2020届江西省抚州市临川中考数学一模试卷(有答案)(已审阅)

合集下载

2020年江西省抚州市中考数学模拟试题及答案解析

2020年江西省抚州市中考数学模拟试题及答案解析

2020年江西省抚州市中考数学模拟试题一.选择题(共6小题,满分18分,每小题3分)1.下列各对数中,互为相反数的是()A.﹣2与3B.﹣(+3)与+(﹣3)C.4与﹣4D.5与2.下列图形中,既是中心对称图形,又是轴对称图形的是()A..B..C.D..3.下列各式正确的是()A.2a2+3a2=5a4B.a2•a=a3C.(a2)3=a5D.=a4.如图是某兴趣社制作的模型,则它的俯视图是()A.B.C.D.5.如图是某单元楼居民六月份的用电(单位:度)情况,则关于用电量描述不正确的是()A.众数为30B.中位数为25C.平均数为24D.方差为836.如图,直线y1=x+1与双曲线y2=交于A(2,m)、B(﹣6,n)两点.则当y1<y2时,x的取值范围是()A.x>﹣6或0<x<2B.﹣6<x<0或x>2C.x<﹣6或0<x<2D.﹣6<x<2二.填空题(共6小题,满分18分,每小题3分)7.把多项式x2y﹣6xy+9y分解因式的结果是.8.我国古代数学著作《九章算术》中记载了一个问题:“今有邑方不知大小,各开中门,出北门三十步有木,出西门七百五十步见木,问:邑方几何?”.其大意是:如图,一座正方形城池,A为北门中点,从点A往正北方向走30步到B处有一树木,C为西门中点,从点C往正西方向走750步到D处正好看到B处的树木,则正方形城池的边长为步.9.若m2+m﹣1=0,n2+n﹣1=0,且m≠n,则mn=.10.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为.11.如图,在△ABC中,AB=4,AC=3,BC=5,△ABD、△ACE、△BCF都是等边三角形,则四边形AEFD的面积为.。

江西省抚州市2019-2020学年中考数学一模考试卷含解析

江西省抚州市2019-2020学年中考数学一模考试卷含解析

江西省抚州市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列事件中必然发生的事件是( )A .一个图形平移后所得的图形与原来的图形不全等B .不等式的两边同时乘以一个数,结果仍是不等式C .200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D .随意翻到一本书的某页,这页的页码一定是偶数2.当ab >0时,y =ax 2与y =ax+b 的图象大致是( )A .B .C .D .3.如图所示是由相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上 小正方体的个数,那么该几何体的主视图是( )A .B .C .D .4.函数y =113x x +--自变量x 的取值范围是( ) A .x≥1 B .x≥1且x≠3 C .x≠3 D .1≤x≤35.在如图的2016年6月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是( )A .27B .51C .69D .726.已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是( )A .k<4B .k≤4C .k<4且k≠3D .k≤4且k≠37.下列基本几何体中,三视图都是相同图形的是( )A .B .C .D . 8.下列二次根式中,最简二次根式的是( )A .15B .0.5C .5D .509.如图,在平面直角坐标系中,正方形ABCD 的顶点A 的坐标为(﹣1,1),点B 在x 轴正半轴上,点D 在第三象限的双曲线6y x=上,过点C 作CE ∥x 轴交双曲线于点E ,连接BE ,则△BCE 的面积为( )A .5B .6C .7D .810.,a b 是两个连续整数,若7a b <<,则,a b 分别是( ). A .2,3 B .3,2 C .3,4 D .6,811.如图,在矩形ABCD 中,E ,F 分别是边AB ,CD 上的点,AE=CF ,连接EF ,BF ,EF 与对角线AC 交于点O ,且BE=BF ,∠BEF=2∠BAC ,FC=2,则AB 的长为( )A .3B .8C .3D .612.下面的统计图反映了我市2011﹣2016年气温变化情况,下列说法不合理的是( )A.2011﹣2014年最高温度呈上升趋势B.2014年出现了这6年的最高温度C.2011﹣2015年的温差成下降趋势D.2016年的温差最大二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D为AB的中点,将△ACD绕着点C逆时针旋转,使点A落在CB的延长线A′处,点D落在点D′处,则D′B长为_____.14.Rt△ABC的边AB=5,AC=4,BC=3,矩形DEFG的四个顶点都在Rt△ABC的边上,当矩形DEFG 的面积最大时,其对角线的长为_______.15.如图,甲和乙同时从学校放学,两人以各自送度匀速步行回家,甲的家在学校的正西方向,乙的家在学校的正东方向,乙家离学校的距离比甲家离学校的距离远3900米,甲准备一回家就开始做什业,打开书包时发现错拿了乙的练习册.于是立即步去追乙,终于在途中追上了乙并交还了练习册,然后再以先前的速度步行回家,(甲在家中耽搁和交还作业的时间忽略不计)结果甲比乙晚回到家中,如图是两人之间的距离y米与他们从学校出发的时间x分钟的函数关系图,则甲的家和乙的家相距_____米.16.如图,在四边形ABCD中,对角线AC,BD交于点O,OA=OC,OB=OD,添加一个条件使四边形ABCD是菱形,那么所添加的条件可以是___________(写出一个即可).17.函数y=13x-1x-x的取值范围是_____.18.若关于x的方程x2-2x+sinα=0有两个相等的实数根,则锐角α的度数为___.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)化简求值:212(1)211xx x x-÷-+++,其中x是不等式组273(1)423133x xx x-<-⎧⎪⎨+≤-⎪⎩①②的整数解.20.(6分)如图1,菱形ABCD,AB=4,∠ADC=120o,连接对角线AC、BD交于点O,(1)如图2,将△AOD沿DB平移,使点D与点O重合,求平移后的△A′BO与菱形ABCD重合部分的面积.(2)如图3,将△A′BO绕点O逆时针旋转交AB于点E′,交BC于点F,①求证:BE′+BF=2,②求出四边形OE′BF的面积.21.(6分)化简:23x11x2?x4+⎛⎫+÷⎪--⎝⎭22.(8分)某校计划购买篮球、排球共20个.购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.篮球和排球的单价各是多少元?若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.23.(8分)为提高城市清雪能力,某区增加了机械清雪设备,现在平均每天比原来多清雪300立方米,现在清雪4 000立方米所需时间与原来清雪3 000立方米所需时间相同,求现在平均每天清雪量.24.(10分)解不等式组:2(2)3{3122x xx+>-≥-,并将它的解集在数轴上表示出来.25.(10分)已知,在平面直角坐标系xOy中,抛物线L:y=x2-4x+3与x轴交于A,B两点(点A在点B的左侧),顶点为C.(1)求点C和点A的坐标.(2)定义“L双抛图形”:直线x=t将抛物线L分成两部分,首先去掉其不含顶点的部分,然后作出抛物线剩余部分关于直线x=t的对称图形,得到的整个图形称为抛物线L关于直线x=t的“L双抛图形”(特别地,当直线x=t恰好是抛物线的对称轴时,得到的“L双抛图形”不变),①当t=0时,抛物线L关于直找x=0的“L双抛图形”如图所示,直线y=3与“L双抛图形”有______个交点;②若抛物线L关于直线x=t的“L双抛图形”与直线y=3恰好有两个交点,结合图象,直接写出t的取值范围:______;③当直线x=t经过点A时,“L双抛图形”如图所示,现将线段AC所在直线沿水平(x轴)方向左右平移,交“L双抛图形”于点P,交x轴于点Q,满足PQ=AC时,求点P的坐标.26.(12分)如图,在平面直角坐标系中,矩形OABC的顶点B坐标为(4,6),点P为线段OA上一动点(与点O、A不重合),连接CP,过点P作PE⊥CP交AB于点D,且PE=PC,过点P作PF⊥OP且PF=PO(点F在第一象限),连结FD、BE、BF,设OP=t.(1)直接写出点E的坐标(用含t的代数式表示):;(2)四边形BFDE的面积记为S,当t为何值时,S有最小值,并求出最小值;(3)△BDF能否是等腰直角三角形,若能,求出t;若不能,说明理由.27.(12分)如图,已知点A,B的坐标分别为(0,0)、(2,0),将△ABC绕C点按顺时针方向旋转90°得到△A1B1C.(1)画出△A1B1C;(2)A的对应点为A1,写出点A1的坐标;(3)求出B旋转到B1的路线长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】直接利用随机事件、必然事件、不可能事件分别分析得出答案.【详解】A、一个图形平移后所得的图形与原来的图形不全等,是不可能事件,故此选项错误;B、不等式的两边同时乘以一个数,结果仍是不等式,是随机事件,故此选项错误;C、200件产品中有5件次品,从中任意抽取6件,至少有一件是正品,是必然事件,故此选项正确;D、随意翻到一本书的某页,这页的页码一定是偶数,是随机事件,故此选项错误;故选C.【点睛】此题主要考查了随机事件、必然事件、不可能事件,正确把握相关定义是解题关键.2.D【解析】【详解】∵ab>0,∴a、b同号.当a>0,b>0时,抛物线开口向上,顶点在原点,一次函数过一、二、三象限,没有图象符合要求;当a<0,b<0时,抛物线开口向下,顶点在原点,一次函数过二、三、四象限,B图象符合要求.故选B.3.C【解析】A、B、D不是该几何体的视图,C是主视图,故选C.【点睛】主视图是由前面看到的图形,俯视图是由上面看到的图形,左视图是由左面看到的图形,能看到的线画实线,看不到的线画虚线.4.B【解析】由题意得,x-1≥0且x-3≠0,∴x≥1且x≠3.故选B.5.D【解析】设第一个数为x ,则第二个数为x+7,第三个数为x+1.列出三个数的和的方程,再根据选项解出x ,看是否存在.解:设第一个数为x ,则第二个数为x+7,第三个数为x+1故三个数的和为x+x+7+x+1=3x+21当x=16时,3x+21=69;当x=10时,3x+21=51;当x=2时,3x+21=2.故任意圈出一竖列上相邻的三个数的和不可能是3.故选D .“点睛“此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.6.B【解析】试题分析:若此函数与x 轴有交点,则2(3)21=0k x x -++,Δ≥0,即4-4(k-3)≥0,解得:k≤4,当k=3时,此函数为一次函数,题目要求仍然成立,故本题选B.考点:函数图像与x 轴交点的特点.7.C【解析】【分析】根据主视图、左视图、俯视图的定义,可得答案.【详解】球的三视图都是圆,故选C .【点睛】本题考查了简单几何体的三视图,熟记特殊几何体的三视图是解题关键.8.C【解析】【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A,被开方数含分母,不是最简二次根式;故A选项错误;B,被开方数为小数,不是最简二次根式;故B选项错误;C C选项正确;D D选项错误;故选C.考点:最简二次根式.9.C【解析】【分析】作辅助线,构建全等三角形:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,证明△AGD≌△DHC≌△CMB,根据点D的坐标表示:AG=DH=-x-1,由DG=BM,列方程可得x的值,表示D和E的坐标,根据三角形面积公式可得结论.【详解】解:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,设D(x,6x ),∵四边形ABCD是正方形,∴AD=CD=BC,∠ADC=∠DCB=90°,易得△AGD≌△DHC≌△CMB(AAS),∴AG=DH=﹣x﹣1,∴DG=BM,∵GQ=1,DQ=﹣6x,DH=AG=﹣x﹣1,由QG+DQ=BM=DQ+DH得:1﹣6x=﹣1﹣x﹣6x,解得x=﹣2,∴D(﹣2,﹣3),CH=DG=BM=1﹣62=4,∵AG=DH=﹣1﹣x=1,∴点E的纵坐标为﹣4,当y=﹣4时,x=﹣32,∴E(﹣32,﹣4),∴EH=2﹣32=12,∴CE=CH﹣HE=4﹣12=72,∴S△CEB=12CE•BM=12×72×4=7;故选C.【点睛】考查正方形的性质、全等三角形的判定和性质、反比例函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题.10.A【解析】【分析】479<<【详解】479<<a=2,b=1.故选A.【点睛】479<11.D【解析】分析: 连接OB,根据等腰三角形三线合一的性质可得BO⊥EF,再根据矩形的性质可得OA=OB,根据等边对等角的性质可得∠BAC=∠ABO,再根据三角形的内角和定理列式求出∠ABO=30°,即∠BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC,再利用勾股定理列式计算即可求出AB.详解: 如图,连接OB ,∵BE=BF ,OE=OF ,∴BO ⊥EF ,∴在Rt △BEO 中,∠BEF+∠ABO=90°,由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC ,∴∠BAC=∠ABO ,又∵∠BEF=2∠BAC ,即2∠BAC+∠BAC=90°,解得∠BAC=30°,∴∠FCA=30°,∴∠FBC=30°,∵FC=2,∴3∴3,∴22AC BC -22(43)(23)-6,故选D .点睛: 本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30°角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出∠BAC=30°是解题的关键. 12.C【解析】【分析】利用折线统计图结合相应数据,分别分析得出符合题意的答案.【详解】A 选项:年最高温度呈上升趋势,正确;B 选项:2014年出现了这6年的最高温度,正确;C 选项:年的温差成下降趋势,错误;D 选项:2016年的温差最大,正确;故选C .考查了折线统计图,利用折线统计图获取正确信息是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.132.【解析】【详解】试题分析:解:∵在Rt△ABC中,∠ACB=90°,AC=4,BC=3,∴AB=5,∵点D为AB的中点,∴CD=AD=BD=AB=2.5,过D′作D′E⊥BC,∵将△ACD绕着点C逆时针旋转,使点A落在CB的延长线A′处,点D落在点D′处,∴CD′=AD=A′D′,∴D′E==1.5,∵A′E=CE=2,BC=3,∴BE=1,∴BD′=,故答案为.考点:旋转的性质.14.52或76910【解析】【分析】分两种情形画出图形分别求解即可解决问题情况1:如图1中,四边形DEFG是△ABC的内接矩形,设DE=CF=x,则BF=3-x ∵EF∥AC,∴EFAC=BFBC∴4EF=3x3-∴EF=43(3-x)∴S矩形DEFG=x•43(3-x)=﹣43(x-32)2+3∴x=32时,矩形的面积最大,最大值为3,此时对角线=52.情况2:如图2中,四边形DEFG是△ABC的内接矩形,设DE=GF=x,作CH⊥AB于H,交DG于T.则CH=125,CT=125﹣x,∵DG∥AB,∴△CDG∽△CAB,∴CT DG CH AB=∴12x DG 5125 5-=∴DG=5﹣2512x,∴S矩形DEFG=x(5﹣2512x)=﹣2512(x﹣65)2+3,∴x=65时,矩形的面积最大为3,此时对角线226552()()+76910∴矩形面积的最大值为3,此时对角线的长为52或10故答案为52 【点睛】 本题考查相似三角形的应用、矩形的性质、二次函数的最值等知识,解题的关键是学会用分类讨论的思想思考问题15.5200【解析】设甲到学校的距离为x 米,则乙到学校的距离为(3900+x),甲的速度为4y(米/分钟),则乙的速度为3y(米/分钟),依题意得:7033900420y x y x ⨯=+⎧⎨⨯=⎩解得240030x y =⎧⎨=⎩ 所以甲到学校距离为2400米,乙到学校距离为6300米,所以甲的家和乙的家相距8700米.故答案是:8700.【点睛】本题考查一次函数的应用,二元一次方程组的应用等知识,解题的关键是读懂图象信息. 16.AB=AD (答案不唯一).【解析】已知OA=OC ,OB=OD ,可得四边形ABCD 是平行四边形,再根据菱形的判定定理添加邻边相等或对角线垂直即可判定该四边形是菱形.所以添加条件AB=AD 或BC=CD 或AC ⊥BD ,本题答案不唯一,符合条件即可.17.x≥1且x≠3【解析】【分析】根据二次根式的有意义和分式有意义的条件,列出不等式求解即可.【详解】根据二次根式和分式有意义的条件可得:1030,x x -≥⎧⎨-≠⎩解得:1x ≥且 3.x ≠故答案为:1x ≥且 3.x ≠【点睛】考查自变量的取值范围,掌握二次根式和分式有意义的条件是解题的关键.18.30°【解析】试题解析:∵关于x 的方程22sin 0x x α-+=有两个相等的实数根, ∴()2241sin 0V ,α=--⨯⨯= 解得:1sin 2α=, ∴锐角α的度数为30°;故答案为30°.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.当x=﹣3时,原式=﹣12,当x=﹣2时,原式=﹣1. 【解析】【分析】先化简分式,再解不等式组求得x 的取值范围,在此范围内找到符合分式有意义的x 的整数值,代入计算可得.【详解】原式=÷ =• =, 解不等式组,解不等式①,得:x >﹣4,解不等式②,得:x≤﹣1, ∴不等式组的解集为﹣4<x≤﹣1,∴不等式的整数解是﹣3,﹣2,﹣1.又∵x+1≠0,x ﹣1≠0∴x≠±1,∴x=﹣3或x=﹣2,当x=﹣3时,原式=﹣,当x=﹣2时,原式=﹣1.【点睛】本题考查了分式的化简求值及一元一次不等式组的整数解,求分式的值时,一定要选择使每个分式都有意义的未知数的值.20. (1)3;(2)①2,②3【解析】分析:(1)重合部分是等边三角形,计算出边长即可.()2①证明:在图3中,取AB 中点E,证明OEE 'V ≌OBF V ,即可得到,EE BF '=2BE BF BE EE BE +=+=''=',②由①知,在旋转过程60°中始终有OEE 'V ≌,OBF V 四边形OE BF '的面积等于OEB S V =3. 详解:(1)∵四边形为菱形,120,ADC ∠=︒∴60,ADO ∠=︒∴ABD △为等边三角形∴30,60,DAO ABO ∠=︒∠=︒∵AD//,A O '∴60,A OB ∠=︒'∴EOB △为等边三角形,边长2,OB =∴重合部分的面积:23234⨯= ()2①证明:在图3中,取AB 中点E,由上题知,60,60,EOB E OF ∠=︒∠=︒'∴,EOE BOF ∠=∠'又∵2,60,EO OB OEE OBF '==∠=∠=︒∴OEE 'V ≌OBF V ,∴,EE BF '=∴2BE BF BE EE BE +=+=''=',②由①知,在旋转过程60°中始终有OEE 'V ≌,OBF V∴四边形OE BF '的面积等于OEB S V .点睛:属于四边形的综合题,考查了菱形的性质,全等三角形的判定与性质等,熟练掌握每个知识点是解题的关键.21.x+2【解析】【分析】先把括号里的分式通分,化简,再计算除法.【详解】解:原式=x 1x 2+- x 2x 2x 1()+-⨯+=x+2 【点睛】此题重点考察学生对分式的化简的应用,掌握通分和约分是解题的关键.22.(1)篮球每个50元,排球每个30元. (2)满足题意的方案有三种:①购买篮球8个,排球12个;②购买篮球9,排球11个;③购买篮球2个,排球2个;方案①最省钱【解析】试题分析:(1)设篮球每个x 元,排球每个y 元,根据费用可得等量关系为:购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同,列方程求解即可;(2)不等关系为:购买足球和篮球的总费用不超过1元,列式求得解集后得到相应整数解,从而求解. 试题解析:解:(1)设篮球每个x 元,排球每个y 元,依题意,得: 2319035x y x y +=⎧⎨=⎩解得5030x y =⎧⎨=⎩:. 答:篮球每个50元,排球每个30元.(2)设购买篮球m 个,则购买排球(20-m )个,依题意,得:50m+30(20-m )≤1.解得:m≤2.又∵m≥8,∴8≤m≤2.∵篮球的个数必须为整数,∴m 只能取8、9、2.∴满足题意的方案有三种:①购买篮球8个,排球12个,费用为760元;②购买篮球9,排球11个,费用为780元;③购买篮球2个,排球2个,费用为1元.以上三个方案中,方案①最省钱.点睛:本题主要考查了二元一次方程组及一元一次不等式的应用;得到相应总费用的关系式是解答本题的关键.23.现在平均每天清雪量为1立方米.【解析】分析:设现在平均每天清雪量为x 立方米,根据等量关系“现在清雪4 000立方米所需时间与原来清雪3 000立方米所需时间相同”列分式方程求解.详解:设现在平均每天清雪量为x 立方米, 由题意,得40003000300x x =- 解得 x=1.经检验x=1是原方程的解,并符合题意.答:现在平均每天清雪量为1立方米.点睛:此题主要考查了分式方程的应用,关键是确定问题的等量关系,注意解分式方程的时候要进行检验. 24.-1≤x<4,在数轴上表示见解析.【解析】试题分析: 分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可. 试题解析:()223{3x 122x x +>-≥-①②, 由①得,x<4;由②得,x ⩾−1.故不等式组的解集为:−1⩽x<4.在数轴上表示为:25.(1)C (2,-1),A (1,0);(2)①3,②0<t <12+2,1)或(2+2,1)或(-1,0)【解析】【分析】(1)令y=0得:x 2-1x+3=0,然后求得方程的解,从而可得到A 、B 的坐标,然后再求得抛物线的对称轴为x=2,最后将x=2代入可求得点C 的纵坐标;(2)①抛物线与y 轴交点坐标为(0,3),然后做出直线y=3,然后找出交点个数即可;②将y=3代入抛物线的解析式求得对应的x 的值,从而可得到直线y=3与“L 双抛图形”恰好有3个交点时t 的取值,然后结合函数图象可得到“L 双抛图形”与直线y=3恰好有两个交点时t 的取值范围;③首先证明四边形ACQP 为平行四边形,由可得到点P 的纵坐标为1,然后由函数解析式可求得点P 的横坐标.【详解】(1)令y=0得:x2-1x+3=0,解得:x=1或x=3,∴A(1,0),B(3,0),∴抛物线的对称轴为x=2,将x=2代入抛物线的解析式得:y=-1,∴C(2,-1);(2)①将x=0代入抛物线的解析式得:y=3,∴抛物线与y轴交点坐标为(0,3),如图所示:作直线y=3,由图象可知:直线y=3与“L双抛图形”有3个交点,故答案为3;②将y=3代入得:x2-1x+3=3,解得:x=0或x=1,由函数图象可知:当0<t<1时,抛物线L关于直线x=t的“L双抛图形”与直线y=3恰好有两个交点,故答案为0<t<1.③如图2所示:∵PQ∥AC且PQ=AC,∴四边形ACQP为平行四边形,又∵点C的纵坐标为-1,∴点P的纵坐标为1,将y=1代入抛物线的解析式得:x2-1x+3=1,解得:2+2或2+2.∴点P2+2,1)或(2+2,1),当点P(-1,0)时,也满足条件.,1)或(+2,1)或(-1,0)【点睛】本题主要考查的是二次函数的综合应用,解答本题需要同学们理解“L双抛图形”的定义,数形结合以及方程思想的应用是解题的关键.26.(1)、(t+6,t);(2)、当t=2时,S有最小值是16;(3)、理由见解析.【解析】【分析】【详解】(1)如图所示,过点E作EG⊥x轴于点G,则∠COP=∠PGE=90°,由题意知CO=AB=6、OA=BC=4、OP=t,∵PE⊥CP、PF⊥OP,∴∠CPE=∠FPG=90°,即∠CPF+∠FPE=∠FPE+∠EPG,∴∠CPF=∠EPG,又∵CO⊥OG、FP⊥OG,∴CO∥FP,∴∠CPF=∠PCO,∴∠PCO=∠EPG,在△PCO和△EPG中,∵∠PCO=∠EPG,∠POC=∠EGP,PC=EP,∴△PCO≌△EPG(AAS),∴CO=PG=6、OP=EG=t,则OG=OP+PG=6+t,则点E的坐标为(t+6,t),(2)∵DA∥EG,∴△PAD∽△PGE,∴AD PAGE PG=,∴46AD tt-=,∴AD=16t(4﹣t),∴BD=AB﹣AD=6﹣16t(4﹣t)=16t2﹣23t+6,∵EG⊥x轴、FP⊥x轴,且EG=FP,∴四边形EGPF为矩形,∴EF⊥BD,EF=PG,∴S四边形BEDF=S△BDF+S△BDE=12×BD×EF=12×(16t2﹣23t+6)×6=12(t﹣2)2+16,∴当t=2时,S有最小值是16;(3)①假设∠FBD为直角,则点F在直线BC上,∵PF=OP<AB,∴点F不可能在BC上,即∠FBD不可能为直角;②假设∠FDB为直角,则点D在EF上,∵点D在矩形的对角线PE上,∴点D不可能在EF上,即∠FDB不可能为直角;③假设∠BFD为直角且FB=FD,则∠FBD=∠FDB=45°,如图2,作FH⊥BD于点H,则FH=PA,即4﹣t=6﹣t,方程无解,∴假设不成立,即△BDF不可能是等腰直角三角形.27.(1)画图见解析;(2)A1(0,6);(3)弧BB1=102π.【解析】【分析】(1)根据旋转图形的性质首先得出各点旋转后的点的位置,然后顺次连接各点得出图形;(2)根据图形得出点的坐标;(3)根据弧长的计算公式求出答案.【详解】解:(1)△A1B1C如图所示.(2)A1(0,6).(3) 221310,BC=+=¼1901010. 1801802n rBB ππ∴===.【点睛】本题考查了旋转作图和弧长的计算.。

2020-2021学年江西省中考数学第一次模拟试卷1及答案解析

2020-2021学年江西省中考数学第一次模拟试卷1及答案解析
12.能使6|k+2|=(k+2)2成立的k值为.
三、解答题(本大题共5小题,每小题6分,共30分)
13.(1)解不等式组:
(2)先化简( ﹣ )÷ ,然后选取一个你认为符合题意的x的值代入求值.
14.若a为方程(x﹣ )2=16的一正根,b为方程y2﹣2y+1=13的一负根,求a+b的值.
15.某市团委在2015年3月初组成了300个学雷锋小组,现从中随机抽取6个小组在3月份做好事件数的统计情况如图所示:
(1)求一次函数与反比例函数的解析式;
(2)求△ABC的面积?
19.某中学开学初在商场购进A、B两种品牌的足球,购买A品牌足球花费了2500元,购买B品牌足球花费了2000元,且购买A品牌足球数量是购买B品牌足球数量的2倍,已知购买一个B品牌足球比购买一个A品牌足球多花30元.
(1)求购买一个A品牌和一个B品牌的足球各需多少元.
A.对角线互相垂直B.对角线所在直线是对称轴
C.对角线相等D.对角线互相平分
【考点】菱形的性质.
【分析】由菱形的对角线互相平分且垂直,可得菱形对角线所在直线是对称轴,继而求得答案.
【解答】解:∵菱形对角线具有的性质有:对角线互相垂直,对角线互相平分,
∴对角线所在直线是对称轴.
故A,B,D正确,C错误.
(1)请在图1中过点M,N分别画ME⊥BC于点E,NF⊥BC于点F.
求证:①ME=NF;②MN∥BC.
(2)如图1,若BP=3,求线段MN的长;
(3)如图2,当点P与点Q重合时,求MN的长.
参考答案与试题解析
一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)
1.下列计算中正确的是( )

2020届初三中考数学一诊联考试卷含答案解析 (江西)

2020届初三中考数学一诊联考试卷含答案解析 (江西)

2020届**市初三中考一诊联考试卷数学注意事项:1.答卷前,考生务必将自己的姓名、准考证填写在答题卡上。

2.回答客观题时,选出每小题答案后,用2B铅笔把答题卡上对应的答案标号涂黑。

如需改正,必须用橡皮擦擦涂干净,回答非客观题,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,将本试卷和答题卡一并收回。

4.考试时间:120分钟。

一、单选题(共10题,每题3分,共30分,四个选项中只有一项符合题目要求)1.已知m是方程好x2-2x-1=0的一个根,则代数式2m2-4m+2019的值为( )A.2022 B.2021 C.2020 D.20192.下列图形中,不是中心对称图形的是()A.圆B.菱形C.矩形D.等边三角形3.如图,点C在反比例函数y=kx(x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,则k的值为()A .1B .2C .3D .4 4.如图,中,是上一点,连接即并延长,交的延长线于点,则下列结论中正确的是( )A .B .C .D .5.下列各数中,其倒数最小的是( )A .12-B .﹣2C .12D .26.如图,四边形ABCD 中,AD ∥BC ,∠C =50°,则∠D 的度数为( )A .40°B .50°C .120°D .130°7.下列四个命题中,其正确命题的个数是( )①.若a b >,则a b c c>;②.垂直于弦的直径平分弦;③.平行四边形的对角线互相平分;④.反比例函数k y x =,当0k <时,y 随x 的增大而增大. A .1 B .2 C .3 D .48.程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.根据如图所示的计算程序,若输入的值x=﹣2,则输出的值为( )A.﹣7B.﹣3C.﹣5D.59.如图,PA与⊙O相切于点A,线段PO交⊙O于点C,过点C作⊙O的切线交PA于点B.若PC=4,AB=3,则⊙O的半径等于( )A.4B.5C.6D.1210.某超市设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”、“30元”的字样.规定:顾客在本超市一次性消费满200元,就可以在箱子里先后摸出两个小球(每一次摸出后不放回).某顾客刚好消费200元,则该顾客所获得购物券的金额超过30元的概率为()A.12B.13C.23D.14二、填空题(共4题,每题4分,共16分)11.如图,点D是AB边上的中点,将△ABC沿过点D的直线DE折叠,使点A 落在BC边上F处,如果∠B=65°,则∠BDF=___________.12.如图,下列选项中不是正六棱柱三视图的是()A.B.C.D.13.某镇修建一条“村村通”公路,若甲乙两个工程队单独完成,甲工程队比乙工程队少用10天,若甲乙两对合作,12天可以完成,设甲单独完成这项工程需要x天,则根据题意,可列方程为__________.14.甲,乙两人分别从A,B两地相向而行,甲先走3分钟后乙才开始行走,甲到达B地后立即停止,乙到达A地后立即以另一速度返回B地,在整个行驶的过程中,两人保持各自速度匀速行走,甲,乙两人之间的距离y(米)与乙出发的时间x(分钟)的函数关系如图所示.当甲到达B地时,则乙距离B地的时间还需要________分钟.三、解答题(共6题,总分54分)15.如图,△ACB和△DCE均为等腰三角形,点A、D、E在同一条直线上,BC 和AE相交于点O,连接BE,若∠CAB=∠CBA=∠CDE=∠CED=50°。

临川一中中考一模数学试卷

临川一中中考一模数学试卷

一、选择题(每小题5分,共50分)1. 已知a > 0,b < 0,且a + b = 1,则下列不等式中正确的是()A. a > bB. a < bC. ab > 0D. ab < 02. 在直角坐标系中,点A(2,3)关于x轴的对称点是()A.(2,-3)B.(-2,3)C.(-2,-3)D.(2,-3)3. 若一个数的平方等于1,则这个数是()A. ±1B. ±2C. ±3D. ±44. 在下列函数中,是反比例函数的是()A. y = x + 1B. y = 2x - 3C. y = 3/xD. y = x^2 + 15. 下列各式中,正确的是()A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^26. 若等腰三角形底边长为8cm,腰长为10cm,则该三角形的面积是()A. 32cm^2B. 40cm^2C. 48cm^2D. 56cm^27. 在平面直角坐标系中,点P(2,-3)关于原点的对称点是()A.(2,-3)B.(-2,3)C.(-2,-3)D.(2,3)8. 若a,b,c是等差数列,且a + b + c = 9,a + c = 7,则b的值是()A. 2B. 3C. 4D. 59. 下列各式中,正确的是()A. 2^3 × 2^2 = 2^5B. 3^4 ÷ 3^2 = 3^6C. 5^2 × 5^3 = 5^5D. 7^3 ÷ 7^1 = 7^410. 在等腰三角形ABC中,AB = AC,AD是底边BC的中线,若∠BAC = 30°,则∠BAD的度数是()A. 15°B. 30°C. 45°D. 60°二、填空题(每小题5分,共50分)11. 若x^2 - 3x + 2 = 0,则x的值为__________。

江西省抚州市2020版中考数学一模试卷D卷

江西省抚州市2020版中考数学一模试卷D卷

江西省抚州市2020版中考数学一模试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)一个数和它的倒数相等,则这个数是()A . 1B . -1C . ±1D . ±1和02. (2分)(2019·安徽) 2019年“五一”假日期间,某省银联网络交易总金额接近161亿元,其中161亿用科学记数法表示为()A . 1.61×109B . 1.61×1010C . 1.61×1011D . 1.61×10123. (2分)(2019·吴兴模拟) 在吴兴区“食品安全知识竞赛”中,有9名学生参加决赛,他们的最终成绩各不相同.其中一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的()A . 方差B . 众数C . 平均数D . 中位数4. (2分) (2017九上·寿光期末) 甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图,则符合这一结果的实验可能是()A . 掷一枚正六面体的骰子,出现1点的概率B . 抛一枚硬币,出现正面的概率C . 从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率D . 任意写一个整数,它能被2整除的概率5. (2分)(2017·重庆) 若数a使关于x的分式方程 + =4的解为正数,且使关于y的不等式组的解集为y<﹣2,则符合条件的所有整数a的和为()A . 10B . 12C . 14D . 166. (2分)某反比例函数的图象经过点(-2,3),则此函数图象也经过点()A . (2,3)B . (-2,-3)C . (-1,4)D . (2,-3)7. (2分)(2020·阜宁模拟) 如图,已知AB是⊙O的直径,点C,D在⊙O上,弧AC的度数为100°,则∠D 的大小为()A . 30°B . 40°C . 50°D . 60°8. (2分) (2016八下·潮南期中) △ABC与▱DEFG如图放置,点D,G分别在边AB,AC上,E,F在BC上,已知BE=DE,CF=FG,则∠A的度数为()A . 80°B . 90°C . 100°D . 110°9. (2分) (2015七下·深圳期中) 汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行驶时间t(时)的关系用图象表示应为图中的()A .B .C .D .10. (2分) (2019八下·中山期中) 顺次连结菱形四边中点所得的四边形一定是()A . 平行四边形B . 矩形C . 菱形D . 正方形二、填空题 (共8题;共8分)11. (1分) (2019七上·香洲期中) 的的倒数和绝对值分别是________.12. (1分)(2017·黑龙江模拟) 函数y= 中自变量x的取值范围是________.13. (1分)(2020·文成模拟) 因式分解:a²-3a=________。

江西省抚州市2020版数学中考一模试卷(I)卷

江西省抚州市2020版数学中考一模试卷(I)卷

江西省抚州市 2020 版数学中考一模试卷(I)卷姓名:________班级:________成绩:________一、 单选题 (共 10 题;共 20 分)1. (2 分) (2018 七上·余干期末) 设 a 是一个负数,则数轴上表示数﹣a 的点在( )A . 原点的左边B . 原点的右边C . 原点的左边和原点的右边D . 无法确定2. (2 分) (2017 七下·濮阳期中) 若 k﹣1<<k(k 是整数),则 k=( )A.7B.8C.9D . 103. (2 分) (2020·无锡模拟) 下列运算正确的是 ( )A.B.C. D. 4. (2 分) (2016 八上·鹿城期中) 如果 A. B. C. D.,下列各式中正确的是( )5. (2 分) 若,则=( )A.B.C.D.6. ( 2 分 ) 小 明 作 业 本 上 有 以 下 四 道 题 目 : ①=4a2②第 1 页 共 13 页③④- =其中做错的题是( )A.①B.②C.③D.④7. (2 分) (2020 七下·武鸣期中) 如图,直线 a∥b,∠1=138°,则∠2 的度数为( )A . 138° B . 42° C . 52° D . 62°8. (2 分) (2017 七上·丹东期中) 若 A.1,则的值为( )B. C.0D. 9. (2 分) (2016 九上·潮安期中) 二次函数 y=3x2+1 和 y=3(x﹣1)2 , 以下说法: ①它们的图象都是开口向上; ②它们的对称轴都是 y 轴,顶点坐标都是原点(0,0); ③当 x>0 时,它们的函数值 y 都是随着 x 的增大而增大; ④它们的开口的大小是一样的. 其中正确的说法有( ) A . 1个 B . 2个 C . 3个 D . 4个 10. (2 分) 如图,在矩形 ABCD 中,AB=6,BC=8,若将矩形折叠,使 B 点与 D 点重合,则折痕 EF 的长为( )第 2 页 共 13 页A.B. C.5 D.6二、 填空题 (共 8 题;共 8 分)11. (1 分) (2019 七上·湖州月考) 绝对值小于 2 的所有整数有________. 12. (1 分) (2020·宜城模拟) 据海关统计:2019 年前 4 个月,中国对美国贸易顺差为 5700 亿元.用科学记 数法表示 5700 亿元是________元.13. (1 分) (2017·大连模拟) 在函数 y=中,自变量 x 的取值范围是________.14. (1 分) (2020 八下·上饶月考) 已知,则=________.15. (1 分) (2019 九上·北碚期末) m 是方程 x2-6x-5=0 的一个根,则代数式 11+6m-m2 的值是________.16. (1 分) 如图,圆心角∠AOB=20°,将 旋转 n°得到 , 则 的度数是________ 度.17. (1 分) 抛物线 y=﹣2x2+6x﹣1 的顶点坐标为________ 。

江西省抚州市2020年中考数学一模考试试卷(II)卷

江西省抚州市2020年中考数学一模考试试卷(II)卷

江西省抚州市2020年中考数学一模考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共16题;共38分)1. (3分) (2019七上·潮南期末) 把(-8)+(+3)-(-5)-(+7)写成省略括号的代数和形式是()A .B .C .D .2. (2分) (2020八上·鄞州期中) 如图,在△ABC中,AB边上的高为()A . CGB . BFC . BED . AD3. (3分)(2017·黄州模拟) 某种流感病毒的直径是0.00000008m,这个数据用科学记数法表示为()A . 8×10﹣6mB . 8×10﹣5mC . 8×10﹣8mD . 8×10﹣4m4. (3分) (2020八上·奉化期末) 下面四个垃圾分类的图标中的图案,是轴对称图形的是()A .B .C .D .5. (3分)如图,数轴上的A、B、C、D四点中,与数表示的点最接近的是()A . 点AB . 点BC . 点CD . 点D6. (2分)(2018·安徽模拟) 九年级(1)班“环保小组”的5位同学在一次活动中捡废弃塑料袋的个数分别为:4,6,8,16,16这组数据的中位数、众数分别为()A . 8,16B . 16,16C . 8,8D . 10,167. (2分)(2017·临沂) 如图所示的几何体是由五个小正方体组成的,它的左视图是()A .B .C .D .8. (2分)计算15°23′×4的结果是()A . 60°92′B . 60.92°C . 60°32′D . 61°32′9. (3分) (2017九·龙华月考) 定义一种运算“◎”,规定x◎y=ax-by其中a、b为常数,且2◎3=6,3◎2=8,则a+b的值是()A . 2B . -2 c.D.410. (3分)(2018·红桥模拟) 在△ABC中,AB=AC=13,BC=24,则tanB等于()A .B .C .D .11. (2分)(2017·河北模拟) 下列计算正确的是()A . x2+x3=x5B . x2•x3=x6C . (x2)3=x5D . x5÷x3=x212. (2分)下列代数式中,符合书写规则的是()A . 1xB . x÷yC . m×2D . 3mn13. (2分) (2019七下·芜湖期末) 与 +1最接近的正整数是()A . 4B . 5C . 6D . 714. (2分)用反证法证明命题:“若a,b是整数,ab能被3整除,那么a,b中至少有一个能被3整除”时,假设应为()A . a,b都能被3整除B . a不能被3整除C . a,b不都能被3整除D . a,b都不能被3整除15. (2分) (2020九上·川汇期末) 直线y=kx+4与函数y=的图象有且只有一个公共点,则k的值为()A . 2B . ﹣2C . ﹣1D . ±216. (2分)(2018·江城模拟) 如图,在⊙O中,OA=AB,OC⊥AB,则下列结论错误的是()A . 弦AB的长等于圆内接正六边形的边长B . 弦AC的长等于圆内接正十二边形的边长C .D . ∠BAC=30°二、填空题 (共3题;共9分)17. (3分)(2017·平顶山模拟) 计算:(﹣1)﹣2+20170=________.18. (2分) (2017八下·澧县期中) 已知三角形ABC三条中位线的长分别为2,3,4,则此三角形ABC的周长为________.19. (4分) (2020九上·道里期末) 如图,P是等边三角形ABC内一点,连接PA、PC , PA=PC ,∠APC =90°,把线段AP绕点A逆时针旋转120°,得到线段AQ(点P与点Q为对应点),连接BQ交AP于点E .点D 为BQ的中点,连接AD、PD ,若S△DAP=2,则AB=________.三、解答题 (共7题;共60分)20. (8分)已知(x+y-2)2与|xy+3|互为相反数,求(x+xy)-[(xy-2y)-x]-(-xy)的值.21. (9分) (2019·海州模拟) 某校随机抽取部分学生,就“学习习惯”进行调查,将“对自己做错的题目进行整理、分析、改正”(选项为:很少、有时、常常、总是)的调查数据进行了整理,绘制成部分统计图如下:请根据图中信息,解答下列问题(1)该调查的样本容量为________,a=________%,b=________%,“常常”对应扇形的圆心角为________° (2)请你补全条形统计图;(3)若该校共有3200名学生,请你估计其中“总是”对错题进行整理、分析、改正的学生有多少名?22. (9.0分) (2020七上·巴彦期末) 角的计算(1)一个锐角,它的补角是它的余角的3倍,求这个锐角的度数.(2)如图所示,点是直线上的一点, 、分别平分和 ,若 ,求和的度数.23. (10分)理解:数学兴趣小组在探究如何求tan15°的值,经过思考、讨论、交流,得到以下思路:思路一如图1,在Rt△ABC中,∠C=90°,∠ABC=30°,延长CB至点D,使BD=BA,连接AD.设AC=1,则BD=BA=2,BC=.tanD=tan15°===2﹣.思路二利用科普书上的和(差)角正切公式:tan(α±β)=.假设α=60°,β=45°代入差角正切公式:tan15°=tan(60°﹣45°)===2﹣.思路三在顶角为30°的等腰三角形中,作腰上的高也可以…思路四…请解决下列问题(上述思路仅供参考).(1)类比:求出tan75°的值;(2)应用:如图2,某电视塔建在一座小山上,山高BC为30米,在地平面上有一点A,测得A,C两点间距离为60米,从A测得电视塔的视角(∠CAD)为45°,求这座电视塔CD的高度;(3)拓展:如图3,直线y=x﹣1与双曲线y=交于A,B两点,与y轴交于点C,将直线AB绕点C旋转45°后,是否仍与双曲线相交?若能,求出交点P的坐标;若不能,请说明理由.24. (2分) (2016八上·江宁期中) 学之道在于悟.希望同学们在问题(1)解决过程中有所悟,再继续探索研究问题(2).(1)如图①,∠B=∠C,BD=CE,AB=DC.①求证:△ADE为等腰三角形.②若∠B=60°,求证:△ADE为等边三角形.(2)如图②,射线AM与BN,MA⊥AB,NB⊥AB,点P是AB上一点,在射线AM与BN上分别作点C、点 D 满足:△CPD为等腰直角三角形.(要求:利用直尺与圆规,不写作法,保留作图痕迹)25. (10.0分)(2019·宜宾) 如图,已知反比例函数的图象和一次函数的图象都过点,过点P作y轴的垂线,垂足为A , O为坐标原点,的面积为1.(1)求反比例函数和一次函数的解析式;(2)设反比例函数图象与一次函数图象的另一交点为M ,过M作x轴的垂线,垂足为B ,求五边形的面积.26. (12分)(2019·苏州模拟) 如图①,正方形ABCD中,点A,B的坐标分别为(0,10),(8,4),点C 在第一象限.动点P在正方形ABCD的边上,从点A出发沿A→B→C→D匀速运动,同时动点Q以相同的速度在x轴正半轴上运动,当点P到达D点时,两点同时停止运动,设运动的时间为t秒.(1)正方形边长AB=________,顶点C的坐标为________;(2)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图像如图②所示,设此时△OPQ的面积为S,求S与t的函数关系式并写出自变量的取值范围.(3)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等?若能,求出所有符合条件的t的值;若不能,请说明理由.参考答案一、选择题 (共16题;共38分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、二、填空题 (共3题;共9分)17-1、18-1、19-1、三、解答题 (共7题;共60分)20-1、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、26-3、。

江西省抚州市2019-2020学年中考一诊数学试题含解析

江西省抚州市2019-2020学年中考一诊数学试题含解析

江西省抚州市2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.在刚过去的2017年,我国整体经济实力跃上了一个新台阶,城镇新增就业1351万人,数据“1351万”用科学记数法表示为( ) A .13.51×106B .1.351×107C .1.351×106D .0.1531×1082.下列各组数中,互为相反数的是( ) A .﹣1与(﹣1)2B .(﹣1)2与1C .2与12D .2与|﹣2|3.下列计算正确的是( ) A .(a+2)(a ﹣2)=a 2﹣2 B .(a+1)(a ﹣2)=a 2+a ﹣2 C .(a+b )2=a 2+b 2D .(a ﹣b )2=a 2﹣2ab+b 24.已知抛物线y=ax 2+bx+c (a≠1)的对称轴为直线x=2,与x 轴的一个交点坐标为(4,1),其部分图象如图所示,下列结论:①抛物线过原点;②a ﹣b+c <1;③当x <1时,y 随x 增大而增大; ④抛物线的顶点坐标为(2,b );⑤若ax 2+bx+c=b ,则b 2﹣4ac=1. 其中正确的是( )A .①②③B .①④⑤C .①②④D .③④⑤5.点A 、C 为半径是4的圆周上两点,点B 为»AC 的中点,以线段BA 、BC 为邻边作菱形ABCD ,顶点D 恰在该圆半径的中点上,则该菱形的边长为( ) A 7或2B 7或3C .6或2D .6或36.下列运算正确的是( ) A .235x x x +=B .236x x x +=C .325x x =()D .326x x =()7.若代数式22x x -有意义,则实数x 的取值范围是( )A .x =0B .x =2C .x≠0D .x≠28.如图,取一张长为a 、宽为b 的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边,a b 应满足的条件是( )A .2a b =B .2a b =C .2a b =D .2a b =9.已知二次函数y =ax 2+bx+c(a≠1)的图象如图所示,给出以下结论:①a+b+c <1;②a ﹣b+c <1;③b+2a <1;④abc >1.其中所有正确结论的序号是( )A .③④B .②③C .①④D .①②③10.下列图形中,线段MN 的长度表示点M 到直线l 的距离的是( )A .B .C .D .11.如图是某商品的标志图案,AC 与BD 是⊙O 的两条直径,首尾顺次连接点A ,B ,C ,D ,得到四边形ABCD .若AC=10cm ,∠BAC=36°,则图中阴影部分的面积为( )A .25πcmB .210πcmC .215πcmD .220πcm12.一元二次方程x 2﹣2x =0的根是( ) A .x =2B .x =0C .x 1=0,x 2=2D .x 1=0,x 2=﹣2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,已知△ABC ,AB=6,AC=5,D 是边AB 的中点,E 是边AC 上一点,∠ADE=∠C ,∠BAC 的平分线分别交DE 、BC 于点F 、G ,那么AFAG的值为__________.14.一只不透明的袋子中装有红球和白球共30个,这些球除了颜色外都相同,校课外学习小组做摸球实验,将球搅匀后任意摸出一个球,记下颜色后放回,搅匀,通过多次重复试验,算得摸到红球的频率是0.2,则袋中有________个红球.15.如图,四边形ABCD 中,E ,F ,G ,H 分别是边AB 、BC 、CD 、DA 的中点.若四边形EFGH 为菱形,则对角线AC 、BD 应满足条件_____.16.一个多项式与3212x y -的积为5243343x y x y x y z --,那么这个多项式为 . 17.在平面直角坐标系中,点A (2,3)绕原点O 逆时针旋转90°的对应点的坐标为_____. 18.将一副三角板如图放置,若20AOD ∠=o ,则BOC ∠的大小为______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,Rt △ABC 中,∠ABC =90°,点D ,F 分别是AC ,AB 的中点,CE ∥DB ,BE ∥DC . (1)求证:四边形DBEC 是菱形;(2)若AD =3, DF =1,求四边形DBEC 面积.20.(6分)如图,己知AB 是的直径,C 为圆上一点,D 是的中点,于H ,垂足为H ,连交弦于E ,交于F ,联结.(1)求证:.(2)若,求的长.21.(6分)如图,抛物线y=ax2+ax﹣12a(a<0)与x轴交于A、B两点(A在B的左侧),与y轴交于点C,点M是第二象限内抛物线上一点,BM交y轴于N.(1)求点A、B的坐标;(2)若BN=MN,且S△MBC=274,求a的值;(3)若∠BMC=2∠ABM,求MNNB的值.22.(8分)如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.判断直线MN与⊙O的位置关系,并说明理由;若OA=4,∠BCM=60°,求图中阴影部分的面积.23.(8分)计算:31|+(﹣1)2018﹣tan60°24.(10分)解不等式组:426113x xxx>-⎧⎪+⎨-≤⎪⎩,并写出它的所有整数解.25.(10分)(问题发现)(1)如图(1)四边形ABCD中,若AB=AD,CB=CD,则线段BD,AC的位置关系为;(拓展探究)(2)如图(2)在Rt△ABC中,点F为斜边BC的中点,分别以AB,AC为底边,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,连接FD,FE,分别交AB,AC于点M,N.试猜想四边形FMAN 的形状,并说明理由;(解决问题)(3)如图(3)在正方形ABCD中,2,以点A为旋转中心将正方形ABCD旋转60°,得到正方形AB'C'D',请直接写出BD'平方的值.26.(12分)在数学活动课上,老师提出了一个问题:把一副三角尺如图摆放,直角三角尺的两条直角边分别垂直或平行,60°角的顶点在另一个三角尺的斜边上移动,在这个运动过程中,有哪些变量,能研究它们之间的关系吗?小林选择了其中一对变量,根据学习函数的经验,对它们之间的关系进行了探究.下面是小林的探究过程,请补充完整:(1)画出几何图形,明确条件和探究对象;如图2,在Rt△ABC中,∠C=90°,AC=BC=6cm,D是线段AB上一动点,射线DE⊥BC于点E,∠EDF=60°,射线DF与射线AC交于点F.设B,E两点间的距离为xcm,E,F两点间的距离为ycm.(2)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm 0 1 2 3 4 5 6y/cm 6.9 5.3 4.0 3.3 4.5 6(说明:补全表格时相关数据保留一位小数)(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(4)结合画出的函数图象,解决问题:当△DEF为等边三角形时,BE的长度约为cm.27.(12分)将如图所示的牌面数字分别是1,2,3,4 的四张扑克牌背面朝上,洗匀后放在桌面上.从中随机抽出一张牌,牌面数字是偶数的概率是_____;先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是 4 的倍数的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据科学记数法进行解答.【详解】1315万即13510000,用科学记数法表示为1.351×107.故选择B.【点睛】本题主要考查科学记数法,科学记数法表示数的标准形式是a×10n(1≤│a│<10且n为整数).2.A【解析】【分析】根据相反数的定义,对每个选项进行判断即可.【详解】解:A、(﹣1)2=1,1与﹣1 互为相反数,正确;B、(﹣1)2=1,故错误;C、2与12互为倒数,故错误;D、2=|﹣2|,故错误;故选:A.【点睛】本题考查了相反数的定义,解题的关键是掌握相反数的定义. 3.D【解析】A、原式=a2﹣4,不符合题意;B、原式=a2﹣a﹣2,不符合题意;C、原式=a2+b2+2ab,不符合题意;D、原式=a2﹣2ab+b2,符合题意,故选D 4.B 【解析】 【分析】由抛物线的对称轴结合抛物线与x 轴的一个交点坐标,可求出另一交点坐标,结论①正确;当x=﹣1时,y >1,得到a ﹣b+c >1,结论②错误;根据抛物线的对称性得到结论③错误;将x=2代入二次函数解析式中结合4a+b+c=1,即可求出抛物线的顶点坐标,结论④正确;根据抛物线的顶点坐标为(2,b ),判断⑤. 【详解】解:①∵抛物线y=ax 2+bx+c (a≠1)的对称轴为直线x=2,与x 轴的一个交点坐标为(4,1), ∴抛物线与x 轴的另一交点坐标为(1,1), ∴抛物线过原点,结论①正确; ②∵当x=﹣1时,y >1, ∴a ﹣b+c >1,结论②错误;③当x <1时,y 随x 增大而减小,③错误;④抛物线y=ax 2+bx+c (a≠1)的对称轴为直线x=2,且抛物线过原点, ∴22ba-=,c=1, ∴b=﹣4a ,c=1, ∴4a+b+c=1,当x=2时,y=ax 2+bx+c=4a+2b+c=(4a+b+c )+b=b , ∴抛物线的顶点坐标为(2,b ),结论④正确; ⑤∵抛物线的顶点坐标为(2,b ), ∴ax 2+bx+c=b 时,b 2﹣4ac=1,⑤正确; 综上所述,正确的结论有:①④⑤. 故选B . 【点睛】本题考查的是二次函数图象与系数的关系,二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点抛物线与x 轴交点的个数确定. 5.C 【解析】 【分析】过B 作直径,连接AC 交AO 于E ,如图①,根据已知条件得到BD=12OB=2,如图②,BD=6,求得OD 、OE 、DE 的长,连接OD ,根据勾股定理得到结论. 【详解】过B作直径,连接AC交AO于E,∵点B为»AC的中点,∴BD⊥AC,如图①,∵点D恰在该圆直径上,D为OB的中点,∴BD=12×4=2,∴OD=OB-BD=2,∵四边形ABCD是菱形,∴DE=12BD=1,∴OE=1+2=3,连接OC,∵CE=2222=43=7OC OE--,在Rt△DEC中,由勾股定理得:DC=2222=(7)1=22CE DE++;如图②,OD=2,BD=4+2=6,DE=12BD=3,OE=3-2=1,由勾股定理得:2222=41=15OC OE--2222=3(15)=26DE CE++.故选C . 【点睛】本题考查了圆心角,弧,弦的关系,勾股定理,菱形的性质,正确的作出图形是解题的关键. 6.D 【解析】 【分析】根据幂的乘方:底数不变,指数相乘.合并同类项即可解答. 【详解】解:A 、B 两项不是同类项,所以不能合并,故A 、B 错误,C 、D 考查幂的乘方运算,底数不变,指数相乘.326x x ()= ,故D 正确; 【点睛】本题考查幂的乘方和合并同类项,熟练掌握运算法则是解题的关键. 7.D 【解析】 【分析】根据分式的分母不等于0即可解题. 【详解】解:∵代数式22x x -有意义,∴x-2≠0,即x≠2, 故选D. 【点睛】本题考查了分式有意义的条件,属于简单题,熟悉分式有意义的条件是解题关键. 8.B 【解析】 【分析】由题图可知:得对折两次后得到的小长方形纸片的长为b ,宽为14a ,然后根据相似多边形的定义,列出比例式即可求出结论. 【详解】解:由题图可知:得对折两次后得到的小长方形纸片的长为b ,宽为14a , ∵小长方形与原长方形相似,,14a b b a ∴=2a b ∴=故选B . 【点睛】此题考查的是相似三角形的性质,根据相似三角形的定义列比例式是解决此题的关键. 9.C 【解析】试题分析:由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 解:①当x=1时,y=a+b+c=1,故本选项错误;②当x=﹣1时,图象与x 轴交点负半轴明显大于﹣1,∴y=a ﹣b+c <1,故本选项正确; ③由抛物线的开口向下知a <1, ∵对称轴为1>x=﹣>1,∴2a+b <1, 故本选项正确; ④对称轴为x=﹣>1, ∴a 、b 异号,即b >1, ∴abc <1, 故本选项错误;∴正确结论的序号为②③. 故选B .点评:二次函数y=ax 2+bx+c 系数符号的确定:(1)a 由抛物线开口方向确定:开口方向向上,则a >1;否则a <1; (2)b 由对称轴和a 的符号确定:由对称轴公式x=﹣b2a 判断符号;(3)c 由抛物线与y 轴的交点确定:交点在y 轴正半轴,则c >1;否则c <1; (4)当x=1时,可以确定y=a+b+C 的值;当x=﹣1时,可以确定y=a ﹣b+c 的值. 10.A 【解析】解:图B 、C 、D 中,线段MN 不与直线l 垂直,故线段MN 的长度不能表示点M 到直线l 的距离; 图A 中,线段MN 与直线l 垂直,垂足为点N ,故线段MN 的长度能表示点M 到直线l 的距离.故选A . 11.B 【解析】试题解析:∵AC=10,∴AO=BO=5,∵∠BAC=36°,∴∠BOC=72°,∵矩形的对角线把矩形分成了四个面积相等的三角形,∴阴影部分的面积=扇形AOD的面积+扇形BOC的面积=2扇形BOC的面积=27252360π⨯⨯=10π .故选B.12.C【解析】【分析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【详解】方程变形得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x1=1.故选C.【点睛】考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3 5【解析】【分析】由题中所给条件证明△ADF~△ACG,可求出AFAG的值.【详解】解:在△ADF和△ACG中,AB=6,AC=5,D是边AB的中点AG是∠BAC的平分线,∴∠DAF=∠CAG∠ADE=∠C∴△ADF~△ACG∴35 AF ADAG AC==.故答案为3 5 .【点睛】本题考查了相似三角形的判定和性质,难度适中,需熟练掌握. 14.1【解析】【详解】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设袋中有x 个红球,列出方程30x =20%, 求得x=1. 故答案为1.点睛:此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.15.AC=BD .【解析】试题分析:添加的条件应为:AC=BD ,把AC=BD 作为已知条件,根据三角形的中位线定理可得,HG 平行且等于AC 的一半,EF 平行且等于AC 的一半,根据等量代换和平行于同一条直线的两直线平行,得到HG 和EF 平行且相等,所以EFGH 为平行四边形,又EH 等于BD 的一半且AC=BD ,所以得到所证四边形的邻边EH 与HG 相等,所以四边形EFGH 为菱形.试题解析:添加的条件应为:AC=BD .证明:∵E ,F ,G ,H 分别是边AB 、BC 、CD 、DA 的中点,∴在△ADC 中,HG 为△ADC 的中位线,所以HG ∥AC 且HG=12AC ;同理EF ∥AC 且EF=12AC ,同理可得EH=12BD , 则HG ∥EF 且HG=EF ,∴四边形EFGH 为平行四边形,又AC=BD ,所以EF=EH ,∴四边形EFGH 为菱形.考点:1.菱形的性质;2.三角形中位线定理.16.22262x xy y z -++【解析】试题分析:依题意知()()524334325243343212332x y x y x y x y z x y x y x y x y z ⎛⎫-⎛⎫--÷-=--⨯ ⎪ ⎪⎝⎭⎝⎭ =22262x xy y z -++考点:整式运算点评:本题难度较低,主要考查学生对整式运算中多项式计算知识点的掌握。

抚州市2020年中考数学模拟试题及答案

抚州市2020年中考数学模拟试题及答案

抚州市2020年中考数学模拟试题及答案注意事项:1.考生务必将自己的姓名、准考证号填涂在试卷和答题卡的规定位置。

2.考生必须把答案写在答题卡上,在试卷上答题一律无效。

考试结束后,本试卷和答题卡一并交回。

3.本试卷满分120分,考试时间120分钟。

一、选择题(本题共12小题。

每小题3分,共36分。

在每小题给出的四个选项中,只有一项是正确的。

)1.下列计算正确的是()A.x2﹣3x2=﹣2x4B.(﹣3x2)2=6x2C.x2y•2x3=2x6y D.6x3y2÷(3x)=2x2y22.据统计,截止2019年2月,我市实际居住人口约4210000人,4210000这个数用科学记数法表示为()A.42.1×105B.4.21×105C.4.21×106D.4.21×1073.如右图是某个几何体的侧面展开图,则该几何体是()A.三棱锥B.四棱锥C.三棱柱D.四棱柱4.一元二次方程2x2﹣2x﹣1=0的较大实数根在下列哪两个相邻的整数之间()A.4,3 B.3,2 C.2,1 D.1,05.小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:若抛掷硬币的次数为1000,则“正面朝上”的频数最接近()A.20 B.300 C.500 D.8006.下列图形中既是轴对称图形,又是中心对称图形的是()A. B.C. D.7.关于一次函数y=5x﹣3的描述,下列说法正确的是()A.图象经过第一、二、三象限B.向下平移3个单位长度,可得到y=5xC.函数的图象与x轴的交点坐标是(0,﹣3)D.图象经过点(1,2)8.如右图,AB∥CD,直线MN与AB、CD分别交于点E、F,FG平分∠EFD,EG⊥FG于点G,若∠CFN=110°,则∠BEG=()A.20°B.25°C.35°D.40°9.下列计算正确的有()个。

①(﹣2a2)3=﹣6a6②(x﹣2)(x+3)=x2﹣6 ③(x﹣2)2=x2﹣4④﹣2m3+m3=﹣m3⑤﹣16=﹣1.A.0 B.1 C.2 D.310.小李双休日爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用的时间为t分钟,所走的路程为s米,s与t之间的函数关系式如图所示,下列说法错误的是()A.小李中途休息了20分钟B.小李休息前爬山的速度为每分钟70米C.小李在上述过程中所走的路程为6600米D.小李休息前爬山的平均速度大于休息后爬山的平均速度11. 如图,四边形ABCD是⊙O的内接四边形,∠B=70°,则∠D的度数是()A. 110°B. 90°C. 70°D. 50°12.图1是用钢丝制作的一个几何探究工具,其中△ABC内接于⊙G,AB是⊙G的直径,AB=6,AC=2.现将制作的几何探究工具放在平面直角坐标系中(如图2),然后点A在射线OX上由点O开始向右滑动,点B在射线OY上也随之向点O滑动(如图3),当点B滑动至与点O重合时运动结束.在整个运动过程中,点C运动的路程是()A.4 B.6 C.4﹣2 D.10﹣4二、填空题(本题共6小题,满分18分。

抚州市2020版中考数学一模试卷(I)卷

抚州市2020版中考数学一模试卷(I)卷

抚州市2020版中考数学一模试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共16题;共32分)1. (2分) (2017七上·东台月考) 已知a,b两数在数轴上对应的点如图所示,下列结论正确的是()A . a+b>0B . a>bC . ab<0D . b﹣a>02. (2分) (2018八上·焦作期末) 如图, ,点在直线上,且 , ,那么=()A . 45°B . 50°C . 55°D . 60°3. (2分) (2019七上·海南月考) 在数轴上表示-12的点与表示3的点,这两点间的距离为()A . 9B . -9C . -15D . 154. (2分)(2017·临沂模拟) 不等式组的解集在数轴上表示正确的是()A .B .C .D .5. (2分) (2020七下·枣庄期中) 某学校组织知识竞赛,共设20道题,其中有关中国优秀传统文化试题10道,实践应用题4道,创新能力题6道,小捷从中任选一道试题作答,他选中创新能力试题的概率是()A .B .C .D .6. (2分) (2015七下·杭州期中) 两个角的两边分别平行,其中一个角是60°,则另一个角是()A . 60°B . 120°C . 60°或120°D . 无法确定7. (2分)如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,则组成这个几何体的小正方体的个数是()A . 5或6或7B . 6或7C . 7或8D . 6或7或88. (2分)若|a|是一个正数,那么下列说法正确的是()A . a一定是正数B . a一定是负数C . a一定不是0D . a是任何有理数9. (2分)如图,半圆O的直径AB=4,与半圆O内切的小圆O1 ,与AB切于点M,设⊙O1的半径为y,AM=x,则y关于x的函数关系式是()A . y=x2+xB . y=-x2+xC . y=-x2-xD . y=x2-x10. (2分) (2018九上·路南期中) 如图,Rt△ABC中,∠ACB=90°,AC=4,将斜边AB绕点A逆时针旋转90°至AB′.连接B'C,则△AB'C的面积为()A . 4B . 6C . 8D . 1011. (2分) (2016八上·宁江期中) 下列尺规作图,能判断AD是△ABC边上的高是()A .B .C .D .12. (2分)如图线段AB与直线AC相交构成∠BAC(其中∠BAC为锐角,且∠BAC≠60°) ,请在直线AC上找一点D使得△ABD为等腰三角形.问:这样的点D共存在()点.A . 1B . 2C . 3D . 413. (2分)(2017·北区模拟) 一副完整的扑克牌,去掉大小王,将剩余的52张混合后从中随机抽取一张,则抽出A的概率是()A .B .C .D .14. (2分)(2017·东安模拟) 现有A、B两枚均匀的骰子(骰子的每个面上分别标有数字1,2,3,4,5,6).以小莉掷出A骰子正面朝上的数字为x、小明掷出B骰子正面朝上的数字为y来确定点P(x,y),那么它们各掷一次所确定的点P在已知抛物线y=﹣x2+5x上的概率为()A .B .C .D .15. (2分) (2016九上·吴中期末) 如图,是一个圆锥形纸杯的侧面展开图,已知圆锥底面半径为5cm,母线长为15cm,那么纸杯的侧面积为()A . 75πcm2B . 150πcm2C .D .16. (2分)记sn=a1+a2+…+an ,令Tn= ,则称Tn为a1 , a2 ,…,an这列数的“凯森和”.已知a1 , a2 ,…,a500的“凯森和”为2004,那么13,a1 , a2 ,…,a500的“凯森和”为()A . 2013B . 2015C . 2017D . 2019二、填空题 (共4题;共6分)17. (3分) (2016七上·海盐期中) 把下列各数的代号填在相应的横线上①﹣0.3,②﹣5,③ ,④π2 ,⑤|﹣2|,⑥ ,⑦3.1010010001…(每两个1之间多一个0),⑧﹣分数:{________}.整数:{________}.无理数:{________}.18. (1分)写出一个一次函数的解析式:________,使它经过点A(2,4)且y随x的增大而减小.19. (1分)你会解绝对值|2x|=3吗?我们可以这样考虑:因为|3|=3,|﹣3|=3,所以有2x=3,2x=﹣3;分别解得x= ,x=﹣.类比以上解法,可得方程|x+3|=2的解是________.20. (1分)如图,O为△ABC的外心,△OCP为正三角形,OP与AC相交于D点,连接OA.若∠BAC=69°14′,AB=AC,则∠ADP的度数________.三、解答题 (共6题;共54分)21. (5分)(2020·资兴模拟) 计算:22. (10分) (2019八上·九龙坡期中) 如图,等腰中,,点A、B分别在坐标轴上.(1)如图①,若,,求C点的坐标;(2)如图②,若点A的坐标为,点B在y轴的正半轴上运动时,分别以OB,AB为边在第一,第二象限作等腰,等腰,连接EF交y轴于P点,当点B在y轴上移动时,PB的长度是否变化?如果不变求出PB值,如果变化求PB的取值范围.23. (12分)(2019·铁西模拟) 2017年3月27日是全国中小学生安全教育日,某校为加强学生的安全意识,组织了全校学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整致,满分为10分)进行统计,绘制了图中两幅不完整的统计图.(1) a=________,n=________;(2)补全频数直方图;(3)该校共有2000名学生.若成绩在70分以下(含70分)的学生安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?24. (10分)已知∠MAN=135°,正方形ABCD绕点A旋转.(1)当正方形ABCD旋转到∠MAN的外部(顶点A除外)时,AM,AN分别与正方形ABCD的边CB,CD的延长线交于点M,N,连接MN.①如图1,若BM=DN,写出线段MN与BM+DN之间的数量关系;②如图2,若BM≠DN,请判断①中的数量关系是否仍成立?若成立,请给予证明;若不成立,请说明理由(2)如图3,当正方形ABCD旋转到∠MAN的内部(顶点A除外)时,AM,AN分别与直线BD交于点M,N.探究:以线段BM,MN,DN的长度为三边长的三角形是何种三角形,并说明理由.25. (10分)在直角坐标平面内,二次函数图象的顶点为A(1,﹣4),且过点B(3,0).(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x轴的另一个交点的坐标.26. (7分) (2019九上·长春月考) 问题探究:如图①,在正方形中,点在边上,点在边上,且.线段与相交于点,是的中线.(1)求证:;(2)线段与之间的数量关系为________.(3)问题拓展:如图②,在矩形中,,,点在边上,点在边上,且,,线段与相交于点.若是的中线,则线段的长为________.参考答案一、选择题 (共16题;共32分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、二、填空题 (共4题;共6分)17-1、18-1、19-1、20-1、三、解答题 (共6题;共54分) 21-1、22-1、22-2、23-1、23-2、23-3、24-1、24-2、25-1、25-2、26-1、26-2、26-3、。

江西省抚州市2020年中考数学一模试卷(I)卷

江西省抚州市2020年中考数学一模试卷(I)卷

江西省抚州市2020年中考数学一模试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) -3的相反数是()A . 3B . -3C . -D .2. (2分)下列式子运算正确的是()A . a6÷a2=a4B . a2+a3=a5C . (a+1)2=a2+1D . 3a﹣2a=13. (2分) (2019七下·陆川期末) 下列调查最适合用全面调查的是()A . 调查某批汽车的抗撞击能力B . 鞋厂检测生产的鞋底能承受的弯折次数C . 了解全班学生的视力情况D . 检测吉林市某天的空气质量4. (2分)一个几何体是由若干个相同的立方体组成,其主视图和左视图如图所示,则组成这个几何体的立方体个数不可能的是()A . 15个B . 13个C . 11个D . 5个5. (2分) (2019七下·枣庄期中) 纳米是一种长度单位,1米=109纳米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示这种花粉的直径为A . 35×1013米B . 3.5×1013米C . 3.5×10-6米D . 3.5×10-5米6. (2分) (2020七下·宁波期中) 《孙子算经》是唐初作为“算学”教科书的著名的《算经十书)之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料,下卷收集了一些算术难题,“鸡兔同笼”问题是其中之一,原题如下:今有雉(鸡)兔同笼,上有三十五头,下有九十四足.问雉、兔各几何?()A . 雉 23 只,兔 12 只B . 雉 12 只,兔 23 只C . 雉 13 只,兔 22 只D . 雉 22 只,兔 13 只7. (2分) (2018八上·邢台月考) 若把分式中的x和y都扩大2倍,那么分式的值()A . 扩大2倍B . 不变C . 缩小2倍D . 缩小4倍8. (2分) (2017九上·镇平期中) 已知,直角坐标系中,点E(-4,2),F(-1,-1),以O为位似中心,按比例尺2:1把△EFO缩小,则点E的对应点的坐标为()A . (2,-1)或(-2,1)B . (8,-4)或(-8,4)C . (2,-1)D . (8,-4)9. (2分)如图,⊙O的半径为2,C1是函数y= x2的图象,C2是函数y=- x2的图象,则图中阴影部分的面积为()A . πB . 2πC . 3πD . 4π10. (2分)(2017·广州) 如图,⊙O是△ABC的内切圆,则点O是△ABC的()A . 三条边的垂直平分线的交点B . 三条角平分线的交点C . 三条中线的交点D . 三条高的交点11. (2分)如图,D,E为△ABC两边AB,AC的中点,将△ABC沿线段DE折叠,使点A落在点F处,若∠B=55 °,则∠BDF等于()A . 55°B . 60°C . 70°D . 90°12. (2分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列四个结论:①abc>0;②3a+b>0;③>-3;④2c >3b,其中结论正确的个数为()A . 1B . 2C . 3D . 4二、填空题 (共6题;共20分)13. (1分)在函数y=中,自变量x的取值范围是________.14. (1分)(2017·黔东南) 黔东南下司“蓝每谷”以盛产“优质蓝莓”而吸引来自四面八方的游客,某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中“优质蓝莓”出现的频率逐渐稳定在0.7,该果农今年的蓝莓总产量约为800kg,由此估计该果农今年的“优质蓝莓”产量约是________ kg.15. (1分)如图,小刚用一张半径为24cm的扇形纸板做一个圆锥形帽子侧面(接缝忽略不计),如果做成的圆锥形帽子的底面半径为5cm,那么这张扇形纸板的面积是________ cm2.16. (1分)若一元二次方程ax2=b(ab>0)的两个根分别是m+1与2m﹣4,则 =________.17. (1分)(2017·东河模拟) 等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2﹣12x+k=0的两个根,则k的值是________.18. (15分)(2011·资阳) 在一次机器人测试中,要求机器人从A出发到达B处.如图1,已知点A在O的正西方600cm处,B在O的正北方300cm处,且机器人在射线AO及其右侧(AO下方)区域的速度为20cm/秒,在射线AO的左侧(AO上方)区域的速度为10cm/秒.(参考数据:≈1.414,≈1.732,≈2.236,≈2.449)(1)分别求机器人沿A→O→B路线和沿A→B路线到达B处所用的时间(精确到秒);(2)若∠OCB=45°,求机器人沿A→C→B路线到达B处所用的时间(精确到秒);(3)如图2,作∠OAD=30°,再作BE⊥AD于E,交OA于P.试说明:从A出发到达B处,机器人沿A→P→B 路线行进所用时间最短.三、解答题 (共7题;共82分)19. (10分) (2017八下·安岳期中) 化简或解方程(1)化简:(2)解方程:20. (12分)为推进“传统文化进校园”活动,某校准备成立“经典诵读”、“传统礼仪”、“民族器乐”和“地方戏曲”等四个课外活动小组.学生报名情况如图(每人只能选择一个小组):(1)报名参加课外活动小组的学生共有人,将条形图补充完整;(2)扇形图中m=________ ,n=________ ;(3)根据报名情况,学校决定从报名“经典诵读”小组的甲、乙、丙、丁四人中随机安排两人到“地方戏曲”小组,甲、乙恰好都被安排到“地方戏曲”小组的概率是多少?请用列表或画树状图的方法说明.21. (15分)(2018·北部湾模拟) 如图,在平面直角坐标系中,直线y=﹣x+2与坐标轴分别交于A,B两点,过点B作BD∥x轴,抛物线y=﹣ x2+bx+c经过B,D两点,且对称轴为x=2,设x轴上一动点P(n,0),过点P 分别作直线BD,AB的垂线,垂足分别为M,N.(1)求抛物线的解析式及顶点C的坐标;(2)设四边形ABCD的面积为S四边形ABCD,当n为何值时, = ;(3)是否存在点P(n,0),使得△PMN为等腰三角形?若存在,请求出点P的坐标,若不存在,请说明理由.22. (10分)已知x1 , x2是一元二次方程(a﹣6)x2+2ax+a=0的两个实数根.(1)是否存在实数a,使﹣x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请你说明理由;(2)求使(x1+1)(x2+1)为正整数的实数a的整数值.23. (10分) (2017九上·江门月考) 小莉的爸爸一面利用墙(墙的最大可用长度为11m),其余三面用长为40m的塑料网围成矩形鸡圈(其俯视图如图所示矩形ABCD),设鸡圈的一边AB长为xm,面积ym2 .(1)写出y与x的函数关系式;(2)如果要围成鸡圈的面积为192m2的花圃,AB的长是多少?24. (15分) (2016九上·南开期中) 如图,在平面直角坐标系中,圆M经过原点O,且与x轴、y轴分别相交于A(﹣8,0),B(0,﹣6)两点.(1)求出直线AB的函数解析式;(2)若有一抛物线的对称轴平行于y轴且经过点M,顶点C在圆M上,开口向下,且经过点B,求此抛物线的函数解析式;(3)设(2)中的抛物线交x轴于D、E两点,在抛物线上是否存在点P,使得S△PDE= S△ABC?若存在,请求出点P的坐标;若不存在,请说明理由.25. (10分)如图,DB∥AC,且DB=AC,E是AC的中点.(1)求证:BC=DE;(2)连接AD、BE,若∠BAC=∠C,求证:四边形DBEA是矩形.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共20分)13-1、14-1、15-1、16-1、17-1、18-1、18-2、18-3、三、解答题 (共7题;共82分) 19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、。

抚州市中考数学一模试卷

抚州市中考数学一模试卷

抚州市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、一.选择题 (共10题;共20分)1. (2分)(2020·椒江模拟) 下列运算正确的是()A .B .C .D .2. (2分)(2017·安徽模拟) 如图,将一个小球摆放在圆柱上底面的正中间,则该几何体的俯视图是()A .B .C .D .3. (2分)如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF等于()A . 80°B . 50°C . 40°D . 20°4. (2分)有两个一元二次方程:M:ax2+bx+c=0,N:cx2+bx+a=0,其中a+c=0,以下列四个结论中,错误的是…….()A . 如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根;B . 如果方程M有两根符号相同,那么方程N的两根符号也相同;C . 如果5是方程M的一个根,那么是方程N的一个根;D . 如果方程M和方程N有一个相同的根,那么这个根必是5. (2分)若不等式组只有3个整数解,则a的取值范围是()A . -3<a<-2B . -3≤a<-2C . -3≤a≤-2D . -3<a≤-26. (2分)(2020·宜昌模拟) 已知直线l及直线l外一点P.如图,(1)在直线l上取一点O,以点O为圆心,OP长为半径画半圆,交直线l于A,B两点;(2)连接PA,以点B为圆心,AP长为半径画弧,交半圆于点Q;(3)作直线PQ,连接BP.根据以上作图过程及所作图形,下列结论中错误的是()A . AP=BQB . PQ∥ABC . ∠ABP=∠PBQD . ∠APQ+∠ABQ=180°7. (2分) (2017八下·西城期中) 如图,已知函数和的图象交于点,则下列结论中错误的是().A .B .C . 当时,D .8. (2分) (2016八下·江汉期中) 如图所示,△ABC中,∠A=90°,D是AC上一点,且∠ADB=2∠C,P是BC上任一点,PE⊥BD于点E,PE⊥AC于点F,下列结论:①△DBC是等腰三角形;②∠C=30°;③PE+PF=AB;④PE2+AF2=BP2 .其中结论正确的序号是()A . 只有①②③B . 只有①③④C . 只有②④D . ①②③④9. (2分)等腰三角形的底和腰是方程x2﹣7x+12=0的两个根,则这个三角形的周长是()A . 11B . 10C . 11或10D . 不能确定10. (2分)下面说法中错误的是()A . 有两个角和任一个角的对边对应相等的三角形全等B . 有一个锐角和一条直角边对应相等的两个直角三角形全等C . 两个等边三角形全等D . 有一边对应相等的两个等边三角形全等二、填空题 (共8题;共8分)11. (1分) (2016七下·翔安期末) 过度包装既浪费又污染环境,据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳2130000吨,把数2130000用科学记数法表示为________12. (1分)(2019·合肥模拟) 因式分解: ________.13. (1分)(2018·平南模拟) 将抛物线y=﹣x2+1向右平移2个单位长度,再向上平移3个单位长度所得的抛物线解析式为________.14. (1分)如图,将弧长为6π,圆心角为120°的扇形纸片AOB围成圆锥形纸帽,使扇形的两条半径OA 与OB重合(粘连部分忽略不计),则圆锥形纸帽的高是________.15. (1分)(2018·河南模拟) 如图,AC∥EF∥DB,若AC=8,BD=12,则EF=________.16. (1分) (2019九上·揭西期末) 双曲线、在第一象限的图象如图,过y1上的任意一点A,作轴的平行线交y2于B,交y轴于C,若,则 ________.17. (1分) (2019·金堂模拟) 现有7张下面分别标有数字-2,-1,0,1,2,3,4的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为m,则使得关于x的二次函数y=x2-2x+m-2与x轴有交点,且交于x的分式方程有解的概率为________ .18. (1分)(2017·南漳模拟) 如图,△ABO中,AB⊥OB,OB= ,AB=1,把△ABO绕点O旋转150°后得到△A1B1O,则点A1坐标为________.三、三.解答题 (共7题;共80分)19. (10分) (2017八下·文安期末) 计算:(1)﹣﹣ +( +1)0(2)( + )2﹣(﹣)2 .20. (15分) (2017八下·陆川期末) 为了倡导“节约用水,从我做起”,黄冈市政府决定对市直机关500户家庭的用水情况作一次调查,市政府调查小组随机抽查了其中100户家庭一年的月平均用水量(单位:吨).并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整;(2)求这100个样本数据的平均数,众数和中位数;(3)根据样本数据,估计黄冈市直机关500户家庭中月平均用水量不超过12吨的约有多少户?21. (10分)(2020·金华模拟) 如图,斜坡AB的长为65米,坡度i=1∶2.4,BC⊥AC.(参考三角函数:sin37°≈ ,cos37°≈ ,tan37°≈ )(1)求斜坡的高度BC.(2)现计划在斜坡AB的中点D处挖去部分坡体,修建一个平行于水平线CA的平台DE和一条新的斜坡BE,若斜坡BE的坡角为37°,求平台DE的长.22. (5分)(2014·梧州) 某市修通一条与省会城市相连接的高速铁路,动车走高速铁路线到省会城市路程是500千米,普通列车走原铁路线路程是560千米.已知普通列车与动车的速度比是2:5,从该市到省会城市所用时间动车比普通列车少用4.5小时,求普通列车、动车的速度.23. (15分)已知△ABC是等边三角形,点P是平面内一点,且四边形PBCD为平行四边形,将线段CD绕点C 逆时针旋转60°,得到线段CF.(1)如图1,当P为AC的中点时,求证:FC⊥PD;(2)如图2,当P为△ABC内任一点时,连接PA,PF,AF试判断△PAF的形状,并证明你的结论;(3)当B,P,F三点共线且AB=,PB=3时,求PA的长.24. (10分) (2020八上·赣榆期末)(1)【模型建立】如图1,等腰直角三角形中,,,直线经过点,过作于点,过作于点 .求证:;(2)【模型应用】①已知直线:与轴交于点,与轴交于点,将直线绕着点逆时针旋转至直线,如图2,求直线的函数表达式;②如图3,在平面直角坐标系中,点,作轴于点,作轴于点,是线段上的一个动点,点是直线上的动点且在第一象限内.问点、、能否构成以点为直角顶点的等腰直角三角形,若能,请直接写出此时点的坐标,若不能,请说明理由.25. (15分)(2019·保定模拟) 如图,抛物线y=ax2+bx﹣2a与x轴交于点A和点B(1,0),与y轴将于点C(0,﹣).(1)求抛物线的解析式;(2)若点D(2,n)是抛物线上的一点,在y轴左侧的抛物线上存在点T ,使△TAD的面积等于△TBD的面积,求出所有满足条件的点T的坐标;(3)直线y=kx﹣k+2,与抛物线交于两点P、Q ,其中在点P在第一象限,点Q在第二象限,PA交y轴于点M , QA交y轴于点N ,连接BM、BN ,试判断△BMN的形状并证明你的结论.参考答案一、一.选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、三.解答题 (共7题;共80分)19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、23-1、23-2、23-3、24-1、24-2、25-1、25-3、。

抚州市2020版中考数学试卷(I)卷(模拟)

抚州市2020版中考数学试卷(I)卷(模拟)

抚州市2020版中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2018七上·南召期中) 有理数,,在数轴上对应的点如图所示,则下列式子① ②③ ④ 其中正确的是()A . ①②③④B . ①②④C . ①③④D . ②③④2. (2分)如图,是由若干个相同的小正反体组成的几何体,如果从上面观察这个几何体得到的平面图形是()A .B .C .D .3. (2分)下列运算正确的是().A . a+b=abB . a2·a3=a5C . a2+2ab-b2=(a-b)2D . 3a-2a=14. (2分) (2016高一下·台州期末) 抽查10件产品,设事件A:至少有两件次品,则A的对立事件为()A . 至多两件次品B . 至多一件次品C . 至多两件正品D . 至少两件正品5. (2分) (2018八上·靖远期末) 平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为()A . (2,﹣3)B . (﹣2,3)C . (﹣2,﹣3)D . (2,3)6. (2分) (2019九下·江都月考) 某学校足球队23人年龄情况如下表:年龄/岁1213141516人数13685则下列结论正确的是()A . 极差为3B . 众数为15C . 中位数为14D . 平均数为147. (2分)已知一次函数y=kx+b中,y随自变量x的增大而增大,则有()A . b<0B . b>0C . k<0D . k>08. (2分)(2020·武汉模拟) 如图,△ABC内接于⊙O,AC=5,BC=12,且∠A=90°+∠B,则点O到AB的距离为()A .B .C .D . 49. (2分)(2017·古田模拟) 如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A . 1.8B . 2.4C . 3.2D . 3.610. (2分) (2018九上·孝感期末) 如图,抛物线的顶点为B(1,3),与轴的交点A在点 (2,0)和(3,0)之间.以下结论:① ;② ;③ ;④ ≥ ;⑤若,且,则 .其中正确的结论有()A . 4个B . 3个C . 2个D . 1个二、填空题 (共8题;共8分)11. (1分) 3月5日全国“两会”召开当天,网站关于此信息的总浏览量达3.5亿次,将3.5亿这个数据用科学记数法表示为________.12. (1分)(2017·齐齐哈尔) 因式分解:4m2﹣36=________.13. (1分)(2011·义乌) 某校为了选拔学生参加我市2011年无线电测向比赛中的装机比赛,教练对甲、乙两选手平时五次训练成绩进行统计,两选手五次训练的平均成绩均为30分钟,方差分别是S甲2=51、S乙2=12.则甲、乙两选手成绩比较稳定的是________.14. (1分)(2017·启东模拟) 正八边形的每个外角的度数为________.15. (1分)(2011·福州) 已知地球表面陆地面积与海洋面积的比约为3:7.如果宇宙中飞来一块陨石落在地球上,则落在陆地上的概率是________.16. (1分)如图,在梯形ABCD中,AD∥BC,AB=DC,AC⊥BD于点O,过点A作AE⊥BC于点E,若BC=2AD=8,则tan∠ABE=________17. (1分) (2016八上·景德镇期中) Rt△ABC中,∠BAC=90°,AB=AC=2.以AC为一边,在△ABC外部作等腰直角三角形ACD,则线段BD的长为________.18. (1分) (2018九下·新田期中) 取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明,但举例验证发现都是正确.例如:取自然数5,最少经过下面的5步运算可得1,如图:请问,如果一个自然数m最少经过7步运算可得到1,则所有符合条件的m的值为________三、解答题 (共8题;共101分)19. (10分)计算:(1) 20﹣3﹣2+(﹣2)3;(2)(3m2)3+(﹣2m3)2﹣m•m5.20. (10分)(2018·温州模拟) 某校活动课要求每位同学在乒乓球、篮球、排球、羽毛球4类体育项目中任选一项参加.为了解同学对这4类体育项目的报名情况,学校对本校50名学生进行抽样调查,并绘制统计图.请根据统计图回答下列问题:(1)已知全校共有500名学生,估计报名参加乒乓球项目的学生有多少人.(2)甲、乙、丙三人的乒乓球水平相当,学校决定从这三名同学中任选两名参加市乒乓球比赛,请用画树状图或列表法求甲被选中的概率.21. (10分) (2018八上·自贡期末) “成自”高铁自贡仙市段在建设时,甲、乙两个工程队计划参与该项工程建设,甲队单独施工30天完成该项工程的,这时乙队加入,两队还需同时施工30天,才能完成该项工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参与该项工程施工的时间不超过40天,则乙队至少施工多少天才能完成该项工程?22. (11分) (2017八下·南召期中) 如图,函数y=kx与y= 的图象在第一象限内交于点A,过点A作AD 垂直x轴于点D,且S△AOD= .(1)求反比例函数的关系式;(2)若AD=1,试求k的值;(3)若kx﹣>0,请直接写出x的取值范围________.23. (15分) (2016九上·滨州期中) 2016年3月国际风筝节期间,王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请回答以下问题:(1)用表达式表示蝙蝠型风筝销售量y(个)与售价x(元)之间的函数关系(12≤x≤30);(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?(3)当售价定为多少时,王大伯获得利润W最大,最大利润是多少?24. (15分) (2020九上·中山期末) 如图,在△ABC中,AB=AC,∠A=30°,AB=10,以AB为直径的⊙O交BC于点D交AC于点E,连接DE,过点B作BP平行于DE,交⊙O于点P,连接CP、OP。

抚州市2020版数学中考一模试卷(II)卷

抚州市2020版数学中考一模试卷(II)卷

抚州市2020版数学中考一模试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2019七上·兴平月考) 下列各式的值等于5的是()A . |-9|+|+4|B . |(-9)+(+4)|C . |(+9)―(―4)|D . |-9|+|-4|.2. (2分) (2019七上·兰州月考) 光年是天文学中的距离单位,1光年大约是9500000000000km,这个数据用科学记数法表示是()A . kmB . kmC . kmD . km3. (2分)不等式-4x≤5的解集是()A . x≤B . x≥C . x≤D . x≥4. (2分)如图,由三个小立方体搭成的几何体的俯视图是()A .B .C .D .5. (2分) (2016八上·庆云期中) 等腰三角形的一个内角是50°,则这个三角形的底角的大小是()A . 65°或50°B . 80°或40°C . 65°或80°D . 50°或80°6. (2分) (2020九下·镇江月考) 如图,在平地上种植树木时,要求株距(相邻两树间的水平距离)都为4m.如果在坡度为0.75的山坡上种树,也要求株距为4m,那么相邻两树间的坡面距离为()A . 5mB . 6mC . 7mD . 8m7. (2分)(2020·重庆模拟) 下列判断中正确的是()A . 矩形的对角线互相垂直B . 正八边形的每个内角都是145°C . 三角形三边垂直平分线的交点到三角形三边的距离相等D . 一组对边平行,一组对角相等的四边形是平行四边形8. (2分)如图,在△ABC中,AB=AC,BD=BC,AD=DE=EB,则∠A等于()A . 45 °B . 36°C . 30°D . 54°二、填空题 (共5题;共9分)9. (1分) (2019七上·绍兴期中) 比较大小(1) -100________0.3,(2) ________3,(3) -3.14________π10. (1分) (2020七下·吴中期中) 已知,则 ________.11. (1分) (2019九上·交城期中) 若关于的一元二次方程有实数根,则的取值范围是________.12. (5分)设△ABC的面积为1,如图①,将边BC、AC分别2等分,BE1、AD1相交于点O,△AOB的面积记为S1;如图②将边BC、AC分别3等分,BE1、AD1相交于点O,△AOB的面积记为S2;…,依此类推,则Sn可表示为________ .(用含n的代数式表示,其中n为正整数)13. (1分) (2019九上·武邑月考) 将一个正十边形绕其中心至少旋转________°就能和本身重合.三、解答题 (共8题;共80分)14. (5分) (2017七上·上城期中) 化简求值:若,求的值.15. (5分)数学课堂上,为了学习构成任意三角形三边需要满足的条件.甲组准备3根木条,长度分别是3cm、8cm、13cm;乙组准备3根木条,长度分别是4cm、6cm、12cm.老师先从甲组再从乙组分别随机抽出一根木条,放在一起组成一组.(1)用画树状图法(或列表法)分析,并列出各组可能.(画树状图或列表以及列出可能时不用写单位)(2)现在老师也有一根木条,长度为5cm,与(1)中各组木条组成三角形的概率是多少?16. (10分) (2019九下·温州模拟) 如图,在方格纸中,点A,B,P,Q都在格点上.请按要求画出以AB为边的格点四边形.(1)在图甲中画出一个▱ABCD,使得点P为▱ABCD的对称中心;(2)在图乙中画出一个▱ABCD,使得点P,Q都在▱ABCD的对角线上.17. (10分) (2017九上·十堰期末) 如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D的切线交BC于点E.(1)求证:EB=EC;(2)当△ABC满足什么条件时,四边形ODEC是正方形?证明你的结论.18. (10分) (2019八下·静安期末) 某工厂生产的 1640 件新产品,需要精加工后才能投放市场.现把精加工新产品的任务分给甲、乙两人,甲加工新产品的数量要比乙多 5% .(1)求甲、乙两人各需加工多少件新产品;(2)已知乙比甲平均每天少加工 20 件新产品,用时比甲多用 1 天时间.求甲平均每天加工多少件新产品.19. (10分)(2020·徐州模拟) 在“宏扬传统文化,打造书香校园”活动中,学校计划开展四项活动:“A ﹣国学诵读”、“B﹣演讲”、“C﹣课本剧”、“D﹣书法”,要求每位同学必须且只能参加其中一项活动,学校为了了解学生的意愿,随机调查了部分学生,结果统计如下:(1)如图,希望参加活动C占20%,希望参加活动B占15%,则被调查的总人数为▲人,扇形统计图中,希望参加活动D所占圆心角为▲ 度,根据题中信息补全条形统计图.(2)学校现有800名学生,请根据图中信息,估算全校学生希望参加活动A有多少人?20. (15分)(2019·萧山模拟) 浙江实施“五水共治“以来,越来越重视节约用水,某地对居民用水按阶梯水价方式进行收费,人均月生活用水收费标准如图所示,图中x表示人均月生活用水的吨数,y表示收取的人均月生活用水费(元),请根据图象信息,回答下列问题.(1)请写出y与x的函数关系式;(2)若某个家庭有5人,响应节水号召,计划控制1月份的生活用水费不超过76元,则该家庭这个月最多可以用多少吨水?21. (15分) (2019九下·未央月考) 如图(1)问题发现:如图①,点A和点B均在⊙O上,且∠AOB=90°,点P和点Q均在射线AM上,若∠APB=45°,则点P与⊙O的位置关系是________;若∠AQB<45°,则点Q与Oo的位置关系是________(2)问题解决:如图②所示,四边形ABCD中,AB⊥BC,AD⊥DC,∠DAB=135°,且AB=1,AD=2 ,点P是BC边上任意一点。

江西省抚州市中考数学一模试卷

江西省抚州市中考数学一模试卷

江西省抚州市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)下列计算结果为负数的是()A . (﹣1)2B . ﹣1+2C . ﹣1﹣2D . 0÷(﹣1)2. (2分)不等式组的解集是()A . x<1B . x≥3C . 1≤x<3D . 1<x≤33. (2分)(2011·徐州) 下列运算正确的是()A . x•x2=x2B . (xy)2=xy2C . (x2)3=x6D . x2+x2=x44. (2分)光年是天文学中的距离单位,1光年大约是9500 000 000 000km,这个数据用科学记数表示是()A . 0.95×1013kmB . 950×1010kmC . 95×1011kmD . 9.5×1012km5. (2分)将下列图形绕直线l旋转一周, 可以得到下图所示的立体图形的是()A .B .C .D .6. (2分) (2017九下·沂源开学考) 如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()A . y=(x﹣1)2+2B . y=(x+1)2+2C . y=x2+1D . y=x2+3二、填空题 (共10题;共12分)7. (1分)若(x﹣2)x=1,则x=________.8. (1分) (2016九上·衢州期末) 多项式a2﹣4因式分解的结果是________.9. (3分)(2020·遵义模拟) 计算=________,(﹣)2=________,3 ﹣=________.10. (1分)(2017·丰县模拟) 某体校要从四名射击选手中选拔一名参加体育运动会,选拔赛中每名选手连续射靶10次,他们各自的平均成绩及其方差s2如表所示,如果要选出一名成绩高,且发挥稳定的选手参赛,则应选择的选手是________.甲乙丙丁(环)8.48.68.67.6S20.740.560.94 1.9211. (1分)(2020·西安模拟) 如图,菱形中,,,所在直线为反比例函数的对称轴,当反比例函数的图象经过两点时,k的值为________.12. (1分)(2015•徐州)用一个圆心角为90°,半径为4的扇形围成一个圆锥的侧面,该圆锥底面圆的半径________13. (1分) (2016八上·临海期末) 如图,在正方形ABCD中,边AD绕点A顺时针旋转角度m(0°<m<360°),得到线段AP,连接PB,PC.当△BPC是等腰三角形时,m的值为________14. (1分)(2017·安徽模拟) 已知,如图,Rt△ABC中,∠BAC=90°,以AB为直径的⊙O交BC于D,OD 交AC的延长线于E,OA=1,AE=3.则下列结论正确的有________.①∠B=∠CAD;②点C是AE的中点;③ = ;④tan B= .15. (1分) (2019八下·长春月考) 对于正比例函数,若的值随的值增大而减小,则的值为________.16. (1分) (2016九上·肇庆期末) 如图,A、B、C是⊙O上的三个点,∠ABC=25°,则∠AOC的度数是________.三、解答题 (共11题;共109分)17. (10分) (2017八下·鹤壁期中) 计算:(1) |﹣5|+(π﹣3.1)0﹣()﹣1+(2)(x﹣2)• + .18. (5分)已知:|2x+y+3|+ =0,求3x﹣4y.19. (13分)(2020·襄州模拟) 2020年春,受疫情影响,同学们进行了3个多月的网课迎来了复学,为了解九年级学生网课期间学习情况,学校在复学后进行了复学测试,小虎同学在九年级随机抽取了一部分学生的复学测试数学成绩为样本,分为A(100~90分)、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果绘制成如下统计图表,请你根据统计图解答以下问题:其中C组的期末数学成绩如下:6163656666676970727375757677777778787979(1)请补全条形统计图;(2)扇形统计图中A组所占的圆心角的度数为________,C组的复学测试数学成绩的中位数是________,众数是________;(3)这个学校九年级共有学生400人,若分数为80分(含80分)以上为优秀,请估计这次九年级学生复学测试数学考试成绩为优秀的学生人数大约有多少?20. (5分)(2017·东莞模拟) 如图,在活动课上,小明和小红合作用一副三角板来测量学校旗杆高度.已知小明的眼睛与地面的距离(AB)是1.7m,他调整自己的位置,设法使得三角板的一条直角边保持水平,且斜边与旗杆顶端M在同一条直线上,测得旗杆顶端M仰角为45°;小红眼睛与地面的距离(CD)是1.5m,用同样的方法测得旗杆顶端M的仰角为30°.两人相距28米且位于旗杆两侧(点B、N、D在同一条直线上).求出旗杆MN的高度.(参考数据:,,结果保留整数.)21. (15分) (2015八下·绍兴期中) 已知关于x的一元二次方程x2﹣(k+2)x+2k=0.(1)若x=1是这个方程的一个根,求k的值和它的另一根;(2)求证:无论k取任何实数,方程总有实数根.(3)若等腰三角形的一边长为5,另两边长恰好是这个方程的两个根,求这个等腰三角形的周长.22. (6分)(2020·石城模拟) 我校5位家长志愿者(3男2女)为倡导“学习雷锋、奉献他人、提升白己”的志愿服务理念,积极参与文明城市创建活动,在人、车流动量较大的重要路口、路段开展“文明劝导”志愿服务活动。

江西省抚州市2020年数学中考一模试卷(II)卷

江西省抚州市2020年数学中考一模试卷(II)卷

江西省抚州市2020年数学中考一模试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2017·芜湖模拟) ﹣3的倒数是()A . 3B . ﹣3C . ﹣D .2. (2分) (2019七上·卫辉期中) 光年天文学中的距离单位,1光年大约是9500000000000km,用科学记数法表示为()A .B .C .D .3. (2分)(2020·通辽模拟) 如图,在⊙O中,半径OA垂直于弦BC,点D在⊙O上,若∠AOB=70°,则∠ADC 的度数为()A . 30°B . 35°C . 45°D . 70°4. (2分) (2019七下·香洲期末) 把方程改写成用含的式子表示y的形式,正确的是()A .B .C .D .5. (2分)如图是正方形的一种张开图,其中每个面上都标有一个数字。

那么在原正方形中,与数字“2”相对的面上的数字是A . 1B . 4C . 5D . 66. (2分) (2017八上·安陆期中) 已知n边形从一个顶点出发可以作9条对角线,则n=()A . 9B . 10C . 11D . 127. (2分) (2020八下·秦淮期末) 下列调查中,不适合用普查的是()A . 了解全班同学每周体育锻炼的时长B . “新冠”肺炎疫情期间检测地铁乘客的体温C . 某学校招艺术特长生,对报名学生进行面试D . 了解全国中学生每天写作业的时长8. (2分)小明同学上学期的5科期末成绩,语文、数学、英语每科成绩均为90分,科学、社会每科成绩均80分,则他5科成绩的平均分是()A . 84B . 85C . 86D . 879. (2分)(2019·桂林模拟) 下列各数中比1大的数是()A .B . 0C . ﹣2D . 310. (2分) (2019七下·包河期末) 如图,在三角形ABC中,AB=6cm,BC=4cm,AC=3cm将三角形ABC沿着与AB垂直的方向向上平移3cm,得到三角形FDE.则图中阴影部分的面积为()A . 12cm2B . 18cm2C . 24cm2D . 26cm2二、填空题 (共5题;共5分)11. (1分)(2018·无锡模拟) 因式分解:3x2﹣27=________.12. (1分) (2018八上·路南期中) 下列图①、②、③中,具有稳定性的是图________.13. (1分) (2019八上·柳州期末) 当x=________时,分式的值为0.14. (1分)如图所示,一个半径为1的圆过一个半径为的圆的圆心,则图中阴影部分的面积为________.15. (1分)在直角坐标平面内,圆心O的坐标是(3,﹣5),如果圆O经过点(0,﹣1),那么圆O与x轴的位置关系是________ .三、解答题 (共9题;共81分)16. (5分)(2019·武汉) 计算:(2x2)3-x2·x417. (5分) (2017·阜宁模拟) 先化简再求值:(x+2﹣)÷( + ),其中x是不等式组的整数解.18. (5分) (2020七下·吉林月考) 已知:是关于x、y二元一次方程,点A在坐标平面内的坐标为点B(3,2)将线段AB平移至A’B’的位置,点B的对应点B’(-1,3).求点A’的坐标19. (11分) (2019八下·昭通期末) 某公司为了了解员工每人所创年利润情况,公司从各部抽取部分员工对每年所创年利润情况进行统计,并绘制如图1,图2统计图.(1)求抽取员工总人数,并将图补充完整;(2)每人所创年利润的众数是________,每人所创年利润的中位数是________,平均数是________;(3)若每人创造年利润10万元及(含10万元)以上为优秀员工,在公司1200员工中有多少可以评为优秀员工?20. (15分)小明、小林是某中学九年级的同班同学.在三月份举行的自主招生考试中,他俩都被同一所高中提前录取,并被编入A,B,C三个班,他俩希望能两次成为同班同学.(1)请你用画树状图法或列举法,列出所有可能的结果;(2)求两人两次成为同班同学的概率.21. (10分) (2019八上·黔南期末) 如图,平面直角坐标系中,点A、B分别在x、y轴上,点B的坐标为(0,1),∠BA0=30°.(1)求AB的长度;(2)分别以AB、AO为一边作等边△ABE、△AOD,求证:BD=EO:(3)在(2)的条件下,连接DE交AB于F.求证:F为DE的中点.22. (10分)某大学生利用暑假40天社会实践进行创业,他在网上开了一家微店,销售推广一种成本为25元/件的新型商品.在40天内,其销售单价n(元/件)与时间x(天)的关系式是:当1≤x≤20时,;当21≤x≤40时, .这40天中的日销售量m(件)与时间x(天)符合函数关系,具体情况记录如下表(天数为整数):时间x(天)510152025…日销售量m(件)4540353025…(1)请求出日销售量m(件)与时间x(天)之间的函数关系式;(2)若设该同学微店日销售利润为w元,试写出日销售利润w(元)与时间x(天)的函数关系式;(3)求这40天中该同学微店日销售利润不低于640元有多少天?23. (10分)(2019·海门模拟) 如图,点O是Rt△ABC的AB边上一点,∠ACB=90°,⊙O与AC相切于点D,与边AB,BC分别相交于点E,F,(1)求证:DE=DF;(2)当BC=3,sinA=时,求AE的长.24. (10分)(2020·石家庄模拟) 如图1.在中,把沿对角线所在的直线折叠,使点落在点处,交于点 .连接 .(1)求证: ;(2)求证: 为等腰三角形;(3)将图1中的沿射线方向平移得到 (如图2所示) .若在中, . 当时,直接写出平移的距离.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共9题;共81分)16-1、17-1、18-1、19-1、19-2、19-3、20-1、20-2、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、24-1、24-2、24-3、。

2020年江西省中考一模数学试卷及答案解析

2020年江西省中考一模数学试卷及答案解析

2020年江西省中考一模数学试卷
一.选择题(共6小题,满分18分,每小题3分)
1.若(x﹣1)0=1,则()
A.x≥1B.x≤1C.x≠1D.x≠0
2.已知地球上海洋面积约为316 000 000km2,数据316 000 000用科学记数法可表示为()A.3.16×109B.3.16×107C.3.16×108D.3.16×106
3.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()
A .
B .
C .
D .
4.下列计算正确的是()
A.(a+b)2=a2+b2B.a2+2a2=3a4
C.x2y ÷=x2(y≠0)D.(﹣2x2)3=﹣8x6
5.矩形具有而平行四边形不一定具有的性质是()
A.对边相等B.对角相等
C.对角线相等D.对角线互相平分
6.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如表所示.给出下列说法:
①抛物线与y轴的交点为(0,6);②抛物线的对称轴是在y轴的右侧;③抛物线一定
经过点(3,0);④在对称轴左侧,y随x增大而减小.从表可知,下列说法正确的个数有()
A.1个B.2个C.3个D.4个
二.填空题(共8小题,满分24分,每小题3分)
7.如图,将一副三角板叠放在一起,使直角顶点重合于O,则∠AOC+∠DOB=.
第1 页共24 页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江西省抚州市临川中考数学一模试卷一、选择题(本大题共6小题,每小题3分,共18分)1.﹣的倒数是()A.B.C.﹣ D.﹣2.下列运算正确的是()A.=﹣9 B.=±2 C.ab4÷(﹣ab)=﹣b3 D.﹣2(a﹣b)=﹣2a﹣2b 3.某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间(小时)5678人数1015205则这50名学生这一周在校的平均体育锻炼时间是()A.6.2小时 B.6.4小时 C.6.5小时 D.7小时4.将一个长方体内部挖去一个圆柱(如图所示),它的主视图是()A.B. C.D.5.如图,将一张正六边形纸片的阴影部分剪下,拼成一个四边形,若拼成的四边形的面积为2a,则纸片的剩余部分的面积为()A.5a B.4a C.3a D.2a6.二次函数y=x2+x+c的图象与x轴的两个交点A(x1,0),B(x2,0),且x1<x2,点P(m,n)是图象上一点,那么下列判断正确的是()A.当n<0时,m<0 B.当n>0时,m>x2C.当n<0时,x1<m<x2D.当n>0时,m<x1二、填空题(本大题共8个题,每小题3分,共24分)7.计算:﹣=.8.一张薄的金箔的厚度为0.000000091m,用科学记数法可表示m.9.若x1=﹣1是关于x的方程x2+mx﹣5=0的一个根,则方程的另一个根x2=.10.分解因式:ab2﹣4ab+4a=.11.已知点(3,5)在直线y=ax+b(a,b为常数,且a≠0)上,则的值为.12.如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于E点,若AB=2DE,∠E=18°,则∠AOC的度数为度.13.把四张形状大小完全相同的小长方形卡片(如图1)不重复地放在一个底面为长方形(长为m cm,宽为n cm)的盒子底部(如图2),盒子底面未被卡片覆盖的部分用阴影表示.则图2中两块阴影部分周长和是cm.(用m或n的式子表示).14.如图,在矩形ABCD中,AD=3,AB=4,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对点D′落在矩形的对角线上,DE的长为.三、(本大题共4小题,每小题6分,共24分)15.先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你喜欢的x值代入求值.16.如图,在▱ABCD中,F是AD的中点,延长BC到点E,使CE=BC,连接DE,CF.(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=6,∠B=60°,求DE的长.17.在四边形ABCD中,∠C=90,AB=AD,AB∥CD,AE平分∠BAD交BC于E,请你只用无刻度的直尺画出矩形BCDF(保留作图痕迹)18.为了参加中考体育测试,甲、乙、丙三位同学进行足球传球训练,球从一个人脚下随机传到另一个人脚下,且每位传球人传给其余两人的机会是均等的,由甲开始传球,共传球三次.(1)请利用树状图列举出三次传球的所有可能情况;(2)求三次传球后,球回到甲脚下的概率;(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?四、(本大题共4小题,每小题8分,共32分)19.近年来,我国很多地区持续出现雾霾天气.某市记者为了了解“雾霾天气的主要成因”,随机调查了该市部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表组别观点频数(人数)A大气气压低,空气不流动mB地面灰尘大,空气湿度低40C汽车尾气排放nD工厂造成的污染120E其他60请根据图表中提供的信息解答下列问题:(1)填空:m=,n=,扇形统计图中E组所占的百分比为%(2)若该市人口约有400万人,请你计算其中持D组“观点”的市民人数.(3)对于“雾霾”这个环境问题,请用简短的语言发出倡议.20.某商场要建一个地下停车场,下图是地下停车场的入口设计示意图,拟设计斜坡的倾斜角为18°,一楼到地下停车场地面的距离CD=2.8米,地平线到一楼的垂直距离BC=1米,(1)为保证斜坡倾斜角为18°,应在地面上距点B多远的A处开始斜坡的施工?(精确到0.1米)(2)如果一辆高 2.5米的小货车要进入地下停车场,能否进入?为什么?(参考数据:sin18°=0.31,cos18°=0.95,tan18°=0.32)21.如图,已知点A(4,0),B(0,4),把一个直角三角尺DEF放在△OAB内,使其斜边FD在线段AB上,三角尺可沿着线段AB上下滑动.其中∠EFD=30°,ED=2,点G为边FD的中点.(1)求直线AB的解析式;(2)如图1,当点D与点A重合时,求经过点G的反比例函数y=(k≠0)的解析式;(3)在三角尺滑动的过程中,经过点G的反比例函数的图象能否同时经过点F?如果能,求出此时反比例函数的解析式;如果不能,说明理由.22.如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F.切点为G,连接AG交CD于K.(1)如图1,求证:KE=GE;(2)如图2,若AC∥EF,试判断线段KG、KD、GE间的数量关系,并说明理由;(3)在(2)的条件下,若sinE=,AK=2,求⊙O的半径.五、(本大题共2小题,23题10分,24题12分,共22分)23.在正五边形ABCDE中,AB=2.(1)如图1,将正五边形ABCDE沿AD折叠,点E落在E′处,连接BE′.①证明D、E′、B三点在一条直线上;②填空:BE′=.(2)如图2,点F在AB边上,且AF<AB,沿DF折叠正五边形ABCDE,点A、E的对应点分别为A′、E′,那么∠A′FB与∠E′DC的大小有什么关系?请说明理由(3)如图3,在正五边形ABCDE中连接AD、BD,动点P在线段AB上(点P与A、D不重合)动点Q在线段DB的延长线上,且AP=BQ,连接PQ交AB于点N,过点P作PM⊥AB于点M 点P、Q在移动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求中线段MN的长度.24.在平面直角坐标系中,已知抛物线y=x2+bx+c(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(4,3),直角顶点B在第四象限.(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q.(i)若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;(ii)取BC的中点N,连接NP,BQ.试探究是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.江西省抚州市临川中考数学一模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)1.﹣的倒数是()A.B.C.﹣ D.﹣【考点】倒数.【分析】根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵(﹣)×(﹣)=1,∴﹣的倒数是﹣.故选D.2.下列运算正确的是()A.=﹣9 B.=±2 C.ab4÷(﹣ab)=﹣b3 D.﹣2(a﹣b)=﹣2a﹣2b【考点】整式的除法;算术平方根;去括号与添括号;负整数指数幂.【分析】直接利用整式除法运算法则以及结合算术平方根和负指数幂的性质分贝化简求出答案.【解答】解:A、()﹣2=9,故此选项错误,不合题意;B、=2,故此选项错误,不合题意;C、ab4÷(﹣ab)=﹣b3,正确,符合题意;D、﹣2(a﹣b)=﹣2a+2b,故此选项错误,不合题意.故选:C.3.某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间(小时)5678人数1015205则这50名学生这一周在校的平均体育锻炼时间是()A.6.2小时 B.6.4小时 C.6.5小时 D.7小时【考点】加权平均数.【分析】根据加权平均数的计算公式列出算式(5×10+6×15+7×20+8×5)÷50,再进行计算即可.【解答】解:根据题意得:(5×10+6×15+7×20+8×5)÷50=(50+90+140+40)÷50=320÷50=6.4(小时).故这50名学生这一周在校的平均体育锻炼时间是6.4小时.故选:B.4.将一个长方体内部挖去一个圆柱(如图所示),它的主视图是()A.B. C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得主视图为长方形,中间有两条垂直地面的虚线.故选A.5.如图,将一张正六边形纸片的阴影部分剪下,拼成一个四边形,若拼成的四边形的面积为2a,则纸片的剩余部分的面积为()A.5a B.4a C.3a D.2a【考点】图形的剪拼.【分析】如图所示可将正六边形分为6个全等的三角形,阴影部分由两个三角形组成,剩余部分由4个三角形组成,故此可求得剩余部分的面积.【解答】解:如图所示:将正六边形可分为6个全等的三角形,∵阴影部分的面积为2a,∴每一个三角形的面积为a,∵剩余部分可分割为4个三角形,∴剩余部分的面积为4a.故选:B.6.二次函数y=x2+x+c的图象与x轴的两个交点A(x1,0),B(x2,0),且x1<x2,点P(m,n)是图象上一点,那么下列判断正确的是()A.当n<0时,m<0 B.当n>0时,m>x2C.当n<0时,x1<m<x2D.当n>0时,m<x1【考点】抛物线与x轴的交点.【分析】首先根据a确定开口方向,再确定对称轴,根据图象分析得出结论.【解答】解:∵a=1>0,∴开口向上,∵抛物线的对称轴为:x=﹣=﹣=,二次函数y=x2+x+c的图象与x轴的两个交点A(x1,0),B(x2,0),且x1<x2,无法确定x1与x2的正负情况,∴当n<0时,x1<m<x2,但m的正负无法确定,故A错误,C正确;当n>0时,m<x1或m>x2,故B,D错误,故选C.二、填空题(本大题共8个题,每小题3分,共24分)7.计算:﹣=.【考点】二次根式的加减法.【分析】先进行二次根式的化简,然后合并同类二次根式求解.【解答】解:原式=2﹣=.故答案为:.8.一张薄的金箔的厚度为0.000000091m,用科学记数法可表示9.1×10﹣8m.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n.与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题a=9.1,n=﹣8.【解答】解:0.000 000 091m用科学记数法可表示9.1×10﹣8m.9.若x1=﹣1是关于x的方程x2+mx﹣5=0的一个根,则方程的另一个根x2=5.【考点】根与系数的关系.【分析】设方程的另一根为x2,由一个根为x1=﹣1,利用根与系数的关系求出两根之积,列出关于x2的方程,求出方程的解得到x2的值,即为方程的另一根.【解答】解:∵关于x的方程x2+mx﹣5=0的一个根为x1=﹣1,设另一个为x2,∴﹣x2=﹣5,解得:x2=5,则方程的另一根是x2=5.故答案为:5.10.分解因式:ab2﹣4ab+4a=a(b﹣2)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式a,再根据完全平方公式进行二次分解.完全平方公式:a2﹣2ab+b2=(a﹣b)2.【解答】解:ab2﹣4ab+4a=a(b2﹣4b+4)﹣﹣(提取公因式)=a(b﹣2)2.﹣﹣(完全平方公式)故答案为:a(b﹣2)2.11.已知点(3,5)在直线y=ax+b(a,b为常数,且a≠0)上,则的值为﹣.【考点】一次函数图象上点的坐标特征.【分析】将点(3,5)代入直线解析式,可得出b﹣5的值,继而代入可得出答案.【解答】解:∵点(3,5)在直线y=ax+b上,∴5=3a+b,∴b﹣5=﹣3a,则==.故答案为:﹣.12.如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于E点,若AB=2DE,∠E=18°,则∠AOC的度数为54度.【考点】三角形的外角性质;等腰三角形的性质;圆的认识.【分析】根据AB=2DE得DE等于圆的半径,在△EDO和△CEO中,根据三角形的一个外角等于和它不相邻的两个内角的和求解.【解答】解:连接OD,∵AB=2DE,∴OD=DE,∴∠E=∠EOD,在△EDO中,∠ODC=∠E+∠EOD=36°,∵OC=OD,∴∠OCD=∠ODC=36°,在△CEO中,∠AOC=∠E+∠OCD=18°+36°=54°.13.把四张形状大小完全相同的小长方形卡片(如图1)不重复地放在一个底面为长方形(长为m cm,宽为n cm)的盒子底部(如图2),盒子底面未被卡片覆盖的部分用阴影表示.则图2中两块阴影部分周长和是4n cm.(用m或n的式子表示).【考点】整式的加减.【分析】设小长方形卡片的长为xcm,宽为ycm,由图形得到m﹣x=2y,即x+2y=m,分别表示阴影部分两长方形的长与宽,进而表示出阴影部分的周长和,去括号合并后,将x+2y=m代入,即可得到结果.【解答】解:设小长方形卡片的长为xcm,宽为ycm,可得:m﹣x=2y,即x+2y=m,根据近题意得:阴影部分的周长为2[(m﹣x)+(n﹣x)]+2[(n﹣2y)+(m﹣2y)]=2(2m+2n﹣2x﹣4y)=4[m+n﹣(x+2y)]=4(m+n﹣m)=4n(cm).故答案为:4n.14.如图,在矩形ABCD中,AD=3,AB=4,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对点D′落在矩形的对角线上,DE的长为 1.5.【考点】翻折变换(折叠问题);矩形的性质.【分析】先依据勾股定理可求得AC的长,然后由翻折的性质可求得AD=AD′=3,于是可求得D′C 的长,接下来,证明△ECD′∽△ADC,依据相似三角形的性质可求得ED′=1.5,由翻折的性质可求得DE的长.【解答】解:如图所示;连接AC.∵由翻折的性质可知;DE=ED′,AD=AD′=3,∠D=∠ED′A=90°,∴∠ED′C=90°.∵在△ABC中,由勾股定理得:AC==5.∴CD′=AC﹣AD′=2.∵∠ECD′=∠DCA,∠ED′C=∠CDA=90°,∴△ECD′∽△ADC.∴即,解得;ED′=1.5.∴DE=1.5.故答案为:1.5.三、(本大题共4小题,每小题6分,共24分)15.先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你喜欢的x值代入求值.【考点】分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,确定出x的值,代入计算即可求出值.【解答】解:原式=÷=•=,当x=2时,原式=4(x≠﹣1,0,1).16.如图,在▱ABCD中,F是AD的中点,延长BC到点E,使CE=BC,连接DE,CF.(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=6,∠B=60°,求DE的长.【考点】平行四边形的判定与性质;含30度角的直角三角形;勾股定理.【分析】(1)由“平行四边形的对边平行且相等”的性质推知AD∥BC,且AD=BC;然后根据中点的定义、结合已知条件推知四边形CEDF的对边平行且相等(DF=CE,且DF∥CE),即四边形CEDF是平行四边形;(2)如图,过点D作DH⊥BE于点H,构造含30度角的直角△DCH和直角△DHE.通过解直角△DCH和在直角△DHE中运用勾股定理来求线段ED的长度.【解答】证明:(1)在▱ABCD中,AD∥BC,且AD=BC.∵F是AD的中点,∴DF=.又∵CE=BC,∴DF=CE,且DF∥CE,∴四边形CEDF是平行四边形;(2)解:如图,过点D作DH⊥BE于点H.在▱ABCD中,∵∠B=60°,∴∠DCE=60°.∵AB=4,∴CD=AB=4,∴CH=CD=2,DH=2.在▱CEDF中,CE=DF=AD=3,则EH=1.∴在Rt△DHE中,根据勾股定理知DE==.17.在四边形ABCD中,∠C=90,AB=AD,AB∥CD,AE平分∠BAD交BC于E,请你只用无刻度的直尺画出矩形BCDF(保留作图痕迹)【考点】作图—应用与设计作图;矩形的性质.【分析】根据矩形的性质得到BC∥DF,于是过D作DF∥BC交AB于F即可.【解答】解:如图,过D作DF∥BC交AB于F,则四边形BCDF即为所求.18.为了参加中考体育测试,甲、乙、丙三位同学进行足球传球训练,球从一个人脚下随机传到另一个人脚下,且每位传球人传给其余两人的机会是均等的,由甲开始传球,共传球三次.(1)请利用树状图列举出三次传球的所有可能情况;(2)求三次传球后,球回到甲脚下的概率;(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?【考点】列表法与树状图法.【分析】(1)画出树状图,(2)根据(1)的树形图,利用概率公式列式进行计算即可得解;(3)分别求出球回到甲脚下的概率和传到乙脚下的概率,比较大小即可.【解答】解:(1)根据题意画出树状图如下:由树形图可知三次传球有8种等可能结果;(2)由(1)可知三次传球后,球回到甲脚下的概率=;(3)由(1)可知球回到甲脚下的概率=,传到乙脚下的概率=,所以球回到乙脚下的概率大.四、(本大题共4小题,每小题8分,共32分)19.近年来,我国很多地区持续出现雾霾天气.某市记者为了了解“雾霾天气的主要成因”,随机调查了该市部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表组别观点频数(人数)A大气气压低,空气不流动mB地面灰尘大,空气湿度低40C汽车尾气排放nD工厂造成的污染120E其他60请根据图表中提供的信息解答下列问题:(1)填空:m=80,n=100,扇形统计图中E组所占的百分比为15%(2)若该市人口约有400万人,请你计算其中持D组“观点”的市民人数.(3)对于“雾霾”这个环境问题,请用简短的语言发出倡议.【考点】扇形统计图;用样本估计总体;频数(率)分布表.【分析】(1)根据B组频数及其所占百分比求得样本容量,再根据频数=总数×频率及各组频数之和等于总数,解答即可;(2)用总人数乘以样本中D观点所占百分比即可得;(3)根据各种观点所占百分比,有针对的提出合理的改善意见即可.【解答】解:(1)根据题意,本次调查的总人数为40÷10%=400(人),∴m=400×20%=80,n=400﹣(80+40+120+60)=100,则扇形统计图中E组所占的百分比为×100%=15%,故答案为:80,100,15;(2)400×=120(万),答:其中持D组“观点”的市民人数约为120万人;(3)根据所抽取样本中持C、D两种观点的人数占总人数的比例较大,所以倡议今后的环境改善中严格控制工厂的污染排放,同时市民多乘坐公共汽车,减少私家车出行的次数.20.某商场要建一个地下停车场,下图是地下停车场的入口设计示意图,拟设计斜坡的倾斜角为18°,一楼到地下停车场地面的距离CD=2.8米,地平线到一楼的垂直距离BC=1米,(1)为保证斜坡倾斜角为18°,应在地面上距点B多远的A处开始斜坡的施工?(精确到0.1米)(2)如果一辆高 2.5米的小货车要进入地下停车场,能否进入?为什么?(参考数据:sin18°=0.31,cos18°=0.95,tan18°=0.32)【考点】解直角三角形的应用﹣坡度坡角问题.【分析】(1)由题意可得∠BAD=18°,BD=CD﹣CB=1.8(米),然后在Rt△ABD中,由三角函数的性质,即可求得AB的长;(2)首先过C作CE⊥AD,垂足为E,可求得∠DCE的度数,然后在Rt△CDE中,由三角函数的性质即可得CE=CD•cos18°,继而求得答案.【解答】解:(1)∵斜坡的倾斜角为18°,∴∠BAD=18°,∵BD=CD﹣CB=1.8(米),∴在Rt△ABD中,AB==≈5.6(米),答:在地面上距点B约5.6米的A处开始斜坡的施工.(2)过C作CE⊥AD,垂足为E,∴∠DCE+∠CDE=90°,∵∠BAD+∠ADB=90°,∴∠DCE=∠BAD=18°,在Rt△CDE中,CE=CD•cos18°=2.8×0.95≈2.7(米),∵2.5<2.7,∴货车能进入地下停车场.21.如图,已知点A(4,0),B(0,4),把一个直角三角尺DEF放在△OAB内,使其斜边FD在线段AB上,三角尺可沿着线段AB上下滑动.其中∠EFD=30°,ED=2,点G为边FD的中点.(1)求直线AB的解析式;(2)如图1,当点D与点A重合时,求经过点G的反比例函数y=(k≠0)的解析式;(3)在三角尺滑动的过程中,经过点G的反比例函数的图象能否同时经过点F?如果能,求出此时反比例函数的解析式;如果不能,说明理由.【考点】反比例函数综合题.【分析】(1)设直线AB的解析式为y=kx+b,把点A、B的坐标代入,组成方程组,解方程组求出k、b的值即可;(2)由Rt△DEF中,求出EF、DF,在求出点D坐标,得出点F、G坐标,把点G坐标代入反比例函数求出k即可;(3)设F(t,﹣t+4),得出D、G坐标,设过点G和F的反比例函数解析式为y=,用待定系数法求出t、m,即可得出反比例函数解析式.【解答】解:(1)设直线AB的解析式为y=kx+b,∵A(4,0),B(0,4),∴,解得:,∴直线AB的解析式为:y=﹣x+4;(2)∵在Rt△DEF中,∠EFD=30°,ED=2,∴EF=2,DF=4,∵点D与点A重合,∴D(4,0),∴F(2,2),∴G(3,),∵反比例函数y=经过点G,∴k=3,∴反比例函数的解析式为:y=;(3)经过点G的反比例函数的图象能同时经过点F;理由如下:∵点F在直线AB上,∴设F(t,﹣t+4),又∵ED=2,∴D(t+2,﹣t+2),∵点G为边FD的中点.∴G(t+1,﹣t+3),若过点G的反比例函数的图象也经过点F,设解析式为y=,则,整理得:(﹣t+3)(t+1)=(﹣t+4)t,解得:t=,∴m=,∴经过点G的反比例函数的图象能同时经过点F,这个反比例函数解析式为:y=.22.如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F.切点为G,连接AG交CD于K.(1)如图1,求证:KE=GE;(2)如图2,若AC∥EF,试判断线段KG、KD、GE间的数量关系,并说明理由;(3)在(2)的条件下,若sinE=,AK=2,求⊙O的半径.【考点】圆的综合题.【分析】(1)如图1,连接OG.根据切线性质及CD⊥AB,可以推出∠KGE=∠AKH=∠GKE,根据等角对等边得到KE=GE;(2)如图2,根据平行得角相等,证明△GKD∽△EFG,列比例式可得结论;(3)如图3所示,连接OG,OC,由(1)得KE=GE,根据sinE=设AH=3t,则AC=5t,CH=4t,列式先求t的值,再求出圆的半径.【解答】解:(1)如图1,连接OG.∵EG为切线,∴∠KGE+∠OGA=90°,∵CD⊥AB,∴∠AKH+∠OAG=90°,又∵OA=OG,∴∠OGA=∠OAG,∴∠KGE=∠AKH=∠GKE,∴KE=GE.(2)KG2=KD•GE,理由是:连接GD,如图2,∵AC∥EF,∴∠C=∠E,∵∠C=∠AGD,∴∠E=∠AGD,∵∠GKD=∠GKD,∴△GKD∽△EFG,∴,∴KG2=KD•EK,由(1)得:EK=GE,∴KG2=KD•GE;(3)连接OG,OC,如图3所示,由(1)得:KE=GE.∵AC∥EF∴∠E=∠ACH∵sinE=sin∠ACH=,设AH=3t,则AC=5t,CH=4t,∵KE=GE,AC∥EF,∴CK=AC=5t,∴HK=CK﹣CH=t.在Rt△AHK中,根据勾股定理得AH2+HK2=AK2,即(3t)2+t2=,解得t=.设⊙O半径为r,在Rt△OCH中,OC=r,OH=r﹣3t,CH=4t,由勾股定理得:OH2+CH2=OC2,即(r﹣3t)2+(4t)2=r2,解得r=t=,答:⊙O的半径为.五、(本大题共2小题,23题10分,24题12分,共22分)23.在正五边形ABCDE中,AB=2.(1)如图1,将正五边形ABCDE沿AD折叠,点E落在E′处,连接BE′.①证明D、E′、B三点在一条直线上;②填空:BE′=﹣1.(2)如图2,点F在AB边上,且AF<AB,沿DF折叠正五边形ABCDE,点A、E的对应点分别为A′、E′,那么∠A′FB与∠E′DC的大小有什么关系?请说明理由(3)如图3,在正五边形ABCDE中连接AD、BD,动点P在线段AB上(点P与A、D不重合)动点Q在线段DB的延长线上,且AP=BQ,连接PQ交AB于点N,过点P作PM⊥AB于点M 点P、Q在移动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求中线段MN的长度.【考点】三角形综合题.【分析】(1)①利用正五边形的性质得出△DEA≌△DCB即可求出∠EDA=∠CDB=36°,进而即可得出结论;②利用等腰三角形的性质得出AB=AE'=2,再判断出△ABE'∽△DBA,得出比例式求解即可得出结论;(2)利用三角形的内角和和等腰三角形的性质即可求出∠CDE'=180°﹣2x=∠BFA',即可得出结论;(3)先判断出△PMA≌△QHB得出MH=2,再判断出△PMN≌△NQH即可得出结论.【解答】证明:(1)①∵ABCDE是正五边形,∴∠EDC=108°=∠DCB 且DC=CB,∴∠CDB=36°,在△DEA和△DCB中,,// ∴∠EDA=∠CDB=36°,∴∠ADB=36°,∴∠ADB=∠ADE'=36°,∴B,D,E'共线,②∵AD=BD,∠ADB=36°,∴∠DAB=72°,∵AE'=DE'.∵AB=AE'=2,∴DE'=2,∴∠DAE=∠ADE',∴∠BAE'=∠ADB,∵∠ABD=∠ABE',∴△ABE'∽△DBA,∴,∴,∴BE'=﹣1,故答案为﹣1;(2)∵四边形内角和为360°,设∠EDF=x,∴∠AFD=144°﹣x=∠DFA',∴∠DFB=36°+x,∴∠A'FB=108°﹣2x,且∠CDE'=108°﹣2x,∴∠CDE'=∠BFA'(3)如图3,过点Q作QH⊥AB,∵∠BAD=72°=∠DBA,∴∠DAB=∠QBH且AP=BQ,∠AMP=∠BHQ在△PMA和△QHB中,∴AM=BH,PM=QH,∴MH=MB+BH=AM+MB=AB=2,在△PMN和△NQH中,,∴△PMN≌△NQH,∴MN=NH=1.24.在平面直角坐标系中,已知抛物线y=x2+bx+c(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(4,3),直角顶点B在第四象限.(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q.(i)若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;(ii)取BC的中点N,连接NP,BQ.试探究是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)先求出点B的坐标,然后利用待定系数法求出抛物线的函数表达式;(2)i)首先求出直线AC的解析式和线段PQ的长度,作为后续计算的基础.若△MPQ为等腰直角三角形,则可分为以下两种情况:①当PQ为直角边时:点M到PQ的距离为.此时,将直线AC向右平移4个单位后所得直线(y=x﹣5)与抛物线的交点,即为所求之M点;②当PQ为斜边时:点M到PQ的距离为.此时,将直线AC向右平移2个单位后所得直线(y=x﹣3)与抛物线的交点,即为所求之M点.ii)由(i)可知,PQ=为定值,因此当NP+BQ取最小值时,有最大值.如答图2所示,作点B关于直线AC的对称点B′,由分析可知,当B′、Q、F(AB中点)三点共线时,NP+BQ最小,最小值为线段B′F的长度.【解答】解:(1)∵等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(4,3)∴点B的坐标为(4,﹣1).∵抛物线过A(0,﹣1),B(4,﹣1)两点,∴,解得:b=2,c=﹣1,∴抛物线的函数表达式为:y=x2+2x﹣1.(2)方法一:i)∵A(0,﹣1),C(4,3),∴直线AC的解析式为:y=x﹣1.设平移前抛物线的顶点为P0,则由(1)可得P0的坐标为(2,1),且P0在直线AC上.∵点P在直线AC上滑动,∴可设P的坐标为(m,m﹣1),则平移后抛物线的函数表达式为:y=(x﹣m)2+m﹣1.解方程组:,解得,∴P(m,m﹣1),Q(m﹣2,m﹣3).过点P作PE∥x轴,过点Q作QF∥y轴,则∴PQ==AP0.若以M、P、Q三点为顶点的等腰直角三角形,则可分为以下两种情况:①当PQ为直角边时:点M到PQ的距离为(即为PQ的长).由A(0,﹣1),B(4,﹣1),P0(2,1)可知,△ABP0为等腰直角三角形,且BP0⊥AC,BP0=.如答图1,过点B作直线l1∥AC,交抛物线y=x2+2x﹣1于点M,则M为符合条件的点.∴可设直线l1的解析式为:y=x+b1,∵B(4,﹣1),∴﹣1=4+b1,解得b1=﹣5,∴直线l1的解析式为:y=x﹣5.解方程组,得:,∴M1(4,﹣1),M2(﹣2,﹣7).②当PQ为斜边时:MP=MQ=2,可求得点M到PQ的距离为.如答图2,取AB的中点F,则点F的坐标为(2,﹣1).由A(0,﹣1),F(2,﹣1),P0(2,1)可知:△AFP0为等腰直角三角形,且点F到直线AC的距离为.过点F作直线l2∥AC,交抛物线y=x2+2x﹣1于点M,则M为符合条件的点.∴可设直线l2的解析式为:y=x+b2,∵F(2,﹣1),∴﹣1=2+b2,解得b2=﹣3,∴直线l2的解析式为:y=x﹣3.∴M3(1+,﹣2+),M4(1﹣,﹣2﹣).综上所述,所有符合条件的点M的坐标为:M1(4,﹣1),M2(﹣2,﹣7),M3(1+,﹣2+),M4(1﹣,﹣2﹣).方法二:∵A(0,1),C(4,3),∴l AC:y=x﹣1,∵抛物线顶点P在直线AC上,设P(t,t﹣1),∴抛物线表达式:,∴l AC与抛物线的交点Q(t﹣2,t﹣3),∵一M、P、Q三点为顶点的三角形是等腰直角三角形,P(t,t﹣1),①当M为直角顶点时,M(t,t﹣3),,∴t=1±,∴M1(1+,﹣2),M2(1﹣,﹣2﹣),②当Q为直角顶点时,点M可视为点P绕点Q顺时针旋转90°而成,将点Q(t﹣2,t﹣3)平移至原点Q′(0,0),则点P平移后P′(2,2),将点P′绕原点顺时针旋转90°,则点M′(2,﹣2),将Q′(0,0)平移至点Q(t﹣2,t﹣3),则点M′平移后即为点M(t,t﹣5),∴,∴t1=4,t2=﹣2,∴M1(4,﹣1),M2(﹣2,﹣7),③当P为直角顶点时,同理可得M1(4,﹣1),M2(﹣2,﹣7),综上所述,所有符合条件的点M的坐标为:M1(4,﹣1),M2(﹣2,﹣7),M3(1+,﹣2+),M4(1﹣,﹣2﹣).ii)存在最大值.理由如下:由i)知PQ=为定值,则当NP+BQ取最小值时,有最大值.如答图2,取点B关于AC的对称点B′,易得点B′的坐标为(0,3),BQ=B′Q.连接QF,FN,QB′,易得FN∥PQ,且FN=PQ,∴四边形PQFN为平行四边形.∴NP=FQ.∴NP+BQ=FQ+B′Q≥FB′==.∴当B′、Q、F三点共线时,NP+BQ最小,最小值为.∴的最大值为=.。

相关文档
最新文档