气焊和气割的基本原理

合集下载

气焊与气割

气焊与气割

气焊与气割学习目的:能够掌握气焊与气割的原理,正确使用设备和工具,正确选择工艺参数进行低碳钢的焊接与切割,并掌握气焊与气割的安全知识。

第一节气焊与气割的原理及应用一、气焊与气割用气体1.氧气在常温下,氧气是无色、无味、无毒的气体,化学式O2,在标准状态下密度为1.429Kg/m³,气温降到-182.96°C 时,变为液状,气温降到-218°C时变成淡蓝色固状。

氧气本身不能燃烧,它是一种化学性质极为活跃的助燃气休,属于强氧化剂,其氧化反应的能力是随着氧气压力的增大和温度的升高而显著增强,与油脂等易燃物质接触,会发生激烈的气化反应而燃烧,爆炸。

氧化既是助燃气体又可以使某些易燃物质自燃。

2.乙炔俗称电石气,是一种非饱和的碳氢化合物,化学式C2H2,在常温下无色高热值的易燃易爆气体,在标准状态下其密度为1.17 Kg/m,比空气轻.在空气中自燃点为335°C,点火温度428°C.与空气混合燃烧时,火焰温度可达2350°C,与氧气混乱合燃烧,火焰温度可达3100-3300°C,在空气燃烧速度2.87m/s,在氧气中燃烧速度为13.5 m/s.3.氢气无色、无味,扩散速度极快,导热性很好,在空气中的自燃点为450°C,是一种极危险的易燃易爆气体。

氢气极易泄漏。

3.液化石油气是油田开发或炼油工业中的副产品,它有一定的毒性,液化石油气的密度为1.6-2.5 Kg/m。

二、气焊原理气焊是利用可燃气体(乙炔)与助燃气体(氧气)在焊炬内进行混合,在混合气体发生剧烈燃烧,利用燃烧所放出的热量去熔化焊接接头的母材金属和填充材料,冷却凝固后使焊件牢固的连在一起的一种熔焊方法。

二、气割原理气割是利用可燃气体(乙炔)与助燃气体(氧气)在焊炬内进行混合,在混合气体发生剧烈燃烧,利用燃烧所放出的热量将工件切割处预热到燃烧温度后,喷出高速切割气流,使切口处金属剧烈燃烧,并将燃烧后的金属氧化物吹除,实现工件的分离的方法。

气焊与气割

气焊与气割

第四节电石和乙炔发生器(站)的 使用安全要求 一、电石的使用安全要求 (一)电石的物理化学性质及毒性 1、电石与水的化合作用 2、电石的分解速度 3、硅铁杂质 4、电石的毒性
(二)电石发生爆炸失火的原因 (三)对电石运输、储存和使用 的安全要求 1、电石的运输 2、电石的储存 3、电石的使用 二、乙炔发生器(站)的使用要 求
(一)乙炔发生器的种类和构造 (二)乙炔发生器着火爆炸的原因 和分类 (三)乙炔发生器的安全装置 阻火装置、防爆泄压装置和指示装 置。 1、回火防止器 2、泄压膜 3、安全阀
4、压力表 四、乙炔发生器安全使用要求 1、乙炔发生器的布置原则 2、使用前的准备工作 3、工作
能够进行氧乙炔切割的金属的五个 条件: 条件: (1)金属在氧气中的燃点应低于其 ) 熔点。 熔点。 (2)气割时金属氧化物的熔点应低 ) 于金属的熔点。 于金属的熔点。 (3)金属在切割氧流中的燃烧应是 ) 放热反应。 放热反应。 (4)金属的导热性不能太高。 )金属的导热性不能太高。 (5)阻碍气割的杂质要少。 )阻碍气割的杂质要少。
中性焰有三个显著的区域:焰芯、内焰 和外焰。 1、焰芯:白而亮,轮廓清晰。温度 800~1200 ℃ 。 2、内焰:内焰处在焰芯前2~4mm部位 燃烧最剧烈,温度最高,可达 3100~3150 ℃ 。火焰具有还原性。 3、外焰:外焰火焰进行第二阶段的燃烧, 生产CO2和水。温度为1200~2500 ℃。 中性焰应用最广泛,一般用于焊接碳素 钢、紫铜和低合金钢等。
二、气焊与气割的安全特点 气焊气割的主要危险是火灾与爆 炸。防火防爆是气焊气割的主要 任务。 任务。
第二节 *
气焊气割火焰及工艺 参数的选择
一、气焊气割火焰 (一)焊接切割的火焰分类 氧—乙炔焰具有很高的温度(约 3200℃),加热集中,是气焊气割中主 要采用的火焰。氧—乙炔焰根据氧和乙 炔混合比的不同,可分为中性焰、碳化 焰和氧化焰。 (二)中性焰

气焊与气割的基本原理和安全特点

气焊与气割的基本原理和安全特点

气焊与气割的基本原理和安全特点气焊与气割的基本原理和安全特点一、气焊气焊是利用氧炔火焰的高温进行熔合,在接头上加热使之达到熔点,再加入低熔点的焊剂或者流动性良好的熔融金属,在加热的过程中将接头连接起来,从而实现连接的方法。

气焊通常会使用如下设备:氧气、燃气、加热器具、及辅助设备等。

气焊的基本原理是利用气体的燃烧热来达到焊接的目的。

首先燃烧的气体需要在气体喷嘴内部混合,而后燃烧产生的热量会在接头处集中,达到足够高温,使接头溶解,从而实现连接。

燃烧过程中不断向接头部位补给焊剂或熔融的金属,实现焊接即可。

气焊在施工中需要注意以下几点:1、气焊设备的组装应该正确,没有气体泄漏情况,同时在使用过程中注意电气安全,避免火源。

2、对于气态物质一定要注意避免人员在使用设备时靠近,伤害到各项安全措施。

3、在使用过程中记住用气量要恰当,不要浪费,使用完毕之后必须及时关闭设备,避免安全隐患。

二、气割气割通常是指利用氧炔火焰的高温将被割物质加温到熔化或氧化,从而实现分割的方法。

气割设备通常包括氧气、燃气、电源及其他辅助设备,和气焊设备非常类似。

气割的基本原理是利用气体的高温反应来实现分割的目的。

氧气在强烈的喷射速度下,将人工点火的燃气吹向被割对象,产生高温反应,达到将物质分开或消融的效果。

气割在施工中需要注意以下几点:1、要注意切割对象的位置,尤其是高风险区域。

强烈的加热反应会产生大量燃烧的气体,产生很大的火焰区域,在使用时应避免人员靠近,并采取适当的安全措施。

2、使用气割前需要对设备进行检查,合理组装,保证设备制动状态合适,以及消除潜在的气体泄漏和其他问题,快速送达专用阀门和附件设备。

3、在调节设备时保证气氛正常,如氧气和电焊用的气体配比、氧气压力以及燃气供应情况,如果不合理会影响到分割的效果。

综上,气焊和气割是现在建筑工程、制造业及航空业等行业的一种不可或缺的方法。

然而,在使用气焊和气割设备的过程中,也需要注意安全方面,施工人员需要注意各项安全措施和规范,确保现场工作的高效和持续性以及施工人员的身体健康。

气割与气焊基础知识

气割与气焊基础知识

2.火焰能率的调节 气焊火焰能率指每小时混合气体的消耗量(L/h)。气焊中,根据焊件 厚度及热物理性能等的不同,选择不同的焊炬型号及焊嘴号码,并通过 调节阀门来调节氧乙炔混合气体的流量,以得到不同的火焰能率。当要 减小中性焰或氧化焰的能率时,应先调节氧气阀门以减小氧气的流量, 后调节乙炔阀门以减小乙炔流量。当要增加火焰能率时,应先调节乙炔 阀门增加乙炔流量,后调节氧气阀门增加氧气流量。调节碳化焰能率的 方法与上述顺序相反。
2、火焰性质的调节
调节氧气、乙炔气体的不同混合比例,可得到中性焰、氧化焰和碳化焰三种性质不同的火焰。 1)火焰性质的调节 ① 刚点燃的火焰通常为碳化焰,然后根据所焊(割)材料的不同进行火焰调节。如要得到中性焰,就 应逐渐增加氧气量,使火焰由长变短,颜色由淡红色变为蓝白色,直至焰心及外焰的轮廓特别清晰、内 焰与外焰间的明显界限消失为止。 ② 在中性焰的基础上要得到碳化焰,就必须减少氧气量或增加乙炔量。这时火焰变长,焰心轮廓变得 不清晰。气焊时所用的碳化焰,其内焰长度一般为焰心长度的2倍左右。 ③ 在中性焰的基础上要得到氧化焰,就应逐渐增加氧气量。这时整个火焰将变短,当听到有急速的
火焰类型取决于焊接母材的材质。碳钢类材料多采用中性火焰焊 接,其它材料则有使用碳化焰和氧化焰的。各类火焰适用范围 :
3、焊嘴的选择: 焊嘴的大小与火焰的能率有关。单位时间内火焰所提供的热能的大小代表 火焰的能率。大号的焊嘴,火焰能率高,适于厚板的焊接,如下表所示。 给出了HO1-6型焊炬配用各种焊嘴适用范围。 汽车钣金件金属板厚多在1.5mm左右,因此,2号焊嘴使用最多。
二、气焊和气割设备组成: 主要由氧气瓶、乙炔瓶、焊炬等组成。如表所示。
序 部件名称 号 1 氧气瓶 2 乙炔瓶 3 减压器

焊接工艺第二章气焊与气割_OK

焊接工艺第二章气焊与气割_OK

爆炸极限(%) 在氧气的
气体
温度
可燃气体 ----------------------------------- 燃烧速度
(J/L) (℃) (℃) 的体积比 与空气
与氧气 (m/s)
-------------------------------------------------------------------------------------------------------------------------
2021/8/27
15
二 气焊接头的种类及坡口形式
1.气焊接头的种类 常用的气焊接头形式有卷边接头、对接接头及角接接头等几种。
2.气焊焊缝坡口的基本形式与尺寸 参照国家标准GB/T985-1988,根据板厚查处装配间隙。
三 气焊焊接参数
包括焊丝的牌号、直径,熔剂,火焰性质与火焰能率,焊嘴的倾角,焊接方 向和焊接速度等。
乙炔 52754 3087 335
1.15
2.2~81 2.8~93
7.5
丙烷 99227 2526 481
3.5
2.3~9.5
2.0
丙烯 93868 2900 500
3.5
2.0~11
2.0
甲烷 33494 2538
1.5
4.8~14 5.0~59.2
氢 10048 2160
0.3~0.4 3.3~81.5 4.65~93.9
5.橡皮管
氧气橡皮管应为黑色,内径8mm,乙炔橡皮管应为红色,内径10mm,连接焊
炬或割炬的橡皮管不能短于5m一般在10~15m为宜,太长会增加气体流动的阻
力2。021/8/27
12
6.回火保险器

气焊与气割的基本原理和安全特点

气焊与气割的基本原理和安全特点

1.⽓焊的基本原理 ⽓焊是利⽤可燃⽓体与助燃⽓体,通过焊炬进⾏混合后喷出,经点燃⽽发⽣剧烈的氧化燃烧,以此燃烧所产⽣的热量去熔化⼯件接头部位的母材和焊丝⽽达到⾦属牢固连接的⽅法。

(1)⽓焊应⽤的设备和⼯具 ⽓焊应⽤的设备包括氧⽓瓶、⼄炔瓶以及回⽕防⽌器等。

应⽤的⼯具包括焊炬、减压器以及胶管等。

(2)常⽤的⽓体及氧炔⽕焰 ⽓焊使⽤的⽓体包括助燃⽓体和可燃⽓体。

助燃⽓体是氧⽓;可燃⽓体有⼄炔、液化⽯油⽓和氢⽓等。

⼄炔与氧⽓混合燃烧的⽕焰叫做氧炔焰。

按氧与⼄炔的不同⽐值,可将氧炔焰分为中性焰、碳化焰(也叫还原焰)和氧化焰三种。

①中性焰中性焰燃烧后⽆过剩的氧和⼄炔。

它由焰芯、内焰和外焰三部分组成。

焰芯呈尖锥形,⾊⽩⽽明亮,轮廓清楚。

离焰芯尖端2—4mm处化学反应最激烈,因此温度,为3100~3200℃。

内焰呈蓝⽩⾊,有深蓝⾊线条;外焰的颜⾊从⾥向外由淡紫⾊变为橙黄⾊。

⽕焰呈中性焰。

②碳化焰碳化焰燃烧后的⽓体中尚有部分⼄炔未燃烧。

它的温度为2700~3000℃。

⽕焰明显,分为焰芯、内焰和外焰三部分。

③氧化焰氧化焰中有过量的氧。

由于氧化焰在燃烧中氧的浓度极⼤,氧化反应⼜⾮常剧烈,因此焰芯、内焰和外焰都缩短,⽽且内焰和外焰的层次极为不清,我们可以把氧化焰看作由焰芯和外焰两部分组成。

它的温度可达3100~3300℃。

由于⽕焰中有游离状态的氧,因此整个⽕焰有氧化性。

把安全⼯程师站点加⼊收藏夹 ⽓焊时,⽕焰的选择要根据焊接材料⽽定。

(3)⽓焊丝 ⽓焊⽤的焊丝起填充⾦属的作⽤,焊接时与熔化的母材⼀起组成焊缝⾦属。

常⽤⽓焊丝有碳素结构钢焊丝、合⾦结构钢焊丝、不锈钢焊丝、铜及铜合⾦焊丝、铝及铝合⾦焊丝、铸铁焊丝等。

在⽓焊过程中,⽓焊丝的正确选⽤⼗分重要,应根据⼯件的化学成分、机械性能选⽤相应成分或性能的焊丝,有时也可⽤被焊板材上切下的条料作焊丝。

(4)⽓焊熔剂(焊粉) 为了防⽌⾦属的氧化以及消除已经形成的氧化物和其他杂质,在焊接有⾊⾦属材料时,必须采⽤⽓焊熔剂。

气焊与气割基本原理与安全要点

气焊与气割基本原理与安全要点

气焊与气割基本原理与安全要点气焊与气割是金属加工中常用的两种方法。

气焊是利用火焰产生的高温熔化金属两端,形成焊缝,并通过熔化的金属填充焊缝,从而实现焊接的目的。

气割是利用氧气和燃气的高温燃烧产生的高温气流,将金属材料局部加热到熔化点,然后使用高压氧气将已经加热到熔化点的金属吹散,从而实现切割的目的。

气焊和气割是属于危险的工作,需要严格遵守安全要点,以确保人员安全。

以下是气焊和气割的基本原理和安全要点:气焊的基本原理:1. 使用氧气和可燃气体(如乙炔)产生火焰,通过燃烧将金属加热到熔化点;2. 加热金属两端,使其熔化并形成焊缝;3. 使用熔化的金属填充焊缝,进行焊接。

气割的基本原理:1. 使用燃烧的氧气和燃气高温气流对金属材料进行加热;2. 将金属材料加热到熔化点;3. 在金属材料已经加热到熔化点的情况下,使用高压氧气将金属材料吹散,实现切割。

安全要点:1. 工作环境保持通风良好。

气焊和气割中会产生大量的烟雾和废气,需要确保工作区域内的通风良好,以防止烟雾和废气积聚导致爆炸等危险。

2. 周围无可燃物。

气焊和气割会产生高温火焰和气流,需要确保周围没有可燃物质,以防止火灾。

3. 检查气瓶。

使用气焊和气割前,需要进行气瓶的检查,确保瓶身完好无损,阀门正常,并且具备压力表和安全阀等安全装置。

4. 安全佩戴个人防护装备。

如防火服、手套、护目镜、面具等。

防护装备能够保护工作人员免受火焰、高温和飞溅物的伤害。

5. 氧气和可燃气体的储存与使用。

氧气和可燃气体需要分别存放在符合要求的氧气瓶和燃气瓶中,并正确连接到燃烧器具上。

在使用时,需要确保阀门关闭严密,以免气体泄漏造成爆炸和火灾。

6. 妥善存放着火设备。

气焊和气割的着火设备一般是明火,需要在工作结束后妥善存放,确保灭火器具的齐全,并保持设备和周围区域的清洁,避免火花引发事故。

7. 注意焊接或切割部位的安全。

焊接和切割时需要注意保持焊缝或切割线的稳定,避免出现手部或其他身体部位接触火焰和气流。

气焊与气割

气焊与气割

气焊与气割气焊是利用气体火焰作热源的焊接方法,最常用的是氧乙炔焊,此外还有氢氧焊。

近来,利用液化气或丙烷燃气的焊接正在迅速发展。

气焊的火焰温度较电弧焊电弧的温度低,火焰控制容易,热量输人调节方便,使用灵活,设备简单,主要用于单件、小批量生产或维修中。

此外,气焊的火焰还可用作钎焊、氧气切割时预热及小型零件热处理(火焰淬火)的热源。

气割是利用气体火焰的热能将工件切割处预热到一定温度,然后喷出高速切割氧流,使其燃烧并放出热量,从而实现切割的方法。

气焊和气割所用的气体、设备和工具是相同的,所不同的只是气焊时使用气焊炬,而气割时使用割炬。

一、气焊、气割所用气体、设备和工具气焊、气割常用的可燃气体是乙炔气(C2H2),使用的助燃气体是氧气(02)。

气焊、气割用的设备和工具主要有氧气瓶、溶解乙炔气瓶(或乙炔发生器)、减压器、气焊炬、割炬等。

1、氧气和氧气瓶氧气是助燃剂,与乙炔混合燃烧时,能产生大量的热。

气焊、气割用的氧气纯度应不低于98.5%,否则会影响火焰温度和气割速度。

氧气在高压情况下遇到油脂有爆炸的危险,所以一切有高压氧气通过的器件、管道等,不允许沾染油脂。

氧气瓶是储存高压氧气的圆柱形容器,外表漆成天蓝色作为标志。

氧气瓶属高压容器,有爆炸危险,使用中必须注意安全。

搬运时应避免剧烈震动和撞击。

焊接操作中氧气瓶距明火或热源应在5m以上。

夏日要防止曝晒,冬天如阀门冻结,严禁用火烘烤,应用热水解冻。

瓶中氧气不允许全部用完,余气表压应保持98-196kPa,以防瓶内混入其他气体而引起爆炸。

2、乙炔和溶解乙炔气瓶乙炔是可燃气体,无色,工业用乙炔因混有硫化氢、磷化氢等杂质而有刺鼻的臭味。

氧乙炔焰是气焊最常用的热源。

乙炔温度超过300℃且压力增大到147kPa以上时,遇火会爆炸。

当乙炔温度达到580C时会自行爆炸。

因此,乙炔最高工作压力禁止超过147kPa表压。

此外,乙炔的化学性质很活泼,不能与铜、银等长期接触,否则也会引起爆炸。

气焊与气割的基本原理、适用范围与安全特点模版(四篇)

气焊与气割的基本原理、适用范围与安全特点模版(四篇)

气焊与气割的基本原理、适用范围与安全特点模版一、气焊的基本原理气焊是一种利用燃烧的火焰将金属材料加热至熔化状态,然后通过熔化金属材料之间的混合和溶解来实现焊接的工艺。

气焊主要依靠的是燃气和空气的混合燃烧产生的高温火焰,以及火焰在焊接过程中释放的热量。

常用的燃气有乙炔、丙烷和天然气等,而常用的气焊火焰则有中性焰、还原焰和氧化焰等。

在气焊过程中,首先需要将燃气通过气体管道引入火焰喷嘴,然后加入适量的空气,形成可燃气体混合物。

当混合物从火焰喷嘴喷出并遇到点火源后,就会发生可燃燃烧,形成高温火焰。

这个高温火焰可以加热和熔化要焊接的金属材料,同时也可以提供足够的能量进行金属材料表面的清理和预热。

在材料熔化和火焰作用下的协同作用下,金属材料表面原子间的结合力得到破坏,焊缝形成。

二、气焊的适用范围气焊适用于各种金属材料的焊接,主要包括碳钢、合金钢、不锈钢、铜、铝和镍等材料。

在焊接碳钢和低合金钢时,常用的气焊火焰是中性焰,即燃气和空气的混合比例基本一致。

而在焊接不锈钢、铜和铝等材料时,常采用还原焰,即燃气比例较高,空气比例较低,以减少氧化反应对焊接质量的影响。

气焊广泛应用于焊接薄板、管道、结构件、容器和机械设备等领域。

在薄板焊接中,气焊具有热量集中、熔深小和对金属材料变形影响小的特点,适用于对焊缝质量和外观要求较高的焊接。

在管道焊接中,气焊可以灵活控制焊接速度和焊接质量,同时还可以应对不同直径和材质的管道焊接需求。

在结构件、容器和机械设备的焊接中,气焊可根据材料的特点和尺寸要求进行定点、定尺寸的焊接。

三、气焊的安全特点1.火焰具有可见光和紫外线辐射,使用时应避免直接视线曝光,并佩戴护眼镜和防护面罩。

2.火焰喷嘴和气瓶连接处存在高压气体,应严格遵守操作规程,确保连接牢固,防止漏气和爆炸事故。

3.燃气具有易燃易爆特性,存放和使用时应避免与火源、静电等引发点火的物质接触,以免发生火灾和爆炸。

4.氧气具有促进燃烧的作用,应严禁与有机物和易燃物质混合使用,以防止火灾和爆炸事故。

气焊气割的工作原理

气焊气割的工作原理

气焊气割的工作原理
气焊气割技术是利用气体的燃烧产生的高温和高能量来进行焊接和切割的一种工艺。

其工作原理如下:
1. 气焊原理:
气焊是通过氧化性燃料气(如乙炔)与氧气燃烧产生高温火焰来加热和熔化焊缝,再通过焊工添加合适的焊材使其融化并连接在一起。

氧气提供了氧化焊材的氧源,而气体燃烧提供了高温和高能量。

2. 气割原理:
气割是通过利用氧化性燃料气(如乙炔)与高压氧气的燃烧反应,在金属材料上产生高温氧化反应区,再通过高压氧气中的氧气切割火焰产生的氧化融渣和氧化金属,使其与金属材料发生剧烈反应,从而迅速腐蚀融化金属材料。

氧气提供了氧化金属的氧源,而气体燃烧提供了高温和高能量。

总体来说,气焊气割工作原理是利用气体的燃烧产生的高温和高能量,通过与氧气的反应来实现焊接和切割的目的。

不同的燃料气和氧气的比例、压力和喷嘴结构等因素会影响到气焊气割的实际应用效果。

气焊与气割的基本原理、适用范围及安全特点

气焊与气割的基本原理、适用范围及安全特点

气焊与气割的基本原理、适用范围及安全特点一、气焊的基本原理气焊是利用气体燃烧产生的高温火焰来将金属加热至熔化状态,进行金属结构的连接、修补等工作。

气焊中使用的气体包括氧气和燃料气体,常见的燃料气体有乙炔、丙烯等。

氧气和燃料气体经过管路进入气焊枪内,通过高压点火器点火,产生高温火焰。

气焊时,需要注意一下几点:1.选择合适的燃料气体,常用的燃料气体乙炔比丙烯燃点低,对金属的热影响较小,适用于连接焊接和表面填充焊接;2.控制氧气和燃料气体的比例,过多的氧气可能导致氧化,而过少的氧气可能导致金属无法完全熔化;3.选择合适的焊接材料,不同材质的焊接材料需要选择不同的燃料气体和焊接参数;4.气焊时需要保持枪头与工件的适当距离,以避免焊缝过宽或过深。

5.气焊的操作需要在通风良好的环境下进行,以免产生有害气体对人体造成伤害。

二、气割的基本原理气割是利用氧气和燃料气体将金属材料局部熔化并喷出,以达到在材料上切割的目的。

一般常用的燃料气体为乙炔、丙烯等。

气割时,先喷出氧气将金属加热至熔点,并燃烧成氧化物,随后将出口喷出的燃料气体送入,燃烧后再喷出,不断重复这个过程,将金属架分离。

气割的主要注意事项有:1.选择合适的燃料气体,常用的燃料气体为乙炔、丙烯等;2.控制氧气的流量和燃料气体的比例,过多的氧气可能导致浪费,同时过高的氧流量可能对人体造成危害;3.选择合适的切割头,不同材料的切割需要使用不同的切割头;4.气割需要在通风良好的环境下进行,以免产生有害气体对人体造成伤害。

三、气焊与气割的适用范围1.气焊适用于各种金属的焊接,特别适用于焊接低材质的铁、铬、镍等合金;2.气割适用于各种金属的切割,特别适用于切割厚金属板,可以切割任何由铁、镍、钢、铜、铝等金属制成的金属结构。

四、气焊与气割的安全特点1.在气焊与气割的过程中,需要穿戴合适的保护设备,例如防火服、可调节的焊接头盔、耳塞等;2.气体瓶需要妥善保管,在使用时需要检查氧气气瓶的使用寿命,以免出现意外;3.在使用气焊和气割时需要严格遵守操作规程,避免操作不当引起事故;4.气焊和气割的作业环境应保持通风良好,以免有害气体对人体的健康带来危害。

气焊与气割的基本原理、适用范围与安全特点

气焊与气割的基本原理、适用范围与安全特点

气焊与气割的基本原理、适用范围与安全特点气焊和气割是金属加工中常用的加工技术,它们都是利用高温来加工金属材料。

本文将介绍气焊和气割的基本原理、适用范围和安全特点。

一、气焊的基本原理气焊是利用燃气或液化石油气与氧气的混合燃烧,产生的高温火焰来加热金属材料,使其达到熔化温度,然后用填充材料填充焊缝,形成焊接接头的加工技术。

气焊的基本原理可以简单概括为以下几点:1.燃烧原理:气焊使用燃气或液化石油气与氧气的混合燃烧,生成高温的火焰。

燃烧产生的热量可以加热金属材料,使其达到熔化温度。

2.火焰调节:气焊火焰有不同的调节方式,可以通过调节燃气和氧气的比例来改变火焰的温度和性质。

一般来说,气焊需要一个中性火焰,燃气和氧气的比例为1:1。

3.填充材料:在气焊过程中,还需要使用填充材料来填充焊缝,形成焊接接头。

填充材料一般为焊丝或焊条,它们可以与被焊接的金属材料融合在一起,形成一个坚固的焊缝。

二、气焊的适用范围气焊可以用于焊接各种金属材料,包括钢、铁、铝、铜和合金等。

它适用于以下几个方面的应用:1.修复和维护:气焊可以用于修复和维护各种金属制品,如机械设备、车辆和管道等。

通过气焊技术,可以将损坏的部件焊接起来,使其恢复原有的功能。

2.制造业:气焊广泛应用于制造业中的金属加工过程。

它可以用于焊接金属结构、焊接管道和容器等。

气焊可以提高生产效率,并且可以焊接大尺寸和厚度的金属材料。

3.建筑业:气焊也可以用于建筑业中的金属加工。

例如,在建筑结构的焊接过程中,可以使用气焊来连接各个部件,形成一个坚固的整体。

三、气焊的安全特点气焊的过程中,燃气和氧气是用来燃烧的,因此需要注意安全事项,以确保操作人员和周围环境的安全。

以下是气焊的安全特点:1.注意通风:气焊时产生的烟尘和有害气体有可能对健康造成危害,因此应保持良好的通风环境。

操作人员应在通风良好的地方工作,或者使用适当的防护设备。

2.防止火灾:气焊是通过燃烧产生高温火焰来进行加工的,因此很容易引发火灾。

气焊与气割的基本原理、适用范围与安全特点范本(2篇)

气焊与气割的基本原理、适用范围与安全特点范本(2篇)

气焊与气割的基本原理、适用范围与安全特点范本气焊和气割是金属加工中常用的两种热加工方法,它们都是利用氧-燃料火焰进行加热或切割的工艺。

本文将介绍气焊和气割的基本原理、适用范围和安全特点。

一、气焊的基本原理气焊是一种利用燃烧燃料的气体产生的高温火焰来加热金属,使金属表面熔化并产生焊接连接的方法。

气焊的基本原理是利用氧燃烧产生的高温火焰将焊接件的焊缝加热到熔化温度,并通过熔池的液态金属与焊丝进行熔合,并通过熔池的冷却凝固形成焊缝。

气焊的工作原理可以分为两个步骤:预热和焊接。

首先,利用火焰预热焊缝和焊丝,使其达到足够的温度。

然后,通过调整火焰,使焊丝在预热的情况下熔化并涂覆在焊缝上,形成熔池。

随着熔池的冷却凝固,焊缝形成。

二、气割的基本原理气割是一种利用氧燃烧产生的高温火焰将金属材料进行切割的方法。

气割的基本原理是利用火焰高温导致金属表面迅速氧化,并通过喷射氧气产生的物理撞击力将氧化物排除,从而形成一个切割通道。

气割的工作原理可以分为三个步骤:预热、燃烧和吹割。

首先,利用火焰预热金属表面,使其达到足够的温度。

然后,通过调整火焰,使焊缝上的金属迅速氧化并形成一层氧化物。

最后,通过喷射氧气产生的高速气流,将氧化物从切割沟槽中排出,实现切割金属的目的。

三、气焊与气割的适用范围气焊适用于多种金属材料的焊接,包括碳钢、低合金钢、不锈钢和铜合金等。

气焊广泛应用于船舶、石油化工、建筑和制造等行业,特别是对于较大厚度的金属件,气焊具有较好的焊缝质量和焊缝外观等优势。

气割适用于多种金属材料的切割,包括碳钢、不锈钢、铸铁和铜合金等。

气割广泛应用于金属加工、船舶制造、桥梁建设和矿山开采等领域,特别是对于较大厚度的金属材料,气割具有高效、灵活、便捷的优点。

四、气焊与气割的安全特点气焊和气割是高温火焰加工方法,具有一定的安全风险。

为了确保操作人员的安全,以下是气焊和气割的安全特点:1. 火焰和气体混合物的稳定性在气焊和气割过程中,需要确保火焰的稳定性和气体混合物的适当比例。

气焊和气割安全(1)

气焊和气割安全(1)

气焊和气割安全(1)气焊和气割的安全分析在生产中,利用可燃气体与助燃气体混合燃烧所释放出的热量作为热源进行金属材料的焊接或切割,是金属材料热加工常用的工艺方法之一。

直到现在,气焊与气割技术在现代工业生产中仍有极其重要的地位,用途很广。

一、气焊的基本原理气焊是利用可燃气体和氧气在焊枪中混合后,由焊嘴中喷出点火燃烧,燃烧产生热量来熔化焊件接头处和焊丝形成牢固的接头。

如图2-1所示,气焊主要应用于薄钢板、有色金属、铸铁件、刀具的焊接以及硬质合金等材料的堆焊和磨损件的补焊。

图2-1 气焊和气割安全1.气焊应用的设备和器具气焊所用的设备包括氧气瓶、乙炔发生器、乙炔瓶、回火防止器、焊炬、减压器以及胶管等。

气焊设备组成如图2-2所示。

图2-2 气焊设备组成1-焊丝;2-焊件;3-焊炬;4-乙炔发生器;5-回火防止器;6-氧气减压器;7-氧气橡皮管;8-乙炔橡皮管;9-氧气瓶2.气焊用材料(1)气焊丝(填充材料) 气焊用的焊丝起填充金属的作用,与熔化的母材一起组成焊缝金属,因此应根据母材材质的化学成分选择成分类型相同的焊丝,而且化学成分必须符合有关国家标准要求。

焊丝可分为低碳钢、铸铁、青铜和铝等,也可以用被焊材料切下的条料作焊丝。

在气焊过程中正确选用焊丝是很重要的,因为它不断地送入熔池并与熔化的金属熔合成焊缝,所以,焊丝的质量直接影响着焊缝的质量。

一般对气焊丝有如下要求:①焊丝的化学成分应基本上与焊件符合,以保证焊缝具有足够的力学性能;②焊丝表面应无油脂、锈斑及油漆等污物;③焊丝应能保证焊缝具有必要的致密性,即不产生气孔及夹渣等缺陷;④焊丝的熔点应与焊件熔点相近,并在熔化时不应有强烈的熔化飞溅和蒸发现象。

(2)气焊熔剂(气焊粉) 气焊过程中被加热的金属极易生成氧化物,使焊缝产生气孔及夹渣等缺陷。

为了防止氧化及消除已形成的氧化物,在焊接有色金属、铸铁以及不锈钢等材料时,通常需要加气焊熔剂。

在气焊过程中,将熔剂直接加到熔池内,使其与高熔点的金属氧化物形成熔渣浮在上面,将熔池与空气隔离,防止熔池金属在高温时被继续氧化。

气焊与气割

气焊与气割
6.橡胶管 橡胶管是输送气体的管道,分氧气橡胶管和乙炔橡胶管,两者不能 混用。国家标准规定:氧气橡胶管为黑色;乙炔橡胶管为红色。氧气橡 胶管的内径为8mm,工作压力为1.5MPa;乙炔橡胶管的内径为10mm,工 作压力为0.5MPa或1.0MPa;橡胶管长一般10m~15m。 氧气橡胶管和乙炔橡胶管不可有损伤和漏气发生,严禁明火检漏。 特别要经常检查橡胶管的各接口处是否紧固,橡胶管有无老化现象。橡 胶管不能沾有油污等。 5.4.3 气焊火焰 常用的气焊火焰是乙炔与氧混合燃烧所形成的火焰,也称氧乙炔 焰。根据氧与乙炔混合比的不同,氧乙炔焰可分为中性焰、碳化焰(也 称还原焰)和氧化焰三种,其构造和形状如图5-35所示。 1.中性焰
等。此外,由微型氧气瓶和微型熔解乙炔气瓶组成的手提式或肩背式气 焊气割装置,在旷野、山顶、高空作业中应用是十分简便的。
5.4.2 气焊设备 气焊所用设备及气路连接,如图5-29所示。
图5-29 气焊设备及其连接 1. 焊炬 焊炬俗称焊枪。焊炬是气焊中的主要设备,它的构造多种多样,但 基本原理相同。焊炬是气焊时用于控制气体混合比、流量及火焰并进行 焊接的手持工具。焊炬有射吸式和等压式两种,常用的是射吸式焊炬, 如图5-30所示。它是由主体、手柄、乙炔调节阀、氧化调节阀、喷射 管、喷射孔、混合室、混合气体通道、焊嘴、乙炔管接头和氧气管接头 等组成。它的工作原理是:打开氧气调节阀,氧气经喷射管从喷射孔快 速射出,并在喷射孔外围形成真空而造成负压(吸力);再打开乙炔调 节阀,乙炔即聚集在喷射孔的外围;由于氧射流负压的作用,乙炔很快 被氧气吸入混合室和混合气体通道,并从焊嘴喷出,形成了焊接火焰。
5.4.4 气焊工艺与焊接规范 气焊的接头型式和焊接空间位置等工艺问题的考虑与焊条电弧焊基
本相同。气焊尽可能用对接接头,厚度大于5mm的焊件须开坡口以便焊 透。焊前接头处应清除铁锈、油污水分等。

气焊和气割的原理

气焊和气割的原理

气焊和气割的原理
气焊和气割的原理高中化学在讲到物质分类和变化时会讲到物理变化和化学变化,但气焊和气割容易混淆,所以在此列出气焊和气割的原理。

一、气焊原理:物理变化
利用气体燃烧产生的热量将金属的接头和填充金属熔化,使焊接的接头相互熔化在一起,凝固后成为一体的牢固的接头。

通常用作气焊的可燃气体为乙炔及氧气,火焰温度可达3100~3300℃。

气焊就是利用可燃气体与氧气混合燃烧的火馅加热金属的。

二、气割原理:化学变化
利用可燃气体与氧气混合燃烧的火焰热能将工件切割处预
热到一定温度后,喷出高速切割氧流,使金属剧烈氧化并放出热量,利用切割氧流把熔化状态的金属氧化物吹掉,而实现切割的方法。

金属的气割过程实质是铁在纯氧中的燃烧过程,而不是熔化过程。

熔化焊接与热切割作业--气焊与气割作业安全技术

熔化焊接与热切割作业--气焊与气割作业安全技术

二、气焊与气割的安全技术
(一)气焊与气割的危险有害性 3、案例分析: 2)主要原因分析 ①油漆中苯的可燃气体与空气混合达到了爆炸极限。 加之天气炎热,更加剧了苯的可燃气体浓度,因此遇火 立即爆炸。 ②艉舱喷漆后,未设警示标志和监护人。 ③喷漆后艉舱内未采取通风措施。 3)主要预防措施 ①该艉舱周围应设警示牌和监护人。 ②艉舱内应通压缩空气,减少可燃气体浓度。 ③焊工引弧时,要注意周围环境(即易燃易爆物)。
2、气割:
(1)原理:利用属燃烧,同时将产生的熔渣迅速排除,从而达到切割 的目的。
(2)适用范围:纯铁、低碳钢、中碳钢、低合金钢、钛等材料。
一、气焊与气割的基础知识
(二)气体火焰
可燃气体和助燃气体混合后,在着火源的作用下进 行燃烧,从而产生气体火焰。
1、氧气 (1)在标准状况下,是一种无色、无味、无毒的助
※可燃物质的爆炸极限范 围越宽则爆炸的危险性越大。
※容器直径越小,则爆炸 极限范围也越小。
二、气焊与气割的安全技术
(一)气焊与气割的危险有害性 2、爆炸: (4)发生条件 1)充足的易燃易爆物质。 2)混合后的浓度应在爆炸极限内。 3)有充足的火源。 (5)爆炸的预防原则 1)防止易燃物泄露。 2)防止爆炸性混合物的形成。 3)加强监测报警。 4)严格控制火源或激发能量。 5)切断传播途径,阻止连锁反应的出现。
一、气焊与气割的基础知识
(三)气焊与气割的设备及工具
一、气焊与气割的基础知识
(三)气焊与气割的设备及工具 1、气瓶 (1)氧气瓶 1)是一种贮存、运输氧气的高压气瓶。 2)由瓶体、胶圈、瓶箍、瓶阀和瓶帽等五部分组成。 3)瓶体的颜色为天蓝色,瓶体上面有黑色的“氧气” 字样。
一、气焊与气割的基础知识

气焊与气割

气焊与气割

气焊与气割一.气体火焰气焊与气割是利用可燃气体与助燃气体混合燃烧产生的气体火焰作为热源,进行金属材料的焊接或切割的一种加工工艺方法。

可燃气体有乙炔、液化石油气等,助燃气体是氧气。

1.氧气在常温和标准大气压下,氧气是一种无色、无味、无毒的气体,氧气的分子式为O2,氧气的密度是1.429kg/m3,比空气略重(空气为1.293 kg/m3)。

氧气本身不能燃烧,但能帮助其它可燃物质燃烧。

氧气的化学性质极为活泼,它几乎能与自然界一切元素(除惰性气体外)相化合,这种化合作用被为氧化反应,剧烈的氧化反应称为燃烧。

氧气的化合能力是随着压力的加大和温度的升高而增加。

因此当工业中常用的高压氧气,如果与油脂等易燃物质相接触时,就会发生剧烈的氧化反应而使易燃物自行燃烧,甚至发生爆炸。

因此在使用氧气时,切不可使氧气瓶瓶阀、氧气减压器、焊炬、割炬、氧气皮管等沾染上油脂。

气焊与气割用的工业用氧气按纯度一般分为两级,一级纯度氧气含量不低于99.2%,二级纯度氧气含量不低于98.5%。

一般情况下,由氧气厂和氧气站供应的氧气可以满足气焊与气割的要求。

对于质量要求较高的气焊应采用一级纯度的氧。

气割时,氧气纯度不应低于98.5%。

2.乙炔在常温和标准大气压下,乙炔是一种无色而带有特殊臭味的碳氢化合物,其分子式为C 2H2。

乙炔的密度是1.179kg/m3,比空气轻。

乙炔是可燃性气体,它与空气混合时所产生的火焰温度为2350°C,而与氧气混合燃烧时所产生的火焰温度为3000°C~3300°C,因此足以迅速熔化金属进行焊接和切割。

乙炔是一种具有爆炸性的危险气体,当压力在0.15MPa时,如果气体温度达到580 ~600°C,乙炔就会自行爆炸。

压力越高,乙炔自行爆炸所需的温度就越低;温度越高,则乙炔自行爆炸的压力就越低。

乙炔与空气或氧气混合而成的气体也具有爆炸性,乙炔的含量(按体积计算)在2.2~81%范围内与空气形成的混合气体,以及乙炔的含量(按体积计算)在2.8~93%范围内与氧气形成的混合气体,只要遇到火星就会立刻爆炸。

气焊与气割的基本原理及材料设备工具使用安全要求

气焊与气割的基本原理及材料设备工具使用安全要求

(三)液化石油气 液化石油气(简称石油气)是石油炼制工 业的副产品,其主要成分是丙烷(C3H8), 大约占50%~80%,其余是丙烯(C3H6)、丁 烷(C4H10)、丁烯(C4H8)等,在标准状态 下,石油气的密度为1.8~2.5kg/m³,比空气重, 但其液体的比重则比水、汽油轻。 石油气有一定毒性,空气中含量很少时,
氧流,使切口处的金属发生剧烈燃烧,生成液态的熔渣,这些熔渣很快地被高速氧气流吹走,金属燃烧所释放的热量对待切割的金属 进行预热,随着割炬沿切割方向的移动,实现切割的方法。 由于保管和使用不善,受日光暴晒、明火、热辐射等作用,使瓶温过高,压力剧增,直至超过瓶体材料强度极限,发生爆炸。 氢是一种无色无味的气体,密度非常小,只有空气的1/14,是最轻的气体。 空气、氩气、氮气、二氧化碳气胶管为黑色; 乙炔瓶的容量为40L,一般乙炔瓶中能溶解6~7kg乙炔。 5kg/m³,比空气重,但其液体的比重则比水、汽油轻。 (7)焊炬停止使用后应挂在适当的场合,或拆下橡皮管将焊炬存放在工具箱内。
(2)乙炔气瓶 乙炔瓶是贮存和运输乙炔气的压力容器,
足 以 熔 化 金 属 进 行 焊 接 。 乙 炔 是 一 种 危 险 的 易 瓶体装有两道防震胶圈。
一级氧气纯度不低于99. (3)点火时应把氧气调节阀稍微打开然后打开乙炔调节阀。
燃易爆气体。 气割是利用氧气也可燃气体混合燃烧的火焰热能,将工件切割处的金属预热到燃烧温度(燃点),然后向被加热到燃点的金属喷切割
2、减压器的安全使用
时所产生的火焰温度为3100~3300℃,因此用它 (2)气瓶必须配戴好瓶帽(有防护罩的除外),并要拧紧,防止摔断瓶阀造成事故。
(4)禁止用起重机吊运钢瓶,充实的钢瓶禁止喷漆作业。 (6)严禁敲击、碰撞,特别是乙炔瓶不应遭受剧烈震动或撞击,以免填料下沉而形成净空间影响乙炔的贮存。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

编订:__________________
审核:__________________
单位:__________________
气焊和气割的基本原理
Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level.
Word格式 / 完整 / 可编辑
文件编号:KG-AO-4945-26 气焊和气割的基本原理
使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行
具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或
活动达到预期的水平。

下载后就可自由编辑。

自1903年将氧-乙炔火焰用于金属焊接与切割以来,至今已有一百多年的历史。

虽然气体火焰焊接与切割方法存在一些缺点,且不时用于金属材料,但因为其具有设备简单,搬运方便,焊缝尺寸和形状容易控制,等特点,目前让采用焊接与切割方法。

一、气焊
气焊是利用可燃气体加上助燃气体,通过焊炬进行混合,使它们发生剧烈的氧化燃烧,利用燃烧产生的热量熔化工件接头部位的金属和填充焊丝,冷却后使工件接头牢固地连接成一体。

气焊是利用化学能转变为热能的一种熔化焊方法。

与电弧焊相比,气焊具有以下优点:
(1)设备简单且方便移动;
(2)可以焊接很薄的工件;
(3)易用于薄板和薄壁管的焊接;
(4)焊接铸铁或有色金属时,焊缝质量好;
(5)便于预热和局部焊后处理;
(6)在电力供应不足的地方,尤其是电力供应不到的地方,需要进行焊接
工件时,气焊可以发挥更大的作用;
(7)设备简单,投资少,适合大中小型企业广泛使用;
(8)成本低;
同时,气焊的缺点:
(1)生产率低。

(2)焊接后工件热变形大,焊接热影响区宽。

(3)技术较难掌握,较难实现自动化。

(4)不易焊较厚的工件。

(5)焊接接头熔接质量不如手工电弧焊、惰性气体保护电弧焊。

(6)气体火焰中的氧,一是焊接区的金属元素破损,从而降低焊接性能;
(7)焊接过程中,如不遵循操作规程,存在火灾、爆炸的危险。

二、气割
气割是利用气体火焰的热能将工件切割加热燃点后,已告诉喷射的高压氧气流失金属剧烈燃烧并放出热量,同时将生产的熔渣迅速排出,从而形成割缝的方法。

气割广发应用于机械、造船、石油化工、矿山、冶金、能源、交通、核工业等领域。

由于气体火焰的切割过程是金属燃烧而不是溶化的过程,所以只有同时满足下列条件才能气割:(1)金属的燃点必须低于熔点;
(2)金属在燃烧时,能放出大量的热量,且金属本身的热倒率较低;
(3)金属燃烧所产生的氧化物(熔渣)的熔点必须低于金属的熔点。

请在这里输入公司或组织的名字
Enter The Name Of The Company Or Organization Here。

相关文档
最新文档