小学数学知识点精心总结大全

合集下载

(完整版)非常全的小学数学知识点汇总

(完整版)非常全的小学数学知识点汇总

一、各年级知识点:小学一年级九九乘法口诀表。

学会基础加减乘。

小学二年级完善乘法口诀表,学会除混合运算,基础几何图形。

小学三年级学会乘法交换律,几何面积周长等,时间量及单位。

路程计算,分配律,分数小数。

小学四年级线角自然数整数,素因数梯形对称,分数小数计算。

小学五年级分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积。

小学六年级比例百分比概率,圆扇圆柱及圆锥。

二、必背定义、定理公式三角形的面积=底×高÷2。

公式S= a×h÷2正方形的面积=边长×边长公式S= a×a长方形的面积=长×宽公式S= a×b平行四边形的面积=底×高公式S= a×h梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2内角和:三角形的内角和=180度。

长方体的体积=长×宽×高公式:V=abh长方体(或正方体)的体积=底面积×高公式:V=abh正方体的体积=棱长×棱长×棱长公式:V=aaa圆的周长=直径×π 公式:L=πd=2πr圆的面积=半径×半径×π 公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。

公式:S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。

公式:S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高。

公式:V=Sh圆锥的体积=1/3底面×积高。

公式:V=1/3Sh分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。

异分母的分数相加减,先通分,然后再加减。

分数的乘法则:用分子的积做分子,用分母的积做分母。

分数的除法则:除以一个数等于乘以这个数的倒数。

三、计算方面读懂理解会应用以下定义定理性质公式1、加法交换律:两数相加交换加数的位置,和不变。

小学必背数学要点知识点归纳

小学必背数学要点知识点归纳

小学必背数学要点知识点归纳
1. 数的基本概念:自然数、整数、正数、负数、零等。

2. 加减法的运算及性质:加法的交换律、结合律、加法的逆元是负数;减法的定义、
减法的性质。

3. 乘除法的运算及性质:乘法的交换律、结合律、分配律;除法的定义、除法的性质。

4. 分数的概念及基本运算:分子、分母、分数的读法、分数的大小比较、分数的相等性、分数的加减乘除,转化为整数的运算。

5. 小数的概念及基本运算:小数点的作用、小数的读法、小数的大小比较、小数的加
减乘除。

6. 数的计算:计算整数、分数、小数的加减乘除、混合运算。

7. 数的整理和排列:数的从小到大排列、数的顺序关系。

8. 数的倍数和约数:整数的倍数和约数的概念、求一个数的倍数和约数。

9. 图形和几何:几何图形的基本概念、直线、线段、射线、平行线、相交线、垂直线、角的概念。

10. 长度、面积和体积:长度的概念、周长的计算、面积的概念、面积的计算、体积的概念、体积的计算。

11. 时、空与坐标:时间的单位、时钟的指针运动、二维坐标系、点的坐标。

12. 数据处理:数据的搜集、数据的整理和整个、数据的解释和分析。

13. 算术推理和数学推理:算术关系、等式、代数式、推理过程。

14. 单位换算:长度、质量、容积的换算。

15. 错题分析:找出错误的原因和改错方法、整理好课堂笔记并进行归纳整理。

小学数学知识点总结大全(完整版)

小学数学知识点总结大全(完整版)

小学数学知识点大全第一章数和数的运算一、概念(一)整数1、整数的意义自然数和0都是整数。

2、自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。

一个物体也没有,用0表示。

0也是自然数。

3、计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。

其中“一”是计数的基本单位。

10个1是10,10个10是100……每相邻两个计数单位之间的进率都是10。

这样的计数法叫做十进制计数法。

4、数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

5、整数的读法:从高位到低位,一级一级地读。

读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。

每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。

6、整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。

7、一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。

有时还可以根据需要,省略这个数某一位后面的数,写成近似数。

⑴准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。

改写后的数是原数的准确数。

例如把 1254300000 改写成以万做单位的数是 125430 万;改写成以亿做单位的数 12.543 亿。

⑵近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。

例如: 1302490015 省略亿后面的尾数是 13 亿。

⑶四舍五入法:求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1。

这种求近似数的方法就叫做四舍五入法。

8、整数大小的比较:位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。

以此类推。

(二)小数1、小数的意义把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。

小学数学知识点归纳梳理大全

小学数学知识点归纳梳理大全

小学数学知识点归纳梳理大全第一章数的认识1.1 自然数和零的认识1.2 整数的认识1.3 分数的认识1.4 小数的认识第二章加减法2.1 加法的基本概念和性质2.2 减法的基本概念和性质2.3 两位数的加减法2.4 三位数的加减法2.5 带有进位和借位的加减法第三章乘法与除法3.1 乘法的基本概念和性质3.2 乘法口诀表3.3 两位数的乘法3.4 三位数的乘法3.5 除法的基本概念和性质3.6 两位数的除法3.7 三位数的除法3.8 带有余数的除法第四章分数运算4.1 分数的加减法4.2 分数的乘法4.3 分数的除法4.4 分数的化简4.5 分数的比较和排序第五章小数运算5.1 小数的加减法5.2 小数的乘法5.3 小数的除法5.4 小数的化简与比较第六章数字的应用6.1 百分数的认识与转化6.2 货币和找零的计算6.3 数字的估算与近似6.4 数字的应用问题解决第七章几何图形与测量7.1 点、线、面的认识7.2 直线与曲线的区别7.3 角的认识与分类7.4 三角形的认识与分类7.5 四边形的认识与分类7.6 圆的认识与性质7.7 长度的测量7.8 面积的测量7.9 体积的测量第八章数据统计8.1 图表的阅读与制作8.2 数据的收集与整理8.3 数据的分析与解读8.4 实际问题的解决第九章逻辑推理9.1 命题、真值与逻辑连接词9.2 命题的组合与析取9.3 条件语句与拟反命题9.4 几何图形的推理第十章应用题10.1 简单应用题10.2 复杂应用题10.3 字母代数式的解答在小学阶段,数学是一个非常重要的学科,它不仅是培养学生逻辑思维和分析问题的能力,也是培养他们解决实际问题的能力的关键。

而对于老师和家长来说,掌握小学数学知识点的归纳和梳理是非常重要的,可以帮助学生更好地掌握知识并应用到实际生活中。

本文将从数的认识开始介绍,包括自然数和零、整数、分数和小数的认识。

对于每个知识点,将详细介绍其基本概念和性质,以及相应的运算规则和习题练习。

小学数学知识点总结大全

小学数学知识点总结大全

小学数学知识点总结大全一、整数1.整数的概念和性质2.整数加减法3.整数乘法4.整数除法5.整数的混合运算6.整数的比较和排序7.整数的绝对值8.整数的应用问题二、小数1.小数的概念和表示方法2.小数加减法3.小数乘法4.小数除法5.小数的比较和排序6.小数的应用问题三、分数1.分数的概念和表示方法2.分数的大小比较3.分数的加法4.分数的减法5.分数的乘法6.分数的除法7.分数的应用问题四、倍数和约数1.倍数的概念和性质2.倍数的判断和求解方法3.约数的概念和性质4.约数的判断和求解方法5.公约数和最大公约数6.公倍数和最小公倍数7.倍数和约数的应用问题五、比例和单位换算1.比例的概念和性质2.比例的判断和运算方法3.比例的应用问题4.长度单位换算5.面积单位换算6.容积单位换算7.重量单位换算8.时间单位换算9.温度单位换算10.单位换算的应用问题六、面积和体积1.平行线和平行四边形的面积2.三角形的面积3.梯形的面积4.圆的面积5.立方体的体积6.长方体的体积7.圆柱体的体积8.圆锥体的体积9.锥台的体积10.面积和体积的应用问题七、图形与坐标1.点、线、面的概念2.图形的分类和性质3.图形的判断和构造方法4.平行四边形和矩形的特点5.正方形和菱形的特点6.三角形的分类和特点7.五边形和六边形的特点8.圆的性质和构造方法9.坐标系和坐标点的表示方法10.坐标点的移动和变换11.图形和坐标的应用问题八、数据统计和概率1.数据的收集和整理方法2.数据的表示和分析方法3.平均数和中位数的计算方法4.概率的概念和性质5.概率的计算方法6.数据统计和概率的应用问题以上是小学数学的主要知识点总结。

这些知识点包括整数、小数、分数、倍数和约数、比例和单位换算、面积和体积、图形与坐标、数据统计和概率等方面的内容。

希望对你的学习有所帮助!。

小学数学知识点大汇总

小学数学知识点大汇总

小学数学知识点大汇总一、整数1.整数及其概念2.整数的加法运算3.整数的减法运算4.整数的乘法运算5.整数的除法运算6.整数的绝对值7.整数的大小比较8.整数的相反数二、分数1.分数的概念2.分数的加法运算3.分数的减法运算4.分数的乘法运算5.分数的除法运算6.分数的比较7.分数的化简8.分数的约分9.假分数和带分数的相互转化10.分数的相反数三、小数1.小数的概念2.小数的加法运算3.小数的减法运算4.小数的乘法运算5.小数的除法运算6.小数与整数的相互转化7.小数的大小比较四、几何1.平面图形的认识(点、线、面的概念)2.正方形、长方形、三角形、圆形的性质3.多边形的性质(三角形、四边形、五边形、六边形等)4.三角形的分类(等边三角形、等腰三角形、直角三角形等)5.平行线、垂直线的概念及判定方法6.正立体的认识(长方体、正方体、圆柱体、圆锥体、球体等)五、数的认识1.数的概念及表示方法2.数的读法和写法3.数的大小比较4.数的顺序排列5.数的相反数和绝对值六、正整数的运算1.加法的概念和运算2.减法的概念和运算3.乘法的概念和运算4.除法的概念和运算5.综合运用四则运算七、约数和倍数1.约数的概念和判定方法2.最大公约数的求法3.最小公倍数的求法八、整数的运算1.整数的加法运算2.整数的减法运算3.整数的乘法运算4.整数的除法运算5.综合运用整数的四则运算九、数的整体认识1.一元运算符和二元运算符2.加减混合运算3.二步运算和多步运算4.组件运算5.简便算术十、长度、面积和体积1.长度的计量和单位换算2.长度的比较和排序3.长度的四则运算4.面积的计算和单位换算5.面积的比较和排序6.面积的四则运算7.体积的计算和单位换算8.体积的比较和排序9.体积的四则运算十一、数的应用1.分数和小数的应用2.整数和正数的应用3.长度、面积和体积的应用4.图形的应用5.生活中的数学计算。

小学数学知识点总结大全(完整版)

小学数学知识点总结大全(完整版)

小学数学知识点大全第一章数和数的运算一、概念(一)整数1、整数的意义自然数和0都是整数。

2、自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。

一个物体也没有,用0表示。

0也是自然数.3、计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位.其中“一”是计数的基本单位。

10个1是10,10个10是100……每相邻两个计数单位之间的进率都是10.这样的计数法叫做十进制计数法。

4、数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

5、整数的读法:从高位到低位,一级一级地读。

读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。

每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。

6、整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。

7、一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数.有时还可以根据需要,省略这个数某一位后面的数,写成近似数.⑴准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。

改写后的数是原数的准确数. 例如把 1254300000 改写成以万做单位的数是 125430 万;改写成以亿做单位的数 12.543 亿。

⑵近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。

例如: 1302490015 省略亿后面的尾数是 13 亿。

⑶四舍五入法:求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1。

这种求近似数的方法就叫做四舍五入法。

8、整数大小的比较:位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。

以此类推。

(二)小数1、小数的意义把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。

(完整版)小学数学知识点总结大全

(完整版)小学数学知识点总结大全

小学数学知识点大全2018.3目录第一章数和数的运算P3常用的数量关系式P16第二章度量衡P17常用单位换算P18第三章代数初步知识P19第四章几何的初步知识P22 小学数学图形计算公式P26第五章简单的统计P27第一章数和数的运算一、概念(一)整数1、整数的意义自然数和0都是整数。

2、自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。

一个物体也没有,用0表示。

0也是自然数。

3、计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。

其中“一”是计数的基本单位。

10个1是10,10个10是100……每相邻两个计数单位之间的进率都是10。

这样的计数法叫做十进制计数法。

4、数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

5、整数的读法:从高位到低位,一级一级地读。

读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。

每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。

6、整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。

7、一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。

有时还可以根据需要,省略这个数某一位后面的数,写成近似数。

⑴准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。

改写后的数是原数的准确数。

例如把 1254300000 改写成以万做单位的数是 125430 万;改写成以亿做单位的数 12.543 亿。

⑵近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。

例如: 1302490015 省略亿后面的尾数是 13 亿。

⑶四舍五入法:求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1。

这种求近似数的方法就叫做四舍五入法。

8、整数大小的比较:位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。

小学数学知识点精心总结大全

小学数学知识点精心总结大全

第一章数和数的运算一概念(一)整数1 整数的意义自然数和0都是整数。

2 自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。

一个物体也没有,用0表示。

0也是自然数。

3计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。

每相邻两个计数单位之间的进率都是10。

这样的计数法叫做十进制计数法。

4 数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

5数的整除整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。

如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。

倍数和约数是相互依存的。

因为35能被7整除,所以35是7的倍数,7是35的约数。

一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。

例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。

一个数的倍数的个数是无限的,其中最小的倍数是它本身。

3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。

个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。

个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。

一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。

一个数各位数上的和能被9整除,这个数就能被9整除。

能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。

一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。

例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。

一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。

例如:1168、4600、5000、1234 4都能被8整除,1125、13375、5000都能被125整除。

小学数学知识点精心总结大全

小学数学知识点精心总结大全

第一章数和数的运算一概念(一)整数1 整数的意义自然数和0都是整数.2 自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。

一个物体也没有,用0表示。

0也是自然数。

3计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位.每相邻两个计数单位之间的进率都是10.这样的计数法叫做十进制计数法。

4 数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位.5数的整除整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。

如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。

倍数和约数是相互依存的。

因为35能被7整除,所以35是7的倍数,7是35的约数。

一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。

例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。

一个数的倍数的个数是无限的,其中最小的倍数是它本身。

3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。

个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除..个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。

一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。

一个数各位数上的和能被9整除,这个数就能被9整除.能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。

一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除.例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。

一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。

例如:1168、4600、5000、1234 4都能被8整除,1125、13375、5000都能被125整除。

小学数学知识点精心总结大全

小学数学知识点精心总结大全

第一章数和数的运算一概念(一)整数1 整数的意义自然数和0都是整数。

2 自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。

一个物体也没有,用0表示。

0也是自然数。

3计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。

每相邻两个计数单位之间的进率都是10。

这样的计数法叫做十进制计数法。

4 数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

5数的整除整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。

如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。

倍数和约数是相互依存的。

因为35能被7整除,所以35是7的倍数,7是35的约数。

一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。

例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。

一个数的倍数的个数是无限的,其中最小的倍数是它本身。

3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。

个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。

个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。

一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。

一个数各位数上的和能被9整除,这个数就能被9整除。

能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。

一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。

例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。

一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。

例如:1168、4600、5000、123 44都能被8整除,1125、13375、5000都能被125整除。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、自然数和0都是整数。

(负整数)2、我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。

一个物体也没有,用0表示。

0也是自然数。

3计数单位:一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。

每相邻两个计数单位之间的进率都是10。

这样的计数法叫做十进制计数法。

4 数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

5数的整除:整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b 整除,或者说b能整除a 。

如果数a能被数b(b ≠ 0)整除,a叫做b的倍数,b叫做a的因数。

倍数和因数是相互依存的。

如35能被7整除,所以35是7的倍数,7是35的因数。

一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

例如:10的因数有1、2、5、10,其中最小的因数是1,最大的因数是10。

一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。

个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。

个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。

一个数的各位上的数的和能被3整除,这个数就能被3整除。

一个数各位数上的和能被9整除,这个数就能被9整除。

能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。

一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。

一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。

能被2整除的数叫做偶数。

不能被2整除的数叫做奇数。

0也是偶数。

一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53 、59、61、67、71、73、79、83、89、97。

一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,例如4、6、9都是合数。

1既不是质数也不是合数,自然数除了1外,不是质数就是合数。

如果把自然数按其因数的个数的不同分类,可分为质数、合数和1。

每个合数都可以写成几个质数相乘的形式。

其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。

把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

几个数公有的因数,叫做这几个数的公因数。

其中最大的一个,叫做这几个数的最大公因数,例如12的因数有1、2、3、4、6、12;18的因数有1、2、3、6、9、18。

其中,1、2、3、6是12和1 8的公因数,6是它们的最大公因数。

公因数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:1和任何自然数互质。

相邻的两个自然数互质。

两个不同的质数互质。

当合数不是质数的倍数时,这个合数和这个质数互质。

两个合数的公因数只有1时,这两个合数互质。

如果较小数是较大数的因数,那么较小数就是这两个数的最大公因数。

如果两个数是互质数,它们的最大公因数就是1。

几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12 ……3的倍数有3、6、9、12 …… 其中6、12……是2、3的公倍数,6是它们的最小公倍数。

如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。

如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。

1 、小数的意义:把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。

一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……一个小数由整数部分、小数部分和小数点部分组成。

在小数里,每相邻两个计数单位之间的进率都是10。

小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。

2小数的分类:纯小数:整数部分是零的小数,叫做纯小数。

例如:0.25 、0.368 都是纯小数。

带小数:整数部分不是零的小数,叫做带小数。

例如:3.25 、5.26 都是带小数。

有限小数:小数部分的数位是有限的小数,叫做有限小数。

例如:41.7 、25.3 、0.23 都是有限小数。

无限小数:小数部分的数位是无限的小数,叫做无限小数。

例如:4.33 …… 3.1415926 ……无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。

例如:∏循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。

例如:3.555 …… 0.0333 …… 12.109109 ……一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。

例如:3.99 ……的循环节是“ 9 ” ,0.5454 ……的循环节是“ 54 ” 。

纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。

例如:3.111 …… 0.5 656 ……混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。

3.1222…… 0.03333 …… 。

写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。

如果循环节只有一个数字,就只在它的上面点一个点。

例如: 3.777 …… 简写作0.5302302 …… 简写作。

1 、分数的意义:把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。

在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线上面的数叫做分子,表示有这样的多少份。

把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。

2、分数的分类。

真分数:分子比分母小的分数叫做真分数。

真分数小于1。

假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。

假分数大于或等于1。

带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。

3、约分和通分:把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。

分子分母是互质数的分数,叫做最简分数。

把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

1、表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。

百分数通常用"%"来表示。

百分号是表示百分数的符号。

1. 整数的读法:从高位到低位,一级一级地读。

读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。

每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。

2. 小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。

3 3、数的改写:准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。

改写后的数是原数的准确数。

例如把1254300000 改写成以万做单位的数是125430 万;改写成以亿做单位的数12.543 亿。

近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。

例如:130249001 5 省略亿后面的尾数是13 亿。

四舍五入法:要省略的尾数的最高位上的数是4 或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。

例如:省略345900 万后面的尾数因是35 万。

省略4725097420 亿后面的尾数因是47 亿。

4. 比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。

分数的分母和分子都不相同的,先通分,再比较两个数的大小。

1. 小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。

2. 分数化成小数:用分母去除分子。

能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。

一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。

3. 小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。

4. 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

5. 分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

6. 百分数化成分数:先把百分数改写成分数,能约分的要约成最简分数。

1. 把一个合数分解质因数,通常用短除法。

先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。

2. 求几个数的最大公因数的方法是:先用这几个数的公因数连续去除,一直除到所得的商只有公因数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公因数。

3. 求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公因数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。

1、约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。

2、通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。

三性质和规律(一)商不变的规律:在除法里,被除数和除数同时扩大或缩小相同的倍数,商不变。

(二)小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。

(三)小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍……小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍……小数点向左移或者向右移位数不够时,要用“0"补足位。

(四)分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。

四运算的意义加数+加数=和加数=和-另一个加数被减数-减数=差被减数=减数+差减数=被减数-差求几个相同加数的和的简便运算叫做乘法。

在乘法里,相同的加数和相同加数的个数都叫做因数。

相同加数的和叫做积。

在乘法里,0和任何数相乘都得0. 1和任何数相乘得任何数。

因数×因数=积因数=积÷另一个因数被除数÷除数=商除数=被除数÷商被除数=商×除数5. 乘方: 求几个相同因数的积的运算叫做乘方。

例如3 ×3 =运算定律1. 加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。

相关文档
最新文档