高中数学三角函数变式练习

合集下载

高中数学三角函数的恒等变换及化简求值精选题

高中数学三角函数的恒等变换及化简求值精选题

三角函数的恒等变换及化简求值精选题一.选择题(共7小题) 1.若3ta n 4α=,则2c o s 2s in 2(αα+=)A .6425B .4825C .1D .16252.若3c o s ()45πα-=,则sin 2(α=)A .725B .15C .15-D .725-3.已知向量(sin ,2),(1,c o s )ab θθ=-=,且ab⊥,则2sin 2c o s θθ+的值为( )A .1B .2C .12D .34.若1ta n 3θ=,则c o s 2(θ=)A .45-B .15- C .15D .455.已知角α的终边经过点(2,1)P -,则sin c o s (sin c o s αααα-=+ )A .3B .13C .13-D .3- 6.已知函数()s in (2)6f x x π=-,若方程3()5f x =的解为1x ,212(0)x x x π<<<,则12sin ()(x x -=)A .45-B .35-C .3-D .3-7.已知1ta n 4ta n θθ+=,则2c o s ()(4πθ+=)A .12B .13C .14D .15二.填空题(共15小题)9.设当x θ=时,函数()s in o s f x x x=+取得最大值,则ta n ()4πθ+=.10.求值:s in 50(1n 10)︒+︒=.11.1s in 10c o s 10-=︒︒.12.已知s in 10c o s 102c o s 140m ︒+︒=︒,则m=.13.4c o s 50ta n 40︒-︒=.14.2c o s 10s in 20s in 70︒-︒=︒.15.已知1ta n 31ta n αα+=-,则2sin 2sin co s 1ααα-+=.16.若1s in ()43πα-=,则c o s ()4πα+=.17.若o s 2in 2c o s ()4θθπθ=+,则s in 2θ=.18.若ta n 3α=,则s in 2ta n ()4απα+的值为 .19.若ta n 3,(0,)2παα=∈,则c o s ()4πα-=.20.公元前6世纪,古希腊的毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值约为0.618,这一数值也可以表示为2s in 18m =︒,若24m n +=,si n 63=︒.21.公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,发现0.618就是黄金分割,这是一个伟大的发现,这一数值也表示为2s in 18a=︒,若24a b +=,则2=.22.函数2()ta n 60s in 2inf x x x=︒+在[,]2ππ上的值域为 .三.解答题(共3小题) 23.设函数()s in ()s in ()62f x x x ππωω=-+-,其中03ω<<,已知()06f π=.(Ⅰ)求ω; (Ⅱ)将函数()yf x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移4π个单位,得到函数()y g x =的图象,求()g x 在[4π-,3]4π上的最小值.24.已知α,β为锐角,4ta n 3α=,c o s ()5αβ+=-(1)求c o s 2α的值; (2)求tan ()αβ-的值.25.已知函数22()s inc o s in f x x x x =--co s ()x x R ∈.(Ⅰ)求2()3f π的值.(Ⅱ)求()f x 的最小正周期及单调递增区间.三角函数的恒等变换及化简求值精选题25道参考答案与试题解析一.选择题(共7小题) 1.若3ta n 4α=,则2c o s 2s in 2(αα+=)A .6425B .4825C .1D .1625【分析】将所求的关系式的分母“1”化为22(c o s sin )αα+,再将“弦”化“切”即可得到答案. 【解答】解:3ta n 4α=,22222314c o s 4s in c o s 14ta n 644c o s 2s in 29s in c o s ta n 125116ααααααααα+⨯++∴+====+++.故选:A .【点评】本题考查三角函数的化简求值,“弦”化“切”是关键,是基础题. 2.若3c o s ()45πα-=,则sin 2(α=)A .725B .15C .15-D .725-【分析】法1︒:利用诱导公式化s in 2c o s (2)2παα=-,再利用二倍角的余弦可得答案.法︒:利用余弦二倍角公式将左边展开,可以得s in c o s αα+的值,再平方,即得s in2α的值【解答】解:法31:c o s ()45πα︒-=,297s in 2c o s (2)c o s 2()2c o s ()1212442525πππαααα∴=-=-=--=⨯-=-,法32:c o s ()in c o s )425πααα︒-=+=,∴19(1s in 2)225α+=,97s in 2212525α∴=⨯-=-,故选:D .【点评】本题考查三角函数的恒等变换及化简求值,熟练掌握诱导公式化与二倍角的余弦是关键,属于中档题.3.已知向量(sin ,2),(1,c o s )ab θθ=-=,且ab⊥,则2sin 2c o s θθ+的值为( )A .1B .2C .12D .3【分析】由题意可得a b ⋅=,即解得ta n 2θ=,再由222222s in c o s c o s 2ta n 1s in 2c o s c o s s in 1ta n θθθθθθθθθ+++==++,运算求得结果.【解答】解:由题意可得sin 2co s 0ab θθ⋅=-=,即ta n 2θ=.222222s in c o s c o s 2ta n 1s in 2c o s 1c o s s in 1ta n θθθθθθθθθ++∴+===++,故选:A .【点评】本题主要考查两个向量数量积公式的应用,两个向量垂直的性质;同角三角函数的基本关系的应用,属于基础题. 4.若1ta n 3θ=,则c o s 2(θ=)A .45-B .15- C .15D .45【分析】原式利用二倍角的余弦函数公式变形,再利用同角三角函数间的基本关系化简,将ta n θ的值代入计算即可求出值.【解答】解:1ta n 3θ=,22224c o s 22c o s 11111519ta n θθθ∴=-=-=-=++.故选:D .【点评】此题考查了二倍角的余弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.5.已知角α的终边经过点(2,1)P -,则sin c o s (sin c o s αααα-=+ )A .3B .13C .13-D .3-【分析】先根据已知条件得到ta n α,再化简s in c o s s in c o s αααα-+代入即可得到结果.【解答】解:因为角α的终边经过点(2,1)P -,所以1ta n 2α=-,则11s in c o s ta n 1231s in c o s ta n 112αααααα----===-++-+,故选:D .【点评】本题考查三角函数的化简求值,着重考查同角三角函数的基本关系式,考查任意角的三角函数的定义,属于中档题. 6.已知函数()s in (2)6f x x π=-,若方程3()5f x =的解为1x ,212(0)x x x π<<<,则12sin ()(x x -=)A .45- B .35-C.3-D.3-【分析】由已知可得2123x x π=-,结合12x x <求出1x 的范围,再由12112s i n ()s i n (2)c o s (2)36x xx x ππ-=-=--求解即可. 【解答】解:因为0x π<<,∴112(,)666x πππ-∈-,又因为方程3()5f x =的解为1x ,212(0)x x x π<<<,∴1223x x π+=,∴2123x x π=-,∴12112s in ()s in (2)c o s (2)36x x x x ππ-=-=--,因为12212,3x x x x π<=-,103x π∴<<,∴12(,)662x πππ-∈-,∴由113()s in (2)65f x x π=-=,得14c o s (2)65x π-=,∴124s in ()5x x -=-,故选:A .【点评】本题考查了三角函数的恒等变换及化简求值和三角函数的图象与性质,属中档题. 7.已知1ta n 4ta n θθ+=,则2c o s ()(4πθ+=)A .12B .13C .14D .15【分析】由已知求得s in c o s θθ的值,再由二倍角的余弦及诱导公式求解2c o s ()4πθ+的值.【解答】解:由1ta n 4ta n θθ+=,得s in c o s 4c o s s in θθθθ+=,即224s in c o s s in c o s θθθθ+=,1s in c o s 4θθ∴=,∴21c o s (2)1s in 22c o s ()422πθπθθ++-+==11212s in c o s 14224θθ-⨯-===.故选:C .【点评】本题考查三角函数的化简求值,考查了同角三角函数基本关系式及诱导公式的应用,是基础题.二.填空题(共15小题) 9.设当xθ=时,函数()s in o s f x x x=+取得最大值,则ta n ()4πθ+=2+【分析】()f x 解析式提取,利用两角和与差的正弦公式化为一个角的正弦函数,由x θ=时函数()f x 取得最大值,得到θ的取值,后代入正切公式中计算求值.【解答】解:()sin o s 2sin ()3f x x x x π=+=+;当xθ=时,函数()f x 取得最大值2,32k k zππθπ∴+=+∈;26k πθπ∴=+,kz∈;∴1ta n ()ta n (2)ta n ()2464463k πππππθπ++=++=+==+故答案为:2+.【点评】本题考查了两角和与差的正弦函数公式,同角三角函数间的基本关系,熟练掌握公式是解本题的关键.10.求值:s in 50(1n 10)︒+︒=1 .【分析】先把原式中切转化成弦,利用两角和公式和整理后,运用诱导公式和二倍角公式化简整理求得答案.【解答】解:原式2s in 40s in 80c o s 10s in 50c o s 401c o s 10c o s 10c o s 10c o s 10︒︒︒=︒⋅=︒===︒︒︒︒故答案为:1【点评】本题主要考查了三角函数的恒等变换及其化简求值,以及两角和公式,诱导公式和二倍角公式的化简求值.考查了学生对三角函数基础知识的综合运用. 11.1s in 10c o s 10-=︒︒4 .【分析】s in 10c o s 10得结果.【解答】解:12(c o s 10in 10)1221s in 10c o s 10s in 10c o s 10s in 202︒-︒-==︒︒︒︒︒4s in 20420S in ==故答案为:4【点评】本题主要基础知识的考查,考查了在三角函数的化简与求值中,综合运用二倍角正弦公式、两角和的正弦公式,要求考生熟练运用公式对三角函数化简. 12.已知s in 10c o s 102c o s 140m ︒+︒=︒,则m=【分析】由题意可得2c o s 140s in 10c o s 10m ︒-︒=︒,再利用三角恒等变换求得它的值. 【解答】解:由题意可得2c o s 140s in 102c o s 40s in 102c o s (3010)s in 10c o s 10c o s 10c o s 10m ︒-︒-︒-︒-︒+︒-︒===︒︒︒2c o s 10s in 10s in 102c o s 10-︒+︒-︒==︒故答案为:【点评】本题主要考查三角恒等变换,属于中档题. 13.4c o s 50ta n 40︒-︒=【分析】表达式第一项利用诱导公式化简,第二项利用同角三角函数间的基本关系切化弦,通分后利用同分母分式的减法法则计算,再利用诱导公式及两角和与差的正弦函数公式化简,整理后利用两角和与差的余弦函数公式化为一个角的余弦函数,约分即可得到结果. 【解答】解:4c o s 50ta n 404s in 40ta n 40︒-︒=︒-︒4s in 40c o s 40s in 40c o s 40︒︒-︒=︒2s in 80s in (3010)c o s 40︒-︒+︒=︒12c o s 10c o s 10in 1022c o s 40︒-︒-︒=︒3c o s 10in 1022c o s 40︒-︒=︒==.【点评】本题考查了两角和与差的正弦、余弦函数公式,同角三角函数间的基本关系,以及诱导公式的作用,熟练掌握公式是解本题的关键. 14.2c o s 10s in 20s in 70︒-︒=︒【分析】利用两角和差的余弦公式,进行化简即可.【解答】解:原式12o s 20s in 20)s in 202c o s (3020)s in 2022c o s 20c o s 20︒+︒-︒︒-︒-︒==︒︒o s 20s in 20s in 20o s 20c o s 20c o s 20︒+︒-︒︒===︒︒【点评】本题主要考查三角函数值的化简,利用两角和差的余弦公式是解决本题的关键. 15.已知1ta n 31ta n αα+=-,则2sin 2sin co s 1ααα-+=25.【分析】由1ta n 31ta n αα+=-,我们可计算出ta n α的值,由于2sin α2c o s +α1=,所以将所求的代收式变形为222222s in c o s s in s in c o s s in c o s ααααααα-+++,然后化弦为切,代入求值.【解答】解:1ta n 31ta n αα+=-,1ta n 2α∴=.22222222222112()212s in c o s 2ta n 1222s in 2s in c o s 1115()12s in s in c o s ta n ta n s in c o s ta n αααααααααααααα⨯-⨯+-++-++∴-+====+++. 故答案是:25.【点评】本题考查的知识点是三角函数的恒等变换及化简求值,同角三角函数间的基本关系,解题的关键是将角的弦化切,属于中档题. 16.若1s in ()43πα-=,则c o s ()4πα+=13.【分析】由已知利用诱导公式化简所求即可得解. 【解答】解:1sin ()43πα-=,∴1c o s ()s in (())s in ()42443a ππππαα+=--=-=.故答案为:13.【点评】本题主要考查了诱导公式在三角函数化简求值中的应用,考查了转化思想,属于基础题. 17.若o s 2in 2c o s ()4θθπθ=+,则s in 2θ=23-.【分析】由已知利用三角函数恒等变换的应用可得:2(c o s s in )in 2θθθ+=,平方后整理可得:23sin 24sin 240θθ--=,进而解得s in 2θ的值. 【解答】解:o s 22c o s()4θθπθ=+,∴2(c o s s in )in 22θθθ=+=,∴平方可得:24(1sin 2)3sin 2θθ+=,整理可得:23sin 24sin 240θθ--=,∴解得:2s in 23θ=-,或2(舍去).故答案为:23-.【点评】本题主要考查了三角函数恒等变换的应用,考查了计算能力和转化思想,属于中档题. 18.若ta n 3α=,则s in 2ta n ()4απα+的值为310-.【分析】直接利用三角函数关系式的变换和倍角公式的应用求出结果.【解答】解:由于ta n 3α=,所以22ta n 3s in 21ta n 5ααα==+,1ta n 4ta n ()241ta n 2πααα++===---所以3s in 235210ta n ()4απα==--+.故答案为:310-【点评】本题考查的知识要点:三角函数关系式的恒等变换,倍角公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型. 19.若ta n 3,(0,)2παα=∈,则c o s ()4πα-=5.【分析】由已知结合同角三角函数基本关系式求解s in α、c o s α的值,然后展开两角差的余弦求解.【解答】解:由ta n 3α=,得s in 3c o s αα=,即s in 3c o s αα=.又22sin c o s 1αα+=,且(0,)2πα∈,解得:s in 10α=,c o s 10α=.∴c o s ()c o s c o s s in s in4441021025πππααα-=+=+=.故答案为:5.【点评】本题考查三角函数的化简求值,考查了同角三角函数基本关系式及两角差的余弦,是基础题.20.公元前6世纪,古希腊的毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值约为0.618,这一数值也可以表示为2s in 18m=︒,若24m n +=,则s i n 63m +=︒【分析】根据三角函数同角三角函数关系表示n ,利用辅助角公式结合两角和差的正弦公式进行化简即可. 【解答】解:2s in 18m =︒,∴由24m n +=,得222444sin 184co s 18nm =-=-︒=︒,则2s in 182c o s 18in (4518)in 63s in 63s in 63s in 63s in 63m +︒+︒︒+︒︒====︒︒︒︒故答案为:【点评】本题主要考查三角函数值的化简和求解,利用辅助角公式以及两角和差的正弦公式进行化简是解决本题的关键.21.公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,发现0.618就是黄金分割,这是一个伟大的发现,这一数值也表示为2s in 18a=︒,若24a b +=,则2=12-.【分析】由已知利用同角三角函数基本关系式可求24co s 18b =︒,然后利用降幂公式,诱导公式,二倍角的正弦函数公式化简得答案. 【解答】解:2s in 18a =︒,若24a b +=,2222444sin 184(1sin 18)4c o s 18b a∴=-=-︒=-︒=︒,∴22c o s 54sin 3614sin 18c o s 182sin 362-︒-︒====-︒︒︒,故答案为:12-.【点评】本题主要考查了同角三角函数基本关系式,降幂公式,诱导公式,二倍角的正弦函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.22.函数2()ta n 60s in 2inf x x x=︒+在[,]2ππ上的值域为.【分析】由已知利用三角函数恒等变换的应用可求()in (2)4f x x π=-+[,]2x ππ∈,可得:32[44x ππ-∈,7]4π,进而利用正弦函数的性质即可得解.【解答】解:2()tan 60sin 22f x x x=︒+1c o s 2in 22xx -=+2o s 2x x=+-in (2)4x π=-+又[,]2x ππ∈,可得:32[44xππ-∈,7]4π,s in (2)[14x π∴-∈-,2,可得()in (2)4f x x π=-+-,.故答案为:.【点评】本题主要考查了三角函数恒等变换的应用及正弦函数的性质,考查了转化思想和函数思想,属于基础题. 三.解答题(共3小题) 23.设函数()s in ()s in ()62f x x x ππωω=-+-,其中03ω<<,已知()06f π=.(Ⅰ)求ω; (Ⅱ)将函数()yf x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移4π个单位,得到函数()y g x =的图象,求()g x 在[4π-,3]4π上的最小值.【分析】(Ⅰ)利用三角恒等变换化函数()f x 为正弦型函数,根据()06f π=求出ω的值;(Ⅱ)写出()f x 解析式,利用平移法则写出()g x 的解析式,求出[4x π∈-,3]4π时()g x 的最小值.【解答】解:(Ⅰ)函数()s in ()s in ()62f x x x ππωω=-+-s in c o sc o s s ins in ()662x x x πππωωω=---3in c o s 22x xωω=-in ()3x πω=-,又()in ()0663f πππω=-=,∴63k ππωπ-=,k Z∈,解得62k ω=+,又03ω<<,2ω∴=;(Ⅱ)由(Ⅰ)知,()in (2)3f x x π=-,将函数()y f x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),得到函数in ()3y x π=-的图象;再将得到的图象向左平移4π个单位,得到in ()43yx ππ=+-的图象,∴函数()in ()12yg x x π==-;当[4x π∈-,3]4π时,[123xππ-∈-,2]3π,s in ()[122x π∴-∈-,1],∴当4xπ=-时,()g x取得最小值是322-=-.【点评】本题考查了三角恒等变换与正弦型函数在闭区间上的最值问题,是中档题. 24.已知α,β为锐角,4ta n 3α=,c o s ()5αβ+=-(1)求c o s 2α的值; (2)求tan ()αβ-的值.【分析】(1)由已知结合平方关系求得s in α,c o s α的值,再由倍角公式得c o s 2α的值; (2)由(1)求得t a n 2α,再由c o s ()5αβ+=-求得t a n (αβ+,利用tan ()tan [2()]αβααβ-=-+,展开两角差的正切求解.【解答】解:(1)由22431s in c o s s in c o s ααααα⎧=⎪⎪+=⎨⎪⎪⎩为锐角,解得4s in 53c o s 5αα⎧=⎪⎪⎨⎪=⎪⎩,227c o s 225c o s s in ααα∴=-=-;(2)由(1)得,24s in 22s in c o s 25ααα==,则s in 224ta n 2c o s 27ααα==-.α,(0,)2πβ∈,(0,)αβπ∴+∈,s in ()5αβ∴+==.则s in ()ta n ()2c o s ()αβαβαβ++==-+.ta n 2ta n ()2ta n ()ta n [2()]1ta n 2ta n ()11ααβαβααβααβ-+∴-=-+==-++.【点评】本题考查三角函数的恒等变换及化简求值,考查同角三角函数基本关系式的应用,是中档题. 25.已知函数22()s inc o s in f x x x x =--co s ()x x R ∈.(Ⅰ)求2()3f π的值.(Ⅱ)求()f x 的最小正周期及单调递增区间.【分析】利用二倍角公式及辅助角公式化简函数的解析式,(Ⅰ)代入可得:2()3f π的值.(Ⅱ)根据正弦型函数的图象和性质,可得()f x 的最小正周期及单调递增区间【解答】解:函数22()s inc o s in f x x x x =--7c o s in 2c o s 22s in (2)6x x x x π=-=+(Ⅰ)2275()2s in (2)2s in 23362f ππππ=⨯+==,(Ⅱ)2ω=,故Tπ=,即()f x 的最小正周期为π,由72[262xk πππ+∈-+,2]2k ππ+,k Z∈得:5[6x k ππ∈-+,]3k ππ-+,kZ∈,故()f x 的单调递增区间为5[6k ππ-+,]3k ππ-+或写成[6k ππ+,2]3k ππ+,kZ∈.【点评】本题考查的知识点是三角函数的化简求值,三角函数的周期性,三角函数的单调区间,难度中档。

高中数学三角恒等变换专项练习(含答案)

高中数学三角恒等变换专项练习(含答案)

高中数学三角恒等变换专项练习一、选择题1.2sin15°cos15°=( ) A . B .C .D .2.已知3cos(),sin 245x x π-=则=( ) A .1825 B .725C .725-D .1625-3.计算sin 77cos 47sin13cos 43-o o o o 的值等于( )A .12B 3.22 D 34.cos42cos78sin 42cos168+=o o o o ( )A .12 B .12- C .32- D .325.已知α,()0,βπ∈,且()1tan 2αβ-=,1tan 7β=-,则2αβ-的值是( ) A .4π- B .4πC .34π-D .34π6.sin 20cos10cos160sin10-=o o o o( )A .32-B .32C .12-D .127.已知tan()25πα+=,4tan()35πβ-=-,则tan()αβ-=( ) A .1 B .57- C .57D .1-8.=-8sin 8cos 44ππ( )A .0B .-22C .1D .22 9.已知角βα,均为锐角,且,31)tan(,53cos -=-=βαα=βtan 则A .31B .139C .913D .310.已知1027)4(sin =-πα,257cos2=α,=αsin ( )A .54 B .54- C .53- D .53 11.若sin 3cos αα=,则2sin 2cos αα=( )A.2B.3C.4D.6 12.化简2cos ()4πα--2sin ()4πα-得到( ) A .α2sin B .α2sin - C .α2cos D .α2cos -13.若41)3sin(=-απ,则)23cos(απ+等于 ( )A .87-B .41- C .41 D .8714.已知α为第二象限角,3sin cos αα+=,则cos2α=( ) A .5 B.5- C .5 D . 5- 15.(cos sin)(cossin)12121212ππππ-+= ( )A .3-B .12-C .12D .316.已知角α为第二象限角,,53sin =α则=α2sin ( ) A.2512- B.2512 C.2524- D.252417.计算1﹣2sin 222.5°的结果等于( ) A . B . C .D .18.若1tan()47πα+=,则tan α=( )(A )34 (B )43 (C )34- (D )43-19.函数2cos 2sin y x x =+,R ∈x 的值域是( )A .]1,0[B .]1,21[ C .]2,1[- D .]2,0[二、填空题20.sin 215°﹣cos 215°= .21.已知4cos(),25πθ+=则cos2θ的值是 . 22.若3sin()25πα+=,则cos2α= .23.cos 43cos77sin 43cos167+oo o o 的值为 .24.若π1sin +123α=(),则7πcos +12α=() . 25.设sin 2sin αα=-,(,)2παπ∈,则tan 2α的值是________.26.若1cos()33απ-=,则sin(2)απ-6的值是 . 27.若1sin cos 3αα-=,则sin2α= .28.已知tan 125tan αα+=-,则sin cos sin 2cos αααα+=-________________.三、解答题29.已知函数2()3sin sin cos f x x x x =+,π[,π]2x ∈.(1)求方程()f x =0的根; (2)求()f x 的最大值和最小值.30.已知函数()sin(3)4f x x π=+.(1)求()f x 的单调递增区间; (2)若α是第二象限角,4()cos()cos 2354f απαα=+,求cos sin αα-的值.参考答案1.A【解析】试题分析:直接利用二倍角的正弦函数化简求值即可. 解:2sin15°cos15°=sin30°=.故选:A .考点:二倍角的正弦. 2.C 【解析】试题分析:有已知可得:3cos cos cos sin sin cos sin 44455x x x x x πππ⎛⎫-=+=⇒+=⎪⎝⎭,平方可得:()22cos sin 12sin cos 1sin 2x x x x x =+=+=+⎝⎭,解得7sin 225x =-,故选择C 考点:三角恒等变换 3.A 【解析】试题分析:根据诱导公式得:οο13cos 77sin =,οο43sin 47cos =,所以原式=οοοο13sin 43cos 13cos 43sin -2130sin )1343sin(==-=οοο。

三角函数公式大全高中数学

三角函数公式大全高中数学

三角函数公式及练习【学习目标】1.借助单位圆中的三角函数线导出诱导公式(απαπ±±,2的正弦、余弦、正切);2.掌握并运用诱导公式求三角函数值,化简或证明三角函数式.【要点梳理】要点一:诱导公式诱导公式一:sin(2)sin k απα+=,cos(2)cos k απα+=,tan(2)tan k απα+=,其中k Z∈诱导公式二:sin()sin παα+=-,cos()cos παα+=-,tan()tan παα+=,其中k Z∈诱导公式三:sin()sin αα-=-,cos()cos αα-=,tan()tan αα-=-,其中k Z∈诱导公式四:sin()sin παα-=,cos()cos παα-=-,tan()tan παα-=-,其中k Z∈诱导公式五:sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭,其中k Z ∈诱导公式六:sin cos 2παα⎛⎫+= ⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭,其中k Z ∈要点诠释:(1)要化的角的形式为α±⋅ 90k (k 为常整数);(2)记忆方法:“奇变偶不变,符号看象限”;(3)必须对一些特殊角的三角函数值熟记,做到“见角知值,见值知角”;(4)sin cos cos 444x x x πππ⎛⎫⎛⎫⎛⎫+=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;cos sin 44x x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭.要点二:诱导公式的记忆记忆口诀“奇变偶不变,符号看象限”,意思是说角90k α⋅± (k 为常整数)的三角函数值:当k 为奇数时,正弦变余弦,余弦变正弦;当k 为偶数时,函数名不变,然后α的三角函数值前面加上当视α为锐角时原函数值的符号.要点三:三角函数的三类基本题型(1)求值题型:已知一个角的某个三角函数值,求该角的其他三角函数值.①已知一个角的一个三角函数值及这个角所在象限,此类情况只有一组解;②已知一个角的一个三角函数值但该角所在象限没有给出,解题时首先要根据已知的三角函数值确定这个角所在的象限,然后分不同情况求解;③一个角的某一个三角函数值是用字母给出的,这时一般有两组解.求值时要注意公式的选取,一般思路是“倒、平、倒、商、倒”的顺序很容易求解,但要注意开方时符号的选取.(2)化简题型:化简三角函数式的一般要求是:能求出值的要求出值;函数种类要尽可能少;化简后的式子项数最少,次数最低,尽可能不含根号.(3)证明题型:证明三角恒等式和条件等式的实质是消除式子两端的差异,就是有目标的化简.化简、证明时要注意观察题目特征,灵活、恰当选取公式.【典型例题】类型一:利用诱导公式求值例1.求下列各三角函数的值:(1)10sin 3π⎛⎫-⎪⎝⎭;(2)31cos 6π;(3)tan (-855°).【思路点拨】利用诱导公式把所求角化为我们熟悉的锐角去求解.【答案】(1)2(2)2-(3)1【解析】(1)1010sin sin 33ππ⎛⎫-=- ⎪⎝⎭44sin 2sin 33πππ⎛⎫=-+=- ⎪⎝⎭sin sin sin 3332ππππ⎛⎫⎛⎫=-+=--==⎪ ⎪⎝⎭⎝⎭.(2)3177coscos 4cos 666ππππ⎛⎫=+= ⎪⎝⎭cos cos 662πππ⎛⎫=+=-=- ⎪⎝⎭.(3)tan(-855°)=tan(-3×360°+225°)=tan225°=tan(180°+45°)=tan45°=1.【总结升华】(1)对任意角求三角函数值,一般遵循“化负为正,化大为小”的化归方向,但是在具体的转化过程中如何选用诱导公式,方法并不唯一,这就需要同学们去认真体会,适当选择,找出最好的途径,完成求值.(2)运用诱导公式求任意三角函数值的过程的本质是化任意角的三角函数为锐角三角函数的过程,而诱导公式就是这一转化的工具.举一反三:【变式1】(2018秋南京期末)已知4sin 5x =,其中02x π≤≤.(1)求cos x 的值;(2)求cos()sin()sin(2)2x x x ππ----的值.【答案】(1)35;(2)37【解析】(1)∵4sin 5x =,02x π≤≤,∴3cos 5x ==;(2)∵4sin 5x =,3cos 5x =,∴原式3cos 3534cos sin 755x x x ===++.例2.(1)已知cos 63πα⎛⎫-=⎪⎝⎭,求25cos sin 66ππαα⎛⎫⎛⎫+-- ⎪ ⎪⎝⎭⎝⎭的值.(2)已知1cos(75)3α-︒=-,且α为第四象限角,求sin(105°+α)的值.【答案】(1)233+-(2)223【解析】(1)∵5cos cos 66ππαπα⎡⎤⎛⎫⎛⎫+=--⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦3cos 63πα⎛⎫=--=-⎪⎝⎭,222232sin sin 1cos 166633πππααα⎛⎡⎤⎛⎫⎛⎫⎛⎫-=--=--=-= ⎪ ⎪ ⎪⎢⎥ ⎝⎭⎝⎭⎝⎭⎣⎦⎝⎭∴253223cos sin 66333ππαα⎛⎫⎛⎫+--=-=-⎪ ⎪⎝⎭⎝⎭.(2)∵1cos(75)03α-︒=-<,且α为第四象限角,∴α―75°是第三象限角,∴sin(75)α-︒=223==-,∴22sin(105)sin[180(75)]sin(75)3ααα︒+=︒+-︒=--︒=.【总结升华】注意观察角,若角的绝对值大于2π,可先利用2k π+α转化为0~2π之间的角,然后利用π±α、2π-α等形式转化为锐角求值,这是利用诱导公式化简求值的一般步骤.举一反三:【变式1】已知1cos(75)3α︒+=,其中α为第三象限角,求cos(105°―α)+sin(α―105°)的值.【答案】2213-【解析】∵cos(105°-α)=cos[180°-(75°+α)]=-cos(75°+α)=13-,sin(α―105°)=―sin[180°-(75°+α)]=-sin(75°+α),∵α为第三象限角,∴75°+α为第三、四象限角或终边落在y 轴负半轴上.又cos(75°+α)=13>0,∴75°+α为第四象限,∴22sin(75)3α︒+===-.∴122221cos(105)sin(105)333αα︒-+-︒=-+=.【总结升华】解答这类给值求值的问题,关键在于找到已知角与待求角之间的相互关系,从而利用诱导公式去沟通两个角之间的三角函数关系,如:75°+α=180°-(105°-α)或105°-α=180°-(75°+α)等.类型二:利用诱导公式化简例3.(2018春陕西长安区期中)(1)计算cos300°―sin(―330°)+tan675°(2)化简sin[(21)]sin[(21)]sin(2)cos(2)n n n n απαπαπαπ+++-++⋅-(n ∈Z ).【思路点拨】(1)原式各项中的角度变形后,利用诱导公式化简,再利用特殊角的三角函数计算即可得到结果;(2)原式利用诱导公式化简,约分即可得到结果.【答案】(1)-1;(2)2cos α-【解析】(1)原式=cos(360°―60°)+sin(360°―30°)+tan(720°―45°)=cos60°―sin30°―tan45°=111122--=-;(2)原式sin sin 2sin 2sin cos sin cos cos αααααααα---===-.【总结升华】诱导公式应用的原则是:负化正,大化小,化到锐角就终了.举一反三:【变式1】(2017江苏连云港月考)化简与求值:(1)cos(2)sin()sin()tan(3)2παπαπαπα-++-.(2.【答案】(1)cos α;(2)1【解析】(1)cos(2)sin()cos sin cos cos tan sin()tan(3)2παπααααπαααπα-+-==-+-.(2|cos10sin10|1cos10sin10︒-︒==︒-︒.类型三:利用诱导公式进行证明例4.求证:tan(2)sin(2)cos(6)tan 33sin cos 22παπαπααππαα----=-⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭.【思路点拨】(1)要证明的等式左边有切有弦,而等式右边只有切;(2)等式左边较复杂但却可以直接利用诱导公式.解答本题可直接把左式利用诱导公式进行化简推出右边.【证明】左边tan()sin()cos()sin 2cos 222αααπππαπα---=⎡⎤⎡⎤⎛⎫⎛⎫---- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦(tan )(sin )cos sin cos 222αααππαπα--=⎡⎤⎡⎤⎛⎫⎛⎫---- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦22sin sin cos sin sin cos 22ααππαααα==-⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭sin tan cos ααα=-=-=右边,原式得证.【总结升华】利用诱导公式证明等式,主要思路在于如何配角,如何去分析角之间的关系.举一反三:【变式1】设A 、B 、C 为ABC ∆的三个内角,求证:(1)()sin sin A B C +=;(2)sincos22A B C+=;(3)tancot 22A B C+=【证明】(1)左边=sin()sin()sin A B c C π+=-==右边,等式得证.(2)左边=sin2A =()sin cos cos 2222B C B C B C ππ-+++⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭=右边,等式得证.(3)左边=tantan cot 2222A B C C π+⎛⎫=-= ⎪⎝⎭=右边,等式得证.【变式2】设8tan 7a απ⎛⎫+= ⎪⎝⎭.求证:1513sin 3cos 37720221sin cos 77a a πααππααπ⎛⎫⎛⎫++- ⎪ ⎪+⎝⎭⎝⎭=+⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭.【证明】左边88sin 3cos 37788sin 4cos 277πππααπππαππα⎡⎤⎡⎤⎛⎫⎛⎫++++- ⎪ ⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦=⎡⎤⎡⎤⎛⎫⎛⎫-+-++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦88sin 3cos 7788sin cos 77ππααππαα⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭=⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭8tan 33781tan 17a a παπα⎛⎫++ ⎪+⎝⎭==+⎛⎫++ ⎪⎝⎭=右边.∴等式成立【巩固练习】1.对于诱导公式中的角α,下列说法正确的是()A .α一定是锐角B .0≤α<2πC .α一定是正角D .α是使公式有意义的任意角2.已知sin()0πθ+<,cos()0θπ->,则下列不等式关系中必定成立的是()A .sin θ<0,cos θ>0B .sin θ>0,cos θ<0C .sin θ>0,cos θ>0D .sin θ<0,cos θ<03.sin 300 的值为()4.(2017贵州模拟)已知1sin(65)3α︒+=,则cos (25°-α)的值为()A .13-B .13C .223-D .2235.(2018四川广安模拟)已知2sin()43πα+=,则cos()4πα-的值等于()A .23-B .23C .53D .53±6.在直角坐标系,若α与β的终边关于y 轴对称,则下列等式恒成立的是()A .sin()sin απβ+=B .sin()sin απβ-=C .sin(2)sin παβ-=-D .sin()sin αβ-=7.sin34π·cos 625π·tan 45π的值是()A .-43B .43C .-43D .438.)2cos()2sin(21++-ππ等于()A .sin2-cos2B .cos2-sin2C .±(sin2-cos2)D .sin2+cos29.tan2010°的值为.10.(2018秋苏州期末)已知θ是第三象限角,且2sin 2cos 5θθ-=-,则sin cos θθ+=________.11.sin315°―cos135°+2sin570°的值是________。

高三数学三角函数练习大题经典22套

高三数学三角函数练习大题经典22套

三角函数(三)1、在△ABC 中,AC=3,sinC=2sinA.(1)求AB 的值。

(2)求sin(2A -4π)的值。

2、设△ABC 的内角A 、B 、C 所以的边长分别为a,b,c ,3cos cos 5a Bb A C -=,(1)tan cot A B 的值。

(2)tan()A B -的最大值。

3、在△ABC中,5cos13B=-,4cos5C=.(I)sin A的值;(II)设△ABC的面积S△ABC=332,求BC的长。

4、设△ABC的内角A、B、C的对边分别为,,a b c,且A=60°,c=3b。

求(I)ac的值;(II)cot cotB C+的值.三角函数(四)1、在△ABC 中ambmc 分别为角A 、B 、C 的对的边长,a = ,tantan 422A B C++=,2sin sin cos 2AB C =。

求A 、B 及a 、c .2、在△ABC 中,内角A 、B 、C 对边的边长分别为,,a b c ,已知2,3c C π==(I )若S △ABC ,a b .(II )若sin sin()2sin 2C B A A +-=,求△ABC 的面积。

3、设锐角△ABC的内角A、B、C的对边分别为,,a b c,2sina b A=.(I)求角B的大小;(II)求cos sinA C+的取值范围。

4、在△ABC中,1tan4A=,3tan5B=,(I)求角C的大小;(II)若△ABC三角函数(五)1、已知△ABC的内角A、B及其对边,a b满足cot cot,a b a A b B+=+求内角C.2、△ABC中,D为BC上的一点,BD=33,5sin13B=,3cos5ADC∠=,求AD.3、在△ABC 中,角A 、B 、C 所对的边分别为,,a b c ,已知1cos 24C =-. (I )求sin C 的值;(2)当2,2sin sin a A C ==时,求b c 及的长。

新高考数学计算题型精练 三角恒等变换(解析版)

新高考数学计算题型精练 三角恒等变换(解析版)

新高考数学计算题型精练三角恒等变换1.cos70cos20sin70sin160︒︒-︒︒=()A.0B.12C D.1【答案】A【详解】cos20cos70sin160sin70︒︒-︒︒()cos20cos70sin18020sin70=︒︒-︒-︒︒cos20cos70sin20sin70=︒︒-︒︒()cos2070cos900=︒+︒=︒=.故选:A.2.sin40°cos10°+cos140°sin10°=()A B C.﹣12D.12【答案】D【详解】sin40°cos10°+cos140°sin10°,=sin40°cos10°-cos40°sin10°,=sin(40°-10°),=sin30°=12.故选:D3.sin20cos40cos20sin140︒︒︒︒+=A.B.2C.12-D.12【答案】B【详解】sin20cos40cos20sin140sin20cos40cos20sin40sin(2040)sin60︒︒+︒︒=︒︒+︒︒=︒+︒=︒故选B4.已知π1cos63α⎛⎫-=⎪⎝⎭,则πsin26α⎛⎫+=⎪⎝⎭()A.79-B.79C.3-D.3【答案】A【详解】因为π1 cos63α⎛⎫-=⎪⎝⎭,故2πππππ27sin 2sin 2()cos 2()2cos ()116626699αααα⎛⎫⎡⎤+=-+=-=--=-=- ⎪⎢⎥⎝⎭⎣⎦,故选:A 5.若cos tan 3sin ααα=-,则sin 22πα⎛⎫+= ⎪⎝⎭()A .23B .13C .89D .79【答案】D【详解】因为cos tan 3sin ααα=-,所以sin cos cos 3sin αααα=-,即223sin sin cos ααα-=,所以223sin sin cos 1ααα=+=,即1sin 3α=,所以27sin 2cos212sin 2π9ααα⎛⎫+==-= ⎪⎝⎭,故选:D .6.sin 20cos 40sin 70sin 40︒︒+︒︒=()AB .12C.2D .1【答案】A【详解】已知可化为:()sin 20cos 40cos 20sin 40sin 20402︒︒︒+︒=︒+︒=.故选:A7.若πtan 28α⎛⎫-= ⎪⎝⎭,则πtan 24α⎛⎫-= ⎪⎝⎭()A .34B .34-C .43D .43-【答案】D【详解】由2π2tan()π448tan 2π41431tan ()8ααα-⎛⎫-===- ⎪-⎝⎭--.故选:D8.已知π0,2α⎛⎫∈ ⎪⎝⎭π2sin 4αα⎛⎫=+ ⎪⎝⎭,则sin 2α=()A .34-B .34C .1-D .1【答案】B【详解】π2sin(4αα=+Q,)22(sin cos )2cos sin αααα=+-Q,1(cos sin )(cos sin )02αααα∴+--=,又π0,2α⎛⎫∈ ⎪⎝⎭,则sin 0,cos 0αα>>,即cos sin 0αα+>所以1cos sin 2αα-=,因为π0,2α⎛⎫∈ ⎪⎝⎭,所以2(0,π)α∈,sin 20α>.由1cos sin 2αα-=平方可得11sin 24α-=,即3sin 24α=,符合题意.综上,3sin 24α=.故选:B.9.已知5π4sin 125θ⎛⎫+= ⎪⎝⎭,则πsin 23θ⎛⎫+= ⎪⎝⎭()A .2425-B .725-C .725D .2425【答案】C【详解】5ππππ4sin sin cos 12212125θθθ⎡⎤⎛⎫⎛⎫⎛⎫+=--=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,所以22πππ47cos 2cos 22cos 1216612525θθθ⎛⎫⎛⎫⎛⎫⎛⎫-=-=--=⨯-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,得ππππ7sin 2sin 2cos 2326625θθθ⎡⎤⎛⎫⎛⎫⎛⎫+=+-=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.故选:C.10.已知tan 2α=,则213cos sin2αα-=()A .12B .14C .2D .4【答案】A【详解】因为tan 2α=,所以222213cos sin 2cos tan 221sin22sin cos 2tan 42αααααααα---====,故选:A.11.化简:()22sin πsin 22cos 2ααα-+=()A .sin αB .sin 2αC .2sin αD .sin2α【答案】C【详解】根据题意可知,利用诱导公式可得()222sin πsin 22sin sin 22cos 2cos 22αααααα-++=再由二倍角的正弦和余弦公式可得()()222sin 1cos 2sin 1cos 2sin sin 22sin 1cos 2cos2cos22αααααααααα+++===+,即()22sin πsin 22sin 2cos2αααα-+=.故选:C12.cos78cos18sin 78sin18︒︒+︒︒的值为()A .12B .13CD【答案】A【详解】依题意由两角差的余弦公式可知,()1cos78cos18sin 78sin18cos 7818cos602︒︒+︒︒=︒-︒==.故选:A13.若tan 2θ=-,则()()()πsin 1sin22sin πcos πθθθθ⎛⎫+- ⎪⎝⎭=-++____________【答案】35-/-0.6【详解】()()()()22πsin 1sin2cos sin cos 2cos sin cos sin πcos πsin cos θθθθθθθθθθθθ⎛⎫+- ⎪-⎝⎭==--++-22222tan 1213cos sin 1tan 1(2)5cossin cos θθθθθθ-=---===-+++-,故答案为:35-14.已知ππ2θ<<,且4cos 5θ=-,则tan 2θ=______.【答案】247-【详解】4cos 5θ=-,3sin 5θ==±,ππ2θ<< ,3sin 5θ∴=.sin 3tan cos 4θθθ∴==-,232tan 242tan 291tan 7116θθθ-===---.故答案为:247-.15.已知cos 24π7sin 4αα=⎛⎫+ ⎪⎝⎭,则sin 2α的值是______.【答案】4149【详解】22cos 2442cos sin π777sin 422αααα=⇒⇒-=⎛⎫+ ⎪⎝⎭228841cos 2sin cos sin 1sin 2sin 2494949αααααα⇒-+=⇒-=⇒=,故答案为:414916.已知()0,απ∈,若sin 6πα⎛⎫-= ⎪⎝⎭cos 26πα⎛⎫+= ⎪⎝⎭_________.【答案】3±【详解】因为sin 63πα⎛⎫-= ⎪⎝⎭,()0,απ∈,所以cos 6πα⎛⎫-== ⎪⎝⎭所以sin 2=2sin cos =6663πππααα⎛⎫⎛⎫⎛⎫---±⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以cos 2cos 2cos 2sin 2=6326263ππππππαααα⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=-+=-+=--± ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦.故答案为:17.若3,0,sin 25⎛⎫∈-=- ⎪⎝⎭x x π,则tan 2x =________.【答案】247-【详解】343,0,sin cos ,tan 2554x x x x π⎛⎫∈-=-∴==-⎪⎝⎭Q 232tan 242tan 291tan 7116x x x -∴===---故答案为:247-18.已知(),2αππ∈,cos 3sin 1αα-=,则cos 2α=_______________________.【答案】【详解】因为(),2αππ∈,所以,22αππ⎛⎫∈ ⎪⎝⎭,由cos 3sin 1αα-=可得212sin 6sin cos 1222ααα--=,整理可得sin 3cos 22αα=-,22sin 3cos 22sin cos 12222ααααπαπ⎧=-⎪⎪⎪+=⇒⎨⎪⎪<<⎪⎩cos 2α=故答案为:19.若πcos 0,,tan 22sin αααα⎛⎫∈= ⎪⎝⎭,则α=__________.【答案】6π/16π【详解】依题意,πcos 0,,tan 22sin αααα⎛⎫∈= ⎪⎝⎭,所以2222tan 1,2tan 1tan 1tan tan ααααα==--,21tan 3α=,而α为锐角,所以πtan 6αα=.故答案为:π620.已知tan 3α=,则sin 2α=______.【答案】35【详解】22222sin cos 2tan 233sin 2sin cos tan 1315ααααααα⨯====+++.故答案为:3521.已知α是第二象限的角,1cos24α=,则tan α=________.【答案】5/【详解】因为21cos 212sin 4αα=-=,又α是第二象限的角,所以6sin 4α=,cos 4α=,所以5tan α=-.故答案为:5-22.已知22cos 5sin 10αα-+=,则cos 2=α______.【答案】12/0.5【详解】解:已知()2222cos 5sin 121sin 5sin 12sin 5sin 30αααααα-+=--+=--+=,即()()22sin 5sin 32sin 1sin 30αααα+-=-+=,解得1sin 2α=或sin 3α=-(舍),211cos 212sin 1242αα∴=-=-⨯=,故答案为:12.23.若tan 2θ=,则sin cos 2cos sin θθθθ=-_________.【答案】65/1.2/115【详解】()()22sin cos sin sin cos 2sin cos sin cos sin cos sin θθθθθθθθθθθθ-==+--222222sin cos sin tan tan 246sin cos sin sin cos tan 155θθθθθθθθθθθ+++=+====++.故答案为:65.24.函数()sin 2sin 1cos x xf x x=+的值域__________.【答案】14,2⎛⎤- ⎥⎝⎦【详解】因为()()222221cos cos sin 2sin 2sin cos 11=2cos 2cos 2cos 1cos 1cos 1cos 22x x x x x x f x x x x x x x -⎛⎫===-+=--+ ⎪+++⎝⎭,因为1cos 1x -≤≤,当1cos 2x =时,()f x 取得最大值12,当cos 1x =-时,()f x 取得最小值4-,又因为1cos 0x +≠,所以()f x 的值域为14,2⎛⎤- ⎝⎦.故答案为:14,2⎛⎤- ⎥⎝⎦.25.已知sin 2cos αα=,π0,2α⎛⎫∈ ⎪⎝⎭,tan α=________.【详解】sin 2cos 2sin cos αααα==,π0,2α⎛⎫∈ ⎪⎝⎭,则cos 0α≠,1sin 2α=,π6α=,故tan α=26.(1)计算:cos157sin 97sin 60cos 97︒+︒︒︒;(2)已知tan 1α=-,求2cos 2sin cos 1ααα--的值.【答案】(1)12;(2)12【详解】(1)cos157sin 97sin 60cos97︒+︒︒︒()cos 9760sin 97sin 60cos 97︒+︒+︒︒=︒cos 97cos 60sin 97sin 60sin 97sin 60cos 97︒︒-︒︒+︒︒=︒cos 60=︒12=.(2)2cos 2sin cos 1ααα--222cos 2sin cos 1cos sin ααααα-=-+212tan 11tan αα-=-+()()2121111-⨯-=-+-12=.。

高中数学三角函数及三角恒等变换精选题目(附解析)

高中数学三角函数及三角恒等变换精选题目(附解析)

高中数学三角函数及三角恒等变换精选题目(附解析) 一、三角函数的定义若角α的终边上任意一点P (x ,y )(原点除外),r =|OP |=x 2+y 2,则sin α=y r ,cos α=x r ,tan α=y x (x ≠0).1.已知角α的终边过点P (-3cos θ,4cos θ),其中θ∈⎝ ⎛⎭⎪⎫π2,π,则sin α=________,tan α=________.[解析] ∵θ∈⎝ ⎛⎭⎪⎫π2,π,∴cos θ<0,∴r =x 2+y 2=9cos 2θ+16cos 2θ=-5cosθ,故sin α=y r =-45,tan α=y x =-43.[答案] -45 -43 注:利用三角函数定义求函数值的方法当已知角的终边所经过的点或角的终边所在的直线时,一般先根据三角函数的定义求这个角的三角函数值,再求其他.但当角经过的点不固定时,需要进行分类讨论.求与正切函数有关问题时,不要忽略正切函数自身的定义域.2.已知点M ⎝ ⎛⎭⎪⎫13,a 在函数y =log 3x 的图象上,且角θ的终边所在的直线过点M ,则tan θ=( )A .-13 B .±13 C .-3D .±3解析:选C 因为点M ⎝ ⎛⎭⎪⎫13,a 在函数y =log 3x 的图象上,所以a =log 313=-1,即M ⎝ ⎛⎭⎪⎫13,-1,所以tan θ=-113=-3,故选C.3.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=( )A .-45B .-35 C.35D.45解析:选B 在角θ的终边上任取一点P (a,2a )(a ≠0). 则r 2=|OP |2=a 2+(2a )2=5a 2. 所以cos 2θ=a 25a 2=15,cos 2θ=2cos 2 θ-1=25-1=-35.4.若θ是第四象限角,则点P (sin θ,tan θ)在第________象限. 解析:∵θ是第四象限角,则sin θ<0,tan θ<0, ∴点P (sin θ,tan θ )在第三象限. 答案:三二、同角三角函数的基本关系及诱导公式①牢记两个基本关系式sin 2α+cos 2α=1及sin αcos α=tan α,并能应用两个关系式进行三角函数的求值、化简、证明.②诱导公式可概括为k ·π2±α(k ∈Z)的各三角函数值的化简公式.记忆规律是:奇变偶不变,符号看象限.其中的奇、偶是指π2的奇数倍或偶数倍,变与不变是指函数名称的变化.5.已知2+tan (θ-π)1+tan (2π-θ)=-4,求(sin θ-3cos θ)(cos θ-sin θ)的值.[解] 法一:由已知得2+tan θ1-tan θ=-4,∴2+tan θ=-4(1-tan θ), 解得tan θ=2.∴(sin θ-3cos θ)(cos θ-sin θ ) =4sin θcos θ-sin 2θ-3cos 2θ =4sin θcos θ-sin 2θ-3cos 2θsin 2θ+cos 2θ=4tan θ-tan2θ-3tan2θ+1=8-4-34+1=15.法二:由已知得2+tan θ1-tan θ=-4,解得tan θ=2.即sin θcos θ=2,∴sin θ=2cos θ.∴(sin θ-3cos θ)(cos θ-sin θ)=(2cos θ-3cos θ)(cos θ-2cos θ)=cos2θ=cos2θsin2θ+cos2θ=1tan2θ+1=15.注:三角函数式的求值、化简、证明的常用技巧(1)化弦:当三角函数式中三角函数名称较多时,往往把三角函数化为弦,再化简变形.(2)化切:当三角函数式中含有正切及其他三角函数时,有时可将三角函数名称都化为正切,再变形化简.(3)“1”的代换:在三角函数式中,有些会含有常数1,常数1虽然非常简单,但有些三角函数式的化简却需要利用三角函数公式将“1”代换为三角函数式.6.若sin(π+α)=35,且α是第三象限角,则sin⎝⎛⎭⎪⎫π2+α-cos⎝⎛⎭⎪⎫π2+αsin⎝⎛⎭⎪⎫π2-α-cos⎝⎛⎭⎪⎫π2-α=()A.1B.7 C.-7 D.-1解析:选B由sin(π+α)=35,得sin α=-35.又α是第三象限角,所以cos α=-4 5,所以sin⎝⎛⎭⎪⎫π2+α-cos⎝⎛⎭⎪⎫π2+αsin⎝⎛⎭⎪⎫π2-α-cos⎝⎛⎭⎪⎫π2-α=cos α+sin αcos α-sin α=-45+⎝ ⎛⎭⎪⎫-35-45-⎝ ⎛⎭⎪⎫-35=7.7.已知sin θ+cos θ=43,且0<θ<π4,则sin θ-cos θ的值为( )A.23 B .-23 C.13D .-13解析:选B ∵sin θ+cos θ=43,∴1+2sin θcos θ=169,则2sin θcos θ=79.又0<θ<π4,所以sin θ-cos θ<0,故sin θ-cos θ=-(sin θ-cos θ)2=-1-2sin θcos θ=-23,故选B.8.已知α为第三象限角,且sin α+cos α=2m,2sin αcos α=m 2,则m 的值为________.解析:由(sin α+cos α)2=1+2sin αcos α,得4m 2=1+m 2,即m 2=13.又α为第三象限角,所以sin α<0,cos α<0,则m <0,所以m =-33.答案:-339.已知sin(3π-α)=2cos ⎝ ⎛⎭⎪⎫3π2+β,cos(π-α)=63cos(π+β),且0<α<π,0<β<π,求sin α和cos β的值.解:由已知,得sin α=2sin β,① 3cos α=2cos β,②由①2+②2,得sin 2α+3cos 2α=2, 即sin 2α+3(1-sin 2α)=2,所以sin 2α=12. 又0<α<π,则sin α=22. 将sin α=22代入①,得sin β=12.又0<β<π,故cos β=±32.三、简单的三角恒等变换两角和与差的正弦、余弦、正切公式 ①sin(α±β)=sin αcos β±cos αsin β; ②cos(α±β)=cos αcos β∓sin αsin β; ③tan(α±β)=tan α±tan β1∓tan αtan β.二倍角的正弦、余弦、正切公式 ①sin 2α=2sin αcos α;②cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; ③tan 2α=2tan α1-tan 2α.10.已知tan α=2. (1)求tan ⎝ ⎛⎭⎪⎫α+π4的值;(2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.[解] (1)tan ⎝ ⎛⎭⎪⎫α+π4=tan α+tan π41-tan αtan π4=2+11-2×1=-3.(2)sin 2αsin 2α+sin αcos α-cos 2α-1=2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×24+2-2=1.注:条件求值的解题策略(1)分析已知角和未知角之间的关系,正确地用已知角来表示未知角. (2)正确地运用有关公式将所求角的三角函数值用已知角的三角函数值来表示.(3)求解三角函数中给值求角的问题时,要根据已知求这个角的某种三角函数值,然后结合角的取值范围,求出角的大小.11.若θ∈⎣⎢⎡⎦⎥⎤π4,π2,sin 2θ=378,则sin θ=( )A.35 B.45 C.74D.34解析:选D 因为θ∈⎣⎢⎡⎦⎥⎤π4,π2,所以2θ∈⎣⎢⎡⎦⎥⎤π2,π,所以cos 2θ<0,所以cos 2θ=-1-sin 22θ=-18.又cos 2θ=1-2sin 2θ=-18,所以sin 2θ=916,所以sin θ=34.12.已知sin ⎝ ⎛⎭⎪⎫α+π3+sin α=-435,-π2<α<0,则cos ⎝ ⎛⎭⎪⎫α+8π3等于( )A .-45 B .-35 C.35D.45解析:选D 因为sin ⎝ ⎛⎭⎪⎫α+π3+sin α=-435,所以sin ⎝ ⎛⎭⎪⎫α+π3+sin ⎝ ⎛⎭⎪⎫α+π3-π3=-435,所以sin ⎝ ⎛⎭⎪⎫α+π3+sin ⎝ ⎛⎭⎪⎫α+π3cos π3-cos ⎝ ⎛⎭⎪⎫α+π3sin π3=-435,所以32sin ⎝ ⎛⎭⎪⎫α+π3-32cos ⎝ ⎛⎭⎪⎫α+π3=-435,所以-3⎣⎢⎡⎦⎥⎤12cos ⎝ ⎛⎭⎪⎫α+π3-32sin ⎝ ⎛⎭⎪⎫α+π3=-435,即-3cos ⎝ ⎛⎭⎪⎫α+π3+π3=-435,cos ⎝ ⎛⎭⎪⎫α+2π3=45,所以cos ⎝ ⎛⎭⎪⎫α+8π3=cos ⎝ ⎛⎭⎪⎫α+2π3=45,故选D.13.(2017·全国卷Ⅲ)已知sin α-cos α=43,则sin 2α=( )A .-79B .-29 C.29D.79解析:选A 将sin α-cos α=43的两边进行平方,得sin 2 α-2sin αcos α+cos 2α=169,即sin 2α=-79.14.已知向量a =(1,-3),b =⎝ ⎛⎭⎪⎫sin x ,2cos 2x 2-1,函数f (x )=a ·b .(1)若f (θ)=0,求2cos 2θ2-sin θ-12sin ⎝ ⎛⎭⎪⎫θ+π4的值;(2)当x ∈[0,π]时,求函数f (x )的值域.解:(1)∵a =(1,-3),b =⎝ ⎛⎭⎪⎫sin x ,2cos 2x 2-1,∴f (x )=a ·b =sin x -3⎝ ⎛⎭⎪⎫2cos 2x 2-1=sin x -3cos x .∵f (θ)=0,即sin θ-3cos θ=0,∴tan θ=3,∴2cos 2θ2-sin θ-12sin ⎝ ⎛⎭⎪⎫θ+π4=cos θ-sin θsin θ+cos θ=1-tan θtan θ+1=1-33+1=-2+ 3.(2)由(1)知f (x )=sin x -3cos x =2sin ⎝ ⎛⎭⎪⎫x -π3,∵x ∈[0,π],∴x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,当x -π3=-π3,即x =0时,f (x )min =-3; 当x -π3=π2,即x =5π6时,f (x )max =2,∴当x ∈[0,π]时,函数f (x )的值域为[-3,2].。

高中数学三角函数公式练习(答案)

高中数学三角函数公式练习(答案)

高中数学三角函数公式练习(答案)1.sin(29π/6)的值为()A。

-1133B。

-C。

D。

2222答案】C解析】考点:任意角的三角函数2.已知sin(α-π/4)=7/√5301,cos2α=71/2525,sinα=5/13,求cosα的值。

A。

-/6662B。

-1025/4433C。

-727/5555D。

5555/2553答案】D解析】考点:两角和与差的三角函数,二倍角公式3.cos690°的值为()A。

-1133B。

C。

-2222D。

-答案】C解析】考点:三角函数的诱导公式4.tan(π/3)的值为()A。

-33B。

C。

3D。

-333答案】C解析】考点:三角函数的求值,诱导公式5.若-π<β<α<π,且cos(β+π/4)=5/√5301,则cos(α+β)的值为()A。

-B。

-3399C。

D。

-答案】C解析】考点:诱导公式,三角函数的化简求值。

6.若角 $\alpha$ 的终边在第二象限且经过点 $P(-1,3)$,则$\sin\alpha$ 等于 $\dfrac{3}{2}$。

7.$\sin7^\circ\cos37^\circ-\sin83^\circ\cos53^\circ$ 的值为$-\dfrac{1}{3}$。

8.已知 $\cos(-x)=\dfrac{\sqrt{3}}{2}$,那么 $\sin2x=-\dfrac{1}{2}$。

9.已知 $\sin\dfrac{5\pi}{2}+\alpha=\dfrac{1}{23}$,则$\cos2\alpha=-\dfrac{5}{9}$。

10.已知 $\sin(\dfrac{\pi}{2}+a)=\dfrac{1}{27}$,则$\cos2a=-\dfrac{1}{9}$。

11.已知点 $P(\tan\alpha,\cos\alpha)$ 在第三象限,则角$\alpha$ 在第二象限。

12.已知 $\alpha$ 是第四象限角,$\tan\alpha=-\dfrac{5}{22}$,则 $\sin\alpha=-\dfrac{12}{13}$。

高中数学三角函数专项练习(含答案)

高中数学三角函数专项练习(含答案)

高中数学三角函数专项练习(含答案)一、填空题1.设1F ,2F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,过点1F 的直线交椭圆E 于,A B 两点,11||3||AF BF =,若23cos 5AF B ∠=,则椭圆E 的离心率为___________. 2.已知三棱锥P ABC -中,23APB ∠=π,3PA PB ==,5AC =,4BC =,且平面PAB ⊥平面ABC ,则该三棱锥的外接球的表面积为_________.3.法国著名的军事家拿破仑.波拿巴最早提出的一个几何定理:“以任意三角形的三条边为边向外构造三个等边三角形,则这三个三角形的外接圆圆心恰为另一个等边三角形的顶点”.在三角形ABC 中,角60A =,以,,AB BC AC 为边向外作三个等边三角形,其外接圆圆心依次为123,,O O O ,若三角形123O O O 的面积为3,则三角形ABC 的周长最小值为___________4.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,1a =,34A π=,若b c λ+有最大值,则实数λ的取值范围是_____.5.如图,某城市准备在由ABC 和以C 为直角顶点的等腰直角三角形ACD 区域内修建公园,其中BD 是一条观赏道路,已知1AB =,3BC =,则观赏道路BD 长度的最大值为______.6.在长方体1111ABCD A B C D -中,13AB =,5AD =,112AA =,过点A 且与直线CD 平行的平面α将长方体分成两部分.现同时将两个球分别放入这两部分几何体内,则在平面α变化的过程中,这两个球的半径之和的最大值为___________.7.△ABC 中,角A ,B ,C 所对的三边分别为a ,b ,c ,c =2b ,若△ABC 的面积为1,则BC 的最小值是________ .8.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示.将函数()y f x =的图象向右平移4π个单位,得到()y g x =的图象,则下列有关()f x 与()g x 的描述正确的有___________(填序号).①()2sin 23g x x π⎛⎫=- ⎪⎝⎭; ②方程()()360,2f x g x x π⎛⎫⎛⎫+=∈ ⎪ ⎪⎝⎭⎝⎭所有根的和为712π; ③函数()y f x =与函数()y g x =图象关于724x π=对称. 9.已知函数()cos()(0,0,0)f x A x A ωϕωϕπ=->><<的部分图像如图所示,设函数()266g x f x f x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则()g x 的值域为___________.10.已知O 为△ABC 外接圆的圆心,D 为BC 边的中点,且4BC =,6AO AD ⋅=,则△ABC 面积的最大值为___________.二、单选题11.在△ABC 中,24CA CB ==,F 为△ABC 的外心,则CF AB ⋅=( )A .-6B .-8C .-9D .-1212.已知无穷项实数列{}n a 满足: 1a t =, 且14111n n n a a a +=--, 则( ) A .存在1t >, 使得20111a a =B .存在0t <, 使得20211a a =C .若2211a a =, 则21a a =D .至少有2021个不同的t , 使得20211a a =13.已知向量a 与b 的夹角为120︒,且2a b ⋅=-,向量c 满足()()101c a b λλλ=+-<<,且a c b c ⋅=⋅,记向量c 在向量a 与b 方向上的投影分别为x 、y .现有两个结论:①若13λ=,则2a b =;②22x y xy ++的最大值为34.则正确的判断是( ) A .①成立,②成立B .①成立,②不成立C .①不成立,②成立D .①不成立,②不成立 14.在三棱锥A BCD -中,2AB AD BC ===,CD =AC =3BD =,则三棱锥外接球的表面积为( )A .927πB .9πC .1847πD .18π 15.在ABC ∆中,已知3sin sin ,2A C +=设2sin sin ,t A C =则( )A .1 BCD .9816.在三棱锥S ABC -中,侧棱SA ,SB ,SC 两两垂直,且2SA SB SC +==.设SA x =,该三棱锥的表面积为函数()y f x =,以下判断正确的是( )A .()f x 为常数B .()f x 有极小值C .()f x 有极大值D .()f x 是单调函数17.设锐角ABC 的内角,,A B C 所对的边分别为,,a b c,若,3A a π==2b 2c bc ++的取值范围为( )A .(1,9]B .(3,9]C .(5,9]D .(7,9] 18.已知函数()2sin 1,022sin 1,02x x f x x x ππ⎧-≥⎪⎪=⎨⎪--<⎪⎩,()11x g x x -=+,则关于x 的方程()()f x g x =在区间[]8,6-上的所有实根之和为( )A .10-B .8-C .6-D .4-19.设函数()x f x m π=,函数()f x 的对称轴为0x x =,若存在0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围为( )A .(,6)(6,)-∞-+∞B .(,4)(4,)-∞-⋃+∞C .(,2)(2,)-∞-+∞D .(,1)(1,)-∞-+∞20.已知1sin ,sin ,sin ,222a x x b x ωωω⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,其中0>ω,若函数1()2f x a b =⋅-在区间(,2)ππ内有零点,则实数ω的取值可能是( )A .18B .14C .12D .34三、解答题21.已知函数()cos f x x =.(1)若,αβ为锐角,()f αβ+= 4tan 3α=,求cos2α及tan()βα-的值; (2)函数()(2)3g x f x =-,若对任意x 都有2()(2)()2g x a g x a ≤+--恒成立,求实数a 的最大值;(3)已知3()()()=2f f f αβαβ+-+,,(0,)αβπ∈,求α及β的值.22.函数()sin y x ωϕ=+与()cos y x ωϕ=+(其中0>ω,2πϕ<)在0,2x ⎡∈⎢⎣⎦的图象恰有三个不同的交点,,P M N ,PMN ∆为直角三角形,求ϕ的取值范围.23.已知函数2()2sin cos ()f x x x x a a R =-++∈,且(0)f =(1)求a 的值;(2)若()f x ω在[0,]π上有且只有一个零点,0>ω,求ω的取值范围.24.函数()()sin tan f x x ω=,其中0ω≠.(1)讨论()f x 的奇偶性;(2)1ω=时,求证:()f x 的最小正周期是π;(3)()1.50,1.57ω∈,当函数()f x 的图像与()112g x x x ⎛⎫=+ ⎪⎝⎭的图像有交点时,求满足条件的ω的个数,说明理由.25.函数211()sin 2sin cos cos sin 222f x x x πϕϕϕ⎛⎫=⋅+⋅-+ ⎪⎝⎭,22ππϕ⎛⎫-<< ⎪⎝⎭其图像过定点1,64π⎛⎫ ⎪⎝⎭(1)求ϕ值;(2)将()y f x =的图像左移8π个单位后得到()y g x =,求()g x 在,44ππ⎡⎤-⎢⎥⎣⎦上的最大和最小值及此时对应的x 的取值是多少?26.已知向量a ,b 满足2sin 4a x x π⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭,cos 4b x x π⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,函数()()f x a b x R =⋅∈.(1)求()f x 的单调区间;(2)已知数列()2*11224n n a n f n N ππ⎛⎫=-∈ ⎪⎝⎭,求{}n a 的前2n 项和2n S . 27.函数()()2sin f x x ωϕ=+(其中0,2πωϕ><),若函数()f x 的图象与x 轴的任意两个相邻交点间的距离为2π,且函数()f x 的图象过点()0,1. (1)求()f x 的解析式;(2)求()f x 的单调增区间:(3)求()()2sin f x x ωϕ=+在,02π⎛⎫- ⎪⎝⎭的值域.28.已知函数())2sin cos 0f x x x x ωωωω=+>的最小正周期为π.将函数()y f x =的图象上各点的横坐标变为原来的4倍,纵坐标变为原来的2倍,得到函数()y g x =的图象.(1)求ω的值及函数()g x 的解析式;(2)求()g x 的单调递增区间及对称中心29.设向量a =(2sin 2x cos 2x x ),b =(cos x ,sin x ),x ∈[-6π,3π],函数f (x )=2a •b .(1)若|a b |,求x 的值;(2)若f (x )-m m 的取值范围.30.已知函数2()2cos cos f x x x x =+.(Ⅰ)求()f x 的单调递增区间;(Ⅱ)若()f x 在区间,6m π⎡⎤-⎢⎥⎣⎦上的值域为[]0,3,求m 的取值范围.【参考答案】一、填空题1 2.28π3.64.2⎝516.16538 78.①③9.9[,4]4- 10.二、单选题11.A12.D13.C14.A15.B16.A17.D18.B19.C20.D三、解答题21.(1)72cos 2,tan()2511αβα=--=;(2)265-;(3)3παβ== 【解析】【分析】(1)根据同角三角函数的关系和二倍角的余弦公式可求得cos2α的值,利用二倍角的正切公式、同角三角函数的基本关系以及两角差的正切公式可求解tan()βα-的值;(2)由余弦函数的有界性求得()g x 的值域,再将不等式分离参数,并令()1t g x =-,可得1a t t ≤+对[5,3]t ∈--恒成立.易知函数1y t t=+在[5,3]t ∈--单调递增,求出其最小值,则可得265a ≤-,从而求得a 的最大值; (3)利用和差化积公式(需证明)以及二倍角公式,将该式化简,配凑成22(2cos cos )sin 0222αβαβαβ+---+=,再结合,(0,)αβπ∈,即可求出α及β的值.【详解】解:(1)4tan 3α=,且α为锐角, 4sin 5α∴=,3cos 5α=,22tan 24tan 21tan 7ααα==-- 则227cos 2cos sin 25ααα=-=-,又()cos()f αβαβ+=+=,αβ为锐角,sin()αβ∴+=,tan()2αβ+=-, tan()tan[()2]βααβα∴-=+-242()tan()tan 227241tan()tan 2111(2)()7αβααβα---+-===+++-⨯-; (2)()(2)3cos 23[4,2]g x f x x =-=-∈--,2()(2)()2g x a g x a ≤+--对任意x 恒成立,即2()2()2(()1)g x g x g x a -+≤-对任意x 恒成立,令()1[5,3]t g x =-∈--,211t a t t t+∴≤=+对[5,3]t ∈--恒成立, 又函数1y t t=+在[5,3]t ∈--单调递增, ∴当5t =-时,min 126()5t t +=-, 265a ∴≤-,则a 的最大值为265-; (3)3()()()2f f f αβαβ+-+=, 即3cos cos cos()2αβαβ+-+=, cos cos()22αβαβα+-=+ cos cos sin sin 2222αβαβαβαβ+-+-=-, cos cos()22αβαββ+-=- cos cos +sin sin 2222αβαβαβαβ+-+-=, cos cos 2cos cos 22αβαβαβ+-∴+=, 又2cos()2cos 12αβαβ++=-,232cos cos 2cos 12222αβαβαβ+-+∴-+=, 则24cos4cos cos 10222αβαβαβ++--+=, 22(2cos cos )1cos 0222αβαβαβ+---+-=,即22(2cos cos )sin 0222αβαβαβ+---+=,2cos cos 022sin 02αβαβαβ+-⎧-=⎪⎪∴⎨-⎪=⎪⎩, 又0απ<<,0βπ<<,3παβ∴==.【点睛】本题考查了同角三角函数间的关系,两角和与差的三角函数公式,二倍角余弦和正切公式,不等式恒成立问题,考查了运算能力和转化能力,属于综合性较强的题.22.,44ππϕ⎡⎤∈-⎢⎥⎣⎦ 【解析】且为等腰三角形,由此可确定周期,进而得到ω的知;采用整体对应的方式可知若为三个交点只需95,,442πππϕϕ⎡⎤⎡⎤⊂+⎢⎥⎢⎥⎣⎦⎣⎦,由此可构造不等式求得结果. 【详解】令t x ωϕ=+,结合sin y t =与cos y t =图象可知:sin y t =与cos y t =,其交点坐标分别为4π⎛ ⎝⎭,5,4π⎛ ⎝⎭,94π⎛ ⎝⎭,13,4π⎛ ⎝⎭,...,PMN ∆为等腰三角形.PMN ∆∴斜边长为2T πω==,解得,ω=;52553244T T=⋅<,∴两图象不可能四个交点; 由x ⎡∈⎢⎣⎦,有5,2t πϕϕ⎡⎤∈+⎢⎥⎣⎦,两图象有三个交点只需95,,442πππϕϕ⎡⎤⎡⎤⊂+⎢⎥⎢⎥⎣⎦⎣⎦, 由45924πϕπϕπ⎧≤⎪⎪⎨⎪+≥⎪⎩得:,44ππϕ⎡⎤∈-⎢⎥⎣⎦. 【点睛】本题考查根据三角函数的交点与性质求解解析式中的参数范围的问题,关键是能够利用正余弦函数的性质类比得到正弦型和余弦型函数的交点所满足的关系,从而根据两函数交点个数确定不等关系.23.(1)a =(2)15,36⎡⎫⎪⎢⎣⎭【解析】【分析】(1)利用降次公式、辅助角公式化简()f x 表达式,利用(0)f =a 的值.(2)令()0f x ω=,结合x 的取值范围以及三角函数的零点列不等式,解不等式求得ω的取值范围.【详解】(1)2()2sin cos f x x x x a =-++sin 2x x a =+2sin 23x a π⎛⎫=++- ⎪⎝⎭(0)f =(0)2sin 3f a π∴=+=即a =(2)令()0f x ω=,则sin 203x πω⎛⎫+= ⎪⎝⎭, [0,]x π∈,2,2333πππωπω⎡⎤∴+∈+⎢⎥⎣⎦, ()f x 在[0,]π上有且只有一个零点, 223πππωπ∴+<,1536ω∴<, ω∴的取值范围为15,36⎡⎫⎪⎢⎣⎭. 【点睛】本小题主要考查三角恒等变换,考查三角函数零点问题,考查化归与转化的数学思想方法,属于基础题.24.(1)奇函数;(2)见解析;(3)ω的个数为198个,见解析.【解析】(1)根据奇偶函数的定义进行判断即可;(2)根据最小正周期公式进行验证即可;(3)利用函数的图象和不等式的性质可以求出满足条件的ω的个数.【详解】(1)()sin[tan()]sin(tan )sin(tan )()f x x x x f x ωωω-=-=-=-=-,所以函数()f x 是奇函数;(2)()sin[tan()]sin(tan )()f x x x f x ππ+=+==,所以()f x 的最小正周期是π;(3)因为当0x >时,()111122g x x x ⎛⎫=+≥⨯ ⎪⎝⎭,(当且仅当1x =时取等号),所以当函数()f x 的图像与()112g x x x ⎛⎫=+ ⎪⎝⎭的图像有交点时,只能()sin tan 1x ω=,即tan 22k πωπ=+,因为(1.50, 1.57)ω∈,所以2(tan1.50,tan1.57)2k ππ+∈,因此1.99199.6k <<,2,3,4,,199k =⋯,因此满足条件的ω的个数为198个,当0x >时,也是一样的,因为两个函数是奇函数都关于原点对称,所以当函数()f x 的图像与()112g x x x ⎛⎫=+ ⎪⎝⎭的图像有交点时,满足条件的ω的个数为198. 【点睛】本题考查了函数奇偶性和周期性,考查了三角奇函数的性质,考查了基本不等式的应用,考查了数学运算能力.25.(1)0ϕ=(2)当4x π=时,min ()g x =;当8x π=-时,max 1()2g x = 【解析】【分析】 (1)先将函数表达式结合降幂公式化简可得()1cos(2)2f x x ϕ=-,结合函数过点1,64π⎛⎫ ⎪⎝⎭和,22ππϕ⎛⎫∈- ⎪⎝⎭即可求解具体ϕ值; (2)根据函数图像平移法则先求得1()cos 224g x x π⎛⎫=+ ⎪⎝⎭,由,44x ππ⎡⎤∈-⎢⎥⎣⎦求得32,444x πππ⎡⎤+∈-⎢⎥⎣⎦,再结合余弦函数性质即可求解 【详解】(1)11cos 21()sin 2sin cos cos 222x f x x ϕϕϕ+=⋅+⋅- 11sin 2sin cos 2cos 22x x ϕϕ=⋅+⋅ 1cos(2)2x ϕ=- 又图像过点1,64π⎛⎫ ⎪⎝⎭,11cos 423πϕ⎛⎫∴=- ⎪⎝⎭ 233k ππϕπ∴-=+或2()3k k Z ππ-+∈ 又,22ππϕ⎛⎫∈- ⎪⎝⎭,0ϕ∴= (2)由(1)知1()cos 22f x x =,11()cos 2cos 22824g x x x ππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭ 32,444x πππ⎡⎤+∈-⎢⎥⎣⎦当3244x ππ+=时,即4x π=时,min ()4g x = 当204x π+=时,即8x π=-时,max 1()2g x = 【点睛】本题考查三角函数表达式的化简求值,降幂公式的使用,两角差的余弦公式的逆用,在具体区间函数最值的求解,属于中档题26.(1)单调增区间为7,1212k k ππππ⎡⎤--⎢⎥⎣⎦,k Z ∈,单调减区间为5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈;(2))22n n + 【解析】【分析】(1)由向量数量积的坐标运算可得()2sin 222sin 23f x a b x x x π⎛⎫=⋅=-=+ ⎪⎝⎭, 再利用三角函数单调区间的求法即可得解;(2)由题意可得()()22222221234212n S n n ⎤=-+-+⋅⋅⋅+--⎦,又()()2221241n n n --=-+,则)2442434n S n n =--⨯-⨯-⋅⋅⋅-+,再利用等差数列求和公式即可得解.【详解】解:(1)向量a ,b 满足2sin 4a x x π⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭,cos 4b x x π⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,函数()2sin 222sin 23f x a b x x x π⎛⎫=⋅=-=+ ⎪⎝⎭, 由2222232k x k πππππ-≤+≤+,可得71212k x k ππππ-≤≤-,k Z ∈, 解得()f x 的单调增区间为7,1212k k ππππ⎡⎤--⎢⎥⎣⎦,k Z ∈; 单调减区间为5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈. (2)因为22112sin 2244n n a n f n n ππππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,所以()()22222221234212n S n n ⎤=-+-+⋅⋅⋅+--⎦, 又()()2221241n n n --=-+, )2442434n S n n --⨯-⨯-⋅⋅⋅-+,所以()()223412222n n n S n n --+=⨯=-+.【点睛】 本题考查了三角函数单调区间的求法及数列中捆绑求和,属中档题.27.(1)2sin(2)6y x π=+;(2),,36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(3)[)2,1- 【解析】【分析】(1)依据题意可得函数周期为π,利用周期公式算出ω,又函数过定点()0,1,即可求出ϕ,进而得出解析式;(2)利用正弦函数的单调性代换即可求出函数()f x 的单调区间;(3)利用换元法,设26t x π=+,结合2sin y t =在5,66t ππ⎛⎫∈- ⎪⎝⎭上的图象即可求出函数()()2sin f x x ωϕ=+在,02π⎛⎫- ⎪⎝⎭的值域 【详解】 (1)因为函数()f x 的图象与x 轴的任意两个相邻交点间的距离为2π,所以函数()f x 的周期为π,由2T ππω==,得2ω=,又函数()f x 的图象过点()0,1,所以(0)1f =,即2sin 1=ϕ,而,所以6π=ϕ, 故()f x 的解析式为2sin(2)6y x π=+. (2)由sin y x =的单调增区间是2,2,22k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦可得 222262k x k πππππ-+≤+≤+,解得36k x k ππππ-+≤≤+故故函数()f x 的单调递增区间是,,36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦. (3)设 26t x π=+,,02x π⎛⎫∈- ⎪⎝⎭,则5,66t ππ⎛⎫∈- ⎪⎝⎭ ,由2sin y t =在5,66t ππ⎛⎫∈- ⎪⎝⎭上的图象知,当2t π=- 时,min 2f =- 当t 趋于6π时,函数值趋于1,故()()2sin f x x ωϕ=+在,02π⎛⎫- ⎪⎝⎭的值域为[)2,1- . 【点睛】本题主要考查正弦型函数解析式的求法,正弦函数性质的应用,以及利用换元法结合图象解决给定范围下的三角函数的范围问题,意在考查学生数学建模以及数学运算能力.28.(1)1ω=,()2sin()23x g x π=+;(2)单调递增区间为54,433k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈,对称中心为2(2,0)()3k k ππ-∈Z . 【解析】【分析】 (1)整理()f x 可得:()sin(2)3f x x πω=+,利用其最小正周期为π即可求得:1ω=,即可求得:()sin(2)3f x x π=+,再利用函数图象平移规律可得:()2sin()23x g x π=+,问题得解.(2)令222232x k k πππππ-≤+≤+,k Z ∈,解不等式即可求得()g x 的单调递增区间;令23x k ππ+=,k Z ∈,解方程即可求得()g x 的对称中心的横坐标,问题得解. 【详解】解:(1)1()2sin 2sin(2)23f x x x x πωωω=+=+, 由22ππω=,得1ω=. 所以()sin(2)3f x x π=+. 于是()yg x =图象对应的解析式为()2sin()23x g x π=+. (2)由222232x k k πππππ-≤+≤+,k Z ∈得 54433k x k ππππ-≤≤+,k Z ∈ 所以函数()g x 的单调递增区间为54,433k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈. 由23x k ππ+=,解得22()3x k k ππ=-∈Z . 所以()g x 的对称中心为2(2,0)()3k k ππ-∈Z . 【点睛】本题主要考查了二倍角公式、两角和的正弦公式应用及三角函数性质,考查方程思想及转化能力、计算能力,属于中档题.29.(1)π4x =;(2)2⎤⎦. 【解析】【分析】(1)根据|a |=b |,利用化简函数化简解得x 的值;(2根据f (x )=2a •b .结合向量的坐标运算,根据x ∈[6π-,3π],求解范围,)﹣f (x )﹣m ≤m 的取值范围.【详解】解:(1)由|a b |, 可得222a b =;即4sin 2x =2(cos 2x +sin 2x )即sin 2x =12;∴sin x = ∵x ∈[-6π,3π], ∴x =4π(2)由函数f (x )=2a •b =2sin2x 2x=sin2x +1122-cos2x )=sin2x x (2x -3π)∵x ∈[-6π,3π], ∴2x -3π∈[-23π,3π],2≤2sin (2x -3π)要使f (x )-m则2m m ⎧-≤⎪⎨≥⎪⎩2m ≤故得m 的取值范围是2].【点睛】本题考查三角函数的化简能力和向量的运算,考查转化思想以及计算能力.30.(Ⅰ) (),,36ππππ⎡⎤-+∈⎢⎥⎣⎦k k k Z (Ⅱ) 62ππ≤≤m 【解析】【分析】(Ⅰ)利用二倍角的正弦公式、二倍角的余弦公式以及两角和与差的正弦公式将函数()f x 化为π2sin 216x ⎛⎫++ ⎪⎝⎭,利用正弦函数的单调性解不等式,可得到函数()f x 的递增区间; (Ⅱ) 要使得()f x 在π,6m ⎡⎤-⎢⎥⎣⎦上的值域为[]0,3,即πsin 26x ⎛⎫+ ⎪⎝⎭在π,3m ⎡⎤-⎢⎥⎣⎦上的值域为112⎡⎤-⎢⎥⎣⎦,,可得7 2266m πππ≤+≤,从而可得结果.【详解】(Ⅰ)()22f x cos x =+πcos212sin 216x x x ⎛⎫=+=++ ⎪⎝⎭, 由()222,262k x k k Z πππππ-≤+≤+∈得(),36k x k k Z ππππ-≤≤+∈所以,()f x 的单调递增区间是(),,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ (Ⅱ)由(Ⅰ)知()π2sin 216f x x ⎛⎫=++ ⎪⎝⎭. 因为π,6x m ⎡⎤∈-⎢⎥⎣⎦,所以π2,2666x m ππ⎡⎤+∈-+⎢⎥⎣⎦. 要使得()f x 在π,6m ⎡⎤-⎢⎥⎣⎦上的值域为[]0,3,即πsin 26x ⎛⎫+ ⎪⎝⎭在π,3m ⎡⎤-⎢⎥⎣⎦上的值域为112⎡⎤-⎢⎥⎣⎦,. 所以72266m πππ≤+≤,即62m ππ≤≤. 【点睛】本题主要考查二倍角公式、辅助角公式的应用以及三角函数的单调性、三角函数的值域,属于中档题. 函数sin()y A x ωϕ=+的单调区间的求法:若0,0A ω>>,把x ωϕ+看作是一个整体,由22k x ππωϕ+≤+≤()322k k Z ππ+∈求得函数的减区间,2222k x k πππωϕπ-+≤+≤+求得增区间.。

高三数学三角函数三角恒等变换解三角形试题

高三数学三角函数三角恒等变换解三角形试题

高三数学三角函数三角恒等变换解三角形试题1.某航模兴趣小组的同学,为了测定在湖面上航模航行的速度,采用如下办法:在岸边设置两个观察点A、B ,且 AB长为80米,当航模在C处时,测得∠ABC=105°和∠BAC=30°,经过20秒后,航模直线航行到 D 处,测得∠BAD=90°和∠ABD=45°.请你根据以上条件求出航模的速度.(答案保留根号)【答案】法一:在△ABC中,∵∠BAD=90°,∠ABD=45°,∴∠ADB="45°"在中,在中,DC2=DB2+BC2-2DB·BC cos60°=(80)2+(40)2-2×80×40×=9600,航模的速度(米/秒)答:航模的速度为2(米/秒))法二:(略解)、在中,中在中,DC2=AD2+AC2-2AD·AC cos60°="9600"航模的速度(米/秒)答:航模的速度为2(米/秒)【解析】略2.函数的一部分图象如图所示,其中,,,则()A.B.C.D.【答案】D【解析】由得:又,故选D3.函数的部分图象如图所示,设是图象的最高点,是图象与轴的交点,则A.B.C.D.【答案】B【解析】从向x轴作垂线,垂足为,由,可得,,,所以,故选B.【考点】1.三角函数的图像与性质;2.三角函数求值.4.中,角所对的边分别为,若().A.B.C.D.【答案】C【解析】由余弦定理,又由,得,故选C.【考点】余弦定理.5.(12分)已知向量,,设函数.(1)求函数的单调递减区间;(2)在△ABC中,角A,B,C的对边分别为a,b,c,且满足,,求的值.【答案】(1);(2).【解析】本题主要考查向量的数量积、倍角公式、两角差的正弦公式、三角函数的单调性、正弦定理、余弦定理等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,先利用向量的数量积得到的解析式,再利用倍角公式和两角差的正弦公式化简表达式,使之成为的形式,再数形结合求函数的递减区间;第二问,先利用正弦定理将转化为,再将已知条件代入余弦定理中得出,从而得到特殊角,最后代入中.试题解析:(1)令,所以的递减区间为(2)由,⇒,∴,即,又∵,,∴.【考点】向量的数量积、倍角公式、两角差的正弦公式、三角函数的单调性、正弦定理、余弦定理.6.(本小题满分12分)在△ABC中,a, b, c分别为内角A, B, C的对边,且,(Ⅰ)求A的大小;(Ⅱ)求的最大值.【答案】(Ⅰ)120°;(Ⅱ)1【解析】(Ⅰ)求角的大小,从已知可看出,把已知条件用正弦定理化为边的关系,然后用余弦定理可得;(Ⅱ)由(Ⅰ),因此可把化为一个角的三角函数,再由两角和与差的正弦公式化为一个三角函数,可得最大值.试题解析:(Ⅰ)由已知,根据正弦定理得即由余弦定理得故,A=120°(Ⅱ)由(Ⅰ)得:故当B=30°时,sinB+sinC取得最大值1。

专题4-2 三角函数图像与性质归类-(原卷版)

专题4-2 三角函数图像与性质归类-(原卷版)

专题4-2 三角函数图像与性质归类目录一、热点题型归纳【题型一】平移1:正弦←→余弦 (1)【题型二】平移2:识图平移 (3)【题型三】平移3:恒等变形平移 (4)【题型四】平移4:中心对称,轴对称,单调性等性质 (5)【题型五】平移5:最小平移 (6)【题型六】平移6:求w 最值 (7)【题型七】正余弦函数对称轴 (8)【题型八】正余弦对称中心 (9)【题型九】三角函数周期 (9)【题型十】单调性与最值 (11)【题型十一】正余弦“和”与“积”性质、最值 (11)【题型十二】三角函数零点 (12)【题型十三】图像与性质:x1与x2型 (13)【题型十四】三角函数最值 (14)【题型十五】万能代换与换元 (15)【题型十六】图像和性质综合 (15)二、真题再现 (16)三、模拟检测 (178)【题型一】平移1:正弦←→余弦【典例分析】(2022·安徽省太和中学高三阶段练习)已知函数()()πcos 0,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭,若()f x 的图象向右平移π12个单位后,得到函数()2πsin 23g x x ⎛⎫=+ ⎪⎝⎭的图象,则( )A .6π=ϕB .π4ϕ= C .π3ϕ= D .2π5ϕ=1(2023·全国·高三专题练习)已知直线8x π=是函数()2sin(2)||2πϕϕ⎛⎫=+< ⎪⎝⎭f x x 的图像的一条对称轴,为了得到函数()y f x =的图像,可把函数2cos 26y x π⎛⎫=- ⎪⎝⎭的图像( )A .向左平移24π个单位长度B .向右平移24π个单位长度C .向左平移12π个单位长度 D .向右平移12π个单位长度2.(2022·全国·高三专题练习)为得到函数cos 23y x π⎛⎫=- ⎪⎝⎭的图象,只需将函数sin 24y x π⎛⎫=-- ⎪⎝⎭图象上所有的点( )A .向左平移712π个单位长度B .向右平移712π个单位长度 C .向左平移724π个单位长度D .向右平移724π个单位长度3.(2023·全国·高三专题练习)为了得到函数πsin 24y x ⎛⎫=+ ⎪⎝⎭的图象,可以将函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图象( )A .向左平移5π24个单位 B .向右平移7π24个单位 C .向右平移5π24个单位D .向左平移7π24个单位【题型二】平移2:识图平移【典例分析】(2022·陕西·渭南市华州区咸林中学高三开学考试(理))如图,函数()()π2sin 0,||2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的图像过()π,0,2π,22⎛⎫⎪⎝⎭两点,为得到函数()()2cos g x x ωϕ=-的图像,应将()f x 的图像( )A .向右平移7π6个单位长度 B .向左平移7π6个单位长度 C .向右平移5π2个单位长度D .向左平移5π2个单位长度()++(0)0Asin x b A ,的步骤和方法:确定函数的最大值M 和最小值2M mA ,2M mb; :确定函数的周期T ,则可2T得=; :常用的方法有代入法和五点法. 把图象上的一个已知点代入(此时A b ,,已知)或代入图象与直线y b =的交点求解注意交点是在上升区间上还是在下降区间上).五点法”中的某一个点为突破口.【变式演练】1.(2022·河南·高三阶段练习(理))函数()()2sin f x x ωϕ=+(0>ω且0πϕ<<)在一个周期内的图象如图所示,将函数()y f x =图象上的点的横坐标伸长为原来的2倍,再向右平移π4个单位长度,得到函数()y g x =的图象,则π3g ⎛⎫= ⎪⎝⎭( )AB .1C .-1D .2.(2022·全国·长垣市第一中学高三开学考试(理))将函数sin y x =的图象上所有点的横坐标变为原来的(0)m m >倍,纵坐标不变,再将所得函数图象向左平移(0)ϕϕπ<<个单位长度,最后将所得函数图象上所有点的纵坐标变为原来的(0)n n >倍,横坐标不变,得到如图所示的函数()f x 的部分图象,则,,m n ϕ的值分别为( )A .22,2,3m n πϕ===B .12,2,23m n πϕ===C .2,2,3m n πϕ===D .1,2,23m n πϕ===3.(2022·四川省内江市第六中学模拟预测(文))已知函数()()cos 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭,将函数()f x 的图象向左平移34π个单位长度,得到函数()g x 的部分图象如图所示,则3f π⎛⎫= ⎪⎝⎭( )A .12 B .12-C D .【题型三】平移3:恒等变形平移【典例分析】(2022·湖北·高三开学考试)要得到2()sin 43g x x π⎛⎫=+⎪⎝⎭的图象,只需要将22()cos 2sin 2f x x x =-的图象( ) A .向左平移24π个单位长度 B .向右平移24π个单位长度 C .向左平移12π个单位长度D .向右平移12π个单位长度【变式演练】1.(2023·全国·高三专题练习)已知函数()2sin cos f x x x =+的图象向左平移()0ϕϕ>个单位长度后得到函数()sin 2cos g x x x =+的图象,则()g ϕ=( )A .65B .115C .15 D .852.(2022·全国·高三专题练习)为了得到函数2cos2y x =的图象,只需把函数2cos 2y x x =+的图象( ) A .向左平移3π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度 D .向右平移6π个单位长度3.(【百强校】2015届浙江省宁波市镇海中学高三5月模拟考试理科数学)设()cos 22f x x x =,把()y f x =的图像向左平移(0)ϕϕ>个单位后,恰好得到函数()cos 22g x x x =-的图象,则ϕ的值可以为( ) A .6π B .3πC .23πD .56π【题型四】平移4:中心对称,轴对称,单调性等性质【典例分析】(2022·安徽·高三开学考试)将函数()sin(2)(0)f x x ϕϕπ=+<<的图象向右平移6π个单位长度得到()g x 的图象,若()g x 的图象关于直线3x π=对称,则6g π⎛⎫= ⎪⎝⎭( )A .B .12-C .0D .12)+)00((Asin x A ,两个点关于中心对称,则函数值互为相反数。

2023高中数学三角恒等变换题型总结及解题方法

2023高中数学三角恒等变换题型总结及解题方法

(每日一练)2023高中数学三角恒等变换题型总结及解题方法单选题1、若3sinθ=cosθ−1,则tan θ2的值为( ) A .−3B .13C .−3或0D .−13 答案:C 解析:观察角度之间的联系,利用倍角公式和同角三角函数的基本关系式化简求值. 由3sinθ=cosθ−1,得6sin θ2cos θ2=1−2sin 2θ2−1,得2sin θ2(3cos θ2+sin θ2)=0,得sin θ2=0或3cos θ2+sin θ2=0, 得tan θ2=0或tan θ2=−3. 故选:C 小提示:本题利用倍角公式和同角三角函数的基本关系式化简求值,属于容易题. 2、若tan α=2tan 10∘,则cos (α−80∘)sin (α−10∘)=( ) A .1B .2C .3D .4 答案:C 解析:利用诱导公式、两角和公式可得cos (α−80∘)sin (α−10∘)=sin αcos10∘+cosαsin10∘sin αcos10∘−cosαsin10∘,再利用弦化切即得.∵tan α=2tan 10∘, ∴cos (α−80∘)sin (α−10∘)=cos (α+10∘−90∘)sin (α−10∘)=sin (α+10∘)sin (α−10∘) =sin αcos10∘+cosαsin10∘sin αcos10∘−cosαsin10∘=tan α+tan10∘tan α−tan10∘ =3tan 10∘tan 10∘=3. 故选:C.3、关于函数y =sinx(sinx +cosx)描述正确的是( ) A .最小正周期是2πB .最大值是√2C .一条对称轴是x =π4D .一个对称中心是(π8,12) 答案:D 解析:利用三角恒等变换化简y 得解析式,再利用正弦型函数的图像和性质得出结论. 解:由题意得:∵y =sinx(sinx +cosx) =sin 2x +12sin2x=1−cos2x 2+12sin2x =√22sin(2x −π4)+12选项A:函数的最小正周期为T min=2πω=2π2=π,故A错误;选项B:由于−1≤sin(2x−π4)≤1,函数的最大值为√22+12,故B错误;选项C:函数的对称轴满足2x−π4=kπ+π2,x=k2π+3π8,当x=π4时,k=−14∉Z,故C错误;选项D:令x=π8,代入函数的f(π8)=√22sin(2×π8−π4)+12=12,故(π8,12)为函数的一个对称中心,故D正确;故选:D4、函数f(x)=√3cosx−sinx在区间[0,2π3]上的值域为()A.[−√32,√32]B.[−√3,√3]C.[−√32,1]D.[−1,2]答案:B 解析:先将函数转化为f(x)=2cos(x+π6),再根据x∈[0,2π3],利用余弦函数的性质求解.函数f(x)=√3cosx−sinx=2cos(x+π6)因为x∈[0,2π3],所以x+π6∈[π6,5π6],cos(x+π3)∈[−√32,√32],所以函数f(x)的值域为[−√3,√3],故选:B5、设锐角△ABC的内角A,B,C所对的边分别为a,b,c,若A=π3,a=√3,则b2+c2+bc的取值范围为()A.(1,9]B.(3,9]C.(5,9]D.(7,9]答案:D 解析:由正弦定理求出b=2sin B,c=2sin(2π3−B),再由余弦定理可得b2+c2+bc=8sin B sin(2π3−B)+3,化为5+4sin(2B−π6),结合角的范围,利用正弦函数的性质可得结论.因为A=π3,a=√3,由正弦定理可得asin A =√3√32=2=bsin B=csin(2π3−B),则有b=2sin B,c=2sin(2π3−B),由△ABC的内角A,B,C为锐角,可得{0<B<π2,0<2π3−B<π2,,∴π6<B<π2⇒π6<2B−π6<5π6⇒12<sin(2B−π6)≤1⇒2<4sin(2B−π6)≤4,由余弦定理可得a2=b2+c2−2bc cos A⇒3=b2+c2−bc,因此有b2+c2+bc=2bc+3=8sin B sin(2π3−B)+3=4√3sinBcosB+4sin2B+3=2√3sin2B−2cos2B+5=5+4sin(2B−π6)∈(7,9]故选:D.小提示:方法点睛:正弦定理是解三角形的有力工具,其常见用法有以下几种:(1)知道两边和一边的对角,求另一边的对角(一定要注意讨论钝角与锐角);(2)知道两角与一个角的对边,求另一个角的对边;(3)证明化简过程中边角互化;(4)求三角形外接圆半径.。

三角函数恒等变换练习试题及答案解析详细讲解

三角函数恒等变换练习试题及答案解析详细讲解

两角和与差的正弦、余弦、正切1.利用两角和与差的正弦、余弦、正切公式进行三角变换;2.利用三角变换讨论三角函数的图象和性质2.1.牢记和差公式、倍角公式,把握公式特征;2.灵活使用(正用、逆用、变形用)两角和与差的正弦、余弦、正切公式进行三角变换,三角变换中角的变换技巧是解题的关键.知识点回顾1.两角和与差的余弦、正弦、正切公式cos(α-β)=cos αcos β+sin αsin β (C α-β)cos(α+β)=cos_αcos_β-sin_αsin_β (C α+β)sin(α-β)=sin_αcos_β-cos_αsin_β (S α-β)sin(α+β)=sin_αcos_β+cos_αsin_β (S α+β)tan(α-β)=tan α-tan β1+tan αtan β (T α-β) tan(α+β)=tan α+tan β1-tan αtan β(T α+β) 2.二倍角公式sin 2α=ααcos sin 2;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;tan 2α=2tan α1-tan 2α. 3.在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等.如T α±β可变形为tan α±tan β=tan(α±β)(1∓tan_αtan_β),tan αtan β=1-tan α+tan βtan (α+β)=tan α-tan βtan (α-β)-1. 4.函数f (α)=a cos α+b sin α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)或f (α)=a 2+b 2cos(α-φ),其中φ可由a ,b 的值唯一确定.[难点正本 疑点清源]三角变换中的“三变”(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等. 热身训练1.已知sin(α+β)=23,sin(α-β)=-15,则tan αtan β的值为_______.2.函数f (x )=2sin x (sin x +cos x )的单调增区间为______________________.3.(2012·江苏)设α为锐角,若cos ⎪⎭⎫ ⎝⎛+6πα=45,则 4.(2012·江西)若sin α+cos αsin α-cos α=12,则tan 2α等于() A .-34B.34C .-43D.435.(2011·辽宁)设sin(π4+θ)=13,则sin 2θ等于( ) A .-79B .-19 C.19 D.79典例分析题型一 三角函数式的化简、求值问题例1 (1)化简:⎝ ⎛⎭⎪⎫1tan α2-tan α2·⎝⎛⎭⎫1+tan α·tan α2; (2)求值:[2sin 50°+sin 10°(1+3tan 10°)]·2sin 280°.在△ABC 中,已知三个内角A ,B ,C 成等差数列,则tan A 2+tan C 2+3tan A 2tan C 2的值为________.题型二 三角函数的给角求值与给值求角问题例2 (1)已知0<β<π2<α<π,且cos ⎪⎭⎫ ⎝⎛-2πα=-19,sin ⎪⎭⎫ ⎝⎛-βα2=23,求cos(α+β)的值; (2)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值. 已知cos α=17,cos(α-β)=1314,且0<β<α<π2,求β. 题型三 三角变换的简单应用例3 已知f (x )=⎪⎭⎫ ⎝⎛+x tan 11sin 2x -2sin ⎪⎭⎫ ⎝⎛+4πx ·sin ⎪⎭⎫ ⎝⎛-4πx (1)若tan α=2,求f (α)的值;(2)若x ∈⎣⎡⎦⎤π12,π2,求f (x )的取值范围.已知函数f (x )=3sin ⎪⎭⎫ ⎝⎛-62πx +2sin 2⎪⎭⎫ ⎝⎛-12πx (x ∈R ). (1)求函数f (x )的最小正周期;(2)求使函数f (x )取得最大值时x 的集合.利用三角变换研究三角函数的性质典例:(12分)(2011·北京)已知函数f (x )=4cos x ·sin ⎪⎭⎫ ⎝⎛+6πx -1. (1)求f (x )的最小正周期;(2)求f (x )在区间⎥⎦⎤⎢⎣⎡-4,6ππ上的最大值和最小值. 总结方法与技巧1.巧用公式变形:和差角公式变形:tan x ±tan y =tan(x ±y )·(1∓tan x tan y );倍角公式变形:降幂公式cos 2α=1+cos 2α2,sin 2α=1-cos 2α2; 配方变形:1±sin α=⎝⎛⎭⎫sin α2±cos α22,1+cos α=2cos 2α2,1-cos α=2sin 2α2. 2.利用辅助角公式求最值、单调区间、周期.由y =a sin α+b cos α=a 2+b 2sin(α+φ)(其中tan φ=b a)有a 2+b 2≥|y |.3.重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.4.已知和角函数值,求单角或和角的三角函数值的技巧:把已知条件的和角进行加减或二倍角后再加减,观察是不是常数角,只要是常数角,就可以从此入手,给这个等式两边求某一函数值,可使所求的复杂问题简单化.5.熟悉三角公式的整体结构,灵活变换.本节要重视公式的推导,既要熟悉三角公式的代数结构,更要掌握公式中角和函数名称的特征,要体会公式间的联系,掌握常见的公式变形,倍角公式应用是重点,涉及倍角或半角的都可以利用倍角公式及其变形.失误与防范1.运用公式时要注意审查公式成立的条件,要注意和、差、倍角的相对性,要注意升次、降次的灵活运用,要注意“1”的各种变通.2.在(0,π)范围内,sin(α+β)=22所对应的角α+β不是唯一的. 3.在三角求值时,往往要估计角的范围后再求值.过手训练(时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1.(2012·山东)若θ∈⎥⎦⎤⎢⎣⎡2,4ππ,sin 2θ=378,则sin θ等于( ) A.35B.45C.74D.34 2.已知tan(α+β)=25,tan ⎪⎭⎫ ⎝⎛-4πβ=14,那么tan ⎪⎭⎫ ⎝⎛+4πα等于( ) A.1318 B.1322 C.322 D.163.当-π2≤x ≤π2时,函数f (x )=sin x +3cos x 的( ) A .最大值是1,最小值是-1 B .最大值是1,最小值是-12C .最大值是2,最小值是-2D .最大值是2,最小值是-1二、填空题(每小题5分,共15分)4.已知锐角α满足cos 2α=cos ⎪⎭⎫ ⎝⎛-απ4,则sin 2α=________. 5.已知cos ⎪⎭⎫ ⎝⎛-απ4=1213,α∈⎪⎭⎫ ⎝⎛4,0π,则cos 2αsin ⎝⎛⎭⎫π4+α=________. 6.设x ∈⎪⎭⎫ ⎝⎛2,0π,则函数y =2sin 2x +1sin 2x 的最小值为________. 三、解答题7.(13分)(2012·广东)已知函数f (x )=2cos ⎪⎭⎫ ⎝⎛+6πωx (其中ω>0,x ∈R )的最小正周期为10π. (1)求ω的值;(2)设α,β∈⎣⎡⎦⎤0,π2,f ⎝⎛⎭⎫5α+53π=-65,f ⎝⎛⎭⎫5β-56π=1617,求cos(α+β)的值. 课后习题(时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1.(2012·江西)若tan θ+1tan θ=4,则sin 2θ等于( ) A.15B.14C.13D.122.(2012·大纲全国)已知α为第二象限角,sin α+cos α=33,则cos 2α等于( )A .-53B .-59 C.59D.533.已知α,β都是锐角,若sin α=55,sin β=1010, 则α+β等于( ) A.π4B.3π4C.π4和3π4D .-π4和-3π44.(2011·福建)若α∈⎪⎭⎫ ⎝⎛2,0π,且sin 2α+cos 2α=14,则tan α的值等于( ) A.22B.33C.2D. 3 二、填空题(每小题5分,共15分)5.cos 275°+cos 215°+cos 75°cos 15°的值为________. 6.3tan 12°-3(4cos 212°-2)sin 12°=________. 7.sin α=35,cos β=35,其中α,β∈⎪⎭⎫ ⎝⎛2,0π,则α+β=____________. 三、解答题(共22分)8.(10分)已知1+sin α1-sin α-1-sin α1+sin α=-2tan α,试确定使等式成立的α的取值集合. 9.(12分)已知α∈⎪⎭⎫ ⎝⎛ππ,2,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈⎪⎭⎫ ⎝⎛ππ,2,求cos β的值.。

数学中的三角函数恒等变换模拟试题

数学中的三角函数恒等变换模拟试题

数学中的三角函数恒等变换模拟试题题1:化简下列三角函数:(1)$sin^2 x - cos^2 x$(2)$cot^2 x - 1$(3)$1 + sec^2 x$(4)$tan^2 x + 1$(5)$cosec^2 x - cot^2 x$题2:证明下列三角函数等式:(1)$tan x = \frac{sin x}{cos x}$(2)$cot x = \frac{cos x}{sin x}$(3)$sec x = \frac{1}{cos x}$(4)$cosec x = \frac{1}{sin x}$题3:使用三角函数的基本恒等变换,化简下列三角函数:(1)$tan x \cdot sin x$(2)$sec x \cdot cos x$(3)$\frac{sin x}{1 + cos x}$(4)$\frac{cos x}{1 - sin x}$(5)$\frac{1 - sin^2 x}{1 - cos^2 x}$解答如下:题1:(1)$sin^2 x - cos^2 x$根据三角函数恒等变换 $sin^2 x = 1 - cos^2 x$,将其代入原式:$sin^2 x - cos^2 x = 1 - cos^2 x - cos^2 x = 1 - 2cos^2 x$(2)$cot^2 x - 1$根据三角函数恒等变换 $cot^2 x = \frac{cos^2 x}{sin^2 x}$,将其代入原式:$cot^2 x - 1 = \frac{cos^2 x}{sin^2 x} - 1 = \frac{cos^2 x - sin^2x}{sin^2 x}$在分子上应用三角函数恒等变换 $cos^2 x - sin^2 x = -sin^2 x + cos^2 x = cos^2 x - sin^2 x = cos 2x$:$cot^2 x - 1 = \frac{cos^2 x - sin^2 x}{sin^2 x} = \frac{cos 2x}{sin^2 x}$(3)$1 + sec^2 x$根据三角函数恒等变换 $sec^2 x = 1 + tan^2 x$,将其代入原式:$1 + sec^2 x = 1 + 1 + tan^2 x = 2 + tan^2 x$(4)$tan^2 x + 1$根据三角函数恒等变换 $tan^2 x + 1 = sec^2 x$,直接应用该恒等变换:$tan^2 x + 1 = sec^2 x$(5)$cosec^2 x - cot^2 x$根据三角函数恒等变换 $cosec^2 x = 1 + cot^2 x$,将其代入原式:$cosec^2 x - cot^2 x = 1 + cot^2 x - cot^2 x = 1$题2:(1)证明 $tan x = \frac{sin x}{cos x}$已知 $tan x = \frac{sin x}{cos x}$,将等式两边都除以 $cos x$,得到:$tan x = \frac{sin x}{cos x}$(2)证明 $cot x = \frac{cos x}{sin x}$已知 $cot x = \frac{cos x}{sin x}$,将等式两边都除以 $sin x$,得到:$cot x = \frac{cos x}{sin x}$(3)证明 $sec x = \frac{1}{cos x}$已知 $sec x = \frac{1}{cos x}$,将等式两边都求倒数,得到:$sec x = \frac{1}{cos x}$(4)证明 $cosec x = \frac{1}{sin x}$已知 $cosec x = \frac{1}{sin x}$,将等式两边都求倒数,得到:$cosec x = \frac{1}{sin x}$题3:(1)$tan x \cdot sin x$根据三角函数恒等变换 $tan x = \frac{sin x}{cos x}$,将其代入原式:$tan x \cdot sin x = \frac{sin x}{cos x} \cdot sin x = sin^2 x$(2)$sec x \cdot cos x$根据三角函数恒等变换 $sec x = \frac{1}{cos x}$,将其代入原式:$sec x \cdot cos x = \frac{1}{cos x} \cdot cos x = 1$(3)$\frac{sin x}{1 + cos x}$将分式的分子进行分解:$\frac{sin x}{1 + cos x} = \frac{sin x}{1 + cos x} \cdot \frac{1 - cos x}{1 - cos x} = \frac{sin x (1 - cos x)}{1 - cos^2 x}$应用三角函数恒等变换 $1 - cos^2 x = sin^2 x$,化简分式:$\frac{sin x (1 - cos x)}{1 - cos^2 x} = \frac{sin x (1 - cos x)}{sin^2 x}= \frac{1 - cos x}{sin x}$(4)$\frac{cos x}{1 - sin x}$将分式的分母进行分解:$\frac{cos x}{1 - sin x} = \frac{cos x}{1 - sin x} \cdot \frac{1 + sin x}{1 + sin x} = \frac{cos x (1 + sin x)}{1 - sin^2 x}$应用三角函数恒等变换 $1 - sin^2 x = cos^2 x$,化简分式:$\frac{cos x (1 + sin x)}{1 - sin^2 x} = \frac{cos x (1 + sin x)}{cos^2 x} = \frac{1 + sin x}{cos x}$(5)$\frac{1 - sin^2 x}{1 - cos^2 x}$根据三角函数恒等变换 $1 - sin^2 x = cos^2 x$,将其代入原式:$\frac{1 - sin^2 x}{1 - cos^2 x} = \frac{cos^2 x}{1 - cos^2 x} = cot^2 x$。

高中数学三角恒等变换练习

高中数学三角恒等变换练习

高中数学三(一)角恒等变换练习一.选择题(共12小题)1.(2016•福建模拟)已知sin(x+)=,则cosx+cos(﹣x)的值为()A.﹣B. C.﹣D.2.(2016•郑州一模)cos160°sin10°﹣sin20°cos10°()A.﹣B. C.﹣D.3.(2015•天津校级一模)若sin2α=,sin(β﹣α)=,且α∈[,π],β∈[π,],则α+β的值是()A.B.C.或 D.或4.(2015•保定一模)sin15°﹣cos15°=()A. B.C.﹣D.﹣5.(2015•江西一模)sin135°cos(﹣15°)+cos225°sin15°等于()A.﹣B.﹣C.D.6.(2015•哈尔滨校级二模)若向量=(sin(α+),1),=(1,cosα﹣),⊥,则sin(α+)=()A.﹣B. C.﹣D.7.(2015•吉林校级四模)在△ABC中,若tanAtanB=tanA+tanB+1,则cosC=()A.B. C.D.8.(2015•烟台一模)已知α,β∈(0,π)且,则2α﹣β=()A. B.C.D.9.(2015•大连校级模拟)已知向量,且,则sin2θ+cos2θ的值为()A.1 B.2 C.D.310.(2015•江西一模)已知12sinα﹣5cosα=13,则tanα=()A.﹣B.﹣C.±D.±11.(2015春•沈阳期末)下列各式中,值为的是()A.sin15°cos15°B.C.D.12.(2015秋•南昌校级期末)已知tanx=﹣,则sin2x+3sinxcosx﹣1的值为()A.﹣B.2 C.﹣2或2 D.﹣2二.填空题(共15小题)13.(2016春•南京校级月考)cos(α+β)=,tanαtanβ=,求cos(α﹣β)=.14.(2016•凉山州模拟)设向量=(3cosx,1),=(5sinx+1,cosx),且∥,则cos2x=.15.(2015•张掖模拟)已知α为第二象限角,,则cos2α=.16.(2015•天水校级四模)若cos2(α+)=,则sin2α=.17.(2015•温州三模)已知sinα﹣cosα=(0<α<),则sin2α=,sin(2α﹣)=.18.(2015•大连模拟)若,则cos2α=.19.(2015•一模)已知θ∈(,π),sin﹣cos=,则cosθ=.20.(2015春•黄冈月考)已知α为第四象限角,sinα+cosα=,则cos2α=.21.(2016•苏州一模)已知θ是第三象限角,且sinθ﹣2cosθ=﹣,则sinθ+cosθ=.22.(2015•模拟)若sinαcosα=﹣,α∈(,π),则sinα﹣cosα=.23.(2015秋•广安期末)若tanα=2,则的值为.24.(2015春•邗江区期中)sin40°(tan10°﹣)=.25.(2015春•校级期中)化简=.26.(2012•校级模拟)=.27.(2012•南通模拟)在△ABC中,若tanA+tanB+tanC=1,则tanAtanBtanC=.三.解答题(共3小题)28.(2016•一模)设a、b、c分别是△ABC三个内角∠A、∠B、∠C的对边,若向量,且,(1)求tanA•tanB的值;(2)求的最大值.29.(2016•宜宾模拟)已知向量=(sinA,cosA),=(,1),•=,且A为锐角.(1)求角A的大小;(2)求函数f(x)=cos2x+8sinAsinx(x∈R)的值域.30.(2016•一模)已知x∈R,设,,记函数.(1)求函数f(x)的最小正周期和单调递增区间;(2)设△ABC的角A,B,C所对的边分别为a,b,c,若f(C)=2,,a+b=3,求△ABC的面积S.04月06日****************的高中数学三角变换组卷参考答案与试题解析一.选择题(共12小题)1.(2016•福建模拟)已知sin(x+)=,则cosx+cos(﹣x)的值为()A.﹣B. C.﹣D.【考点】两角和与差的余弦函数.【专题】计算题;函数思想;定义法;三角函数的求值.【分析】根据两角和差的余弦公式和正弦公式计算即可.【解答】解:cosx+cos(﹣x)=cosx+cosx+sinx=cosx+sinx=sin(x+)=,故选:B.【点评】本题考查了两角和差的余弦公式和正弦公式,属于基础题.2.(2016•郑州一模)cos160°sin10°﹣sin20°cos10°()A.﹣B. C.﹣D.【考点】两角和与差的正弦函数.【专题】计算题;转化思想;定义法;三角函数的求值.【分析】根据诱导公式和两角和的正弦公式即可求出.【解答】解:cos160°sin10°﹣sin20°cos10°,=﹣cos20°sin10°﹣sin20°cos10°,=﹣(cos20°sin10°+sin20°cos10°),=﹣sin30°,=﹣,故选:C.【点评】本题考查了诱导公式和两角和的正弦公式,属于基础题.3.(2015•天津校级一模)若sin2α=,sin(β﹣α)=,且α∈[,π],β∈[π,],则α+β的值是()A.B.C.或D.或【考点】两角和与差的正弦函数;二倍角的正弦.【专题】三角函数的求值.【分析】依题意,可求得α∈[,],2α∈[,π],进一步可知β﹣α∈[,π],于是可求得cos(β﹣α)与cos2α的值,再利用两角和的余弦及余弦函数的单调性即可求得答案.【解答】解:∵α∈[,π],β∈[π,],∴2α∈[,2π],又sin2α=>0,∴2α∈[,π],cos2α=﹣=﹣;又sin(β﹣α)=,β﹣α∈[,π],∴cos(β﹣α)=﹣=﹣,∴cos(α+β)=cos[2α+(β﹣α)]=cos2αcos(β﹣α)﹣sin2αsin(β﹣α)=﹣×(﹣)﹣×=.又α∈[,],β∈[π,],∴(α+β)∈[,2π],∴α+β=,故选:A.【点评】本题考查同角三角函数间的关系式的应用,着重考查两角和的余弦与二倍角的正弦,考查转化思想与综合运算能力,属于难题.4.(2015•保定一模)sin15°﹣cos15°=()A. B.C.﹣D.﹣【考点】两角和与差的正弦函数;三角函数的化简求值.【专题】三角函数的求值.【分析】利用两角和差的正弦公式,进行化简即可.【解答】解:sin15°﹣cos15°=sin(15°﹣45°)==﹣,故选:C.【点评】本题主要考查三角函数值的计算,利用两角和差的正弦公式以及辅助角公式是解决本题的关键.5.(2015•江西一模)sin135°cos(﹣15°)+cos225°sin15°等于()A.﹣B.﹣C.D.【考点】两角和与差的正弦函数.【专题】三角函数的求值.【分析】首先利用诱导公式,化为同角的三角函数,然后逆用两角和与差的正弦函数公式求值.【解答】解:原式=sin45°cos15°﹣cos45°sin15°=sin(45°﹣15°)=sin30°=;故选C.【点评】本题考查了三角函数的诱导公式以及两角和与差的三角函数公式的运用;熟悉公式的特点,熟练运用.6.(2015•哈尔滨校级二模)若向量=(sin(α+),1),=(1,cosα﹣),⊥,则sin(α+)=()A.﹣B. C.﹣D.【考点】两角和与差的正弦函数.【专题】三角函数的求值.【分析】利用向量垂直的等价条件进行化简,利用三角函数的诱导公式进行化简求解即可.【解答】解:∵⊥,∴•=0,即sin(α+)+cosα﹣=0,即sinα+cosα=,即sinα+cosα=,即sin(α+)=,∴sin(α+)=sin(α++π)=﹣sin(α+)=﹣,故选:C【点评】本题主要考查三角函数值的化简和求值,利用向量垂直的等价条件已经三角函数的诱导公式是解决本题的关键.7.(2015•吉林校级四模)在△ABC中,若tanAtanB=tanA+tanB+1,则cosC=()A.B. C.D.【考点】两角和与差的正切函数;同角三角函数间的基本关系.【专题】三角函数的图像与性质.【分析】利用两角和与差的正切函数公式化简tan(A+B),将已知等式变形后代入求出tan(A+B)的值,进而确定出tanC的值,利用特殊角的三角函数值求出C的度数,即可确定出cosC的值.【解答】解:∵tanAtanB=tanA+tanB+1,即tanA+tanB=tanAtanB﹣1,∴tan(A+B)==﹣1,即tan(A+B)=﹣tanC=﹣1,∴tanC=1,即C=,则cosC=cos=.故选B【点评】此题考查了两角和与差的正切函数公式,同角三角函数间的基本关系,熟练掌握公式是解本题的关键.8.(2015•烟台一模)已知α,β∈(0,π)且,则2α﹣β=()A. B.C.D.【考点】两角和与差的正切函数.【专题】计算题;三角函数的求值.【分析】根据已知条件配角:α=(α﹣β)+β,利用两角和的正切公式算出tanαtan[(α﹣β)+β]═,进而算出tan(2α﹣β)=1.再根据α、β的范围与它们的正切值,推出2α﹣β∈(﹣π,0),即可算出2α﹣β的值.【解答】解:∵,∴tanα=tan[(α﹣β)+β]===,由此可得tan(2α﹣β)=tan[(α﹣β)+α]===1.又∵α∈(0,π),且tanα=<1,∴0<α<,∵β∈(0,π),<0,∴<β<π,因此,2α﹣β∈(﹣π,0),可得2α﹣β=﹣π=﹣.故选:C.【点评】本题已知角α﹣β与角β的正切值,求2α﹣β的值.着重考查了两角和与差的正切公式、特殊角的三角函数值等知识,属于中档题.解决本题时,请同学们注意在三角函数求值问题中“配角找思路”思想方法的运用.9.(2015•大连校级模拟)已知向量,且,则sin2θ+cos2θ的值为()A.1 B.2 C.D.3【考点】三角函数的恒等变换及化简求值;数量积判断两个平面向量的垂直关系.【专题】计算题.【分析】由题意可得=0,即解得tanθ=2,再由 sin2θ+cos2θ==,运算求得结果.【解答】解:由题意可得=sinθ﹣2cosθ=0,即 tanθ=2.∴sin2θ+cos2θ===1,故选A.【点评】本题主要考查两个向量数量积公式的应用,两个向量垂直的性质;同角三角函数的基本关系的应用,属于中档题.10.(2015•江西一模)已知12sinα﹣5cosα=13,则tanα=()A.﹣B.﹣C.±D.±【考点】三角函数的化简求值.【专题】三角函数的求值.【分析】利用辅助角公式将函数进行化简,得到α=θ++2kπ,利用三角函数的诱导公式进行化简求值即可【解答】解:由12sinα﹣5cosα=13,得sinα﹣cosα=1,设cosθ=,则sinθ=,则tanθ==,则方程等价为sin(α﹣θ)=1,则α﹣θ=+2kπ,即α=θ++2kπ,则tanα=tan(θ++2kπ)=tan(θ+)==;故选B【点评】本题主要考查三角函数求值,利用辅助角公式结合三角函数的诱导公式是解决本题的关键11.(2015春•沈阳期末)下列各式中,值为的是()A.sin15°cos15°B.C.D.【考点】三角函数的化简求值;二倍角的正切.【专题】计算题.【分析】利用公式对四个选项进行化简求值,所得的结果是的选项即为正确选项,A选项可用正弦的2倍角公式化简,B选项可用余弦的2倍角公式化简,C选项可用正切的2倍角公式化简,D选项中是特殊角,计算即可【解答】解:A选项,sin15°×cos15°=sin30°=,不正确;B选项,=,不正确;C选项,=,正确;D选项,≠,不正确.综上知C选项正确故选C【点评】本题考查三角函数的化简求值,解题的关键是熟练掌握三角函数的二倍角公式,及特殊角的函数值,由此对三角函数进行化简.本题涉及公式较多,知识性强,对基本公式要熟练掌握.12.(2015秋•南昌校级期末)已知tanx=﹣,则sin2x+3sinxcosx﹣1的值为()A.﹣B.2 C.﹣2或2 D.﹣2【考点】三角函数的化简求值;同角三角函数间的基本关系.【专题】三角函数的求值.【分析】化tanx=﹣为=,得出,cosx=﹣2sinx.由sin2x+cos2x=1,求得sin2x=,将原式化为关于sin2x的三角式求解.【解答】解:tanx=﹣,即=,cosx=﹣2sinx.由sin2x+cos2x=1,得5sin2x=1,sin2x=所以原式=sin2x﹣6sin2x﹣1=5sin2x﹣1=﹣1﹣1=﹣2故选D【点评】本题考查同角三角函数基本关系式的应用,考查公式应用能力,运算求解能力.二.填空题(共15小题)13.(2016春•南京校级月考)cos(α+β)=,tanαtanβ=,求cos(α﹣β)=.【考点】两角和与差的余弦函数.【专题】三角函数的求值.【分析】首先利用两角和与差的余弦公式以及基本关系式的商数关系,得到关于sinαsinβ、cosαcosβ的方程解之,然后逆用两角和与差的余弦公式求值.【解答】解:由cos(α+β)=,即cosαcosβ﹣sinαcsinβ=①,又tanαtanβ=得2sinαsinβ=cosαcosβ②;由①②得cosαcosβ=,sinαsinβ=,所以cos(α﹣β)=cosαcosβ+sinαsinβ=;故答案为:.【点评】本题考查了两角和与差的三角函数公式的运用,属于基础题目.14.(2016•凉山州模拟)设向量=(3cosx,1),=(5sinx+1,cosx),且∥,则cos2x=.【考点】二倍角的余弦;平面向量共线(平行)的坐标表示.【专题】转化思想;综合法;三角函数的求值.【分析】由条件利用两个向量平行的条件求得sinx的值,再利用二倍角的余弦公式求得cos2x的值.【解答】解:∵向量=(3cosx,1),=(5sinx+1,cosx),且∥,∴3cos2x﹣5sinx﹣1=0,即 3sin2x+5sinx+2=0,求得sinx=﹣2(舍去),或 sinx=,则cos2x=1﹣2sin2x=1﹣2×=,故答案为:.【点评】本题主要考查两个向量平行的条件,二倍角的余弦公式的应用,属于基础题.15.(2015•张掖模拟)已知α为第二象限角,,则cos2α=.【考点】二倍角的正弦;同角三角函数间的基本关系.【专题】计算题;压轴题;三角函数的求值.【分析】由α为第二象限角,可知sinα>0,cosα<0,从而可求得sinα﹣cosα的值,利用cos2α=﹣(sinα﹣cosα)(sinα+cosα)可求得cos2α.【解答】解:∵,两边平方得:1+sin2α=,∴sin2α=﹣,①∴(sinα﹣cosα)2=1﹣sin2α=,∵α为第二象限角,∴sinα>0,cosα<0,∴sinα﹣cosα=,②∴cos2α=﹣(sinα﹣cosα)(sinα+cosα)=(﹣)×=.故答案为:.【点评】本题考查同角三角函数间的基本关系,突出二倍角的正弦与余弦的应用,求得sinα﹣cosα的值是关键,属于中档题.16.(2015•天水校级四模)若cos2(α+)=,则sin2α=.【考点】二倍角的正弦.【专题】三角函数的求值.【分析】由条件利用半角公式求得sin2α的值.【解答】解:∵cos2(α+)==﹣sin2α=,则sin2α=,故答案为:.【点评】本题主要考查半角公式的应用,属于基础题.17.(2015•温州三模)已知sinα﹣cosα=(0<α<),则sin2α=,sin(2α﹣)=.【考点】二倍角的正弦;两角和与差的正弦函数.【专题】三角函数的求值.【分析】把所给的等式平方求得sin2α的值,再利用同角三角函数的基本关系求得sinα和cosα的值,可得cos2α的值,从而利用两角差的正弦公式求得sin(2α﹣)的值.【解答】解:∵sinα﹣cosα=(0<α<),平方可得,1﹣2sinαcosα=,∴sin2α=2sinαcosα=.由以上可得sinα=,cosα=,∴cos2α=2cos2α﹣1=﹣,∴sin(2α﹣)=sin2αcos﹣cos2αsin=×+=,故答案为:;.【点评】本题主要考查二倍角公式、同角三角函数的基本关系、两角和差的正弦公式的应用,属于基础题.18.(2015•大连模拟)若,则cos2α=.【考点】二倍角的余弦.【专题】计算题.【分析】把所求的式子利用二倍角的余弦函数公式化为关于sinα的式子,将sinα的值代入即可求出值.【解答】解:因为sinα=,所以cos2α=1﹣2sin2α=1﹣2×=.故答案为:.【点评】通常,在高考题中,三角函数多会以解答题的形式出现在第一个解答题的位置,是基础分值的题目,学生在解答三角函数问题时,往往会出现,会而不对的状况.所以,在平时练习时,既要熟练掌握相关知识点,又要在解答时考虑更为全面.这样才能熟练驾驭三角函数题.19.(2015•一模)已知θ∈(,π),sin﹣cos=,则cosθ=.【考点】二倍角的余弦.【专题】三角函数的求值.【分析】由θ∈(,π),sin﹣cos=,求出sin2θ,然后求出cos2θ.【解答】解:∵θ∈(,π),sin﹣cos=,∴1﹣sinθ=,∴sinθ=,∵θ∈(,π),∴cosθ=﹣=﹣.故答案为:.【点评】本题考查二倍角的余弦,解题时要认真审题,仔细解答,注意三角函数的符号的正确选取.20.(2015春•黄冈月考)已知α为第四象限角,sinα+cosα=,则cos2α=.【考点】二倍角的余弦;三角函数的化简求值.【专题】三角函数的求值.【分析】利用二倍角的正弦与同角三角函数间的关系可求得cosα﹣sinα=,再利用二倍角的余弦即可求得cos2α.【解答】解:∵sinα+cosα=,①∴两边平方得:1+2sinαcosα=,∴2sinαcosα=﹣<0,∵α为第四象限角,∴sinα<0,cosα>0,cosα﹣sinα>0.∴cosα﹣sinα==,②∴①+②可解得:cosα=,∴cos2α=2cos2α﹣1=2×()2﹣1=.故答案为:.【点评】本题考查二倍角的正弦、余弦与同角三角函数间的关系,属于中档题.21.(2016•苏州一模)已知θ是第三象限角,且sinθ﹣2cosθ=﹣,则sinθ+cosθ=﹣.【考点】三角函数的化简求值.【专题】计算题;转化思想;综合法;三角函数的求值.【分析】由已知得sin2θ+cos2θ=(2cosθ﹣)2+cos2θ=1,由此求出cosθ,进而求出sinθ,由此能求出结果.【解答】解:∵θ是第三象限角,且sinθ﹣2cosθ=﹣,∴sin2θ+cos2θ=(2cosθ﹣)2+cos2θ=1,解得cosθ=﹣或cosθ=,(舍)∴sinθ=﹣=﹣,∴sinθ+cosθ=﹣.故答案为:﹣.【点评】本题考查三角函数值的求法,是基础题,解题时要认真审题,注意同角三角函数诱导公式的合理运用.22.(2015•模拟)若sinαcosα=﹣,α∈(,π),则sinα﹣cosα=.【考点】三角函数的化简求值.【专题】计算题;三角函数的求值.【分析】由已知先确定sinα﹣cosα的符号,根据同角三角函数的关系即可求值.【解答】解:∵α∈(,π),∴sinα>0,cosα<0,sinα﹣cosα>0∵sinαcosα=﹣,∴sinα﹣cosα===故答案为:【点评】本题主要考察了同角三角函数的关系式的应用,属于基本知识的考查.23.(2015秋•广安期末)若tanα=2,则的值为.【考点】弦切互化.【专题】计算题.【分析】把所求的式子分子、分母都除以cosα,根据同角三角函数的基本关系把弦化切后,得到关于tanα的关系式,把tanα的值代入即可求出值.【解答】解:因为tanα=2,则原式===.故答案为:.【点评】此题考查学生灵活运用同角三角函数间的基本关系进行弦化切,是一道基础题.24.(2015春•邗江区期中)sin40°(tan10°﹣)=﹣1.【考点】三角函数的化简求值.【专题】三角函数的求值.【分析】首先切化弦,然后通分变形为两角差的正弦公式,逆用化简求值.【解答】解:原式=sin40°()=sin40°=2sin40°sin(10°﹣60°)==﹣=﹣1;故答案为:﹣1.【点评】本题考查了三角函数式的化简求值;一般首先切化弦,然后配凑两角差的正弦公式,逆用化简公式求值.25.(2015春•校级期中)化简=﹣4.【考点】三角函数的化简求值.【专题】三角函数的求值.【分析】对已知通分,逆用两角和与差的三角函数公式以及正弦的倍角公式化简.【解答】解:===﹣4.故答案为:﹣4.【点评】本题考查了三角函数式的化简求值;利用了两角和与差的三角函数公式以及正弦的倍角公式;属于基础题.26.(2012•校级模拟)=.【考点】两角和与差的正切函数.【专题】计算题.【分析】先令tan60°=tan(25°+35°)利用正切的两角和公式化简整理求得tan25°+tan35°=(1﹣tan25°tan35°),整理后求得tan25°+tan35°+tan25°tan35°的值.【解答】解:∵tan60°=tan(25°+35°)==.∴tan25°+tan35°=(1﹣tan25°tan35°)∴tan25°+tan35°+tan25°tan35°=.故答案为:.【点评】本题考查三角函数的化简求值,两角和公式的应用和二倍角公式的应用.考查了学生对三角函数基础公式的理解和灵活一运用.27.(2012•南通模拟)在△ABC中,若tanA+tanB+tanC=1,则tanAtanBtanC=1.【考点】两角和与差的正切函数.【专题】常规题型;计算题.【分析】根据三角形内角和,可得A+B=π﹣C,从而tan(A+B)=﹣tanC,再由两角和的正切公式展开,化简整理可得tanA+tanB+tanC=tanAtanBtanC,由此不难得到要求的值.【解答】解:∵在△ABC中,A+B+C=π∴A+B=π﹣C,可得tan(A+B)=tan(π﹣C)=﹣tanC,由两角和的正切公式,得=﹣tanC∴tanA+tanB=﹣tanC(1﹣tanAtanB),即tanA+tanB+tanC=tanAtanBtanC∵tanA+tanB+tanC=1,∴tanAtanBtanC=1故答案为:1【点评】本题在三角形中已知三个内角的正切的和,求它们的积,着重考查了两角和的正切公式和诱导公式等知识,属于基础题.三.解答题(共3小题)28.(2016•一模)设a、b、c分别是△ABC三个内角∠A、∠B、∠C的对边,若向量,且,(1)求tanA•tanB的值;(2)求的最大值.【考点】三角函数的化简求值;平面向量数量积的运算.【专题】三角函数的求值.【分析】(1)由,化简得 4cos(A﹣B)=5cos(A+B),由此求得tanA•tanB的值.(2)利用正弦定理和余弦定理化简为,而,利用基本不等式求得它的最小值等于,从而得到tanC有最大值,从而求得所求式子的最大值.【解答】解:(1)由,得.…(2分)即,亦即 4cos(A﹣B)=5cos(A+B),即 4cosAcosB+4sinAsinB=5cosAcosB﹣5sinAsinB …(4分)所以,9sinAsinB=cosAcosB,求得.…(6分)(2)因,…(8分)而,所以,tan(A+B)有最小值,…(10分)当且仅当时,取得最小值.又tanC=﹣tan(A+B),则tanC有最大值,故的最大值为.…(13分)【点评】本题主要考查两个向量数量积公式,正弦定理和余弦定理,两角和的正切公式,以及基本不等式的应用,属于中档题.29.(2016•宜宾模拟)已知向量=(sinA,cosA),=(,1),•=,且A为锐角.(1)求角A的大小;(2)求函数f(x)=cos2x+8sinAsinx(x∈R)的值域.【考点】三角函数中的恒等变换应用;平面向量数量积的运算;正弦函数的图象.【专题】函数思想;综合法;三角函数的图像与性质;平面向量及应用.【分析】(1)根据•=列出方程解出A;(2)使用二倍角公式化简f(x)=﹣2(sinx﹣1)2+3,根据二次函数的性质得出f(x)的最值.【解答】解:(Ⅰ)∵=sinA+cosA=2sin(A+)=,∴,∵A为锐角,∴,.(Ⅱ)由(Ⅰ)知,∴f(x)=cos2x+4sinx=1﹣2sin2x+4sinx=﹣2(sinx﹣1)2+3,∵x∈R,∴sinx∈[﹣1,1],∴当sinx=1时,f(x)有最大值3;当sinx=﹣1时,f(x)有最小值﹣5,∴函数f(x)的值域是[﹣5,3].【点评】本题考查了三角函数的恒等变换,三角函数化简求值,一元二次函数的最值,属于中档题.30.(2016•一模)已知x∈R,设,,记函数.(1)求函数f(x)的最小正周期和单调递增区间;(2)设△ABC的角A,B,C所对的边分别为a,b,c,若f(C)=2,,a+b=3,求△ABC的面积S.【考点】三角函数中的恒等变换应用;平面向量数量积的运算;余弦定理.【专题】数形结合;转化思想;三角函数的求值;平面向量及应用.【分析】(1)利用数量积运算性质、倍角公式与和差公式可得f(x),再利用三角函数的图象与性质即可得出;(2)利用三角函数求值、余弦定理与三角形的面积计算公式即可得出.【解答】解:(1)∵=.…(3分)∴f(x)的最小正周期是T=π.…(4分)由,k∈Z,…(6分)得函数f(x)的单调递增区间是(k∈Z).…(7分)(2)由f(C)=2,得,…(1分)∵0<C<π,所以,∴,.…(3分)在△ABC中,由余弦定理c2=a2+b2﹣2abcosC,…(4分)得3=a2+b2﹣ab=(a+b)2﹣3ab,即ab=2,…(5分)∴△ABC的面积.…(7分)【点评】本题了考查了数量积运算性质、倍角公式与和差公式、三角函数的图象与性质、三角函数求值、余弦定理与三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.。

2020高中数学 第三章 三角恒等变换 3.2.2 半角的正弦、余弦和正切练习 新人教B版必修4

2020高中数学 第三章 三角恒等变换 3.2.2 半角的正弦、余弦和正切练习 新人教B版必修4

3.2.2 半角的正弦、余弦和正切课时过关·能力提升1.若sin θ=<θ<π,则sin的值等于()A.B.-C.D.-解析:由sin θ=<θ<π可得cos θ=-.又,所以sin.答案:C2.tan 15°+cot 15°等于()A.2B.2C.4D.解析:tan 15°+cot 15°==4.答案:C3.设α∈(π,2π),则等于()A.sinB.cosC.-sinD.-cos解析:由α∈(π,2π)知,所以==sin.答案:A4.若,则sin α+cos α的值是()A. B. C.1 D.解析:由,结合sin2α+cos2α=1可得sin α= (sin α=0舍去),于是cos α=,从而sin α+cos α=.答案:A5.若θ∈,sin 2θ=,则sin θ等于()A.B.C.D.解析:由θ∈,得2θ∈.又sin 2θ=,故cos 2θ=-.故sin θ=.答案:D6.化简等于()A.tan 2θB.cot 4θC.tan 4θD.cot 2θ解析:=tan 4θ.答案:C7.已知α为三角形的内角,sin α=,则tan=.解析:由已知得cos α=±,且,于是tan=3或.答案:3或★8.若<α<2π,且cos α=,则的值是.解析:.答案:9.已知0°<α<β<90°,sin α与sin β是方程x2-(cos 40°)x+cos240°-=0的两根,则cos(2α-β)=.解析:由已知,得Δ=2cos240°-4cos240°+2=2sin240°,∴x=cos 40°±sin 40°.∴x1=sin 45°cos 40°+cos 45°sin 40°=sin 85°,x2=sin 45°cos 40°-cos 45°sin 40°=sin 5°.又由0°<α<β<90°,知β=85°,α=5°,∴cos(2α-β)=cos(-75°)=cos 75°=cos(45°+30°)=.答案:10.已知sin sin,α∈,求2sin2α+tan α--1的值.解:∵sin sin,∴2sin cos,即sin.∴cos 4α=.而2sin2α+tan α--1=-cos 2α+=-.∵α∈,∴2α∈.∴cos 2α=-=-,∴tan 2α=-=-.∴-=-,即2sin2α+tan α--1的值为.★11.已知向量a=(sin x,-cos x),b=(cos x,cos x),函数f(x)=a·b+.(1)求f(x)的最小正周期;(2)当0≤x≤时,求函数f(x)的值域.解:(1)f(x)=sin x cos x-cos2x+=sin 2x-(cos 2x+1)+=sin 2x-cos 2x=sin.故f(x)的最小正周期为π.(2)∵0≤x≤,∴-≤2x-,∴-≤sin≤1,即f(x)的值域为.。

高中数学三角函数变换题

高中数学三角函数变换题

高中数学三角函数变换题1. 一般三角函数的基本变换三角函数是数学中重要的概念之一,它们在高中数学中有广泛的应用。

三角函数的变换是指通过改变角度或变量,使原函数发生相应的变化。

一般来说,我们可以通过以下方式对三角函数进行变换:1.1 平移变换平移变换是指将原函数沿着横轴或纵轴方向进行平移。

通过平移变换,可以改变函数图像的位置。

对于正弦函数和余弦函数,平移变换的公式如下:- 正弦函数的平移变换:$y = a\sin(b(x-c)) +d$- 余弦函数的平移变换:$y = a\cos(b(x-c)) +d$其中,$a$ 表示振幅的变化,$b$ 表示周期的变化,$c$ 表示水平方向上的平移量,$d$ 表示垂直方向上的平移量。

1.2 伸缩变换伸缩变换是指改变函数图像在横轴或纵轴上的比例。

通过伸缩变换,可以改变函数图像的形状。

对于正弦函数和余弦函数,伸缩变换的公式如下:- 正弦函数的伸缩变换:$y = a\sin(bx)$- 余弦函数的伸缩变换:$y = a\cos(bx)$其中,$a$ 表示振幅的变化,$b$ 表示周期的变化。

1.3 翻转变换翻转变换是指将原函数图像沿着横轴或纵轴进行翻转。

通过翻转变换,可以改变函数图像的对称性。

对于正弦函数和余弦函数,翻转变换的公式如下:- 正弦函数的翻转变换:$y = a\sin(bx)$ 或 $y = a\cos(bx)$- 余弦函数的翻转变换:$y = -a\cos(bx)$ 或 $y = -a\sin(bx)$其中,$a$ 表示振幅的变化,$b$ 表示周期的变化。

2. 应用题示例2.1 题目描述现有函数 $y = \sin(x)$,在横轴上进行平移变换,使得函数图像的最低点为 $(2, -1)$,求变换后的函数。

2.2 解题思路根据题目描述,我们可以得知平移后的函数图像最低点为 $(2, -1)$,即平移量为 $(2, -1)$。

根据平移变换的公式 $y = a\sin(b(x-c)) +d$,我们可以将平移量代入公式,得到变换后的函数为 $y = \sin(x-2)-1$。

高中数学第五章三角函数5.5三角恒等变换5.5.2简单的三角恒等变换课后提能训练

高中数学第五章三角函数5.5三角恒等变换5.5.2简单的三角恒等变换课后提能训练

A 级——基础过关练1.已知sin 2α=13,则cos 2⎝ ⎛⎭⎪⎫α-π4=( ) A .-13B .-23C .13D .23【答案】D 【解析】cos 2⎝ ⎛⎭⎪⎫α-π4=1+cos ⎝ ⎛⎭⎪⎫2α-π22=1+sin 2α2=23.2.已知α∈⎝ ⎛⎭⎪⎫-π2,0,cos α=45,则tan α2=( ) A .3 B .-3 C .13D .-13【答案】D 【解析】因为α∈⎝ ⎛⎭⎪⎫-π2,0,且cos α=45,所以α2∈⎝ ⎛⎭⎪⎫-π4,0,tan α2=-1-cos α1+cos α=-1-451+45=-13. 3.若sin(π-α)=-53且α∈⎝ ⎛⎭⎪⎫π,3π2,则sin ⎝ ⎛⎭⎪⎫π2+α2等于( ) A .-63B .-66C .66 D .63【答案】B 【解析】由题意知sin α=-53,α∈⎝⎛⎭⎪⎫π,3π2,所以cos α=-23.因为α2∈⎝ ⎛⎭⎪⎫π2,3π4,所以sin ⎝ ⎛⎭⎪⎫π2+α2=cos α2=-1+cos α2=-66.故选B . 4.(多选)下列选项中,值为14的是( )A .cos 72°cos 36°B .sin π12sin 5π12C .1sin 50°+3cos 50° D .13-23cos 215° 【答案】AB 【解析】对于A ,cos 36°cos 72°=2sin 36°cos 36°cos 72°2sin36°=2sin 72°cos 72°4sin 36°=sin 144°4sin 36°=14,故A 正确;对于B ,sin π12sin 5π12=sin π12cos π12=12·2sin π12cos π12=12sin π6=14,故B 正确;对于C ,原式=cos 50°+3sin 50°sin 50°cos 50°=2⎝⎛⎭⎪⎫32sin 50°+12cos 50°12sin 100°=2sin 80°12sin 100°=2sin 80°12sin 80°=4,故C 错误;对于D ,13-23cos 215°=-13(2cos 215°-1)=-13cos 30°=-36,故D 错误.故选AB .5.函数f (x )=cos 2x -2cos 2x2(x ∈[0,π])的最小值为( )A .1B .-1C .54D .-54【答案】D 【解析】由题意,得f (x )=cos 2x -2cos 2x2=cos 2x -(1+cos x )=cos 2x -cosx -1,设t =cos x (x ∈[0,π]),y =f (x ),则t ∈[-1,1],y =t 2-t -1=⎝⎛⎭⎪⎫t -122-54,所以当t =12,即x =π3时,y 取得最小值-54.所以函数f (x )的最小值为-54.故选D .6.若sin θ2+2cos θ2=0,则tan θ=________.【答案】43 【解析】由sin θ2+2cos θ2=0,得tan θ2=-2,则tan θ=2tanθ21-tan2θ2=43. 7.已知sin ⎝ ⎛⎭⎪⎫π6+α=23,则cos 2⎝ ⎛⎭⎪⎫π6-α2=________.【答案】56 【解析】因为cos ⎝ ⎛⎭⎪⎫π3-α=sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π3-α=sin ⎝ ⎛⎭⎪⎫π6+α=23,所以cos 2⎝ ⎛⎭⎪⎫π6-α2=1+cos ⎝ ⎛⎭⎪⎫π3-α2=1+232=56.8.已知θ∈(0,π),且sin ⎝ ⎛⎭⎪⎫π4-θ=210,则cos ⎝ ⎛⎭⎪⎫θ+π4=________,sin 2θ=________.【答案】210 2425 【解析】因为sin ⎝ ⎛⎭⎪⎫π4-θ=210,所以cos ⎝ ⎛⎭⎪⎫θ+π4=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π4-θ=sin ⎝ ⎛⎭⎪⎫π4-θ=210,sin 2θ=cos ⎝ ⎛⎭⎪⎫π2-2θ=cos 2⎝ ⎛⎭⎪⎫π4-θ=1-2sin 2⎝ ⎛⎭⎪⎫π4-θ=1-2×⎝ ⎛⎭⎪⎫2102=2425.9.已知tan θ=13,求2cos 2θ2-sin θ-12sin ⎝⎛⎭⎪⎫θ+π4的值.解:2cos 2θ2-sin θ-12sin ⎝ ⎛⎭⎪⎫θ+π4=⎝ ⎛⎭⎪⎫2cos 2θ2-1-sin θ2⎝⎛⎭⎪⎫sin θcos π4+cos θsin π4=cos θ-sin θsin θ+cos θ=1-sin θcos θsin θcos θ+1 =1-tan θtan θ+1=1-1313+1=12, 即2cos 2θ2-sin θ-12sin ⎝⎛⎭⎪⎫θ+π4=12. B 级——能力提升练10.已知2sin α=1+cos α,则tan α2=( )A .12B .12或不存在 C .2D .2或不存在【答案】B 【解析】由2sin α=1+cos α,得4sin α2cos α2=2cos 2α2.当cos α2=0时,tan α2不存在;当cos α2≠0时,tan α2=12.11.函数f (x )=12(1+cos 2x )·sin 2x (x ∈R )是( )A .最小正周期为π的奇函数B .最小正周期为π2的奇函数C .最小正周期为π的偶函数D .最小正周期为π2的偶函数【答案】D 【解析】因为f (x )=14(1+cos 2x )(1-cos 2x )=14(1-cos 22x )=14sin 22x=18(1-cos 4x ),又f (-x )=f (x ),所以函数f (x )是最小正周期为π2的偶函数.故选D . 12.若3sin x -3cos x =23sin(x +φ),φ∈(-π,π),则φ=________. 【答案】-π6 【解析】因为3sin x -3cos x =23·⎝ ⎛⎭⎪⎫32sin x -12cos x =23sin ⎝⎛⎭⎪⎫x -π6,又φ∈(-π,π),所以φ=-π6.13.设函数f (x )=2a cos 2x +b sin x cos x 满足f (0)=2,f ⎝ ⎛⎭⎪⎫π3=3+12,则a =_______,b =______.【答案】1 2 【解析】因为f (0)=2a =2,所以af ⎝ ⎛⎭⎪⎫π3=2a ×14+b ·32×12=12+34b =3+12,所以b =2. 14.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4-22sin 2x .(1)求函数f (x )的最小正周期;(2)求函数f (x )图象的对称轴方程、对称中心的坐标. 解:f (x )=22sin 2x -22cos 2x -22·1-cos 2x 2=22sin 2x +22cos 2x -2=sin ⎝⎛⎭⎪⎫2x +π4- 2.(1)函数f (x )的最小正周期为π.(2)令2x +π4=k π+π2(k ∈Z ),得x =12k π+π8(k ∈Z ),所以f (x )图象的对称轴方程是x =12k π+π8(k ∈Z ).令2x +π4=k π(k ∈Z ),得x =12k π-π8(k ∈Z ),所以f (x )图象的对称中心的坐标是⎝ ⎛⎭⎪⎫12k π-π8,-2(k ∈Z ).C 级——探究创新练15.(2020年吉安期末)函数f (x )=2cos x ·sin(x +θ)+sin 2x 的图象关于直线x =θ2对称,其中θ∈⎝⎛⎭⎪⎫0,π2.(1)求θ的值;(2)判断函数f (x )的最小正周期,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,求函数f (x )的最值.解:(1)由函数f (x )的图象关于直线x =θ2对称,得f (0)=f (θ),即2sin θ=2cos θsin 2θ+sin 2θ=4cos θcos θsin θ+2sin θcos θ,则2sin θ(2cos 2θ+cos θ-1)=0.又θ∈⎝⎛⎭⎪⎫0,π2,则sin θ>0,cos θ>0.所以2cos 2θ+cos θ-1=0,可得cos θ=-1(舍去),或cos θ=12,由θ∈⎝⎛⎭⎪⎫0,π2,得θ=π3.此时f (x )=2cos x sin ⎝ ⎛⎭⎪⎫x +π3+sin 2x =2cos x ·⎝ ⎛⎭⎪⎫12sin x +32cos x +sin 2x =32sin 2x+32cos 2x +32=3sin ⎝⎛⎭⎪⎫2x +π6+32. (2)由(1)得f (x )=3sin ⎝ ⎛⎭⎪⎫2x +π6+32,则f (x )的最小正周期T =π.当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6,则sin ⎝ ⎛⎭⎪⎫2x +π6∈⎣⎢⎡⎦⎥⎤-12,1,当2x +π6=7π6,即x =π2时,函数f (x )有最小值0;当2x +π6=π2,即x =π6,函数f (x )有最大值332.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

玉林高中2014级高一(下)数学周测(3)补充(3)变式练习一.选择题(共5小题)1.函数的零点个数为()2.函数f(x)=sinπx+cosπx+|sinπx﹣cosπx|对任意的x∈R都有f(x1)≤f(x)≤f(x2)成立,则|x2﹣x1|的最小值为()3.)已知函数f(x)=,若a,b,c互不相等,且f(a)=f(b)=f(c),则二.填空题(共14小题)6.已知函数f(x)=πcos(+),如果存在实数x1、x2,使得对任意实数x,都有f(x1)≤f(x)≤f(x2),则|x1﹣x2|的最小值是.7.已知函数f(x)=,若a,b,c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是.8.已知函数f(x)=,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是.9.为了使函数y=sinωx(ω>0)在区间[0,1]上至少出现4次最大值,则ω的最小值是.10.函数f(x)=sinx+2|sinx|,x∈[0,2π]的图象与直线y=k有且仅有两个不同的交点,则实数k的取值范围是.11.函数y=sinx+2|sinx|x∈[0,2π]的图象与直线的交点的个数为个.12.若函数f(x)=cosx+|sinx|(x∈[0,2π])的图象与直线y=k有且仅有四个不同的交点,则k的取值范围是.13.已知函数f(x)=sinx+2|sinx|﹣k,x∈[0,2π]有且仅有两个零点,则k的取值范围是.14.已知函数f(x)=Asin(ωx+ϕ)(其中A>0,ω>0,﹣π<ϕ≤π)的部分图象如图所示,与x轴的两个交点的横坐标分别为,,则函数f(x)的图象的相邻两条对称轴之间的距离是.15.已知函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<)的图象上有一个最高点的坐标为(2,),由这个最高点到其右侧相邻最低点间的图象与x轴交于点(6,0),则此解析式为.16.已知函数f(x)=2sin(ωx+)(ω>0)的图象经过点(π,0),若函数f(x)在[0,3]上恰好一次取得最大值2,一次取得最小值﹣2,则ω的值是.17.已知函数f(x)=sin(2x+)若y=f(x﹣φ)(0<φ<)是偶函数则φ=.18.已知角φ的终边经过点P(1,﹣2),函数f(x)=sin(ωx+φ)(ω>0)图象的相邻两条对称轴之间的距离等于,则=.19.将函数f(x)=2sin(ωx﹣)(ω>0)的图象向左平移个单位,得到函数y=g(x)的图象,若y=g (x)在[0,]上为增函数,则ω的最大值为.三.解答题(共11小题)20.设函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,﹣π<φ<π )的一个最高点坐标为(,3),其图象与x轴的相邻两个交点的距离为.(1)求f(x)的最小正周期及解析式;(2)若x∈[﹣,),求函数g(x)=f(x+)的值域.21.已知函数f(x)=Asin(ωx+φ),x∈R(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.(Ⅰ)求f(x)的解析式;(Ⅱ)当,求f(x)的值域.22.已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.(1)求f(x)的解析式;(2)当x∈[,]x时,f(x)﹣m≥1恒成立,求实数m的取值范围;(3)若f (x 0)=1,x 0∈[﹣π,π],求x 0的值.23.已知函数f (x )=Asin (ωx+ϕ)()的部分图象如图所示,其中与x 轴有交点 (﹣2,0)、(6,0),图象有一个最高点(2,).(1)求函数f (x )的解析式;(2)在△ABC 中,角A ,B ,C 对的边分别为a ,b ,c ,若f (x )在x ∈[4,12]上的最大值为c 且C=60°,求△ABC 的面积S △ABC 的最大值.24.已知函数f (x )=•,且向量=(4m ,﹣1),=(sin (π﹣x ),sin (+2x )),(m ∈R )(I )求m=0,求f (x )的单调递增区间; (II )若m <﹣1,求f (x )的最小值和最大值.25.已知函数.(1)已知f (α)=3,且α∈(0,π),求α的值; (2)当x ∈[0,π]时,求函数f (x )的单调递增区间;(3)若对任意的,不等式f (x )>m ﹣3恒成立,求实数m 的取值范围.26.已知函数f (x )=sin (ωx ﹣)(ω>0)在(0,]上单调递增,在(,2π]上单调递减,(1)求ω的值;(2)当x ∈[π,2π]时,不等式m ﹣3≤f (x )≤m+3恒成立,求实数m 的取值范围.27.已知函数f (x )=sin (ωx+φ)+b (ω>0,﹣<φ<)相邻两对称轴间的距离为,若将f (x )的图象先向左平移个单位,再向下平移1个单位,所得的函数g (x )的为奇函数.(1)求f (x )的解析式,并求f (x )的对称中心; (2)若关于x 的方程3[g (x )]2+m•g (x )+2=0在区间[0,]上有两个不相等的实根,求实数m 的取值范围.28.已知函数f (x )=sin (ωx+φ) 图象的相邻两条对称轴之间的距离等于,cos (φ+)=0,其中ω>0,|φ|<.(1)求函数f (x )的解析式;(2)求最小正实数m ,使得函数f (x )的图象向左平移m 个单位后所对应的函数是偶函数.29.将函数g (x )=sin (ωx ﹣φ)(ω>0,0<φ<π)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变)再向左平移个单位长度后得到函数y=f (x )图象,若函数f (x )的图象过点(,0),且相邻两对称轴的距离为.(1)求ω,φ的值;(2)求y=f (x )的单调增区间(3)若<A <,求f (A )的取值范围.30.将函数y=f (x )的图象上各点的横坐标缩短为原来的(纵坐标不变),再向左平移个单位后,得到的图象与函数g (x )=sin2x 的图象重合.(1)写出函数y=f (x )的图象的一条对称轴方程;(2)若A 为三角形的内角,且f (A )=•,求g ()的值.玉林高中2014级高一(下)数学周测(3)补充(3)变式练习参考答案与试题解析一.选择题(共5小题)1.函数的零点个数为()y=3cos的图象,2.函数f(x)=sinπx+cosπx+|sinπx﹣cosπx|对任意的x∈R都有f(x1)≤f(x)≤f(x2)成立,则|x2﹣x1|的最小值为()=时,函数取得最大值时,=3.已知函数f(x)=,若a,b,c互不相等,且f(a)=f(b)=f(c),则a+b+c 的取值范围是())个周期即可,进而求出49×T≤1×ω≥.,然后,根据条件,得到,然后,求解,∴,二.填空题(共14小题)6.已知函数f(x)=πcos(+),如果存在实数x1、x2,使得对任意实数x,都有f(x1)≤f(x)≤f(x2),则|x1﹣x2|的最小值是4π.+|=n×=4nπ+=8π|=n×7.已知函数f(x)=,若a,b,c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是(2,2015).8.已知函数f(x)=,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是[6,8).,c+4≤19.为了使函数y=sinωx(ω>0)在区间[0,1]上至少出现4次最大值,则ω的最小值是.=3×+3T+=3×+=1ω=.10.函数f(x)=sinx+2|sinx|,x∈[0,2π]的图象与直线y=k有且仅有两个不同的交点,则实数k的取值范围是(1,3).11.函数y=sinx+2|sinx|x∈[0,2π]的图象与直线的交点的个数为4个.y=sinx+2|sinx|=有四个交点12.若函数f(x)=cosx+|sinx|(x∈[0,2π])的图象与直线y=k有且仅有四个不同的交点,则k的取值范围是1≤k <.y=sinx+cosx=sinx+cosx=<14.已知函数f(x)=Asin(ωx+ϕ)(其中A>0,ω>0,﹣π<ϕ≤π)的部分图象如图所示,与x轴的两个交点的横坐标分别为,,则函数f(x)的图象的相邻两条对称轴之间的距离是.=,得到函数的周期为、﹣T=15.已知函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<)的图象上有一个最高点的坐标为(2,),由这个最高点到其右侧相邻最低点间的图象与x轴交于点(6,0),则此解析式为y=sin(x+).A=∴=6=16ω=sin x+φsin×2+ψ,+φ=+2kπ+2kπ,φ=,sin x+).)16.已知函数f(x)=2sin(ωx+)(ω>0)的图象经过点(π,0),若函数f(x)在[0,3]上恰好一次取得最大值2,一次取得最小值﹣2,则ω的值是2.(不唯一).πω+ω=,从而可得当ωx+)的图象经过点(πω+∴πω+ω=∴T=,17.已知函数f(x)=sin(2x+)若y=f(x﹣φ)(0<φ<)是偶函数则φ=.),由=k)+]2φ+=k,φ=.=k18.已知角φ的终边经过点P(1,﹣2),函数f(x)=sin(ωx+φ)(ω>0)图象的相邻两条对称轴之间的距离等于,则=﹣.T=sinφ=∴3•+φ(=19.将函数f(x)=2sin(ωx﹣)(ω>0)的图象向左平移个单位,得到函数y=g(x)的图象,若y=g (x)在[0,]上为增函数,则ω的最大值为2.个单位,三.解答题(共11小题)20.设函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,﹣π<φ<π )的一个最高点坐标为(,3),其图象与x轴的相邻两个交点的距离为.(1)求f(x)的最小正周期及解析式;(2)若x∈[﹣,),求函数g(x)=f(x+)的值域.,可求得2×+φ,∈,)的值域.T=π=2×+φφ+=2k,φ=2kπ+φ=2x+2x+,),2x+,21.已知函数f(x)=Asin(ωx+φ),x∈R(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.(Ⅰ)求f(x)的解析式;(Ⅱ)当,求f(x)的值域.的范围,根据正弦函数的单调性可求得函数的最大值和最小=∴)∵=,即时,22.已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.(1)求f(x)的解析式;(2)当x∈[,]x时,f(x)﹣m≥1恒成立,求实数m的取值范围;(3)若f(x0)=1,x0∈[﹣π,π],求x0的值.≤x≤,利用正弦函数的单调性质可求得﹣T=2×=πω=)∴+φ=2kπ+π,φ=2x+≤x≤时,≤2x+≤ (5)+) (9)+=2kπ+=2kπ+((,23.已知函数f(x)=Asin(ωx+ϕ)()的部分图象如图所示,其中与x轴有交点(﹣2,0)、(6,0),图象有一个最高点(2,).(1)求函数f(x)的解析式;(2)在△ABC中,角A,B,C对的边分别为a,b,c,若f(x)在x∈[4,12]上的最大值为c且C=60°,求△ABC 的面积S△ABC的最大值.,===∴×,∴,∴x+sin x+,∴≤x+≤,=cosC==≤..24.已知函数f(x)=•,且向量=(4m,﹣1),=(sin(π﹣x),sin(+2x)),(m∈R)(I)求m=0,求f(x)的单调递增区间;(II)若m<﹣1,求f(x)的最小值和最大值.)得,sin,.25.已知函数.(1)已知f(α)=3,且α∈(0,π),求α的值;(2)当x∈[0,π]时,求函数f(x)的单调递增区间;(3)若对任意的,不等式f(x)>m﹣3恒成立,求实数m的取值范围.)求出),∴.∴,)的单调递增区间为,,26.已知函数f(x)=sin(ωx﹣)(ω>0)在(0,]上单调递增,在(,2π]上单调递减,(1)求ω的值;(2)当x∈[π,2π]时,不等式m﹣3≤f(x)≤m+3恒成立,求实数m的取值范围.时且,从而可求t=,时,T0,,,,]27.已知函数f(x)=sin(ωx+φ)+b(ω>0,﹣<φ<)相邻两对称轴间的距离为,若将f(x)的图象先向左平移个单位,再向下平移1个单位,所得的函数g(x)的为奇函数.(1)求f(x)的解析式,并求f(x)的对称中心;(2)若关于x的方程3[g(x)]2+m•g(x)+2=0在区间[0,]上有两个不相等的实根,求实数m的取值范围.2x+==+φ+φ=kπ=nπ+,∴+,,228.已知函数f(x)=sin(ωx+φ)图象的相邻两条对称轴之间的距离等于,cos(φ+)=0,其中ω>0,|φ|<.(1)求函数f(x)的解析式;(2)求最小正实数m,使得函数f(x)的图象向左平移m个单位后所对应的函数是偶函数.φ+φ+=kπ+(,∴φ=.,∴=,∴T==3).]3x+3m+3m+(+(.29.将函数g(x)=sin(ωx﹣φ)(ω>0,0<φ<π)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变)再向左平移个单位长度后得到函数y=f(x)图象,若函数f(x)的图象过点(,0),且相邻两对称轴的距离为.(1)求ω,φ的值;(2)求y=f(x)的单调增区间(3)若<A<,求f(A)的取值范围.<,求出相位的范围,利用正弦函数的值域求xx﹣2×+φ=φ=.≤2x≤2kπ+≤x≤kπ+,kπ+),∵<30.将函数y=f(x)的图象上各点的横坐标缩短为原来的(纵坐标不变),再向左平移个单位后,得到的图象与函数g(x)=sin2x的图象重合.(1)写出函数y=f(x)的图象的一条对称轴方程;(2)若A为三角形的内角,且f(A)=•,求g()的值.个单位,再将横坐标伸长到原来的),令可得,==可得)=)∴可得,)===。

相关文档
最新文档