客总人数和旅游收入年增长率统计图.已知该景点2008年旅游收入4500万元.下列说法:①三年中该景点2009年旅游收入最高;②与2007年相比,该景点2009年的旅游收入增加[4500×(1+29%)-4500×(1-33%)]万元;③若按2009年游客人数的年增长率计算,2010年该景点游客总人数将达到280255280(1)255-⨯+万人次。

2010年武汉市中考数学试卷及答案

2010年武汉市中考数学试卷及答案

2010湖北武汉市中考数学试卷第Ⅰ卷 (选择题,共36分)一、选择题 (共12小题,每小题3分,共36分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的代号涂黑。

1. 有理数-2的相反数是(A) 2 (B) -2 (C) 21 (D) -212. 函数y=1-x 中自变量x 的取值范围是(A) x ≥1 (B) x ≥ -1 (C) x ≤1 (D) x ≤ -1 3. 如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是(A) x> -1,x>2 (B) x> -1,x<2 (C) x< -1,x<2 (D) x<-1,x>24. 下列说法: “掷一枚质地均匀的硬币一定是正面朝上”; “从一副普通扑克牌中任意抽取 一张,点数一定是6”;(A) 都正确 (B) 只有 正确 (C) 只有 正确 (D) 都错误 。

5. 2010年上海世博会开园第一个月共售出门票664万张,664万用科学计数法表示为 (A) 664⨯104 (B) 66.4⨯105 (C) 6.64⨯106 (D) 0.664⨯1076. 如图,△ABC 内有一点D ,且DA=DB=DC ,若∠DAB=20︒,∠DAC=30︒,则∠BDC 的大小是(A) 100︒ (B) 80︒ (C) 70︒ (D) 50︒ 7. 若x 1,x 2是方程x 2=4的两根,则x 1+x 2的值是 (A) 8 (B) 4 (C) 2 (D) 0 。

8. 如图所示,李老师办公桌上放着一个圆柱形茶叶盒和一个正方体的墨水盒,小芳从上面看,看到的图形是9. 如图,所有正方形的中心均在坐标原点,且各边与x 轴或y 轴平行。

从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A 1,A 2,A 3,A 4,…表示,则顶点A 55的坐标是 (A) (13,13) (B) (-13,-13) (C) (14,14) (D) (-14,-14) 。

2010数学中考试卷答案

2010数学中考试卷答案

2010年湖北鄂州市初中毕业及高中阶段招生考试数学解析一、选择题(每小题3分,共30分)1.(2010湖北鄂州,1,3分)为了加强农村教育,2009年中央下拨了农村义务教育经费666亿元.666亿元用科学记数法表示正确的是()A.6.66×109元B.66.6×1010元C.6.66×1011元D.6.66×1010元【分析】666亿元=66600000000元=6.66×1010元.故选D.【答案】D【涉及知识点】科学记数法【点评】科学记数法是每年中考试卷中的必考问题,把一个数写成a×10的形式(其中1≤<10,n为整数,这种计数法称为科学记数法),其方法是(1)确定a,a是只有一位整数的数;(2)确定n;当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).【推荐指数】★★★★★2.(2010湖北鄂州,2,3分)下列数据:23,22,22,21,18,16,22的众数和中位数分别是()A.21,22 B.22,23 C.22,22 D.23,21【分析】出现最多的数据是22,即众数是22;把数据从大到小排列为23,22,22,22,21,18,16,处在中间的是22,即中位数是22.【答案】C【涉及知识点】数据的代表【点评】本题考查数据的代表的两个量——众数和中位数.属中考试题中基础题,但是属于统计中常考的知识点.【推荐指数】★★★★3.(2010湖北鄂州,3,3分)下面图中几何体的主视图是()【分析】主视图和我们忽略厚度看见的几何体的相同.选B.【答案】B【涉及知识点】三视图【点评】本题考查几何体的三视图,在中考中经常出现,属低档题.【推荐指数】★★★4.(2010湖北鄂州,4,3分)如图,AD是△ABC中∠BAC的平分线,DE ⊥AB交AB于点E,DF⊥AC交AC于点F.若S△ABC=7,DE=2,AB=4,则AC=()A.4 B.3 C.6 D.5【分析】∵AD是△ABC中∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF =2.∵AB=4,∴S△ABD=×4×2=4.∵S△ABC=7,∴S△ACD=3,∴AC ==3.故选B.【答案】B【涉及知识点】角平分线的性质、三角形的面积【点评】本题考查角平分线的性质和三角形面积的计算.属于中考中的低档题.【推荐指数】★★★5.(2010湖北鄂州,5,3分)正比例函数y=x与反比例函数y=(k≠0)的图象在第一象限交于点A,且OA=,则k的值为()A.B.1 C.D.2【分析】作AB⊥x轴,垂足为B,∵点A在y=x上,∴AB=OB.∵AO=,∴AB=OB=1.∴y=经过点(1,1),∴k=1.故选B.【答案】B【涉及知识点】正比例函数、反比例函数、勾股定理【点评】本题属于一次函数与反比例函数、勾股定理的综合题目,解决的方案是:从图象上的点向x轴作垂线,构造直角三角形,由勾股定理和已知条件求出点的坐标,代入解析式求出未知系数的值.【推荐指数】★★★★6.(2010湖北鄂州,6,3分)庆“五一”,市工会组织篮球比赛,赛制为单循环形式(每两队之间都赛一场),共进行了45场比赛.这次有________队参加比赛.A.12 B.11 C.9 D.10【分析】设有x支队伍参加比赛,根据题意,得=45,解得x1=10,x2=-9(不合题意,舍去).故选D.【答案】D【涉及知识点】一元二次方程【点评】本题考查列一元二次方程解决实际问题.解决问题的关键是明确单循环比赛的计算公式,列出一元二次方程,属中档题.【推荐指数】★★★7.(2010湖北鄂州,7,3分)如图,平面直角坐标系中,∠ABO=90º,将△AOB绕点O顺时针旋转,使点B落在x轴上的点B1处,点A落在点A1处.若B点的坐标为(,),则点A1的坐标为()A.(3,-4)B.(4,-3)C.(5,-3)D.(3,-5)【分析】作BC⊥x轴,垂足为C,根据题意知,OC=,BC=.∴OB==4.∵△ABO∽△BCO,∴=,解得AB=3.∵△ABO旋转得到△A1B1O,∴OB1=4,A1B1=3,∴点A1的坐标为(4,-3).故选B.【答案】B【涉及知识点】旋转、勾股定理、平面直角坐标系【点评】本题通过平面直角坐标系主要考查旋转和勾股定理的知识,是一个综合性较强的题目,同时勾股定理的题目也是中考试题中涉及较多的知识点,属中档题.【推荐指数】★★★★★8.(2010湖北鄂州,8,3分)如图,AB为⊙O的直径,C是⊙O上一点,连接AC,过点C作直线CD⊥AB交AB于点D,E是OB上一点,直线CE与⊙O交于点F,连接AF交直线CD于点G.若AC=2,则AG·AF=()A.10 B.12 C.8 D.16【分析】连接BC,∵AB是直径,∴∠ACB=90°.∵CD⊥AB,∴∠ACG=∠B.∵∠B和∠F是同弧所对的圆周角,∴∠B=∠F.∴∠ACG=∠F.∴△ACG ∽△AFC.∴=,∴AG·AF=AC2.∵AC=2,∴AG·AF=8.故选C.【答案】C【涉及知识点】圆的基本性质、相似【点评】本题有机的把圆的基本性质和相似结合起来进行考查,综合性较强.在圆中,直径所对的圆周角等于90°和同弧所对的圆周角相等是中考中常涉及的内容,相似也是必考内容之一.本题属中档题.【推荐指数】★★★★★9.(2010湖北鄂州,9,3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①a、b异号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=4时,x的取值只能为0.其中正确的结论有____个.A.1 B.2 C.3 D.4【分析】由对称轴在y轴的右侧知,a、b异号,①正确;由图象与x轴的交点的横坐标是-2和6,得出对称轴是x=2,∴当x=1和x=3时,函数值相等,②正确;由对称轴是x=2,即-=2,∴4a+b=0,③正确;由图象和函数对称性知,当y=4时,x=0或x=4,④错误.故选C.【答案】C【涉及知识点】二次函数的图象和性质【点评】本题考查二次函数的图象与a、b、c的关系,解题的关键是熟知开口方向、对称轴、顶点坐标、图象与x轴交点、与y轴交点、当x=1时函数的图象等与a、b、c的关系.属于综合性很强的题目.【推荐指数】★★★★★10.(2010湖北鄂州,10,3分)如图所示,四边形OABC是正方形,边长为6,点A、C分别在x轴、y轴的正半轴上,点D在OA上,且D点的坐标为(2,0),P是OB上一动点,则PA+PD的最小值为()A.2 B.C.4 D.6【分析】连接CD,由于点A和点C是关于OB的对称点,∴PA+PB的最小值就是CD的长.由已知,得OC=6,OD=2,∴CD==2.故选A.【答案】A【涉及知识点】轴对称、勾股定理【点评】正方形是轴对称图形,对角线是其中一条对称轴.求对称轴同侧的两个点到对称轴的最短距离,即求某个点的对称点到另一个点的距离.【推荐指数】★★★★★二、填空题(每小题3分,共18分)11.(2010湖北鄂州,11,3分)5的算术平方根是.【分析】因为()2=5,且>0,∴5的算术平方根是.【答案】【涉及知识点】算术平方根【点评】算术平方根是一个正数的正的平方根,0的算术平方根是0.本题是中考试题中基础的题目,增加试题的可信度.【推荐指数】★★★12.(2010湖北鄂州,12,3分)圆锥的底面直径是2m,母线长4m,则圆锥的侧面积是m2.【分析】圆锥的侧面积公式为πrl,其中r是底面圆半径,l是母线长.根据题意知,r=1m,l=4m,∴πrl=π×1×4=4π(m2).【答案】4π【涉及知识点】圆锥的侧面积【点评】本题考查圆锥的侧面积公式,是圆的基本计算中常考的内容之一.只要熟记公式,认真计算,即可得出正确结果.属于中档题.【推荐指数】★★★13.(2010湖北鄂州,13,3分)已知α、β是方程x2―4x―3=0的两实数根,则(α―3)( β―3)=.【分析】根据题意,得α+β=4,αβ=-3.∴(α―3)( β―3)=αβ-3(α+β)+9=-3-3×4+9=-6.【答案】-6【涉及知识点】一元二次方程根与系数的关系【点评】本题考查一元二次方程根与系数的关系.先根据根与系数的关系得出两根之和与两根之积,然后将所求的算式变形代入求值.【推荐指数】★★★★14.(2010湖北鄂州,14,3分)在一个黑色的袋子中装有除颜色外其他均相同的3个红球和6个白球,从中任意摸出1个球,摸出的球是白球的概率是.【分析】共有9种结果,摸出的球是白球的结果是6种,∴P(摸出的球是白球)==.【答案】【涉及知识点】概率【点评】本题考查用列举法求古典概率.概率是中考中必考内容之一,难度不是很大,属中低档题.【推荐指数】★★★★★15.(2010湖北鄂州,15,3分)已知⊙O的半径为10,弦AB的长为10,点C在⊙O上,且点C到弦AB所在直线的距离为5,则以O、A、B、C为顶点的四边形的面积是.【分析】如图,可以画出图1、图2、图3三个图形.无论在哪个图形中,作OD⊥AB于D,∵OA=OB=10,AB=10,∴AD=BD=5,OD=5.∴附和条件的点C有下图中三个点.∴图1或图2中的四边形面积为:(10+10)×5×=25+25;图3中的面积为:10×5××2=50.【答案】25+25或50【涉及知识点】垂径定理、勾股定理、分情况讨论、图形的面积【点评】本题考查综合考查垂径定理、勾股定理、分情况讨论思想等知识点,是综合性很强的题目.【推荐指数】★★★★★16.(2010湖北鄂州,16,3分)如图,四边形ABCD中,AB=AC=AD,E 是BC的中点,AE=CE,∠BAC=3∠CBD,BD=6+6,则AB=.【分析】作DF⊥BA于F,∵AB=AC,E是BC的中点,∴AE⊥BC,BE=CE.∵AE=CE,∴△ABC,△ABE,△ACE都是等腰直角三角形,∠ABE=45°,∠BAC=∠AEB=∠AEC=90°.∵∠BAC=3∠CBD,∴∠DBC=30°.∴∠ABD =15°.∵AB=AC=AD,∴∠FAD=30°.设DF=x,则AF=x,AB=AD=2x.∵BD=6+6,∴在Rt△BFD中,x2+(x+2x)2=(6+6)2,解得x=6,∴AB=12.【答案】12【涉及知识点】等腰三角形、勾股定理、一元二次方程【点评】本题考查综合考查等腰三角形的三线合一、勾股定理、用方程解几何问题等知识点,是综合性很强的题目.解题中能发现△ABC,△ABE,△ACE都是等腰直角三角形是解题的关键.【推荐指数】★★★★三、解答题(17~21题,每题8分,22、23题每题10分,24题12分,共72分)17.(2010湖北鄂州17,8分)解不等式组并写出该不等式组的整数解.【分析】求出不等式①与不等式②的解集,再确定不等式组的解集,从而可确定该不等式组的整数解.【答案】解不等式-3(x-2)≥4-x得x≤1;解不等式得:x>-2;所以该不等式组的解集为:-2<x≤1,所以该不等式组的整数解是-1,0,1.【涉及知识点】解不等式、不等式组、整数解.【点评】对一元一次不等式组的考查主要突出基础性,题目一般不难,系数比较简单,主要考查方法的掌握.【推荐指数】★★★18.(2010湖北鄂州18,8分)先化简,然后从-1,1,2中选取一个数作为x的值代入求值.【分析】先分解因式寻找最简公分母,再进行混合运算,化成最简分式. 由于分式的分母不能为0,取值时注意字母的取值范围.【答案】原式=,原式=2.【涉及知识点】分式化简、求分式的值.【点评】本题运用分式化简与求值来解决问题,考查学生综合运用分式多个知识点解决问题的能力,属于中等难度的试题,具有一定的区分度.【推荐指数】★★★★19.(2010湖北鄂州19,8分)我市第四高级中学与第六高级中学之间进行一场足球比赛,邀请某校两位体育老师及两位九年级足球迷当裁判.九年级的一位足球迷设计了开球方式.(1)两位体育老师各掷一枚一元硬币,两枚硬币落地后正面都朝上第四高级中学开球,否则第六高级中学开球.请用画树状图或列表的方法,求第四高级中学开球的概率.(2)九年级的另一位足球迷发现前面设计的开球方式不合理,他修改规则:如果两枚硬币朝上时,第四高级中学得8分,否则第六高级中学得4分,根据概率计算,谁的得分高,谁开球.你认为修改后的规则公平吗?请说明理由;若不公平,请你设计对双双公平的开球方式.【分析】(1)用树状图或列表法,列出两位体育老师各掷一枚一元硬币的各种等可能情况,再求出正面都朝上有几种情况,从而可求第四高级中学开球的概率.(2)先求出各自的概率,再计算得分,可判断设计对双双是否公平.【答案】(1)列表得:上下上上上上下下上下下下由表可知:第四高级中学开球的概率.(2)不公平.因为第四高级中学开球的概率,得分:;第六高级中学开球的概率,得分:,所以不公平.修改规则:如果两枚硬币朝上时,第四高级中学得12分,否则第六高级中学得4分,根据概率计算,谁的得分高,谁开球.【涉及知识点】概率, 画树状图或列表.【点评】本题考查学生对概率应用、以及设计规则公平性的能力,属于中挡性题,具有一定的区分度.【推荐指数】★★★★20.(2010湖北鄂州20,8分)春节期间,某客运站旅客流量不断增大,旅客往往需要长时间排队等候购票.经调查发现,每天开始售票时,约有400人排队购票,同时又有新的旅客不断进入售票厅排队等候购票.售票时售票厅每分钟新增购票人数4人,每分钟每个售票窗口出售的票数3张.某一天售票厅排队等候购票的人数y(人)与售票时间x(分钟)的关系如图所示,已知售票的前a分钟只开放了两个售票窗口(规定每人只购一张票).(1)求a的值.(2)求售票到第60分钟时,售票厅排队等候购票的旅客人数.(3)若要在开始售票后半小时内让所有的排队的旅客都能购到票,以便后来到站的旅客随到随购,至少需要同时开放几个售票窗口?【分析】(1) 由图象知,售票a分钟时还有320排队,可得到等式:400+新增排队人数-售票人数=320.(2)求出BC段函数解析式,把当时,代入解析式求出函数值.(3)半小时内售出票数大于或等于原有400人和半小时新增加人的所需票数. 【答案】(1)由图象知,,所以;(2)设BC的解析式为,则把(40,320)和(104,0)代入,得,解得,因此,当时,,即售票到第60分钟时,售票厅排队等候购票的旅客有220人;(3)设同时开放个窗口,则由题知,解得,因为为整数,所以,即至少需要同时开放6个售票窗口。

2010年武汉市九年级五月调考数学试题-推荐下载

2010年武汉市九年级五月调考数学试题-推荐下载

9.正整数按如图所示的规律排列.则第 10 行,第 11 列的数字是
第一行
第二行
第三行
第四行
第五行
……
D.-5
第一列 第二列 第三列 第四列 第五列
1
4
9
16
25
2
3
8
15
24
5
6
7
14
23 22
第 9 题图
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(2010•武汉)﹣2的相反数是()A.﹣2 B.﹣C.D.2考点:相反数。

分析:一个数的相反数就是在这个数前面添上“﹣”号.解答:解:﹣2的相反数是2.故选D.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(2010•武汉)函数y=中,自变量x的取值范围是()A.x>1 B.x≥1 C.x<1 D.x≤1考点:函数自变量的取值范围;二次根式有意义的条件。

分析:本题主要考查自变量的取值范围,函数关系式是二次根式,根据二次根式的意义,被开方数是非负数就可以求解.解答:解:根据题意得:x﹣1≥0,解得x≥1.故选B.点评:函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.3.(2010•武汉)如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是()A.B.C.D.考点:在数轴上表示不等式的解集。

专题:计算题。

分析:先根据数轴得到不等式的解集是﹣1<x<2,再分别把四个选项的解集求出即可判断.解答:解:根据数轴可知这个不等式的解集是﹣1<x<2.四个选项的解集分别是:A、x>2,故本选项错误;B、﹣1<x<2,故本选项正确;C、x<﹣1,故本选项错误;D、无解,故本选项错误.故选B.点评:不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.(2010•武汉)下列说法:①“掷一枚质地均匀的硬币一定是正面朝上”;②“从一副普通扑克牌中任意抽取一张,点数一定是6”()A.①②都正确B.只有①正确C.只有②正确D.①②都不正确考点:随机事件。

分析:根据必然事件和随机事件的概率解答即可.解答:解:①掷一枚质地均匀的硬币可能是正面朝上,也可能是反面朝上;②从一副普通扑克牌中任意抽取一张,点数可能是6,也可能不是6;二者均为随机事件,故选D.点评:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.确定事件包括必然事件和不可能事件:(1)必然事件指在一定条件下一定发生的事件,不可能事件是指在一定条件下,一定不发生的事件.(2)不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(2010•武汉)2010年上海世博会开园第一个月共售出门票664万张,664万用科学记数法表示为()A.664×104B.66.4×105C.6.64×106D.0.664×107考点:科学记数法—表示较大的数。

专题:应用题。

分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.解答:解:664万即6 640 000用科学记数法表示为6.64×106.故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.(2010•武汉)如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC的大小是()A.100°B.80°C.70°D.50°考点:三角形的外角性质;三角形内角和定理。

分析:如果延长BD交AC于E,由三角形的一个外角等于与它不相邻的两个内角的和,得∠BDC=∠DEC+∠ECD,∠DEC=∠ABE+∠BAE,所以∠BDC=∠ABE+∠BAE+∠ECD,又DA=DB=DC,根据等腰三角形等边对等角的性质得出∠ABE=∠DAB=20°,∠ECD=∠DAC=30°,进而得出结果.解答:解:延长BD交AC于E.∵DA=DB=DC,∴∠ABE=∠DAB=20°,∠ECD=∠DAC=30°.又∵∠BAE=∠BAD+∠DAC=50°,∠BDC=∠DEC+∠ECD,∠DEC=∠ABE+∠BAE,∴∠BDC=∠ABE+∠BAE+∠ECD=20°+50°+30°=100°.故选A.点评:本题考查三角形外角的性质及等边对等角的性质,解答的关键是沟通外角和内角的关系.7.(2010•武汉)若x1,x2是方程x2=4的两根,则x1+x2的值是()A.8 B.4 C.2 D.0考点:根与系数的关系。

分析:由于原方程的一次项系数为0,由根与系数的关系知两根的和为0.解答:解:原方程可化为:x2﹣4=0;∴x1+x2=﹣=0;故选D.点评:此题主要考查的是根与系数的关系.是需要熟记的内容.8.(2010•武汉)如图所示,李老师办公桌上放着一个圆柱形茶叶盒和一个正方体的墨水盒,小芳从上面看,看到的图形是()A.B.C.D.考点:简单组合体的三视图。

分析:找到从上面看所得到的图形即可.解答:解:从上面看可得到一个圆和一个正方形,故选A.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.9.(2010•武汉)如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,则顶点A55的坐标是()A.(13,13)B.(﹣13,﹣13)C.(14,14)D.(﹣14,﹣14)考点:点的坐标。

专题:规律型。

分析:观察图象,每四个点一圈进行循环,每一圈第一个点在第三象限,根据点的脚标与坐标寻找规律.解答:解:∵55=4×13+3,∴A55与A3在同一象限,即都在第一象限,根据题中图形中的规律可得:3=4×0+3,A3的坐标为(0+1,0+1),即A3(1,1),7=4×1+3,A7的坐标为(1+1,1+1),A7(2,2),11=4×2+3,A11的坐标为(2+1,2+1),A11(3,3);…55=4×13+3,A55(14,14),A55的坐标为(13+1,13+1);故选C.点评:本题是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置及所在的正方形,然后就可以进一步推得点的坐标.10.(2010•武汉)如图,⊙O的直径AB的长为10,弦AC长为6,∠ACB的平分线交⊙O于D,则CD长为()A.7 B.C.D.9考点:解直角三角形;全等三角形的判定;圆心角、弧、弦的关系;圆周角定理。

专题:综合题。

分析:作DF⊥CA,交CA的延长线于点F,作DG⊥CB于点G,连接DA,DB.由CD平分∠ACB,根据角平分线的性质得出DF=DG,由HL证明△AFD≌△BGD,△CDF≌△CDG,得出CF=7,又△CDF是等腰直角三角形,从而求出CD=7.解答:解:作DF⊥CA,垂足F在CA的延长线上,作DG⊥CB于点G,连接DA,DB.∵CD平分∠ACB,∴∠ACD=∠BCD∴DF=DG,弧AD=弧BD,∴DA=DB.∵∠AFD=∠BGD=90°,∴△AFD≌△BGD,∴AF=BG.易证△CDF≌△CDG,∴CF=CG.∵AC=6,BC=8,∴AF=1,(也可以:设AF=BG=X,BC=8,AC=6,得8﹣X=6+X,解X=1)∴CF=7,∵△CDF是等腰直角三角形,(这里由CFDG是正方形也可得).∴CD=7.故选B.点评:本题综合考查了圆周角的性质,圆心角、弧、弦的对等关系,全等三角形的判定,角平分线的性质等知识点的运用.此题是一个大综合题,难度较大.11.(2010•武汉)随着经济的发展,人们的生活水平不断提高.下图分别是某景点2007﹣2009年游客总人数和旅游收入年增长率统计图.已知该景点2008年旅游收入4500万元.下列说法:①三年中该景点2009年旅游收入最高;②与2007年相比,该景点2009年的旅游收入增加[4500×(1+29%)﹣4500×(1﹣33%)]万元;③若按2009年游客人数的年增长率计算,2010年该景点游客总人数将达到万人次.其中正确的个数是()A.0 B.1 C.2 D.3考点:条形统计图;折线统计图。

专题:图表型。

分析:从图中可得出这三年的旅游人数,及每年的增长率,再分析各种说法的正误.解答:解:①由于2008年比2007年增长33%,2009年比2008年增长29%,故2009旅游收入最高,正确;②由于2008年的收入为4500万元,2008年比2007年增长33%,2009年比2008年增长29%,2009年的旅游收入为4500(1+29%)万元,2007年的收入为[4500÷(1+33%)]万元,与2007年相比,该景点2009年的旅游收入增加[4500(1+29%)﹣4500÷(1+33%)]万元,故不正确;③2009年的旅游人数增长率为(280﹣255)÷255,故2010年该景点游客总人数将达到万人次,正确.故选C.点评:本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,如年增长率,折线统计图表示的是事物的变化情况,如旅游人数.12.(2010•武汉)如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,BD⊥DC,BD=DC,CE平分∠BCD,交AB 于点E,交BD于点H,EN∥DC交BD于点N.下列结论:①BH=DH;②CH=;③.其中正确的是()A.①②③B.只有②③C.只有②D.只有③考点:直角梯形。

分析:①如图,过H作HM⊥BC于M,根据角平分线的性质可以得到DH=HM,而在Rt△BHM中BH>HM,所以容易判定①是错误的;②设HM=x,那么DH=x,由于∠ABC=90°,BD⊥DC,BD=DC,由此得到∠DBC=45°,而AD∥CB,由此可以证明△ADB 是等腰直角三角形,又CE平分∠BCD,∠BDC=∠ABC=90°,由此可以证明△DCH∽△EBC,再利用相似三角形的性质可以推出∠BEH=∠DHC,然后利用对顶角相等即可证明∠BHC=∠BEH,接着得到BH=BE,然后即可用x分别表示BE、EN、CD,又由EN∥DC可以得到△DCH∽△NEH,再利用相似三角形的性质即可结论②;③利用(2)的结论可以证明△ENH∽△CBE,然后利用相似三角形的性质和三角形的面积公式即可证明结论③.解答:解:①如图,过H作HM⊥BC于M,∵CE平分∠BCD,BD⊥DC∴DH=HM,而在Rt△BHM中BH>HM,∴BH>HD,∴所以容易判定①是错误的;②∵CE平分∠BCD,∴∠DCE=∠BCE,而∠EBC=∠BDC=90°,∴∠BEH=∠DHC,而∠DHC=∠EHB,∴∠BEH=∠EHB,∴BE=BH,设HM=x,那么DH=x,∵BD⊥DC,BD=DC,∴∠DBC=∠ABD=45°,∴BH=x=BE,∴EN=x,∴CD=BD=DH+BH=(+1)x,即=+1,∵EN∥DC,∴△DCH∽△NEH,∴=+1,即CH=(+1)EH;③由②得∠BEH=∠EHB,∵EN∥DC,∴∠ENH=∠CDB=90°,∴∠ENH=∠EBC,∴△ENH∽△CBE,∴EH:EC=NH:BH,而,∴.所以正确的只有②③,故选B.点评:此题比较复杂,综合性很强,主要考查了梯形的性质,相似三角形的判定和性质以及等腰直角三角形的性质.二、填空题(共4小题,每小题3分,满分12分)13.(2010•武汉)计算:sin30°=,(﹣3a2)2=9a4,=5.考点:特殊角的三角函数值;幂的乘方与积的乘方;二次根式的性质与化简。

相关文档
最新文档