计算方法教学大纲-致远学院-上海交通大学
致远学院课程教学大纲
![致远学院课程教学大纲](https://img.taocdn.com/s3/m/7a7f6f1c0912a21614792938.png)
致远学院课程教学大纲一、课程基本信息课程代码:MA131 课程名称(中文):数学物理方法课程名称(英文):Mathematical physics学分/学时:38/2 课程讨论时数(小时):0课程实验数(小时):0 开课时间:秋课程类别:本科生学位课开课院系:理学院物理系任课教师(姓名/工号):周栋焯/10696预修课程:数学分析,高等代数,复变函数,常微分方程,偏微分方程面向专业:理学院数学系、物理系以及“理工结合类”学生二、课程内容简介本课程是针对高年级的数学系或者物理系开设的,一般的情况下,授课内容包含复变函数、数学物理方程、积分变换以及特殊函数等。
由于致远学院的学生上本课之前已经修完了复变函数,偏微分方程等课程,因此该课程仅简单回顾一下复变函数、傅里叶变换以及三类典型的数学物理方程的导出等内容,然后介绍球坐标与柱坐标下得到的特殊函数满足的常微分方程以及相应的幂级数解法和本征值问题,重点介绍特殊函数及其相关性质,为学习电动力学、量子力学等课程打下基础,同时系统介绍张量分析与计算,为学习弹性体力学、流体力学等课程打下基础,最后介绍格林函数及其相关求解方法,如果时间允许的话,再补充一些渐进分析的相关理论。
三、教学内容安排与学习要求第一部分复变函数与积分变换(简单回顾)(2学时)1.1 复变函数的基本概念1.2 解析函数和复变函数的微分1.3 复变函数的积分1.4 幂级数和罗朗级数1.5 残数定理及应用1.6 傅里叶变换与 函数1.7 傅里叶级数与傅里叶积分第二部分数学物理方程(8学时)2.1 三类典型数学物理方程的导出2.2 变量分离法与傅里叶展开法2.3 球坐标与柱坐标下特殊函数常微分方程2.4 常微分方程的级数解法(常点与正则奇点)2.4 斯托姆-刘维尔本征值问题第三部分特殊函数(12学时)3.1 勒让德函数的相关性质3.2 连带勒让德函数3.3 一般球函数3.4 三类柱函数3.5 柱函数的相关性质3.6 贝塞尔方程与虚宗量贝塞尔方程3.7 球贝塞尔方程3.8 柱函数与球函数的应用第四部分张量分析(10学时)4.1 张量的记法4.2 坐标变换与倒易坐标系4.3 一般张量的定义4.3 协变张量与逆变张量4.4 黎曼空间以及度量张量、共轭度量张量4.5 不同坐标系下张量表示4.6 张量的协变导数与物质导数第五部分格林函数法(6学时)5.1含时与不含时的格林函数5.2镜像电荷法与冲量定理法求格林函数四、课程考核要求1. 实验(上机)内容和基本要求本课程无实验和上机安排,但要求学生能对一些基本微分方程进行计算机模拟。
课程教学大纲上海交通大学致远学院
![课程教学大纲上海交通大学致远学院](https://img.taocdn.com/s3/m/1b52949b960590c69ec376a0.png)
上海交通大学致远学院2014年春季学期《抽象代数》课程教学说明一.课程基本信息1.开课学院(系):致远学院2.课程名称:《抽象代数》(Abstract Algebra)3.学时/学分:64学时/ 4学分4.先修课程:数学分析、空间解析几何、高等代数、初等数论5.上课时间:周3周5第1、2节6.上课地点:中院2057.任课教师:章璞pzhang@8.办公室及电话:数学楼12039.助教:邢长贾xing_changjia@10.Office hour:周4周5下午2:00 - 4:00数学楼1203二.课程主要内容和教学进度安排课程性质:抽象代数是高等学校数学类各专业的必修课。
它是研究群、环、域这三种基本的代数结构的一门课程。
主要内容包括群的基本结构理论、群在集合上的作用及其应用、环的基本结构和因子分解理论、中国剩余定理、域的扩张理论、有限域及其应用、Galois理论及其应用。
教学目标:要使学生掌握抽象代数基本的理论与方法,注意结合具体的例子来理解抽象代数中的数学概念、思想和思维方法,使学生的抽象思维能力得到系统的训练和提高,为进一步学习数学和其它学科奠定坚实的代数基础。
第1章群论(30学时)1.0 课程简介(0.5学时)课程名称;历史演变与研究对象:数数-算术-代数-结构-作用基本的代数结构:群、环、域特点与重要性:从三方面讲:理论、应用、思维的训练要求与学习提示:概念清楚、意义明确、理解准确、逻辑严密强调例子对于理解和发展的重要性掌握standard arguments思考、比较、联系;多想、多练.1.1 对称性与群概念的引入(0.5学时)美(beauty)的基本要素:对称性怎样数学地描述现实世界中对称性?:图形M的对称性理解为集合M的保距(一一)变换;从而这种变换的集合连同变换的合成(即M的对称群)体现了图形M有“多少”对称性;用圆的对称群和正多边形的对称群作比较;引出群的观念.1.2 群的定义与例子(2学时)什么是群(强调4条);简单性质(单位元与逆元的唯一性;左、右消去律;穿脱原理);举例:数群、GL(n, C), O(n, R), U(n, C), SL(n, Z)(对求逆封闭), 集合的变换群(乘法是什么),剩余类加群(第1次遇到“定义合理性”问题);稍进一步的性质(单边定义;除法定义;有限半群成群的充要条件);有限群的群表;群同态、群同构及其意义;举例(如:行列式映射,指数函数);自同构群;举例:有理数加群的自同构群.1.3 子群与Lagrange定理(2学时)子群的定义;单位元与逆元的一致性;子群的判定;子群的例子:SL(n, C) < GL(n, C), SO(n, R) < O(n, R), SU(n, C) < U(n,C);子群的构造: 交,积成为子群的条件;集合上的关系;等价关系与划分;等价类;举例;左陪集分解和Lagrange定理 (右陪集分解和Lagrange定理;由此得到子群的指数的意义;左陪集分解和右陪集分解的一种对应)难点:(左)陪集分解的一个完全代表元系Lagrange定理的应用举例:包括元素的阶及计算;两子群积集的计数公式.1.4 循环群(1学时)固定阶循环群在同构意义下的唯一性;有限循环群的固定阶子群在通常意义下的唯一性;循环群的生成元和自同构群.1.5 共轭关系(1学时)中心、中心化子、共轭元的个数;类方程及其应用:p-群有非平凡的中心;p平方阶群是Abel群.正规化子、共轭子群的个数。
上海交大《计算方法》教学大纲
![上海交大《计算方法》教学大纲](https://img.taocdn.com/s3/m/f11bea390912a21614792983.png)
上海交通大学研究生(非数学专业)数学基础课程《计算方法》教学大纲(2007修改讨论稿)一.概况1.开课学院(系)和学科:理学院数学系计算数学教研室2.课程编码:3.课程名称:计算方法4.学时/学分:54学时/3学分5.预修课程:线性代数,高等数学,程序设计语言6.课程主干内容: 数值代数,数值逼近,非线性方程数值解,常微分方程数值解。
7.适应专业学科:全校的机、电、材、管理、生命和物理、力学诸大学科类,以及人文学科需要的专业。
8.教材/教学参考书:(1)李庆扬、王能超、易大义,数值分析(第4版),华中理工大学出版社, 2003(2)孙志忠,袁慰平,闻震初,数值分析,东南大学出版社,2002(3)J.Stoer and R. Bulirsch, Introduction to Numerical Analysis (secondedition), Springer-Verlag, Berlin-New York, 1993.(4)Atkinson K E,An Introduction to Numerical Analysis,John Wiley & Sons. 1989.二.课程的性质和任务本课程属于数值计算课程的基础部分。
数值计算课程是非数学类研究生数学公共基础课程,该组课程列入计算数学系列,目前按照“分级”的原则,设置《计算方法》(基础部分)、《微分方程数值方法》(扩展部分) 和《高等计算方法》(提高部分)三门课程。
本课程讨论用计算机求解数学问题的几类基本的数值方法及其相关的数学理论。
计算机是对近代科学研究、工程技术和人类社会生活影响最深远的高新技术之一,它对科学技术最深刻的改变,莫过于使科学计算平行于理论分析和实验研究,成为人类探索未知和进行大型工程设计的第三种方法和手段。
计算机的飞速发展正把计算的方法的创新、改进、提高推向人类科技活动的前沿。
人类现代计算能力的巨大更取决于计算方法的效率。
计算方法教学大纲
![计算方法教学大纲](https://img.taocdn.com/s3/m/57beb905eefdc8d376ee32c9.png)
《计算方法》课程教学大纲一、课程名称(中英文)中文名称:计算方法英文名称:Computational Methods二、课程代码及性质课程代码:0812561课程性质:必修三、学时与学分总学时:40(理论学时:40学时;实践学时:0学时)学分:2.5四、先修课程先修课程:高等数学,线性代数,算法语言五、授课对象本课程面向理工科本科学生相关专业学生开设六、课程教学目的(对学生知识、能力、素质培养的贡献和作用)《计算方法》课程是一门理论与实践高度结合的学科,通过本课程的学习,使学生掌握计算机上常用的计算方法和原理,能够针对实际问题要求正确选择,使用适当的数值算法,并能对数值结果作必要的分析;为提高学生的科学计算能力打下良好的基础。
七、教学重点与难点:课程重点:通过本课程学习,使学生重点掌握:1.了解科学计算方法的基础知识,包括算法设计的原则,误差来源及其控制,算法的稳定性,矩阵计算及相关理论知识。
2. 掌握用迭代法求方程近似根的基本思想,Picard迭代法的设计原理、收敛性及收敛速度的分析,包括方法的构造、全局、局部收敛性判据及收敛阶,了解Newton迭代公式的推导过程和收敛性质,以及Newton法的变型方法。
3.掌握解线性方程组的几种基础性直接解法及其性质,经典迭代法的构造方式及其算法分析工具,特别是敛散性及敏度分析,了解各种算法的适用范围和收敛条件。
4.掌握函数逼近的基本方法,包括插值和拟合的思想、构造方法、误差分析,理解Lagrange插值、Hermite插值、样条插值的区别与联系,掌握最小二乘法和正则化方法,能构造符合需求的简单近似函数,以解决实际的函数逼近问题。
5. 理解插值型求积公式及代数精度的概念;掌握各类数值求积公式的构造方法、特点及提高求积公式精确度的方法。
了解数值微分的基本构造方法,掌握常见的数值微分公式。
6.了解常微分方程初值问题数值解法的离散计算方式,能利用前几章的方法构造常微分方程的数值方法,掌握经典数值方法的公式及其精度,特别是利用局部截断误差分析构造方法,掌握算法的收敛性、稳定性分析方法;掌握算法实现的基本技巧,包括利用迭代法或预估-校正方法实现隐式方法、算法的稳定性和步长选择。
《计算方法》课程简介及教学大纲
![《计算方法》课程简介及教学大纲](https://img.taocdn.com/s3/m/6609c64ccfc789eb172dc875.png)
《计算方法》课程简介及教学大纲一、课程简介1.课程编号:201100112.课程名称:计算方法3.开课学院:数学课程组4.学时:325.类别:公共选修课6.先修课程:高等数学,线性代数7.课程简介:《计算方法》全面地介绍科学与工程计算中常用的计算方法,具体介绍了这些计算方法的基本理论与实际应用,同时对这些数值计算方法的计算效果、稳定性、收敛效果、适用范围以及优劣性与特点也作了简要的分析。
内容包括引论、线性代数方程组求解方法、非线性方程求根、函数插值、函数拟合、数值积分与数值微分、常微分方程初值问题的数值解法、自治微分方程稳定区域的计算等。
本课程的任务是通过各个教学(和实践)环节,运用各种教学手段和方法,使学生掌握数值计算的基本原理和各种方法的基本思想,并藉此培养学生分析问题和解决问题的能力,为学习后续课程、从事工程技术研究工作打下坚实的基础。
Course Code:20110011Name of Course:Computational MethodFaculty: Mathematics Course GroupCredit Hours: 32Classification: Elective coursePrerequisite:Advanced Mathematics, Linear AlgebraCourse Outline:Computational Method induces the calculation methods used in Scientific and Engineering roundly,and makes specific introduction to the calculation method of basic theory and practical application of these methods. It also makes a brief analysis of the calculation of effectiveness, stability, convergence effect, scopeand characteristics of the advantages and disadvantages. It includes introduction, method for solving linear algebraic equations, finding roots of nonlinear equations, function interpolation, function fitting, numerical differentiation and numerical integration, numerical methods for initial value problem for ordinary differential equations, autonomous differential equation and stability calculations.Through various teaching and practice, students will master the basic principles and methods of numerical calculation of the basic idea. This course aims to develop students' ability to analyze and solve problems, and lay a solid foundation for follow-up courses and engagment in engineering work.二、课程教学大纲1. 课程编号:20110011 6. 先修课程:高等数学,线性代数2. 课程类别:公共选修课 7.课内总学时:323. 开课学期:第二学年一学期 8.实验/上机学时:04. 适用专业:全校各专业 9.执笔人:陈丙振5.考核方式:考查1.课程教学目的《计算方法》全面地介绍科学与工程计算中常用的计算方法,具体介绍了这些计算方法的基本理论与实际应用,同时对这些数值计算方法的计算效果、稳定性、收敛效果、适用范围以及优劣性与特点也作了简要的分析。
计算方法教学大纲
![计算方法教学大纲](https://img.taocdn.com/s3/m/ee07d70428ea81c759f57851.png)
计算方法教学大纲计算方法是一门应用性很强的课程,是许多理工科专业都开设的一门专业基础课程,随着计算机技术的发展, 计算方法目前已被广泛应用于科学技术和国民经济的各个部门,如石油的勘探与开发、航天器的设计与控制、大型水利工程的设计与建筑、反应堆的计算、天气预报与风暴潮预报等。
课程概述1、课程简介计算方法是一门研究求解数学问题数值近似解的专业基础课。
作为一门数学课程,计算方法与其它基础数学课程有着本质上的区别,它不仅研究自身的理论,而且更多地与实际问题相结合,提供具有应用价值的理论成果。
因此,不仅理科专业广泛开设计算方法课程,而且很多工科专业也开设该课程。
计算方法课程将数学理论及方法与计算机程序设计紧密结合,它既有数学专业课理论上的抽象性和严谨性,又有解决实际问题的实用性,在培养学生的抽象思维和解决实际问题能力方面具有举足轻重的作用。
本课程不仅要求学生掌握数值计算方法的基本概念、基本理论和基本方法,还要求学生明确解决典型数学问题的数值计算方法的优劣,进行各计算方法进行误差分析、收敛性和算法稳定性分析,并根据不同的数据对象选择合适的数值计算方法,结合计算机程序设计完成复杂工程问题的求解任务。
2、课程教学内容计算方法课程教学内容由七个模块组成:误差、非线性方程的求根、线性方程组的直接法、线性方程组的的迭代法、插值函数,数值积分、常微分方程的数值解,按32学时教学安排。
3、课堂教学方法课堂讲授以讲解式、启发式、互动式教学为主,综合使用问题教学法、类比法、模型教学法,并借助于多媒体辅助教学手段,提高教学效果。
在教学过程中注重启发学生的思维,采用循循善诱的方式引导学生自己发现问题,并逐步解决问题,培养学生思考问题、分析问题和解决问题的能力。
这极大调动了学生的主观能动性,培养了学生分析和解决问题的能力。
数值计算方法的每一种算法都直接或间接与工程应用有关,引入新的方法,可通过对实际应用背景的描述激发学生学习数值计算方法的兴趣,提供数值计算方法的实际应用思路。
计算方法课程教学大纲
![计算方法课程教学大纲](https://img.taocdn.com/s3/m/0c51d8ae2f60ddccda38a08b.png)
《计算方法》课程教学大纲一、课程基本信息课程代码:110428课程名称:计算方法英文名称:Computation methods课程类别:专业基础课学时:54学分:3适用对象:信息与计算科学专业本科生考核方式:考试先修课程:高级语言程序设计、离散数学二、课程简介计算方法为计算机和信息类专业必修课之一,地位十分重要。
授课对象为信息与计算机科学专业第三学期学生,课程总学时60学时。
本课程是一门理论与实践紧密结合的课程,通过学习。
使学生理解,掌握各种常用数值计算方法建立的数学原理,构造方法和理论分析过程,掌握实际数值算法的基本方法和一般原理,同时具有一定的解决实际问题的能力。
Computation methods is a core specialty basic course for computer subjects. It is also an important theory and practice base for programming. Recursion algorithm and all sorts of typical sort and search algorithms are also presented. Through learning this course, students could lay a theory foundation for later courses, especially for software analysis and design relative courses. On the other hand, abundant training is practiced in the process.三、课程性质与教学目的课程性质:计算方法是数学学科的一个分支,是一门与计算机使用密切结合的实用性很强的数学课程,也是科学计算的基础。
计算方法是以各类数学问题的数值解法作为研究对象,并结合现代计算机科学与技术为解决科学与工程中遇到的各类数学问题提供基本的算法。
《计算方法(1)》课程教学大纲
![《计算方法(1)》课程教学大纲](https://img.taocdn.com/s3/m/3b364f1ff68a6529647d27284b73f242336c31b0.png)
计算方法课程教学大纲(Calculation Method)一、课程概况课程代码:0821018学分:3学时:48(其中:讲授学时32 ,实验学时16 ,上机学时0)先修课程:数学分析,高等代数等适用专业:小学教育(理)专业建议教材:《计算方法》,易大义,浙江大学出版社,2017.5课程归口:理学院课程的性质与任务:本课程是小学教育(理)专业的一门重要基础课。
通过本课程的学习,使学生系统地获得计算方法的基本知识、必要的基础理论;提高学生的数学视野、数学思维能力、逻辑推理能力;提高学生的数学素养,为学生学习后续相关课程及终身学习奠定必要的数学基础。
二、课程目标目标1.能够获得课程基本概念与性质。
目标2. 能够掌握本课程要求的计算方法。
目标3. 能够具有一定的抽象概括、逻辑推理等能力。
目标4. 能够具有一定的运算能力。
目标5. 能够具有一定的数学思维与分析能力。
本课程支撑专业人才培养方案中毕业要求3-1、毕业要求3-2,毕业要求6-2对应关系如表所示。
三、课程内容及要求(一)数值计算的基本概念1.教学内容(1)能够了解数值计算的研究对象和内容(2)能够了解数值算法的基本概念(3)能够了解误差的基本理论(4)能够了解数值算法设计的若干原则2.基本要求(1)重点与难点:误差的计算。
(2)教学方法:启发式互动讲授结合多媒体辅助;适当课堂练习;及时了解学生的作业状况并对共同的问题作及时解答;安排好课后答疑。
3.思政内容注重理论联系实际,尊重客观规律,树立社会主义核心价值观,增强专业素养,强调理论对实践的指导意义。
(二)非线性方程的迭代法1.教学内容(1)能够了解二分法(2)能够掌握Picard迭代法(3)能够掌握牛顿型迭代法2.基本要求(1)重点与难点:Picard迭代法、牛顿型迭代法及其实现。
(2)教学方法:启发式互动讲授结合多媒体辅助;适当课堂练习;及时了解学生的作业状况并对共同的问题作及时解答;安排好课后答疑。
《计算方法》教学大纲
![《计算方法》教学大纲](https://img.taocdn.com/s3/m/7e521f4e4b7302768e9951e79b89680203d86bb9.png)
《计算方法》教学大纲1.课程概述1.1课程名称:《计算方法》1.2课程学分:3学分1.3培养目标:通过本课程的学习,使学生能够掌握有关计算方法的基本原理、基本算法和数值计算方法,并能应用这些方法解决实际问题。
1.4先修课程:高等数学、线性代数、数据结构等2.教学内容和教学要求2.1教学内容2.1.1数值计算的基本概念2.1.2线性方程组的直接解法2.1.3线性方程组的迭代解法2.1.4插值与拟合2.1.5数值积分与数值微分2.1.6常微分方程的数值解法2.2教学要求2.2.1掌握数值计算的基本概念和基本原理2.2.2熟练掌握线性方程组的直接解法和迭代解法2.2.3能够运用插值与拟合的方法解决实际问题2.2.4能够运用数值积分与数值微分的方法解决实际问题2.2.5掌握常微分方程的数值解法,并能够应用于实际问题3.教学方法3.1理论教学3.1.1通过教师讲解,使学生了解数值计算的基本概念和基本原理3.1.2教师通过案例分析,引导学生理解各种算法的应用场景和原理3.1.3强调数值计算方法的数学基础,帮助学生建立正确的数值计算思维3.2实践教学3.2.1给予学生大量的实际计算问题,并引导学生进行编程实现和计算3.2.2引导学生进行实际数据的插值拟合,数值积分和微分等实验操作3.2.3利用MATLAB等计算工具,帮助学生加深对计算方法的理解和应用能力4.教材及参考资料4.1主教材:《数值计算方法》,吴师铜主编,高等教育出版社4.2参考资料:4.2.1 《计算方法》,霍尔曼(Heath),电子工业出版社4.2.2《数值分析与计算方法》,江波,清华大学出版社4.2.3《MATLAB在数学建模中的应用》,田文镜,机械工业出版社5.教学进度安排5.1第一周:课程介绍,数值计算的基本概念和算法5.2第二周:线性方程组的数值解法5.3第三周:迭代解法与收敛性分析5.4第四周:插值与拟合5.5第五周:数值积分与数值微分5.6第六周:常微分方程的数值解法5.7第七周:复习和总结6.评估方法6.1平时成绩占比:40%6.1.1课堂参与和作业完成情况6.1.2实验报告和编程作业6.1.3课堂小测验和小考试的成绩6.2期末考试占比:60%6.2.1考查学生对数值计算方法的掌握程度6.2.2考查学生对理论知识的理解和应用能力以上为《计算方法》教学大纲的一部分,具体内容根据教学实际情况可进行调整和补充。
《计算方法》教学大纲
![《计算方法》教学大纲](https://img.taocdn.com/s3/m/8ecca0c0a5e9856a571260de.png)
《计算方法》课程教学大纲一、课程的性质目的及任务计算方法是研究和讨论求解各类数学问题数值计算方法及其理论的一门基础课程。
旨在向学生介绍数值分析和科学计算的基本原则、常用的数值计算方法及其理论,培养学生的科学计算能力,并为进一步学习科学计算的其他方法和理论打下基础。
该课程是应用数学,计算数学及其应用软件等专业的必要课。
二、适用专业数学与应用数学、信息与计算数学等。
三、先修课程数学分析、高等代数算法语言四、课程的基本要求通过学习,学生应达到下列要求:掌握数值计算的基本原则。
熟练掌握和正确使用各种数值方法。
掌握建立数值方法的基本思想和原理。
正确理解算法的收敛性、稳定性等概念,具有一定的误差分析和讨论算法收敛性、稳定性的能力,掌握一些重要的结论。
针对具体计算问题,正确选择和使用数值计算方法编制程序或使用软件进行数值计算,并对计算结果的可靠性进行分析讨论。
五、课程的教学内容(一)课堂讲授的教学内容1.绪论数值分析的研究对象、内容和特点。
误差的来源和基本概念。
误差分析的重要性,数值计算的基本原则。
2.方程求根根的隔离和二分法。
简单迭代法。
收敛性与收敛速度。
迭代法的加速。
牛顿法及其局部收敛性。
弦截法与抛物线法。
*解非线性方程组的牛顿法。
代数方程求根的劈因子法。
3.线性方程组的解法(1)高斯消去法和主元消去法。
行列式与逆矩阵的求法。
矩阵分解法(直接三角分解法、乔累斯基(cholesky)分解法)。
追赶法。
向量和矩阵范数及其基本结论。
矩阵条件数,方程组解的(2)误差分析。
常用迭代法(雅可比(Jacobi)迭代法、高斯一塞德尔(Gauss-Seidel)迭代法、超松驰迭代(SOR法)。
迭代法的一般形式,迭代矩阵。
迭代收敛的基本定理,迭代收敛的各种充分条件和必要条件。
最佳松驰因子概念。
4.插值法特金(Aitken)逐次线性插值法。
差商及其性质,牛顿(Newton)插值。
埃尔米特(Hermite)插值。
多项式插值的收敛性和稳定性简介。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海交通大学致远学院2014年秋季学期
《随机过程》课程教学说明
一.课程基本信息
1.开课学院(系):致远学院
2.课程名称:《随机过程》(Stochastic Processes)
3.学时/学分:64学时/4学分
4.先修课程:概率论
5.上课时间:周二、四,3-4节课
6.上课地点:中院207
7.任课教师:韩东(donghan@)
8.办公室及电话:数学楼1206,54743148-1206
9.助教:张登(zhangdeng@)
10.Office hour:周四下午3-5点,数学楼1206
二.课程主要内容(中英文)
随机过程是定量研究随机现象(事件)统计规律的一门数学分支学科。
学习《随机过程》的主要目的是:了解、认识随机现象的统计性质;知道如何构造随机模型并且能计算和分析随机事件随时间发生变化的的概率及其相关性质。
《随机过程》主要包括:Poisson过程、Markov过程、鞅过程、Bronian 运动、随机分析基础(Ito积分与随机微分方程)、平稳过程等。
Stochastic Processes are ways of quantifying the dynamic relations of sequences of random events. It is a branch of mathematics. The main content of this course includes: General theory of stochastic processes; Poisson process and renewal theorems; Martingales; Discrete-time Markov Chains; Continuous-time Markov Chains; Brownian motion; Introduction to stochastic analysis; Stationary processes and ARMA models.
第一章概率论精要
主要内容:概率公理化,全概率公式和Bayes 公式,随机变量及其数字特征、条件期望、极限定理。
重点与难点:条件期望和极限定理。
第二章随机过程的基本概念
主要内容:随机过程的定义、随机过程的存在性、随机过程的数字特征。
重点与难点:随机过程的存在性。
第三章Poisson 过程
主要内容:Poisson过程的定义及性质,首达时间与其间隔的分布,Poisson过程的极限定理。
重点与难点:首达时间间隔与Poisson过程的关系。
第四章Markov过程
主要内容:转移概率、状态分类与空间分解、平稳分布、转移速率、向前向后方程、平稳分布、生灭过程。
重点与难点:转移概率的极限与平稳分布。
第五章鞅过程
主要内容:鞅定义及性质、鞅停时定理、鞅的收敛性、鞅不等式。
重点与难点:鞅停时定理。
第六章Bronian 运动
主要内容:Bronian运动定义及性质、首达时间分布、Bronian运动与Markov性质、轨道性质。
重点与难点:鞅停时定理
第七章随机分析基础
主要内容:均方微分与积分、Ito积分及性质、Ito公式、Ito随机微分方程的解及其性质。
随机微分方程的应用。
重点与难点:Ito公式
第八章平稳过程
主要内容:严、宽平稳过程的定义及性质、谱分解定理、各态历经性。
重点与难点:各态历经性。
三.课程教学进度安排(中英文)
四.课程考核方式及说明
平时成绩(作业、听课等)10%
期中考试(闭卷)成绩30%
期末考试(闭卷)成绩60%
五.教材与参考书
教材:《随机过程讲义》, 韩东、王桂兰、熊德文,2013.
参考书:Probability, Statistics, and Stochastic Processes (Peter Olofsson, John Wiley & Sons,2005) The Essentials Probability (Richard Durrett, Duxbury Press, 1994)
《应用随机过程》(林元烈,清华大学出版社,2005)。