white led

合集下载

LED种类及英文翻译

LED种类及英文翻译

LED种类及英文翻译LED是一种发光二极管(Light Emitting Diode)的简称,它是一种能够将电能转换为光能的固态发光装置。

由于其能耗低、寿命长、颜色鲜艳、体积小等优点,LED在照明、显示、通信等领域得到了广泛应用。

下面将介绍一些常见的LED种类及其英文翻译。

1. 蓝色LED(Blue LED)蓝色LED是一种利用镓化合物与氮化镓材料制成的发光二极管,其发射蓝光的波长通常在450纳米左右。

2. 绿色LED(Green LED)绿色LED是基于磷化镓材料制成的发光二极管,其发射绿光的波长通常在520纳米左右。

3. 红色LED(Red LED)红色LED是利用化合物半导体材料制成的发光二极管,其发射红光的波长通常在620-630纳米之间。

4. 黄色LED(Yellow LED)黄色LED是通过掺杂化合物半导体材料制成的发光二极管,其发射黄光的波长通常在580纳米左右。

5. 橙色LED(Orange LED)橙色LED是一种发射橙光的发光二极管,其波长介于红光和黄光之间。

6. 紫色LED(Purple LED)紫色LED是通过掺杂化合物半导体材料制成的发光二极管,其发射紫光的波长通常在380-420纳米之间。

7. 白色LED(White LED)白色LED是一种通过使用荧光材料或混合红、绿、蓝三种发光二极管的光源,以实现白光发射。

8. 红外线LED(Infrared LED)红外线LED是一种发射红外线光的发光二极管,其波长通常大于700纳米。

9. 紫外线LED(Ultraviolet LED)紫外线LED是一种发射紫外线光的发光二极管,其波长通常小于400纳米。

10.RGBLEDRGBLED是一种由红、绿、蓝三种颜色的发光二极管组合而成的,通过控制各个LED的开关,可以通过光的混合达到所需的颜色。

11. 定向LED(Directional LED)定向LED是一种能够将光束集中在特定方向的LED,例如高亮度发光二极管(High-brightness LED)和高功率发光二极管(High-power LED)。

XL6005开关电流升压型LED恒流驱动器说明书

XL6005开关电流升压型LED恒流驱动器说明书

180KHz 60V 4A 开关电流升压型LED恒流驱动器XL6005特点⏹ 3.6V到32V宽输入电压范围⏹0.22V输出电流采样电压⏹VIN>=12V,可驱动11串1W LED ⏹固定180KHz开关频率⏹最大4A开关电流⏹94%以上的转换效率⏹出色的线性与负载调整率⏹EN脚TTL关机功能与PWM调光功能⏹内置功率MOS⏹内置软启动功能⏹内置频率补偿功能⏹内置热关断功能⏹内置限流功能⏹TO252-5L封装应用⏹通用LED照明⏹升压恒流驱动⏹显示器LED背光⏹7至15寸LCD面板描述XL6005是一款升压恒流型LED驱动器,具有出色的线性调整率与负载调整率,可以驱动1W/3W/5W的LED灯。

XL6005内置固定频率振荡器与频率补偿电路,简化了电路设计。

当输入电压大于等于12V时,XL6005 可直接驱动11串1W LED。

PWM控制环路可以调节占空比从0~90%之间线性变化。

内置使能功能、过电流保护功能。

内部补偿模块可以减少外围元器件数量。

图1. XL6005封装180KHz 60V 4A 开关电流升压型LED 恒流驱动器 XL6005引脚配置FB SW EN GNDVIN 12345TO252-5L图2.XL6005引脚配置表1.引脚说明引脚号 引脚名称 描述1 GND 接地引脚。

2 EN 使能引脚,低电平关机,高电平工作,悬空时为高电平。

3 SW 功率开关输出引脚,SW 是输出功率的开关节点。

4 VIN 电源输入引脚,支持DC3.6V 到32V 范围电压输入,需要在 VIN 与GND 之间并联电解电容以消除噪声。

5FB反馈引脚,参考电压为0.22V 。

180KHz 60V 4A 开关电流升压型LED 恒流驱动器 XL6005方框图NDMOSVINSWGNDFB2.5V 0.22VCOMP2.5V Regulator 0.22V ReferencePhase CompensationRS LatchUVLOSoft StartThermal ShutdownEAEA ∑Driver OCPOVPENOscillator180KHzSlop Compensation图3.XL6005方框图典型应用XL6005CIN 47uF 25VD1 SS36L1 47uh/3A+12V41253GNDVINSWFBENON OFFI LED =0.22/RSRS 350mASeries 11 1W LEDCOUT 47uF 50VC1105C2105图4.XL6005系统参数测量电路180KHz 60V 4A开关电流升压型LED恒流驱动器XL6005 订购信息产品信号打印名称封装方式包装类型XL6005E1 XL6005E1 TO252-5L 2500只每卷XLSEMI无铅产品,产品型号带有“E1”后缀的符合RoHS标准。

解析LED白光照明灯具中的色散问题

解析LED白光照明灯具中的色散问题

图3 Fig. 3
荧光粉法产生白光的原理图
Principle producing white light using phosphor powder
图2 Fig. 2
LED 白光灯具色差现象
Color difference of white LED lights
引起白光光色不均匀的原因有很多, 上述提到 的四个基本要素中, 任何一项的不合理都会引起灯 具的颜色漂移。其中散热设计和驱动设计是通过影 响 LED 光源的特性,间接引起辐射波长的变化, 从 而引起光色质量的下降。 LED 光源和光学设计则是 引起光色变化的直接因素。 本文针对这两个直接因 素,分析 总 结 LED 灯 具 颜 色 不 均 匀 现 象 的 症 结 所在。
Fig. 5 Principle producing white light using combined chips
3. 2
光学透镜的影响
白光是一种复色光, 当复色光在介质中发生折 射时,介质对不同波长的光有不同的折射率, 各种 色光将发生不同程度的偏折而分离, 而产生色散现 象,如图 6 所示。
的原因,尝试将衍射原理应用到非成像光学中,并以手电筒的透镜结构为例,讨论了折 - 衍混合透镜的具体设计 过程,最后,利用 Matlab 对其透射—全反射透镜结构进行了色散的模拟 。 关键词: 色差; 衍射; 非成像光学; LED 照明 中图分类号: TM923 文献标识码: A DOI: 10. 3969j. issn. 1004440X. 2013. 04. 019
,如
LED 时,存在色差更为严重的现象[9]。 因为三种颜 色的 LED 随着温度、驱动电流变化各异, 随时间的 衰减速度也不相同。 为了保持颜色的一致性, 必须 增加动态反馈电路, 时时调整三基色的配比来获得 白光。在这种方法中对控制系统的合理设计变得尤 其重要。但是由于目前控制技术不成熟, 该种光源 的成本较高,市场应用的不多。 由于该种方法的可

LED术语和实际应用指南 白色LED(white light emitting diodes)

LED术语和实际应用指南 白色LED(white light emitting diodes)

LED 术语和实际应用指南白色LED(white light
emitting diodes)
白色LED 指将多种不同波长的光叠加输出白色光线的二极管。

主要用于液晶面板的背照灯光源、照明光源、霓虹灯、指示器光源以及汽车前照灯光源等,应用范围较广。

由于耗电量低且寿命长,因此可代替荧光管和白炽灯成为新一代光源而备受期待。

白色LED 中,加强红色调,发光颜色与白炽灯相似的品种称为灯泡色LED。

作为液晶面板的背照灯光源,除了彩色显示的手机液晶面板大多使用白色LED 外,作为画面尺寸更大的液晶面板背照灯光源的需求也在不断扩大。

例如,背照灯光源采用白色LED 的笔记本电脑,预计2010 年几乎所有便携机型均会采用白色LED,采用14 英寸以上液晶面板的机型中,2010 年底之前近80%将采用白色LED。

最近,液晶电视背照灯光源采用白色LED 的品种日趋增加,作为实现薄型化及低功耗的杀手锏而备受期待。

韩国三星电子、韩国LG 电子、索尼以及夏普等液晶电视大厂商均在主力产品中采用了白色LED。

目前,与液晶面板的背照灯用途同样引人注目的是照明用白色LED。

2009 年,多家厂商投放市场的LED 灯泡均配备了白色LED。

此前的白色LED 在性能方面还无力挑战以荧光灯产品为中心的照明产品。

原因是因为白色LED 发光效率低而耗电量大,并且每个LED 的光通量少,因此白色LED 照明产品的体积会变得非常大。

为此,白色LED 厂商先行开发了用于手机背照灯光源等小输出功率产品。

TOSHIBA White LED for Lighting Application (See-through package)--100607

TOSHIBA White LED for Lighting Application (See-through package)--100607

See-through PackageToshiba Discrete Semiconductor Technology Corporation Discrete Semiconductor Technical Marketing & Support Div. Jun. 2010Copyright 2010, Toshiba Discrete Semiconductor Technology Corporation.TOSHIBA Optical DevicesVisible LED PhotocouplerTOSLINKOptical Communication DevicePhotosensorToshiba Discrete Semiconductor Technology Corporation R680-751-07-10A-0072LightingTarget Major applicationAutomotive General LightingToshiba Discrete Semiconductor Technology Corporation R680-751-07-10A-0073LightingNew Package “See-through Package”Conventional Package Under Development Under Development“See-through” package8 in 11 in 1Lighting3 in 1IndicatorAmusement IlluminationToshiba Discrete Semiconductor Technology Corporation R680-751-07-10A-0074LightingRoad Map for High Power White LED150 140 130150lm/W Under Development Under Development TL19W01-N 120 @ 300mAOutput efficiency (l m / W)120 110 100 90 80 70 60 50TL12W03-N 100 @ 350mA価格 0lm/W 1285lm/W TL12W02-N 90 @ 250mAWW Top class !! WW Top class(as MP based) (as MP based)53lm/W 2007 2008High efficiency LED is key High efficiency LED is key for lower CO22emission of lighting source !! for lower CO emission of lighting source2009 2010 2011 CY5Toshiba Discrete Semiconductor Technology Corporation R680-751-07-10A-007LightingTargeting Specification of TL19W01-NTL19W01-N ( 5000K Type )( Typ. 120 lm @ 300mA)Absolute Maximum Ratings (Ta = 25 ) Characteristics Symbol IF Forward Current Operating Temperature Topr Storage Temperature TstgUnder Development Under Development Tentative Spec. Tentative Spec.Rating (350) -20 to 85 -30 to 100 Unit mA deg. C deg. C- Package Size3.1 x 3.8, t = 0.65 mmElectrical Characteristics (Ta = 25 Characteristics Forward Voltage Thermal Resistance Symbol VF R th (j-s)- SMD TypePb-Free Reflow-Solderable- Application Luminous Source for Lighting etc. * Reference Data- Correlated Color Temperature CCT = 5000K(Test Condition : Ta = 25 , IF = 300 mA) Test Min. Typ. Max. Condition IF =300mA (3.3) (9) IF =300mA Min. Typ. Max. 120 70Unit V /WOptical Characteristics (Ta = 25 ) Characteristics Symbol Test Condition IF =300mA Luminous Flux F IF =300mA CRI RaUnit lm<Schedule> ES = Jul / ’10 , MP= Sep / ’10Information as of May. 2010 The specification is subject to change without notice. If you will check our new device, please contact our sales staff.6Toshiba Discrete Semiconductor Technology Corporation R680-751-07-10A-007LightingTargeting Specification of TL19W01-DTL19W01-D ( 6500K Type )( Typ. 110 lm @ 300mA)Absolute Maximum Ratings (Ta = 25 ) Characteristics Symbol IF Forward Current Operating Temperature Topr Storage Temperature TstgUnder Development Under Development Tentative Spec. Tentative Spec.Rating (350) -20 to 85 -30 to 100 Unit mA deg. C deg. C- Package Size3.1 x 3.8, t = 0.65 mmElectrical Characteristics (Ta = 25 Characteristics Forward Voltage Thermal Resistance Symbol VF R th (j-s)- SMD TypePb-Free Reflow-Solderable- Application Luminous Source for Lighting etc. * Reference Data- Correlated Color Temperature CCT = 6500K(Test Condition : Ta = 25 , IF = 300 mA) Test Min. Typ. Max. Condition IF =300mA (3.3) (9) IF =300mA Min. Typ. Max. 110 70Unit V /WOptical Characteristics (Ta = 25 ) Characteristics Symbol Test Condition Luminous Flux F IF =300mA IF =300mA CRI RaUnit lm<Schedule> ES = Jul / ’10 , MP= Sep / ’10Information as of May. 2010 The specification is subject to change without notice. If you will check our new device, please contact our sales staff.7Toshiba Discrete Semiconductor Technology Corporation R680-751-07-10A-007LightingTargeting Specification of TL19W01-LTL19W01-L ( 3000K Type )( Typ. 100 lm @ 300mA)Absolute Maximum Ratings (Ta = 25 ) Characteristics Symbol IF Forward Current Operating Temperature Topr Storage Temperature TstgUnder Development Under Development Tentative Spec. Tentative Spec.Rating (350) -20 to 85 -30 to 100 Unit mA deg. C deg. C- Package Size3.1 x 3.8, t = 0.65 mmElectrical Characteristics (Ta = 25 Characteristics Forward Voltage Thermal Resistance Symbol VF R th (j-s)- SMD TypePb-Free Reflow-Solderable- Application Luminous Source for Lighting etc. * Reference Data- Correlated Color Temperature CCT = 3000K(Test Condition : Ta = 25 , IF = 300 mA) Test Min. Typ. Max. Condition IF =300mA (3.3) (9) IF =300mA Min. Typ. Max. 100 70Unit V /WOptical Characteristics (Ta = 25 ) Characteristics Symbol Test Condition Luminous Flux F IF =300mA IF =300mA CRI RaUnit lm<Schedule> ES = Jul / ’10 , MP= Sep / ’10Information as of May. 2010 The specification is subject to change without notice. If you will check our new device, please contact our sales staff.8Toshiba Discrete Semiconductor Technology Corporation R680-751-07-10A-007LightingLine Up for TL19W01 SeriesTargeting SpecificationType Part Number TL19W01-D TL19W01-N High Efficiency Type TL19W01-W TL19W01-WW TL19W01-L TL19W01-NH1 Middle CRI ** Type TL19W01-WH1 TL19W01WWH1 TL19W01-LH1 High CRI ** Type TL19W01-NH2 TL19W01-LH2 Color Temperature (K) * 6500K 5000K 4000K 3500K 3000K 5000K 4000K 3500K 3000K 5000K 3000K Luminous Flux (lm) * 110 120 100 95 100 95 90 90 90 90 80 Cx / Cy * 0.313 / 0.329 0.345 / 0.355 0.382 / 0.380 0.407 / 0.392 0.434 / 0.403 0.345 / 0.355 0.407 / 0.392 0.407 / 0.392 0.434 / 0.403 0.345 / 0.355 0.434 / 0.403 Efficiency (lm/W) * 110 120 100 95 100 95 90 90 90 90 80Under Development Under DevelopmentRa * 70 70 70 75 70 85 3.3 85 85 85 92 92 300 VF * (V) IF * (mA)* : Typical Value ** CRI : Color Rendering IndexInformation as of May. 2010 The specification is subject to change without notice. If you will check our new device, please contact our sales staff.9Toshiba Discrete Semiconductor Technology Corporation R680-751-07-10A-007LightingFeature of TL19W01 SeriesHigh Luminous Efficiency ! <High Efficiency Type>110lm/W (typ.) : 6500K 120lm/W (typ.) : 5000K 100lm/W (typ.) : 4000K 95lm/W (typ.) : 3000,3500KSmall Package !High CRI ! <High CRI Type> 92 : 3000K, 5000KToshiba Discrete Semiconductor Technology Corporation R680-751-07-10A-00710LightingChromaticity Coordinate GroupTL19W01 series has color line up based on ANSI C78.377A !!TL19W01-D (6500K)TL19W01-N (5000K)TL19W01-L (3000K)Toshiba Discrete Semiconductor Technology Corporation R680-751-07-10A-00711Toshiba Discrete Semiconductor Technology Corporation R680-751-07-10A-00712Targeting Specification of TLWD1034TLWD1034 (Typ. 40 mcd @ 5mA)Absolute Maximum Ratings (Ta = 25Characteristics Forward Current Operation Temperature Storage Temperature Symbol IF Topr TstgOther See-throughUnder Development Under Development)Rating (25) -40 to 85 -40 to 100Tentative Spec. Tentative Spec.Unit mA deg. C deg. CElectrical Characteristics (Ta = 25 )Characteristics Forward Voltage Reverse Current Symbol VF IR Test Condition IF = 5mA VR = 4V Min. Typ. (2.9) Max. (3.6) 10 Unit V uAOptical Characteristics (Ta = 25Characteristics Symbol Cx Cy Iv)Min. IF =5mA (16) Typ. 0.31 0.30 (40) Max. Unit mcdTest Condition- Package Size Chromaticity 1.6 x 0.8 mm, t = 0.4 mm - Application Luminous Intensity Indicator, Switch for Portable Equipment etc.Information as of May. 2010 The specification is subject to change without notice. If you will check our new device, please contact our sales staff.13Toshiba Discrete Semiconductor Technology Corporation R680-751-07-10A-007TLxx1034 series Line UpProduct line and target spec.Package size : 1.6 x 0.8mm (t=0.4mm)color Red Red Red Orange Yellow Pure yellow Green Green Pure green Green Blue White Green Green Pure green P/N TLRV1034 TLRMV1034 TLSV1034 TLOV1034 TLYV1034 TLPYV1034 TLGV1034 TLFGV1034 TLPGV1034 TLEGD1034 TLBD1034 TLWD1034 TLGH1034 TLFGH1034 TLPGH1034 Iv (mcd) Typ. 15 20 30 38 25 25 14 8 3.5 40 15 40 80 40 20 VF (V) Typ. 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.9 2.9 2.9 2.1 2.1 2.2 IR (uA) Max. 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 d (nm) Typ. 630 626 613 605 587 580 571 565 558 528 470 Cx=0.32 Cy=0.31 571 565 558Other See-throughUnder Development Under Developmentcondition IF (mA) 5 5 5 5 5 5 5 5 5 5 5 5 20 20 20TLxV series (InGaAlP)TLxD series (InGaAlP) TLxH series (InGaAlP)Toshiba Discrete Semiconductor Technology Corporation R680-751-07-10A-007143 in1 Full Color LED LampsPrototype PackageRed Chip Green ChipOther See-throughMajor Characteristics of PrototypeResin with Diffusion MaterialsColor Main Wavelength (nm) 624 528 470 Symbol IV Luminous Intensity (mcd) VF (V) 2.1 3.3 3.2 Typ. 1000 IF (mA) 20 20 20 Unit mcd2.9mmR G310 710 180 Condition Red IF = 20mA Green IF = 19mA Blue IF = 11mABlue Chip Pin Configuration3.1m mB Characteristics Trichromatic Total Luminous IntensityGreen Cathode Red Cathode Blue CathodeGreen Anode Red Anode Blue AnodeTrichromatic CoordinateX Y0.3 0.3-----Radiation PatternUnder Consideration (Zener Diodes Type)ES : May. 2010 MP : Aug. 2010Toshiba Discrete Semiconductor Technology Corporation R680-751-07-10A-00715Toshiba Discrete Semiconductor Technology Corporation R680-751-07-10A-00716AutomotiveToshiba LED for Exterior ApplicationsHigh luminous flux red LEDs High luminous flux red LEDs for HMSL and RCL for HMSL and RCL 5 lead type 5 lead type TLSK73T(F) TLSK73T(F) d_typ.= 615nm@35mA d_typ.= 615nm@35mA v_typ.= 3.8lm@35mA v_typ.= 3.8lm@35mA 2 1/2_typ.=40 2 1/2_typ.=40 SMDs SMDs Under TLSQ1108 TLSQ1108 development PLCC-4 flat-top PLCC-4 flat-top d_typ.= 617nm@50mA d_typ.= 617nm@50mA v_typ.= 6.5lm@50mA v_typ.= 6.5lm@50mA 2 1/2_typ.=120 2 1/2_typ.=120 TLSM1050/1052 TLSM1050/1052 New Lens-top type Lens-top type d_typ.= 613nm@20mA d_typ.= 613nm@20mA v = 2lm@20mA v = 2lm@20mA (Reference value) (Reference value) 2 1/2_typ.=35 ,30 85 2 1/2_typ.=35 ,30 85High luminous flux yellow LEDs High luminous flux yellow LEDs for side turn for side turn 5 lead type 5 lead type TLYK73T(F) TLYK73T(F) d_typ.= 591nm@35mA d_typ.= 591nm@35mA v_typ.= 3.2lm@35mA v_typ.= 3.2lm@35mA 2 1/2_typ.=40 2 1/2_typ.=40Toshiba DiscreteUnder SMDs SMDs development TLYK1100C TLYK1100C SMD for welding type PLCC-4 flat-top SMD for welding type PLCC-4 flat-top TLSK1300 series d_typ.= 591nm@50mA TLSK1300 series d_typ.= 591nm@50mA Low thermal resistance and v_typ.= 5.5lm@50mA Low thermal resistance and v_typ.= 5.5lm@50mA high current driving 200mA max 2 1/2_typ.=120 high current driving 200mA max 2 1/2_typ.=120 New d_typ.= 616nm@120mA d_typ.= 616nm@120mA TLYM1050/1052 TLYM1050/1052 v_typ.= 7lm@120mA v_typ.= 7lm@120mA Lens-top type Lens-top type 2 1/2_typ.=35 ,, 85 2 1/2_typ.=35 85 d_typ.= 590nm@20mA d_typ.= 590nm@20mA v = 1.2lm@20mA v = 1.2lm@20mA (Reference value) (Reference value) 2 1/2_typ.=35 ,30 85 2 1/2_typ.=35 ,30 85 Semiconductor Technology Corporation R680-751-07-10A-00717AutomotiveToshiba LED for Interior applicationsIndicator and backlight applicationsToshiba high-brightness LEDs provide better visibility, improve the interior design and reduce power consumption. Instrument panel Interior lightingInterior lightingSwitches Switches Center console panel- High-brightness white LEDs TLWxx1100 series TLWxx1108 series TLWxx1109 seriesCenter console panel- Small and thin package - Customizing spec, original color TLxx1032 series TLxx1060 series TLxx1034 series(*)* Under developmentInstrument panel- High brightness, low power consumption and long life operation TLxx1100 series TLxx1106 series TLxx1108 series Semiconductor Technology TLxx1109 seriesSwitches- Small package TLxx1032 series TLxx1060 series TLxx1050 series TLxx1034 series(*) Corporation R680-751-07-10A-007* Under developmentToshiba Discrete18AutomotivePLCC4 White LED “TLWF1108/1109” seriesTLWF1109 series FeatureHigh brightness white LED Color line-up TLWF1109(T11) : Day-Light white/ 3200mcd TLWNF1109(T11) : Neutral white/ 3200mcd TLWLF1109(T11) : Warm white/ 2500mcd PLCC-4 package, Flat-top : 3.5(L) 2.9(W) 1.9(H) mm (typ.) Topr/Tstg = -40 100degC Zener Diode Built-in Type Note) TL F1108 : Without Zener Diode Type Under Development Under DevelopmentOutline50mA@85degC High current driving Target application Schedule • Indicator • ES : OK • CS : Jun/ ’10 • MP : Aug/ ‘10Toshiba Discrete Semiconductor Technology Corporation R680-751-07-10A-00719AutomotiveLine-up of PLCC PKG (GaN-LED)( ) : Typical Intensity @Ta=25Color White Blue Green Day-light 6500K TLWD1100B (180mcd) TLWF1100C (1600mcd) TLWK1100C (1700mcd) TLWK1109 (3200mcd) TLWF1109 (3200mcd) TLBF1108 (700mcd) TLEGF1108 (2000mcd) TLWF1108 (3200mcd) TLWNK1109 (3200mcd) TLWNF1109 (3200mcd) TLWNF1108 (3200mcd) TLWNF1100C (1600mcd) TLWWK1100B (1500mcd) TLWLF1100C (1400mcd) TLWLK1100B (1500mcd) TLWLK1109 (2600mcd) TLWLF1109 (2500mcd) TLWLF1108 (2500mcd) Neutral 5000K Warm 3500K Warm 3000K TLCBD1100B (90mcd @10mA) *2 TLCBK1100 (1500mcd) *2 PLCC -2 PLCC -2 PLCC -2 PLCC -4 PLCC -4 PLCC -4 PKGTL D1100B Series TL F1100CS eries TL K1100 Series *1 TL K1109 Series *1 TL F1109 Series *1 TL F1108 SeriesTLBD1100B (60mcd) TLBF1100C (350mcd)TLEGD1100B (180mcd) TLEGF1100C (1000mcd)*2*2MP before 2008 MP in 09BUnder development Under planningNote) PLCC: Plastic Leaded Chip Carrier*1 : With Protection diode *2 : Color on demand20Toshiba Discrete Semiconductor Technology Corporation R680-751-07-10A-007Web Informationhttp://www.semicon.toshiba.co.jp/eng http://www.semicon.toshiba.co.jp/engToshiba Discrete Semiconductor Technology Corporation R680-751-07-10A-00721• Toshiba Corporation, and its subsidiaries and affiliates (collectively “TOSHIBA”), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively “Product”) without notice. • This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA’s written permission, reproduction is permissible only if reproduction is without alteration/omission. • Though TOSHIBA works continually to improve Product’s quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before creating and producing designs and using, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the “TOSHIBA Semiconductor Reliability Handbook” and (b) the instructions for the application that Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS’ PRODUCT DESIGN OR APPLICATIONS. • Product is intended for use in general electronics applications (e.g., computers, personal equipment, office equipment, measuring equipment, industrial robots and home electronics appliances) or for specific applications as expressly stated in this document. Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious public impact (“Unintended Use”). Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. Do not use Product for Unintended Use unless specifically permitted in this document. • Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part. • Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations. • The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise. • ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT. • Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations. • Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA assumes no liability for damages or losses occurring as a result of noncompliance with applicable laws and regulations.RESTRICTIONS ON PRODUCT USEToshiba Discrete Semiconductor Technology Corporation R680-751-07-10A-00722Copyright 2010, Toshiba Discrete Semiconductor Technology Corporation.。

透明荧光陶瓷用于白光LED的研究_雷牧云

透明荧光陶瓷用于白光LED的研究_雷牧云

Study on Transparent Phosphor Ceramic Used in WhiteLEDMuyun LEI1, Zailiang LOU1, Xunli XIA2, Zhen LI1, Yanmin ZHAO1, Yongliang YANG11Bright Crystals Technology, Inc. Beijing, China, 1000182Foshan Nation Star Optoelectronics Co., Ltd. Foshan, China, 528000Email: lmy@Abstract: Using MgAl2O4 powder mixed with phosphor commercial and homemade respectively, the trans-parent phosphor ceramic was sintered, machined and used to package LED. The electro-optical parameters of the LED packaged with ceramic with different thickness and concentration were tested. The influence of the thickness and concentration on the electro-optical parameters was discussed. Uniform distribution of the phosphor in transparent ceramic avoids the precipitation of phosphor in resin and improves the uniformity of the light. Owing to higher thermal conductivity than resin, ceramic material can accelerate the cooling of LED. Meanwhile, the transparent ceramic has excellent mechanical performance; it can be used for LED package directly. This research will extend the application field of LED.Keywords: transparent phosphor ceramic; Light Emitting Diode (LED); packaging material透明荧光陶瓷用于白光LED的研究雷牧云1,娄载亮1,夏勋力2,李祯1,赵艳民1,杨勇良11烁光特晶科技有限公司,北京,中国,1000182佛山市国星光电股份有限公司,佛山,中国,528000Email: lmy@摘要:采用自制的铝酸镁粉体分别混合自制和市售的荧光粉制备透明荧光陶瓷,将透明荧光陶瓷加工并替代传统白光LED中的荧光粉层和环氧树脂封装外壳对LED进行封装。

LED英文资料及中文翻译

LED英文资料及中文翻译

First LED SummaryLED (Light Emitting Diode), light-emitting diode, is a solid state semiconductor devices, which can be directly converted into electricity to light. LED is the heart of a semiconductor chip, the chip is attached to one end of a stent, is the negative side, the other end of the power of the cathode, the entire chip package to be epoxy resin. Semiconductor chip is composed of two parts, part of the P-type semiconductor, it inside the hole-dominated, the other side is the N-type semiconductor, here is mainly electronic. But linking the two semiconductors, among them the formation of a "PN junction." When the current through the wires role in this chip, will be pushing e-P, P zone in the hole with electronic composite, and then to be issued in the form of photon energy, and this is the principle of LED luminescence. The wavelength of light that is the color of light, is formed by the PN junction of the decisions of the material.Second LED history and development50 years ago, people have to understand semiconductor materials can produce light of the basic knowledge, the first commercial diodes in 1960. English is the LED light emitting diode (LED) acronym, and its basic structure is an electroluminescent semiconductor materials, placed in a wire rack, then sealed with epoxy resin around, that is, solid package, Therefore, the protection of the internal batteries can play the role of line, so the seismic performance LED good.LED is the core of the P-type semiconductor and components of the N-type semiconductor chips, the P-type semiconductor and N-type semiconductor between a transition layer, called the PN junction. In some semiconductor materials in the PN junction, the injection of a small number of carrier-carrier and the majority of the extra time will be in the form of light energy to release, thus the power to direct conversion of solar energy. PN junction on reverse voltage, a few hard-carrier injection, it is not luminous. This use of injection electroluminescent diodes is produced by the principle of light-emitting diodes, commonly known as LED. When it in a positive state of the work (that is, at both ends with forward voltage), the current flows from the LED anode, cathode, semiconductor crystals on the issue from the ultraviolet to infrared light of different colors, light and the strength of the currents.Instruments used for the first LED light source instructions, but all kinds of light colored LED lights in traffic and large screen has been widely applied, have a very good economic and social benefits. The 12-inch red traffic lights as an example, is used in the United States have long life, low-efficiency 140 watt incandescent lamp as a light source, it produced 2,000 lumens of white light. The red filter, the loss-90 percent, only 200 lumens of red light. In the light of the new design, Lumileds companies have 18 red LED light source, including the loss of circuit, atotal power consumption of 14 watts to generate the same optical effect. Automotive LED lights is also the source of important areas.For general lighting, people need more white light sources. The 1998 white LED successful development. This is the GaN LED chip and Yttrium Aluminum Garnet (YAG) package together cause. GaN chip of the Blu-ray (λ p = 465nm, Wd = 30nm), made of high-temperature sintering of the Ce3 + YAG phosphors excited by this Blu-ray after irradiating a yellow, the peak 550 nm. Blue-chip installed in the LED-based Wanxing reflection in the cavity, covered with a resin mixed with YAG thin layer, about 200-500 nm. LED-based tablets issued by the Blu-ray absorption part of the phosphor, the phosphor another part of the Blu-ray and a yellow light mixed, can be a white. Now, the InGaN / YAG white LED, YAG phosphor by changing the chemical composition of the phosphor layer and adjust the thickness of the3500-10000 K color temperature can be colored white. This blue LED through the method by white, constructed simple, low-cost, high technology is mature, so use the most.The development of LED display can be divided into the following phases: first phase 1990 to 1995, mainly monochrome and 16 color graphics screen. Used to display text and simple images, mainly used in railway stations, financial securities, banks, post offices and other public places, as public information display tools. The second stage is from 1995 to 1999, there have been 64, 256 level gray-scale two-color video screen. Video control technology, image processing, optical fiber communication technology applications will enhance the LED display to a new level. LED display control LSI chips special at this time developed by domestic companies, and can be applied. The third stage, from 1999, red, pure green, blue LED in bulk into China, while domestic enterprises in-depth research and development work, using red, green, and blue LED production of full-color display has been widely used , poured into sports stadiums, convention centers, squares and other public places, which will bring the domestic large-screen full-color era. With the rapid development of LED materials market, surface mount device is available from 2001, mainly used in indoor full color, and its high brightness, colorful, low temperature characteristics, the point spacing can be adjusted by different price Requirements were accepted, in just two years time, product sales have more than 300 million yuan, surface mount full-color LED display application market entered the new century. To meet the 2008 Olympic Games, "downsizing" plan, Liard developed a surface mount dual color displays, a lot of time for the training center and game scoring. Full color in Olympic venues, in order to tighten investment, full color way is mostly detachable, live during the Olympic Games as a tool can be used for rental after the event, as the performance of national policies such as public places, tools released by In this way cost recovery as soon as possible. On the market, China's accession to WTO, Beijing's successful Olympic bid and so on, into the development of LED display industry, a new opportunity. Domestic LED display market continues to grow, currently in the domestic market, domestic LED display market share of nearly 95%. LED display theinternational market capacity is expected to 30% a year growth rate. Currently, LED display manufacturers concentrated primarily in Japan, North America, China LED manufacturers in which the insignificant share of exports. According to incomplete statistics, the world, there are at least 150 manufacturers full color, in which products are complete, the larger company has some 30 or so.Third LED advantagesConductor light-emitting diode (LED) as a third-generation semiconductor lighting source. This fantastic product has a lot of advantages: (1) efficient light: spectra of almost all concentrated in the visible light frequency, the efficiency can reach 80% -90%. The luminous efficiency of incandescent visible light efficiency of almost 10% -20% only. (2) high quality of light: not as a result of spectrum UV and infrared, there is no heat, no radiation, is typically a green light illumination. (3) energy consumption of the small: single power generally 0.05-1w, through the cluster can be tailored to meet different needs, and waste very little. As a light source, under the brightness in the same power consumption of only ordinary incandescent 1/8-10.(4) long life: flux attenuation to 70% of the standard life expectancy is 100,000 hours.A semiconductor light can be used under normal circumstances 50 years, even if the long life of the people, life will be used up to two lights. (5) durable and reliable: No tungsten wire, glass and other easily damaged components, non-normal retirement rate is very small, very low maintenance costs. (6) the application of flexibility: small size, can flat pack, easy to develop into a short thin products, make point, line, face various forms of specific applications. (7) Security: working voltage 1.5-5v or less in between the current 20-70mA in between. (8) green: recyclable waste, no pollution, unlike fluorescent lamps containing mercury as ingredients. (9) response time is short: to adapt to frequent and high-frequency switching operation of occasions.Fourth Classification of LED display1, color by color can be divided intoSingle-color display: Single color (red or green).Two-color display: red and green dual-color, 256 gray scale levels, can display 65,536 colors.Full-color screen: red, green, blue color, 256 grayscale full color display can display more than 16 million kinds of colors.2, according to display device classificationLED Digital Display: 7 segment display devices for the digital control code, suitable for production of the clock screen, the interest rate screens, showing the number of electronic display.LED dot-matrix graphic display: display device is arranged by a number of uniform composition of the dot-matrix LED display modules, suitable for broadcast text, image information.LED video display: display devices are formed by a number of light-emitting diodes that can display video, animation and other video files.3, by using the occasion categoriesIndoor Display: LED spots smaller, general Φ3mm - Φ8mm, shows the general area of a few to more than ten square meters.Outdoor Display: dozens of square meters in size to several hundred square meters, high brightness, can work in the sun, with wind, rain, water resistant.4, classified according to light spot diameterIndoor screen: Φ3mm, Φ3.75mm, Φ5mm,Room external screen: Φ10mm, Φ12mm, Φ16mm, Φ19mm, Φ20mm, Φ21mm, Φ22mm, Φ26mmRoom external screen as the basic unit of light emitting tube, LED tube principle is a set of red, green, and blue light-emitting diode sealed in a plastic barrel and jointly develop5, Display a static, horizontal scroll, vertical scroll and flip display. One block module control drive 12 (up to control 24) 8X8 Dot Matrix, a total of 16X48 dot matrix (or 32X48 dot matrix), is a single block of MAX7219 (or PS7219, HD7279, ZLG7289 and 8279, and the like LED display driver module) 12 times (or 24 times)! Can use "cascade" approach the composition of any large dot matrix display. Effects, good power consumption, and the MAX7219 circuit than the use of lower cost.Fifth LED applicationsIt is a semiconductor light-emitting diode by controlling the display, which probably look like that from lots of small red lights are usually formed by the bright lights off to show character. Used to display text, graphics, images, animations, quotes, video, video signals and other information on the display screen.Graphic display and LED display into the video display by the LED matrix blocks. Graphic displays can be synchronized with the computer display Chinese characters, English text and graphics; video display using micro-computer control, graphics, images, and Mao, real-time, synchronization, clear message to the broadcast of a variety of information dissemination, but also shows two dimensional, three-dimensional animation, video, TV, VCD programs and live on. LED display shows the screen brightly colored, three-dimensional sense of strong, static, such as painting, moving as the film is widely used in finance, tax, business, telecommunications, sports, advertising, industrial enterprises, transport, education systems, stations, docks, airports, shopping malls, hospitals, hotels, banks, securities markets, construction market, auction houses, industrial enterprises in management and other public places.LED display can show changes in the numbers, text, graphics and video; not only can be used in the indoor environment can also be used for outdoor environment, with a projector, TV wall, LCD screen can not match advantage.Sixth LED screen test methodA look at Screen size, appearance, smoothness, with the screen connection and so onSecond look after the dead pixel screen light up, not in not within the scope of (in general the screen is basically gone now)Color consistency, display text is normal, display pictures, play full screen full color to white, red, green, and blue.一 LED概述LED(Light Emitting Diode),发光二极管,是一种固态的半导体器件,它可以直接把电转化为光。

自动照明控制系统的设计和实现外文文献

自动照明控制系统的设计和实现外文文献

自动照明控制系统的设计和实现外文文献XXX of a white LED automatic control system that maintains the XXX of an object n。

The system uses AT89S52 as the controller and light sensor ICBH1750 with I2C bus to measure then of the object n。

PWM signals are generated to control the RMSof the current。

which XXX of the white LED。

The control algorithm used is numeral PID。

XXX dimming are described in this paper。

The experiments show that the steady-state error isless than 2%。

the dynamic characteristics are excellent。

and the system can reject XXX.2 Design and XXXThe white LED automatic control system consists of three main components: the controller。

the light sensor。

and the white LED。

The AT89S52 microcontroller is used to control the system。

The light sensor ICBH1750 with I2C bus is used to measure the nof the object n。

The white LED is used to provide the XXX。

常用发光二极管型号

常用发光二极管型号

常用发光二极管型号一、红外发光二极管(Infrared Emitting Diode,简称IR LED)红外发光二极管是一种能够发射红外光的半导体器件。

它通常由硅或砷化镓等材料制成,具有高发射效率和狭窄的发射光谱特性。

红外发光二极管在红外通信、遥控器、光电传感器等领域有着广泛的应用。

二、红色发光二极管(Red Emitting Diode,简称RED LED)红色发光二极管是一种能够发射红色光的半导体器件。

它主要由砷化镓或硒化锌等材料制成,具有高亮度和较长的寿命。

红色发光二极管广泛应用于指示灯、数字显示、汽车尾灯等领域。

三、绿色发光二极管(Green Emitting Diode,简称GREEN LED)绿色发光二极管是一种能够发射绿色光的半导体器件。

它通常由砷化镓磷化铟等材料制成,具有高亮度和较低的功耗。

绿色发光二极管常用于显示屏、照明、交通信号灯等领域。

四、蓝色发光二极管(Blue Emitting Diode,简称BLUE LED)蓝色发光二极管是一种能够发射蓝色光的半导体器件。

它通常由氮化镓材料制成,具有高亮度和较短的寿命。

蓝色发光二极管在显示屏、背光源、激光器等领域有着广泛的应用。

五、白色发光二极管(White Emitting Diode,简称WHITE LED)白色发光二极管是一种能够发射白色光的半导体器件。

它通常通过将蓝色发光二极管与黄色荧光粉结合来实现。

白色发光二极管具有高亮度、节能环保等优点,广泛应用于照明、显示屏等领域。

六、紫外发光二极管(Ultraviolet Emitting Diode,简称UV LED)紫外发光二极管是一种能够发射紫外光的半导体器件。

它通常由氮化镓材料制成,具有较高的能量和短波长特性。

紫外发光二极管在紫外光固化、紫外检测等领域有着广泛的应用。

七、黄色发光二极管(Yellow Emitting Diode,简称YELLOW LED)黄色发光二极管是一种能够发射黄色光的半导体器件。

LCD和LED背光屏的区别

LCD和LED背光屏的区别

LCD和LED背光屏的区别!!大家应该都了解,与台式LCD显示器相比,笔记本电脑的屏幕比较特殊,由于其不可升级性,决定了消费者选购时对屏幕的表现力期望较高;而另一方面,由于笔记本整体的体积及功耗限制(部分BT级桌面替代型本本除外),并非所有的先进显示技术都能应用到笔记本电脑屏幕当中去,从笔记本屏幕的类型来看,目前大部分的笔记本采用的是普通屏幕与镜面屏幕两种。

普通屏幕采用防眩光技术,不过这种防眩光技术经常造成将液晶面板射出的光线分散,造成了显示画面的不够锐利。

而镜面屏幕采用的主要是防反射技术。

防反射技术主要是将偏光膜的表面蒸镀上一层金属膜,利用光干涉原理来降低反射值,将反射降至1%以下。

由于没有使用防眩光技术,并且增加了降低反射的金属膜使得显示效果更加锐利,防反射技术还可以提高屏幕的可视角度另外,宽屏、高亮、大视角等等这些与台式LCD相类似的词同样适用于笔记本的屏幕,而当前市场上处于主流地位的笔记本虽然在这些应用方面都有提升,但还远没有达到人们的要求,经常听到有人在说自己的屏幕漏光、可视角度太小等等话语。

亮度、对比度、色彩、可视角度等问题在目前的主流笔记本屏幕上也没有一个比较好的解决方法。

虽然有很多诸如图层改进、灯管改进这样的技术出现,也有很多厂商推出自己笔记本专属的技术(例如东芝ClearSuperView超显亮技术、华硕靓彩显示增强技术)等,但是受于目前笔记本屏幕的材质规格、制造工艺、处理方法、等本身问题上,这些技术也只是点到为止,提升效果并不明显。

宽屏可以获得很好的视觉效果,但是耗电量却不容忽视,而且,就笔记本最为关注的移动性而言,LCD屏幕也的确是一个不小的负担。

一方面,目前LCD屏幕的耗电量相对比较大,因此为了延长使用时间,很多用户在使用电池续航时,都把笔记本屏幕的亮度调到很暗;另一方面,其体积也成为影响整个笔记本电脑便携性的一项因素。

未来,笔记本屏幕要实现的目标无疑是更轻更薄,同时更省电,而且还要显示效果更好,那么可以通过那些即将成熟的技术实现这一目标呢?OLED与whiteLED技术有机发光二极管(OrganicLight-EmittingDiode,OLED)并不是最新的产品,但将其应用到显示技术上的确称得上是一种创新。

LED 应用说明

LED 应用说明

LED大体介绍1LED一: LED优点介绍(体积小,寿命长,颜色丰富,耗电低………)(体积小寿命长颜色丰富耗电低)生活中的用途二:生活中LED(装饰.工艺品.店铺招牌.室内室外装潢.照明……..)三:我们公司产品中主要LED(LUMILED.REBEL.C--TAR.CREE. OSRAM………..)(LUMILED.REBEL.C四:LED 基础知识LED(LUMILED.CREE LED介绍及生产流程介绍)2一:LED优点(light emitting diode)•LED light emitting diode•LED又叫发光二极管,是一种固态的半导体器件,它可以直接把电转化为光。

•LED 的优点:• 1.体积小• 2.耗电量低•33.使用寿命长• 4.高亮度,低热量• 5.环保5• 6.坚固耐用•7.颜色丰富多变幻73传统白炽灯,节能灯缺点•传统灯的缺点:• 1.颜色单一,色彩不丰富。

• 2.外形单一,不美观。

2外形单一不美观• 3.使用寿命短,易破损。

• 4.高耗能,发热量高4高耗能发热量高• 5.不环保,特别是荧光灯,节能灯里的水银,汞,对人体,对环境影响很大。

对人体对环境影响很大4生活中二:生活中LED的用途5LED 电视墙6工艺品7店铺招牌8家具装饰房屋室外装潢10室内装潢11手电路灯灯塔车灯等照明12三:我们公司产品中主要使用的LED❝1 LUMILED ILED❝2 REBEL❝3 C3 C--STAR3C❝4 CREE❝5 OPK2❝6 OSRAM6OSRAM❝7 NICHIA131:LUMILED 1:LUMILED系列D=SIDE EMITTING P=LAMBERTIAN B=BATWING14列列2:REBEL系列3:C-STAR系列154:CREE系列系列CREE LED XP E CREE LED MC E CREE LED XM 6CREE-LED XP-E CREE-LED MC-E CREE-LED XM-6166:OSRAM系列5:OPK2系列17四:LED基础知识1.LED 的认识(分类方法,part number 的识别)2. LED 产品的生产方法2.LED18LUMILED LUMILED 系列形状认识D=SIDE EMITTING D=SIDE EMITTING P=LAMBERTIAN B=BATWING LUMILEDS LED 的形状主要分为LAMBERTIAN ,BATWING,Side EMITTING 在LUMILEDS LED PART 正极表示点EMITTING。

MT9284 数据手册 白光LED驱动芯片

MT9284 数据手册 白光LED驱动芯片

• Drives up to 7 Series WLEDs
fixed frequency architecture to regulate an LED
• Low 104mV Feedback Voltage
current, which is measured through an external
• Soft-start/Dimming with wide Frequency Range current sense resistor. Its low 104mV feedback
• UVLO, Thermal Shutdown
L • Internal Current limit IA • Over Voltage Protection T • Small LC Filter N • Minimize the External Component E • <1µA Shutdown Current ID • Tiny TSOT23-6/SOT23-6 Package NF APPLICATIONS O • Camera Flash White LED C • Mobile Phone, Smart Phone LED Backlight I • PDA LED Backlight
2
GND Ground Pin
3
FB
Output Voltage Feedback Pin.
Chip Enable Pin. Drive EN above 1.5e EN below 0.4V
4
EN
to turn it off. Do not leave EN floating.
Over Voltage Input. OV measures the output voltage for open circuit protection.

led命名规则

led命名规则

Led命名规则、说明1、A——公司名称:采用公司缩写名称“XM”表示。

2、B——灯名:如天花灯,采用天花灯前两个字“天花”的汉语拼音的第一个字母表示,大写为“TH”;球泡灯用“QP”表示;柜台灯用“GT”表示;灯杯用“DB”表示;壁灯用“BD”表示;投光灯用“TG”表示;洗墙灯用“XQ”表示。

3、C——发光颜色代号:目前LED的发光颜色主要有红(Red)、黄(Yellow)、蓝(Blue)、绿(Green)、白(White)这几种,分别用其英文的第1个字母表示。

另外,白光又分正白(5500~7000K)、暖白(2700~3200K)2种,发货时要用文字注明。

如果是红、绿、蓝三基色的就用“RGB”表示4、D——功率:用纯数字表示,如“1”表示1W,“2”表示2W等等。

5、E——产品代号:用001~999这三位的数字表示,每一个代号代表特定的一款产品。

6、另外,有些方形的天花灯是由多个灯头组合在一起的。

在这种情况下,我们在“产品代号”后面加“-X”表示,“X”表示组合的个数,如“XM-GT-W8202-2”表示有2组4W的灯头组合成一个8W的柜台灯。

LED日光灯命名规则:1、A——公司名称:采用公司缩写名称“XM”表示。

2、B——灯名:使用行业标准的“T10”,“T8”,“T5”来表示。

3、C——发光颜色代号:目前LED日光灯的发光颜色主要有正白、暖白和冷白3种,正白用Pure White 的缩写“PW”表示;暖白用Warm White的缩写“WW”表示;冷白用Cool White的缩写“CW”表示。

4、D——使用灯珠的个数:用纯数字表示,如“144”表示1条灯管有144颗灯珠,“288”表示1条灯管有288颗灯珠等等。

LED灯条命名规则:1、A——公司名称:采用公司缩写名称“XM”表示。

2、B——灯名:采用天花灯前两个字“灯条”的汉语拼音的第一个字母表示,大写为“DT”;3、C——发光颜色代号:LED的发光颜色主要有红(Red)、黄(Yellow)、蓝(Blue)、绿(Green)、白(White)这几种,分别用“R”、“Y”、“B”、“G”、“W”表示。

MIC2297 600kHz 42V OVP PWM白色LED驱动器说明书

MIC2297 600kHz 42V OVP PWM白色LED驱动器说明书

MIC2297 Evaluation Board600kHz 42V OVP PWM White LED DriverMLF and Micro LeadFrame are registered trademarks of Amkor Technology, Inc.Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • General DescriptionThe MIC2297 is a 600kHz PWM White LED Driver optimized for 6 to 10 series WLEDs. With an output voltage of up to 42V and a guaranteed 1.2A on the internal power switch, the MIC2297 can easily drive 10 WLEDs at 20mA continuous current. The MIC2297 features WLED brightness control using the BRT pin and has output over voltage protection (OVP) to protect the device in case the WLEDs are disconnected unexpectedly. Available in a tiny 10-pin 2.5mm x 2.5mm x 0.85mm MLF ®package, the MIC2297 solution only requires a total of 6 external components. The MIC2297 operates at a default (BRT pin is open)feedback voltage of only 200mV. The low feedbackvoltage reduces the power dissipation from the externalcurrent set resistor and increases total operatingefficiency.When brightness control is required, the MIC2297 features brightness control by applying a DC voltage to the BRT pin. When applying a DC voltage to the BRT pin, the feedback voltage is equal to the BRT voltage divided by 5. This feature essentially increases or decreases the feedback voltage from its default value (200mV), changing the WLED current to control the WLED brightness. Alternatively, a PWM signal may also be applied to theBRT pin for brightness control. When a PWM signal (1kHzrecommended) is applied to the BRT pin, the WLEDs aredimmed depending on the duty cycle and the peak voltageof the signal. The PWM frequency can range from 1kHz to1MHz. The selected PWM frequency does not affect theWLED brightness. Assuming a 1V PWM signal is applied,as the duty cycle decreases, the feedback voltagedecreases, thus reducing the WLED current.RequirementsThe MIC2297 evaluation board requires an input power source that is capable of delivering greater than 1.2A at 2.5V.PrecautionsThe evaluation board does not have reverse polarity protection. Applying a negative voltage to the V IN terminal may damage the device.The MIC2297 evaluation board is tailored for a single or dual Li-Ion input source. The input voltage should never exceed 10V.Getting Started 1. Connect an external supply to V IN . Apply desired input voltage to the V IN (J1) and ground (J4) terminals of the evaluation board, paying careful attention to polarity and supply voltage (2.5V ≤ V IN ≤ 10V). An ammeter may be placed between the input supply and the V IN (J1) terminal to the evaluation board to accurately monitor the input current. The ammeter and/or power leadresistance can reduce the voltage supplied to the input; therefore, the supply voltage at the V IN (J1) terminal should be monitored. 2. Enable/Disable the MIC2297. To enable the MIC2297, apply a 1.5V or greater voltage signal tothe EN (J2) terminal. To disable the device, pull the EN (J2) pin below 0.4V. The evaluation board is configured with a jumper (JP1) from V IN to the enable pin and a 10k pull-down resistor to ground to conveniently turn the part on or off. Connecting the jumper (JP1) will enable the MIC2297, while removing the jumper will disable the part. 3. DCV Brightness Control. To control the brightness with a DC voltage, see the DVC Brightness Control section. 4. PWM Brightness Control. To control the brightness with a PWM Signal, see the PWM Brightness Control section. Note: For detailed specifications, please refer to the MIC2297 Datasheet at . Ordering InformationPart Number Description MIC2297-42YML EVEvaluation board with the MIC2297 42V deviceLED Current SettingThere are 10 WLEDs provided with the evaluation board. Two of the WLEDs (D1 and D2) may be by-passed by placing a jumper on JP3. The WLED current (I LED ) is equal to the feedback voltage (V FB = 200mV by default) divided by the R3 resistance value. The evaluation board is provided with R3 equal to 10Ω. The brightness level is proportional to I LED . Programming the feedback voltage changes the I LED , therefore changing the brightness level. I LED = V FB / R3 (1) DCV Brightness ControlThe brightness level can be set by applying a DC voltage (BRT) to the BRT pin. When a DC voltage is applied to the BRT pin, the feedback voltage is changed from the default value of 200mV to: V FB = BRT / 5 (2)Assuming BRT equals 1V, then V FB will be 200mV and ILED may be calculated by: I LED = V FB / R3 I LED = 200mV / 10Ω I LED = 20mASimilarly, if BRT equals 2V, then V FB will be 400mV and the I LED may be calculated by: I LED = V FB / R3 I LED = 400mV / 10Ω I LED = 40mAThe feedback voltage can be changed using the BRT pin. Changing the feedback voltage changes the WLED current, which will change the WLED brightness. Refer tothe Figure 1 and Figure 2 for reference.(D C C o u p l e d )50m V /d i v )F e e d b a c k V o l t a g e TIME (400µs/div)B R T V o l t a g e (DC C o u p l e d )(1V /d i v )Figure 1. BRT = 1V, V FB = 200mV, I LED = 20mA(D C C o u p l e d )00m V /d i v )F e e d b a c k V o l t a g e TIME (400µs/div)B R T V o l t a g e (DC C o u p l e d )(1V /d i v )Figure 2. BRT = 2V, V FB = 400mV, I LED = 40mAPWM Brightness ControlThe brightness level can also be set by applying a PWM signal to the BRT pin. To calculate the feedback voltage when a PWM signal is applied to the BRT pin, use the following formula: V FB = V PEAK / 5 * D (3)V PEAK is the peak of the PWM voltage and D is the duty cycle. If V PEAK is 1V and the duty cycle is 1%, then V FB can be calculated by: V FB = 1V / 5 * 0.01 V FB = 2mVThe I LED can then be calculated by: I LED = V FB / R3 I LED = 2mV / 10Ω I LED = 200µASimilarly, if the V PEAK is 1V and the duty cycle is 50%, then V FB can be calculated by: V FB = 1V / 5 * 0.5 V FB = 100mVThe I LED can then be calculated by: I LED = V FB / R3 I LED = 100mV / 10Ω I LED = 10mAWith PWM brightness control, the MIC2297 has great versatility since brightness may be set anywhere from 0 to 100 percent. Refer to the following figures for reference.(D C C o u p l e d )10m V /d iv )F e e d b a c k V o l t a g e TIME (400µs/div)B R T V o l t a g e (DC C o u p l e d )(1V /d i v )Figure 3. Duty Cycle = 1%, V FB = 2mV, I LED = 200µA(D C C o u p l e d )50m V /d iv )F e e d b a c k V o l t a g e TIME (400µs/div)B R T V o l t a g e (DC C o u p l e d )(1V /d i v )Figure 4. Duty Cycle = 20%, V FB = 40mV, I LED = 4mA(D C C o u p l e d)50m V /di v )F e e d b a c k V o l t a g e TIME (400µs/div)B R T V o l t a g e (DC C o u p l e d )(1V /d i v )Figure 5. Duty Cycle = 50%, V FB = 100mV, I LED = 10mA(D C C o u p l e d )50m V /d i v )F e e d ba c k V o l t a g e TIME (400µs/div)B R T V o l t a g e (DC C o u p l e d )(1V /d i v )Figure 6. Duty Cycle = 80%, V FB = 160mV, I LED = 16mAIn Figure 7, when the duty cycle is equal to 100%, D equals 1. When we set D equal to 1 in equation (3), notice (3) becomes the same as equation (2), if we assume V PEAK equals BRT. Using a 100% duty cycle is the same as applying a constant DC voltage to the BRT pin. In this instance, Figure 7 is exactly the same as Figure 1.(D C C o u p l e d)50m V /d i v )F e e d b a c k V o l t a g e TIME (400µs/div)B R T V o l t a g e (DC C o u p l e d )(1V /d i v )Figure 7. Duty Cycle = 100%, V FB = 200mV, I LED = 20mATypical Application CircuitC50.47µF /50VL1DS1J1VINJ2EN J3BRTJ4GND10 LED ConfigurationBill of MaterialsItem Part Number Manufacturer Description Qty C1, C2C1608X5R1A105KTDK (1)1µF Ceramic Capacitor, 10V, X5R, Size 0603 2 C3 VJ0603Y104KXXAT Vishay (2) 0.1µF Ceramic Capacitor, 25V, X7R, Size 0603 1 C4 OpenC5 C2012X7R1H474M TDK (1)0.47µF Ceramic Capacitor, 50V, X7R, Size 0805 1 DS1 DFLS160-7 Diodes Inc (3) 1A, 60V, Schottky Diode1 LQH43CN220K01L Murata (4)22µH, 420mA I SAT ., 120m Ω, (4.5mm × 3.2mm × 2.6mm) MLP3225S100L TDK (1) 10µH, 1000mA I SAT ., 130m Ω, (3.2mm × 2.5mm × 1mm) L1LPS4012-223MLC Coilcraft (5)22µH, 720mA I SAT ., 600m Ω, (4.1mm × 4.1mm × 1.2mm)1 R1 CRCW06031002FRT1 Vishay (2) 10K Ω, 1%, 1/16W, Size 06031 R2 OpenR3 CRCW060310R0FRT1 Vishay (2) 10Ω, 1%, 1/16W, Size 0603 1 D1-D10 VLMW3100-5K8L-08Vishay (2)20mA Standard SMD LED PLCC-2 10 U1 MIC2297-42YML Micrel (6)600kHz 40V PWM White LED Driver11. TDK: 2. Vishay-Dale: 3. Diodes Inc: 4. Murata: 5. Coilcraft: 6. Micrel, Inc : PCB Layout RecommendationsTop LayerBottom Layer。

LED英文资料及中文翻译

LED英文资料及中文翻译

First LED SummaryLED (Light Emitting Diode), light-emitting diode, is a solid state semiconductor devices, which can be directly converted into electricity to light. LED is the heart of a semiconductor chip, the chip is attached to one end of a stent, is the negative side, the other end of the power of the cathode, the entire chip package to be epoxy resin. Semiconductor chip is composed of two parts, part of the P-type semiconductor, it inside the hole-dominated, the other side is the N-type semiconductor, here is mainly electronic. But linking the two semiconductors, among them the formation of a "PN junction." When the current through the wires role in this chip, will be pushing e-P, P zone in the hole with electronic composite, and then to be issued in the form of photon energy, and this is the principle of LED luminescence. The wavelength of light that is the color of light, is formed by the PN junction of the decisions of the material. Second LED history and development50 years ago, people have to understand semiconductor materials can produce light of the basic knowledge, the first commercial diodes in 1960. English is the LED light emitting diode (LED) acronym, and its basic structure is an electroluminescent semiconductor materials, placed in a wire rack, then sealed with epoxy resin around, that is, solid package, Therefore, the protection of the internal batteries can play the role of line, so the seismic performance LED good.LED is the core of the P-type semiconductor and components of the N-type semiconductor chips, the P-type semiconductor and N-type semiconductor between a transition layer, called the PN junction. In some semiconductor materials in the PN junction, the injection of a small number of carrier-carrier and the majority of theextra time will be in the form of light energy to release, thus the power to direct conversion of solar energy. PN junction on reverse voltage, a few hard-carrier injection, it is not luminous. This use of injection electroluminescent diodes is produced by the principle of light-emitting diodes, commonly known as LED. When it in a positive state of the work (that is, at both ends with forward voltage), the current flows from the LED anode, cathode, semiconductor crystals on the issue from the ultraviolet to infrared light of different colors, light and the strength of the currents.Instruments used for the first LED light source instructions, but all kinds of light colored LED lights in traffic and large screen has been widely applied, have a very good economic and social benefits. The 12-inch red traffic lights as an example, is used in the United States have long life, low-efficiency 140 watt incandescent lamp as a light source, it produced 2,000 lumens of white light. The red filter, the loss-90 percent, only 200 lumens of red light. In the light of the new design, Lumileds companies have 18 red LED light source, including the loss of circuit, a total power consumption of 14 watts to generate the same optical effect. Automotive LED lights is also the source of important areas.For general lighting, people need more white light sources. The 1998 white LED successful development. This is the GaN LED chip and Yttrium Aluminum Garnet (YAG) package together cause. GaN chip of the Blu-ray (λ p = 465nm, Wd = 30nm), made of high-temperature sintering of the Ce3 + YAG phosphors excited by this Blu-ray after irradiating a yellow, the peak 550 nm. Blue-chip installed in the LED-based Wanxing reflection in the cavity, covered with a resin mixed with YAG thin layer, about 200-500 nm. LED-based tablets issued by the Blu-ray absorptionpart of the phosphor, the phosphor another part of the Blu-ray and a yellow light mixed, can be a white. Now, the InGaN / YAG white LED, YAG phosphor by changing the chemical composition of the phosphor layer and adjust the thickness of the 3500-10000 K color temperature can be colored white. This blue LED through the method by white, constructed simple, low-cost, high technology is mature, so use the most.The development of LED display can be divided into the following phases: first phase 1990 to 1995, mainly monochrome and 16 color graphics screen. Used to display text and simple images, mainly used in railway stations, financial securities, banks, post offices and other public places, as public information display tools. The second stage is from 1995 to 1999, there have been 64, 256 level gray-scale two-color video screen. Video control technology, image processing, optical fiber communication technology applications will enhance the LED display to a new level. LED display control LSI chips special at this time developed by domestic companies, and can be applied. The third stage, from 1999, red, pure green, blue LED in bulk into China, while domestic enterprises in-depth research and development work, using red, green, and blue LED production of full-color display has been widely used , poured into sports stadiums, convention centers, squares and other public places, which will bring the domestic large-screen full-color era. With the rapid development of LED materials market, surface mount device is available from 2001, mainly used in indoor full color, and its high brightness, colorful, low temperature characteristics, the point spacing can be adjusted by different price Requirements were accepted, in just two years time, product sales have more than 300 million yuan, surface mount full-color LED display application market entered the newcentury. To meet the 2020 Olympic Games, "downsizing" plan, Liard developed a surface mount dual color displays, a lot of time for the training center and game scoring. Full color in Olympic venues, in order to tighten investment, full color way is mostly detachable, live during the Olympic Games as a tool can be used for rental after the event, as the performance of national policies such as public places, tools released by In this way cost recovery as soon as possible. On the market, China's accession to WTO, Beijing's successful Olympic bid and so on, into the development of LED display industry, a new opportunity. Domestic LED display market continues to grow, currently in the domestic market, domestic LED display market share of nearly 95%. LED display the international market capacity is expected to 30% a year growth rate. Currently, LED display manufacturers concentrated primarily in Japan, North America, China LED manufacturers in which the insignificant share of exports. According to incomplete statistics, the world, there are at least 150 manufacturers full color, in which products are complete, the larger company has some 30 or so.Third LED advantagesConductor light-emitting diode (LED) as a third-generation semiconductor lighting source. This fantastic product has a lot of advantages: (1) efficient light: spectra of almost all concentrated in the visible light frequency, the efficiency can reach 80% -90%. The luminous efficiency of incandescent visible light efficiency of almost 10% -20% only. (2) high quality of light: not as a result of spectrum UV and infrared, there is no heat, no radiation, is typically a green light illumination. (3) energy consumption of the small: single power generally , through the cluster can betailored to meet different needs, and waste very little. As a light source, under the brightness in the same power consumption of only ordinary incandescent1/8-10. (4) long life: flux attenuation to 70% of the standard life expectancy is 100,000 hours. A semiconductor light can be used under normal circumstances 50 years, even if the long life of the people, life will be used up to two lights. (5) durable and reliable: No tungsten wire, glass and other easily damaged components, non-normal retirement rate is very small, very low maintenance costs. (6) the application of flexibility: small size, can flat pack, easy to develop into a short thin products, make point, line, face various forms of specific applications. (7) Security: working voltage or less in between the current 20-70mA in between. (8) green: recyclable waste, no pollution, unlike fluorescent lamps containing mercury as ingredients. (9) response time is short: to adapt to frequent and high-frequency switching operation of occasions.Fourth Classification of LED display1, color by color can be divided intoSingle-color display: Single color (red or green).Two-color display: red and green dual-color, 256 gray scale levels, can display 65,536 colors.Full-color screen: red, green, blue color, 256 grayscale full color display can display more than 16 million kinds of colors.2, according to display device classificationLED Digital Display: 7 segment display devices for the digital control code, suitable for production of the clock screen, the interest rate screens, showing the number of electronic display.LED dot-matrix graphic display: display device is arranged by a number of uniform composition of the dot-matrix LED display modules, suitable for broadcast text,image information.LED video display: display devices are formed by a number of light-emitting diodes that can display video, animation and other video files.3, by using the occasion categoriesIndoor Display: LED spots smaller, genera l Φ3mm - Φ8mm, shows the general area of a few to more than ten square meters.Outdoor Display: dozens of square meters in size to several hundred square meters, high brightness, can work in the sun, with wind, rain, water resistant.4, classified according to light spot diameterIndoor screen: Φ3mm, Φ, Φ5mm,Room external screen: Φ10mm, Φ12mm, Φ16mm, Φ19mm, Φ20mm, Φ21mm, Φ22mm, Φ26mmRoom external screen as the basic unit of light emitting tube, LED tube principle is a set of red, green, and blue light-emitting diode sealed in a plastic barrel and jointly develop5, Display a static, horizontal scroll, vertical scroll and flip display. One block module control drive 12 (up to control 24) 8X8 Dot Matrix, a total of 16X48 dot matrix (or 32X48 dot matrix), is a single block of MAX7219 (or PS7219, HD7279, ZLG7289 and 8279, and the like LED display driver module) 12 times (or 24 times)! Can use "cascade" approach the composition of any large dot matrix display. Effects, good power consumption, and the MAX7219 circuit than the use of lower cost.Fifth LED applicationsIt is a semiconductor light-emitting diode by controlling the display, whichprobably look like that from lots of small red lights are usually formed by the bright lights off to show character. Used to display text, graphics, images, animations, quotes, video, video signals and other information on the display screen.Graphic display and LED display into the video display by the LED matrix blocks. Graphic displays can be synchronized with the computer display Chinese characters, English text and graphics; video display using micro-computer control, graphics, images, and Mao, real-time, synchronization, clear message to the broadcast of a variety of information dissemination, but also shows two dimensional, three-dimensional animation, video, TV, VCD programs and live on. LED display shows the screen brightly colored, three-dimensional sense of strong, static, such as painting, moving as the film is widely used in finance, tax, business, telecommunications, sports, advertising, industrial enterprises, transport, education systems, stations, docks, airports, shopping malls, hospitals, hotels, banks, securities markets, construction market, auction houses, industrial enterprises in management and other public places.LED display can show changes in the numbers, text, graphics and video; not only can be used in the indoor environment can also be used for outdoor environment, with a projector, TV wall, LCD screen can not match advantage.Sixth LED screen test methodA look at Screen size, appearance, smoothness, with the screen connection and so onSecond look after the dead pixel screen light up, not in not within the scope of (in general the screen is basically gone now)Color consistency, display text is normal, display pictures, play full screen full colorto white, red, green, and blue.一LED概述LED(Light Emitting Diode),发光二极管,是一种固态的半导体器件,它能够直接把电转化为光。

LM3552 White LED Flash Driver Evaluation Board 用户指

LM3552 White LED Flash Driver Evaluation Board 用户指

User's GuideSNVA174A–September2006–Revised April2013 AN-1495LM3552White LED Flash Driver Evaluation Board1IntroductionTo operate the LM3552White LED Flash Driver Evaluation Board,connect a supply voltage(2.7V to5.5V) between board connectors VIN and GND.2Board Operation:Basic ConnectionsTo operate the LM3552White LED Flash Driver Evaluation Board,connect a supply voltage(2.7V to5.5V) between board connectors VIN and GND.Default Jumper Connections:•EN:Connects the“OFF”post to the middle post of the EN header strip.This connects GND to the EN pin of the LM3552,disabling the part.•T/F:Connects the“T”post to the middle post of the T/F header strip.This connects GND to the T/F pin of the LM3552,placing the part into the200mA torch mode when the part is enabled When these connections are all made correctly,the Flash LED will be OFF.Setting the EN jumper to the ON position will enable the part and turn on the flash LED.In torch mode,the LED current will be set to approximately200mA.Placing the T/F jumper across the'+'pin and the T/F pin enables flash mode.The total current delivered to the LED is approximately700mA.If this jumper is left in flash mode,the internal time-out circuit will disable the switcher after approximately1second.The EN pin has an internal pull-down resistor placing the part in shutdown by default.The T/F pin does not have a pull-up or pull-down resistor.If left unconnected,it is unknown as to whether the LM3552is in torch or flash mode.For more information regarding the operation of the LM3551/2,please refer to LM3551/LM35521A White LED Driver with Flash Timeout Protection(SNVS371).All trademarks are the property of their respective owners.1 SNVA174A–September2006–Revised April2013AN-1495LM3552White LED Flash Driver Evaluation Board Submit Documentation FeedbackCopyright©2006–2013,Texas Instruments IncorporatedC OUTL1V Schematic 3Schematic4Bill of MaterialsComponent DimensionsTemperature Value Package Manufacturer Part #Symbol (mm)CharacteristicLM3552--NHL0014B 4.0×4.0×0.8--Texas LM3552WSON14Instruments LED Flash LED -- 2.04×1.64×0.7--Lumileds LXCL-PWF1L1 4.7µH -- 4.5×4.7×1.4--TDK VLF5014AT-4R7M1R1C IN 10µF,10V 0805 2.0×1.25×1.45X5R TDK C2012X5R1A106K C OUT 10µF,16V 1206 3.2×1.6×1.9X7R TDK C3216X7R1C106M C C 4.7nF 0805 2.0×1.25×1.45C0G TDK C2012C0G1H472J C FTO 1uF,10V 0603 1.6×0.8×0.9X5R TDK C1608X5R1A105C SS 0.1µF 0603 1.6×0.8×0.9X7R TDK C1608X7R1E104D11A,20V SOD-123 3.6×1.65×0.95--ONMBR120VLSFT1Semiconductor R C 10k Ω0805 2.0×1.25×0.45--Vishay Dale CRCW08051002F R T 5.6Ω,1/2W 2010 5.0×2.5×0.6--Panasonic ERJ-12ZYJ5R6U R F2.2Ω,1/2W20105.0×2.5×0.6--PanasonicERJ-12ZYJ2R2U2AN-1495LM3552White LED Flash Driver Evaluation BoardSNVA174A–September 2006–Revised April 2013Submit Documentation FeedbackCopyright ©2006–2013,Texas Instruments Incorporated LM3552White LED Flash Driver Evaluation Board Layout 5LM3552White LED Flash Driver Evaluation Board LayoutFigure1.Top LayerFigure2.Bottom Layer(unmirrored)3 SNVA174A–September2006–Revised April2013AN-1495LM3552White LED Flash Driver Evaluation Board Submit Documentation FeedbackCopyright©2006–2013,Texas Instruments IncorporatedIMPORTANT NOTICETexas Instruments Incorporated and its subsidiaries(TI)reserve the right to make corrections,enhancements,improvements and other changes to its semiconductor products and services per JESD46,latest issue,and to discontinue any product or service per JESD48,latest issue.Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.All semiconductor products(also referred to herein as“components”)are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.TI warrants performance of its components to the specifications applicable at the time of sale,in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products.Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty.Except where mandated by applicable law,testing of all parameters of each component is not necessarily performed.TI assumes no liability for applications assistance or the design of Buyers’products.Buyers are responsible for their products and applications using TI components.To minimize the risks associated with Buyers’products and applications,Buyers should provide adequate design and operating safeguards.TI does not warrant or represent that any license,either express or implied,is granted under any patent right,copyright,mask work right,or other intellectual property right relating to any combination,machine,or process in which TI components or services are rmation published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement e of such information may require a license from a third party under the patents or other intellectual property of the third party,or a license from TI under the patents or other intellectual property of TI.Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties,conditions,limitations,and notices.TI is not responsible or liable for such altered rmation of third parties may be subject to additional restrictions.Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.Buyer acknowledges and agrees that it is solely responsible for compliance with all legal,regulatory and safety-related requirements concerning its products,and any use of TI components in its applications,notwithstanding any applications-related information or support that may be provided by TI.Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures,monitor failures and their consequences,lessen the likelihood of failures that might cause harm and take appropriate remedial actions.Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.In some cases,TI components may be promoted specifically to facilitate safety-related applications.With such components,TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements.Nonetheless,such components are subject to these terms.No TI components are authorized for use in FDA Class III(or similar life-critical medical equipment)unless authorized officers of the parties have executed a special agreement specifically governing such use.Only those TI components which TI has specifically designated as military grade or“enhanced plastic”are designed and intended for use in military/aerospace applications or environments.Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk,and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.TI has specifically designated certain components as meeting ISO/TS16949requirements,mainly for automotive use.In any case of use of non-designated products,TI will not be responsible for any failure to meet ISO/TS16949.Products ApplicationsAudio /audio Automotive and Transportation /automotiveAmplifiers Communications and Telecom /communicationsData Converters Computers and Peripherals /computersDLP®Products Consumer Electronics /consumer-appsDSP Energy and Lighting /energyClocks and Timers /clocks Industrial /industrialInterface Medical /medicalLogic Security /securityPower Mgmt Space,Avionics and Defense /space-avionics-defense Microcontrollers Video and Imaging /videoRFID OMAP Applications Processors /omap TI E2E Community Wireless Connectivity /wirelessconnectivityMailing Address:Texas Instruments,Post Office Box655303,Dallas,Texas75265Copyright©2013,Texas Instruments Incorporated。

基于PWM 调光的高显色性白光LED 混光优化方法

基于PWM 调光的高显色性白光LED 混光优化方法

第40卷㊀第12期2019年12月发㊀光㊀学㊀报CHINESEJOURNALOFLUMINESCENCEVol 40No 12Dec.ꎬ2019文章编号:1000 ̄7032(2019)12 ̄1538 ̄08㊀㊀收稿日期:2019 ̄07 ̄25ꎻ修订日期:2019 ̄09 ̄16㊀㊀基金项目:国家自然科学基金(61504095)资助项目SupportedbyNationalNaturalScienceFoundationofChina(61504095)基于PWM调光的高显色性白光LED混光优化方法田会娟1ꎬ2∗ꎬ胡㊀阳2ꎬ3ꎬ陈㊀陶2ꎬ3ꎬ柳建新4ꎬ蔡敏鹏1ꎬ2ꎬ关㊀涛1ꎬ2(1.天津工业大学电气工程与自动化学院ꎬ天津市电工电能新技术重点实验室ꎬ天津㊀300387ꎻ2.大功率半导体照明应运系统教育部工程研究中心ꎬ天津㊀300387ꎻ3.天津工业大学电子与信息工程学院ꎬ天津㊀300387ꎻ㊀4.天津成科传动机电技术股份有限公司ꎬ天津㊀300384)摘要:提出了一种基于脉冲宽度调制(PWM)的红/绿/蓝/暖白(R/G/B/WW)四色发光二极管(LED)白光混合方法ꎮ该方法根据多基色混合白光光源相对光谱功率分布(SPD)符合线性叠加原理ꎬ采用1931CIE ̄XYZ三刺激值建立混合光中各光源色坐标与贡献率的关系ꎮ在优化目标显色性能最佳时ꎬ建立混合光的光通量与占空比的函数关系ꎬ并采用R/G/B/WW四色LED进行实验验证ꎮ结果表明ꎬR/G/B/WWLED模块可实现一般显色指数Ra在95以上㊁其最大相对误差为1.35%㊁相关色温在3000~7000K㊁光通量为200~1000lm㊁发光效率在170~240lm/W范围变化的白光调节ꎮ关㊀键㊀词:光学器件ꎻ脉冲宽度调制ꎻ发光二极管ꎻ高显色指数中图分类号:TN206㊀㊀㊀文献标识码:A㊀㊀㊀DOI:10.3788/fgxb20194012.1538OptimizationDimmingMethodofMixedLightforWhiteLightEmittingDiodewithHighColorRenderingIndexBasedonPulseWidthModulationTIANHui ̄juan1ꎬ2∗ꎬHUYang2ꎬ3ꎬCHENTao2ꎬ3ꎬLIUJian ̄xin4ꎬCAIMin ̄peng1ꎬ2ꎬGUANTao1ꎬ2(1.TianjinKeyLaboratoryofAdvancedElectricalEngineeringandEnergyTechnologyꎬSchoolofElectricalEngineeringandAutomationꎬTiangongUniversityꎬTianjin300387ꎬChinaꎻ2.EngineeringResearchCenterofMinistryofEducationonHighPowerSolidLightingApplicationSystemꎬTianjin300387ꎬChinaꎻ3.SchoolofElectronicsandInformationEngineeringꎬTiangongUniversityꎬTianjin300387ꎬChinaꎻ4.TianjinChengkeTransmissionElectromechanicalTechnologyCo.ꎬLtd.ꎬTianjin300384ꎬChina)∗CorrespondingAuthorꎬE ̄mail:tianhjgx@126.comAbstract:Thispaperproposesamethodofwhitelightmixedforred/green/blue/warm ̄white(R/G/B/WW)lightemittingdiode(LED)basedonpulsewidthmodulation(PWM).Accordingtotheprincipleoflinearsuperpositionoftherelativespectralpowerdistribution(SPD)ofmulti ̄colorwhiteLEDꎬtheproposedmodeladopts1931CIE ̄XYZtristimulustodeterminetherelationshipbetweenthecolorcoordinateandtherateofcontributionforeachchanneloftheLEDclusters.Whenthecol ̄orrenderingperformanceisoptimizedꎬthefunctionalrelationshipbetweenluminousfluxanddutycyclesofthemixedlightisestablished.AndtheexperimentalverificationiscarriedoutwithR/G/B/WWLEDclusters.TheexperimentalresultsshowthatR/G/B/WWLEDmodelcanrealizethatthecolorrenderingindexRaislargerthan95anditsmaximumrelativeerroris1.35%ꎬthecorrelationcolortemperature(CCT)ꎬtheluminousfluxandtheluminousefficiencychangeintherangeof3000~7000Kꎬ200~1000lmꎬ170~240lm/Wꎬrespectively.. All Rights Reserved.㊀第12期田会娟ꎬ等:基于PWM调光的高显色性白光LED混光优化方法1539㊀Keywords:opticaldeviceꎻpulsewidthmodulationꎻlight ̄emittingdiodeꎬhighcolorrenderingindex1㊀引㊀㊀言随着人们生活水平的提高以及LED应用领域的扩大ꎬ单一色温白光LED已经不能满足实际应用的需求ꎮ研究能满足优质照明需求的色温㊁亮度可调㊁成本低且易于实现的高显色性白光LED成为近年来的研究热点[1 ̄3]ꎮ殷录桥等[4]采用红绿蓝三基色发光二极管ꎬ模拟了类太阳光动态色温在不同时间段动态变化的照明光源ꎬ显色指数在33~37范围内ꎮ郭自泉等[5]模拟了在相关色温3000K时的三基色合成白光ꎬ得到最大显色指数为92.6ꎮ谌江波等[6]采用Ohno模型ꎬ用蓝光LED激发涂覆其上的绿橙双色荧光粉获得暖白光ꎬ与红㊁青㊁蓝3种LED光源混光ꎬ得到了宽色温范围下的高显色指数白光ꎬ这种方法需在特定光源上涂覆特定量荧光粉ꎮ田会娟等[7]提出了一种基于脉冲宽度调制(PWM)的R/G/B/WW四色LED调光调色模型ꎬ该模型在高色温混合白光时均匀性有待进一步提高ꎮ本文在上述PWM的基础上ꎬ研究了高显色性白光LED混光优化方法ꎬ该方法根据多基色混合白光光源相对光谱功率分布(SPD)符合线性叠加原理ꎬ采用1931CIE ̄XYZ三刺激值建立混合光中各光源色坐标与配光比关系ꎬ在优化目标显色性能最佳时ꎬ研究了各参数的测试精度ꎬ并采用R/G/B/WW四色LED进行实验验证ꎮ2㊀实㊀㊀验2.1㊀显色指数计算显色指数用来表示光源对被照射物体实际颜色的还原能力ꎬ最大值为100ꎬ其值越高ꎬ表明色彩还原能力越强ꎮ光源对某一标准颜色样品的特殊显色指数的计算公式为[5 ̄6ꎬ8 ̄9]:Ri=100-4.6ΔEi㊀(i=1ꎬ ꎬ14)ꎬ(1)其中ꎬΔEi为14种颜色样品在标准光源与待测光源下的色差ꎮ通常情况下用一般显色指数Ra表示光源的显色性能ꎬRa指特定的8个标准颜色样品的平均显色指数:Ra=ð8i=1Ri/8.(2)2.2㊀相关色温计算相关色温的计算公式为[10]:Tc=449n3+3525n2+6823.3n+5520.33ꎬ(3)它表示当光源发出光的颜色与黑体在某一温度下辐射的颜色接近时ꎬ黑体的温度就称为该光源的相关色温ꎬ式中n=(x-0.3320)/(0.1858-y)ꎬx㊁y为CIEx ̄y的色坐标ꎮ2.3㊀混合光计算多色彩混合白光的光源相对光谱功率分布(SPD)符合线性叠加原理[11 ̄12]:P(λ)=D1P1(λ)+D2P2(λ)+ +DnPn(λ)ꎬ(4)其中ꎬDn和Pn(λ)分别为第n种光源的占空比和在满电流工作状态下的光谱功率分布ꎮCIE ̄XYZ光谱三刺激值由CIE ̄RGB光谱三刺激值经过数学变换得到ꎬ记为X㊁Y㊁Zꎮ三刺激值在物体色度值的计算中代表人眼的颜色视觉特征参数ꎬ计算公式为[9ꎬ13]:Y=ʏV(λ)P(λ)dλX=xyYZ=1-x-yyYìîíïïïïïïꎬ(5)其中V(λ)是光谱光视效率函数ꎬP(λ)是混合光的光谱功率分布函数ꎮ根据混光原理ꎬ且便于控制变量ꎬ需先将四基色转变为三基色ꎮ可任选两色先进行混合ꎬ再将混合光与其余两单色光混合ꎮ为方便讨论ꎬ本文中先将四色中的G与WW混合ꎬ组成G/WW混合基色ꎮ设1lm总光通量下ꎬG在G+WW中的所占比例为rꎬ即r=G/(G+WW)ꎬ其三刺激值可表示为(XBꎬYBꎬZB)㊁(XGꎬYGꎬZG)㊁(XRꎬYRꎬZR)㊁(XWWꎬYWWꎬZWW)和(XG+WW(r)ꎬYG+WW(r)ꎬZG+WW(r))ꎬ则有以下关系[13]:[XG+WW(r)㊀YG+WW(r)㊀ZG+WW(r)]=[r㊀1-r]XGYGZGXWWYWWZWWéëêêùûúúꎬ(6)在任意比例r下ꎬR/G/B/WW四色LED在1lm总光通量下的混合光源中的贡献率分别用pR(r)㊁pG(r)㊁pB(r)㊁pWW(r)和pG+WW(r)表示ꎬ则有以下关系:. All Rights Reserved.1540㊀发㊀㊀光㊀㊀学㊀㊀报第40卷pB(r)pR(r)pG+WW(r)[]=[X㊀Y㊀Z] XBYBZBXRYRZRXG+WW(r)YG+WW(r)ZG+WW(r)éëêêêùûúúú-1ꎬ㊀(7)利用公式(7)计算结果可得出R/G/B/WW四色LED在目标光通量φ0下的混合白光中的光通量值:φB=pB(r) φ0φR=pR(r) φ0φG=r pG+WW(r) φ0φWW=(1-r)pG+WW(r) φ0ìîíïïïï.(8)3㊀实验测试与结果分析3.1㊀实验用光源模块及驱动电路实验采用八脚R/G/B/WW四合一LED灯珠8颗组成光源模块ꎮ为了使LED灯珠混光更加均匀且降低LED灯珠由于发热导致结温过高而引起色漂移和光效降低等问题ꎬ对该光源进行了光学仿真设计ꎬ得出其光源排布如图1所示ꎬ并采用导热硅胶固定在带有散热器的铝基板上ꎮ用远方光电公司的HASS ̄2000光谱分析系统测量光源模块中各色LED芯片满电流状态下的色度学参数及相对光谱功率分布ꎬ如图2和表1所示ꎮR/G/B/WW four in oneLED图1㊀R/G/B/WWLED灯珠排布图Fig.1㊀R/G/B/WWLEDlampbeadlayout1.21.0400800姿/nmR e l a t i v e s p e c t r a l p o w e r d i s t r i b u t i o n0.80.60.40.20500600700R G B W图2㊀R/G/B/W光源相对光谱功率分布Fig.2㊀R/G/B/Wsourcerelativespectralpowerdistribution表1㊀实验中R/G/B/WW四合一灯珠参数Tab.1㊀R/G/B/WWfour ̄in ̄onelampbeadparametersintheexperimentxyluminousflux/lmPeakwavelength/nmPower/WR0.68410.3158561.44628.72.27G0.15940.7048854517.12.88B0.14320.0519220.95460.42.94WW0.45690.431584.41Tc/KRa289861.92.74㊀㊀驱动电路主要由直流稳压电源㊁WiFi模块㊁STM32 ̄ARM模块㊁R/G/B/WW四合一LED光源模块组成ꎬ如图3所示ꎮ直流稳压电源将市电转换为电压为12V的直流电ꎬWiFi模块接收由手机端自主设计的调光APP发出的各色占空比比例信号ꎬ将信号反馈到STM32 ̄ARM模块ꎬSTM32 ̄ARM模块根据占空比与光通量关系控制R/G/B/WWLED光源模块混合比例ꎬ从而控制各色LED的混合比例完成调光混色实验[14 ̄15]ꎮ㊀DCpower supplyWifiSTM 32鄄ARM module &auxiliary circuitsJ 1J2J3J4J5R LED G LED B LED WW LEDFour 鄄in 鄄one RGBW lampbeads图3㊀R/G/B/WW四合一光源模块驱动电路原理图Fig.3㊀R/G/B/WWfour ̄in ̄onelightsourcemoduledrivecircuitschematic. All Rights Reserved.㊀第12期田会娟ꎬ等:基于PWM调光的高显色性白光LED混光优化方法1541㊀3.2㊀实验用光源模块占空比与光通量关系光通量与占空比存在线性关系[16]ꎬ利用远方光电公司的HASS ̄2000光谱分析系统测试得出R/G/B/WW四色LED在[0ꎬ100]占空比D范围内所对应的光通量φ值ꎬ采用Origin软件对测试得到的φR㊁φG㊁φB㊁φWW与相应的占空比DR㊁DG㊁DB㊁DWW进行线性拟合ꎬ得到基于本文所用光源的四色LED光通量与占空比间的关系ꎬ结果如图4所示ꎮ由图4可以看出φ和D线性拟合度高ꎬ其相关系数R2在0.99952~0.99992之间ꎬ同时可得该LED模组中各光源的光通量与占空比的关系:DR=(φR-4.76880)/5.64095DG=(φG+8.80387)/8.67738DB=(φB+1.06207)/2.22824DWW=(φWW+9.37122)/5.93198ìîíïïïï.(9)70060020100φRD R8060400(a )R 2=0.99952500400300200100090020100φGD G8060400(b )R 2=0.99984750600450300150024020020100φBD B806040(c )R 2=0.999921601208040070060020100φWWD W W8060400(d )R 2=0.999715004003002001000图4㊀R/G/B/WW四色LED占空比与光通量间的关系ꎮ(a)φR ̄DRꎻ(b)φG ̄DGꎻ(c)φB ̄DBꎻ(d)φWW ̄DWWꎮFig.4㊀RelationshipbetweendutycycleandlightfluxofR/G/B/WWfourcolorLED.(a)φR ̄DR.(b)φG ̄DG.(c)φB ̄DB.(d)φWW ̄DWW.3.3㊀实验结果及分析3.3.1㊀最优显色性根据公式(2)㊁(3)㊁(7)可知ꎬ在不同色温下取不同的r值会得出不同的R/G/B/WW四色LED混合白光的配光比ꎬ不同的配光比会影响显色性能ꎬ故需要在一定色温下得出最优的显色指数ꎬ同时获取四色LED光源模块在最优显色指数下的占空比ꎮ在调光约束范围内ꎬ沿黑体轨迹取Tc分别为3000ꎬ5000ꎬ7000K时各自对应的CIE色坐标(0.437ꎬ0.4039)㊁(0.3452ꎬ0.3515)和(0.3065ꎬ0.3164)ꎬ光通量设定为500lmꎬ占空比在[1ꎬ100]范围内ꎬ改变r值ꎬ得出不同r下的R/G/B/WW四色LED各色光源的光通量比例ꎬ经公式(8)㊁(9)转换为占空比值ꎮ测试实验结果如表2和图5所示ꎮ由表2可知ꎬ相关色温和光通量的设定值与测量值一致性较好ꎬ3种相关色温设定值与测量值的平均相对误差分别为1.18%㊁1.43%和1.02%ꎬ3种色温下光通量设定值与测量值平均相对误差分别为2.04%㊁1.48%和1.71%ꎮ同时ꎬ进一步分析了该R/G/B/WW四色LED光源模型的显色性能ꎬ如图5所示ꎮ当设定相关色温为3000K时ꎬ显色指数随着r的增大先增大后减小ꎬ最高显色指数可达95.3ꎮ同样ꎬ在设定相关色温为5000K和7000K下ꎬ显色指数也是随着r的增大先增大后减小ꎬ但趋势不同ꎬTc=5000K时显色指数可达96.2ꎬTc=7000K时显色指数有所降低ꎬ最大值为96.1ꎮ当Tc=3000K时ꎬ红㊁绿㊁蓝LED组成的光谱缺少琥珀段光谱ꎬ这段光谱刚好可由暖白光补充ꎬ故最高显色指数可达95.3ꎻ在5000K时ꎬ由于蓝光. All Rights Reserved.1542㊀发㊀㊀光㊀㊀学㊀㊀报第40卷表2㊀光通量为500lm时ꎬ3种相关色温情况下设定值与测试值对比Tab.2㊀Comparisonofsetvaluesandtestvaluesforthreecorrelatedcolortemperatureswhentheluminousfluxis500lmSetrMeasuredφ/lmRealtiveerrorofφ/%Tc/KRelativeerrorofTc/%3000K0.05485.522.9031214.030.10495.760.8529890.370.15480.263.9530702.330.20484.863.0330030.100.25485.332.9329970.100.30485.852.8329960.130.35491.151.7730722.400.40497.260.5530672.230.45493.991.2030030.100.50501.880.3829990.035000K0.20498.920.2251553.100.25488.542.2951222.440.30486.772.6551012.020.35484.713.0651032.060.40472.105.5850480.960.45492.791.4448982.040.50493.961.2149790.420.55498.220.3649560.880.60493.731.2550531.060.65500.360.0750210.420.70502.350.4750190.380.75500.290.0649201.600.80496.850.6349421.167000K0.30493.391.3269790.300.35491.851.6369590.590.40488.842.2369520.690.45488.442.3168961.490.50490.022.0068182.600.55486.442.7169740.370.60492.681.4669670.470.65498.720.2668352.360.70492.651.4769770.33950.1Flux ratio r C o l o r r e n d e r i n g i d e x R a0.20.30.40.50.6090100858075706560950.2Flux ratio rC o l o r r e n d e r i n g i d e x R a0.40.50.60.890100858075706540950.3Flux ratio rC o l o r r e n d e r i n g i d e x R a0.40.50.60.70.80.290100858075706560556050450.10.30.70.9图5㊀显色指数Ra随混光比r的变化ꎮ(a)Tc=3000Kꎻ(b)Tc=5000Kꎻ(c)Tc=7000KꎮFig.5㊀ColorrenderingindexRavarieswiththelightmixingratior.(a)Tc=3000K.(b)Tc=5000K.(c)Tc=7000K.. All Rights Reserved.㊀第12期田会娟ꎬ等:基于PWM调光的高显色性白光LED混光优化方法1543㊀和绿光在光谱占有量的增大ꎬ光谱愈发趋于完整ꎬ显色指数可达到96.2ꎻ而在7000K时ꎬ红光光谱所占比例出现下降ꎬ而蓝光和绿光光谱所占比例更多ꎬ故显色指数会有所降低ꎬ最大值为96.1ꎮ整体而言ꎬLED光源模块在r变化时ꎬ显色指数均为先增大后减小ꎬ最优显色指数均可达到95以上ꎬ故以3种色温下的最优显色指数95.3ꎬ96.2ꎬ96.1作为R/G/B/WW四色LED配光比标准ꎬ在后续实验中均可得到非常优异的显色性能ꎮ3.3.2㊀光效和显色指数与光通量关系为了研究R/G/B/WW四色LED光源模块混合白光在最优显色性下光效和显色指数与光通量的关系ꎬ在得出最优显色指数配光比基础上ꎬ利用公式(5)~(7)计算出不同色温下四色LED在不同光通量下的配光比ꎬ根据比例调节各色LED对应的占空比值ꎬ从而进行不同光通量设定值下的实验验证ꎮ由表3可知ꎬ当设置相关色温为3000K时ꎬ测试色温与设置色温的平均误差为2.62%ꎬ光通量平均误差为1.41%ꎬ显色指数范围为94.2~95.5ꎬ与设置的最优显色指数平均误差为0.38%ꎬ光效范围为184.90~230.54lm/Wꎻ当设置相关色温为5000K时ꎬ测试色温与设置色温的平均误差为1.68%ꎬ光通量平均误差为2.80%ꎬ显色指数范围为94.9~96.8ꎬ与设置的最优显色指数表3 不同色温下测量值与设定值的对比Tab.3㊀ComparisonofmeasuredvaluesandsetvaluesatdifferentcolortemperaturesSetφ/lmMeasuredpower/WMeasuredφ/lmRealtiveerrorofφ/%MeasuredLE/(lm W-1)MeasuredTc/KRelativeerrorofTc/%MeasuredRaRelativeerrorofRa/%3000K2000.87200.410.20230.5431474.9095.10.213001.29293.412.20227.4431254.1794.21.174001.82390.862.29214.4331304.3394.70.635002.40496.960.61207.4430170.5795.20.116002.98588.191.97197.6430622.0795.50.217003.58689.931.44192.7130541.8095.10.218004.28790.551.18184.9030160.5395.40.105000K2000.82195.602.20239.5748043.9294.91.353001.33287.634.12216.7849491.0295.30.944001.80387.473.13215.3649131.7496.00.215002.31475.184.96205.4849760.4896.10.106002.95585.902.35198.6550100.2096.207003.52681.152.69193.4150981.9696.208004.19790.271.22188.7649002.0096.70.529004.99884.611.71177.3248952.1096.80.627000K2000.86195.892.06229.0969001.4395.20.953001.26293.442.19233.4967283.8995.60.524001.80388.402.90215.9267942.9496.20.105002.46489.842.03198.7367423.6996.50.416003.04584.092.65192.0967263.9196.20.107003.67682.382.52185.9668562.0695.80.318004.39789.301.34179.9568462.2096.00.109005.01885.741.58176.6769880.1796.40.3110005.61975.762.42174.0468232.5396.40.31. All Rights Reserved.1544㊀发㊀㊀光㊀㊀学㊀㊀报第40卷平均误差为0.47%ꎬ光效范围为177.32~239.57lm/Wꎻ当设置相关色温为7000K时ꎬ测试色温与设置色温的平均误差为2.54%ꎬ光通量平均误差为2.19%ꎬ显色指数范围为91.2~96.4ꎬ与设置的最优显色指数平均误差为0.35%ꎬ光效范围为174.04~229.09lm/Wꎮ由上述实验分析可知ꎬ3种相关色温下ꎬ一般显色指数Ra均可达到高显色性要求ꎬ混合光在相同光通量不同色温下ꎬ功率几乎一样且都随着光通量的增大而增大ꎬ这说明混合光源模块的功率是由光通量决定的ꎮ本实验中采用四合一灯珠且多灯珠同时点亮ꎬ虽然考虑了芯片结温的升高会影响芯片性能并设计了散热结构ꎬ但随着光通量的增加ꎬ灯珠功率随之增大ꎬ功率的增大不可避免地使得LED芯片的结温升高ꎬ从而导致光效降低ꎬ如表3所示ꎮ由于色温越高色品坐标越敏感ꎬ因此7000K下的误差平均值略大于3000K和5000K下的误差平均值ꎮ当相关色温为5000K时ꎬ只需极少量的单色LED参与混光即可实现目标色温下的混合光ꎬ因此5000K时混合光的光效最大ꎮ光通量的增加不改变3种色温的光谱ꎬ故显色指数理论上应该无变化ꎬ实际测试结果中显色指数有变化但幅度图6㊀R/G/B/WWLED光源模块的照明效果图ꎮ(a)Tc=3000Kꎻ(b)Tc=5000Kꎻ(c)Tc=7000KꎮFig.6㊀LightingeffectphotosofR/G/B/WWLEDmodule.(a)Tc=3000K.(b)Tc=5000K.(c)Tc=7000K.不大ꎬ这是由于测量误差及占空比调节时的四舍五入造成的ꎮ图6为相关色温在3000ꎬ5000ꎬ7000K时四色LED模块的照明效果ꎮ综上所述ꎬ对于R/G/B/WW四色LED光源模块ꎬ通过实验得出不同色温下的最优显色性配光比后ꎬ可实现一般显色指数大于95且光通量㊁色温可调的高显色性㊁高光效混合白光ꎬ在实际运用中具有重要意义ꎮ4㊀结㊀㊀论智能照明是未来照明发展的大趋势ꎬ本文在基于PWM调制的基础上ꎬ利用色坐标与三刺激关系ꎬ采用R/G/B/WW四合一灯珠设计光源模块ꎬ建立各通道占空比与光通量的关系ꎬ计算得出不同色温下R/G/B/WW在混合白光中的比例ꎬ通过测色法找出显色指数最优时各色配光比ꎬ以此为基础在高显色性下研究光通量与功率㊁光效和显色指数的关系ꎮ实验结果表明ꎬ相关色温在3000ꎬ5000ꎬ7000K下ꎬ可实现一般显色指数在94.2~96.8㊁光效在174.0~239.6lm/W的高显色指数㊁高光效混合白光ꎮ设置光通量与测试光通量平均误差为2.17%ꎬ设置色温与测试色温平均误差为2.28%ꎬ混合光设置显色指数与测试显色指数平均误差为0.40%ꎮ需要注意的是ꎬ红㊁绿㊁蓝芯片的光效㊁光谱的半高全宽和峰值波长以及白光芯片的光效和显色性能都会对混合白光的显色指数和光效产生影响ꎬ且混合白光中缺少波长在450~510nm之间的青色光光谱ꎬ同时因为未对灯板进行后期灯具设计ꎬ在灯板水平发光面附近光混效果较差ꎮ后续工作将对这些问题进行系统研究ꎬ若能补齐混合光谱中缺失波长部分的光谱ꎬ且增强水平混光效果ꎬ显色指数可进一步提高ꎮ参㊀考㊀文㊀献:[1]DAIQꎬSHANQFꎬLAMHꎬetal..Circadian ̄effectengineeringofsolid ̄statelightingspectraforbeneficialandtunablelighting[J].Opt.Expressꎬ2016ꎬ24(18):20049 ̄20059.[2]徐代升ꎬ陈晓ꎬ朱翔ꎬ等.基于冷暖白光LED的可调色温可调光照明光源[J].光学学报ꎬ2014ꎬ34(1):0123004 ̄1 ̄7.XUDSꎬCHENXꎬZHUXꎬetal..AdimminglightingsourcebasedoncoldandwarmwhiteLEDs[J].ActaOpt.Sinicaꎬ2014ꎬ34(1):0123004 ̄1 ̄7.(inChinese)[3]梅健健ꎬ刘丽兰.基于三基色LED的白光色温偏差研究[J].光学学报ꎬ2016ꎬ36(8):0833001 ̄1 ̄7.MEIJJꎬLIULL.ResearchonwhitelightcolortemperaturedeviationbasedontricolorLEDs[J].ActaOpt.Sinicaꎬ. All Rights Reserved.㊀第12期田会娟ꎬ等:基于PWM调光的高显色性白光LED混光优化方法1545㊀2016ꎬ36(8):0833001 ̄1 ̄7.(inChinese)[4]殷录桥ꎬ杨卫桥ꎬ李抒智ꎬ等.基于三基色的动态色温白光发光二极管照明光源[J].光学学报ꎬ2011ꎬ31(5):0523004 ̄1 ̄7.YINLQꎬYANGWQꎬLISZꎬetal..Dynamiccolortemperaturewhitelightingsourcebasedonredgreenandbluelightemittingdiode[J].ActaOpt.Sinicaꎬ2011ꎬ31(5):0523004 ̄1 ̄7.(inChinese)[5]郭自泉ꎬ高玉琳ꎬ吕毅军ꎬ等.固定相关色温下三基色合成白光LED的光谱优化[J].光电子 激光ꎬ2011ꎬ22(7):992 ̄996.GUOZQꎬGAOYLꎬLVYJꎬetal..Spectrumoptimizationoftri ̄colorwhiteLEDsatfixedcorrelatedcolortemperature[J].J.Optoelectron.Laserꎬ2011ꎬ22(7):992 ̄996.(inChinese)[6]谌江波ꎬ余建华ꎬ高亚飞ꎬ等.超高显色指数和色温可调的LED白光照明光源研究[J].光学学报ꎬ2015ꎬ35(10):1023002 ̄1 ̄7.CHENJBꎬYUJHꎬGAOYFꎬetal..StudyontunablecolortemperaturewhiteLEDlightsourcewithultra ̄highcolorren ̄deringindex[J].ActaOpt.Sinicaꎬ2015ꎬ35(10):1023002 ̄1 ̄7.(inChinese)[7]田会娟ꎬ柳建新ꎬ洪振ꎬ等.基于脉冲宽度调制的R/G/B/WW4色发光二极管调光调色方法[J].光学学报ꎬ2018ꎬ38(4):0423002 ̄1 ̄7.TIANHJꎬLIUJXꎬHONGZꎬetal..DimmingmethodforR/G/B/WWlightemittingdiodebasedonfourchannels pulsewidthmodulation[J].ActaOpt.Sinicaꎬ2018ꎬ38(4):0423002 ̄1 ̄7.(inChinese)[8]胡奕彬ꎬ庄其仁ꎬ刘士伟ꎬ等.高显色指数LED合成白光光源的研究[J].光学学报ꎬ2016ꎬ36(3):0323003 ̄1 ̄10.HUYBꎬZHUANGQRꎬLIUSWꎬetal..StudyonLEDssynthesizedhighcolorrenderingindexwhitelightsource[J].ActaOpt.Sinicaꎬ2016ꎬ36(3):0323003 ̄1 ̄10.(inChinese)[9]荆其诚ꎬ焦书兰.色度学[M].北京:科学出版社ꎬ1979.JINGQCꎬJIAOSL.Colorimetry[M].Beijing:SciencePressꎬ1979.(inChinese)[10]LEEATLꎬCHENHTꎬTANSCꎬetal..PrecisedimmingandcolorcontrolofLEDsystemsbasedoncolormixing[J].IEEETrans.PowerElectron.ꎬ2016ꎬ31(1):65 ̄80.[11]宋鹏程ꎬ文尚胜ꎬ陈颖聪.基于RGBW四色LED的混光研究[J].光学学报ꎬ2015ꎬ35(9):0923004 ̄1 ̄9.SONGPCꎬWENSSꎬCHENYC.ResearchoncolormixingbasedonRGBW ̄LEDs[J].ActaOpt.Sinicaꎬ2015ꎬ35(9):0923004 ̄1 ̄9.(inChinese)[12]XUMSꎬZHANGHXꎬZHOUQBꎬetal..Effectsofspectralparametersonthelightpropertiesofred ̄green ̄bluewhitelight ̄emittingdiodes[J].Appl.Opt.ꎬ2016ꎬ55(16):4456 ̄4460.[13]DAIQꎬCAIWꎬHAOLꎬetal..Spectraloptimisationandanovellighting ̄designspacebasedoncircadianstimulus[J].Light.Res.Technol.ꎬ2018ꎬ50(8):1198 ̄1211.[14]金宇章ꎬ韩秋漪ꎬ张善端.三通道六色LED合成高品质白光的模拟和计算[J].照明工程学报ꎬ2015ꎬ26(2):54 ̄59.JINYZꎬHANQYꎬZHANGSD.SimulationandcalculationofhighqualitywhitelightmixedwiththreechannelsandsixcolorLEDs[J].ChinaIlluminat.Eng.J.ꎬ2015ꎬ26(2):54 ̄59.(inChinese)[15]喻春雨ꎬ金鹏ꎬ周奇峰.多基色混合白光LED显色性优化研究[J].光谱学与光谱分析ꎬ2015ꎬ35(5):1316 ̄1319.YUCYꎬJINPꎬZHOUQF.Optimizingcolorrenderingformixed ̄colorwhitelightLED[J].Spectrosc.SpectralAnal.ꎬ2015ꎬ35(5):1316 ̄1319.(inChinese)[16]WUCCꎬHUNCꎬCHENJNꎬetal..ParameterisedLEDcurrentregulatorforpulsewidthmodulationswitchdelayforac ̄curatecolourmixinginmulti ̄LEDlightsources[J].Light.Res.Technol.ꎬ2014ꎬ46(2):171 ̄186.田会娟(1979-)ꎬ女ꎬ河北新乐人ꎬ博士ꎬ副教授ꎬ2009年于天津大学获得博士学位ꎬ主要从事光电检测与控制技术的研究ꎮE ̄mail:tianhjgx@126.com. All Rights Reserved.。

白光LED 光谱特性及司辰节律因子

白光LED 光谱特性及司辰节律因子

第40卷㊀第12期2019年12月发㊀光㊀学㊀报CHINESEJOURNALOFLUMINESCENCEVol 40No 12Dec.ꎬ2019㊀㊀收稿日期:2019 ̄07 ̄10ꎻ修订日期:2019 ̄08 ̄04㊀㊀基金项目:国家自然科学基金(61975072)ꎻ福建省自然科学基金(2018J05110ꎬ2018J01551ꎬ2017J01772)ꎻ福建省高校创新团队培育计划(光电材料与器件应用)ꎻ福建省教育厅科技项目(JZ160452ꎬJAT160293ꎬJT180296ꎬJAT160457/B201606ꎬJA14207)ꎻ福建省重大教学改革项目(FBJG20180015)ꎻ漳州市自然科学基金(ZZ2019J01ꎬZZ2016J40)资助项目SupportedbyNationalNaturalScienceFoundationofChina(61975072)ꎻNaturalScienceFoundationofFujianProvince(2018J05110ꎬ2018J01551ꎬ2017J01772)ꎻProgramforInnovativeResearchTeaminScienceandTechnologyinFujianProvinceUniversity(OptoelectronicMaterialsandDeviceApplication)ꎻNaturalScienceFoundationofFujianHigherEducationInstitutions(JZ160452ꎬJAT160293ꎬJT180296ꎬJAT160457/B201606ꎬJA14207)ꎻFoundationofFujianProvinceGreatTeachingReform(FBJG20180015)ꎻNaturalScienceFoundationofZhangzhou(ZZ2019J01ꎬZZ2016J40)文章编号:1000 ̄7032(2019)12 ̄1514 ̄09白光LED光谱特性及司辰节律因子沈雪华1ꎬ2ꎬ陈焕庭1ꎬ2∗ꎬ陈赐海1ꎬ2ꎬ林惠川1ꎬ2ꎬ李㊀燕1ꎬ2ꎬ陈福昌1ꎬ2(1.闽南师范大学物理与信息工程学院ꎬ福建漳州㊀363000ꎻ2.福建省光电材料与器件应用行业技术开发基地ꎬ福建漳州㊀363000)摘要:为分析白光LED的光 ̄电 ̄热特性及其变化ꎬ在热沉温度和驱动电流可控的条件下ꎬ测试了温度㊁电流对白光LED光谱分布的影响ꎬ建立了白光LED光功率和光谱蓝白比(蓝光光谱光功率与白光光谱光功率的比值)预测模型ꎮ相关性分析显示光谱蓝白比㊁色温及司辰节律因子之间高度相关ꎬ光谱蓝白比与色温㊁光谱蓝白比与司辰节律因子均存在线性关系ꎬ表明由光谱分布变化预测光谱色温漂移及其非视觉生物效应的可能性ꎮ实验结果表明ꎬ白光LED光功率㊁蓝白比㊁色温及司辰节律因子的预测值与实测值吻合较好ꎬ最大预测误差分别不超过4.22%㊁1.54%㊁1.31%和2.15%ꎻ同时ꎬ白光LED光谱蓝白比可作为一种有效手段ꎬ用于预测光谱色温及司辰节律因子ꎬ进而评估其光学特性和非视觉生物效应ꎮ关㊀键㊀词:白光LEDꎻ功率预测ꎻ色温漂移ꎻ司辰节律因子ꎻ非视觉生物效应中图分类号:TN312.8㊀㊀㊀文献标识码:A㊀㊀㊀DOI:10.3788/fgxb20194012.1514SpectralCharacteristicsandCircadianActionFactorofWhiteLEDsSHENXue ̄hua1ꎬ2ꎬCHENHuan ̄ting1ꎬ2∗ꎬCHENCi ̄hai1ꎬ2ꎬLINHui ̄chuang1ꎬ2ꎬLIYan1ꎬ2ꎬCHENFu ̄chang1ꎬ2(1.DepartmentofPhysicsandInformationEngineeringꎬMinnanNormalUniversityꎬZhangzhou363000ꎬChinaꎻ2.OptoelectronicMaterialsandDeviceApplicationIndustryTechnologicalDevelopmentBaseofFujianProvinceꎬZhangzhou363000ꎬChina)∗CorrespondingAuthorꎬE ̄mail:htchen23@qq.comAbstract:Toanalyzetheoptical ̄electrical ̄thermalcharacteristicsofwhiteLEDsꎬeffectsoftempera ̄tureandcurrentonthespectralpowerdistributionofthewhiteLEDweretestedunderthecontrolla ̄bleheatsinktemperatureandcurrent.Onthebasisꎬpredictionmodelsforspectralopticalpowerandblue ̄whiteratio(theratiobetweenblueopticalpowerandwhiteopticalpower)ofthewhiteLEDwereproposed.Correlationanalysisprovedthattheblue ̄whiteratiowashighlycorrelatedwiththecorrelatedcolortemperature(CCT)aswellascircadianactionfactor(CAF).Moreoverꎬlinearre ̄lationshipsbothexistbetweenblue ̄whiteratioandCCTꎬandbetweenblue ̄whiteratioandCAF.Itindicatesthepossibilitywhichqualitativelypredictingcolortemperaturedriftandnon ̄visualbiologi ̄caleffectsofthewhitespectrumfromchangingspectralpowerdistribution.Experimentalresultsshowthatꎬthemaximumpredictionerrorsofspectralopticalpowerꎬblue ̄whiteratioꎬCCTandCAFofthewhiteLEDwerewithin4.22%ꎬ1.54%ꎬ1.31%and2.15%ꎬrespectively.Meanwhileꎬthespectralblue ̄whiteratiocanbeusedasaneffectivemethodtopredictCCTandCAFofthespectrumꎬ. All Rights Reserved.㊀第12期沈雪华ꎬ等:白光LED光谱特性及司辰节律因子1515㊀andthustoevaluatethespectralopticalpropertiesandnon ̄visualbiologicaleffects.Keywords:whiteLEDsꎻopticalpowerpredictionꎻcolortemperaturedriftꎻcircadianactionfactorꎻnon ̄visualbio ̄logicaleffects1㊀引㊀㊀言发光二极管(Light ̄emittingdiodeꎬLED)因具有低功耗㊁长寿命和环境友好等优点ꎬ近年逐渐向通用照明领域普及[1 ̄3]ꎮ在白光LED制造中ꎬ以蓝光GaN基LED芯片与YAGʒCe荧光粉结合的方式最为普遍ꎮ通用照明中ꎬLED器件通常集成了多个LED芯片ꎬ且输入功率随着应用需求的提高不断增大ꎬ导致器件内部热量聚集[4]ꎮ而蓝光LED芯片和荧光粉均具有温度敏感特性ꎬ高温环境下蓝光GaN基LED芯片和荧光粉的光学特性会有不同程度的下降ꎬ引起光谱功率㊁光通量㊁色温等光学参数的变化ꎬ最终影响照明质量[5 ̄6]ꎮ因此ꎬ大功率白光LED器件的热效应和热管理成为当前LED研究和制造领域备受关注的问题[7]ꎮ光照除了提供视觉信息ꎬ还参与生物节律㊁大脑认知等生理功能的调节ꎬ即所谓 非视觉生物效应 ꎮ作为新一代照明光源ꎬLED的非视觉生物效应更为明显ꎬ相关研究不断深入ꎮ司辰节律因子(CircadianactionfactorꎬCAF)是由Berman提出的用以表征光的非视觉生物效应强度的因子ꎬ在多数研究中被采用[8]ꎮ郑莉莉等[9]通过计算三基色白光LED光源在不同电流下的司辰节律因子ꎬ对可调色温的三基色白光LED光源进行非视觉效应研究ꎮ宋丽妍等着重探讨了以LED为背光源的平板显示屏对人体非视觉生物效应的影响[10]ꎮ鲁玉红等针对人体在不同波长蓝光LED照射下的反应进行了研究[11]ꎮ陈仲林等将光的非视觉生物效应用于指导住宅㊁隧道和教室等场所的照明工程建设[12 ̄13]ꎮ本文通过测试研究了白光LED的光 ̄电 ̄热特性及其变化ꎬ建立了白光LED光功率及光谱蓝白比预测模型ꎬ分析了光谱蓝白比与色温㊁司辰节律因子的相关性ꎮ研究发现驱动电流和温度改变时ꎬ白光LED辐射光谱中的蓝光发射光谱和荧光粉发射光谱会有不同程度的变化ꎬ进而引起光功率改变㊁色温漂移和司辰节律因子变化ꎮ实验结果验证了本文提出的白光LED光功率和光谱蓝白比预测模型及其建立过程的正确性ꎬ表明了根据光谱蓝白比预测其色温漂移和非视觉生物效应强弱的合理性ꎬ可用于对特定白光LED光学性能的预测㊁分析和改进ꎮ2㊀白光LED光谱的光 ̄电 ̄热特性2.1㊀白光LED光谱的光 ̄热特性分析白光LED器件中ꎬ蓝光LED芯片发出的初始蓝光一部分被荧光粉吸收并转化为黄光ꎬ透射的蓝光和转换的黄光混合形成白光ꎮ蓝光LED芯片辐射蓝光以及荧光粉层辐射黄光的过程都伴随着热量的产生ꎮ因实际散热条件有限ꎬ白光LED器件内部热量无法及时传导ꎬ芯片结温和荧光粉层温度随着热量积累逐渐升高ꎬ导致芯片和荧光粉层光学性能下降ꎮ为探讨温度对LED芯片及荧光粉层的作用ꎬ本文在一定电流驱动下ꎬ通过改变热沉温度测试了白光LED的光谱分布变化ꎬ如图1ꎮ其中ꎬ驱动电流为350mAꎬ温度范围为25~85ħꎬ测试间隔为15ħꎮ3450750姿/nmIntensity/(mW·nm-1)42150040085℃25℃25℃40℃55℃70℃85℃700650600550图1㊀350mA电流驱动下白光LED的光谱功率分布Fig.1㊀SpectralpowerdistributionofwhiteLEDwithinjec ̄tioncurrentof350mA图1中ꎬ以虚线为界ꎬ左边为蓝光光谱分布ꎬ右边为荧光光谱分布ꎮ由图1可见ꎬ蓝光LED芯片发射峰强度明显随温度升高而降低ꎬ并且由于能带随着温度升高而收缩ꎬ其光谱整体红移ꎮ对于荧光光谱而言ꎬ因蓝光LED芯片激发波长受温度影响发生偏移ꎬ与荧光粉发射光谱匹配度降低ꎬ转换的黄光减少ꎬ导致荧光光谱强度整体呈下降. All Rights Reserved.1516㊀发㊀㊀光㊀㊀学㊀㊀报第40卷趋势ꎮ蓝光光谱光功率和荧光光谱光功率随温度的变化趋势如图2所示ꎮ3003080T /℃O p t i c a l p o w e r /m W40020015050402070605025035010090P opt,b(w)P opt,b(w)图2㊀350mA电流驱动下蓝光光谱光功率和荧光光谱光功率Fig.2㊀Opticalpowerofbluespectrumandphosphorspec ̄trumwithinjectioncurrentof350mA图2中ꎬPoptꎬb(w)表示蓝光光谱光功率ꎬPoptꎬp(w)表示荧光光谱光功率ꎮ保持驱动电流为350mAꎬ当热沉温度控制为25ħ时ꎬ蓝光光谱光功率为114.09mWꎬ荧光光谱光功率为289.04mWꎻ当热沉温度升高到85ħ时ꎬ蓝光光谱光功率降至110.57mWꎬ荧光光谱光功率降至258.65mWꎬ二者下降幅度分别为3.09%和10.51%ꎮ观察图2可见ꎬ蓝光光谱光功率和荧光光谱光功率均与热沉温度近似呈线性关系ꎬ则可设Poptꎬb(w)(IFꎬ0ꎬT)=a1T+a2ꎬ(1)Poptꎬp(w)(IFꎬ0ꎬT)=b1T+b2ꎬ(2)其中ꎬa1㊁a2㊁b1㊁b2均为常数ꎬ可通过对测量数据进行曲线拟合而获得ꎮa1㊁b1分别表示蓝光光谱光功率㊁荧光光谱光功率随热沉温度的变化系数ꎬ由两曲线倾斜程度可知a1<b1<0ꎮ从图2及二者功率下降幅度可见ꎬ荧光粉层受温度的影响较大ꎬ原因主要体现在3个方面:(1)温度升高ꎬGaN基蓝光芯片晶格振动加强ꎬ缺陷周围的载流子非辐射复合加剧ꎬ内量子效率下降ꎬ产生的初始蓝光能量减少[2]ꎻ(2)蓝光峰值波长因热效应发生红移ꎬ使得与荧光粉的匹配度下降[14]ꎻ(3)温度升高ꎬYAG荧光粉Ce3+4f基态与5d激发态之间的能量差减小ꎬ光转换效率下降[15]ꎮ蓝光光谱功率在温度升高时变化不大ꎬ原因在于:虽然蓝光芯片辐射的初始蓝光随温度升高而减少ꎬ但荧光粉层因热效应致使吸收的蓝光能量也减少ꎬ因而透射的蓝光辐射通量减少不明显ꎮ2.2㊀白光LED光谱的光 ̄电特性分析白光LED器件中ꎬGaN基蓝光LED芯片会将注入电能转化为初始蓝光并射入荧光粉层ꎬ驱动电流的大小决定了初始蓝光光谱的光功率ꎮ此外ꎬ驱动电流不同意味着加载功率不同ꎬ则其他条件相同的情况下封装器件内部聚集热量亦不同ꎬ引起GaN基芯片和荧光粉的热猝灭效应也存在差异ꎮ载流子密度在量子阱区域的速率方程[16]如下:dndt=Jqd-An-Bn2-Cn3-JLqd1ꎬ(3)在稳态条件下ꎬdndt=0ꎬ则Jqd=An+Bn2+Cn3+JLqd1ꎬ(4)其中ꎬJ为电流密度ꎬq为单位电荷量ꎬd为有源区厚度ꎬAn为非辐射复合率ꎬBn2为辐射复合率ꎬCn3为俄歇复合率ꎬJL为漏电流密度ꎬd1为在P型束缚层少数载流子扩散长度ꎮ俄歇复合率Cn3取决于材料能带结构ꎬ且Cn3ʈexp-3Eg2kTæèçöø÷ꎮ对于窄能带结构LED(如InGaAsP ̄LED)ꎬ其n3较大ꎬ俄歇复合率较强ꎮ对于宽禁带结构LED(如AlGaInP ̄LEDꎬGaN ̄LED)ꎬ因其n3较小ꎬ俄歇复合率很低ꎬ在老化过程中ꎬ认为基本不变ꎬ故可不予考虑ꎮ一般在双异质结和多量子阱结构中JL≪Jꎬd1ʈdꎮ非辐射复合速率An取决于缺陷密度NT:Anʈn(τp+τn)ʈnσυNT2ꎬ(5)其中ꎬτn=1σnυnNTꎬτp=1σpυpNTꎬτp和τn分别为电子和空穴寿命ꎬσ为俘获截面ꎬυ为热速率ꎮ在低电流密度范围ꎬn很小ꎬAn>Bn2ꎬ该范围内光功率与电流密度关系如下式所示:LʈBn2ʈBA2Jqd()2ꎬ(6)在大电流密度范围ꎬBn2>Anꎬ则光功率与电流密度的关系为:L=Bn2ʈJedꎬ(7)在大电流区域ꎬ理想情况下LED光功率将与输入电流近似成线性比例ꎮ但在实际情况下ꎬ随着电. All Rights Reserved.㊀第12期沈雪华ꎬ等:白光LED光谱特性及司辰节律因子1517㊀流增大ꎬLED有源区产生的热量将在器件内部急剧累积ꎬ造成内量子以及外量子效率下降[17]ꎬ因此光功率与输入电流不能成理想线性比例ꎮ从以上讨论可知ꎬLED光功率 ̄电流特性曲线可分为非线性和线性两个区域ꎮ非线性区域内ꎬ有源区缺陷密度将直接影响光功率大小ꎬ导致光功率非线性变化ꎮ而线性区域由于非辐射复合通道趋于饱和状态ꎬ非辐射复合变化对光功率影响不明显[18]ꎮ由于本文研究采用控温热沉控制LED芯片温度ꎬLED芯片有源区的热量可及时传导至外界ꎬ即LED输出光功率和负载电流为线性关系:Poptꎬb(w)(IFꎬT0)=c1IF+c2ꎬ(8)Poptꎬp(w)(IFꎬT0)=d1IF+d2ꎬ(9)其中ꎬc1㊁c2㊁d1㊁d2均为常数ꎬ可利用曲线拟合由测量数据获得ꎮc1㊁d1分别表示蓝光光谱光功率㊁荧光光谱光功率随驱动电流的变化系数ꎮ通过改变驱动电流测试白光LED的光谱分布变化ꎬ如图3所示ꎬ其中ꎬ热沉温度控制为55ħꎬ电流范围为200~450mAꎬ测试间隔为50mAꎮ3450750姿/nmI n t e n s i t y /(m W ·n m -1)4210500400450mA200mA 250mA 300mA 350mA 400mA 450mA700650600550200mA图3㊀恒温55ħ下白光LED的光谱功率分布Fig.3㊀SpectralpowerdistributionofwhiteLEDwithheatsinktemperatureof55ħ图3表明ꎬ当热沉温度一定时ꎬ白光LED发出的蓝光光谱和荧光光谱均随驱动电流发生较大变化ꎬ电流对二者影响作用明显ꎮ蓝光光谱光功率与荧光光谱光功率随电流的变化趋势如图4ꎮ图4中ꎬ保持热沉温度为55ħꎬ当驱动电流为200mA时ꎬ蓝光光谱光功率为66.14mWꎬ荧光光谱光功率为166.97mWꎻ当驱动电流增加到450mA时ꎬ蓝光光谱光功率为142.78mWꎬ荧光光谱光功率为342.56mWꎬ二者增加幅度分别为115.88%和105.16%ꎮ300200450Input current /mAO p t i c a l p o w e r /m W40020015050250150400350300250350100500P opt,b(w)P opt,p(w)图4㊀恒温55ħ下的蓝光光谱光功率和荧光光谱光功率Fig.4㊀Opticalpowerofbluespectrumandphosphorspec ̄trumwithheatsinktemperatureof55ħ2.3㊀白光LED光谱功率预测白光LED输出的白光由蓝光光谱和荧光光谱构成ꎬ假设Poptꎬw为白光LED输出光功率ꎬ则有Poptꎬw=Poptꎬb(w)+Poptꎬp(w)ꎬ(10)同时考虑驱动电流和热沉温度对光谱的影响[19]ꎬ当热沉温度为恒定值时ꎬLED输出光功率与负载电流呈线性函数ꎻ当负载电流为恒定值时ꎬLED输出光功率与热沉温度呈线性函数ꎻ进而可构建蓝光光谱光功率值和荧光光谱光功率值分别与负载电流和热沉温度之间的二维函数:Poptꎬb(w)(IFꎬT)=(a1T+a2)(c1IF+c2)eꎬ(11)Poptꎬp(w)(IFꎬT)=(b1T+b2)(d1IF+d2)fꎬ(12)其中e㊁f分别为白光LED在工作点(IFꎬ0㊁T0)的蓝光光谱光功率值和荧光光谱光功率值ꎮ因此ꎬ白光LED总输出光功率为:Poptꎬw(IFꎬT)=(a1T+a2)(c1IF+c2)e+(b1T+b2)(d1IF+d2)fꎬ(13)由于a1㊁a2㊁b1㊁b2㊁c1㊁c2㊁d1㊁d2㊁e㊁f均为常数ꎬ公式(13)表明ꎬ白光LED光功率是关于驱动电流和热沉温度的函数ꎮ若已知驱动电流和热沉温度ꎬ可根据公式(13)预测白光LED的光功率ꎮ3㊀色温漂移及非视觉生物效应分析3.1㊀光谱色温漂移分析相对色温(CorrelatedcolortemperatureꎬCCT). All Rights Reserved.1518㊀发㊀㊀光㊀㊀学㊀㊀报第40卷是评价白光品质的一个重要光学指标ꎬ其值主要取决于白光光谱中蓝光成分的比例(本文简称蓝白比)ꎮ当光谱蓝白比增大时ꎬ色温值将增大ꎬ白光向冷白方向漂移ꎻ反之色温减小ꎬ白光向暖白方向漂移[6ꎬ20 ̄21]ꎮ从前文分析可知ꎬ热沉温度和驱动电流会影响白光光谱中蓝光光谱和荧光光谱ꎬ因而可能改变光谱中的蓝光比例ꎬ引起色温漂移ꎮ设光谱蓝白比为kꎬ则有k(IFꎬT)=Poptꎬb(w)Poptꎬw=f(a1T+a2)(c1IF+c2)f(a1T+a2)(c1IF+c2)+e(b1T+b2)(d1IF+d2)ꎬ(14)可见ꎬ光谱蓝白比k亦是关于驱动电流和热沉温度的函数ꎮ驱动电流或热沉温度的改变ꎬ不仅会引起白光LED光功率的变化ꎬ也会导致色温漂移ꎮ若已知白光LED的驱动电流和热沉温度变化情况ꎬ则可由公式(14)评价光谱色温漂移趋势ꎮ将热沉温度55ħ㊁电流200~450mA及驱动电流350mA㊁热沉温度25~85ħ对应各工作点的光谱蓝白比k与色温CCT作相关性分析ꎬ如图5所示ꎮkC C T /K58500.2850.2800.2950.2905750570056000.300565058005900图5㊀测试白光LED光谱蓝白比k与色温CCT之间的关系Fig.5㊀RelationshipbetweenmeasuredresultsofkandCCTforwhiteLED可见ꎬ光谱蓝白比k与光谱色温KCCT之间存在较高的线性相关度ꎬ设二者关系如下:KCCT=g1k+g2ꎬ(15)其中g1㊁g2均为常数ꎮ显然ꎬ光谱蓝白比k的变化可以反映其色温漂移情况ꎮ3.2㊀光谱司辰节律因子变化分析光的非视觉生物效应主要通过本征感光视网膜神经节细胞(IntrinsicallyphotosensitiveretinalganglioncellꎬipRGC)控制人体褪黑激素的分泌ꎬ进而参与人体生理节律的调节[22]ꎮ司辰节律因子能反映光源对人体非视觉生物效应的影响ꎬ数值越大影响越大ꎬ其定义如下[23 ̄24]:acv=ʏ780380P(λ)C(λ)dλʏ780380P(λ)V(λ)dλꎬ(16)其中ꎬacv为司辰节律因子(CAF)ꎻP(λ)为光源的光谱功率分布ꎻC(λ)是由Gall等提出的光谱生理响应曲线[25]ꎬ峰值波长在450nm附近ꎻV(λ)为明视觉下的光谱光视效率函数ꎬ峰值波长为555nmꎮC(λ)及V(λ)曲线如图6所示ꎬC(λ)主要覆盖蓝光波段ꎬ说明人体在该波段的生物敏感度较高ꎬ而V(λ)主要覆盖黄光波段ꎬ说明人体在该波段的视觉敏感度较高ꎮ白光光谱中的蓝光成分增加时ꎬ意味着白光光谱与生理响应曲线的重叠部分增加ꎬ光谱的司辰节律因子必然增大ꎬ此时光谱对人体的非视觉生物效应作用增强ꎮ很显然ꎬ光谱的蓝白比k变化将导致司辰节律因子(CAF)的变化ꎬk增大时ꎬCAF增大ꎬk减小时ꎬCAF也减小ꎮ姿/nmR e l a t i v e i n t e n s i t y0.85007006000.60.400.24001.0C (姿)V (姿)图6㊀光谱生理响应曲线C(λ)和明视觉光视效率曲线V(λ)Fig.6㊀Spectralphysiologicalresponsecurveandspectrallu ̄minousefficiencycurve对热沉温度55ħ㊁电流200~450mA及驱动电流350mA㊁热沉温度25~85ħ各工作点的光谱蓝白比k与司辰节律因子(CAF)进行相关性分析ꎬ如图7所示ꎮ显然ꎬ光谱蓝白比k与司辰节律因子(CAF)之间同样存在较高的线性相关度ꎬ设二者关系如下:acv=h1k+h2ꎬ(17)其中h1㊁h2均为常数ꎮ光谱蓝白比k的变化反映. All Rights Reserved.㊀第12期沈雪华ꎬ等:白光LED光谱特性及司辰节律因子1519㊀kCAF0.570.2850.2800.2950.2900.580.560.550.540.530.300图7㊀测试白光LED光谱蓝白比k与司辰节律因子CAF之间的关系Fig.7㊀RelationshipbetweenmeasuredresultsofkandCAFforwhiteLED了司辰节律因子的变化ꎬ因而可用于评价光谱产生的非视觉生物效应ꎮ由图5㊁图7及其分析表明ꎬ光谱蓝白比k与色温CCT及司辰节律因子(CAF)均高度线性相关ꎮ因此ꎬ光谱色温CCT和CAF跟随温度及驱动电流的变化规律应与蓝白比k的变化趋于一致ꎮ当驱动电流不变㊁温度升高时ꎬ色温值和司辰节律因子应增大ꎬ白光向冷白方向漂移ꎬ光谱的非视觉生物效应影响增强ꎮ当温度恒定㊁驱动电流增加时ꎬ色温值和司辰节律因子也应增大ꎬ白光向冷白方向漂移ꎬ光谱的非视觉生物效应影响亦增强ꎮ4㊀实验结果与分析本文通过HAAS ̄2000高精度快速光谱仪及专用积分球对YAGʒCe荧光材料封装的白光LED进行光学测量ꎬ完成实验验证ꎮ其中恒流驱动由上位机控制软件控制ꎬ而LED恒温设置和调整则由CL ̄200温控装置实现ꎮ图8㊁9分别为白光LED在不同温度及不同电流驱动下对应光功率㊁蓝白比k预测值和实测值对比情况ꎮ温度测试范围为25~85ħꎬ测试间隔为5ħꎻ电流测试范围为150~500mAꎬ测试间隔为50mAꎮ在图8(a)光功率预测数据中ꎬ150mA恒流驱动下ꎬ热沉温度为25ħ时ꎬ光功率为190.91mWꎬ若热沉温度升高到85ħꎬ光功率降至174.36mWꎬ降低8.67%ꎬ下降速率为0.2758mW/ħꎮ在500mA恒流驱动下ꎬ热沉温度为25ħ时ꎬ光功率为558.56mWꎻ若热沉温度升高到85ħꎬ光功率降至510.83mWꎬ降低8.55%ꎬ下降速率为0.7955mW/ħꎮ在图8(b)光功率实测数据中ꎬ150mA恒流驱动下ꎬ热沉温度为25ħ时ꎬ光功率为183.19mWꎻ若热沉温度升高到85ħꎬ光功率降至169.30mWꎬ降低7.58%ꎬ下降速率为0.2315mW/ħꎮ在500mA恒流驱动下ꎬ热沉温度为25ħ时ꎬ光功率为553.69mWꎻ若热沉温度升高到85ħꎬ光功率600500400300200100030253540455055606570758085150250350450T /℃O p t i c l p o w e r /m W(a )600500400300200100030253540455055606570758085150250350450I /mAT /℃O p t i c l p o w e r /m W(b )I /mA图8㊀白光LED光功率输出ꎮ(a)预测值ꎻ(b)实测值ꎮFig.8㊀OpticalpowerofwhiteLED.(a)Predictions.(b)Measurements.0.320.290.280.270.2630253540455055606570758085150250350450I /mAT /℃k(a )0.300.290.280.270.2630253540455055606575708085150250350450I /mAT /℃k (b )0.250.300.310.250.310.32图9㊀白光光谱蓝白比kꎮ(a)预测值ꎻ(b)实测值ꎮFig.9㊀Blue ̄whiteratiok.(a)Predictions.(b)Measure ̄ments.. All Rights Reserved.1520㊀发㊀㊀光㊀㊀学㊀㊀报第40卷降至502.91mWꎬ降低9.17%ꎬ下降速率为0.8463mW/ħꎮ㊀经计算ꎬ光功率预测值与实测值之间最大相对误差为4.22%ꎬ平均相对误差为1.05%ꎬ误差值较小ꎮ白光LED光功率对比图和数据分析均表明ꎬ白光功率预测值与实测值之间吻合度较高ꎬ由此验证了光功率预测模型的正确性ꎮ在图9(a)光谱蓝白比k预测数据中ꎬ150mA恒流驱动下ꎬ热沉温度为25ħ时ꎬ蓝白比k为0.2707ꎻ若热沉温度升高到85ħꎬ则增大至0.2872ꎬ增幅为6.10%ꎮ在500mA恒流驱动下ꎬ热沉温度为25ħ时ꎬ蓝白比k为0.2870ꎻ若热沉温度升高到85ħꎬ则增大至0.3041ꎬ增幅为5.96%ꎮ在图9(b)光谱蓝白比k实测数据中ꎬ150mA恒流驱动下ꎬ热沉温度为25ħ时ꎬ蓝白比k为0.2723ꎻ若热沉温度升高到85ħꎬ则增大至0.2916ꎬ增幅为7.08%ꎮ在500mA恒流驱动下ꎬ热沉温度为25ħ时ꎬ蓝白比k为0.2891ꎻ若热沉温度升高到85ħꎬ则增大至0.3040ꎬ增幅为5.15%ꎮ经计算ꎬ蓝白比k预测值与实测值之间最大绝对误差为0.0038ꎬ平均绝对误差为0.0011ꎬ最大相对误差为1.54%ꎬ平均相对误差为0.39%ꎮ图9和分析数据显示ꎬ光谱蓝白比预测值与实测值之间吻合度较高ꎬ验证了光谱蓝白比预测模型的正确性ꎮ根据光谱蓝白比k的预测值及公式(15)㊁(17)ꎬ可进一步预测光谱色温CCT和司辰节律因子的变化情况ꎬ分别如图10㊁11所示ꎮ在图10(a)的光谱色温CCT预测数据中ꎬ150mA恒流驱动下ꎬ热沉温度为25ħ时ꎬ色温为5492Kꎻ若热沉温度升高到85ħꎬ则色温升高至5711Kꎬ光谱向冷白方向漂移ꎮ在500mA恒流驱动下ꎬ热沉温度为25ħ时ꎬ色温为5710Kꎻ若热沉温度升高到85ħꎬ色温升高至5936Kꎬ光谱亦向冷白方向漂移ꎮ在图10(b)的光谱色温CCT实测数据中ꎬ150mA恒流驱动下ꎬ热沉温度为25ħ时ꎬ色温为5538Kꎻ若热沉温度升高到85ħꎬ则色温升高至5787Kꎬ光谱向冷白方向漂移ꎮ在500mA恒流驱动下ꎬ热沉温度为25ħ时ꎬ色温为5730Kꎻ若热沉温度升高到85ħꎬ色温升高至5944Kꎬ光谱亦向冷白方向漂移ꎮ在图11(a)司辰节律因子(CAF)预测数据中ꎬ60005900580057005600540030253540455055606570758085150250350450I/mAT/℃CCT/K(a)550060005900580057005600540030253540455055606570758085150250350450I/mAT/℃CCT/K(b)5500图10㊀白光光谱色温CCTꎮ(a)预测值ꎻ(b)实测值ꎮFig.10㊀CCTofwhitespectrum.(a)Predictions.(b)Measurements.0.580.560.540.5030253540455055606570758085150250350450I/mAT/℃CAF(a)0.520.600.580.560.540.5030253540455055606570758085150250350450I/mAT/℃CAF(b)0.520.60图11㊀白光光谱司辰节律因子(CAF).(a)预测值ꎻ(b)实测值ꎮFig.11㊀CAFofwhitespectrum.(a)Predictions.(b)Measurements.150mA恒流驱动下ꎬ热沉温度为25ħ时ꎬCAF为0.5078ꎻ若热沉温度升高到85ħꎬ则CAF增大为0.5463ꎬ光谱对人体的非视觉生物效应的影响增强ꎮ在500mA恒流驱动下ꎬ热沉温度为25ħ时ꎬCAF为0.5461ꎻ若热沉温度升高到85ħꎬ则CAF增大为0.5860ꎬ光谱对人体的非视觉生物效. All Rights Reserved.㊀第12期沈雪华ꎬ等:白光LED光谱特性及司辰节律因子1521㊀应的影响亦增强ꎮ在图11(b)司辰节律因子(CAF)实测数据中ꎬ150mA恒流驱动下ꎬ热沉温度为25ħ时ꎬCAF为0.5131ꎻ若热沉温度升高到85ħꎬ则CAF增大为0.5584ꎬ光谱对人体的非视觉生物效应的影响增强ꎮ在500mA恒流驱动下ꎬ热沉温度为25ħ时ꎬCAF为0.5486ꎻ若热沉温度升高到85ħꎬ则CAF增大为0.5853ꎬ光谱对人体的非视觉生物效应的影响亦增强ꎮ经计算ꎬ色温CCT预测值与实测值之间最大绝对误差为75.64Kꎬ平均绝对误差为15.10Kꎬ最大相对误差为1.31%ꎬ平均相对误差为0.26%ꎻ司辰节律因子预测值与实测值之间最大绝对误差为0.0120ꎬ平均绝对误差为0.0027ꎬ最大相对误差为2.15%ꎬ平均相对误差为0.49%ꎮ图10㊁11及数据分析证明了光谱蓝白比k㊁色温CCT和司辰节律因子(CAF)三者之间的高度相关性ꎬ同时验证了公式(15)和(17)的正确性ꎮ5㊀结㊀㊀论本文结合理论分析和实验测试ꎬ研究了白光LED的光 ̄电 ̄热特性ꎮ通过控制热沉温度和驱动电流ꎬ讨论了温度和电流对白光中的蓝光光谱和荧光光谱的影响ꎬ建立了白光LED光功率预测模型ꎮ通过白光光谱成分变化ꎬ讨论了光谱蓝白比(蓝光光谱光功率与白光光谱光功率的比值)与温度㊁电流的关系ꎬ并建立光谱蓝白比k预测模型ꎮ相关性分析显示了光谱蓝白比k与色温CCT及司辰节律因子(CAF)高度相关ꎬ光谱色温漂移及非视觉生物效应与蓝白比k的变化趋于一致ꎮ实验结果显示ꎬ白光LED光功率预测值的最大相对误差为4.22%ꎬ平均相对误差为1.05%ꎻ蓝白比k预测值的最大相对误差为1.54%ꎬ平均相对误差为0.39%ꎻ色温CCT预测值的最大相对误差为1.31%ꎬ平均相对误差为0.26%ꎻ司辰节律因子CAF预测值的最大相对误差为2.15%ꎬ平均相对误差为0.49%ꎮ验证了所提出的预测模型及其建立过程的正确性ꎮ同时ꎬ实际光谱中蓝白比k㊁色温CCT和司辰节律因子(CAF)分布及变化规律一致ꎬ表明了由光谱蓝白比评价光谱色温漂移和非视觉生物效应的合理性ꎮ参㊀考㊀文㊀献:[1]NIANLXꎬPEIXMꎬZHAOZLꎬetal..Reviewofopticaldesignsforlight ̄emittingdiodepackaging[J].IEEETrans.Compon.Packag.Manuf.Technol.ꎬ2019ꎬ9(4):642 ̄648.[2]LUOXBꎬHURꎬLIUSꎬetal..Heatandfluidflowinhigh ̄powerLEDpackagingandapplications[J].Prog.EnergyCombust.Sci.ꎬ2016ꎬ56:1 ̄32.[3]MAYPꎬSUNJꎬLUOXB.Multi ̄wavelengthphosphormodelbasedonfluorescentradiativetransferequationconsideringre ̄absorptioneffect[J].J.Lumin.ꎬ2019ꎬ209:109 ̄115.[4]KWONSBꎬJEONGSGꎬCHOISHꎬetal..Designofbinder ̄freephosphorpasteforwarmwhiteLEDs[J].Opt.Mater.ꎬ2018ꎬ84:184 ̄188.[5]钟文姣ꎬ魏爱香ꎬ招瑜.结温对GaN基白光LED光学特性的影响[J].发光学报ꎬ2013ꎬ34(9):1203 ̄1207.ZHONGWJꎬWEIAXꎬZHAOY.DependenceofGaN ̄basedwhiteLEDcolorimetricparametersonjunctiontemperature[J].Chin.J.Lumin.ꎬ2013ꎬ34(9):1203 ̄1207.(inChinese)[6]CHENHTꎬHUISY.Dynamicpredictionofcorrelatedcolortemperatureandcolorrenderingindexofphosphor ̄coatedwhitelight ̄emittingdiodes[J].IEEETrans.Ind.Electron.ꎬ2014ꎬ61(2):784 ̄797.[7]WANGXXꎬJINGLꎬWANGYꎬetal..TheinfluenceofjunctiontemperaturevariationofLEDonthelifetimeestimationduringacceleratedagingtest[J].IEEEAccessꎬ2019ꎬ7:4773 ̄4781.[8]BERMANSM.Anewretinalphotoreceptorshouldaffectlightingpractice[J].Light.Res.Technol.ꎬ2008ꎬ40(4):373 ̄376.[9]郑莉莉ꎬ郭自泉ꎬ严威ꎬ等.三基色白光LED的司辰节律因子研究[J].发光学报ꎬ2016ꎬ37(11):1384 ̄1389.ZHENGLLꎬGUOZQꎬYANWꎬetal..InvestigationonthecircadianactionfactorofRGBwhiteLEDs[J].Chin.J.Lu ̄min.ꎬ2016ꎬ37(11):1384 ̄1389.(inChinese)[10]宋丽妍ꎬ李俊凯ꎬ牟同升.以发光二极管为背光源的平板显示对人体非视觉的影响[J].光子学报ꎬ2013ꎬ42(7): . All Rights Reserved.1522㊀发㊀㊀光㊀㊀学㊀㊀报第40卷768 ̄771.SONGLYꎬLIJKꎬMOUTS.Non ̄visualeffectsofflatpaneldisplaywithlightemittingdiodebacklightonhuman[J].ActaPhoton.Sinicaꎬ2013ꎬ42(7):768 ̄771.(inChinese)[11]鲁玉红ꎬ王毓蓉ꎬ金尚忠ꎬ等.不同波长蓝光LED对人体光生物节律效应的影响[J].发光学报ꎬ2013ꎬ34(8):1061 ̄1065.LUYHꎬWANGYRꎬJINSZꎬetal..InfluenceofdifferentwavelengthblueLEDonhumanopticalbiorhythmeffect[J].Chin.J.Lumin.ꎬ2013ꎬ34(8):1061 ̄1065.(inChinese)[12]陈仲林ꎬ李毅ꎬ杨春宇ꎬ等.道路照明中的光生物效应研究[J].照明工程学报ꎬ2007ꎬ18(3):1 ̄5.CHENZLꎬLIYꎬYANGCYꎬetal..Studyonphotobiomodulationofroadlighting[J].Chin.Illumin.Eng.J.ꎬ2007ꎬ18(3):1 ̄5.(inChinese)[13]陈仲林ꎬ胡英奎ꎬ翁季.用司辰视觉研究道路照明安全[J].照明工程学报ꎬ2007ꎬ18(1):31 ̄34.CHENZLꎬHUYKꎬWENGJ.Studyonroadlightingsafetywithcitopic[J].Chin.Illumin.Eng.J.ꎬ2007ꎬ18(1):31 ̄34.(inChinese)[14]肖华ꎬ吕毅军ꎬ徐云鑫ꎬ等.传统白光LED与远程荧光粉白光LED的发光性能比较[J].发光学报ꎬ2014ꎬ35(1):66 ̄72.XIAOHꎬLYUYJꎬXUYXꎬetal..ThedifferenceofluminousperformancebetweentraditionalphosphorpackagingLEDandremotephosphorLED[J].Chin.J.Lumin.ꎬ2014ꎬ35(1):66 ̄72.(inChinese)[15]LINCCꎬZHENGYSꎬCHENCHꎬetal..ImprovingopticalpropertiesofwhiteLEDfabricatedbyablueLEDchipwithyellow/redphosphors[J].J.Electrochem.Soc.ꎬ2010ꎬ157(9):H900 ̄H903.[16]GRILLOTPNꎬKRAMESMRꎬZHAOHMꎬetal..SixtythousandhourlightoutputreliabilityofAlGaInPlightemittingdi ̄odes[J].IEEETrans.DeviceMater.Reliab.ꎬ2006ꎬ6(4):564 ̄574.[17]LIJSꎬTANGYꎬLIZTꎬetal..Effectofquantumdotscatteringandabsorptionontheopticalperformanceofwhitelight ̄emittingdiodes[J].IEEETrans.ElectronDev.ꎬ2018ꎬ65(7):2877 ̄2884.[18]PURSIAINENOꎬLINDERNꎬJAEGERAꎬetal..Identificationofagingmechanismsintheopticalandelectricalcharacter ̄isticsoflight ̄emittingdiodes[J].Appl.Phys.Lett.ꎬ2001ꎬ79(18):2895 ̄2897.[19]CHENHTꎬLEEATLꎬTANSCꎬetal..Dynamicopticalpowermeasurementsandmodelingoflight ̄emittingdiodesbasedonaphotodetectorsystemandphoto ̄electro ̄thermaltheory[J].IEEETrans.PowerElectron.ꎬ2019ꎬ34(10):10058 ̄10068.[20]周锦荣ꎬ陈焕庭ꎬ周小方.白光LED色温的非线性动态预测模型[J].发光学报ꎬ2016ꎬ37(1):106 ̄111.ZHOUJRꎬCHENHTꎬZHOUXF.Nonlineardynamicpredictionmodelofwhiteledcolortemperature[J].Chin.J.Lu ̄min.ꎬ2016ꎬ37(1):106 ̄111.(inChinese)[21]YEHYꎬKOHSWꎬYUANCꎬetal..Electrical ̄thermal ̄luminous ̄chromaticmodelofphosphor ̄convertedwhitelight ̄emit ̄tingdiodes[J].Appl.Therm.Eng.ꎬ2014ꎬ63(2):588 ̄597.[22]GUOZQꎬLIUKꎬZHENGLLꎬetal..Investigationonthree ̄humpphosphor ̄coatedwhitelight ̄emittingdiodesforhealthylightingbygeneticalgorithm[J].IEEEPhoton.J.ꎬ2019ꎬ11(1):8200110.[23]GALLDꎬLAPUENTEV.Beleuchtungsrelevanteaspektebeiderauswahleinesförderlichenlampenspektrums[J].Lichtꎬ2002ꎬ54(7 ̄8):860 ̄871.[24]BELLIALꎬSERACENIM.Aproposalforasimplifiedmodeltoevaluatethecircadianeffectsoflightsources[J].Light.Res.Technol.ꎬ2014ꎬ46(5):493 ̄505.[25]GALLD.Themeasurementofcircadianradiationquantities[C].ProceedingsofLichtandGesundheitꎬBerlinꎬ2004.沈雪华(1989-)ꎬ女ꎬ福建漳州人ꎬ博士ꎬ讲师ꎬ2016年于重庆大学获得博士学位ꎬ主要从事智能检测与控制㊁半导体照明技术等方面的研究ꎮE ̄mail:fj_sxh39@163.com陈焕庭(1982-)ꎬ男ꎬ福建漳州人ꎬ博士ꎬ教授ꎬ2010年于厦门大学获得博士学位ꎬ主要从事半导体照明技术等方面的研究ꎮE ̄mail:htchen23@qq.com. All Rights Reserved.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档