电工电子第8章 集成运算放大器
第电工电子技术(第二版)八章
上一页 下一页 返回
8. 2 放大电路中的负反馈
出现又在交流通路中出现,则是既有直流反馈又有交流反馈。 3.反馈电路的类型 根据反馈信号在输出端的取样和在输入端的连接方式,放大电路可 以组成四种不同类型的负反馈:电压串联负反馈、电压并联负反馈、 电流串联负反馈和电流并联负反馈。判断方法如下: (1)电压反馈和电流反馈 判断是电压反馈还是电流反馈是按照反馈信号在放大器输出端的取 样方式来分类的。若反馈信号取自输出电压,即反馈信号与输出电压 成比例,称为电压反馈;若反馈信号取自输出电流,即反馈信号与输 出电流成比例,称为电流反馈。常采用负载电阻 短路法进行判断,
第8章 集成运算放大器及其应用
本章知识点 先导案例 8. 1 集成运算放大器简介 8. 2 放大电路中的负反馈 8. 3 集成运算放大器的应用 8. 4 用集成运放构成振荡电路 8. 5 使用运算放大器应注意的几个问题
本章知识点
[1]了解集成运放的基本组成及主要参数的意义。 [2]理解运算放大器的电压传输特性,掌握其基本分析方法。 [3]掌握用集成运放组成的比例、加减、微分和积分运算电路的工作 原 理。 [4]理解电压比较器的工作原理和应用。 [5]能判别电子电路中的直流反馈和交流反馈、正反馈和负反馈以及 负 反馈的四种类型。 [6]理解负反馈对放大电路工作性能的影响。 [7]掌握正弦波振荡电路自激振荡的条件。 [8]了解RC振荡电路的工作原理。
上一页 下一页 返回
8. 2 放大电路中的负反馈
图8-9 (b):假定输入信号对地瞬时极性为
,则各点电压变化过程为 净输入量增强,则该电路
齐鲁工业大学电工电子技术与技能教案电工电子8教案(1)
电工电子技术与技能教案(8-1)【课题编号】03-08-01【课题名称】基本放大电路【教学目标】应知:1.理解基本共射放大电路、分压式偏置放大电路结构、主要元件的作用及放大过程;2.掌握静态工作点的含义、设置方法及动态性能指标的简单计算;3.了解射极输出器的特点;4.了解多级放大电路的三种级间耦合方式及特点。
应会:1.能识读基本共射放大电路、分压式偏置放大电路图;2.会设置静态工作点,会动态性能指标的简单计算。
【教学重点】认识基本放大电路、分压式偏置放大电路【难点分析】共射放大电路的工作过程的理解;【学情分析】放大器的工作过程比较复杂,单从理论上讲解学生很难理解和掌握。
利用“做中教”,让学生形象感知静态工作点的意义、调整方法及放大现象;利用多媒体演示让学生在基本放大电路的基础上认识分压式偏置放大电路,更便于学生接受。
【教学方法】讲授法、演示法、仿真实验法【教具资源】仿真软件、多媒体课件【课时安排】2学时(90分钟)【教学过程】一、导入新课联系收音机等家用电器中的放大现象,引出本课内容,激发学生对放大器的学习兴趣。
二、讲授新课教学环节1:基本放大电路(一)基本放大电路结构教师活动:展示基本放大电路,介绍电路中各元件的作用。
学生活动:观察放大电路的组成,掌握基本放大电路结构。
(二)基本放大电路静态教师活动:给出静态及静态工作点的概念。
【多媒体演示】直流通路及静态工作点学生活动:通过多媒体演示效果,理解直流通路、静态工作点的概念及表示方法。
教师活动:“做中教”利用仿真软件演示基本共射放大电路测试电路。
学生活动:观察仿真实验电路及结果,进一步领会静态工作点的概念,感知若静态工作点设置不合适对放大电路的影响,及如何调整静态工作点以使放大电路输出的波形不失真,总结根据放大电路失真现象调试放大电路的方法。
教师总结:(1)实际应用中,需将放大电路的静态工作点调整到所要求的数值上,使之满足产品的设计要求。
(2)放大电路的静态工作点设置不合适,将导致输出波形失真。
电工电子技术基础知识点详解8-1--思政引例
第8章集成运算放大器思政引例博观而约取,厚积而簿发。
——苏轼世界上第一台电子计算机的体积非常庞大,占据了167m2的大厅。
如今的手提式计算机可以用手提,手掌式计算机可以放在手心里。
最初的计算机与当今的计算机体积之所以相差如此之大,是因为当今有了集成电路。
目前大多数电子仪器设备都离不开集成电路,如由AD590组成的测溫电路,温度信号转换成电流信号,电流信号再经过转换、运算、放大并以电压形式输出,用电压表来对应显示温度。
在这里,集成运算放大器起了重要的作用,实际上已经成为模拟电子电路中最重要的元器件之一。
前面介绍电路都是由单个元器件构成,就是常说的分立电路,而现在实际应用中大多采用是集成电路,所谓集成电路就是把整个电路中元器件和连线同时制作在一块半导体芯片上构成具有特定功能的电子电路。
1958年,在美国德州仪器公司工作的Jack Killby发明了世界上第一个集成电路。
集成电路出现和应用,标志着电子技术发展到一个新的阶段,它实现材料、元器件、电路三者之间的统一。
与分立元件构成电路相比较,集成电路具有体积小、质量轻、功耗低、可靠性高等优点。
随着集成电路制造工艺的进步,集成度越来越高,有小规模(SSI)、中规模(MSI)、大规模(LSI)和超大规模(VLSI)之分。
目前的超大规模集成电路可以把上亿个元器件集成在一块小于指甲面积的硅片上。
集成电路分类方式有很多,如果按导电类型分,有双极型、单极型和二者兼容的3种类型。
按功能分,有数字集成电路、模型集成电路以及二者混合型。
模拟集成电路中主要包含集成运算放大器、集成功率放大器、集成稳压电源和集成AD/DA转换器等多种。
其中集成运算放大器简称集成运放,是集成电路中应用极为广泛的一种。
由于这种放大器早期在模拟计算机中实现数学运算,故名运算放大器。
现在它的应用已远远超出模拟计算的范畴,在信号处理、测量及波形转换、自动控制等领域都得到十分广泛的应用。
首先介绍集成运放的组成、电压传输特性和理想集成运放的工作情况。
电工电子学_集成运算放大器
24
9.3 集成运放在信号运算方面的应用
由于开环电压放大倍数Auo很高,集成运放开环工作时线性区很 窄。因此,为了保证运放处于线性工作区,通常都要引入深度负反馈。 集成运放引入适当的负反馈,可以使输出和输入之间满足某种特定的 函数关系,实现特定的模拟运算。当反馈电路为线性电路时,可以实 现比例、加法、减法、积分、微分等运算。
图9.2.1 反馈放大电路框图
电路中的反馈是指将电路的输出信号(电压或电流)的一部分或全部 通过一定的电路(反馈电路)送回到输入回路,与输入信号一同控制 电路的输出。可用图9.2.1所示的方框图来表示。
16
2. 反馈的分类
(1)正反馈和负反馈 根据反馈极性的不同,可以分为正反馈和负反馈。 (2)直流反馈和交流反馈 根据反馈信号的交直流性质,可以将反馈分为直流反馈和交流反馈。 (3)电压反馈和电流反馈 根据输出端反馈采样信息的不同,可以将反馈分为电压反馈和电流反 馈。 (4)串联反馈和并联反馈 根据反馈信号与输入信号在放大电路输入端联结方式的不同,可以将 反馈分为串联反馈和并联反馈。
9
3. 输入和输出方式
差放电路有双端输入和单端输入两种输入方式。同样也有双端 输出和单端输出两种输出方式。因此,差动放大电路共有四种输入输 出方式。 (1)双端输入双端输出 (2)双端输入单端输出 (3)单端输入双端输出 (4)单端输入单端输出
10
4. 共模抑制比
差动放大电路对差模信号和共模信号都有放大作用,但对差动 放大电路来说,差模信号是有用信号,共模信号则是需要抑制的。因 此要求差放电路的差模放大倍数尽可能大,而共模放大倍数尽可能小。 为了衡量差放电路放大差模信号和抑制共模干扰的能力,引入共模抑 制比作为技术指标,用KCMR表示。其定义为差模电压放大倍数与共 模电压放大倍数之比,即 A (9.1.11) K ud
电工电子学:集成运算放大器单元测试与答案
一、单选题1、对于理想运算放大器,不管它的工作状态如何,总是()。
A.同相输入端与反相输入端的电压相等B.开环差模电压放大倍数为无穷大C.输出电阻为无穷大D.两输入端的电流相等,但不为零正确答案:B2、以下对“负反馈对放大电路性能的影响”的描述中错误的是()。
A.减小非线性失真B.扩展通频带C.提高放大倍数的稳定性D.提高放大倍数值正确答案:D3、一个由理想运算放大器组成的同相输入比例运算电路,其输入输出电阻是()。
A.输入电阻低,输出电阻高B.输入、输出电阻均很高C.输入电阻高,输出电阻低D.输入、输出电阻均很低正确答案:C4、在由集成运放构成的反相输入比例运算电路中,比例系数为10,集成运放加±15V电源,输入电压为-1.8V,则输出电压最接近于()。
A.18VB.13.5VC.30VD.10V正确答案:B5、集成运放工作在线性区时,总近似有()。
A.输入电阻为零B.反相输入端与同相输入端等电位C.输出电压接近与电源电压D.输出电阻为无穷大正确答案:B6、下图电路中,R1=R2=100kΩ, C=0.01μF,集成运算放大器加±15V电源。
输入为正负对称、峰-峰值6V、频率200Hz的方波电压,则输出波形是()。
A.方波B.三角波C.正负尖脉冲D.梯形波正确答案:B7、如图中电路,R=Rb=10kΩ,C=0.1μF,ui=3sin1000t V,则uo=( )。
A.3sin(1000t+90°) VB. 3sin1000t VC.3sin(1000t-90°) VD.-3sin1000t V正确答案:C8、差分放大电路中所谓共模信号是指两个输入信号电压( )A.大小不等、极性相反B.大小不等、极性相同C.大小相等、极性相同D.大小相等、极性相反正确答案:C9、如图所示运放电路中,Uo与Ui的关系是( ) 。
A. Uo=-αUi/2B.Uo=UiC.Uo=-(1+α)UiD.Uo=(2+α)Ui正确答案:A10、如图所示的滞回比较器,UOm=±15V,R1=10kΩ,Rf=20kΩ,则其正向阈值URH=( )。
集成运算放大电路
iL
uI R1
(2) 悬浮负载电压—电流变换器 悬浮负载电压—电流变换器电路如图27所示。
(a)反相电压—电流变换器
(b)同相电压—电流变换器
图27 悬浮负载的电压—电流变换器
图27(a)是一个反相电压—电流变换器,它是一个电流并联负反馈电 路,它的组成与反相放大器很相似,所不同的是现在的反馈元件(负载) 可能是一个继电器线圈或内阻为RL的电流计。流过悬浮负载的电流为
(a)基本电路
图28 电流—电压变换器
(b)典型电路
图28(a)是一个基本的电流—电压变换器,根据集成运放的“虚断”和 “虚地”概念,有 和 ,故
u 0
,从而有
i 0
i F 是一个经常用在光电转换电路中的典型电路。图中 iI 图28(b) V是光电二 极管,工作于反向偏置状态。
O F F I F 根据集成运放的“虚断”和“虚地”概念可得
u u 0 i i 0 iI iF
uO uI R1 RF RF uO uI R1
2. 同相比例运算电路 同相比例运算电路如图21所示。
图21同相运算电路 由虚短、虚断可得:
u u uI i i 0 i1 i F
RF u O (1 )u I R1
RF RX
4. 测量放大器 测量放大器电路如图33所示
图33 测量放大电路
由图33可知: (1) 热敏电阻 和R组成测量电桥。当电桥平衡时 信号,故输出 ,相当于共模
Rt ,若测量桥臂感受温度变化后,产生与 相应的微小
u S1 u S,这相当于差模信号,能进行有效地放大。 信号变化 uO 0 2
③ 不接基准电压,即 称为过零比较器。
电工电子技术第八章集成运算放大电路
8.1 集成运算放大器的简单介绍
• 运算放大器开环放大倍数大,并且具有深 度反馈,是一种高级的直接耦合放大电路。 它通常是作为独立单元存在电路中的。最 初是应用在模拟电子计算机上,可以独立 地完成加减、积分和微分等数学运算。早 期的运算放大器由电子管组成,自从20世 纪60年代初第一个集成运算放大器问世以 来,运算放大器才应用在模拟计算机的范 畴外,如在偏导运算、信号处理、信号测 量及波形产生等方面都获得了广泛的应用。
• 4.在集成电路中,比较合适的电阻阻值范 围大约为100 ~300 Ω。制作高阻值的电阻 成本高、占用面积大并且阻值偏差也较大 (10~20%)。因此,在集成运算放大器中 往往用晶体管恒流源代替高电阻,必须用 直流高阻值时,也常采用外接的方式。
8.1.2 集成运算放大器的简单说明
• 集成运算放大器的的电路常可分为输入级、 中间级、输出级和偏置电路四个基本组成 部分,如图8-1所示。
• 2.信号的输入 • 当有信号输入时,差动放大电路(见图8-5)的工作情况可以分为以下几种情
况。
• (1)共模输入。 • 若两管的基极加上一对大小相等、极性相同的共模信号(即vi1 = vi2),这种
输入方式称为共模输入。这将引起两管的基极电流沿着相同的方向发生变化, 集电极电流也沿相同方向变化,所以集电极电压变化的方向与大小也相同, 因此,输出电压vo = ΔvC1-ΔvC2 = 0,可见差动放大电路能够抑制共模信号。 而上述差动放大电路抑制零点漂移则是该电路抑制共模信号的一个特例。因 为输出的零点漂移电压折合到输入端,就相当于一对共模信号。
u
u
u0 Au 0
0
u+≈u-
(8-2)
• 当反向输入端有信号,而同向端接地时,u+=0,由上式 可见,u-≈u+=0。此时反向输入端的电位近似等于地电位, 因此,它是一个不接地的“地”电位端,通常称为虚地端。
电工电子技术_负反馈与集成运算放大器
单元八 负反馈与集成运算放大器
二、 差动放大器
(一)直接耦合方式
经实验研究发现,放大缓慢变化的信号或直流信号的 直接耦合放大电路,前一级的集电极输出端与后一级的基 极输入端直接相连。当输入信号为零时,输出信号电压并 不为零,而且这个不为零的电压会随时间做缓慢的、无规 则的、持续的变动,这种现象称为零点漂移,简称零漂。
比较器是运算放大器非线性应用的最基本 电路,用于对输入信号电压ui与参考电压UR进行 比较和鉴别。
单元八 负反馈与集成运算放大器
比较器电路
单元八 负反馈与集成运算放大器
比较器的传输特性
过零比较器的波形变换作用
基本运放的电压传输特性
单元八 负反馈与集成运算放大器
2.理想运放的两个重要结论
(1)虚短
(2)虚断
单元八 负反馈与集成运算放大器
四、 集成运放的基本应用电路
(一)反相输入比例运算电路
反相输入比例运算电路
单元八 负反馈与集成运算放大器
(二)同相输入比例运算电路
同相输入比例运算电路
单元八 负反馈与集成运算放大器
单元八 负反馈与集成运算放大器
课程导入
•电子设备中的放大电路,通常要求其放大倍数稳定,输入输 出电阻、通频带、传输信号精度等要满足实际使用的要求。 为了改善放大电路的性能,需要在放大电路中引入负反馈。 集成运算放大器(简称运放)是一种具有很高放大倍数的多 级直接耦合放大电路,运算放大电路与外部电阻、电容等构 成具有反馈环节的闭环电路后,能对各种模拟信号进行线性 和非线性运算。
差动放大电路对零漂的抑制
单元八 负反馈与集成运算放大器
(三)差动放大器的输入/输出方式
1.双端输入-双端输出 2.双端输入-单端输出 3.单端输入-双端输出 4.单端输入-单端输出
电工电子检测题习题解析
第1章检测题一、填空题:1、电源和负载的本质区别是:电源是把其它形式的能量转换成电能的设备,负载是把电能转换成其它形式能量的设备。
2、元件上电压和电流关系成正比变化的电路称为线性电路。
此类电路中各支路上的电压和电流均具有叠加性,但电路中的功率不具有叠加性。
3、电流沿电压降低的方向取向称为关联方向,这种方向下计算的功率为正值时,说明元件吸收电能;电流沿电压升高的方向取向称为非关联方向,这种方向下计算的功率为正值时,说明元件供出电能。
4、电压是产生电流的根本原因。
电路中任意两点之间电位的差值等于这两点间电压。
电路中某点到参考点间的电压称为该点的电位,电位具有相对性。
5、线性电阻元件上的电压、电流关系,任意瞬间都受欧姆定律的约束;电路中各支路电流任意时刻均遵循KCL定律;回路上各电压之间的关系则受KVL定律的约束。
这三大定律是电路分析中应牢固掌握的三大基本规律。
二、选择题:1、有“220V、100W”“220V、25W”白炽灯两盏,串联后接入220V交流电源,其亮度情况是(B)A、100W灯泡最亮;B、25W灯泡最亮;C、两只灯泡一样亮。
2、已知电路中A点的对地电位是65V,B点的对地电位是35V,则U BA=(B)A、100V;B、-30V;C、30V。
3、图1-31中安培表内阻极低,伏特表电压极高,电池内阻不计,如果伏特表被短接,则(C)A、灯D将被烧毁;B、灯D特别亮;C、安培表被烧。
4、图1-31中如果安培表被短接,则(C)A、电灯不亮;B、电灯将被烧;C、不发生任何事故。
5、如果图1-31电路中电灯灯丝被烧断,则(B)A、安培表读数不变,伏特表读数为零;B、伏特表读数不变,安培表读数为零;C、安培表和伏特表的读数都不变。
6、如果图1-31电路中伏特表内部线圈烧断,则(D)A、安培表烧毁;B、电灯不亮;C、电灯特别亮;D、以上情况都不发生。
三、计算题:1、在图1-32所示电路中,已知电流I=10mA,I1=6mA,R1=3KΩ,R2=1KΩ,R3=2KΩ。
集成运算放大器(压控电流源)运用电路及详细解析
8.2 模拟运算电路
8.2.1 比例运算电路
1、反相输入比例运算电路
根据运放工作在线性区的两条
分析依据可知:i1 if , u u 0
而
i1
ui u R1
ui R1
if
u uo RF
uo RF
u1 u1 ui1
u2 u2 ui2
u i1
ui2
u1
u2
R1
R1 2R2
(u o1
uo2 )
故:
u o1
u o2
1
2R2 R1
(ui1
ui2 )
第二级是由运放 A3 构成的差动放大电路,其输出电压为:
uo
R4 R3
(uo2
xi
+
xd 基本放大电路A
xo
- xf
反馈网络F
负反馈放大电路的原理框图
xd xi x f xo Axd x f Fxo
若xi、xf和xd三者同相,则xd> xi ,即反馈信号起了削弱净 输入信号的作用,引入的是负反馈。
反馈放大电路的放大倍数为:
Af
xo xi
xo xd x f
R3
Δ
∞
- +
+
uo
u o u i2 u i1
由此可见,输出电压与两个输入电压 之 差成正比,实现了减法运算。该电路又称 为 差动输入运算电路或差动放大电路。
例:求图示电路中uo与ui1、ui2的关系。
R
《电工电子技术5-9章》课后习题和补充练习
第5章 半导体器件习题选解 P148-1505.2.1 如题5.2.1图所示电路中,试求下列几种情况下输出端Y 的电位V Y 及各元件中通过的电流:(1)V A =V B =0V ;(2)V A =+3V ,V B =0V ;(3)V A = V B = +3V ;二极管的正向压降可忽略不计。
解:(1)当V A =V B =0时,因二极管正向偏置,而使D A 、D B 处于导通状态,电流相等,电阻R 上的电流为:mA I I I DB DA R 07.39.312==+=,输出端V Y =0V 。
(2)当V A =3V,V B =0时,因二极管D B 正向偏置,而使其处于导通状态,即D B 导通,同时使D A 反向偏置,而使D A 截止,则流过D A 的电流为0;流过D B 和电阻R 上的电流相等,即:mA I I DB R 07.39.312===。
(3)当V A =V B =+3V 时,因二极管正向偏置,而使D A 、D B 处于导通状态,电流相等,电阻R 上的电流为:mA I I I DB DA R 3.29.3312=-=+=,输出端V Y = +3V 。
题5.2.1图5.2.3 题5.2.3图所示,E=5V ,,sin 10tV u i ω= 二极管的正向压降可忽略不计,试分别画出输出电压0u 的波形。
解:利用二极管的单向导电性,分析各个电路,所以它们的输出电压波形分别为:(a)、(b)对应的波形为(a );(c)、(d)对应的波形为(b )。
题5.2.3图5.3.1 现有两个稳压管D Z1、D Z2,稳定电压分别为4.5V 和9.5V ,正向电压均为0.5V ,试求如题5.3.1图所示各电路中的输出电压U 0。
解:(a )图:VU U U Z Z 145.95.4210=+=+=(b )图:V U 00= ,因为外加电压小于两个稳压管的稳压值。
(c )图:V U 15.05.00=+=, 两个稳压管的均正向导通。
第8章 集成运算放大器
第8章 集成运算放大器
8.1 集成运算放大器简介
两个输入端电位相等,好像短接在一起一样,但并非真的短路,所以称为虚短路, 简称“虚短”。 由理想运放电路可知
两个输入端之间输入电阻无穷大,好像断路一样,但并非真的断路,所以称为虚断 路,简称“虚断”。 当集成运放工作在非线性区时,由集成运放的电压传输特性可知
第8章 集成运算放大器
8.1 集成运算放大器简介
3. 集成运放的电路符号与外形
集成运放的图形符号如图8-2所示,是国际标准符号。三角形表示放大器,三角形 所指方向为信号传输方向,Ao为“∞”时表示开环增益极高。它有两个输入端和一 个输出端。同相输入端标“+”(或P),表示输出端信号与该端输入信号同相;反 相输入端“-”(或N),表示输出端信号与该端输入信号反相。输出端的“+”表示 输出电压为正。
2. 集成运放的电压传输特性 如图8-4所示为表示输出与输入电压关系的特性曲线,称为电压传输特性。
第8章 集成运算放大器
8.1 集成运算放大器简介
当集放输大成入倍运电数放压A工o很u作i在大在A,线、所性B之以区间线时时性,,区输集很入成窄电运。压放要与工使输作集出在成电线运压性放有区在关,较系在大AA的o=、u输uBoi 。入之由电外于压时集下处成于也运非能放工线电作性压区在。 线性区,必须在电路中引入深度负反馈。 集成运放工作在非线性区时,输出只有两种饱和状态±UoM。电压饱和值±UoM略 低于正负电源电压。
3. 理想运算放大器的条件
在分析集成运放的应用电路时,为了简化电路分析,常将集成运放理想化。理想化 的条件是:
第8章 集成运算放大器
8.1 集成运算放大器简介
《电工电子》教学课件03集成运算放大器构成的运算电路的设计
(一)输入级:一般是由BJT、JFET或MOSFET组成 的高性能差分放大电路,它必须对共模信号有很强的 抑制力,而且采用双端输入双端输出的形式。
(二)电压放大级: 提供高的电压增益,以保证运
放的运算精度。中间级的电路形式多为差分电路和带 有源负载的高增益放大器。
图 (b)为集成运算放大器的电压传输特性曲线。集 成运算放大器的电压传输特性是指开环时,输出电 压与差模输入电压之间的关系。在线性区uo Aod (uP uN。) 由于Aod高达几十万倍,所以集成运放工作在线性 区时的最大输入电压Up-Un的数值仅为几十~一 百多μV。当其大于此值时,集成运放的输出不是, +Uom就是-Uom,即集成运放工作在非线性区。
(三)输出级:一般是由电压跟随器或互补电压跟随 器所组成,以降低输出电阻,提高带负载能力。
(四)偏置电路:提供稳定的几乎不随温度而变化的 偏置电流,以稳定工作点。
3.1.2 集成运算放大器的符号和电压传输特性
(a)
(b)
图 (a) 为运算放大器的符号。 运算放大器的符号中有 三个引线端,两个输入端,一个输出端。一个称为同相 输入端,即该端输入信号变化的极性与输出端相同,用 符号‘+’表示;另一个称为反相输入端,即该端输入信 号变化的极性与输出端相反,用符号“-”表示。输出端 在输入端的另一侧,在符号边框内标有‘+’号。大多数 型号的集成运放均为两组电源供电。
和电容元件位置互换,便得到图所示的微微分,即实现 了微分运算。
vO
iR R
iC R
RC
dvC dt
RC
dvi dt
3.2.4 微分电路的作用 微分电路的应用是很广泛的,在线性系统中,除
运算放大器
RF uo ui 1 R1 RF (1 uo ) u R1
R3 RF (1 ) ui 2 R1 R2 R3
+ ui1 + ui2 R2 – –
R1
– u+ + + R3
+ uo –
uo uo uo
R3 RF RF (1 ) ui 2 ui 1 R1 R2 R3 R1
电工电子教学部
例:电路如下图所示,已知 R1= 10 k ,RF = 50 k 。 求:1. Auf 、R2 ; 2. 若 R1不变,要求Auf为 – 10,则RF 、 R2 应为 多少? RF
R1 R2 – + + 解:1. Auf = – RF R1 = –50 10 = –5 uo – +
+ uo –
RF R1 Ri1 Ri2
电工电子教学部
–
+
+
+ uo –
RF Ri 2 Ri 1 uo (1 )( ui 1 ui 2 ) R1 Ri 1 Ri 2 Ri 1 Ri 2
2、减法运算电路 RF + ui1 + ui2 R2 – – R1
– + + R3
常用做测量 分析方法1: 放大电路 由虚断可得: + uo –
电工电子教学部
三、集成电路器件命名及主要性能指标
国标 GB-3430-82 对集成电路的规定
第一部分 字 母 符号国标 符 号 C 意 义 符 号 T H E C F D W J B 第二部分 字 母 器件类型 意 义 TTL HTL ECL CMOS 线性放大 音响电视 稳压器 接口电路 非线性 第三 部分 数字 品种 符 号 C E R M 第四部分 字 母 工作条件 意 义 0 ~ 70C -40 ~ 85C -55 ~ 85C -55 ~125C 符 号 W B F D P J K T 第五部分 字 母 封 装 意 义 陶瓷扁平 塑料扁平 全封闭扁平 陶瓷直插 塑料直插 黑陶瓷直插 金属菱形 金属圆形
电工学电子技术实验讲义.doc
实验一、集成运算放大器的基本应用一、实验目的1. 研究用集成运算放大器组成的比例求和电路的特点及性能。
2. 了解运算放大器在实际应用时应考虑的一些问题。
二、预习要求1. 复习集成运放线性应用部分内容,并根据实验电路参数计算各电路输出电压的理论值。
2. 在反相加法器中,如和均采用直流信号,并选定= -1 V ,当考虑到运算放大器的最大1i u 2i u 2i u 输出幅度(±12 V )时,则的大小不应超过多少伏?1i u 3. 为了不损坏集成块,实验中应注意什么问题?三、实验原理集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。
当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。
在线性应用方面,可组成比例、加法、减法、积分、微分和对数等模拟运算电路。
1.理想运算放大器特性在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化。
满足下列条件的运算放大器称为理想运放:开环电压增益 ;∞=Vd A 输入阻抗 ;∞=i R 输出阻抗 ;0=o R 带宽;∞=BW f 失调与漂移均为零等。
失调与漂移均为零等。
理想运放在线性应用时的两个重要特性:(1)输出电压与输入电压之间满足关系式o U)(-+-=U U A U Vd o 由于,而为有限值,因此,。
即,称为“虚短”。
∞=Vd A o U V U U 0≈--+-+≈U U (2)由于,故流进运放两个输入端的电流可视为零,即,称为“虚断”。
这∞=i R 0==-+i i 说明运放对其前级吸取电流极小。
上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。
在应用集成运算放大器时,需要知道它的几个引脚的用途。
图4-0所示的是µA470集成运算放大器的外形、引脚和符号图,它有双列直插式[ 图4-0(a )]和圆壳式两种封装。
这种运算放大器需要与外电路相接的是通过7个引脚引出的。
《电工电子技术》课程教学大纲
《电工电子技术》课程教学大纲一.课程基本信息开课单位:电子信息学院电子工程系电工电子教研室课程编号:03040089b英文名称:Electrotechnics and Electronics学时:总计48学时,其中理论授课48学时,实验(含上机)0学时学分:3.0学分面向对象:物流管理、应用物理学、生物工程等本科专业先修课程:高等数学、大学物理教材:《电路与电子技术》(电工学Ⅰ),朱伟兴主编,高等教育出版社,2008年六月第一版主要教学参考书目或资料:1.《电工学》(第六版)上册电工技术、《电工学》(第六版)下册电子技术,秦曾煌主编,高等教育出版社,2003年12月第六版2.《电工学(第六版)学习辅导与习题选解》,秦曾煌主编,高等教育出版社3.《电工学(第六版)习题全解(上下册)》,姜三勇主编,高等教育出版社二.教学目的和任务《电工电子技术》是面向高等工科学校非电类专业开设的一门技术基础课程。
目前,电工电子技术应用十分广泛,发展迅速,并且日益渗透到其他学科领域,促进其发展,在我国社会主义现代化建设中具有重要的作用。
本课程的教学目的和任务是:使学生通过本课程的学习,获得电工电子技术必要的基本理论、基本知识和基本技能,了解电工电子技术的应用和我国电工电子技术发展的概况,为今后学习后续课程以及从事与本专业有关的工程技术工作和科学研究工作打下一定的基础。
本课程理论严谨,系统性、逻辑性强,对培养学生的辨证思维能力,树立理论联系实际的科学观点和提高学生分析问题、解决问题的能力有着重要的作用,是培养复合型人才的重要组成部分。
三.教学目标与要求本门课程通过不同的教学方法和教学手段,使学生掌握电路理论、安全用电、模拟电子技术、数字电子技术、EDA技术等电工技术领域中的基本理论、基本知识;初步掌握一般电路和电子电路的分析方法;了解常用电子器件的作用和功能;了解电工电子技术领域中的新理论、新技术、新知识。
四.教学内容、学时分配及其基本要求第一章电路的基本概念与定律(5学时。
汽车电子电工技术-集成运算放大器
2. 反馈的判断
(1)有无反馈的判断
“找联系”:找输出回路与输入回路的联系, 若有则有反馈,否则无反馈。
无反馈
引入反馈 了吗?
将输出电压一 部分反馈回去
(2)反馈极性的判断
反馈极性的判别─ 瞬时极性法 (1) 设定输入信号的极性(或称瞬时极性)。 (2) 在这样的信号的作用下, 分析电路中各级输出电
(3)直流反馈和交流反馈
直流通路中存在的反馈称为直流反馈,交流通 路中存在的反馈称为交流反馈。
交流负反馈 直流负反馈
(4)局部反馈和级间反馈
只对多级放大电路中某一级起反馈作用的称为局部 反馈,将多级放大电路的输出量引回到其输入级的输 入回路的称为级间反馈。
通过R3引入的是局部反馈
通过R4引入的是级间反馈 通常,重点研究级间反馈或称总体反馈。
反馈电流
iF
uO RF
值电流) —负反馈。 取自输出电压—电压反馈
反馈信号与输入信号在输入端以电流的形式作比较
—并联反馈。
3. 串联电流负反馈
uI + uD
A
iO
+ uI –
u+–D
R2
– +
iO
+
RL
+ uO
(a) 电路
R
+ –uF
–
– uF F
(b) 方框图
设输入电压 uI 为正, 各电压的特实点际:方输向出如电图,
(3) 对串联反馈,输入信号和反馈信号的极性相同 时,是负反馈;极性相反时,是正反馈。
(4) 对并联反馈,净输入电流等于输入电流和反馈 电流之差时,是负反馈;否则是正反馈。
例1:试判别下图放大电路中从运算放大器 A2 输出 端引至A1输入端的是何种类型的反馈串电联路电。压负反馈
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
- +
解:电路由第一级的反相器和第二级的加法运算电路级联
而成。
u o1 u i 2 u o ( RF R1 u i1 RF R2 u o1 ) RF R2 ui2 RF R1 u i1
例:求图示电路中uo与ui的关系。
Δ
ui1
∞
A1 + R2 uo1 R4 R3 R3 +
+ -
Rf 0
∞
uo +
- ui +
或
R1
时 ,
uo ui
1。 当 , 即
电压跟随器
Δ
A uf 1 , 这 时 输 出 电 压 跟 随 输 入 电
压作相同的变化,称为电压跟随器。
8.2.2 加法和减法运算电路
1、加法运算电路
根据运放工作在线性区的两条分析依据可知:
i f i1 i 2
i1
u i1 R1
, i2
u i2 R2
, if
uo RF
ui1 ui2
R1 R2
i1 i2 Rp
if
Δ
RF ∞ + + uo
由此可得:
u o ( RF R1 u i1 RF R2 u i2 )
-
若
R1 R 2 R F
,则:
u o ( u i1 u i 2 )
RF u o 1 R1 u i
输出电压与输入电压的相位相同。
同反 相输 入 比例 运 算电 路 一样 , 为 了提 高差 动 电路 的 对称 性 ,平 衡 电 阻 R p R 1 // R F 。 闭环电压放大倍数为: uo RF A uf 1 ui R1 可见 同相 比 例运 算 电路 的 闭环 电 压 放大 倍 数 必定 大 于 或等 于
若 R3 ( 断 开 ) , 则 :
uo RF R1 u i1 RF u i 2 1 R1
RF ui1 ui2 R1 R2 + R3
∞
uo +
Δ
若 R1 R 2 , 且 R 3 R F , 则 :
uo RF R1 ( u i 2 u i1 )
偏置电路
通常由互补对 称电路构成, 目的是为了减 小输出电阻, 提高电路的带 负载能力。
集成运放的电路符号如图所示。它有两个输入端,标 “+”的输入端称为同相输入端,输入信号由此端输入
时,输出信号与输入信号相位相同;标“-”的输入
端称为反相输入端,输入信号由此端输入时,输出信 号与输入信号相位相反。
Δ
反相输入端 u- u+ 同相输入端
A uo +
- +
8.1.2 集成运算放大器的主要参数及种类
1、集成运放的主要参数
( 1) 差 模 开 环 电 压 放 大 倍 数 Ado。 指 集 成 运 放 本 身 ( 无 外 加 反 馈 回 路 ) 的 差 模 电 压 放 大 倍 数 , 即 A do
8.2 模拟运算电路
8.2.1 比例运算电路
1、反相输入比例运算电路
根据 运 放 工 作 在 线 性 区 的 两 条 分 析 依 据 可 知 : i1 i f , u u 0 而
i1 if ui u R1 u uo RF ui R1 uo RF RF R1 ui
uo RF R1 u i1
u i2 单 独 作 用 时 为 同 相 输 入 比 例 运 算 , 其 输 出 电压为:
R3 R 1 F uo u i2 R R R1 2 3
ui1 ui2 R1 R2 + R3
Δ
RF
∞
uo +
-
u i 1 和 ui 2 共 同 作 用 时 , 输 出 电 压 为 : R3 RF RF u o u o u o u i1 1 u i2 R R R1 R1 2 3
8.1.3 集成运算放大器的理想模型
集成运放的理想化参数: Ado=∞、 rid=∞、 ro=0 、KCMR=∞、等
uo UOM u- u+ - + + uo 0
Δ
∞
理想特性 实际特性 u+- u-
- UOM 理想运放符号 运放电压传输特性
非线性区分析依据:
非线性区(饱和区)
当ui>0,即u+>u-时,uo=+uOM
ui U 0 uo 0 t t
-UOM
2、微分运算电路
由 于 反 相 输 入 端 虚 地 , 且 i i , 由 图 可得:
当ui<0,即u+<u-时,uo=-uOM
集成运放的理想化参数: Ado=∞、 rid=∞、 ro=0 、KCMR=∞、等
uo UOM u- u+ - + + uo 0
Δ
∞
理想特性 实际特性 u+- u-
- UOM 理想运放符号 运放电压传输特性
线性区分析依据:
线性区(放大区)
(1)虚断。由rid=∞,得i + =i - =0,即理想运放两个输入端 的输入电流为零。 (2)虚短。由Ado=∞,得u+=u-,即理想运放两个输入端的 电位相等。若信号从反相输入端输入,而同相输入端接地,则 u-=u+=0,即反相输入端的电位为地电位,通常称为虚地。
∞
A3 + uo
-
Δ
R1
R2
- ui2 A2 + + uo2
Δ
∞
R4
解 : 电 路 由 两 级 放 大 电 路 组 成 。 第 一 级 由 运 放 A 1、A 2 组 成 , 它们都是同相输 入,输入电阻很 高,并且由于电 路结构对称, 可 抑制零点漂移。根据运放工作在线性区的两条分析依据可知:
u 1 u 1 u i1 u 2 u 2 u i2 u i1 u i 2 u 1 u 2 2R2 1 R1 R1 R1 2 R 2 ( u o1 u o2 )
2、集成运放的种类
( 1) 通 用 型 。 性 能 指 标 适 合 一 般 性 使 用 , 其 特 点 是 电 源电压适应 范围广, 允许有较大 的输入电 压等,如 等。 ( 2) 低 功 耗 型 。 静 态 功 耗 ≤ 2m W , 如 X F253 等 。 ( 3) 高 精 度 型 。 失 调 电 压 温 度 系 数 在 1μ V/ ℃ 左 右, 能保 证 组成 的 电路 对 微弱 信号 检 测的 准 确性 , 如 CF75、 CF7650 等 。 ( 4 ) 高 阻 型 。 输 入 电 阻 可 达 1 0 12 Ω , 如 F 5 5 系 列 等 。 还有宽 带型、 高压型 等等 。使用 时须查 阅集成 运放 手 册,详细了解它们的各种参数,作为使用和选择的依据。 CF741
∞
uo +
-
Δ
2、同相输入比例运算电路
根据运放工作在 线性区的两条分 析 依据可知:
i1 i f , u u ui
而
i1 if 0 u R1 u uo RF ui R1 ui uo RF
if R1 ui i1 Rp +
RF
∞
uo +
-
Δ
由此可得:
电压放大倍数为:
A uf uo u i1 u i 2 R4 2R2 1 R3 R1
8.2.3 积分和微分运算电路
1、积分运算电路
由 于 反 相 输 入 端 虚 地 , 且 i i , 由图可得:
iR iC
iR
ui R
, iC C
-
若
R1 R 2 R 3 R F
,则:
u o u i 2 u i1
由此可见,输出电压与两个输入电压 之 差成正比,实现了减法运算。该电路又称 为 差动输入运算电路或差动放大电路。
例:求图示电路中uo与ui1、ui2的关系。
R ui1
Δ
R1 R2
RF
Δ
ui2
R RP1
∞ ∞
uo + + + - uo1 Rp2
uo u u
。 它体 现了集 成运放 的电压 放大能 力, 一
般 在 1 0 4 ~ 1 07 之 间 。 A do 越 大 , 电 路 越 稳 定 , 运 算 精 度 也 越 高 。 ( 2 ) 共 模 开 环 电 压 放 大 倍 数 A co 。 指 集 成 运 放 本 身 的 共 模 电 压 放 大 倍 数 , 它 反 映 集 成 运 放 抗 温 漂 、 抗 共 模 干 扰 的 能 力 , 优 质 的 集 成 运 放 A co 应 接 近 于 零 。 ( 3) 共 模 抑 制 比 KCM R。 用 来 综 合 衡 量 集 成 运 放 的 放 大 能 力 和 抗 温 漂 、 抗 共 模 干 扰 的 能 力 , 一 般 应 大 于 8 0 d B。 ( 4 ) 差 模 输 入 电 阻 ri d 。 指 差 模 信 号 作 用 下 集 成 运 放 的 输 入 电 阻 。 ( 5 ) 输 入 失 调 电 压 U io 。 指 为 使 输 出 电 压 为 零 , 在 输 入 级 所 加 的 补 偿 电 压 值。它反映差动放大部分参数的不对称程度,显然越小越好,一般为毫伏级。 ( 6 ) 失 调 电 压 温 度 系 数 Δ U io / Δ T 。 是 指 温 度 变 化 Δ T 时 所 产 生 的 失 调 电 压 变 化 Δ U i o 的 大 小 , 它 直 接 影 响 集 成 运 放 的 精 确 度 , 一 般 为 几 十 μ V/ ℃ 。 ( 7) 转 换 速 率 SR。 衡 量 集 成 运 放 对 高 速 变 化 信 号 的 适 应 能 力 , 一 般 为 几 V / μ s, 若 输 入 信 号 变 化 速 率 大 于 此 值 , 输 出 波 形 会 严 重 失 真 。