湖北省武汉市2021年中考数学试题真题(Word版+答案+解析)

合集下载

2024年湖北武汉中考数学试卷试题解读及答案解析

2024年湖北武汉中考数学试卷试题解读及答案解析

2024年中考数学真题完全解读(武汉卷)审视2024年武汉市中考数学试卷,我们可以明显感受到与去年相比,题型与知识点的考查方式保持了一贯的稳定,整体难度适宜,而且考察手法愈发巧妙多变,要求学生对知识点有深入的理解和灵活的运用。

在历经三次模拟考试的磨砺后,24年的中考数学试卷不仅维持了知识点的连贯性,还在持续的创新与变化中,丰富了知识点的维度和命题的广度。

试卷的四大模块一一数与式、函数、几何图形、统计概率,分别占据了20分、34分、52分和14分的分值。

与23年相比,数与式部分稍有减少,具体体现在无理数的举例开放题上少了3分,而几何部分则增加了3分,主要涉及平行线和角的计算。

试卷的基础题、中档题和压轴题的分布与往年保持一致,基础题占据了约81分,即67.5%的比例,中档题和压轴题则分别占据了27分和12分,占比分别为22.5%和10%o然而,任何一份试卷都会给不同水平的学生带来不同程度的挑战。

例如,选择题第10题就需要学生巧妙运用函数对称性和数形结合的方法进行解答,而其他9题则较为常规。

填空第15题的几何小综合,无疑是今年考试的一个难点,涉及到面积的转化和相似的构造,这对于许多学生来说都是一大考验。

在解答题中,17〜22题延续了以往的考查方式,但21题对格点作图提出了更高的要求,需要学生对常规方法有更深入的理解和掌握;23题的几何大综合虽然整体考查方式未变,但第二问和第三问需要学生综合运用八九年级的几何知识点,进行巧妙的构造和推理;24题的二次函数大综合虽然思路清晰,但由于计算量巨大,对学生的计算能力提出了极大的挑战。

因此,学生在后期的备考中,需要巩固基础知识,立足课本,提高解题的熟练度和计算能力,这样才能在中考中应对自如,冲刺高分!姓题型新变化选择题、填空题、解答题的题量与分值相较于往年没有发生变化;罗列部分试题新思路第6题的一次函数应用题转变为了实际问题的函数图象;第10题是新载体,需考生结合函数对称性和数形结合的方法解题;第13题的分式计算演变成了分式方程;第15题是几何计算题,原为第16题的位置,被普遍认为是今年中考难度最高的一道题。

2021年湖北省武汉市部分学校九年级元月调考数学试卷(附答案详解)

2021年湖北省武汉市部分学校九年级元月调考数学试卷(附答案详解)

2021年湖北省武汉市部分学校九年级元月调考数学试卷一、选择题(本大题共10小题,共30.0分)1.将一元二次方程2x2−1=3x化成一般形式后,二次项系数和一次项系数分别是()A. 2,−1B. 2,0C. 2,3D. 2,−32.下列垃圾分类标识中,是中心对称图形的是()A. B. C. D.3.下列四个袋子中,都装有除颜色外无其他差别的10个小球,从这四个袋子中分别随机摸出一个球,摸到红球可能性最小的是()A. B. C. D.4.已知⊙O的半径等于3,圆心O到点P的距离为5,那么点P与⊙O的位置关系是()A. 点P在⊙O内B. 点P在⊙O外C. 点P在⊙O上D. 无法确定5.一元二次方程x2−4x−1=0配方后可化为()A. (x+2)2=3B. (x+2)2=5C. (x−2)2=3D. (x−2)2=56.在平面直角坐标系中,抛物线y=(x+2)(x−4)经变换后得到抛物线y=(x−2)(x+4),则下列变换正确的是()A. 向左平移6个单位B. 向右平移6个单位C. 向左平移2个单位D. 向右平移2个单位7.如图,将△ABC绕点C按逆时针方向旋转至△DEC,使点D落在BC的延长线上.已知∠A=33°,∠B=30°,则∠ACE的大小是()A. 63°B. 58°C. 54°D. 52°8.三个不透明的口袋中各有三个相同的乒乓球,将每个口袋中的三个乒乓球分别标号为1,2,3.从这三个口袋中分别摸出一个乒乓球,出现的数字正好是等腰三角形三边长的概率是()A. 49B. 59C. 1727D. 799.如图,PM,PN分别与⊙O相切于A,B两点,C为⊙O上一点,连接AC,BC.若∠P=60°,∠MAC=75°,AC=√3+1,则⊙O的半径是()A. √2B. √3C. 32D. 34√310.已知二次函数y=2020x2+2021x+2022的图象上有两点A(x1,2023)和B(x2,2023),则当x=x1+x2时,二次函数的值是()A. 2020B. 2021C. 2022D. 2023二、填空题(本大题共6小题,共18.0分)11.在直角坐标系中,点(−1,2)关于原点对称点的坐标是______.12.如图,平行四边形ABCD的对角线交于点O,过点O的直线EF分别交边AB,CD于E,F两点,在这个平行四边形上做随机投掷图钉试验,针头落在阴影区域内的概率是______ .13.国家实施“精准扶贫”政策以来,贫困地区经济快速发展,贫困人口大幅度减少.某地区2018年初有贫困人口4万人,通过社会各界的努力,2020年初贫困人口减少至1万人.则2018年初至2020年初该地区贫困人口的年平均下降率是______ .14.已知O,I分别是△ABC的外心和内心,∠BOC=140°,则∠BIC的大小是______ .15.如图,放置在直线l上的扇形OAB,由图①滚动(无滑动)到图②,再由图②滚动到图③,若半径OA=1,∠AOB=90°,则点O所经过的路径长是______ .16.下列关于二次函数y=x2−2mx+1(m为常数)的结论:①该函数的图象与函数y=−x2+2mx的图象的对称轴相同;②该函数的图象与x轴有交点时,m>1;③该函数的图象的顶点在函数y=−x2+1的图象上;④点A(x1,y1)与点B(x2,y2)在该函数的图象上.若x1<x2,x1+x2<2m,则y1<y2.其中正确的结论是______ (填写序号).三、解答题(本大题共8小题,共72.0分)17.若关于x的一元二次方程x2−bx+2=0有一个根是x=1,求b的值及方程的另一个根.18.如图,将△ABC绕点C顺时针旋转得到△DEC,点D落在线段AB上.求证:DC平分∠ADE.19.小刚参加某网店的“翻牌抽奖”活动,如图,四张牌分别对应价值2,5,5,10(单位:元)的四件奖品.(1)如果随机翻一张牌,直接写出抽中5元奖品的概率;(2)如果同时随机翻两张牌,求所获奖品总值不低于10元的概率.20.如图是由小正方形构成的6×6网格,每个小正方形的顶点叫做格点.⊙P经过A,B两个格点,仅用无刻度的直尺在给定网格中按要求画图(画图过程用虚线表示,画图结果用实线表示).(1)在图(1)中,⊙P经过格点C,画圆心P,并画弦BD,使BD平分∠ABC;(2)在图(2)中,⊙P经过格点E,F是⊙P与网格线的交点,画圆心P,并画弦FG,使FG=FA.21.如图,正方形ABCD内接于⊙O,E是BC⏜的中点,连接AE,DE,CE.(1)求证:AE=DE;(2)若CE=1,求四边形AECD的面积.22.疫情期间,按照防疫要求,学生在进校时必须排队接受体温检测.某校统计了学生早晨到校情况,发现学生到校的累计人数y(单位:人)随时间x(单位:分钟)的变化情况如图所示,y可看作是x的二次函数,其图象经过原点,且顶点坐标为(30,900),其中0≤x≤30.校门口有一个体温检测棚,每分钟可检测40人.(1)求y与x之间的函数解析式;(2)校门口排队等待体温检测的学生人数最多时有多少人?(3)检测体温到第4分钟时,为减少排队等候时间,在校门口临时增设一个人工体温检测点.已知人工每分钟可检测12人,人工检测多长时间后,校门口不再出现排队等待的情况(直接写出结果).23.问题背景如图(1),△ABD,△AEC都是等边三角形,△ACD可以由△AEB通过旋转变换得到,请写出旋转中心、旋转方向及旋转角的大小.尝试应用如图(2),在Rt△ABC中,∠ACB=90°,分别以AC,AB为边,作等边△ACD和等的值.边△ABE,连接ED,并延长交BC于点F,连接BD.若BD⊥BC,求DFDE 拓展创新如图(3),在Rt△ABC中,∠ACB=90°,AB=2,将线段AC绕点A顺时针旋转90°得到线段AP,连接PB,直接写出PB的最大值.24.如图,经过定点A的直线y=k(x−2)+1(k<0)交抛物线y=−x2+4x于B,C两点(点C在点B的右侧),D为抛物线的顶点.(1)直接写出点A的坐标;(2)如图(1),若△ACD的面积是△ABD面积的两倍,求k的值;(3)如图(2),以AC为直径作⊙E,若⊙E与直线y=t所截的弦长恒为定值,求t的值.答案和解析1.【答案】D【解析】解:将一元二次方程2x2−1=3x化成一般形式是2x2−3x−1=0,二次项的系数和一次项系数分别是2和−3,故选:D.先化成一般形式,即可得出答案.本题考查了一元二次方程的一般形式,能化成一元二次方程的一般形式是解此题的关键,注意:说项的系数带着前面的符号.2.【答案】B【解析】解:A、不是中心对称图形,故此选项不合题意;B、是中心对称图形,故此选项符合题意;C、不是中心对称图形,故此选项不合题意;D、不是中心对称图形,故此选项不合题意;故选:B.利用中心对称图形的定义进行解答即可.此题主要考查了中心对称图形,关键是掌握把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.3.【答案】A【解析】解:第一个袋子摸到红球的可能性=110;第二个袋子摸到红球的可能性=210=15;第三个袋子摸到红球的可能性=510=12;第四个袋子摸到红球的可能性=610=35.故选:A.要求可能性的大小,只需求出各自所占的比例大小即可.求比例时,应注意记清各自的数目.本题主要考查了可能性大小的计算,用到的知识点为:可能性等于所求情况数与总情况数之比,难度适中.4.【答案】B【解析】解:∵r=3,d=5,∴d>r,∴点P在⊙O外.故选:B.根据①点P在圆外⇔d>r.②点P在圆上⇔d=r.③点P在圆内⇔d<r,即可判断.本题考查点与圆的位置关系,解题的关键是熟练掌握基本知识,属于中考基础题.5.【答案】D【解析】解:x2−4x−1=0,x2−4x=1,x2−4x+4=1+4,(x−2)2=5,故选:D.移项,配方,即可得出选项.本题考查了解一元二次方程的应用,能正确配方是解此题的关键.6.【答案】C【解析】解:y=(x+2)(x−4)=(x−1)2−9,顶点坐标是(1,9).y=(x−2)(x+4)=(x+1)2−9,顶点坐标是(−1,9).所以将抛物线y=(x+2)(x−4)向左平移2个单位长度得到抛物线y=(x−2)(x+4),故选:C.根据变换前后的两抛物线的顶点坐标找变换规律.此题主要考查了次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.7.【答案】C【解析】解:∵∠A=33°,∠B=30°,∴∠ACD=∠A+∠B=33°+30°=63°,∵△ABC绕点C按逆时针方向旋转至△DEC,∴△ABC≌△DEC,∴∠ACB=∠DCE,∴∠BCE=∠ACD,∴∠BCE=63°,∴∠ACE=180°−∠ACD−∠BCE=180°−63°−63°=54°.故选:C.先根据三角形外角的性质求出∠ACD=63°,再由△ABC绕点C按逆时针方向旋转至△DEC,得到△ABC≌△DEC,证明∠BCE=∠ACD,利用平角为180°即可解答.本题考查了旋转的性质,三角形外角的性质,解决本题的关键是由旋转得到△ABC≌△DEC.8.【答案】B【解析】解:画树状图得:∵共有27种等可能的结果,两次摸出的乒乓球标号相同,并且三个标号符合三角形三边关系的有15种结果,∴出现的数字正好是等腰三角形三边长的概率是1527=59.故选:B.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的乒乓球标号相同,并且三个标号符合三角形三边关系的情况,再利用概率公式即可求得答案.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.9.【答案】A【解析】解:连接OA、OC,过A点作AH⊥OC于H,如图,设⊙O的半径为r,∵PM与⊙O相切于A点,∴OA⊥PM,∴∠OAM=90°,∵∠MAC=75°,∴∠OAC=15°,∵OA=OC,∴∠OAC=∠OCA=15°,∴∠AOH=30°,在Rt△AOH中,AH=12OA=12r,OH=√3AH=√32r,在Rt△ACH中,(12r)2+(r+√32r)2=(√3+1)2,解得r=√2,即⊙O的半径为√2.故选:A.连接OA、OC,过A点作AH⊥OC于H,如图,设⊙O的半径为r,根据切线的性质得到∠OAM=90°,则∠OAC=15°,再计算出∠AOH=30°,则可表示出AH=12r,OH=√32r,利用勾股定理得到(12r)2+(r+√32r)2=(√3+1)2,然后解方程即可.本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了解直角三角形.10.【答案】C【解析】解:∵二次函数y=2020x2+2021x+2022的图象上有两点A(x1,2023)和B(x2,2023),∴x1、x2是方程2020x2+2021x+2022=2023的两个根,∴x1+x2=−20212020,∴当x=x1+x2时,二次函数y=2020x2+2021x+2022=2020(−20212020)2+2021⋅(−20212020)+2022=2022.故选:C.根据题意得出x=x1+x2=−20212020,代入函数的解析式即可求得二次函数的值.本题考查了一元二次方程根与系数的关系以及二次函数图象上点的坐标特征,图象上的点符合解析式.11.【答案】(1,−2)【解析】解:在直角坐标系中,点(−1,2)关于原点对称点的坐标是(1,−2),故答案为:(1,−2).根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(−x,−y),可得答案.本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.12.【答案】14【解析】解:∵四边形是平行四边形,∴对角线把平行四边形分成面积相等的四部分,观察发现:图中阴影部分面积=14S四边形ABCD,∴点A落在阴影区域内的概率为14,故答案为:14.用阴影部分的面积除以平行四边形的总面积即可求得答案.此题主要考查了几何概率,以及平行四边形的性质,用到的知识点为:概率=相应的面积与总面积之比.13.【答案】50%【解析】解:设2018年初至2020年初该地区贫困人口的年平均下降率为x,依题意得:4(1−x)2=1,解得:x1=0.5=50%,x2=1.5(不合题意,舍去).故答案为:50%.设2018年初至2020年初该地区贫困人口的年平均下降率为x,根据该地区2018年初及2020年初贫困人口的数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.14.【答案】125°或145°【解析】解:∵O是△ABC的外心,∴∠BAC=12∠BOC=12×140°=70°(如图1)或∠BAC=180°−70°=110°,(如图2)∵I是△ABC的内心,∴∠BIC=90°+12∠BAC,当∠BAC=70°时,∠BIC=90°+12×70°=125°;当∠BAC=110°时,∠BIC=90°+12×110°=145°;即∠BIC的度数为125°或145°.故答案为125°或145°.利用圆周角定理得到∠BAC=70°或∠BAC=110°,由于I是△ABC的内心,则∠BIC=90°+12∠BAC,然后把∠BAC的度数代入计算即可.本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了三角形的外心.15.【答案】32π【解析】解:点O所经过的路径长=3×90π⋅1180=32π.故答案为:32π.点O所经过的路径是三个14圆周长.本题考查轨迹,弧长公式等知识,解题的关键是理解题意,灵活运用所学知识解决问题.16.【答案】①③【解析】解:①∵二次函数y=x2−2mx+1的对称轴为直线x=−−2m2×1=m,二次函数y=−x2+2mx的对称轴为直线x=−2m2×(−1)=m,故结论①正确;②∵函数的图象与x轴有交点,则△=(−2m)2−4×1×1=4m2−4≥0,∴m≥1,故结论②错误;③∵y=x2−2mx+1=(x−m)2+1−m2,∴顶点为(m,−m2+1),∴该函数的图象的顶点在函数y=−x2+1的图象上,故结论③正确;④∵x1+x2<2m,∴x1+x22<m,∵二次函数y=x2−2mx+1的对称轴为直线x=m∴点A离对称轴的距离大于点B离对称轴的距离∵x1<x2,且a=1>0∴y1>y2故结论④错误;故答案为①③.利用二次函数的性质一一判断即可.本题考查抛物线与x轴的交点、二次函数的性质,二次函数图象上点的坐标特征,解题的关键是熟练掌握基本知识,属于中考常考题型.17.【答案】解:∵关于x的一元二次方程x2−bx+2=0有一个根是x=1,∴1−b+2=0,解得:b=3,把b=3代入方程得:x2−3x+2=0,设另一根为m,可得1+m=3,解得:m=2,则b的值为3,方程另一根为x=2.【解析】把x=1代入方程计算求出b的值,进而求出另一根即可.此题考查了根与系数的关系,以及一元二次方程的解,熟练掌握根与系数的关系是解本题的关键.18.【答案】证明:由旋转可知,△ABC≌△DEC,∴∠A=∠CDE,AC=DC,∴∠A=∠ADC,∴∠ADC=∠CDE,即DC平分∠ADE.【解析】利用全等三角形的性质以及等腰三角形的性质即可解决问题.本题考查旋转的性质,全等三角形的性质,等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.【答案】解:(1)∵在价值为2,5,5,10(单位:元)的四件奖品,价值为5元的奖品有2张,∴抽中5元奖品的概率为24=12;(2)画树状图如下:由树状图可知共有12种等可能结果,其中所获奖品总值不低于10元的有8种,∴所获奖品总值不低于10元的概率为812=23.【解析】(1)根据概率公式计算可得;(2)画树状图列出所有等可能结果,再从中确定所获奖品总值不低于10元的结果数,利用概率公式计算可得.此题还考查了列举法与树状图法求概率,解答此类问题的关键在于列举出所有可能的结果,画出树形图是解题的关键.20.【答案】解:(1)如图,点P,线段BD即为所求作.(2)如图,点P,线段FG即为所求作.【解析】(1)取格点T,连接AT交BC于点P,连接AC,取AC的中点W,作射线PW 交⊙P于点D,线段BD即为所求作.(2)取格点J,连接AB,AJ延长AJ交⊙P于Q,连接BQ可得圆心P,取格点R,D,连接FR,DR,作DR交⊙P于G,连接FG,可证FA=FR=FG,线段FG即为所求作.本题考查作图−应用与设计垂径定理,圆周角定理,线段的垂直平分线的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.21.【答案】(1)证明:∵四边形ABCD是正方形,∴AB=CD,∴AB⏜=CD⏜,∵E是BC⏜的中点,∴BE⏜=EC⏜,∴AE⏜=DE⏜,∴AE=DE.(2)解:连接BD,过点D作DF⊥DE交EC的延长线于F.∵四边形ABCD是正方形,∴∠DBC=∠DEC=45°,DA=DC,∵∠EDF=90°,∴∠F=90°−45°=45°,∴DE=DF,∵∠ADC=∠EDF=90°,∴∠ADE=∠CDF,在△ADE和△CDF中,{∠ADE=∠CDF ∠AED=∠FDA=DC,∴△ADE≌△CDF(AAS),∴AE=CF,∴S△ADE=S△CDF,∴S四边形AECD=S△DEF,∵EF=√2DE=EC+DE,EC=1,∴1+DE=√2DE,∴DE=√2+1,∴S△DEF=12DE2=√2+32.【解析】(1)欲证明AE=DE,只要证明AE⏜=DE⏜.(2)连接BD,过点D作DF⊥DE交EC的延长线于F.证明△ADE≌△CDF(AAS),推出AE= CF,推出S△ADE=S△CDF,推出S四边形AECD=S△DEF,再利用等腰三角形的性质构建方程求出DE,即可解决问题.本题考查正多边形与圆,正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.22.【答案】解:(1)∵顶点坐标为(30,900),∴设y=a(x−30)2+900,将(0,0)代入,得:900a+900=0,解得a=−1,∴y=−(x−30)2+900;(2)设第x分钟时的排队等待人数为w人,由题意可得:w=y−40x=−(x−30)2+900−40x=−x2+60x−900+900−40x=−x2+20x=−(x−10)2+100,∴当x=10时,w的最大值为100,答:排队等待人数最多时是100人;(3)设人工检测m分钟时间后,校门口不再出现排队等待的情况,由题意得:−(4+m)2+60(4+m)−40×4−(40+12)m=0,整理得:−m2+64=0,解得:m1=8,m2=−8(舍).答:人工检测8分钟时间后,校门口不再出现排队等待的情况.【解析】(1)由顶点坐标为(30,900),可设y=a(x−30)2+900,再将(0,0)代入,求得a的值,则可得y与x之间的函数解析式;(2)设第x分钟时的排队等待人数为w人,根据w=y−40x及(1)中所得的y与x之间的函数解析式,可得w关于x的二次函数,将其写成顶点式,按照二次函数的性质可得答案;(3)设人工检测m分钟时间后,校门口不再出现排队等待的情况,由于检测体温到第4分钟时,在校门口临时增设一个人工体温检测点,则体温检测棚的检测时间为(m+4)分钟,则学生到校的累计人数与人工检测m分钟后两种检测方式的检测人数之和相等时,校门口不再出现排队等待的情况,据此可列出关于m的方程,求解并根据问题的实际意义作出取舍即可.本题主要考查了二次函数在实际问题中的应用,熟练掌握待定系数法求二次函数的解析式及二次函数的性质是解题的关键.23.【答案】问题背景解:∵△ABD,△AEC都是等边三角形,∴∠BAD=60°,∠CAE=60°,AD=AB,AC=AE,∴∠BAD+∠BAC=∠CAE+∠BAC,∴∠DAC=∠BAE,∴△ACD≌△AEB(SAS),∴△ACD可以由△AEB绕点A顺时针旋转60°得到,即旋转中心是点A,旋转方向是顺时针,旋转角是60°;尝试应用∵△ACD和△ABE都是等边三角形,∴AC=AD,AB=AE,∠CAD=∠BAE=60°,∴∠CAB=∠DAE,∴△ADE≌△ACB(SAS),∴∠ADE=∠ACB=90°,DE=CB,∵∠ADE=90°,∴∠ADF=90°,∵∠ADC=∠ACD=60°,∴∠DCF=∠CDF=30°,∴CF=DF,∵BD⊥BC,∴∠BDF=30°,∴BF=12DF,设BF=x,则CF=DF=2x,DE=3x,∴DFDE =2x3x=23;拓展创新∵∠ACB=90°,∴点C在以AB为直径的圆上运动,取AB的中点D,连接CD,∴CD=12AB=1,如图,过点A作AE⊥AB,且使AE=AD,连接PE,BE,∵将线段AC绕点A顺时针旋转90°得到线段AP,∴∠PAC=90°,PA=AC,∵∠EAD=90°,∴∠PAE=∠CAD,∴△CAD≌△PAE(SAS),∴PE=CD=1,∵AB=2,AE=AD=1,∴BE=√AE2+AB2=√12+22=√5,∴BP≤BE+PE=√5+1,∴BP的最大值为√5+1.【解析】问题背景由等边三角形的性质得出∠BAD=60°,∠CAE=60°,AD=AB,AC=AE,证得△ACD≌△AEB(SAS),由旋转的概念可得出答案;尝试应用证明△ADE≌△ACB(SAS),由全等三角形的性质得出∠ADE=∠ACB=90°,DE=CB,DF,则可得出答案;得出∠BDF=30°,由直角三角形的性质得出BF=12拓展创新过点A作AE⊥AB,且使AE=AD,连接PE,BE,由直角三角形的性质求出BE,PE 的长,则可得出答案.本题是几何变换综合题,考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,勾股定理,直角三角形的性质,熟练掌握旋转的性质是解题的关键.24.【答案】解:(1)∵A为直线y=k(x−2)+1上的定点,∴A的坐标与k无关,∴x−2=0,∴x=2,此时y=1,∴点A的坐标为(2,1);(2)∵y=−x2+4x=−(x −2)2+4,∴顶点D 的坐标为(2,4),∵点A 的坐标为(2,1),∴AD ⊥x 轴.如图(1),分别过点B ,C 作直线AD 的垂线,垂足分别为M ,N ,设B ,C 的横坐标分别为x 1,x 2,∵△ACD 的面积是△ABD 面积的两倍,∴CN =2BM ,∴x 2−2=2(2−x 1),∴2x 1+x 2=6.联立{y =−x 2+4x y =kx −2k +1,得x 2+(k −4)x −2k +1=0,① 解得x 1=4−k−√k2+122,x 2=4−k+√k 2+122, ∴2×4−k−√k 2+122+4−k+√k 2+122=6,化简得:√k 2+12=−3k ,解得k =−√62. 另解:接上解,由①得x 1+x 2=4−k ,又由2x 1+x 2=6,得x 1=2+k .∴(2+k)2+(k −4)(2+k)−2k +1=0,解得k =±√62. ∵k <0,∴k =−√62; (3)如图(2),设⊙E 与直线y =t 交于点G ,H ,点C 的坐标为(a,−a 2+4a). ∵E 是AC 的中点,∴将线段AE 沿AC 方向平移与EC 重合,∴x E −x A =x C −x E ,y E −y A =y C −y E ,∴x E =12(x A +x C ),y E =12(y A +y C ).∴E(1+a 2,−a 2+4a +12). 分别过点E ,A 作x 轴,y 轴的平行线交于点F ,在Rt △AEF 中,由勾股定理得:EA 2=(1+a 2−2)2+(−a 2+4a +12−1)2 =(a 2−1)2+(−a 2+4a+12−1)2,过点E 作PE ⊥GH ,垂足为P ,连接EH ,∴GH =2PH ,EP 2=(−a 2+4a+12−t)2,又∵AE =EH ,∴GH 2=4PH 2=4(EH 2−EP 2)=4(EA 2−EP 2)=4[(a 2−1)2+(−a 2+4a +12−1)2−(−a 2+4a +12−t)2] =4[a 24−a +1+(−a 2+4a +12)2−(−a 2+4a +1)+1−(−a 2+4a +12)2+t(−a 2+4a +1)−t 2]=4[(54−t)a 2+(4t −5)a +1+t −t 2]. ∵GH 的长为定值,∴54−t =0,且4t −5=0, ∴t =54.【解析】(1)由A为直线y=k(x−2)+1上的定点,可得k的系数为0,从而求得x值,则点A的坐标可得;(2)先求得顶点D的坐标,可得AD⊥x轴.分别过点B,C作直线AD的垂线,垂足分别为M,N,设B,C的横坐标分别为x1,x2由△ACD的面积是△ABD面积的两倍得出2x1+x2=6.将抛物线解析式与直线y=k(x−2)+1解析式联立,得出关于x的一元二次方程,方法一可以直接解方程,再结合2x1+x2=6求得答案;方法二可以用韦达定理及2x1+x2=6求得答案;(3)设⊙E与直线y=t交于点G,H,点C的坐标为(a,−a2+4a),用含a的式子表示出点E的坐标,再由勾股定理得出关于a的方程;分别过点E,A作x轴,y轴的平行线交于点F,过点E作PE⊥GH,垂足为P,连接EH,用含a的式子表示GH2,根据GH为定值,可得答案.本题属于二次函数综合题,综合考查了一次函数、二次函数、一元二次方程、勾股定理及圆的性质等知识点,数形结合并熟练掌握相关性质定理是解题的关键.。

【真题】武汉市中考数学试卷含答案解析

【真题】武汉市中考数学试卷含答案解析

湖北省武汉市中考数学试卷(解析版)一、选择题(共10小题,每小题3分,共30分)1.(3分)温度由﹣4℃上升7℃是()A.3℃ B.﹣3℃C.11℃D.﹣11℃【分析】根据题意列出算式,再利用加法法则计算可得.【解答】解:温度由﹣4℃上升7℃是﹣4+7=3℃,故选:A.【点评】本题主要考查有理数的加法,解题的关键是熟练掌握有理数的加法法则.2.(3分)若分式在实数范围内有意义,则实数x的取值范围是()A.x>﹣2 B.x<﹣2 C.x=﹣2 D.x≠﹣2【分析】直接利用分式有意义的条件分析得出答案.【解答】解:∵代数式在实数范围内有意义,∴x+2≠0,解得:x≠﹣2.故选:D.【点评】此题主要考查了分式有意义的条件,正确把握定义是解题关键.3.(3分)计算3x2﹣x2的结果是()A.2 B.2x2C.2x D.4x2【分析】根据合并同类项解答即可.【解答】解:3x2﹣x2=2x2,故选:B.【点评】此题考查合并同类项,关键是根据合并同类项的法则解答.4.(3分)五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A.2、40 B.42、38 C.40、42 D.42、40【分析】根据众数和中位数的定义求解.【解答】解:这组数据的众数和中位数分别42,38.故选:B.【点评】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.5.(3分)计算(a﹣2)(a+3)的结果是()A.a2﹣6 B.a2+a﹣6 C.a2+6 D.a2﹣a+6【分析】根据多项式的乘法解答即可.【解答】解:(a﹣2)(a+3)=a2+a﹣6,故选:B.【点评】此题考查多项式的乘法,关键是根据多项式乘法的法则解答.6.(3分)点A(2,﹣5)关于x轴对称的点的坐标是()A.(2,5)B.(﹣2,5)C.(﹣2,﹣5)D.(﹣5,2)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【解答】解:点A(2,﹣5)关于x轴的对称点B的坐标为(2,5).故选:A.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.7.(3分)一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是()A.3 B.4 C.5 D.6【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【解答】解:结合主视图和俯视图可知,左边上层最多有2个,左边下层最多有2个,右边只有一层,且只有1个.所以图中的小正方体最多5块.故选:C.【点评】此题主要考查了由三视图判断几何体,考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.8.(3分)一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()A.B.C.D.【分析】画树状图展示所有16种等可能的结果数,再找出两次抽取的卡片上数字之积为偶数的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为12,所以两次抽取的卡片上数字之积为偶数的概率==.故选:C.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.9.(3分)将正整数1至按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是()A.B.C.D.【分析】设中间数为x,则另外两个数分别为x﹣1、x+1,进而可得出三个数之和为3x,令其分别等于四个选项中数,解之即可得出x的值,由x为整数、x 不能为第一列及第八列数,即可确定x值,此题得解.【解答】解:设中间数为x,则另外两个数分别为x﹣1、x+1,∴三个数之和为(x﹣1)+x+(x+1)=3x.根据题意得:3x=、3x=、3x=、3x=,解得:x=673,x=672(舍去),x=672,x=671.∵673=84×8+1,∴不合题意,舍去;∵672=84×8,∴不合题意,舍去;∵671=83×7+7,∴三个数之和为.故选:D.【点评】本题考查了一元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.10.(3分)如图,在⊙O中,点C在优弧上,将弧沿BC折叠后刚好经过AB的中点D.若⊙O的半径为,AB=4,则BC的长是()A.B.C.D.【分析】连接OD、AC、DC、OB、OC,作CE⊥AB于E,OF⊥CE于F,如图,利用垂径定理得到OD⊥AB,则AD=BD=AB=2,于是根据勾股定理可计算出OD=1,再利用折叠的性质可判断弧AC和弧CD所在的圆为等圆,则根据圆周角定理得到=,所以AC=DC,利用等腰三角形的性质得AE=DE=1,接着证明四边形ODEF为正方形得到OF=EF=1,然后计算出CF后得到CE=BE=3,于是得到BC=3.【解答】解:连接OD、AC、DC、OB、OC,作CE⊥AB于E,OF⊥CE于F,如图,∵D为AB的中点,∴OD⊥AB,∴AD=BD=AB=2,在Rt△OBD中,OD==1,∵将弧沿BC折叠后刚好经过AB的中点D.∴弧AC和弧CD所在的圆为等圆,∴=,∴AC=DC,∴AE=DE=1,易得四边形ODEF为正方形,∴OF=EF=1,在Rt△OCF中,CF==2,∴CE=CF+EF=2+1=3,而BE=BD+DE=2+1=3,∴BC=3.故选:B.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和垂径定理.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算的结果是【分析】根据二次根式的运算法则即可求出答案.【解答】解:原式=+﹣=故答案为:【点评】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.12.(3分)下表记录了某种幼树在一定条件下移植成活情况移植总数n40015003500700090001400成活数m325133632036335807312628成活的频率(精确到0.01)0.8130.8910.9150.9050.8970.902由此估计这种幼树在此条件下移植成活的概率约是0.9(精确到0.1)【分析】概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率.【解答】解:概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率∴这种幼树移植成活率的概率约为0.9.故答案为:0.9.【点评】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.13.(3分)计算﹣的结果是.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=+=故答案为:【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.14.(3分)以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是30°或150°.【分析】分等边△ADE在正方形的内部和外部两种情况分别求解可得.【解答】解:如图1,∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD=AE=DE,∠BAD=∠ABC=∠BCD=∠ADC=90°,∠AED=∠ADE=∠DAE=60°,∴∠BAE=∠CDE=150°,又AB=AE,DC=DE,∴∠AEB=∠CED=15°,则∠BEC=∠AED﹣∠AEB﹣∠CED=30°.如图2,∵△ADE是等边三角形,∴AD=DE,∵四边形ABCD是正方形,∴AD=DC,∴DE=DC,∴∠CED=∠ECD,∴∠CDE=∠ADC﹣∠ADE=90°﹣60°=30°,∴∠CED=∠ECD=(180°﹣30°)=75°,∴∠BEC=360°﹣75°×2﹣60°=150°.故答案为:30°或150°.【点评】本题考查了正方形的性质,等边三角形的性质,等腰三角形的判定与性质,熟记各性质并准确识图是解题的关键.15.(3分)飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣.在飞机着陆滑行中,最后4s滑行的距离是216m.【分析】求出t=4时的函数值即可;【解答】解:根据对称性可知,开始4秒和最后4秒的滑行的距离相等,t=4时,y=60×4﹣×42=240﹣24=216m,故答案为216.【点评】本题考查二次函数的应用,解题的关键是理解题意,属于中考基础题.16.(3分)如图.在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.若DE平分△ABC的周长,则DE的长是.【分析】延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,根据题意得到ME=EB,根据三角形中位线定理得到DE=AM,根据等腰三角形的性质求出∠ACN,根据正弦的概念求出AN,计算即可.【解答】解:延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,∵DE平分△ABC的周长,∴ME=EB,又AD=DB,∴DE=AM,DE∥AM,∵∠ACB=60°,∴∠ACM=120°,∵CM=CA,∴∠ACN=60°,AN=MN,∴AN=AC•sin∠ACN=,∴AM=,∴DE=,故答案为:.【点评】本题考查的是三角形中位线定理、等腰三角形的性质、解直角三角形,掌握三角形中位线定理、正确作出辅助性是解题的关键.三、解答题(共8题,共72分)17.(8分)解方程组:【分析】方程组利用加减消元法求出解即可.【解答】解:,②﹣①得:x=6,把x=6代入①得:y=4,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(8分)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE 交于点G,求证:GE=GF.【分析】求出BF=CE,根据SAS推出△ABF≌△DCE,得对应角相等,由等腰三角形的判定可得结论.【解答】证明:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中∴△ABF≌△DCE(SAS),∴∠GEF=∠GFE,∴EG=FG.【点评】本题考查了全等三角形的判定与性质,等腰三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.19.(8分)某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图.学生读书数量统计表阅读量/本学生人数1152a3b45(1)直接写出m、a、b的值;(2)估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?【分析】(1)根据题意和统计图中的数据可以求得m、a、b的值;(2)根据统计图中的数据可以求得该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本.【解答】解:(1)由题意可得,m=15÷30%=50,b=50×40%=20,a=50﹣15﹣20﹣5=10,即m的值是50,a的值是10,b的值是20;(2)(1×15+2×10+3×20+4×5)×=1150(本),答:该年级全体学生在这次活动中课外阅读书籍的总量大约是1150本.【点评】本题考查扇形统计图、用样本估计总体、统计表,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20.(8分)用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C型钢板和3块D型钢板.现准备购买A、B型钢板共100块,并全部加工成C、D型钢板.要求C型钢板不少于120块,D型钢板不少于250块,设购买A型钢板x块(x为整数)(1)求A、B型钢板的购买方案共有多少种?(2)出售C型钢板每块利润为100元,D型钢板每块利润为120元.若童威将C、D型钢板全部出售,请你设计获利最大的购买方案.【分析】(1)根据“C型钢板不少于120块,D型钢板不少于250块”建立不等式组,即可得出结论;(2)先建立总利润和x的关系,即可得出结论.【解答】解:设购买A型钢板x块,则购买B型钢板(100﹣x)块,根据题意得,,解得,20≤x≤25,∵x为整数,∴x=20,21,22,23,24,25共6种方案,即:A、B型钢板的购买方案共有6种;(2)设总利润为w,根据题意得,w=100(2x+100﹣x)+120(x+300﹣3x)=100x+10000﹣240x+36000=﹣14x+46000,∵﹣14<0,∴当x=20时,w max=﹣14×20+46000=45740元,即:购买A型钢板20块,B型钢板80块时,获得的利润最大.【点评】此题主要考查了二元一次不等式组的应用,一次函数的性质,根据题意得出正确的等量关系是解题关键.21.(8分)如图,PA是⊙O的切线,A是切点,AC是直径,AB是弦,连接PB、PC,PC交AB于点E,且PA=PB.(1)求证:PB是⊙O的切线;(2)若∠APC=3∠BPC,求的值.【分析】(1)想办法证明△PAO≌△PBO.可得∠PAO=∠PBO=90°;(2)首先证明BC=2OK,设OK=a,则BC=2a,再证明BC=PB=PA=2a,由△PAK∽△POA,可得PA2=PK•PO,设PK=x,则有:x2+ax﹣4a2=0,解得x=a (负根已经舍弃),推出PK=a,由PK∥BC,可得==;【解答】(1)证明:连接OP、OB.∵PA是⊙O的切线,∴PA⊥OA,∴∠PAO=90°,∵PA=PB,PO=PO,OA=OB,∴△PAO≌△PBO.∴∠PAO=∠PBO=90°,∴PB⊥OB,∴PB是⊙O的切线.(2)设OP交AB于K.∵AB是直径,∴∠ABC=90°,∴AB⊥BC,∵PA、PB都是切线,∴PA=PB,∠APO=∠BPO,∵OA=OB,∴OP垂直平分线段AB,∴OK∥BC,∵AO=OC,∴AK=BK,∴BC=2OK,设OK=a,则BC=2a,∵∠APC=3∠BPC,∠APO=∠OPB,∴∠OPC=∠BPC=∠PCB,∴BC=PB=PA=2a,∵△PAK∽△POA,∴PA2=PK•PO,设PK=x,则有:x2+ax﹣4a2=0,解得x=a(负根已经舍弃),∴PK=a,∵PK∥BC,∴==.【点评】本题考查相似三角形的判定和性质、圆周角定理、切线的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题,学会利用参数解决问题,属于中考常考题型.22.(10分)已知点A(a,m)在双曲线y=上且m<0,过点A作x轴的垂线,垂足为B.(1)如图1,当a=﹣2时,P(t,0)是x轴上的动点,将点B绕点P顺时针旋转90°至点C,①若t=1,直接写出点C的坐标;②若双曲线y=经过点C,求t的值.(2)如图2,将图1中的双曲线y=(x>0)沿y轴折叠得到双曲线y=﹣(x <0),将线段OA绕点O旋转,点A刚好落在双曲线y=﹣(x<0)上的点D (d,n)处,求m和n的数量关系.【分析】(1)①如图1﹣1中,求出PB、PC的长即可解决问题;②图1﹣2中,由题意C(t,t+2),理由待定系数法,把问题转化为方程解决即可;(2)分两种情形①当点A与点D关于x轴对称时,A(a,m),D(d,n),可得m+n=0.②当点A绕点O旋转90°时,得到D′,D′在y=﹣上,作D′H⊥y轴,则△ABO≌△D′HO,推出OB=OH,AB=D′H,由A(a,m),推出D′(m,﹣a),即D′(m,n),由D′在y=﹣上,可得mn=﹣8;【解答】解:(1)①如图1﹣1中,由题意:B(﹣2,0),P(1,0),PB=PC=3,∴C(1,3).②图1﹣2中,由题意C(t,t+2),∵点C在y=上,∴t(t+2)=8,∴t=﹣4 或2,(2)如图2中,①当点A与点D关于x轴对称时,A(a,m),D(d,n),∴m+n=0.②当点A绕点O旋转90°时,得到D′,D′在y=﹣上,作D′H⊥y轴,则△ABO≌△D′HO,∴OB=OH,AB=D′H,∵A(a,m),∴D′(m,﹣a),即D′(m,n),∵D′在y=﹣上,∴mn=﹣8,综上所述,满足条件的m、n的关系是m+n=0或mn=﹣8.【点评】本题考查反比例函数综合题、旋转变换、待定系数法、全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加辅助线,构造全等三角形解决问题,属于中考压轴题.23.(10分)在△ABC中,∠ABC=90°.(1)如图1,分别过A、C两点作经过点B的直线的垂线,垂足分别为M、N,求证:△ABM∽△BCN;(2)如图2,P是边BC上一点,∠BAP=∠C,tan∠PAC=,求tanC的值;(3)如图3,D是边CA延长线上一点,AE=AB,∠DEB=90°,sin∠BAC=,,直接写出tan∠CEB的值.【分析】(1)利用同角的余角相等判断出∠BAM=∠CBN,即可得出结论;(2)先判断出△ABP∽△PQF,得出=,再判断出△ABP∽△CQF,得出CQ=2a,进而建立方程用b表示出a,即可得出结论;(3)先判断出=,再同(2)的方法,即可得出结论.【解答】解:(1)∵AM⊥MN,CN⊥MN,∴∠AMB=∠BNC=90°,∴∠BAM+∠ABM=90°,∵∠ABC=90°,∴∠ABM+∠CBN=90°,∴∠BAM=∠CBN,∵∠AMB=∠NBC,∴△ABM∽△BCN;(2)如图2,过点P作PF⊥AP交AC于F,在Rt△AFP中,tan∠PAC===,同(1)的方法得,△ABP∽△PQF,∴=,设AB=a,PQ=2a,BP=b,FQ=2b(a>0,b>0),∵∠BAP=∠C,∠B=∠CQF=90°,∴△ABP∽△CQF,∴,∴CQ==2a,∵BC=BP+PQ+CQ=b+2a+2a=4a+b∵∠BAP=∠C,∠B=∠B=90°,∴△ABP∽△CBA,∴=,∴BC===,∴4a+b=,a=b,∴BC=4×b+b=b,AB=a=b,在Rt△ABC中,tanC==;(3)在Rt△ABC中,sin∠BAC==,过点A作AG⊥BE于G,过点C作CH⊥BE交EB的延长线于H,∵∠DEB=90°,∴CH∥AG∥DE,∴=同(1)的方法得,△ABG∽△BCH∴,设BG=4m,CH=3m,AG=4n,BH=3n,∵AB=AE,AG⊥BE,∴EG=BG=4m,∴GH=BG+BH=4m+3n,∴,∴n=2m,∴EH=EG+GH=4m+4m+3n=8m+3n=8m+6m=14m,在Rt△CEH中,tan∠BEC==.【点评】此题是相似形综合题,主要考查了同角的余角相等,相似三角形的判定和性质,锐角三角函数,平行线分线段成比例定理,构造图1是解本题的关键.24.(12分)抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B.(1)直接写出抛物线L的解析式;(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.若△BMN 的面积等于1,求k的值;(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标.【分析】(1)根据对称轴为直线x=1且抛物线过点A(0,1)求解可得;(2)根据直线y=kx﹣k+4=k(x﹣1)+4知直线所过定点G坐标为(1,4),从而得出BG=2,由S△BMN=S△BNG﹣S△BMG=BG•x N﹣BG•x M=1得出x N﹣x M=1,联立直线和抛物线解析式求得x=,根据x N﹣x M=1列出关于k的方程,解之可得;(3)设抛物线L1的解析式为y=﹣x2+2x+1+m,知C(0,1+m)、D(2,1+m)、F(1,0),再设P(0,t),分△PCD∽△POF和△PCD∽△POF两种情况,由对应边成比例得出关于t与m的方程,利用符合条件的点P恰有2个,结合方程的解的情况求解可得.【解答】解:(1)由题意知,解得:b=2、c=1,∴抛物线L的解析式为y=﹣x2+2x+1;(2)如图1,∵y=kx﹣k+4=k(x﹣1)+4,∴当x=1时,y=4,即该直线所过定点G坐标为(1,4),∵y=﹣x2+2x+1=﹣(x﹣1)2+2,∴点B(1,2),则BG=2,∵S△BMN=1,即S△BNG﹣S△BMG=BG•x N﹣BG•x M=1,∴x N﹣x M=1,由得x2+(k﹣2)x﹣k+3=0,解得:x==,则x N=、x M=,由x N﹣x M=1得=1,∴k=±3,∵k<0,∴k=﹣3;(3)如图2,设抛物线L1的解析式为y=﹣x2+2x+1+m,∴C(0,1+m)、D(2,1+m)、F(1,0),设P(0,t),①当△PCD∽△FOP时,=,∴=,∴t2﹣(1+m)t+2=0;②当△PCD∽△POF时,=,∴=,∴t=(m+1);(Ⅰ)当方程①有两个相等实数根时,△=(1+m)2﹣8=0,解得:m=2﹣1(负值舍去),此时方程①有两个相等实数根t1=t2=,方程②有一个实数根t=,∴m=2﹣1,此时点P的坐标为(0,)和(0,);(Ⅱ)当方程①有两个不相等的实数根时,把②代入①,得:(m+1)2﹣(m+1)+2=0,解得:m=2(负值舍去),此时,方程①有两个不相等的实数根t1=1、t2=2,方程①有一个实数根t=1,∴m=2,此时点P的坐标为(0,1)和(0,2);综上,当m=2﹣1时,点P的坐标为(0,)和(0,);当m=2时,点P的坐标为(0,1)和(0,2).【点评】本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式、利用割补法求三角形的面积建立关于k的方程及相似三角形的判定与性质等知识点.。

湖北省武汉市2021年中考数学试题真题(Word版,含答案与解析)

湖北省武汉市2021年中考数学试题真题(Word版,含答案与解析)

湖北省武汉市2021年中考数学试卷一、单选题1.(2019·朝阳)3的相反数是( )A. 3B. -3C. 13 D. −13 【答案】 B【考点】相反数及有理数的相反数【解析】【解答】解:根据相反数的定义知:3的相反数是-3, 故答案为:B.【分析】只有符号不同的两个数叫作互为相反数,根据定义即可直接得出答案. 2.(2021·武汉)下列事件中是必然事件的是( ) A. 抛掷一枚质地均匀的硬币,正面朝上 B. 随意翻到一本书的某页,这一页的页码是偶数 C. 打开电视机,正在播放广告D. 从两个班级中任选三名学生,至少有两名学生来自同一个班级 【答案】 D 【考点】随机事件【解析】【解答】解:A 、掷一枚质地均匀的硬币,正面向上是随机事件; B 、随意翻到一本书的某页,这一页的页码是偶数,是随机事件; C 、打开电视机,正在播放广告,是随机事件;D 、从两个班级中任选三名学生,至少有两名学生来自同一个班级,是必然事件. 故答案为:D.【分析】必然事件是指一定会发生或一定不会发生的事件。

随机事件是指可能发生也可能不发生的事件.根据定义并结合各选项即可判断求解.3.(2021·武汉)下列图形都是由一个圆和两个相等的半圆组合而成的,其中既是轴对称图形又是中心对称图形的是( ) A.B.C.D.【答案】 A【考点】轴对称图形,中心对称及中心对称图形【解析】【解答】解:A 选项中的图形既是轴对称图形又是中心对称图形,故该选项正确; B 选项中的图形是中心对称图形,不是轴对称图形,故该选项不正确; C 选项中的图形是中心对称图形,不是轴对称图形,故该选项不正确; D 选项中的图形是轴对称图形,不是中心对称图形,故该选项不正确; 故答案为:A.【分析】在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形;根据定义并结合图形即可判断求解.4.(2021·武汉)计算 (−a 2)3 的结果是( )A. −a 6B. a 6C. −a 5D. a 5 【答案】 A 【考点】幂的乘方【解析】【解答】解: (−a 2)3=(−1)3·(a 2)3=−a 6 . 故答案为:A.【分析】根据幂的乘方法则“幂的乘方,底数不变,指数相乘”可求解.5.(2021·武汉)如图是由4个相同的小正方体组成的几何体,它的主视图是( )A.B. C. D.【答案】 C【考点】简单组合体的三视图【解析】【解答】∵ 的主视图是 ,故答案为:C.【分析】 主视图是从物体正面看所得到的图形,其中看得到的棱长用实线表示,看不到的棱长用虚线的表示,结合已知的几何体可求解.6.(2021·武汉)学校招募运动会广播员,从两名男生和两名女生共四名候选人中随机选取两人,则两人恰好是一男一女的概率是( )A. 13 B. 12 C. 23 D. 34 【答案】 C【考点】列表法与树状图法 【解析】【解答】解:画树状图如图:共有12种等可能的结果,恰好选出是一男一女两位选手的结果有8种,俗好选出是一男一女两位选手的概率为 812=23 . 故答案为:C.【分析】由题意画出树状图,由树状图的信息可知共有12种等可能的结果,恰好选出是一男一女两位选手的结果有8种,然后根据概率公式可求解.7.(2021·武汉)我国古代数学名著《九章算术》中记载:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?”意思是现有几个人共买一件物品,每人出8钱.多出3钱;每人出7钱,差4钱.问人数,物价各是多少?若设共有 x 人,物价是 y 钱,则下列方程正确的是( ) A. 8(x −3)=7(x +4) B. 8x +3=7x −4 C. y−38=y+47D.y+38=y−47【答案】 D【考点】一元一次方程的实际应用-古代数学问题 【解析】【解答】解:设共有x 人,则有8x-3=7x+4 设物价是 y 钱,则根据可得:y +38=y −47故答案为:D.【分析】若设共有x 人,根据物价不变可列方程,即8x-3=7x+4;若设物价是y 钱,根据人数不变可列方程.8.(2021·武汉)一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返同,且往返速度的大小不变,两车离甲地的距离 y (单位: km )与慢车行驶时间 t (单位: h )的函数关系如图,则两车先后两次相遇的间隔时间是( )A. 53hB. 32hC. 75hD. 43h【答案】 B【考点】一次函数的实际应用【解析】【解答】解:设慢车离甲地的距离 y (单位: km )与慢车行驶时间 t (单位: h )的函数关系为y=kt 过(6, a ), 代入得 a =6k ,解得 k =a6 , ∴慢车解析式为: y =a6x ,设快车从甲地到乙地的解析式 y =k 1x +b 1 ,过(2,0),(4, a )两点,代入解析式的 {2k 1+b 1=04k 1+b 1=a , 解得 {k 1=a2b 1=−a,快车从甲地到乙地的解析式 y =a2x −a , 设快车从乙地到甲地的解析式 y =k 2x +b 2 ,过(4, a ),(6,0)两点,代入解析式的 {6k 2+b 2=04k 2+b 2=a , 解得 {k 2=−a2b 2=3a, 快车从乙地到甲地的解析式 y =−a2x +3a ,快车从甲地到乙地与慢车相遇 {y =a6xy =a2x −a, 解得 {x =3y =a 2,快车从乙地到甲地与慢车相遇 {y =a6xy =−a2x +3a, 解得 {x =92y =3a 4,两车先后两次相遇的间隔时间是 92 -3= 32 h. 故答案为:B.【分析】设慢车离甲地的距离y (单位: km )与慢车行驶时间(单位: h )的函数关系为y=kt 过(6, a ),代入解析式可将k 用含a 的代数式表示,由题意用的待定系数法可求得快车从甲地到乙地的解析式;同理可求得快车从乙地到甲地的解析式;分别把慢车解析式和快车从甲地到乙地的解析式、慢车解析式和快车从乙地到甲地的解析式联立解方程组可求解.9.(2021·武汉)如图, AB 是 ⊙O 的直径, BC 是 ⊙O 的弦,先将 BC ⌢ 沿 BC 翻折交 AB 于点 D .再将 BD⌢ 沿 AB 翻折交 BC 于点 E .若 BE ⌢=DE ⌢ ,设 ∠ABC =α ,则 α 所在的范围是( )A. 21.9°<α<22.3°B. 22.3°<α<22.7°C. 22.7°<α<23.1°D. 23.1°<α<23.5° 【答案】 B【考点】圆心角、弧、弦的关系,翻折变换(折叠问题)【解析】【解答】解:将⊙O 沿BC 翻折得到⊙O′,将⊙O′沿BD 翻折得到⊙O″,则⊙O 、⊙O′、⊙O″为等圆.∵⊙O与⊙O′为等圆,劣弧AC与劣弧CD所对的角均为∠ABC,∴AC⌢=CD⌢.⌢=CD⌢.同理:DE又∵F是劣弧BD的中点,∴DE⌢=BE⌢.∴AC⌢=DC⌢=DE⌢=EB⌢.∴弧AC的度数=180°÷4=45°.∴∠B= 1×45°=22.5°.2∴α所在的范围是22.3°<α<22.7°;故答案为:B.【分析】如图,连接AC,CD,DE.证明∠CAB=3α,利用三角形内角和定理求出α即可求解.10.(2021·武汉)已知a,b是方程x2−3x−5=0的两根,则代数式2a3−6a2+b2+7b+1的值是()A. -25B. -24C. 35D. 36【答案】 D【考点】一元二次方程的根,一元二次方程的根与系数的关系【解析】【解答】解:∵已知a,b是方程x2−3x−5=0的两根∴a2−3a−5=0,b2−3b=5,a+b=3∴2a3−6a2+b2+7b+1=2a(a2−3a−5)+(b2−3b)+10(a+b)+1=0+5+30+1=36.故答案为:D.【分析】由一元二次方程的根的定义和根与系数的关系可得:a2-3a-5=0,b2-3b-5=0,a+b=3,然后用整体的代换计算即可求解.二、填空题11.(2018八下·兴义期中)计算√(−5)2的结果是________【答案】5【考点】二次根式的性质与化简【解析】【解答】解:原式=|-5|=5故答案为:5【分析】根据二次根式的性质,一个数的平方的算术平方根,等于这个数的绝对值,即可得出答案。

部编版初中九年级数学反比例函数(含中考真题解析答案)

部编版初中九年级数学反比例函数(含中考真题解析答案)

部编版初中九年级数学反比例函数(含中考真题解析答案)反比例函数(含答案)?解读考点知识点 1.反比例函数概念反比例函数概2.反比例函数图象念、图象和性3.反比例函数的性质质 4.一次函数的解析式确定名师点晴会判断一个函数是否为反比例函数。

知道反比例函数的图象是双曲线,。

会分象限利用增减性。

能用待定系数法确定函数解析式。

会用数形结合思想解决此类问题.反比例函5.反比例函数中比例系数的几何能根据图象信息,解决相应的实际问题.数的应用意义能解决与三角形、四边形等几何图形相关的计算和证明。

?2年中考【2021年题组】y?1.(2021崇左)若反比例函数kx的图象经过点(2,-6),则k的值为()A.-12 B.12 C.-3 D.3【答案】A.【解析】y?试题分析:∵反比例函数kx的图象经过点(2,��6),∴k?2?(?6)??12,解得k=��12.故选A.考点:反比例函数图象上点的坐标特征. 2.(2021苏州)若点A(a,b)在反比例函数A.0 B.��2 C.2 D.��6 【答案】B.【解析】y?y?2x的图象上,则代数式ab��4的值为()试题分析:∵点(a,b)反比例函数22b?x上,∴a,即ab=2,∴原式=2��4=��2.故选B.考点:反比例函数图象上点的坐标特征. 3.(2021来宾)已知矩形的面积为10,长和宽分别为x和y,则y关于x的函数图象大致是()- 1 -A. B. C.D.【答案】C.考点:1.反比例函数的应用;2.反比例函数的图象.4.(2021河池)反比例函数y1?mx(x?0)的图象与一次函数y2??x?b的图象交于A,B两点,其中A(1,2),当y2?y1时,x的取值范围是()A.x<1 B.1<x<2 C.x>2 D.x<1或x>2 【答案】B.【解析】试题分析:根据双曲线关于直线y=x对称易求B(2,1).依题意得:如图所示,当1<x<2时,y2?y1.故选B.考点:反比例函数与一次函数的交点问题.- 2 -5.(2021贺州)已知k1?0?k2,则函数y?k1x和y?k2x?1的图象大致是()A.【答案】C.B.C. D.考点:1.反比例函数的图象;2.一次函数的图象. 6.(2021宿迁)在平面直角坐标系中,点A,B的坐标分别为(��3,0),(3,0),点P在y?反比例函数2x的图象上,若△PAB为直角三角形,则满足条件的点P的个数为()A.2个 B.4个 C.5个 D.6个【答案】D.【解析】y?试题分析:①当∠PAB=90°时,P点的横坐标为��3,把x=��3代入此时P点有1个;22y??x得3,所以2222222(x?3)?()(x?3)?()22x,PB=x,AB2 ②当∠APB=90°,设P(x,x),PA=222222(x?3)?()?(x?3)?()222(3?3)xxPA?PB?AB==36,因为,所以=36,整理得2x4?9x2?4?0,所以x2?9?659?65x2?22,或,所以此时P点有4个;y?22y?x得3,所以此时P点有1个;③当∠PBA=90°时,P点的横坐标为3,把x=3代入综上所述,满足条件的P点有6个.故选D.考点:1.反比例函数图象上点的坐标特征;2.圆周角定理;3.分类讨论;4.综合题.7.(2021自贡)若点(的点,并且x1,y1),(x2,y2),(x3,y3y??),都是反比例函数1x图象上y1?0?y2?y3,则下列各式中正确的是()- 3 -A.D.x1?x2?x3 B.x1?x3?x2 C.x2?x1?x3x2?x3?x1【答案】D.【解析】试题分析:由题意得,点(的点,且(x1,y1)xy,xy,(2,2)(3,3)都是反比例函数y??1x上y1?0?y2?y3,xy,xy位于第三象限,x?x3,则(2,2)(3,3)y随x的增大而增大,2 x1,y1)位于第一象限,x1最大,故x1、x2、x3的大小关系是x2?x3?x1.故选D.考点:反比例函数图象上点的坐标特征.8.(2021凉山州)以正方形ABCD两条对角线的交点O为坐标原点,建立如图所示的平面y?直角坐标系,双曲线3x经过点D,则正方形ABCD的面积是()A.10 B.11 C.12 D.13 【答案】C.考点:反比例函数系数k的几何意义.y?9.(2021眉山)如图,A、B是双曲线kx上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为()48A.3 B.3 C.3 D.4- 4 -【答案】B.考点:1.反比例函数系数k的几何意义;2.相似三角形的判定与性质. 10.(2021内江)如图,正方形ABCD位于第一象限,边长为3,点A在直线y=x上,点Ay?的横坐标为1,正方形ABCD的边分别平行于x轴、y轴.若双曲线有公共点,则k的取值范围为()kx与正方形ABCDA.1<k<9 B.2≤k≤34 C.1≤k≤16 D.4≤k<16 【答案】C.【解析】试题分析:点A在直线y=x上,其中A点的横坐标为1,则把x=1代入y=x解得y=1,则Ay?的坐标是(1,1),∵AB=BC=3,∴C点的坐标是(4,4),∴当双曲线kx经过点(1,1)时,k=1;当双曲线kx经过点(4,4)时,k=16,因而1≤k≤16.故选C.考点:1.反比例函数与一次函数的交点问题;2.综合题.- 5 -11.(2021孝感)如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函y?数1ky?x的图象上.若点B在反比例函数x的图象上,则k的值为()A.��4 B.4 C.��2 D.2【答案】A.考点:1.反比例函数图象上点的坐标特征;2.相似三角形的判定与性质;3.综合题.41012.(2021宜昌)如图,市煤气公司计划在地下修建一个容积为m3的圆柱形煤气储存室,则储存室的底面积S(单位:m2)与其深度d(单位:m)的函数图象大致是()- 6 -【答案】A.B. C. D.考点:1.反比例函数的应用;2.反比例函数的图象.y?13.(2021三明)如图,已知点A是双曲线2x在第一象限的分支上的一个动点,连接AO并延长交另一分支于点B,过点A作y轴的垂线,过点B作x轴的垂线,两垂线交于点C,随着点A的运动,点C的位置也随之变化.设点C的坐标为(m,n),则m,n满足的关系式为()A.n??2m B.【答案】B.【解析】n??24n??m C.n??4m D.m2试题分析:∵点C的坐标为(m,n),∴点A的纵坐标是n,横坐标是:n,∴点A 的坐22标为(n,n),∵点C的坐标为(m,n),∴点B的横坐标是m,纵坐标是:m,∴点B2nm?2222mmn??mn,∴m2n2?4,又∵m<0,n>0,∴的坐标为(m,m),又∵n,∴- 7 -mn??2,∴n??2m,故选B.考点:反比例函数图象上点的坐标特征.y?14.(2021株洲)从2,3,4,5中任意选两个数,记作a和b,那么点(a,b)在函数图象上的概率是()12x1111A.2 B.3 C.4 D.6【答案】D.考点:1.列表法与树状图法;2.反比例函数图象上点的坐标特征.OA3?OB4.15.(2021乌鲁木齐)如图,在直角坐标系xOy中,点A,B分别在x轴和y轴,∠y?AOB的角平分线与OA的垂直平分线交于点C,与AB交于点D,反比例函数kx的图象2过点C.当以CD为边的正方形的面积为7时,k的值是()- 8 -A.2 B.3 C.5 D.7 【答案】D.考点:1.反比例函数综合题;2.综合题;3.压轴题. 16.(2021重庆市)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴y?平行,A,B两点的纵坐标分别为3,1.反比例函数ABCD的面积为()3x的图象经过A,B两点,则菱形A.2 B.4 C.22 D.42 【答案】D.【解析】y?试题分析:过点A作x轴的垂线,与CB的延长线交于点E,∵A,B两点在反比例函数3x的图象上且纵坐标分别为3,1,∴A,B横坐标分别为1,3,∴AE=2,BE=2,∴AB=22,S菱形ABCD=底×高=22×2=42,故选D.- 9 -考点:1.菱形的性质;2.反比例函数图象上点的坐标特征;3.综合题.17.(2021临沂)在平面直角坐标系中,直线y??x?2与反比例函数1y?x的图象有2个公共点,则b的取值范围是公共点,若直线y??x?b与反比例函数()y?1x的图象有唯一A.b>2 B.��2<b<2 C.b>2或b<��2 D.b<��2 【答案】C.考点:反比例函数与一次函数的交点问题. 18.(2021滨州)如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转,若∠BOA12y??y?x、x的图象交于B、A两点,则∠OAB的大小的变化趋势为的两边分别与函数()- 10 -A.逐渐变小 B.逐渐变大 C.时大时小 D.保持不变【答案】D.考点:1.相似三角形的判定与性质;2.反比例函数图象上点的坐标特征;3.综合题. 19.(2021扬州)已知一个正比例函数的图象与一个反比例函数的一个交点坐标为(1,3),则另一个交点坐标是.【答案】(��1,��3).【解析】试题分析:∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(1,3)关于原点对称,∴该点的坐标为(��1,��3).故答案为:(��1,��3).考点:反比例函数图象的对称性.20.(2021泰州)点(a��1,1)、(a+1,2)在反比例函数yyy?k?k?0?x的图象上,若y1?y2,- 11 -则a的范围是.【答案】��1<a<1.考点:1.反比例函数图象上点的坐标特征;2.分类讨论.y?21.(2021南宁)如图,点A在双曲线23ky?x(x?0)上,x(x?0)点B在双曲线上(点B在点A的右侧),且AB∥x轴.若四边形OABC是菱形,且∠AOC=60°,则k= .【答案】63.【解析】y?试题分析:因为点A在双曲线2323x(x?0)上,设A点坐标为(a,a),因为四23边形OABC是菱形,且∠AOC=60°,所以OA=2a,可得B点坐标为(3a,a),可得:3a?k=23a=63,故答案为:63.考点:1.菱形的性质;2.反比例函数图象上点的坐标特征;3.综合题. 22.(2021桂林)如图,以?ABCO的顶点O为原点,边OC所在直线为x轴,建立平面直y?角坐标系,顶点A、C的坐标分别是(2,4)、(3,0),过点A的反比例函数交BC于D,连接AD,则四边形AOCD的面积是.kx的图象- 12 -【答案】9.考点:1.平行四边形的性质;2.反比例函数系数k的几何意义;3.综合题;4.压轴题. 23.(2021贵港)如图,已知点A1,A2,…,An均在直线y?x?1上,点B1,B2,…,y??Bn均在双曲线1x上,并且满足:A1B1⊥x轴,B1A2⊥y轴,A2B2⊥x轴,B2A3⊥y轴,…,AnBn⊥x轴,BnAn+1⊥y轴,…,记点An的横坐标为an(n为正整数).若则a2021= .a1??1,【答案】2.- 13 -考点:1.反比例函数图象上点的坐标特征;2.一次函数图象上点的坐标特征;3.规律型;4.综合题.24.(2021南京)如图,过原点O的直线与反比例函数y1,y2的图象在第一象限内分别交于点A,B,且A为OB的中点,若函数y1?1x,则y2与x的函数表达式是.【答案】【解析】y2?4x.试题分析:过A作AC⊥x轴于C,过B作BD⊥x轴于D,∵点A在反比例函数y1?1x上,11∴设A(a,a),∴OC=a,AC=a,∵AC⊥x轴,BD⊥x轴,∴AC∥BD,∴△OAC∽△ACOCOAACOCOA12?????OBD,∴BDODOB,∵A为OB的中点,∴BDODOB2,∴BD=2AC=a,- 14 -2k2y2?2a??4yx,∴k=aOD=2OC=2a,∴B(2a,a),设,∴2与x的函数表达式是:y2?44y2?x.故答案为:x.考点:1.反比例函数与一次函数的交点问题;2.综合题;3.压轴题.y?25.(2021攀枝花)如图,若双曲线kx(k?0)与边长为3的等边△AOB(O为坐标原点)的边OA、AB分别交于C、D两点,且OC=2BD,则k的值为.363【答案】25.- 15 -考点:1.反比例函数图象上点的坐标特征;2.等边三角形的性质;3.综合题.93(x>0)y?x26.(2021荆门)如图,点A1,A2依次在的图象上,点B1,B2依次在x轴的正半轴上,若△A1OB1,△A2B1B2均为等边三角形,则点B2的坐标为.【答案】(62,0).- 16 -考点:1.反比例函数图象上点的坐标特征;2.等边三角形的性质;3.综合题;4.压轴题. 27.(2021南平)如图,在平面直角坐标系xOy中,△OAB的顶点A在x轴正半轴上,OCy?是△OAB的中线,点B,C在反比例函数于.3x(x?0)的图象上,则△OAB的面积等9【答案】2.考点:1.反比例函数系数k的几何意义;2.综合题. 28.(2021烟台)如图,矩形OABC的顶点A、C的坐标分别是(4,0)和(0,2),反比y?例函数kx(x>0)的图象过对角线的交点P并且与AB,BC分别交于D,E两点,连接OD,OE,DE,则△ODE的面积为.- 17 -15【答案】4.考点:1.反比例函数系数k的几何意义;2.反比例函数综合题;3.综合题. 29.(2021玉林防城港)已知:一次函数y??2x?10的图象与反比例函数y?kx(k?0)的图象相交于A,B两点(A在B的右侧).(1)当A(4,2)时,求反比例函数的解析式及B点的坐标;(2)在(1)的条件下,反比例函数图象的另一支上是否存在一点P,使△PAB是以AB为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.(3)当A(a,��2a+10),B(b,��2b+10)时,直线OA与此反比例函数图象的另一支交BC5?BD2,求△ABC的面积.于另一点C,连接BC交y轴于点D.若y?【答案】(1)81?x,B(1,8);(2)(��4,��2)、(��16,2);(3)10.- 18 -【解析】y?试题分析:(1)把点A的坐标代入kx,就可求出反比例函数的解析式;解一次函数与反比例函数的解析式组成的方程组,就可得到点B的坐标;(2)①若∠BAP=90°,过点A作AH⊥OE于H,设AP与x轴的交点为M,如图1,对于y=��2x+10,当y=0时,��2x+10=0,解得x=5,∴点E(5,0),OE=5.∵A(4,2),∴OH=4,AH=2,∴HE=5��4=1.∵AH⊥OE,∴∠AHM=∠AHE=90°.又∵∠BAP=90°,∴∠AME+∠AEM=90°,∠AME+∠MAH=90°,∴∠MAH=∠AEM,∴△AHM∽△EHA,∴AHMH2MH??EHAH,∴12,∴MH=4,∴M(0,0),可设直线AP的解析式为y?mx,1?y?x??2??x?4811?y??y?xy?2?x,2,则有4m?2,解得m=2,∴直线AP的解析式为解方程组?得:??x??4?y??2,∴点P的坐标为(��4,��2)或?.1②若∠ABP=90°,同理可得:点P的坐标为(��16,2).?- 19 -1综上所述:符合条件的点P的坐标为(��4,��2)、(��16,2);?(3)过点B作BS⊥y轴于S,过点C作CT⊥y轴于T,连接OB,如图2,则有BS∥CT,CDCTBC5CTCD3????BD2.∵A(a,��2a+10)∴△CTD∽△BSD,∴BDBS.∵BD2,∴BS,B(b,��2b+10),∴C(��a,2a��考点:1.反比例函数综合题;2.待定系数法求一次函数解析式;3.反比例函数与一次函数的交点问题;4.相似三角形的判定与性质;5.压轴题.【2021年题组】1. (2021年湖南湘潭)如图,A、B两点在双曲线线段,已知S阴影=1,则S1+S2=()y?4x上,分别经过A、B两点向轴作垂- 20 -④若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是(把所有正确的结论的序号都填上).【答案】①④.考点:1.反比例函数综合题;2. 反比例函数的图象和k的几何意义;3.平行四边形、矩形的性质和菱形的性质.- 26 -9. (2021年湖北荆州)如图,已知点A是双曲线y?2x在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线是.y?kx(k<0)上运动,则k的值【答案】��6.考点:1.单动点问题;2.曲线上点的坐标与方程的关系;3. 等边三角形的性质;4.相似三角形的判定和性质;5.锐角三角函数定义;6.特殊角的三角函数值.- 27 -10. (2021年江苏淮安)如图,点A(1,6)和点M(m,n)都在反比例函数y?kx(x>0)的图象上,(1)k的值为;(2)当m=3,求直线AM的解析式;(3)当m>1时,过点M作MP⊥x轴,垂足为P,过点A作AB⊥y轴,垂足为B,试判断直线BP与直线AM的位置关系,并说明理由.【答案】(1)6;(2)y=��2x+8;(3)直线BP与直线AM的位置关系为平行,.- 28 -考点:1.反比例函数综合题;2.待定系数法的应用;3.曲线上点的坐标与方程的关系;4.相似三角形的判定和性质;5.平行的判定.?考点归纳归纳 1:反比例函数的概念基础知识归纳:一般地,函数(k是常数,k0)叫做反比例函数。

2021年中考数学真题分类汇编--函数:函数与几何(压轴题1)(老师版)

2021年中考数学真题分类汇编--函数:函数与几何(压轴题1)(老师版)
(4)点Q是抛物线上位于x轴上方的一点,点R在x轴上,是否存在以点Q为直角顶点的等腰Rt△CQR?若存在,求出点Q的坐标,若不存在,请说明理由.
【分析】(1)用待定系数法即可求解;
(2)当∠CP′M为直角时,则P′C∥x轴,即可求解;当∠PCM为直角时,用解直角三角形的方法求出PN=MN+PM=6+ = ,即可求解;
【详解】(1)将 代入 ,
化简得 ,则 (舍)或 ,
∴ ,
得: ,则 .
设直线 对应的函数表达式为 ,
将 、 代入可得 ,解得 ,
则直线 对应的函数表达式为 .
(2)如图,过点A作 ∥BC,设直线 与y轴的交点为G,将直线BC向下平移GC个单位,得到线 ,
【答案】(1) ;(2) ;(3)存在, 或 .
6.(2021•株洲市)已知二次函数 .
(1)若 , ,求方程 的根的判别式的值;
(2)如图所示,该二次函数的图像与 轴交于点 、 ,且 ,与 轴的负半轴交于点 ,点 在线段 上,连接 、 ,满足 , .
①求证: ;
②连接 ,过点 作 于点 ,点 在 轴的负半轴上,连接 ,且 ,求 的值.
当x=±2时,y= =±2,
故“雁点”坐标为(2,2)或(﹣2,﹣2);
(2)①∵“雁点”的横坐标与纵坐标相等,
故“雁点”的函数表达式为y=x,
∵物线y=ax2+5x+c上有且只有一个“雁点”E,
则ax2+5x+c=x,
则△=25﹣4ac=0,即ac=4,
∵a>1,
故c<4;
②∵ac=4,则ax2+5x+c=0为ax2+5x+ =0,
作点C关于函数对称轴的对称点C′(2,8),作点D关于x轴的对称点D′(0,﹣4),

2021年湖北武汉中考数学试题(解析版)

2021年湖北武汉中考数学试题(解析版)

{来源}2021湖北武汉初中毕业、升学考试数学 {适用范围:3.九年级}{标题}2021年湖北省武汉市初中毕业、升学考试数 学(满分150分,考试时间120分钟){题型:1-选择题}一、选择题:本大题共10小题,每小题3分,共30分.不需写出解答过程,请把最后结果填在题后括号内. {题目}1.(2021湖北武汉1)实数2021的相反数是( ) A .2021B .-2021C .20191D .20191-{答案}B{解析}本题考查了相反数的求法,求相反数一般方法在原数前加“-”,再化简,2021的相反数是-2021.故选B . {分值}3{章节:[1-1-2-3]相反数} {考点:相反数的定义} {类别:常考题} {难度:1-最简单}{题目}2.(2021湖北武汉2)式子1-x 在实数范围内有意义,则x 的取值范围是( ) A .x >0B .x ≥-1C .x ≥1D .x ≤1{答案}C{解析}本题考查了二次根式有意义的条件及解一元一次不等式,由1-x 在实数范围内有意义,得x -1≥0,解得x ≥1,故选B . {分值}3{章节:[1-16-1]二次根式}{考点:二次根式的有意义的条件} {考点:解一元一次不等式} {类别:易错题} {难度:2-简单}{题目}3.(2021湖北武汉3) 不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是不可能事件的是( ) A .3个球都是黑球 B .3个球都是白球 C .三个球中有黑球 D .3个球中有白球 {答案}B{解析}本题考查了事件类型的判断,因为3个球都是黑球是随机事件,所以A 错误;因为3个球都是白球是不可能事件,所以B 正确;因为三个球中有黑球是随机事件,所以C 错误;因为3个球中有白球是随机事件,所以D 错误.故选B . {分值}3{章节:[1-25-1-1]随机事件}{考点:事件的类型}{类别:常考题}{难度:2-简单}{题目}4.(2021湖北武汉4)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性,下列美术字是轴对称图形的是()A.诚B.信C.友D.善{答案}D{解析}本题考查了轴对称图形的定义,“诚”、“信”、“友”都不是轴对称图形,只有“善”是轴对称图形。

2024年湖北武汉市中考数学试题+答案详解

2024年湖北武汉市中考数学试题+答案详解

2024年湖北武汉市中考数学试题+答案详解(试题部分)亲爱的同学:在你答题前,请认真阅读下面的注意事项:1.本试卷全卷共6页,三大题,满分120分.考试用时120分钟.2.答题前,请将你的姓名、准考证号填写在“答题卡”相应位置,并在“答题卡”背面左上角填写姓名和座位号.3.答选择题时,选出每小题答案后,用2B铅笔将“答题卡”上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.答在“试卷”上无效.4.答非选择题时,答案用0.5毫米黑色笔迹签字笔书写在“答题卡”上.答在“试卷”上无效.5.认真阅读答题卡上的注意事项.预祝你取得优异成绩!一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1. 现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A. B. C. D.2. 小美和小好同学做“石头、剪刀、布”的游戏,两人同时出相同的手势,这个事件是()A. 随机事件B. 不可能事件C. 必然事件D. 确定性事件3. 如图是由两个宽度相同的长方体组成的几何体,它的主视图是()A. B. C. D.4. 国家统计局2024年4月16日发布数据,今年第一季度国内生产总值接近300000亿元,同比增长5.3%,国家高质量发展取得新成效.将数据300000用科学记数法表示是()A. 50.310⨯B. 60.310⨯C. 5310⨯D. 6310⨯5. 下列计算正确的是( )A. 236a a a ⋅=B. ()1432a a =C. ()2236a a =D. ()2211a a +=+ 6. 如图,一个圆柱体水槽底部叠放两个底面半径不等的实心圆柱体,向水槽匀速注水.下列图象能大致反映水槽中水的深度h 与注水时间t 的函数关系的是( )A. B. C. D. 7. 小美同学按如下步骤作四边形ABCD :①画MAN ∠;②以点A 为圆心,1个单位长为半径画弧,分别交AM ,AN 于点B ,D ;③分别以点B ,D 为圆心,1个单位长为半径画弧,两弧交于点C ;④连接BC ,CD ,BD .若44A ∠=︒,则CBD ∠的大小是( )A. 64︒B. 66︒C. 68︒D. 70︒8. 经过某十字路口的汽车,可能直行,也可能向左转或向右转,这三种可能性大小相同.若两辆汽车经过这个十字路口,则至少一辆车向右转的概率是( ) A. 19 B. 13 C. 49 D. 599. 如图,四边形ABCD 内接于O ,60ABC ∠=︒,45BAC CAD ∠=∠=︒,2AB AD +=,则O的半径是( )A. 3B. 3C. 2D. 210. 如图,小好同学用计算机软件绘制函数32331y x x x =−+−的图象,发现它关于点()1,0中心对称.若点()110.1,A y ,()220.2,A y ,()330.3,A y ,……,()19191.9,A y ,()20202,A y 都在函数图象上,这20个点的横坐标从0.1开始依次增加0.1,则1231920y y y y y +++++的值是( )A. 1−B. 0.729−C. 0D. 1二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.11. 中国是世界上最早使用负数的国家.负数广泛应用到生产和生活中,例如,若零上3℃记作3+℃,则零下2℃记作_________℃.12. 某反比例函数k y x =具有下列性质:当0x >时,y 随x 的增大而减小,写出一个满足条件的k 的值是__________.13. 分式方程131x x x x +=−−的解是______. 14. 黄鹤楼是武汉市著名的旅游景点,享有“天下江山第一楼”的美誉.在一次综合实践活动中,某数学小组用无人机测量黄鹤楼AB 的高度,具体过程如下:如图,将无人机垂直上升至距水平地面102m 的C 处,测得黄鹤楼顶端A 的俯角为45︒,底端B 的俯角为63︒,则测得黄鹤楼的高度是__________m .(参考数据:tan632︒≈)15. 如图是我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,它是由四个全等的直角三角形和中间的小正方形MNPQ 拼成的一个大正方形ABCD .直线MP 交正方形ABCD 的两边于点E ,F ,记正方形ABCD 的面积为1S ,正方形MNPQ 的面积为2S .若(1)BE kAE k =>,则用含k 的式子表示12S S 的值是___________.16. 抛物线2y ax bx c =++(a ,b ,c 是常数,0a <)经过()1,1−,(),1m 两点,且01m <<.下列四个结论:①0b >;②若01x <<,则()()2111a x b x c −+−+>;③若1a =−,则关于x 的一元二次方程 22ax bx c ++=无实数解;④点()11,A x y ,()22,B x y 在抛物线上,若1212x x +>−,12x x >,总有12y y <,则102m <≤. 其中正确的是__________(填写序号). 三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形.17. 求不等式组3121x x x +>⎧⎨−≤⎩①②的整数解. 18. 如图,在ABCD Y 中,点E ,F 分别在边BC ,AD 上,AF CE =.(1)求证:C ABE DF ≌△△;(2)连接EF .请添加一个与线段相关的条件,使四边形ABEF 是平行四边形.(不需要说明理由) 19. 为加强体育锻炼,增强学生体质,某校在“阳光体育一小时”活动中组织九年级学生定点投篮技能测试,每人投篮4次,投中一次计1分.随机抽取m 名学生的成绩作为样本,将收集的数据整理并绘制成如下的统计图表.测试成绩频数分布表根据以上信息,解答下列问题:(1)直接写出m ,n 的值和样本的众数;(2)若该校九年级有900名学生参加测试,估计得分超过2分的学生人数.20. 如图,ABC 为等腰三角形,O 是底边BC 的中点,腰AC 与半圆O 相切于点D ,底边BC 与半圆O 交于E ,F 两点.(1)求证:AB 与半圆O 相切;(2)连接OA .若4CD =,2CF =,求sin OAC ∠的值.21. 如图是由小正方形组成的34⨯网格,每个小正方形的顶点叫做格点.ABC 三个顶点都是格点.仅用无刻度的直尺在给定网格中完成四个画图任务,每个任务的画线不得超过三条.(1)在图(1)中,画射线AD 交BC 于点D ,使AD 平分ABC 的面积;(2)在(1)的基础上,在射线AD 上画点E ,使ECB ACB ∠=∠;(3)在图(2)中,先画点F ,使点A 绕点F 顺时针旋转90︒到点C ,再画射线AF 交BC 于点G ; (4)在(3)的基础上,将线段AB 绕点G 旋转180︒,画对应线段MN (点A 与点M 对应,点B 与点N 对应).22. 16世纪中叶,我国发明了一种新式火箭“火龙出水”,它是二级火箭的始祖.火箭第一级运行路径形如抛物线,当火箭运行一定水平距离时,自动引发火箭第二级,火箭第二级沿直线运行.某科技小组运用信息技术模拟火箭运行过程.如图,以发射点为原点,地平线为x 轴,垂直于地面的直线为y 轴,建立平面直角坐标系,分别得到抛物线2y ax x =+和直线12y x b =−+.其中,当火箭运行的水平距离为9km 时,自动引发火箭的第二级.(1)若火箭第二级的引发点的高度为3.6km .①直接写出a ,b 的值;②火箭在运行过程中,有两个位置的高度比火箭运行的最高点低1.35km ,求这两个位置之间的距离. (2)直接写出a 满足什么条件时,火箭落地点与发射点的水平距离超过15km .23. 问题背景:如图(1),在矩形ABCD 中,点E ,F 分别是AB ,BC 的中点,连接BD ,EF ,求证:BCD FBE ∽△△.问题探究:如图(2),在四边形ABCD 中,AD BC ∥,90BCD ∠=︒,点E 是AB 的中点,点F 在边BC 上,2AD CF =,EF 与BD 交于点G ,求证:BG FG =.问题拓展:如图(3),在“问题探究”的条件下,连接AG ,AD CD =,AG FG =,直接写出EG GF 的值.24. 抛物线215222y x x =+−交x 轴于A ,B 两点(A 在B 的右边),交y 轴于点C .(1)直接写出点A ,B ,C 的坐标;(2)如图(1),连接AC ,BC ,过第三象限的抛物线上的点P 作直线PQ AC ∥,交y 轴于点Q .若BC 平分线段PQ ,求点P 的坐标;(3)如图(2),点D 与原点O 关于点C 对称,过原点的直线EF 交抛物线于E ,F 两点(点E 在x 轴下方),线段DE 交抛物线于另一点G ,连接FG .若90EGF ∠=︒,求直线DE 的解析式.2024年湖北武汉市中考数学试题+答案详解(答案详解)亲爱的同学:在你答题前,请认真阅读下面的注意事项:1.本试卷全卷共6页,三大题,满分120分.考试用时120分钟.2.答题前,请将你的姓名、准考证号填写在“答题卡”相应位置,并在“答题卡”背面左上角填写姓名和座位号.3.答选择题时,选出每小题答案后,用2B铅笔将“答题卡”上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.答在“试卷”上无效.4.答非选择题时,答案用0.5毫米黑色笔迹签字笔书写在“答题卡”上.答在“试卷”上无效.5.认真阅读答题卡上的注意事项.预祝你取得优异成绩!一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1. 现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A. B. C. D.【答案】C【解析】【分析】本题考查了轴对称图形的识别,根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A,B,D选项中的图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,C选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.故选:C.2. 小美和小好同学做“石头、剪刀、布”的游戏,两人同时出相同的手势,这个事件是()A. 随机事件B. 不可能事件C. 必然事件D. 确定性事件【答案】A【解析】 【分析】本题考查的是必然事件、不可能事件、随机事件的概念.根据事件发生的可能性大小判断即可.【详解】解:两人同时出相同的手势,,这个事件是随机事件,故选:A .3. 如图是由两个宽度相同的长方体组成的几何体,它的主视图是( )A. B. C. D.【答案】B【解析】【分析】本题考查了三视图的知识,熟知主视图是从物体的正面看到的视图是解题的关键.按照主视图的定义逐项判断即可.【详解】解:从正面看该几何体,下面是一个大长方形,上面叠着一个小长方形,故选:B .4. 国家统计局2024年4月16日发布数据,今年第一季度国内生产总值接近300000亿元,同比增长5.3%,国家高质量发展取得新成效.将数据300000用科学记数法表示是( )A. 50.310⨯B. 60.310⨯C. 5310⨯D. 6310⨯【答案】C【解析】 【分析】本题考查了科学记数法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值大于1与小数点移动的位数相同.【详解】解:5300000310=⨯,故选:C .5. 下列计算正确的是( )A. 236a a a ⋅=B. ()1432a a =C. ()2236a a =D. ()2211a a +=+ 【答案】B【解析】 【分析】本题考查了完全平方公式,积的乘方,幂的乘方,同底数幂的乘法等,根据同底数幂的乘法,积的乘方,幂的乘方,完全平方公式运算法则分别判断即可.【详解】解:A. 235a a a ⋅=,故该选项不正确,不符合题意;B. ()4312a a =,故该选项正确,符合题意;C. ()2239a a =,故该选项不正确,不符合题意;D. ()22121a a a +=++,故该选项不正确,不符合题意;故选:B .6. 如图,一个圆柱体水槽底部叠放两个底面半径不等的实心圆柱体,向水槽匀速注水.下列图象能大致反映水槽中水的深度h 与注水时间t 的函数关系的是( )A. B. C. D.【答案】D【解析】【分析】本题考查了函数图象;根据题意,分3段分析,即可求解.【详解】解:下层圆柱底面半径大,水面上升块,上层圆柱底面半径稍小,水面上升稍慢,再往上则水面上升更慢,所以对应图象是第一段比较陡,第二段比第一段缓,第三段比第二段缓.故选:D .7. 小美同学按如下步骤作四边形ABCD :①画MAN ∠;②以点A 为圆心,1个单位长为半径画弧,分别交AM ,AN 于点B ,D ;③分别以点B ,D 为圆心,1个单位长为半径画弧,两弧交于点C ;④连接BC ,CD ,BD .若44A ∠=︒,则CBD ∠的大小是( )A. 64︒B. 66︒C. 68︒D. 70︒【答案】C 【解析】【分析】本题考查了基本作图,菱形的判定和性质,根据作图可得四边形ABCD 是菱形,进而根据菱形的性质,即可求解.【详解】解:作图可得AB AD BC DC === ∴四边形ABCD 是菱形, ∴,AD BC ABD CBD ∠=∠ ∵44A ∠=︒,∴44MBC A ∠=∠=︒, ∴()()11180180446822CBD MBC ∠=︒−∠=︒−︒=︒, 故选:C .8. 经过某十字路口的汽车,可能直行,也可能向左转或向右转,这三种可能性大小相同.若两辆汽车经过这个十字路口,则至少一辆车向右转的概率是( ) A.19B.13C.49D.59【答案】D 【解析】【分析】本题考查的是运用树状图求概率,运用树状图法确定所有情况数和符合题意情况数是解答本题的关键.运用树状图法确定所有情况数和符合题意情况数,然后用概率公式解答即可. 【详解】解:列树状图如图所示,共有9种情况,至少一辆车向右转有5种, ∴至少一辆车向右转的概率是59, 故选:D .9. 如图,四边形ABCD 内接于O ,60ABC ∠=︒,45BAC CAD ∠=∠=︒,2AB AD +=,则O的半径是( )A.B.C.2D.2【答案】A 【解析】【分析】延长AB 至点E ,使BE AD =,连接BD ,连接CO 并延长交O 于点F ,连接AF ,即可证得()SAS ADC EBC ≌,进而可求得cos 45AC AE =︒⋅=,再利用圆周角定理得到60AFC ∠=︒,结合三角函数即可求解.【详解】解:延长AB 至点E ,使BE AD =,连接BD ,连接CO 并延长交O 于点F ,连接AF ,∵四边形ABCD 内接于O ,∴180ADC ABC ABC CBE ∠+∠=∠+∠=︒ ∴ADC CBE ∠=∠ ∵45BAC CAD ∠=∠=︒∴45CBD CDB ∠=∠=︒,90DAB ∠=︒ ∴BD 是O 的直径,∴90DCB ∠=︒∴DCB △是等腰直角三角形, ∴DC BC = ∵BE AD =∴()SAS ADC EBC ≌ ∴ACD ECB ∠=∠,AC CE =, ∵2AB AD += ∴2AB BE AE +== 又∵90DCB ∠=︒ ∴90ACE ∠=︒∴ACE △是等腰直角三角形∴cos 45AC AE =︒⋅=∵60ABC ∠=︒ ∴60AFC ∠=︒ ∵90FAC ∠=︒∴sin 603AC CF ==︒∴123OF OC CF ===故选:A .【点睛】本题考查了全等三角形的性质与判定,圆周角定理,锐角三角函数、等腰三角形的性质与判定等知识点,熟练掌握圆周角定理以及全等三角形的性质与判定是解题的关键.10. 如图,小好同学用计算机软件绘制函数32331y x x x =−+−的图象,发现它关于点()1,0中心对称.若点()110.1,A y ,()220.2,A y ,()330.3,A y ,……,()19191.9,A y ,()20202,A y 都在函数图象上,这20个点的横坐标从0.1开始依次增加0.1,则1231920y y y y y +++++的值是( )A. 1−B. 0.729−C. 0D. 1【答案】D 【解析】【分析】本题坐标规律,求函数值,中心对称的性质,根据题意得出123911190y y y y y y +++++=,进而转化为求1020y y +,根据题意可得100y =,201y =,即可求解. 【详解】解:∵这20个点的横坐标从0.1开始依次增加0.1, ∴0.1 1.90.2 1.80.9 1.11222+++==⋅⋅⋅=, ∴123911190y y y y y y +++++=,∴12319201020y y y y y y y +++++=+,而()101,0A 即100y =,∵32331y x x x =−+−, 当0x =时,1y =−,即()0,1−,∵()0,1−关于点()1,0中心对称的点为()2,1, 即当2x =时,201y =, ∴12319201020011y y y y y y y +++++=+=+=,故选:D .二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.11. 中国是世界上最早使用负数的国家.负数广泛应用到生产和生活中,例如,若零上3℃记作3+℃,则零下2℃记作_________℃. 【答案】2− 【解析】【分析】本题考查了正数和负数的意义,在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:零上3℃记作3+℃,则零下2℃记作2−℃., 故答案为:2−. 12. 某反比例函数ky x=具有下列性质:当0x >时,y 随x 的增大而减小,写出一个满足条件的k 的值是__________.【答案】1(答案不唯一) 【解析】【分析】本题考查的是反比例函数的性质,反比例函数的图象是双曲线,当0k >,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小,当0k <,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大.直接根据反比例函数的性质写出符合条件的的值即可. 【详解】解:∵当0x >时,y 随x 的增大而减小, ∴0k >故答案为:1(答案不唯一). 13. 分式方程131x x x x +=−−的解是______. 【答案】3x =− 【解析】【分析】本题主要考查了解分式方程,熟练掌握解分式方程的方法和步骤是解题关键.首先等号两边同时乘以()()31x x −−完成去分母,再按照去括号,移项、合并同类项的步骤求解,检验即可获得答案. 【详解】解:131x x x x +=−−, 等号两边同时乘以()()31x x −−,得 ()()()131x x x x −=−+, 去括号,得 2223x x x x −=−−, 移项、合并同类项,得 3x =−, 经检验,3x =−是该分式方程的解, 所以,该分式方程的解为3x =−. 故答案为:3x =−.14. 黄鹤楼是武汉市著名的旅游景点,享有“天下江山第一楼”的美誉.在一次综合实践活动中,某数学小组用无人机测量黄鹤楼AB 的高度,具体过程如下:如图,将无人机垂直上升至距水平地面102m 的C 处,测得黄鹤楼顶端A 的俯角为45︒,底端B 的俯角为63︒,则测得黄鹤楼的高度是__________m .(参考数据:tan632︒≈)【答案】51 【解析】【分析】本题主要考查解直角三角形的应用,理解题意,作出辅助线是解题关键.延长BA 交距水平地面102m 的水平线于点D ,根据tan632︒≈,求出51m DC AD =≈,即可求解.【详解】解:延长BA 交距水平地面102m 的水平线于点D ,如图,由题可知,102m BD =, 设AD x =, ∵45DCA ∠=︒ ∴DC AD x == ∴102tan632BD DC x︒==≈ ∴51m DC AD =≈∴1025151m AB BD AD =−=−≈ 故答案为:51.15. 如图是我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,它是由四个全等的直角三角形和中间的小正方形MNPQ 拼成的一个大正方形ABCD .直线MP 交正方形ABCD 的两边于点E ,F ,记正方形ABCD 的面积为1S ,正方形MNPQ 的面积为2S .若(1)BE kAE k =>,则用含k 的式子表示12S S 的值是___________.【答案】221(1)k k +− 【解析】【分析】作EG AN ⊥交AN 于点G ,不妨设MN a =,设1EG =,通过四边形MNPQ 是正方形,推出45EMG PMN ∠=∠=︒,得到1EG MG ==,然后证明AEG ABN ∽,利用相似三角形对应边成比例,得到111AE AG AB BN AN k ===+,从而表示出AG ,MN 的长度,最后利用2122AB BN AN S ==+和222S MN a ==表示出正方形ABCD 和MNPQ 的面积,从而得到12S S . 【详解】解:作EG AN ⊥交AN 于点G ,不妨设MN a =,设1EG =四边形MNPQ 是正方形45PMN ∴∠=︒45EMG PMN ∴∠=∠=︒1EG MG ∴==在AEG △和ABN 中,EAG BAN ∠=∠,90AGE ANB ∠=∠=︒AEG ABN ∴∽AE EG AGAB BN AN∴== (1)BE kAE k =>(1)AB AE BE AE k ∴=+=+ 111AE AG AB BN AN k ∴===+ 1BN k ∴=+由题意可知,ABN DAM △≌△1BN AM k ∴==+11AG AM GM k k ∴=−=+−=111AG AG k AN AM MN k a k ∴===++++ 21a k ∴=−2211AN AG GM MN k k k k ∴=++=++−=+∴正方形ABCD 的面积222221222(1)()(1)(1)S AB BN AN k k k k k ==+=+++=++,正方形MNPQ 的面积2222222(1)(1)(1)S MN a k k k ===−=+−222221(1)(1)(1)(1)k k k k S S +++−∴= 1k >2(1)0k ∴+≠ 22121(1)k S S k +−∴= 【点睛】本题考查了弦图,正方形的性质,等角三角形的性质,相似三角形的判定与性质,正方形的面积,勾股定理,熟练掌握以上知识点并能画出合适的辅助线构造相似三角形是解题的关键.16. 抛物线2y ax bx c =++(a ,b ,c 是常数,0a <)经过()1,1−,(),1m 两点,且01m <<.下列四个结论: ①0b >;②若01x <<,则()()2111a x b x c −+−+>;③若1a =−,则关于x 的一元二次方程 22ax bx c ++=无实数解; ④点()11,A x y ,()22,B x y 在抛物线上,若1212x x +>−,12x x >,总有12y y <,则102m <≤. 其中正确的是__________(填写序号). 【答案】②③④ 【解析】【分析】本题考查了二次函数的性质,根据题意可得抛物线对称轴11022m−+−<<,即可判断①,根据()1,1−,(),1m 两点之间的距离大于1,即可判断②,根据抛物线经过()1,1−得出2c b =+,代入顶点纵坐标,求得纵坐标的最大值即可判断③,根据④可得抛物线的对称轴111224m −+−<≤−,解不等式,即可求解.【详解】解:∵2y ax bx c =++(a ,b ,c 是常数,0a <)经过()1,1−,(),1m 两点,且01m <<.∴对称轴为直线122b mx a −+=−=, 11022m −+−<<, ∵02bx a=−<,a<0 ∴0b <,故①错误, ∵01m <<∴()11m −−>,即()1,1−,(),1m 两点之间的距离大于1 又∵a<0∴1x m =−时,1y >∴若01x <<,则()()2111a x b x c −+−+>,故②正确; ③由①可得11022m −+−<<, ∴1022b−<<,即10b −<<, 当1a =−时,抛物线解析式为2y x bx c =−++设顶点纵坐标为224444ac b c b t a −−−==− ∵抛物线2y x bx c =−++(a ,b ,c 是常数,0a <)经过()1,1−,∴11b c −−+= ∴2c b =+∴()222224411122144444c b b c t b c b b b −−+===+=++=++−∵10b −<<,104−>,对称轴为直线2b =−,∴当0b =时,t 取得最大值为2,而0b <,∴关于x 的一元二次方程 22ax bx c ++=无解,故③正确;④∵a<0,抛物线开口向下,点()11,A x y ,()22,B x y 在抛物线上, 1212x x +>−,12x x >,总有12y y <,又12124x x x +=>−, ∴点()11,A x y 离14x =−较远,∴对称轴111224m −+−<≤− 解得:102m <≤,故④正确. 故答案为:②③④.三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形.17. 求不等式组3121x x x +>⎧⎨−≤⎩①②的整数解.【答案】整数解为:1,0,1− 【解析】【分析】本题考查了解一元一次不等式组,分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,进而求得整数解. 【详解】解:3121x x x +>⎧⎨−≤⎩①②解不等式①得:2x >− 解不等式②得:1x ≤∴不等式组的解集为:21x −<≤, ∴整数解为:1,0,1−18. 如图,在ABCD Y 中,点E ,F 分别在边BC ,AD 上,AF CE =.(1)求证:C ABE DF ≌△△;(2)连接EF .请添加一个与线段相关的条件,使四边形ABEF 是平行四边形.(不需要说明理由)【答案】(1)见解析 (2)添加AF BE =(答案不唯一)【解析】【分析】本题考查了平行四边形的性质与判定,全等三角形的判定;(1)根据平行四边形的性质得出AB CD =,B D ∠=∠,结合已知条件可得DF BE =,即可证明C ABE DF ≌△△;(2)添加AF BE =,依据一组对边平行且相等的四边形是平行四边形,即可求解.【小问1详解】证明:∵四边形ABCD 是平行四边形,∴AB CD =,AD BC =,B D ∠=∠,∵AF CE =,∴AD AF BC CE −=−即DF BE =,在ABE 与CDF 中,AB CD B D BE DF =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABE CDF ≌;【小问2详解】添加AF BE =(答案不唯一)如图所示,连接EF .∵四边形ABCD 是平行四边形,∴AD BC ∥,即AF BE ∥,当AF BE =时,四边形ABEF 是平行四边形.19. 为加强体育锻炼,增强学生体质,某校在“阳光体育一小时”活动中组织九年级学生定点投篮技能测试,每人投篮4次,投中一次计1分.随机抽取m 名学生的成绩作为样本,将收集的数据整理并绘制成如下的统计图表.测试成绩频数分布表根据以上信息,解答下列问题:(1)直接写出m ,n 的值和样本的众数;(2)若该校九年级有900名学生参加测试,估计得分超过2分的学生人数.【答案】(1)60m =,15n =,众数为3分(2)该校九年级有900名学生参加测试,估计得分超过2分的学生人数为450人【解析】【分析】本题考查了样本估计总体,求众数,频数分布表与扇形统计图;(1)根据成绩为2分的人数除以占比,求得m 的值,根据成绩为3分的人数的占比,求得18a =,进而求得9b =,即可得出n 的值;(2)根据得分超过2分的学生的占比乘以900,即可求解.【小问1详解】解:依题意,156025%m ==(人),6030%18a =⨯=(人),6012181569b =−−−−=(人),∴9%100%15%60n =⨯=, ∴15n =,∵3分的人数为18个,出现次数最多,∴众数为3分,【小问2详解】 解:181290045060+⨯=(人) 答:该校九年级有900名学生参加测试,估计得分超过2分的学生人数为450人.20. 如图,ABC 为等腰三角形,O 是底边BC 的中点,腰AC 与半圆O 相切于点D ,底边BC 与半圆O 交于E ,F 两点.(1)求证:AB 与半圆O 相切;(2)连接OA .若4CD =,2CF =,求sin OAC ∠的值.【答案】(1)见解析 (2)45 【解析】【分析】本题考查了等腰三角形三线合一,角平分线的判定与性质,解直角三角形,熟练掌握以上知识点是解题的关键.(1)连接OA 、OD ,作ON AB ⊥交AB 于N ,根据等腰三角形三线合一可知,AO BC ⊥,AO 平分BAC ∠,结合AC 与半圆O 相切于点D ,可推出ON OD =,得证;(2)由题意可得出OAC COD ∠=∠,根据OF OD =,在Rt ODC △中利用勾股定理可求得OD 的长度,从而得到OC 的长度,最后根据CD sin OAC sin COD OC∠=∠=即可求得答案. 【小问1详解】证明:连接OA 、OD ,作ON AB ⊥交AB 于N ,如图ABC 为等腰三角形,O 是底边BC 的中点AO BC ∴⊥,AO 平分BAC ∠ AC 与半圆O 相切于点DOD AC ∴⊥由ON AB ⊥ON OD ∴=AC ∴是半圆O 的切线【小问2详解】解:由(1)可知AO BC ⊥,OD AC ⊥90AOC ∴∠=︒,90ODC ∠=︒18090OAC OCA AOC ∴∠+∠=︒−∠=︒,18090COD OCA ODC ∠+∠=︒−∠=︒OAC COD ∴∠=∠sin sin CD OAC COD OC ∴∠=∠=又OF OD =,2CF =∴在Rt ODC △中,4CD =,2OC OF FC OD =+=+222OC CD OD =+,∴222(2)4OD OD +=+解得:3OD =442325CD CD sin OAC sin COD OC OD ∴∠=∠====++ 21. 如图是由小正方形组成的34⨯网格,每个小正方形的顶点叫做格点.ABC 三个顶点都是格点.仅用无刻度的直尺在给定网格中完成四个画图任务,每个任务的画线不得超过三条.(1)在图(1)中,画射线AD 交BC 于点D ,使AD 平分ABC 的面积;(2)在(1)的基础上,在射线AD 上画点E ,使ECB ACB ∠=∠;(3)在图(2)中,先画点F ,使点A 绕点F 顺时针旋转90︒到点C ,再画射线AF 交BC 于点G ; (4)在(3)的基础上,将线段AB 绕点G 旋转180︒,画对应线段MN (点A 与点M 对应,点B 与点N 对应).【答案】(1)作图见解析(2)作图见解析 (3)作图见解析(4)作图见解析【解析】【分析】本题考查了网格作图.熟练掌握全等三角形性质,平行四边形性质,等腰三角形性质,等腰直角三角形性质,是解题的关键.(1)作矩形HBIC ,对角线HI 交BC 于点D ,做射线AD ,即可;(2)作OP BC ∥,射线AR OP ⊥于点Q ,连接CQ 交AD 于点E ,即可;(3)在AC 下方取点F ,使AF CF ==ACF △是等腰直角三角形,连接CF , AF ,AF 交BC于点G ,即可;(4)作OP BC ∥,交AG 于点M ,作ST AG ∥,交BC 于点N ,连接MN ,即可.【小问1详解】如图,作线段HI ,使四边形HBIC 是矩形,HI 交BC 于点D ,做射线AD ,点D 即为所求作; 【小问2详解】如图,作OP BC ∥,作AR OP ⊥于点Q ,连接CQ 交AD 于点E ,点E 即为作求作;【小问3详解】如图,在AC 下方取点F ,使AF CF ==CF ,连接并延长AF ,AF 交BC 于点G ,点F ,G即为所求作;【小问4详解】如图,作OP BC ∥,交射线AG 于点M ,作ST AG ∥,交BC 于点N ,连接MN ,线段MN 即为所求作.22. 16世纪中叶,我国发明了一种新式火箭“火龙出水”,它是二级火箭的始祖.火箭第一级运行路径形如抛物线,当火箭运行一定水平距离时,自动引发火箭第二级,火箭第二级沿直线运行.某科技小组运用信息技术模拟火箭运行过程.如图,以发射点为原点,地平线为x 轴,垂直于地面的直线为y 轴,建立平面直角坐标系,分别得到抛物线2y ax x =+和直线12y x b =−+.其中,当火箭运行的水平距离为9km 时,自动引发火箭的第二级.(1)若火箭第二级的引发点的高度为3.6km .①直接写出a ,b 的值;②火箭在运行过程中,有两个位置的高度比火箭运行的最高点低1.35km ,求这两个位置之间的距离. (2)直接写出a 满足什么条件时,火箭落地点与发射点的水平距离超过15km .【答案】(1)①115a =−,8.1b =;②8.4km (2)2027a −<< 【解析】【分析】本题考查了二次函数和一次函数的综合应用,涉及待定系数法求解析式,二次函数的图象和性质,一次函数的图象与性质等知识点,熟练掌握二次函数和一次函数的图象与性质是解题的关键.(1)①将()9,3.6代入即可求解;②将2115y x x =−+变为2115151524y x ⎛⎫=−−+ ⎪⎝⎭,即可确定顶点坐标,得出 2.4km y =,进而求得当 2.4km y =时,对应的x 的值,然后进行比较再计算即可; (2)若火箭落地点与发射点的水平距离为15km ,求得227a =−,即可求解. 【小问1详解】解:①∵火箭第二级的引发点的高度为3.6km∴抛物线2y ax x =+和直线12y x b =−+均经过点()9,3.6 ∴3.6819a =+,13.692b =−⨯+ 解得115a =−,8.1b =. ②由①知,18.12y x =−+,2115y x x =−+ ∴22111515151524y x x x ⎛⎫=−+=−−+ ⎪⎝⎭ ∴最大值15km 4y = 当15 1.35 2.4km 4y =−=时, 则21 2.415x x −+= 解得112x =,23x =又∵9x =时, 3.6 2.4y =>∴当 2.4km y =时, 则418. 2.12x +=− 解得11.4x =()11.438.4km −=∴这两个位置之间的距离8.4km .【小问2详解】解:当水平距离超过15km 时,火箭第二级的引发点为()9,819a +,将()9,819a +,()15,0代入12y x b =−+,得 181992a b +=−⨯+,10152b =−⨯+ 解得7.5b =,227a =− ∴2027a −<<. 23. 问题背景:如图(1),在矩形ABCD 中,点E ,F 分别是AB ,BC 的中点,连接BD ,EF ,求证:BCD FBE ∽△△.问题探究:如图(2),在四边形ABCD 中,AD BC ∥,90BCD ∠=︒,点E 是AB 的中点,点F 在边BC 上,2AD CF =,EF 与BD 交于点G ,求证:BG FG =.问题拓展:如图(3),在“问题探究”的条件下,连接AG ,AD CD =,AG FG =,直接写出EG GF的值.【答案】 【解析】 【分析】问题背景:根据矩形的性质可得90AB CD EBF C =∠=∠=︒,,根据点E ,F 分别是AB ,BC 的中点,可得12BE BF AB BC ==,即可得证;。

2021年湖北省黄冈市中考数学试卷(Word版有答案)(真题)

2021年湖北省黄冈市中考数学试卷(Word版有答案)(真题)

15.(满分 7 分)如图,已知 AB 是⊙O 的直径,点 C 是⊙O 上一点, 连结 BC,AC, 过点 C 作直线 CD⊥AB 于点 D, 点 E 是 AB 上一 点 , 直 线 CE 交 ⊙O 于 点 F, 连 结 BF, 与 直 线 CD 交 于 点
G .求证: BC2 BGBF
16.(满分 6 分)某商场在今年“六·一”儿童节举行了购物摸奖活动.摸奖箱里有 四个标号分别为 1,2,3,4 的质地、大小都相同的小球,任意摸出一个小球,记下 小球的标号后,放回箱里并摇匀,再摸出一个小球,又记下小球的标号.商场规 定:两次摸出的小球的标号之和为“8”或“6”时才算中奖.请结合“树状图法” 或“列表法”,求出顾客小彦参加此次摸奖活动时中奖的概率.
y 5x2 205x 1230 的一部分,且点 A,B,C 的横坐标分别为 4,10,12
(1)求该公司累积获得的利润 y(万元)与时间第 x(月)之间的函数关 系式。
(2)直接写出第 x 个月所获得 S(万元)与时间 x(月)之间的函数关系 式(不需要写出计算过程)。
(3)前 12 个月中,第几个月该公司所获得的利润最多?最多利润是多少 万元? 20.(满分 14 分)如图,在平面直角坐标系 xoy 中,抛物线 y 1 x2 4 x 10 与 x 轴
19.(满分 11 分)新星电子科技公司积极应对 2008 年世 界金融危机,及时调整投资方向,瞄准光伏产业,建成 了太阳能光伏电池生产线.由于新产品开发初期成本
高,且市场占有率不高等因素的影响,产品投产上市一年来,公司经历了由初期 的亏损到后来逐步盈利的过程(公司对经营的盈亏情况每月最后一天结算 1 次).公司累积获得的利润 y(万元)与销售时间第 x(月)之间的函数关系 式(即前 x 个月的利润总和 y 与 x 之间的关系)对应的点都在如图所示的图 象上.该图象从左至右,依次是线段 OA、曲线 AB 和曲线 BC,其中曲线 AB 为 抛 物 线 的 一 部 分 , 点 A 为 该 抛 物 线 的 顶 点 , 曲 线 BC 为 另 一 抛 物 线

2021年武汉市中考数学模拟试题2勤学早(二)及答案

2021年武汉市中考数学模拟试题2勤学早(二)及答案

2021年武汉市中考数学模拟试题2勤学早(二)及答案《勤学早》2021年武汉市四月调考逼真模拟试题(二)一、选择置l共10小置,每小题3分,共30分l 1.在-4,O,3,-8这四个数中,最大的数是( ) A.-4 B.O C.3 D.-8 210x+有意义的x的取值范围是( ) 7***-*****Ax B x≤- C_x≥ Dx≥77773不等式8-2x0的解集在数轴上表示正确的是( )4.下列事件是随机事件的是( ) A.购买一张福利彩票,中奖.B.在-个标准大气压下,加热到l00°C,水沸腾.C.有一名运动员奔跑的速度是50米/秒.D.在一个仅装着白球和黑球的袋中摸球,摸出红球.25.已知一元二次方程x-4x+3=0两根为x1、x2则x1+x2的值是( ) A.4 B.3 C.-4 D.-36.如图,空心圆柱的主视图是( )7.如图所示,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC.∠EBC= ∠E=60°, 若BE=6,DE=2,则BC的长度是( ) A.6 B.8 C.9 D.108.下列图形都是由同样大小的矩形按一定的规律组成,其中,第①个图形中一共有6个矩形,第②个图形中一共有11个矩形,……,按此规律,第⑥个图形中矩形的个数一共有()A.30个B.25个C.28个D.31个9.某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按四个等级进行统计,其中A级:90分-100分;B级:75分-89分;c级:60分-74分;D级:60分以T(D级为不合格),将统计结果绘制如下两幅统计图,则以下四个结论:①D级学生的人数占全班总人数的百分比为4%;②扇形统计图中c级所在的扇形圆心角的度数为72。

;③该班学生体育测试成绩的中位数落在c等级内;④若该校九年级学生共有500人,估计这次考试中合格的学生共有480人,其中结论正确的个数有( ) A.1个B.2个C.3个D.4个10.如图,梯形ABCD中,AB//DC,AB上BC,AB=2cm,CD=4cm .以BC上一点0为圆心的圆经过A、D两点,且∠AOD=90°.则圆心O 到弦AD的距离是( )A.6cm B10 cm C.23 cm D.25cm二、填空题(共6小分,每小题3分,共18分)11。

湖北省武汉市2021年中考数学试卷(含答案)

湖北省武汉市2021年中考数学试卷(含答案)

2021年武汉市初中毕业生考试数学试卷考试时间:2021年6月20日14:30~16:30一、选择题(共10小题,每小题3分,共30分)1.温度由-4℃上升7℃是( )A .3℃B .-3℃C .11℃D .-11℃ 2.若分式21 x 在实数范围内有意义,则实数x 的取值范围是( ) A .x >-2 B .x <-2 C .x =-2 D .x ≠-23.计算3x 2-x 2的结果是( )A .2B .2x 2C .2xD .4x 24.五名女生的体重(单位:kg )分别为:37、40、38、42、42,这组数据的众数和中位数分别是( )A .2、40B .42、38C .40、42D .42、405.计算(a -2)(a +3)的结果是( )A .a 2-6B .a 2+a -6C .a 2+6D .a 2-a +66.点A (2,-5)关于x 轴对称的点的坐标是( )A .(2,5)B .(-2,5)C .(-2,-5)D .(-5,2)7.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是( )A .3B .4C .5D .68.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( )A .41B .21C .43D .65 9.将正整数1至2021按一定规律排列如下表: 1 2 3 4 567 8910 11 12 13 14 15 16 1718 19 20 21 22 23 24 25 26 27 28 29 30 31 32 …… [来]平移表中带阴影的方框,方框中三个数的和可能是( )A .2019B .2021C .2016D .201310.如图,在⊙O 中,点C 在优弧AB⌒ 上,将弧BC ⌒ 沿BC 折叠后刚好经过AB 的中点D .若⊙O 的半径为5,AB =4,则BC 的长是( )A .32B .23C .235D .265 二、填空题(本大题共6个小题,每小题3分,共18分)11.计算3)23(-+的结果是___________12.下表记录了某种幼树在一定条件下移植成活情况移植总数n400 1500 3500 7000 9000 14000 成活数m 325 13363203[ 6335 8073 12628 成活的频率(精确到0.01) 0.8130.891 0.915 0.905 0.897 0.902 由此估计这种幼树在此条件下移植成活的概率约是___________(精确到0.1)13.计算22111m m m---的结果是___________14.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是___________15.飞机着陆后滑行的距离y (单位:m )关于滑行时间t (单位:s )的函数解析式是22360t t y -=.在飞机着陆滑行中,最后4 s 滑行的距离是___________m 16.如图,在△ABC 中,∠ACB =60°,AC =1,D 是边AB 的中点,E 是边BC 上一点.若DE 平分△ABC 的周长,则DE 的长是___________三、解答题(共8题,共72分)17.(本题8分)解方程组:⎩⎨⎧=+=+16210y x y x18.(本题8分)如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C ,AF 与DE 交于点G,求证:GE=GF19.(本题8分)某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图学生读书数量统计表学生读书数量扇形图阅读量/本学生人数1 152 a3 b54[来源:学科网](1) 直接写出m、a、b的值(2) 估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?20.(本题8分)用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C型钢板和3块D型钢板.现准备购买A、B型钢板共100块,并全部加工成C、D型钢板.要求C型钢板不少于120块,D型钢板不少于250块,设购买A型钢板x块(x 为整数)(1) 求A、B型钢板的购买方案共有多少种?(2) 出售C型钢板每块利润为100元,D型钢板每块利润为120元.若童威将C、D型钢板全部出售,请你设计获利最大的购买方案21.(本题8分)如图,P A是⊙O的切线,A是切点,AC是直径,AB是弦,连接PB、PC,PC 交AB 于点E ,且P A =PB(1) 求证:PB 是⊙O 的切线(2) 若∠APC =3∠BPC ,求CE PE 的值22.(本题10分)已知点A (a ,m )在双曲线x y 8=上且m <0,过点A 作x 轴的垂线,垂足为B(1) 如图1,当a =-2时,P (t ,0)是x 轴上的动点,将点B 绕点P 顺时针旋转90°至点C ① 若t =1,直接写出点C 的坐标② 若双曲线xy 8=经过点C ,求t 的值 (2) 如图2,将图1中的双曲线x y 8=(x >0)沿y 轴折叠得到双曲线x y 8-=(x <0),将线段OA 绕点O 旋转,点A 刚好落在双曲线xy 8-=(x <0)上的点D (d ,n )处,求m 和n 的数量关系23.(本题10分)在△ABC 中,∠ABC =90°、 (1) 如图1,分别过A 、C 两点作经过点B 的直线的垂线,垂足分别为M 、N ,求证:△ABM ∽△BCN(2) 如图2,P 是边BC 上一点,∠BAP =∠C ,tan ∠P AC =552,求tanC 的值(3) 如图3,D 是边CA 延长线上一点,AE =AB ,∠DEB =90°,sin ∠BAC =53,52 AC AD ,直接写出tan ∠CEB 的值24.(本题12分)抛物线L :y =-x 2+bx +c 经过点A (0,1),与它的对称轴直线x =1交于点B(1) 直接写出抛物线L 的解析式(2) 如图1,过定点的直线y =kx -k +4(k <0)与抛物线L 交于点M 、N .若△BMN 的面积等于1,求k 的值(3) 如图2,将抛物线L 向上平移m (m >0)个单位长度得到抛物线L 1,抛物线L 1与y 轴交于点C ,过点C 作y 轴的垂线交抛物线L 1于另一点D .F 为抛物线L 1的对称轴与x 轴的交点,P 为线段OC 上一点.若△PCD 与△POF 相似,并且符合条件的点P 恰有2个,求m 的值及相应点P 的坐标。

2021年湖北省武汉市中考数学模拟试卷(含解析)

2021年湖北省武汉市中考数学模拟试卷(含解析)

2021年湖北省武汉市中考数学模拟试卷一、选择题(共10小题).1.实数﹣2020的相反数是()A.2020B.﹣2020C.2021D.﹣20212.下列x的值能使二次根式有意义的是()A.﹣2B.﹣1C.0D.13.下列事件中,是必然事件的是()A.从一个只有红球的盒子里摸出一个球是红球B.买一张电影票,座位号是5的倍数C.掷一枚质地均匀的硬币,正面向上D.走过一个红绿灯路口时,前方正好是红灯4.下列微信表情图标属于轴对称图形的是()A.B.C.D.5.如图是一个空心圆柱体,其主视图是()A.B.C.D.6.某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是()A.B.C.D.7.若两个点(x1,﹣2),(x2,4)均在反比例函数y=的图象上,且x1>x2,则k的值可以是()A.4B.3C.2D.18.某快递公司每天上午7:00﹣8:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y(件)与时间x(分)之间的函数图象如图所示,下列说法正确的个数为:()①15分钟后,甲仓库内快件数量为180件;②乙仓库每分钟派送快件数量为4件;③8:00时,甲仓库内快件数为400件;④7:20时,两仓库快递件数相同.A.1个B.2个C.3个D.4个9.如图,在半径为3的⊙O中,AB是直径,AC是弦,D是的中点,AC与BD交于点E.若E是BD的中点,则AC的长是()A.B.3C.3D.410.如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成.第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图形有10个正三角形,…依此规律,若第n个图案有2020个三角形,则n=()A.670B.672C.673D.676二、填空题(共6小题).11.化简二次根式的结果是.12.热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:h),分别为:4,3,3,5,5,6.这组数据的中位数是.13.计算:=.14.在▱ABCD中,对角线AC,BD相交于点O,AB⊥AC,AB=1,BC=5,则对角线BD =.15.抛物线y=ax2+bx﹣3(a≠0)与x轴有两个交点,且交点位于y轴两侧,则下列关于这个二次函数的说法正确的有.(填序号)①a>0;②若b>0,则当x>0时,y随x的增大而增大;③a+b<3;④一元二次方程ax2+bx﹣1=0的两根异号.16.如图,折叠矩形纸片ABCD,使点D落在AB边的点M处,EF为折痕,AB=1,AD=2.设AM的长为t,用含有t的式子表示四边形CDEF的面积是.三、解答题(本大题共8小题,共72分,解答应写出必要的演算步骤、文字说明或证明过程)17.计算:[a3•a5+(3a4)2]÷a2.18.如图,已知AD⊥BC于点D,E是延长线BA上一点,且EC⊥BC于点C,若∠ACE=∠E.求证:AD平分∠BAC.19.为了解本校九年级学生期末数学考试情况,小亮在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果绘制成如图统计图,请你根据统计图解答以下问题:(1)这次随机抽取的学生共有人?在如图扇形统计图中A等级所对应的圆心角度数为度.(2)请补全条形统计图;(3)这个学校九年级共有学生1200人,若分数为80分(含80分)以上为优秀,请估计这次九年级学生期末数学考试成绩为优秀的学生人数大约有多少?20.如图,在平面直角坐标系中,每个小方格都是边长为1个单位的正方形,△ABC的顶点均在格点上,点B的坐标为(1,0).(1)画出△ABC关于x轴对称的△A1B1C1,并写出C1点的坐标;(2)画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2,并写出B2点的坐标.21.如图,在△ABC中,AB=BC,以AB为直径的⊙O交BC于点D,交AC于点F,过点C作CE∥AB,与过点A的切线相交于点E,连接AD.(1)求证:AD=AE.(2)若AB=10,sin∠DAC=,求AD的长.22.某超市购进一批时令水果,成本为10元/千克,根据市场调研发现,这种水果在未来30天的销售单价m(元/千克)与时间x(天)之间的函数关系式为m=x+20(1≤x≤30,x为整数),且其日销售量y(千克)与时间x(天)之间的函数关系如图所示:(1)求每天销售这种水果的利润W(元)与x(天)之间的函数关系式;(2)问哪一天销售这种水果的利润最大?最大日销售利润为多少?23.在平行四边形ABCD中,点E、F分别在边AB、BC上,DE、AF交于点M.(1)如图1,E为AB的中点,AF⊥BC交BC于点F,过点E作EN⊥AF交AF于点N,,直接写出的值是;(2)如图2,∠B=90°,∠ADE=∠BAF,求证:△AEM∽△AFB;(3)如图3,∠B=60°,AB=AD,∠ADE=∠BAF,求证:.24.如图1,直线L:y=﹣x+1与x轴,y轴分别交于点B,点E,抛物线L1:y=ax2+bx+c 经过点B,点A(﹣3,0)和点C(0,﹣3),并与直线L交于另一点D.(1)求抛物线L1的解析式;(2)如图2,点P为x轴上一动点,连接AD,AC,CP,当∠PCA=∠ADB时,求点P 的坐标;(3)如图3,将抛物线L1平移,使其顶点是坐标原点O,得到抛物线L2,将直线DB向下平移经过坐标原点O,交抛物线L2于另一点F,点M(,0),点N是L2上且位于第一象限内一动点,MN交L2于Q点,QR∥x轴分别交OF,ON于S,R,试说明:QS与SR存在一个确定的数量关系.参考答案一、选择题(共10小题).1.实数﹣2020的相反数是()A.2020B.﹣2020C.2021D.﹣2021解:实数﹣2020的相反数是:2020.故选:A.2.下列x的值能使二次根式有意义的是()A.﹣2B.﹣1C.0D.1解:由题意得,x﹣1≥0,解得,x≥1,故x的值可以为1,故选:D.3.下列事件中,是必然事件的是()A.从一个只有红球的盒子里摸出一个球是红球B.买一张电影票,座位号是5的倍数C.掷一枚质地均匀的硬币,正面向上D.走过一个红绿灯路口时,前方正好是红灯解:A、从一个只有红球的盒子里摸出一个球是红球,是必然事件;B、买一张电影票,座位号是5的倍数,是随机事件;C、掷一枚质地均匀的硬币,正面向上,是随机事件;D、走过一个红绿灯路口时,前方正好是红灯,是随机事件.故选:A.4.下列微信表情图标属于轴对称图形的是()A.B.C.D.解:A、不是轴对称图形,本选项不合题意;B、不是轴对称图形,本选项不合题意;C、是轴对称图形,本选项符合题意;D、不是轴对称图形,本选项不合题意.故选:C.5.如图是一个空心圆柱体,其主视图是()A.B.C.D.解:从前面观察物体可以发现:它的主视图应为矩形,又因为该几何体为空心圆柱体,故中间的两条棱在主视图中应为虚线,故选:D.6.某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是()A.B.C.D.解:根据题意画图如下:共有12种等可能数,其中恰好选中甲、乙两位选手的有2种,则恰好选中甲、乙两位选手的概率是=;故选:C.7.若两个点(x1,﹣2),(x2,4)均在反比例函数y=的图象上,且x1>x2,则k的值可以是()A.4B.3C.2D.1解:∵两个点(x1,﹣2),(x2,4)中的﹣2<4,x1>x2,∴反比例函数y=的图象经过第二、四象限,∴k﹣2<0,解得k<2.观察各选项,只有选项D符合题意.故选:D.8.某快递公司每天上午7:00﹣8:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y(件)与时间x(分)之间的函数图象如图所示,下列说法正确的个数为:()①15分钟后,甲仓库内快件数量为180件;②乙仓库每分钟派送快件数量为4件;③8:00时,甲仓库内快件数为400件;④7:20时,两仓库快递件数相同.A.1个B.2个C.3个D.4个解:由题意结合图象可知:15分钟后,甲仓库内快件数量为130件,故①说法错误;甲仓库揽收快件的速度为:(130﹣40)÷15=6(件/分),所以8:00时,甲仓库内快件数为:40+6×60=400(件),故③说法正确;60﹣15=45(分),即45分钟乙仓库派送快件数量为180件,所以乙仓库每分钟派送快件的数量为:180÷45=4(件),故②说法正确;所以乙仓库快件的总数量为:60×4=240(件),设x分钟后,两仓库快递件数相同,根据题意得:240﹣4x=40+6x,解得x=20,即7:20时,两仓库快递件数相同,故④说法正确.所以说法正确的有②③④共3个.故选:C.9.如图,在半径为3的⊙O中,AB是直径,AC是弦,D是的中点,AC与BD交于点E.若E是BD的中点,则AC的长是()A.B.3C.3D.4解:连接OD,交AC于F,∵D是的中点,∴OD⊥AC,AF=CF,∴∠DFE=90°,∵OA=OB,AF=CF,∴OF=BC,∵AB是直径,∴∠ACB=90°,在△EFD和△ECB中∴△EFD≌△ECB(AAS),∴DF=BC,∴OF=DF,∵OD=3,∴OF=1,∴BC=2,在Rt△ABC中,AC2=AB2﹣BC2,∴AC===4,故选:D.10.如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成.第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图形有10个正三角形,…依此规律,若第n个图案有2020个三角形,则n=()A.670B.672C.673D.676解:∵第(1)个图案有3+1=4个三角形,第(2)个图案有3×2+1=7个三角形,第(3)个图案有3×3+1=10个三角形,…∴第n个图案有(3n+1)个三角形.根据题意可得:3n+1=2020,解得:n=673,故选:C.二、填空题(本大题共有6小题,每小题3分,共18分,只需要将结果直接填写在答题卡对应题号处的横线上)11.化简二次根式的结果是3.解:==3.故答案为:3.12.热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:h),分别为:4,3,3,5,5,6.这组数据的中位数是 4.5h.解:将数据重新排列为:3,3,4,5,5,6,所以这组数据的中位数为=4.5(h),故答案为:4.5h.13.计算:=﹣1.解:=﹣==﹣1.故答案为:﹣1.14.在▱ABCD中,对角线AC,BD相交于点O,AB⊥AC,AB=1,BC=5,则对角线BD =2.解:∵四边形ABCD是平行四边形,∴OA=OC=AC,OB=OD=BD,∵AB⊥AC,∴∠BAC=90°,∴AC===2,∴OA=AC=,∴OB===,∴BD=2OB=2;故答案为:2.15.抛物线y=ax2+bx﹣3(a≠0)与x轴有两个交点,且交点位于y轴两侧,则下列关于这个二次函数的说法正确的有①②④.(填序号)①a>0;②若b>0,则当x>0时,y随x的增大而增大;③a+b<3;④一元二次方程ax2+bx﹣1=0的两根异号.解:设抛物线与x轴的交点为(x1,0)、(x2,0),∵两个交点在y轴两侧,∴x1•x2<0,即<0,∴a>0,因此①符合题意;当x=0时,y=﹣3,抛物线与y轴交点为(0,﹣3),当b>0时,而a>0,对称轴在y轴的左侧,在对称轴右侧,y随x的增大而增大,因此②符合题意;当x=1时,y=a+b﹣3的值无法确定,故③不符合题意,一元二次方程ax2+bx﹣1=0的两根就是一元二次方程ax2+bx﹣3=﹣2的两根,实际上就是抛物线y=ax2+bx﹣3,与直线y=﹣2的两个交点的横坐标,当抛物线的对称轴位于y 轴的左侧时,a、b同号,此时一元二次方程ax2+bx﹣1=0的两根异号,故④符合题意;故答案是:①②④.16.如图,折叠矩形纸片ABCD,使点D落在AB边的点M处,EF为折痕,AB=1,AD=2.设AM的长为t,用含有t的式子表示四边形CDEF的面积是.解:连接DM,过点E作EG⊥BC于点G,设DE=x=EM,则EA=2﹣x,∵AE2+AM2=EM2,∴(2﹣x)2+t2=x2,解得x=+1,∴DE=+1,∵折叠矩形纸片ABCD,使点D落在AB边的点M处,∴EF⊥DM,∠ADM+∠DEF=90°,∵EG⊥AD,∴∠DEF+∠FEG=90°,∴∠ADM=∠FEG,∴tan∠ADM=,∴FG=,∵CG=DE=+1,∴CF=+1,∴S四边形CDEF=(CF+DE)×1=t+1.故答案为:t+1.三、解答题(本大题共8小题,共72分,解答应写出必要的演算步骤、文字说明或证明过程)17.计算:[a3•a5+(3a4)2]÷a2.解:原式=(a8+9a8)÷a2=10a8÷a2=10a6.18.如图,已知AD⊥BC于点D,E是延长线BA上一点,且EC⊥BC于点C,若∠ACE=∠E.求证:AD平分∠BAC.【解答】证明:∵AD⊥BC于点D,EC⊥BC于点C,∴AD∥EC,∴∠BAD=∠E,∠DAC=∠ACE,∵∠ACE=∠E,∴∠BAD=∠DAC,即AD平分∠BAC.19.为了解本校九年级学生期末数学考试情况,小亮在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果绘制成如图统计图,请你根据统计图解答以下问题:(1)这次随机抽取的学生共有40人?在如图扇形统计图中A等级所对应的圆心角度数为45度.(2)请补全条形统计图;(3)这个学校九年级共有学生1200人,若分数为80分(含80分)以上为优秀,请估计这次九年级学生期末数学考试成绩为优秀的学生人数大约有多少?解:(1)这次随机抽取的学生共有20÷50%=40(人),扇形统计图中A等级所对应的圆心角度数为360°×=45°,故答案为:40、45;(2)B等级人数为40×27.5%=11(人),补全图形如下:(3)这次九年级学生期末数学考试成绩为优秀的学生人数大约有1200×=480(人).20.如图,在平面直角坐标系中,每个小方格都是边长为1个单位的正方形,△ABC的顶点均在格点上,点B的坐标为(1,0).(1)画出△ABC关于x轴对称的△A1B1C1,并写出C1点的坐标;(2)画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2,并写出B2点的坐标.解:(1)如图,△A1B1C1,即为所求,C1点的坐标为(3,﹣1);(2)如图,△A2B2C2,即为所求,B2点的坐标为(0,1).21.如图,在△ABC中,AB=BC,以AB为直径的⊙O交BC于点D,交AC于点F,过点C作CE∥AB,与过点A的切线相交于点E,连接AD.(1)求证:AD=AE.(2)若AB=10,sin∠DAC=,求AD的长.【解答】(1)证明:∵AE与⊙O相切,AB是⊙O的直径∴∠BAE=90°,∠ADB=90°,∴∠ADC=90°,∵CE∥AB,∴∠BAE+∠E=180°,∴∠E=90°,∴∠E=∠ADB,∵在△ABC中,AB=BC,∴∠BAC=∠BCA,∵∠BAC+∠EAC=90°,∠ACE+∠EAC=90°,∴∠BAC=∠ACE,∴∠BCA=∠ACE,在△ADC和△AEC中,,∴△ADC≌△AEC(AAS),∴AD=AE;(2)解:连接BF,如图所示:∵∠CBF=∠DAC,∠AFB=90°,∴∠CFB=90°,sin∠CBF==sin∠DAC=,∵AB=BC=10,∴CF=2,∵BF⊥AC,∴AC=2CF=4,在Rt△ACD中,sin∠DAC==,∴CD=×4=4,∴AD===8.22.某超市购进一批时令水果,成本为10元/千克,根据市场调研发现,这种水果在未来30天的销售单价m(元/千克)与时间x(天)之间的函数关系式为m=x+20(1≤x≤30,x为整数),且其日销售量y(千克)与时间x(天)之间的函数关系如图所示:(1)求每天销售这种水果的利润W(元)与x(天)之间的函数关系式;(2)问哪一天销售这种水果的利润最大?最大日销售利润为多少?解:(1)由题意设销售数量y=kx+b(k≠0),把(10,55),(26,39)代入函数解析式得:,解得:,∴y=﹣x+65,∴W=y(m﹣10)=(﹣x+65)(x+20﹣10)=﹣x2+x+650(1≤x≤30,x为整数).∴每天销售这种水果的利润W(元)与x(天)之间的函数关系式为W=﹣x2+x+650(1≤x≤30,x为整数);(2)∵W=﹣x2+x+650,∴抛物线的对称轴为直线x=﹣=22.5,∵a=﹣<0,1≤x≤30,x为整数,∴当x=22或x=23时,W取得最大值,最大值为:(﹣22+65)(×22+10)=43×21=903(元).∴第22或23天销售这种水果的利润最大,最大日销售利润为903元.23.在平行四边形ABCD中,点E、F分别在边AB、BC上,DE、AF交于点M.(1)如图1,E为AB的中点,AF⊥BC交BC于点F,过点E作EN⊥AF交AF于点N,,直接写出的值是;(2)如图2,∠B=90°,∠ADE=∠BAF,求证:△AEM∽△AFB;(3)如图3,∠B=60°,AB=AD,∠ADE=∠BAF,求证:.解:(1)∵EN⊥AF,BF⊥AF,∴EN∥BF,又∵E为AB的中点,∴BF=2EN,∵,∴,∴,故答案为:;(2)证明:∵四边形ABCD是平行四边形,∠ABC=90°,∴四边形ABCD是矩形,∴∠BAD=∠ABC=90°,∵∠ADE=∠BAF,∴∠BAD﹣∠ADE=∠ABC﹣∠BAF,∴∠AED=∠AFB,又∵∠BAF=∠MAE,∴△AEM∽△AFB;(3)证明:如图,连接AC,过点B作BP∥AC交AF的延长线于点P,∴△BFP∽△CFA,∴,∵四边形ABCD是平行四边形,AB=AD,∴四边形ABCD是菱形,∵∠ABC=60°,∴∠PBC=∠ACB=60°,∴∠ABP=120°,∴∠DAE=∠ABP,在△ADE与△BAP中,,∴△ADE≌△BAP(ASA),∴AE=BP,又∵AC=AD,∴.24.如图1,直线L:y=﹣x+1与x轴,y轴分别交于点B,点E,抛物线L1:y=ax2+bx+c 经过点B,点A(﹣3,0)和点C(0,﹣3),并与直线L交于另一点D.(1)求抛物线L1的解析式;(2)如图2,点P为x轴上一动点,连接AD,AC,CP,当∠PCA=∠ADB时,求点P 的坐标;(3)如图3,将抛物线L1平移,使其顶点是坐标原点O,得到抛物线L2,将直线DB向下平移经过坐标原点O,交抛物线L2于另一点F,点M(,0),点N是L2上且位于第一象限内一动点,MN交L2于Q点,QR∥x轴分别交OF,ON于S,R,试说明:QS与SR存在一个确定的数量关系.解:(1)令y=0,有y=﹣x+1=0,得x=1,∴B(1,0),把点A(﹣3,0)、B(1,0)和点C(0,﹣3)代入y=ax2+bx+c中,得,解得,,∴抛物线L1的解析式为:y=x2+2x﹣3;(2)由,得,,∴D(﹣4,5),∵y=﹣x+1,∴E(0,1),B(1,0),∴OB=OE,∴∠OBD=45°.∴BD=5.∵A(﹣3,0),C(0,﹣3),∴OA=OC,AC=3,AB=4.∴∠OAC=45°,∴∠OBD=∠OAC.如图2,①当点P在点A的右边,∠PCA=∠ADB时,△PAC∽△ABD.∴,∴,∴AP=,∴;②当点P在点A的左边,∠PCA=∠ADB时,记此时的点P为P2,则有∠P2CA=∠P1CA.过点A作x轴的垂线,交P2C于点K,则∠CAK=∠CAP1,又AC公共边,∴△CAK≌△CAP1(ASA)∴AK=AP1=,∴K(﹣3,﹣),∴直线CK:y=﹣x﹣3,∴P2(﹣15,0).P的坐标:(﹣,0)或(﹣15,0);(3)QS=SR.理由如下:∵将抛物线L1平移,使其顶点是坐标原点O,得到抛物线L2,将直线DB向下平移经过坐标原点O,交抛物线L2于另一点F,∴抛物线L2的解析式为y=x2,直线OF的解析式为:y=﹣x,不妨设N(n,n2),∵点M(,0),∴直线MN的解析式为:y=,同理,直线ON的解析式为y=nx,∵MN交L2于Q点,∴Q(,),∵QR∥x轴分别交OF,ON于S,R,∴S(﹣,),R(,),∴QS=,SR=,∴QS=SR.。

2021年湖北省武汉市硚口区中考数学模拟试卷(含答案)

2021年湖北省武汉市硚口区中考数学模拟试卷(含答案)

2021年湖北省武汉市硚口区中考数学模拟试卷一、选择题(共10小题).1.﹣3的绝对值是()A.3B.﹣3C.﹣D.2.一个不透明的袋子中装有5个相同的小球,分别标号为1,2,3,4,5从袋子中随机摸出两个小球()A.两个小球的标号之和等于2B.两个小球的标号之和大于2C.两个小球的标号之和等于9D.两个小球的标号之和大于93.下列文字中,是轴对称图形的是()A.我B.爱C.中D.国4.计算(﹣2a3)2的结果是()A.﹣4a5B.4a5C.﹣4a6D.4a65.由7个大小相同的小正方体组合成一个几何体,其俯视图如图所示,其中正方形中的数字表示该位置放置的小正方体的个数()A.B.C.D.6.有两把不同的锁和四把钥匙,其中两把钥匙分别能打开这两把锁,其余两把钥匙不能打开这两把锁,一次打开锁的概率是()A.B.C.D.7.已知,反比例函数y=的图象上有两点A(﹣3,y1)和B(3,y2),则下列叙述正确的是()A.y1=y2B.当y1=3时,y2=﹣3C.k>0时,y1>y2D.过点B作x轴的垂线,垂足为点H,连AH,若S=6,则k=6△ABH8.俗话说“困难像弹簧,你弱它就强”小明在研究弹簧的长度与所挂重物的关系时,发现在弹性限度内(单位:cm)与它所挂的物体重量x(单位:kg)之间是一次函数关系,它是()组数1234x(kg)481012y(cm)15.816.61717.6 A.第1组B.第2组C.第3组D.第4组9.如图,AB为⊙O的直径,AC为⊙O的弦,E是AC的中点.若CD=2,AC=6()A.B.5C.D.410.在平面直角坐标系中,反比例函数y=(x>0)的图象经过点A(3,m),则k+b 的值为()A.B.﹣C.或0D.或4二、填空题11.计算:=.12.为了参加中学生足球联赛,某校足球队准备购买13双运动鞋,收集尺码尺码/cm2525.52626.527购买量/双52321则这组数据的中位数是.13.方程的解是.14.如图是某商场自动扶梯的示意图,自动扶梯AB的倾斜角是30°,在自动扶梯下方地面C处测得扶梯顶端B的仰角是60°,则自动扶梯的垂直高度BD=m.(取值1.732,结果精确到0.1米)15.抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间2﹣4ac<0;②a+b+c<0;③c﹣a=22+bx+c﹣2=0有两个不相等的实数根,其中正确结论为.16.小明将一块长方形木板如图1所示切割,无缝隙不重叠的拼成如图2所示的“L”形状,且成轴对称图形.切割过程中木材的消耗忽略不计,BC=16,FG⊥AD,则.三、解答题17.解不等式组,请按下列步骤完成解答:(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.18.如图,在四边形ABCD中.AB∥CD,∠A=∠C,DF∥BE交BC于点F,求证:DF平分∠CDA.19.某校为了了解学生的课外阅读情况,从全校随机抽取了部分学生调查了他们的平均每周的课外阅读时间t(单位:小时).把调查结果分为四档A档:t≤8;C档9≤t≤10;D 档:t≥10.根据调查情况,并绘制成两幅统计图(不完整).根据以上信息解答问题:(1)本次调查的学生人数有人,并将条形图补充完整;(2)B档所在扇形统计图中圆心角的度数为度;(3)已知全校共1200名学生,请你估计全校C档和D档共有多少人?20.在如图的网格中建立平面直角坐标系,△ABC的顶点坐标分别为A(1,7)B(8,6)C(6,2),D是AB与网格线的交点,画图过程用虚线表示,画图结果用实线表示(1)直接写出△ABC的形状;(2)画出点D关于AC的对称点E;(3)在AB上画点F,使∠BCF=0.5∠BAC;(4)线段AB绕某个点旋转一个角度得到线段CA(A与C对应,B与A对应),直接写出这个旋转中心的坐标.21.如图,AB是⊙O的直径,AC交⊙O于点D,BE交AC于点F,BC=FC.(1)求证:BC是⊙O的切线;(2)若BF=3EF,求tan∠ACE的值.22.某旅游度假村有甲种风格客房15间,乙种风格客房20间按现有定价:若全部入住,一天营业额为8500元,一天营业额为5000元(1)设甲、乙两种客房每间现有定价分别为m元/天、n元/天,求m、n的值.(2)度假村以乙种风格客房为例,市场情况调研发现:若每个房间每天按现有定价,房间会全部住满,就会有两个房间空闲.如果游客居住房间,度假村需对每个房间每天支出80元的各种费用.当每间房间定价为多少元时,最大利润是多少元?23.在△ABC中,AB=AC,点D在底边BC上,∠EDF=2∠ABC,BD=nCD.(1)如图1,若∠ABC=45°,n=1;(2)如图2,求的值(含n的式子表示);(3)如图3,连接EF,若tan∠B=1,且直接写出n的值为.24.已知抛物线y=x2+c与x轴交于A(﹣1,0),B两点,交y轴于点C.(1)求抛物线的解析式;(2)点E(m,n)是第二象限内一点,过点E作EF⊥x轴交抛物线于点F,连接CE、CF,若∠CEF=∠CFG.求n的值并直接写出m的取值范围(利用图1完成你的探究).(3)如图2,点P是线段OB上一动点(不包括点O、B),PM⊥x轴交抛物线于点M,BQ交直线PM于点Q,设点P的横坐标为t2021年湖北省武汉市硚口区中考数学模拟试卷参考答案与试题解析一、选择题1.﹣3的绝对值是()A.3B.﹣3C.﹣D.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.解:﹣3的绝对值是3.故选:A.2.一个不透明的袋子中装有5个相同的小球,分别标号为1,2,3,4,5从袋子中随机摸出两个小球()A.两个小球的标号之和等于2B.两个小球的标号之和大于2C.两个小球的标号之和等于9D.两个小球的标号之和大于9【分析】根据随机事件的意义结合具体问题情境进行判断即可.解:从标号为1、2、3、4、5的小球中随机摸出7个小球,标号之和最大为4+5=7,因此,“两个小球的标号之和等于2”是不可能事件,“两个小球的标号之和大于2”是必然事件,“两个小球的标号之和等于7”是可能事件,也是随机事件,“两个小球的标号之和大于9”是不可能事件,故选:C.3.下列文字中,是轴对称图形的是()A.我B.爱C.中D.国【分析】利用轴对称图形的概念可得答案.解:A、不是轴对称图形;B、不是轴对称图形;C、是轴对称图形;D、不是轴对称图形;故选:C.4.计算(﹣2a3)2的结果是()A.﹣4a5B.4a5C.﹣4a6D.4a6【分析】根据幂的乘方和积的乘方进行计算即可.解:原式=4a6,故选:D.5.由7个大小相同的小正方体组合成一个几何体,其俯视图如图所示,其中正方形中的数字表示该位置放置的小正方体的个数()A.B.C.D.【分析】由已知条件可知,左视图有2列,每列小正方形数目分别为3,1.据此可得出图形.解:该几何体的左视图如图所示:故选:A.6.有两把不同的锁和四把钥匙,其中两把钥匙分别能打开这两把锁,其余两把钥匙不能打开这两把锁,一次打开锁的概率是()A.B.C.D.【分析】画树状图(用A、B表示两把不同的锁,用a、b、c、d表示四把钥匙,其中a 能打开A,b能打开B)展示所有8种等可能的结果,找出一次打开锁的结果数,然后根据概率公式求解.解:画树状图为:(用A、B表示两把不同的锁、b、c、d表示四把钥匙,b能打开B),共有8种等可能的结果,其中一次打开锁的结果数为2,所以取出一把钥匙开任意一把锁,一次打开锁的概率==.故选:A.7.已知,反比例函数y=的图象上有两点A(﹣3,y1)和B(3,y2),则下列叙述正确的是()A.y1=y2B.当y1=3时,y2=﹣3C.k>0时,y1>y2D.过点B作x轴的垂线,垂足为点H,连AH,若S=6,则k=6△ABH解:当k>0时,A(﹣3,y2)在第三象限,点B(3,y2)第一象限,则y5<y2,当k<0时,A(﹣8,y1)在第二象限,点B(3,y4)第四象限,则y1>y2,故A、C错误;当y2=3时,则A(﹣3,∴反比例函数为y=﹣,把x=3代入解析式求得y2=﹣2,故B正确;=6,则k=6或﹣2,过点B作x轴的垂线,垂足为点H,若S△ABH故D错误,故选:B.8.俗话说“困难像弹簧,你弱它就强”小明在研究弹簧的长度与所挂重物的关系时,发现在弹性限度内(单位:cm)与它所挂的物体重量x(单位:kg)之间是一次函数关系,它是()组数1234x(kg)481012y(cm)15.816.61717.6 A.第1组B.第2组C.第3组D.第4组【分析】先用待定系数法求出函数解析式,再把数据代进去验证即可.解:设该一次函数的解析式为:y=kx+b,将(4,15.8)和(8,得:,解得:,∴y=0.2x+15,当x=7时,y=02×4+15=15.8,记录正确,当x=3时,y=02×8+15=16.6,记录正确,当x=10时,y=02×10+15=17,记录正确,当x=12时,y=02×12+15=17.6,∴记录错误的是第四组,故选:D.9.如图,AB为⊙O的直径,AC为⊙O的弦,E是AC的中点.若CD=2,AC=6()A.B.5C.D.4【分析】连接OC、BC、OE、BD,OE交⊙O于F,OD交BC于G,如图,先根据垂径定理得到OD⊥BC,CG=BG,DB=DC=2,∠BOD=∠COD,OE⊥AC,=,再计算出∠DOF=90°,设⊙O的半径为r,则DG=r﹣3,利用勾股定理得到BG2=r2﹣32,BG2=(2)2﹣(r﹣3)2,则r2﹣32=(2)2﹣(r﹣3)2,解得r=5,所以BG=4,然后利用勾股定理计算DE的长.解:连接OC、BC、BD,OD交BC于G,∵D是弧BC的中点,∴OD⊥BC,CG=BG,∠BOD=∠COD,∵E是AC的中点,∴OE⊥AC,=,∴∠AOF=∠COF,∴∠DOF=×180°=90°,∵OA=OB,BG=CG,∴OG∥AC,OG=,设⊙O的半径为r,则DG=r﹣6,在Rt△OBG中,BG2=r2﹣72,在Rt△DBG中,BG2=(5)2﹣(r﹣6)2,∴r2﹣42=(2)2﹣(r﹣3)2,解得r1=﹣2(舍去),r3=5,∴OD=5,∴BG==4,易得四边形OGCE为矩形,∴OE=CG=BG=4,在Rt△DOE中,DE==.故选:A.10.在平面直角坐标系中,反比例函数y=(x>0)的图象经过点A(3,m),则k+b 的值为()A.B.﹣C.或0D.或4【分析】求出点A坐标,然后分两种情况,分别画出相应的图形,根据三角形的面积比和相似三角形进行解答即可.解:∵点A(3,m)在反比例函数y=,∴m==7,∴A(3,4),分两种情况进行解答,(1)如图7,过点A作AM⊥y轴,=2S△BOC,∵S△AOB=S△BOC,∴S△AOC∴BC=AC,又∵∠ACM=∠BCO,∠BOC=∠AMC=90°∴△ACM≌△BCO(AAS),∴OB=AM=3,∴B(﹣7,0),把A(3,4),0)代入y=kx+b得,,解得k=,b=2,∴k+b=+2=;(2)如图2,过点A作AN⊥x轴,=3S△BOC,∵S△AOB∴=,∵∠BOC=∠ANB=90°,∠OBC=∠NBA,∴△BOC∽△BNA,∴==,即=,∴OC=2,∴C(2,﹣2),把A(3,3),﹣2)代入y=kx+b得,,解得,k=2,∴k+b=4﹣2=0,因此k+b的值为或0,故选:C.二、填空题11.计算:=3.【分析】原式利用平方根的定义化简即可得到结果.解:原式=3.故答案为:312.为了参加中学生足球联赛,某校足球队准备购买13双运动鞋,收集尺码尺码/cm2525.52626.527购买量/双52321则这组数据的中位数是25.5.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.解:处于这组数据中间位置的数是25.5,那么由中位数的定义可知;故答案为:25.5.13.方程的解是x=﹣.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:去分母得:﹣6﹣8x+8=x,解得:x=﹣,检验:当x=﹣时,2(2x﹣1)≠0,∴x=﹣是分式方程的解.故答案为:x=﹣.14.如图是某商场自动扶梯的示意图,自动扶梯AB的倾斜角是30°,在自动扶梯下方地面C处测得扶梯顶端B的仰角是60°,则自动扶梯的垂直高度BD= 3.5m.(取值1.732,结果精确到0.1米)【分析】根据等腰三角形的性质和三角形的外角的性质得到BC=AC=4,根据三角函数的定义即可得到结论.解:∵∠BCD=∠BAC+∠ABC,∠BAC=30°,∴∠ABC=∠BCD﹣∠BAC=30°,∴∠BAC=∠ABC,∴BC=AC=4,在Rt△BDC中,sin∠BCD=,∴sin60°==,∴BD=2≈3.5(m).故答案为:3.5.15.抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间2﹣4ac<0;②a+b+c<0;③c﹣a=22+bx+c﹣2=0有两个不相等的实数根,其中正确结论为②③.【分析】由抛物线与x轴有两个交点得到b2﹣4ac>0;有抛物线顶点坐标得到抛物线的对称轴为直线x=﹣1,则根据抛物线的对称性得抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,所以当x=1时,y<0,则a+b+c<0;由抛物线的顶点为D(﹣1,2)得a﹣b+c=2,由抛物线的对称轴为直线x=﹣1得b=2a,所以c﹣a=2;根据二次函数的最大值问题,当x=﹣1时,二次函数有最大值为2,即只有x=﹣1时,ax2+bx+c=2,所以说方程ax2+bx+c﹣2=0有两个相等的实数根.解:∵抛物线与x轴有两个交点,∴b2﹣4ac>5,所以①错误;∵顶点为D(﹣1,2),∴抛物线的对称轴为直线x=﹣3,∵抛物线与x轴的一个交点A在点(﹣3,0)和(﹣3,∴抛物线与x轴的另一个交点在点(0,0)和(5,∴当x=1时,y<0,∴a+b+c<4,所以②正确;∵抛物线的顶点为D(﹣1,2),∴a﹣b+c=3,∵抛物线的对称轴为直线x=﹣=﹣1,∴b=6a,∴a﹣2a+c=2,即c﹣a=3,符合题意;∵当x=﹣1时,二次函数有最大值为2,即只有x=﹣5时,ax2+bx+c=2,∴方程ax4+bx+c﹣2=0有两个相等的实数根,所以④错误.故答案为:②③.16.小明将一块长方形木板如图1所示切割,无缝隙不重叠的拼成如图2所示的“L”形状,且成轴对称图形.切割过程中木材的消耗忽略不计,BC=16,FG⊥AD,则.【分析】如图1,延长FG交BC于H,设CE=x,则E'H'=CE=x,根据轴对称的性质得:D'E'=DC=E'F'=9,表示GH,EH,BE的长,证明△EGH∽△EAB,则,可得x的值,计算EG的长,代入计算比值即可.解:如图1,延长FG交BC于H,设CE=x,则E'H'=CE=x,由轴对称的性质得:D'E'=DC=E'F'=9,∴H'F'=AF=5+x,∵AD=BC=16,∴DF=16﹣(9+x)=7﹣x,即C'D'=DF=6﹣x=F'G',∴FG=7﹣x,∴GH=9﹣(3﹣x)=2+x,EH=16﹣x﹣(9+x)=3﹣2x,∴EH∥AB,∴△EGH∽△EAB,∴,∴,x=3或31(舍),∴GH=3,EH=5,∴EG==,∴==,故答案为:.三、解答题17.解不等式组,请按下列步骤完成解答:(Ⅰ)解不等式①,得x>﹣5;(Ⅱ)解不等式②,得x≤3;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为﹣5<x≤3.解:(Ⅰ)解不等式①,得x>﹣5;(Ⅱ)解不等式②,得x≤3;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为﹣6<x≤3,故答案为:x>﹣5,x≤7.18.如图,在四边形ABCD中.AB∥CD,∠A=∠C,DF∥BE交BC于点F,求证:DF 平分∠CDA.【解答】证明:∵AB∥CD,∴∠A+∠ADC=180°,∵∠A=∠C,∴∠C+∠ADC=180°,∴AD∥BC,∴四边形ABCD为平行四边形,∵DF∥BE,∴四边形BFDE为平行四边形,∴∠EBF=∠EDF,∵BE平分∠ABC,∴∠ABE=∠EBF,∵AD∥BC,∴∠EBF=∠AEB,∴AB=AE,∵AD=BC,ED=BF,∴AE=CF,∵AB=CD,∴CF=CD,∴∠CFD=∠CDF,∵AB∥BC,∴∠EDF=∠DFC,∴∠EDF=∠CFD,∴DF平分∠CDA.19.某校为了了解学生的课外阅读情况,从全校随机抽取了部分学生调查了他们的平均每周的课外阅读时间t(单位:小时).把调查结果分为四档A档:t≤8;C档9≤t≤10;D 档:t≥10.根据调查情况,并绘制成两幅统计图(不完整).根据以上信息解答问题:(1)本次调查的学生人数有40人,并将条形图补充完整;(2)B档所在扇形统计图中圆心角的度数为144度;(3)已知全校共1200名学生,请你估计全校C档和D档共有多少人?解:(1)4÷10%=40(人),40×20%=8(人),40﹣7﹣16﹣4=12(人),故答案为:40,补全条形统计图如下:(2)360°×=144°,故答案为:144;(3)1200×=480(人),答:全校共1200名学生中C档和D档共有480人.20.在如图的网格中建立平面直角坐标系,△ABC的顶点坐标分别为A(1,7)B(8,6)C(6,2),D是AB与网格线的交点,画图过程用虚线表示,画图结果用实线表示(1)直接写出△ABC的形状;(2)画出点D关于AC的对称点E;(3)在AB上画点F,使∠BCF=0.5∠BAC;(4)线段AB绕某个点旋转一个角度得到线段CA(A与C对应,B与A对应),直接写出这个旋转中心的坐标.解:(1)如图,∵AB=,AC=,∴AB=AC,∴△ABC是等腰三角形.(2)如图,点E即为所求作.(3)如图,点F即为所求作.(4)由题意,线段AC的中垂线为y=x+1,由,解得,∴旋转中心J的坐标为(,).21.如图,AB是⊙O的直径,AC交⊙O于点D,BE交AC于点F,BC=FC.(1)求证:BC是⊙O的切线;(2)若BF=3EF,求tan∠ACE的值.解:(1)证明:连接AE,如图,∵AB是⊙O的直径,∴∠AEB=90°.∴∠EAF+∠AFE=∠EAB+∠ABE=90°.∵点E是弧AD的中点,∴=.∴∠EAD=∠ABE.∴∠AFE+∠ABE=90°.∵∠AFE=∠BFC,∴∠ABE+∠CFB=90°.∵BC=FC,∴∠CFB=∠CBF.∴∠CBF+∠ABE=90°.∴∠ABC=90°,∵AB是⊙O的直径,∴BC是⊙O的切线.(2)连接OE,BD,∵点E是弧AD的中点,∴OH⊥AD,AH=HD=.∵AB是⊙O的直径,∴BD⊥AD.∴BD∥OE.∴.∵BF=4EF,∴.设EH=8a,则BD=6a.∵OE∥BD,OA=OB,∴OF=BD=3a.∴OA=OE=OH+HE=5a.∴AB=7OA=10a.∴AD=.∴HD=AD=2a.∵∠ABC=90°,BD⊥AC,∴△ABD∽△BCD.∴.∴CD=.∴CH=HD+CD=.在Rt△EHC中,tan∠ACE=.22.某旅游度假村有甲种风格客房15间,乙种风格客房20间按现有定价:若全部入住,一天营业额为8500元,一天营业额为5000元(1)设甲、乙两种客房每间现有定价分别为m元/天、n元/天,求m、n的值.(2)度假村以乙种风格客房为例,市场情况调研发现:若每个房间每天按现有定价,房间会全部住满,就会有两个房间空闲.如果游客居住房间,度假村需对每个房间每天支出80元的各种费用.当每间房间定价为多少元时,最大利润是多少元?解:(1)由题意可得,,解得,答:m、n的值分别为300;(2)设乙种风格客房每间房间定价为x元,由题意可得,W=(x﹣80)(20﹣2+2560,∴当x=240时,W取得最大值,答:当每间房间定价为240元时,乙种风格客房每天的利润W最大.23.在△ABC中,AB=AC,点D在底边BC上,∠EDF=2∠ABC,BD=nCD.(1)如图1,若∠ABC=45°,n=1;(2)如图2,求的值(含n的式子表示);(3)如图3,连接EF,若tan∠B=1,且直接写出n的值为3或.【解答】(1)证明:如图1中,连接AD.∵AB=AC,∴∠ABC=∠C=45°,∵BD=nCD,n=1,∴BD=CD,∴AD⊥BC,∠DAC=∠DAB=45°,∵∠EDF=8∠ABC=90°,∴∠BDA=∠EDF=90°,∴∠BDE=∠ADF,∵∠B=∠DAF,BD=AD,∴△BDE≌△ADF(SAS),∴DE=DF.(2)解:在射线BA上取一点T,使得DB=DT.∵DB=DT,∴∠B=∠BTD,∴∠TDC=∠B+∠ETD=2∠B,∵∠EDF=2∠B,∴∠EDF=∠TDC,∴∠EDT=∠FDC,∵AB=AC,∴∠B=∠C,∴∠BTD=∠C,∴△TED∽△FDC,∴,∵BD=nCD,∴=n.(3)解:如图2中,作ET⊥BC于T.∵EF∥BC,ET∥FH,∴四边形EFHT是平行四边形,∵∠ETH=90°,∴四边形EFHT是矩形,∴ET=FH,EF=TH,∵,设EF=8k,则TH=5k,∵tan B=1,∴∠B=∠C=45°,∵∠ETB=∠FHC=90°,∴ET=BT=FH=CH=5.5k,设DT=x,∵∠EDF=2∠B=90°,∠ETD=∠FHD=90°,∴∠EDT+∠FDH=90°,∠TED+∠EDT=90°,∴∠TED=∠FDH,∴△ETD∽△DHF,∴,∴=,∴5kx﹣x2=2.25k2,解得x=7.5k或4.7k,∴BD=2k或6k,∴BD:DC=8k:6k=1:5或BD:DC=6k:2k=6:1.∴n=3或.24.已知抛物线y=x2+c与x轴交于A(﹣1,0),B两点,交y轴于点C.(1)求抛物线的解析式;(2)点E(m,n)是第二象限内一点,过点E作EF⊥x轴交抛物线于点F,连接CE、CF,若∠CEF=∠CFG.求n的值并直接写出m的取值范围(利用图1完成你的探究).(3)如图2,点P是线段OB上一动点(不包括点O、B),PM⊥x轴交抛物线于点M,BQ交直线PM于点Q,设点P的横坐标为t解:(1)把A(﹣1,0)代入得c=﹣,∴抛物线解析式为(2)如图1,过点C作CH⊥EF于点H,∵∠CEF=∠CFG,FG⊥y轴于点G∴△EHC∽△FGC∵E(m,n)∴F(m,)又∵C(0,﹣)∴EH=n+,CH=﹣m,CG=m2又∵,则∴n+=2∴n=当F点位于E点上方时,则∠CEF>90°,故这种情形不符合题意.由此当n=时,代入抛物线解析式,又E点位于第二象限,所以﹣8<m<0.(3)由题意可知P(t,0),)∵PM⊥x轴交抛物线于点M,∠OBQ=∠OMP,∴△OPM∽△QPB.∴.其中OP=t,PM=,∴PQ=.BQ=∴PQ+BQ+PB=.∴△PBQ的周长为3.。

2022年湖北省武汉市中考数学试卷含答案详解(高清word版)

2022年湖北省武汉市中考数学试卷含答案详解(高清word版)

第1页,共26页………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前2022年湖北省武汉市中考数学试卷副标题考试范围:xxx ;考试时间:100分钟;命题人:xxx注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I 卷(选择题)一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. 实数2022的相反数是( ) A. −2022B. −12022C. 12022D. 20222. 彩民李大叔购买1张彩票中奖.这个事件是( ) A. 必然事件B. 确定性事件C. 不可能事件D. 随机事件3. 现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是( )A.B.C.D.4. 计算(2a 4)3的结果是( ) A. 2a 12B. 8a 12C. 6a 7D. 8a 75. 如图是由4个相同的小正方体组成的几何体,它的主视图是( ) A.B.第2页,共26页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………C.D.6. 已知点A(x 1,y 1),B(x 2,y 2)在反比例函数y =6x 的图象上,且x 1<0<x 2,则下列结论一定正确的是( )A. y 1+y 2<0B. y 1+y 2>0C. y 1<y 2D. y 1>y 27. 匀速地向一个容器内注水,最后把容器注满.在注水过程中,水面高度ℎ随时间t 的变化规律如图所示(图中OABC 为一折线).这个容器的形状可能是( )A.B.C.D.8. 班长邀请A ,B ,C ,D 四位同学参加圆桌会议.如图,班长坐在⑤号座位,四位同学随机坐在①②③④四个座位,则A ,B 两位同学座位相邻的概率是( )A. 14B. 13C. 12D. 239. 如图,在四边形材料ABCD 中,AD//BC ,∠A =90°,AD =9cm ,AB =20cm ,BC =24cm.现用此材料截出一个面积最大的圆形模板,则此圆的半径是( )第3页,共26页………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………○…………内…………○…………装…………○…………订…………○…………线…………○…………A.11013cm B. 8cm C. 6√2cm D. 10cm10. 幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x 与y 的和是( )A. 9B. 10C. 11D. 12第II 卷(非选择题)二、填空题(本大题共6小题,共18.0分)11. 计算√(−2)2的结果是______.12. 某体育用品专卖店在一段时间内销售了20双学生运动鞋,各种尺码运动鞋的销售量如下表.则这20双运动鞋的尺码组成的一组数据的众数是______. 尺码/cm 24 24.5 25 25.5 26 销售量/双13104213. 计算:2x x 2−9−1x−3的结果是______ .14. 如图,沿AB 方向架桥修路,为加快施工进度,在直线AB 上湖的另一边的D 处同时施工.取∠ABC =150°,BC =1600m ,∠BCD =105°,则C ,D 两点的距离是______m.第4页,共26页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………15. 已知抛物线y =ax 2+bx +c(a,b,c 是常数)开口向下,过A(−1,0),B(m,0)两点,且1<m <2.下列四个结论: ①b >0;②若m =32,则3a +2c <0;③若点M(x 1,y 1),N(x 2,y 2)在抛物线上,x 1<x 2,且x 1+x 2>1,则y 1>y 2; ④当a ≤−1时,关于x 的一元二次方程ax 2+bx +c =1必有两个不相等的实数根. 其中正确的是______(填写序号).16. 如图,在Rt △ABC 中,∠ACB =90°,AC >BC ,分别以△ABC 的三边为边向外作三个正方形ABHL ,ACDE ,BCFG ,连接DF.过点C 作AB 的垂线CJ ,垂足为J ,分别交DF ,LH 于点I ,K.若CI =5,CJ =4,则四边形AJKL 的面积是 .三、解答题(本大题共8小题,共72.0分。

2021年武汉市中考数学试题及答案解析

2021年武汉市中考数学试题及答案解析

2021年湖北省武汉市中考数学试卷一.选择题(共12小题)1.(2021武汉)在2.5,﹣2.5,0,3这四个数种,最小的数是()A. 2.5 B.﹣2.5 C. 0 D. 3考点:有理数大小比较。

解答:解:∵﹣2.5<0<2.5<3,∴最小的数是﹣2.5,故选B.2.(2021武汉)若在实数范围内有意义,则x的取值范围是()A. x<3 B. x≤3 C. x>3 D. x≥3考点:二次根式有意义的条件。

解答:解:根据题意得,x﹣3≥0,解得x≥3.故选D.3.(2021武汉)在数轴上表示不等式x﹣1<0的解集,正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式。

解答:解:x﹣1<0,∴x<1,在数轴上表示不等式的解集为:,故选B.4.(2021武汉)从标号分别为1,2,3,4,5的5张卡片中,随机抽取1张.下列事件中,必然事件是()A.标号小于6 B.标号大于6 C.标号是奇数D.标号是3 考点:随机事件。

解答:解:A.是一定发生的事件,是必然事件,故选项正确;B.是不可能发生的事件,故选项错误;C.是随机事件,故选项错误;D.是随机事件,故选项错误.故选A.5.(2021武汉)若x1,x2是一元二次方程x2﹣3x+2=0的两根,则x1+x2的值是()A.﹣2 B. 2 C. 3 D. 1考点:根与系数的关系。

解答:解:由一元二次方程x2﹣3x+2=0,∴x1+x2=3,故选C.6.(2021武汉)某市2021年在校初中生的人数约为23万.数230000用科学记数法表示为()A. 23×104B. 2.3×105C. 0.23×103D. 0.023×106考点:科学记数法—表示较大的数。

解答:解:23万=230 000=2.3×105.故选B.7.(2021武汉)如图,矩形ABCD中,点E在边AB上,将矩形ABCD沿直线DE折叠,点A恰好落在边BC的点F处.若AE=5,BF=3,则CD的长是()A. 7 B. 8 C. 9 D. 10考点:翻折变换(折叠问题)。

湖北省荆州市2021年中考数学试卷试题真题(Word版,含答案解析)

湖北省荆州市2021年中考数学试卷试题真题(Word版,含答案解析)

湖北省荆州市2021年中考数学试卷一、单选题(共10题;共20分)1.在实数−1,0,1,√2中,无理数是()2D. √2A. −1B. 0C. 12【答案】 D【考点】无理数的认识,√2中,无理数是√2,【解析】【解答】解:在实数−1,0,12故答案为:D.【分析】根据无理数的定义:无理数,也称为无限不循环小数,不能写作两整数之比;若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环; 常见的无理数有非完全平方数的平方根、π和e (其中后两者均为超越数)等, 即可判定.2.如图是由一个圆柱和一个长方体组成的几何体,则该几何体的俯视图是()A. B. C. D.【答案】A【考点】完全平方公式的几何背景,简单组合体的三视图【解析】【解答】解:俯视图是矩形中间有一个圆,圆与两个长相切,故答案为:A.【分析】俯视图是由视线由上向下看在水平面所得的视图,看图即知俯视图是矩形中间有一个圆,圆与两个长相切即可解答.3.若等式2a2⋅a+()= 3a3成立,则括号中填写单项式可以是()A. aB. a2C. a3D. a4【答案】C【考点】同底数幂的乘法,合并同类项法则及应用【解析】【解答】解:∵3a3- 2a2⋅a= 3a3- 2a3= a3,∴等式2a2⋅a+(a3)= 3a3成立,故答案为:C.【分析】根据同底数幂的乘法法则和合并同类项的法则解答即可.4.阅读下列材料,其①~④步中数学依据错误的是()如图:已知直线b//c,a⊥b,求证:a⊥c.证明:①∵a⊥b(已知)∴∠1=90°(垂直的定义)②又∵b//c(已知)③∴∠1=∠2(同位角相等,两直线平行)∴∠2=∠1=90°(等量代换)④∴a⊥c(垂直的定义).A. ①B. ②C. ③D. ④【答案】C【考点】平行线的性质【解析】【解答】解:①∵a⊥b(已知)∴∠1=90°(垂直的定义)②又∵b//c(已知)③∴∠1=∠2(两直线平行,同位角相等)∴∠2=∠1=90°(等量代换)④∴a⊥c(垂直的定义).所以错在③故答案为:C.【分析】由垂直的定义得出∠1=90°,由两直线平行,同位角相等得出∠1=∠2,然后由等量代换得出∠2=∠1=90°,最后由垂直的定义可得a⊥c.5.若点P(a+1,2−2a)关干x轴的对称点在第四象限,则a的取值范围在数轴上表示为()A. B.C. D.【答案】C【考点】在数轴上表示不等式组的解集,解一元一次不等式组,点的坐标与象限的关系【解析】【解答】解:∵P(a+1,2−2a)∴点P 关于x轴的对称点P′坐标为P′(a+1,2a−2)∵P′在第四象限∴{a+1>02a−2<0解得:−1<a<1故答案为:C【分析】关于x轴对称点的坐标特点是横坐标相等,纵坐标互为相反数,据此求出P'点坐标,然后根据第四象限点的横坐标大于0,纵坐标小于0的特点列不等式组求解,并把其解集在数轴上表示出来即可. 6.已知:如图,直线y1=kx+1与双曲线y2=2在第一象限交于点P(1,t),与x轴、y轴分别交于xA,B两点,则下列结论错误的是()A. t=2B. △AOB是等腰直角三角形C. k=1D. 当x>1时,y2>y1【答案】 D【考点】反比例函数与一次函数的交点问题,一次函数的性质,等腰直角三角形【解析】【解答】解:∵直线y1=x+1与双曲线y2=2在第一象限交于点P(1,t),x∴t=2=2,即:P(1,2),故A正确,不符合题意,1把P(1,2)代入y1=kx+1得:2=k+1,解得:k=1,故C正确,不符合题意,在y1=x+1中,令x=0,则y1=1,令y1=0,则x=-1,∴A(-1,0),B(0,1),即:OA=OB,∴△AOB是等腰直角三角形,故B正确,不符合题意,由函数图象可知:当x>1时,y2<y1,故D错误,符合题意.故答案为:D.【分析】首先利用待定系数法求出t和k,然后求出直线与坐标轴交点A、B的坐标,则可得出OA、OB的长,则可得出△AOB是等腰直角三角形,然后根据一次函数的性质可得y2<y1.7.如图,矩形OABC的边OA,OC分别在x轴、y轴的正半轴上,点D在OA的延长线上.若A(2,0),D(4,0),以O为圆心、OD长为半径的弧经过点B,交y轴正半轴于点E,连接DE,BE、则∠BED的度数是()A. 15°B. 22.5°C. 30°D. 45°【答案】C【考点】坐标与图形性质,矩形的判定与性质,圆周角定理【解析】【解答】解:连接OB,如图所示,∵A(2,0),D(4,0),∴OA=2,OB=OE=OD=4,∴OA=1OB,2∵四边形OABC是矩形,∴∠OAB=90°,∴∠OBA=30°,∴∠BOD=90°−∠OBA=60°,∴∠BED=1∠BOD=30°;2故答案为:C.OA,从而求出∠OBA=30°,然后由同圆中圆周角和圆心角【分析】连接OB,根据A、D点坐标推出OB=12的关系即可求出∠BED.8.如图,在△ABC中,AB=AC,∠A=40°,点D,P分别是图中所作直线和射线与AB,CD 的交点.根据图中尺规作图痕迹推断,以下结论错误的是()A. AD=CDB. ∠ABP=∠CBPC. ∠BPC=115°D. ∠PBC=∠A【答案】 D【考点】三角形内角和定理,等腰三角形的性质,作图-角的平分线,作图-线段垂直平分线【解析】【解答】解:根据图中尺规作图可知,AC的垂直平分线交AB于D,BP平分∠ABC,∴AD=CD,∠ABP=∠CBP;选项A、B正确;∵∠A=40°,∴∠ACD=∠A =40°,∵∠A=40°,AB=AC,∴∠ABC=∠ACB =70°,∴∠ABP=∠CBP=35∘≠∠A,选项D错误;∠BCP=∠ACB−∠ACD=70°−40°=30°,∴∠BPC=180°-∠CBP-∠BCP =115°,选项C正确;故答案为:D【分析】根据作图过程可知,AC的垂直平分线交AB于D,BP平分∠ABC,然后由角平分线的定义和垂直平分线的性质可知AD=CD,∠ABP=∠CBP,结合∠A的度数,利用三角形内角和定理和等腰三角形的性质求出∠ABC和∠ACB,则∠PBC和∠BPC可求.9.如图,在菱形ABCD中,∠D=60°,AB=2,以B为圆心、BC长为半径画AC⌢,点P为菱形内一点,连接PA,PB,PC.当△BPC为等腰直角三角形时,图中阴影部分的面积为()A. 23π−√3+12B. 23π−√3−12C. 2πD. 2π−√3−12【答案】A【考点】含30°角的直角三角形,菱形的性质,等腰直角三角形,几何图形的面积计算-割补法【解析】【解答】解:以点B为原点,BC边所在直线为x轴,以过点B且与BC垂直的直线为y轴建立平面直角坐标系,如图,∵△BPC为等腰直角三角形,且点P在菱形ABCD的内部,很显然,∠PBC<90°①若∠BCP=90°,则CP=BC=2这C作CE⊥AD,交AD于点E,∵四边形ABCD是菱形∴AB=BC=CD=DA=2,∠D=∠ABC=60°∴CE=CDsin∠D=2 ×√32=√3<2∴点P在菱形ABCD的外部,∴与题设相矛盾,故此种情况不存在;②∠BPC=90°过P作PF⊥BC交BC于点F,∵△BPC是等腰直角三角形,∴PF=BF= 12BC=1∴P(1,1),F(1,0)过点A作AG⊥BC于点G,在Rt△ABG中,∠ABG=60°∴∠BAG=30°∴BG= 12AB=1,AG= √3BG=√3∴A (1,√3),G(1,0)∴点F与点G重合∴点A、P、F三点共线∴AP=AF−PF=√3−1∴SΔABP =12×1×(√3−1)=√3−12SΔBPC=12×2×1=1S扇形BAC =60π×22360=2π3∴S阴影=S扇形BAC−SΔABP−SΔBPC=2π3−√3−12−1=2π3−√3+12故答案为:A.【分析】以点B为原点,BC边所在直线为x轴,以过点B且与BC垂直的直线为y轴建立平面直角坐标系,过点A作AG⊥BC于点G,过P作PF⊥BC交BC于点F,分三种情况讨论,①若∠BCP=90°,推出这种情况不存在;②∠BPC=90°,根据等腰直角三角形的性质求出P、F点的坐标,再根据含30°角的直角三角形的性质求出A、G的坐标,得出点A、P、F三点共线,进而求出AP的长,然后求出△ABP和△BPC的面积,最后利用S阴影=S扇形BAC−SΔABP−SΔBPC,代入数值计算即可.10.定义新运算“※”:对于实数m,n,p,q,有[m,p]※[q,n]=mn+pq,其中等式右边是通常的加法和乘法运算,如:[2,3]※[4,5]=2×5+3×4=22.若关于x的方程[x2+1,x]※[5−2k,k]=0有两个实数根,则k的取值范围是()A. k<54且k≠0 B. k≤54C. k≤54且k≠0 D. k≥54【答案】C【考点】一元二次方程根的判别式及应用,定义新运算【解析】【解答】解:∵[x2+1,x]※[5−2k,k]=0,∴k(x2+1)+(5−2k)x=0.整理得,kx2+(5−2k)x+k=0.∵方程有两个实数根,∴判别式△≥0且k≠0.由△≥0得,(5−2k)2−4k2≥0,解得,k≤54.∴k的取值范围是k≤54且k≠0.故答案为:C【分析】根据新定义的运算得出:k(x2 +1) +(5- 2k)x= 0,将其整理为一元二次方程的一般式,然后根据一元二次方程的定义和判别式的意义可得k≠0且△= (5- 2k)2- 4k2≥0,再解不等式求出k的范围即可.二、填空题(共6题;共6分)11.已知:a=(12)−1+(−√3)0,b=(√3+√2)(√3−√2),则√a+b=________.【答案】2【考点】平方差公式及应用,0指数幂的运算性质,负整数指数幂的运算性质【解析】【解答】解:∵a=(12)−1+(−√3)0=2+1=3,b=(√3+√2)(√3−√2)=(√3)2−(√2)2= 1,∴√a+b=√3+1=2,故答案是:2.【分析】先进行负指数幂和0指数幂的运算求出a,再根据平方差公式计算求出b,再将其代入原式计算即可.12.有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁,现在任意取出一把钥匙去开任意一把锁,一次就能打开锁的概率是________.【答案】14【考点】列表法与树状图法,概率公式【解析】【解答】解:锁用A,B表示,钥匙用A,B,C,D表示,根据题意画树状图得:∵共有8种等可能的结果,有2中情况符合条件,∴一次就能打开锁的概率是28=14.故答案为14.【分析】锁用A,B表示,钥匙用A,B,C,D表示,根据题意画出树状图,由图可知:共有8种等可能的结果,有2中情况符合条件,根据概率公式即可算出任意取出一把钥匙去开任意一把锁,一次就能打开锁的概率。

2021年湖北省襄阳市中考数学试题及参考答案(含解析word版)

2021年湖北省襄阳市中考数学试题及参考答案(含解析word版)

2021年湖北省襄阳市中考数学试题及参考答案(含解析word版)2021年湖北省襄阳市中考数学试题及参考答案一、选择题(本大题共10个小题,每小题3分,共30分) 1.-5的倒数是()A.11 B. ? C. 5 D. -5 5532.下列各数中,为无理数的是()A.8 B.14 C. D.2 33. 如图,BD//AC,BE平分?ABD,交AC于点E.若?A?500,则?1的度数为()A. 65°B. 60°C.55°D. 50° 4. 下列运算正确的是()A.3a?a?2B. a??23?a5C. a2?a3?a5D.a6?a3?a25. 下列调查中,调查方式选择合理的是()A.为了解襄阳市初中生每天锻炼所用的时间,选择全面调查B.为了解襄阳电视台《襄阳新闻》栏目的收视率,选择全面调查C. 为了解神舟飞船设备零件的质量情况,选择抽样调查D.为了解一批节能灯的使用寿命,选择抽样调查6. 如图所示的几何体是由6个大小完全一样的正方体组合而成的,它的俯视图是()A. B. C. D.7.下列图形中,既是中心对称图形又是轴对称图形的是()A. B.2 C. D.8. 将抛物线y?2?x?4??1先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为()1A. y?2x2?1B.y?2x2?3C. y?2?x?8??1D.y?2?x?8??3 9. 如图,在?ABC 中,?ACB?900,?A?300,BC?4.以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于交AB于点F.则AF的长为()221BD的长为半径作弧,两弧相交于点E;作射线CE2A. 5B. 6C. 7D.810. “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若?a?b??21,大正方形的面积为13,则小正方形的面积为()2A. 3B. 4C. 5D.6二、填空题(本大题共6个小题,每小题3分,共18分)11.某天到襄阳某镇观赏桃花的游客近16000人,数据16000用科学计数法表示为___________. 12.分式方程23?的解是____________. x?3x13.不等式组??2x?1?x?1的解集为 .?x?8?4x?114.同时抛掷三枚质地均匀的硬币,出现两枚正面向上,一枚正面向下的概率是 . 15.在半径为1的?O中,弦AB,AC的长分别为1和2,则?BAC的度数为 .016.如图,在?ABC中,?ACB?90,点D,E分别在AC,BC上,且?CDE??B,将?CDE 沿DE折叠,点C恰好落在AB边上的点F处,若AC?8,AB?10,则CD的长为 .三、解答题(本大题共9小题,共72分)217.(本小题满分6分)先化简,再求值:??11?1,其中x?5?2,y?5?2. ???2x?yx?yxy?y??18.(本小题满分6分)中华文化,源远流长.在文学方面,《西游记》《三国演义》《水浒传》《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查.根据调查结果绘制成如所示的两个不完整的统计图,请结合图中信息解决下列问题:(1)本次调查所得数据的众数是____________部,中位数是___________部;扇形统计图中“1部”所在扇形的圆心角为____________度;(2)请将条形统计图补充完整;(3)没有读过四大名著的两名学生准备从四大古典名著中各自随机选择一部来阅读,则他们选中同一名著的概率为______________.19.(本小题满分6分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高.据统计,2014年利润为2亿元,2021年利润为2.88亿元. (1)求该企业从2014年到2021年利润的年平均增长率;(2)若2021年保持前两年利润的年平均增长率不变,该企业2021年的利润能否超过3.4亿元? 20.(本小题满分7分)如图,AE//BF,AC平均?BAE,且交BF于点C,BD平分?ABF,且交AE于点D,连接CD.(1)求证:四边形ABCD是菱形;(2)若?ADB?30,BD?6,求AD的长.21.(本小题满分6分)如图,直线y1?ax?b与双曲线y2?点A的纵坐标为6,点B的坐标为??3,?2?.0k交于A,B两点,与x轴交于点C,x3(1)求直线和双曲线的解析式;(2)求点C的坐标,并结合图象直接写出y1?0时x的取值范围.22.(本小题满分8分)如图,AB为?O的直径,C,D为?O上两点,?BAC??DAC,过点C作直线EF?AD,交AD的延长线于点E,连接BC.(1)求证:EF是?O的切线;?的长l. (2)若DE?1,BC?2,求劣弧BC23.(本小题满分10分)为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为21000m2的空地进行绿化,一部分种草,剩余部分栽花.设种草部分的面积为x?m?,种草所需费用y1??k1x,?0?x?600?2xm(元)与??的函数关系式为y1??,其图象如图所示;栽花所需费用kx?b,600?x?1000????2y2(元)与x?m2?的函数关系式y2??0.01x2?20x?30000?0?x?1000?.(1)请直接写出k1,k2和b的值;(2)设这块1000m空地的绿化总费用为W(元),请利用W与x的函数关系式,求出绿化总费用2W的最大值;4(3)若种草部分的面积不少于700m2,栽花部分的面积不少于100m2,请求出绿化总费用W的最小值.24.(本小题满分10分)如图,在?ABC中,?ACB?900,CD是中线,AC?BC.一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC,BC的延长线相交,交点分别为点E,F,DF与AC交于点M,DE与BC交于点N.(1)如图1,若CE?CF,求证:DE?DF;(2)如图2,在?EDF绕点D旋转的过程中:①探究三条线段AB,CE,CF之间的数量关系,并说明理由;②若CE?4,CF?2,求DN的长.25.(本小题满分13分)如图,矩形OABC的两边在坐标轴上,点A的坐标为?10,0?,抛物线y?ax2?bx?4过B,C两点,且与x轴的一个交点为D??2,0?,点P是线段CB上的动点,设CP?t?0?t?10?.(1)请直接写出B,C两点的坐标及抛物线的解析式;(2)过点P作PE?BC,交抛物线于点E,连接BE,当t为何值时,?PBE??OCD?(3)点Q是x轴上的动点,过点P作PM//BQ,交CQ于点M,作PN//CQ,交BQ 于点N.当四边形PMQN为正方形时,请求出t的值.5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖北省武汉市2021年中考数学试卷一、单选题1.(2019·朝阳)3的相反数是( )A. 3B. -3C. 13 D. −13 2.(2021·武汉)下列事件中是必然事件的是( ) A. 抛掷一枚质地均匀的硬币,正面朝上 B. 随意翻到一本书的某页,这一页的页码是偶数 C. 打开电视机,正在播放广告D. 从两个班级中任选三名学生,至少有两名学生来自同一个班级3.(2021·武汉)下列图形都是由一个圆和两个相等的半圆组合而成的,其中既是轴对称图形又是中心对称图形的是( ) A.B.C.D.4.(2021·武汉)计算 (−a 2)3 的结果是( )A. −a 6B. a 6C. −a 5D. a 55.(2021·武汉)如图是由4个相同的小正方体组成的几何体,它的主视图是( )A. B. C. D.6.(2021·武汉)学校招募运动会广播员,从两名男生和两名女生共四名候选人中随机选取两人,则两人恰好是一男一女的概率是( )A. 13 B. 12 C. 23 D. 347.(2021·武汉)我国古代数学名著《九章算术》中记载:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?”意思是现有几个人共买一件物品,每人出8钱.多出3钱;每人出7钱,差4钱.问人数,物价各是多少?若设共有 x 人,物价是 y 钱,则下列方程正确的是( ) A. 8(x −3)=7(x +4) B. 8x +3=7x −4 C.y−38=y+47D.y+38=y−478.(2021·武汉)一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返同,且往返速度的大小不变,两车离甲地的距离 y (单位: km )与慢车行驶时间 t (单位: h )的函数关系如图,则两车先后两次相遇的间隔时间是( )A. 53h B. 32h C. 75h D. 43h 9.(2021·武汉)如图, AB 是 ⊙O 的直径, BC 是 ⊙O 的弦,先将 BC ⌢ 沿 BC 翻折交 AB 于点 D .再将 BD⌢ 沿 AB 翻折交 BC 于点 E .若 BE ⌢=DE ⌢ ,设 ∠ABC =α ,则 α 所在的范围是( )A. 21.9°<α<22.3°B. 22.3°<α<22.7°C. 22.7°<α<23.1°D. 23.1°<α<23.5°10.(2021·武汉)已知 a , b 是方程 x 2−3x −5=0 的两根,则代数式 2a 3−6a 2+b 2+7b +1 的值是( )A. -25B. -24C. 35D. 36二、填空题11.(2018八下·兴义期中)计算 √(−5)2 的结果是________12.(2021·武汉)我国是一个人口资源大国,第七次全国人口普查结果显示,北京等五大城市的常住人口数如下表,这组数据的中位数是________.13.(2021·武汉)已知点 A(a,y 1) , B(a +1,y 2) 在反比例函数 y =m 2+1x( m 是常数)的图象上,且y 1<y 2 ,则 a 的取值范围是________.14.(2021·武汉)如图,海中有一个小岛 A ,一艘轮船由西向东航行,在 B 点测得小岛 A 在北偏东 60° 方向上;航行 12n mile 到达 C 点,这时测得小岛 A 在北偏东 30° 方向上.小岛 A 到航线 BC 的距离是________ n mile ( √3≈1.73 ,结果用四舍五入法精确到0.1).15.(2021·武汉)已知抛物线 y =ax 2+bx +c ( a , b , c 是常数), a +b +c =0 ,下列四个结论:①若抛物线经过点 (−3,0) ,则 b =2a ;②若b=c,则方程cx2+bx+a=0一定有根x=−2;③抛物线与x轴一定有两个不同的公共点;④点A(x1,y1),B(x2,y2)在抛物线上,若0<a<c,则当x1<x2<1时,y1>y2.其中正确的是________(填写序号).16.(2021·武汉)如图(1),在△ABC中,AB=AC,∠BAC=90°,边AB上的点D从顶点A 出发,向顶点B运动,同时,边BC上的点E从顶点B出发,向顶点C运动,D,E两点运动速度的大小相等,设x=AD,y=AE+CD,y关于x的函数图象如图(2),图象过点(0,2),则图象最低点的横坐标是________.三、解答题17.(2021·武汉)解不等式组{2x≥x−1 ①4x+10>x+1 ②请按下列步骤完成解答.(1)解不等式①,得________;(2)解不等式②,得________;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集是________.18.(2021·武汉)如图,AB//CD,∠B=∠D,直线EF与AD,BC的延长线分别交于点E,F.求证:∠DEF=∠F.19.(2021·武汉)为了解落实国家《关于全面加强新时代大中小学劳动教育的意见》的实施情况,某校从全体学生中随机抽取部分学生,调查他们平均每周劳动时间t(单位:h),按劳动时间分为四组:A 组“ t<5”,B组“ 5≤t<7”,C组“ 7≤t<9”,D组“ t≥9”.将收集的数据整理后,绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次抽样调查的样本容量是________,C组所在扇形的圆心角的大小是________;(2)将条形统计图补充完整;(3)该校共有1500名学生,请你估计该校平均每周劳动时间不少于7h的学生人数.20.(2021·武汉)如图是由小正方形组成的5×7网格,每个小正方形的顶点叫做格点,矩形ABCD的四个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,先在边AB上画点E,使AE=2BE,再过点E画直线EF,使EF平分矩形ABCD的面积;(2)在图(2)中,先画△BCD的高CG,再在边AB上画点H,使BH=DH.⌢的中点,过点C作AD 21.(2021·武汉)如图,AB是⊙O的直径,CD是⊙O上两点,C是BD的垂线,垂足是E.连接AC交BD于点F.(1)求证:CE是⊙O的切线;=√6,求cos∠ABD的值.(2)若DCDF22.(2021·武汉)在“乡村振兴”行动中,某村办企业以A,B两种农作物为原料开发了一种有机产品,A原料的单价是B原料单价的1.5倍,若用900元收购A原料会比用900元收购B原料少100kg.生产该产品每盒需要A原料2kg和B原料4kg,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒.(1)求每盒产品的成本(成本=原料费+其他成本);(2)设每盒产品的售价是x元(x是整数),每天的利润是w元,求w关于x的函数解析式(不需要写出自变量的取值范围);(3)若每盒产品的售价不超过a元(a是大于60的常数,且是整数),直接写出每天的最大利润. 23.(2021·武汉)问题提出如图(1),在△ABC和△DEC中,∠ACB=∠DCE=90°,BC=AC,EC=DC,点E在△ABC内部,直线AD与BE交于点F,线段AF,BF,CF之间存在怎样的数量关系?(1)问题探究:先将问题特殊化.如图(2),当点D,F重合时,直接写出一个等式,表示AF,BF,CF之间的数量关系;(2)再探究一般情形.如图(1),当点D,F不重合时,证明(1)中的结论仍然成立.(3)问题拓展如图(3),在△ABC和△DEC中,∠ACB=∠DCE=90°,BC=kAC,EC= kDC(k是常数),点E在△ABC内部,直线AD与BE交于点F,直接写出一个等式,表示线段AF,BF,CF之间的数量关系.24.(2021·武汉)抛物线y=x2−1交x轴于A,B两点(A在B的左边).(1)▱ACDE的顶点C在y轴的正半轴上,顶点E在y轴右侧的抛物线上.①如图(1),若点C的坐标是(0,3),点E的横坐标是3,直接写出点A,D的坐标;2②如图(2),若点D在抛物线上,且▱ACDE的面积是12,求点E的坐标;(2)如图(3),F是原点O关于抛物线顶点的对称点,不平行y轴的直线l分别交线段AF,BF (不含端点)于G,H两点,若直线l与抛物线只有一个公共点,求证FG+FH的值是定值.答案解析部分一、单选题1.【答案】B【考点】相反数及有理数的相反数【解析】【解答】解:根据相反数的定义知:3的相反数是-3,故答案为:B.【分析】只有符号不同的两个数叫作互为相反数,根据定义即可直接得出答案.2.【答案】D【考点】随机事件【解析】【解答】解:A、掷一枚质地均匀的硬币,正面向上是随机事件;B、随意翻到一本书的某页,这一页的页码是偶数,是随机事件;C、打开电视机,正在播放广告,是随机事件;D、从两个班级中任选三名学生,至少有两名学生来自同一个班级,是必然事件.故答案为:D.【分析】必然事件是指一定会发生或一定不会发生的事件。

随机事件是指可能发生也可能不发生的事件.根据定义并结合各选项即可判断求解.3.【答案】A【考点】轴对称图形,中心对称及中心对称图形【解析】【解答】解:A选项中的图形既是轴对称图形又是中心对称图形,故该选项正确;B选项中的图形是中心对称图形,不是轴对称图形,故该选项不正确;C选项中的图形是中心对称图形,不是轴对称图形,故该选项不正确;D选项中的图形是轴对称图形,不是中心对称图形,故该选项不正确;故答案为:A.【分析】在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形;根据定义并结合图形即可判断求解.4.【答案】A【考点】幂的乘方【解析】【解答】解:(−a2)3=(−1)3·(a2)3=−a6.故答案为:A.【分析】根据幂的乘方法则“幂的乘方,底数不变,指数相乘”可求解.5.【答案】C【考点】简单组合体的三视图【解析】【解答】∵的主视图是,故答案为:C.【分析】主视图是从物体正面看所得到的图形,其中看得到的棱长用实线表示,看不到的棱长用虚线的表示,结合已知的几何体可求解.6.【答案】C【考点】列表法与树状图法【解析】【解答】解:画树状图如图:共有12种等可能的结果,恰好选出是一男一女两位选手的结果有8种,俗好选出是一男一女两位选手的概率为812=23.故答案为:C.【分析】由题意画出树状图,由树状图的信息可知共有12种等可能的结果,恰好选出是一男一女两位选手的结果有8种,然后根据概率公式可求解.7.【答案】D【考点】一元一次方程的实际应用-古代数学问题【解析】【解答】解:设共有x人,则有8x-3=7x+4设物价是y钱,则根据可得:y+3 8=y−47故答案为:D.【分析】若设共有x人,根据物价不变可列方程,即8x-3=7x+4;若设物价是y钱,根据人数不变可列方程.8.【答案】B【考点】一次函数的实际应用【解析】【解答】解:设慢车离甲地的距离y(单位:km)与慢车行驶时间t(单位:h)的函数关系为y=kt过(6,a),代入得a=6k,解得k=a6,∴慢车解析式为:y=a6x,设快车从甲地到乙地的解析式y=k1x+b1,过(2,0),(4,a)两点,代入解析式的{2k1+b1=04k1+b1=a,解得 {k 1=a2b 1=−a, 快车从甲地到乙地的解析式 y =a2x −a , 设快车从乙地到甲地的解析式 y =k 2x +b 2 ,过(4, a ),(6,0)两点,代入解析式的 {6k 2+b 2=04k 2+b 2=a , 解得 {k 2=−a2b 2=3a, 快车从乙地到甲地的解析式 y =−a2x +3a , 快车从甲地到乙地与慢车相遇 {y =a6xy =a2x −a, 解得 {x =3y =a 2,快车从乙地到甲地与慢车相遇 {y =a6xy =−a2x +3a, 解得 {x =92y =3a 4,两车先后两次相遇的间隔时间是 92 -3= 32 h. 故答案为:B.【分析】设慢车离甲地的距离y (单位: km )与慢车行驶时间(单位: h )的函数关系为y=kt 过(6, a ),代入解析式可将k 用含a 的代数式表示,由题意用的待定系数法可求得快车从甲地到乙地的解析式;同理可求得快车从乙地到甲地的解析式;分别把慢车解析式和快车从甲地到乙地的解析式、慢车解析式和快车从乙地到甲地的解析式联立解方程组可求解. 9.【答案】 B【考点】圆心角、弧、弦的关系,翻折变换(折叠问题)【解析】【解答】解:将⊙O 沿BC 翻折得到⊙O′,将⊙O′沿BD 翻折得到⊙O″,则⊙O 、⊙O′、⊙O″为等圆.∵⊙O 与⊙O′为等圆,劣弧AC 与劣弧CD 所对的角均为∠ABC , ∴ AC⌢=CD ⌢ . 同理: DE⌢=CD ⌢ .又∵F是劣弧BD的中点,∴DE⌢=BE⌢.∴AC⌢=DC⌢=DE⌢=EB⌢.∴弧AC的度数=180°÷4=45°.∴∠B= 1×45°=22.5°.2∴α所在的范围是22.3°<α<22.7°;故答案为:B.【分析】如图,连接AC,CD,DE.证明∠CAB=3α,利用三角形内角和定理求出α即可求解.10.【答案】D【考点】一元二次方程的根,一元二次方程的根与系数的关系【解析】【解答】解:∵已知a,b是方程x2−3x−5=0的两根∴a2−3a−5=0,b2−3b=5,a+b=3∴2a3−6a2+b2+7b+1=2a(a2−3a−5)+(b2−3b)+10(a+b)+1=0+5+30+1=36.故答案为:D.【分析】由一元二次方程的根的定义和根与系数的关系可得:a2-3a-5=0,b2-3b-5=0,a+b=3,然后用整体的代换计算即可求解.二、填空题11.【答案】5【考点】二次根式的性质与化简【解析】【解答】解:原式=|-5|=5故答案为:5【分析】根据二次根式的性质,一个数的平方的算术平方根,等于这个数的绝对值,即可得出答案。

相关文档
最新文档