IR解谱

合集下载

IR图谱分析方法

IR图谱分析方法

IR图谱分析方法(1)首先依据谱图推出化合物碳架类型:根据分子式计算不饱和度,公式:不饱和度=F+1+(T-O)/2 其中:F:化合价为4价的原子个数(主要是C原子),T:化合价为3价的原子个数(主要是N原子),O:化合价为1价的原子个数(主要是H原子),例如:比如苯:C6H6,不饱和度=6+1+(0-6)/2=4,3个双键加一个环,正好为4个不饱和度;(2)分析3300~2800cm^-1区域C-H伸缩振动吸收;以3000 cm^-1为界:高于3000cm^-1为不饱和碳C-H伸缩振动吸收,有可能为烯, 炔, 芳香化合物,而低于3000cm^-1一般为饱和C-H伸缩振动吸收;(3)若在稍高于3000cm^-1有吸收,则应在 2250~1450cm^-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中:炔 2200~2100 cm^-1烯 1680~1640 cm^-1芳环 1600,1580,1500,1450 cm^-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm^-1的频区 ,以确定取代基个数和位置(顺反,邻、间、对);(4)碳骨架类型确定后,再依据其他官能团,如 C=O, O-H, C-N 等特征吸收来判定化合物的官能团;(5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700cm^-1的三个峰,说明醛基的存在。

至此,分析基本搞定,剩下的就是背一些常见常用的健值了!……………………………………………………………………………………………………………1.烷烃:C-H伸缩振动(3000-2850cm^-1)C-H弯曲振动(1465-1340cm^-1)一般饱和烃C-H伸缩均在3000cm^-1以下,接近3000cm^-1的频率吸收。

2.烯烃:烯烃C-H伸缩(3100~3010cm^-1)C=C伸缩(1675~1640 cm^-1)烯烃C-H面外弯曲振动(1000~675cm^1)。

IR

IR
1725cm-1 (液态)
● 外部因素
1.溶剂影响 ——极性基团,如,C=O
伸缩振动波数随溶剂极性增大而减小。
如,羧酸中的νC=0 气体 1780cm-1(游离) 非极性溶剂 1760cm-1(游离) 乙醚 1735cm-1 乙醇 1720cm-1 碱溶液中 νas C=0 1610~1500cm-1 νsC=0 1400cm-1
● 红外光谱谱带强度(峰强)
● 影响红外光谱的内外因素
一、分子振动特性描述(峰位)
● 谐振子模型 —— 描述分子振动特性
力学的Hoocke定律
◆ 谐振子恢复力(f): 谐振子恢复力与质点离开平衡位置的位 移或正比,但方向则与位移的方向相反。

f = - K(dA + dB)2 / 2
式中,K为键力常数(force constant)
药物波谱解析 第二章 红外光谱(IR)
红外光谱(IR)
IR:属于分子的振转光谱 IR光谱特征:指纹性 IR谱图: 横坐标 —— 波数为( )
纵坐标 —— 透光率(T%)
IR光谱分三种
① 近红外光谱:0.8~2.5um 即1250~4000cm-1
——分子中O-H、N-H、C-H振动倍频和组频;
◆ 分子振转能级示意图:
◆ IR 能级跃迁类型: V0→V1:产生的IR谱带 —— 基频峰 V0→ niVi —— 倍频峰 V0→miVi+niVi —— 合频峰 V0→V1- V2 , 2V1- V2 等 —— 差频峰
※ 泛频峰(组频峰):倍频峰、合频
峰与差频峰的总称。
四、影响IR光谱的的其他因素
弯曲振动引起的吸收
如,C—X(X=C,N,O)
—— 指纹区域

红外光谱 (IR)

红外光谱 (IR)
正己烯中C=C键伸缩振动频率实测值为1652 cm-1
16:13:34
2. 非谐振子:
*真实分子并非严格遵守谐振子规律, 其 势能曲线不是抛物线。
*由量子力学求得非谐振子的能级为:
E振=(V+1/2) ν- -(V+1/2)2Xe ν-
式中V:振动量子数, 其值可取0, 1, 2….
Xe:非谐性修正系数
(二).多原子分子的振动类型
2. 分子振动自由度与峰数
*基本振动的数目称为振动自由度; 由N个原子构成的分子,其总自由度 为3N个。
*分子作为一个整体,其运动状态可 分为:平动、转动和振动。
*分子自由度数(3N)=平动自由度+ 转动自由度+振动自由度
*振动自由度=分子自由度数(3N)(平动自由度+转动自由度)
(1) 伸缩振动: 以ν表示, 又可分: 对称(νs) 不对称(νas)
(2) 弯曲振动:以δ表示, 又可为4种。 面内弯曲振动δ ip:剪式;平面摇摆 面外弯曲振动δ 0.0.p:扭曲;非平面摇摆
νas > νs> δ S > δ 0.0.p
亚甲基的振动模式:
谱图解析——正己烷
在 2962cm-1 处 的 峰 是 CH3 基 团的不对称伸缩振动。这种 不对称伸缩振动范围 2962±10cm-1 , 事 实 上 , 存 在两个简并的不对称伸缩振 动(显示其中一个)。
*振动频率(ν)是键的力常数(K)及两 个原子(mA与mB)的质量的函数。
这些式子表明:双原子分子的振动频率 (波数)随着化学键力常数的增大而 增加, 同时也随着原子折合质量的 增加而降低。
表: 某些键的伸缩力常数(毫达因/埃)
✓ 例: ✓ 例:

IR谱图——精选推荐

IR谱图——精选推荐

IR谱图⼀、常见化合物的特征红外吸收谱 1、烷烃的红外光谱例:正庚烷的红外光谱C-H C-H 伸缩振动 ,σ 3000 ~2800 cm-1 强吸收峰 ? C-H 弯曲振动σ1460 cm-1 有⼀强吸收峰-CH 3 的对称弯曲振动特征峰:σ1380 cm-1附近有强吸收峰2、烯烃的红外光谱(1)1-⾟烯的红外谱图* =C-H 伸缩振动:σ3079cm -1;-C-H 伸缩振动:σ2900~2800 cm -1;* C=C 伸缩振动:σ1642cm -1;* -CH=CH2 弯曲振动σ993, 910cm-1;(2)反-2-⾟烯红外光谱RCH=RCH 反式构型⾯外振动特征吸收:σ990~970cm -1(3)顺-2-⾟烯红外光谱RCH=RCH 顺式构型⾯外振动特征吸收:σ690cm -1附近3、1-⼰炔的红外光谱* ≡C-H 伸缩振动:σ3300cm -1附近;饱和-C-H 伸缩振动:σ2900~2800cm -1;* R-C ≡CH 伸缩振动:σ2100~2150cm -14、芳烃类的红外光谱:(参照课本P306图10-10邻、间、对⼆甲苯红外光谱图)附:取代苯在σ2000~1650cm-1区的泛频吸收及在σ900~650cm-1⾯外变形振动产⽣的吸收⾯貌5、含羰基化合物的红外光谱例1:苯⼄醛的红外谱图ΦC-H 伸缩振动吸收: σ3088~3030cm -1;-CHO 的νC-H 的伸缩振动的两个中等强度的特征吸收峰:σ2826cm -1 (-CH2-中的C-H 伸缩振动吸收涵盖其中),σ2728cm-1C=O 的特征吸收:σ1724cm -1例2:⼄酸⼄酯的红外光谱-CH 2,-CH 3的C-H 伸缩振动峰(m,w ):σ3000~2800cm -1;酯基中的C=O 伸缩振动峰: σ1743cm -1;-CH 3的不对称变形振动峰和-CH 2 变形振动峰:σ1448cm -1-CH 3的对称变形振动特征峰:σ1374cm -1C-O-C 不对称伸缩振动峰(酯的特征峰): σ1243cm -1C-O-C 对称伸缩振动峰(酯的特征峰): σ1048cm -1例3:参照课本P302图10-9壬酸的红外谱图6、含羟基化合物的红外光谱:参照下⾯红外谱图解析中的例1⼆、红外谱图解析例1:化合物C 4H 8O ,根据如下IR 谱图确定结构,并说明依据。

红外光谱IR和拉曼光谱Raman课件

红外光谱IR和拉曼光谱Raman课件

优缺点分析
IR光谱
优点是检测的分子类型广泛,可用于多种类型的化学分析;缺点是需要样品是固态或液态,且某些基团可能无法 检测。
Raman光谱
优点是无需样品制备,对气态、液态和固态样品都适用;缺点是检测灵敏度相对较低,可能需要更长的采集时间 和更强的光源。
选择与应用指南
选择
根据样品的类型和所需的化学信息,选择合适的分析方法。对于需要检测分子振动信息 的样品,IR光谱更为合适;而对于需要快速、非破坏性检测的样品,Raman光谱更为
领域的研究和应用。
04
CATALOGUE
红外光谱(IR)与拉曼光谱( Raman)比较相似性与差异性Fra bibliotek相似性
两种光谱技术都利用光的散射效应来 检测物质分子结构和振动模式。
差异性
IR光谱主要检测分子中的伸缩振动, 而Raman光谱则主要检测分子的弯曲 振动。此外,IR光谱通常需要样品是 固态或液态,而Raman光谱对气态和 液态样品也适用。
拉曼散射是由于物质的分子振动或转动引起的,散射光的频率与入射光的频率不同 ,产生拉曼位移。
拉曼散射的强度与入射光的波长、物质的浓度和温度等因素有关。
拉曼活性与光谱强度
拉曼活性是指物质在拉曼散射中的表 现程度,与物质的分子结构和对称性 有关。
在拉曼光谱实验中,可以通过控制入 射光的波长和强度,以及选择适当的 实验条件来提高拉曼光谱的强度和分 辨率。
红外光谱解析
特征峰解析
根据红外光谱的特征峰位置和强 度,推断出分子中存在的特定振
动模式。
官能团鉴定
通过比较已知的红外光谱数据,可 以鉴定分子中的官能团或化学键。
结构推断
结合其他谱图数据(如核磁共振、 质谱等),可以推断分子的可能结 构。

波谱分析第四章IR谱

波谱分析第四章IR谱
Ⅴ Ⅵ Ⅶ Ⅷ
2400-2100
1850-1650 1680-1500 1475-1000 1000-650
νC≡C νC≡N νc=C=C,N=C=O νc=O(醛、酮、酸、 酯、酰胺、酐) νC=C νC=N δC-H(饱和)νC-O νC-C νC-O-C γ≡C-H γAr-H γCH 2
★ 其中4000-1300 cm-1为官能团区,在这个区 域,每个红外吸收峰都和一定官能团相对应, 原则上每个吸收峰均可找到归属。 ★ 1300-400cm-1为指纹区,在此区域内红外 吸收峰很多,大量吸收峰仅显示了化合物的红 外特性,其中大部分不能找到归属,但这大量 的吸收峰表示了有机化合物分子的具体特征, 犹如人的指纹。 ☆ 两个不同的化合物在指纹区一定有不同的峰。 因此要注意的是:若把未知物IR谱与已知标准 谱图比较,不仅官能团区要吻合,指纹区也要 完全吻合才是同一化合物。

4.1.2红外光谱区域 习惯上按红外线波长,将红外光谱分成三 个区域: 近红外:0.78-2.5μm(12820-4000cm-1) 中红外:2.5-25μm(4000-400cm-1) 远红外:25-300μm(400-33cm-1)。 其中中红外区是IR谱研究的主要区域。

4.1.3红外光谱图表示法。实例说明。 纵坐标:百分透过率;(T﹪) 横坐标:吸收频率(cm-1)。

μ﹦q· d

式中:q表示正或负电荷电量,d表示正负电 荷中心距离。 例如:H2O是极性分子,正、负电荷中心距离 为d,三个原子在平衡位置总是不断的振动, 振动过程中,d的瞬时值随着化学键的伸长或 缩短而不断的发生变化,因此分子的偶极矩也 发生相应的改变,分子也就具有确定的偶极矩 变化频率。

红外IR波谱解析解表

红外IR波谱解析解表
醇和酚
3650~3600 cm-1
自由羟基O-H的伸缩振动,为尖锐的吸收峰
3500~3200 cm-1
分子间氢键O-H伸缩振动
1300~1000 cm-1
C-O伸缩振动
769~659 cm-1
O-H面外弯曲
醚特征吸收:1300~1000 cm-1的伸缩振动
脂肪醚
1150~1060 cm-1一个强的吸收峰
芳香醚
1270~1230 cm-1(为Ar-O伸缩)
1050~1000 cm-1(为R-O伸缩)
醛和酮
1750~1700 cm-1
C=O伸缩
2820,2720 cm-1
醛基C-H伸缩
1715 cm-1
强的C=O伸缩振动
羧酸
3300~2500 cm-1
C=O吸收
1720~1706 cm-1
C-O伸缩
920 cm-1
醛基
2820,2720和1750~1700 cm-1三个峰
烷烃
3000~2850 cm-1
C-H伸缩振动
1465~1340 cm-1
C-H弯曲振动
烯烃
3100~3010 cm-1
芳环上C-H伸缩振动
1675~1640 cm-1
C=C骨架振动
1000~675 cm-1
C-H面外弯曲振动
芳香化合物
在1600,1580,1500和1450 cm-1可能出现强度不等的4个峰。
C-Cl850-550 cm-1
C-Br690-515 cm-1
C-I600-500 cm-1
IR波谱解析
不饱和度=NC+1+(NN-NH)/2
分析3300~2800 cm-1区域C-H伸缩振动吸收

红外光谱解析

红外光谱解析
面内弯曲振动
δ δ δ 8、 1000-650 = C -H -H -C H 2-
各种碳氢键的面外弯曲振动
14
第五节 各类化合物的 红外吸收及解析
通常解析红外光谱: 先看高频区(4000~1400cm-1), 再看低频区(1000~650cm-1)。 先找特征峰,再找相关峰。
特征峰:特定的键或官能团振动所产生的 吸收峰。
根据红外光谱判断化合物类型:
~1715cm-1酮羰基
42
缔合羟基吸收峰:醇
43
~1810cm-1酰氯羰基
44
根据红外光谱判断化合物的结构式:
45
46
47
第二部分 紫外光谱(UV)
λ = 200 ~ 800nm △E = 145 ~ 627KJ.mol-1
由分子中电子能级的跃迁所产生, 主要用来揭示分子中的共轭体系.
ν ν 4、 2400-2100 C C C N
ν 5、 1850-1650 C=O 醛、酮、羧酸…….
ν ν ν 6、 1690-1450 C = C C = N 1680-1620 1690-1640 1600-1450
δ δ δ 7、 1475-1300 -CH 3 -CH 2- -CH -
1
第十三章 红外与紫外光谱
第一部分 红外光谱(IR)
红外光谱(IR): △E = 4 ~ 63KJ.mol-1 λ = 2 ~ 15μm ν = 625~400cm-1
由分子中振动能级的跃迁而产 生, 用来确定分子中的官能团。
2
讲授提要
第一节:基本原理与分子中原子的振动类型 第二节:红外光谱的表示 第三节:影响红外吸收的主要因素 第四节:红外吸收区域及特征红外吸收 第五节:各类化合物的红外吸收及谱图解析

红外光谱(IR)的原理及其谱图的分析

红外光谱(IR)的原理及其谱图的分析

υC=O 1715 cm-1
υC=O 1780 cm-1 υC=O 1650 cm-1
吸电子效应:高波数移动精;选课推件 电子效应:低波数移动
2.峰强 峰的强度取决于分子振动时偶极矩的变化。 偶极矩的变化越小,谱带强度越弱。
• 极性大的基团,吸收强度大。 C=O 比 C=C 强, CN 比 C C 强 使基团极性降低的诱导效应,吸收强度减小, 使基团极性增大的诱导效应,吸收强度增加。
2、电子效应
a. 诱导效应
b. 诱导效应使基团电荷分布发生变化,从而改变
了键的力常数,使振动频率发生变化.
O 例: R C X
X= R/
H
1715 1730
OR/ 1740
Cl
F
1800 1850
精选课件
O
RCX
X= R/
H
1715 1730
OR/ 1740
Cl
F
1800 1850
• 推电子基,C=O电荷中心向O移动,C=O极性增强, 双键性降低,低频移动; • 吸电子基, C=O电荷中心向几何中心靠近, C=O极 性降低,双键性增强,高频移动。
精选课件
H2O有3种振动形式,相应的呈现3个吸收谱带。
精选课件
结论:
产生红外光谱的必要条件是:
1. 红外辐射光的频率与分子振动的频率相等,才 能发生振动能级跃迁,产生吸收吸收光谱。
2. 只有引起分子偶极矩发生变化的振动才能产生 红外吸收光谱。
精选课件
1.6 IR光谱得到的结构信息
1 峰位:吸收峰的位置(吸收频率) 2 峰强: 吸收峰的强度
化学 键
C―C
C=C
C≡C
键长 (nm)

红外(IR)谱图解析基础知识

红外(IR)谱图解析基础知识

红外谱图解析基础知识(一)、基团频率区和指纹区1、基团频率区中红外光谱区可分成4000 cm-1 ~1300(1800)cm-1和1800 (1300 )cm-1 ~ 600 cm-1两个区域。

最有分析价值的基团频率在4000 cm-1 ~ 1300 cm-1 之间,这一区域称为基团频率区、官能团区或特征区。

区内的峰是由伸缩振动产生的吸收带,比较稀疏,容易辨认,常用于鉴定官能团。

在1800 cm-1 (1300 cm-1 )~600 cm-1 区域内,除单键的伸缩振动外,还有因变形振动产生的谱带。

这种振动基团频率和特征吸收峰与整个分子的结构有关。

当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征。

这种情况就像人的指纹一样,因此称为指纹区。

指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。

基团频率区可分为三个区域:(1)4000 ~2500 cm-1 X-H伸缩振动区,X可以是O、N、C或S等原子。

O-H基的伸缩振动出现在3650 ~3200 cm-1 范围内,它可以作为判断有无醇类、酚类和有机酸类的重要依据。

当醇和酚溶于非极性溶剂(如CCl4),浓度于0.01mol. dm-3时,在3650 ~3580 cm-1 处出现游离O-H基的伸缩振动吸收,峰形尖锐,且没有其它吸收峰干扰,易于识别。

当试样浓度增加时,羟基化合物产生缔合现象,O-H基的伸缩振动吸收峰向低波数方向位移,在3400 ~3200 cm-1 出现一个宽而强的吸收峰。

胺和酰胺的N-H伸缩振动也出现在3500~3100 cm-1 ,因此,可能会对O-H伸缩振动有干扰。

C-H的伸缩振动可分为饱和和不饱和的两种。

饱和的C-H伸缩振动出现在3000 cm-1以下,约3000~2800 cm-1 ,取代基对它们影响很小。

如-CH3 基的伸缩吸收出现在2960 cm-1和2876 cm-1附近;R2CH2基的吸收在2930 cm-1 和2850 cm-1附近;R3CH基的吸收基出现在2890 cm-1 附近,但强度很弱。

红外吸收光谱法(IR)

红外吸收光谱法(IR)

• 3、红外吸收光谱与分子结构的关系 一、基团的特征峰与相关峰 1、特征峰与相关峰 特征峰——具有能代表某基团存在并有较高强 度的特征频率的吸收峰。可用以鉴定官能团。 相关峰——某基团的一组特征峰构成该基团的 相关峰。 2、红外光谱的分区 常见有机物基团在4000~670cm-1有特征基团频 率。红外光谱划分为6个区域:
有些因素使红外吸收峰增多 (1)倍频和组合频的出现 (2)振动耦合 (3)费米(Fermi)共振 振动耦合——当两个基团位置相邻,且振动频率相近,有一个 公用原子连接,相应的特征峰发生分裂形成两个峰。 费米共振——泛频峰与基频峰的耦合 影响吸收峰强弱的因素:分子在振动能级之间的跃迁概率和振 动过程中的偶极矩的变化。 A、分子由基态振动能级(0=0)向第一激发态(1=0)跃迁的 概率较大,因此基频峰较强,倍频峰较弱或很弱。 B、极性基团(O-H、C=O、N-H 等)振动时,偶极矩变化 较大,有较强的吸收峰; 非极性基团(C-C、C=C等)的吸收峰较弱;分子越对称, 吸收峰越弱。
偶极矩() =分子所带电量(q)正负电荷中心距离(d) 非极性双原子分子(N2、O2、H2): 分子完全对称(d=0),无红外吸收。 极性分子( 0): 由于分子中的振动使d的瞬时值不断变化,从而不 断变化,有一个固定的变化频率。当照射的红外光 的频率与分子的偶极矩的变化频率相匹配时,分子 的振动(红外活性振动)与红外光发生振动偶合而 增加振动能,振幅加大,即分子由振动基态跃迁到 激发态。——吸收红外光
• (2).傅里叶变换红外吸收光谱仪(FTIR)简介 原理:检测器得到一个干涉强度对光程差和红外光频率的函 数图,经过电子计算机进行复杂的傅立叶变换,得到普通的 吸光度或透光率随波数变化的红外光谱图。
(2)傅里叶变换红外光谱仪 (FTIR)

第三章红外光谱IR

第三章红外光谱IR
• 杂散光不影响检测。 • 对温度湿度要求不高。
红外样品的制备
• 固体样品:溴化钾压片法 、糊状法 、溶 液法 、薄膜法 、显微切片 、热裂解法
• 液体样品的制备:溶液法、成膜法 • 气体样品的制备:充入气体样品槽。
气体样品槽
各种化学键的红外吸收位置
六、各种有机化合物的红外光谱
• 饱和烃 • 不饱和烃 • 醇、酚和醚 • 含羰基化合物 • 含氮化合物 • 其他含杂原子有机化合物 • 金属有机化合物 • 高分子化合物 • 无机化合物
环的张力增大时, 环上有关官能团的吸收频率逐 渐升高。 环内双键的C=C伸缩振动吸收频率随环的减小而降低。
VC=C 1645
1610 1560
H
H
H
υ C=C υ =C H
1645cm-1 3017cm-1
1610cm-1 3040cm-1
1565cm-1 3060cm-1
5、空间位阻
一般共轭使振动频率降低
• 含有若干个相同的化学键的振动频率发生 分裂的现象称为耦合效应。当一个化学键 的伸缩振动与另一个化学键的振动吸收频 率很接近时,就会发生振动耦合。
• 一个化学键的某一种振动的基频和他自己 或另一个连在一起的化学键的某一种振动 的倍频或组频很接近时,可以发生耦合, 这种耦合成为费米共振。
五. 红外吸收峰的强度
1、烷烃
• C-H伸缩振动:对称伸缩振动(ν s)和反对称 伸缩振动(ν as) ,在2800-3000cm-1之间, ν as较ν s在较高频率。
• C-H弯曲振动:1475-700 cm-1 ,甲基的对称变 形振动出现在1375 cm-1处 ,对于异丙基和叔 丁基,吸收峰发生分裂。
• 碳碳骨架振动:750-720cm-1为-(CH2)2-的骨架 振动,1253-1000cm-1为分叉甲基的骨架振动。

NMR,VU,IR,MS四大图谱解析

NMR,VU,IR,MS四大图谱解析

13C-NMR谱图解析13C-NMR谱图解析流程1.分于式的确定2.由宽带去偶语的谱线数L与分子式中破原子数m比较,判断分子的对称性.若L=m,每一个碳原子的化学位移都不相同,表示分子没有对称性;若L<m,表示分子有一定的对称性,L值越小,分子的对称性越高。

3.标出各谙线的化学位移Qc,确定谙线的归属在结构鉴定中,常用的13C-NMR技术是宽带去偶和偏共振去偶。

根据宽带去偶谱测定的化学位移,偏共振去偶谱中各类碳的偶合谱线数,以及峰高相对和对称状况,对各谱线作大体归属,从而辨别碳核的类型和可能的官能团。

结构比较复杂的化合物,根据上述方法对13C-NMR谱线归属碰到困难时,可借助测定T1值作进一步的辨别,特别在归属不同季碳的谱线时,T1值的测定更有其实用价值。

另外,在1H-NMR谱线归属明确的情况下,还可采用质子选择去偶技术来归属难以辨认的13C-NMR 谱线。

在偏共振去偶时出现的虚假远程偶合现象也可以为归属某些特殊结构单元提供有用的信息,1H谱与13C谱相结合,有利于彼此信号归属。

各类碳核的化学位移范围如下图所示:表1基团类型Qc/ppm烷0-60炔60-90烯,芳香环90-160羰基1604.组合可能的结构式在谱线归属明确的基础上,列出所有的结构单元,并合理地组合成一个或几个可能的工作结构。

5.确定结构式用全部光谱材料和化学位移经验计算公式验证并确定惟一的或可能性最大的结构式,或与标准谱图和数据表进行核对。

经常使用的标准谱图和数据表有:经验计算参数1.烷烃及其衍生物的化学位移一般烷烃灸值可用Lindeman-Adams经验公式近似地计算:∑Qc5.2=nA-+式中:一2.5为甲烷碳的化学位移九值;A为附加位移参数,列于下表,为具有某同一附加参数的碳原子数。

表2注:1(3).1(4)为分别与三级碳、四级碳相连的一级碳;2(3)为与三级碳相连的二级碳,依此类推。

取代烷烃的Qc为烷烃的取代基效应位移参数的加和。

IR谱图解析

IR谱图解析

如: 孤氢(1,3,5取代) 邻接二氢(1,4取代) 邻接三氢(1,3取代;1,2,3取代) 邻接四氢(1,2取代) 邻接五氢(单取代) 710690cm-1 邻接六氢(苯)
900850cm-1 860800cm-1 810750cm-1 700730cm-1 770730cm-1
675cm-1
红外谱图解析综述
3. 双键伸缩振动区(19001200cm-1) 主要包括C=C,C=O,-NO2,S=O,P=O等键的伸缩振动和芳环 的骨架振动等。 (1)烯烃:C=C 16801620cm-1 (强度可变)(图2A,B,C,D峰3) 共轭作用,波数偏低,强度增加。
(2)苯环:骨架振动在16201450cm-1范围内,常有四个吸收峰。 1600cm-1和1500cm-1(强度可变,这二个对确定苯环结构有用) 1580cm-1(较弱,但在共轭体中增强) 1450cm-1(常与CH2剪式振动1470cm-1重叠) (图4A,B,C,D峰2、3,图5A,B,C,D峰3、4,图9B峰4、5,图16A峰4) (3)羰基: C=O 18501550cm-1 (强,容易识别) 根据C=O基出现的不同位置,可判别是何种羰基化合物,如酸,酯 ,酮,醛,酸酐,酰胺,酰卤,羧酸盐,醌,二酰基过氧化物等等。
(4) 硝基 -NO2:(图12A峰2、3,B峰2、3、4,C峰2,3,4,D峰3,4) 脂肪族: as 15651545 (-1550cm-1) (强) s 13851350 (-1370cm-1) (强) 芳香族: as 15501500cm-1 s 13651290cm-1 比脂肪族稍低
730650cm-1例外较多 (图2C峰6)
R R ' C =C R C =C R'
R ' 三取代 ' H R ' 四取代 ' R '' '

IR解谱

IR解谱

第一节:概述1、红外吸收光谱与紫外吸收光谱一样是一种分子吸收光谱。

红外光的能量(△E=0.05-1.0ev)较紫外光(△E=1-20ev)低,当红外光照射分子时不足以引起分子中价电子能级的跃迁,而能引起分子振动能级和转动能级的跃迁,故红外吸收光谱又称为分子振动光谱或振转光谱。

2、红外光谱的特点:特征性强、适用范围广。

红外光谱对化合物的鉴定和有机物的结构分析具有鲜明的特征性,构成化合物的原子质量不同、化学键的性质不同、原子的连接次序和空间位置不同都会造成红外光谱的差别。

红外光谱对样品的适用性相当广泛,无论固态、液态或气态都可进行测定。

3、红外光谱波长覆盖区域:0.76 mm ~ 1000mm.红外光按其波长的不同又划分为三个区段。

(1)近红外:波长在0.76-2.5mm之间(波数12820-4000cm-1)(2)中红外:波长在2.5-25mm(在4000-400 cm-1)通常所用的红外光谱是在这一段的(2.5-15mm,即4000-660 cm-1)光谱范围,本章内容仅限于中红外光谱。

(3)远红外:波长在25~1000mm(在400-10 cm-1)转动光谱出现在远红外区。

4、红外光谱图:当物质分子中某个基团的振动频率和红外光的频率一样时,分子就要吸收能量,从原来的振动能级跃迁到能量较高的振动能级,将分子吸收红外光的情况用仪器记录,就得到红外光谱图。

5、红外光谱表示方法:(1)红外光谱图红外光谱图以透光率T %为纵坐标,表示吸收强度,以波长l ( mm) 或波数s (cm-1)为横坐标,表示吸收峰的位置,现主要以波数作横坐标。

波数是频率的一种表示方法(表示每厘米长的光波中波的数目)。

通过吸收峰的位置、相对强度及峰的形状提供化合物结构信息,其中以吸收峰的位置最为重要。

(2)将吸收峰以文字形式表示:如下图可表示为,3525cm-1(m),3097cm-1(m),1637cm-1(s)。

这种方法指出了吸收峰的归属,带有图谱解析的作用。

红外光谱分析方法

红外光谱分析方法

ν C O 1235 cm 1
该化合物为结构 2
练习
(书后P276题15) (书后P276题15)
ν φ H 3030
ν
as CH 3
ν C =(芳) 1588 , 和1471 1494 C
2925
as δ CH 3
s δ CH 3 1380 1442 ν C N 1303, 1268
γ φ H 748cm1 (单)
ν NH 3430 , (双) 3300
δ NH 2 1622
续前
解: U = 2 + 2 × 7 + 1 9 = 4 推测可能含苯环 2 3030 cm 1 可能为ν φ H
1588 , 和1471cm 1 1494 (三峰) 可能为ν C =(芳环) C 748cm 1 (单峰) 可能为γ φ H (双取代)
否定结构 4
续前
综上所述,峰归属如下 :
ν φ H 3060 ,3040 和3020 cm 1
1584 和 1493 cm 1 ν C =(芳环) 1600 , C
γ φ H (单取代) 756 和 702 cm 1 (双峰) ν CH 2 2938 ,2918 和 2860 cm 1 δ CH 2 1452 cm 1
图示
图示
二,IR光谱解析实例 IR光谱解析实例
练习 : 某化合物C9H10O,其IR光谱主要吸收峰位为3080, 某化合物C ,其IR光谱主要吸收峰位为3080, 3040,2980,2920,1690( ),1600,1580,1500, 3040,2980,2920,1690(s),1600,1580,1500, 1370,1230,750,690cm1370,1230,750,690cm-1,试推断分子结构 解: U = 2 + 2 × 9 10 = 5 可能含有苯环 2 1 1690 cm 强吸收 为ν C =O 3080 ,3040 cm 1有吸收 可能为ν φ H

IR谱图解析

IR谱图解析

B:苯环上H原子的面外变形吸收峰位置取决于苯环的取代类型, 即与苯环上相邻H原子的数目有关,与取代基的类型基本上无关。随着 邻接H原子数目的增加,C-H面外变形的波数减少。
如: 孤氢(1,3,5取代) 邻接二氢(1,4取代) 邻接三氢(1,3取代;1,2,3取代) 邻接四氢(1,2取代) 邻接五氢(单取代)
从1460cm-1和1380cm-1峰的相对强度可判断化合物链的长短。
红外谱图解析综述
B:和非碳原子相连时,CH3和CH2的变形振动发生位移。如S-CH3、 O-CH3.光谱解析时需注意。
C:当一个C 原子上存在二个CH3或三个CH3时,1380cm-1峰裂分:异
丙基 CH CH3
CH3
3)。叔丁基
O R-C-H
1740 1730 1700缔合1760游离
O R-C-OM
O R-C-NH2
1650(酰胺谱带I) 16001500和1400
O= =O
1667
红外谱图解析综述
如果C=O基与双键,苯环共轭。C=O基的伸缩振动频率比上述相应位置 要低,强度增加。在解析光谱时必须注意。(图8A峰2,B峰4,C峰2,D峰1 酮羰基,峰2羧酸盐羰基,图9A峰2,B峰3,C峰2,D峰3,图10A峰2,B峰1,C峰2,D 峰1,图11A峰3,B峰3,C峰2酰胺谱带Ⅰ,图16B峰3,C峰2)
s -N=C=O -1385(弱)无实用价值。
红外谱图解析综述
3. 双键伸缩振动区(19001200cm-1) 主要包括C=C,C=O,-NO2,S=O,P=O等键的伸缩振动和芳环
的骨架振动等。
(1)烯烃:C=C 16801620cm-1 (强度可变)(图2A,B,C,D峰3) 共轭作用,波数偏低,强度增加。

波谱解析IR

波谱解析IR
*分子的能量: E分子=E移+E转+E振+E电子 E光子=hν光=ΔE振 *化学键的偶极矩与分子的偶极矩(μ): *红外光可分为三个区域: 近红外区(泛频区): 12500-4000 cm-1 (波 数ν); 中红外区(基本振动区) : 4000-400 cm-1 远红外区(转动区) : 400-25 cm-1
空间障碍
COCH3 COCH3 CH3 1663 1686 1693 H3C CH3 COCH3 CH3
跨环效应
环外双键
CH2 CH2
CH2
CH2
1651 O
1657 O
1678
Oห้องสมุดไป่ตู้
1680 O
1716
1745
1775
1810
环内双键
1650
1646
1611
1566
1641
3. 氢键效应: *氢键的形成, 通常可使伸缩振动频率向 低波数方向移动, 且谱带变宽。 *对于固态或液态的羧酸, 由于氢键的作用, 分子以二聚体形式存在, 羟基伸缩振动出 现在3200-2500cm-1区间, 表现为一个宽 而散的吸收峰, 非常特征, 常用于羧酸的 鉴定。
• 合频:电磁波的能量正好等于二个基频跃 迁能量的总和时,则同时激发二个基频振 动到相应激发态,称为合频。 • 差频:电磁波的能量正好等于二个基频跃 迁能量之差的吸收谱带。实际为一个振动 状态由基态跃迁到激发态,同时另一个振 动状态由激发态回到基态的过程。 • 热带:由第一激发态跃迁到第二激发态所 产生的吸收谱带称为热带。 • 组频峰(泛频峰):倍频、合频、差频峰 的总称。
亚甲基的振动模式:
谱图解析——正己烷
在 2962cm-1 处 的 峰 是 CH3 基 团的不对称伸缩振动。这种 不 对 称 伸 缩 振 动 范 围 2962±10cm-1 ,事实上,存 在两个简并的不对称伸缩振 动(显示其中一个)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一节:概述1、红外吸收光谱与紫外吸收光谱一样是一种分子吸收光谱。

红外光的能量(△E=0.05-1.0ev)较紫外光(△E=1-20ev)低,当红外光照射分子时不足以引起分子中价电子能级的跃迁,而能引起分子振动能级和转动能级的跃迁,故红外吸收光谱又称为分子振动光谱或振转光谱。

2、红外光谱的特点:特征性强、适用范围广。

红外光谱对化合物的鉴定和有机物的结构分析具有鲜明的特征性,构成化合物的原子质量不同、化学键的性质不同、原子的连接次序和空间位置不同都会造成红外光谱的差别。

红外光谱对样品的适用性相当广泛,无论固态、液态或气态都可进行测定。

3、红外光谱波长覆盖区域:0.76 mm ~ 1000mm.红外光按其波长的不同又划分为三个区段。

(1)近红外:波长在0.76-2.5mm之间(波数12820-4000cm-1)(2)中红外:波长在2.5-25mm(在4000-400 cm-1)通常所用的红外光谱是在这一段的(2.5-15mm,即4000-660 cm-1)光谱范围,本章内容仅限于中红外光谱。

(3)远红外:波长在25~1000mm(在400-10 cm-1)转动光谱出现在远红外区。

4、红外光谱图:当物质分子中某个基团的振动频率和红外光的频率一样时,分子就要吸收能量,从原来的振动能级跃迁到能量较高的振动能级,将分子吸收红外光的情况用仪器记录,就得到红外光谱图。

5、红外光谱表示方法:(1)红外光谱图红外光谱图以透光率T %为纵坐标,表示吸收强度,以波长l ( mm) 或波数s (cm-1)为横坐标,表示吸收峰的位置,现主要以波数作横坐标。

波数是频率的一种表示方法(表示每厘米长的光波中波的数目)。

通过吸收峰的位置、相对强度及峰的形状提供化合物结构信息,其中以吸收峰的位置最为重要。

(2)将吸收峰以文字形式表示:如下图可表示为,3525cm-1(m),3097cm-1(m),1637cm-1(s)。

这种方法指出了吸收峰的归属,带有图谱解析的作用。

第二节各类化合物的红外光谱特征有机化合物的数目非常大,但组成有机化合物的常见元素只有10种左右,组成有机化合物的结构单元即称为基团的原子组合数目约有几十种。

根据上述讨论,基团的振动频率主要取决于组成基团原子质量(即原子种类)和化学键力常数(即化学键的种类)。

一般来说,组成分子的各种基团如C-H、C-N 、C=C、C=O 、C-X等都有特定的红外吸收区域(特征吸收峰),根据特征吸收峰可以推断物质的结构。

所以,有必要对各类有机化合物的光谱特征加以总结。

一、烷烃烷烃中只有C-H键组成的C-H,CH2,CH3基团,纯烷烃的吸收峰只有C-H的伸缩、弯曲振动和C-C骨架振动。

1、νC-H 烷烃的C-H伸缩振动频率一般不超过3000cm-1,甲基和亚甲基的C-H伸缩分别有对称和不对称振动相应出现四个吸收峰,甲基的C-H伸缩振动,对称的出现在2872cm-1,不对称的出现在2962cm-1;亚甲基的对称出现在2853cm-1,不对称的出现在2926 cm-1。

一般不对称的吸收强度稍强,在高分辨的红外仪(光栅型),可以在2853-2962 cm-1处,清楚地观察到这四个峰,而在低分辨的仪器中,两两重叠只能看到两个峰。

如下图:注意:环丙烷的VC-H移向高频,出现在3080-3040cm-1(S)叔C-H的伸缩吸收很弱,(2890cm-1左右)通常消失在其它脂肪族的C-H吸收中,对于鉴定分析用途不大。

2、δC-H :C-H弯曲振动在1460cm-1和1380cm-1处有特征吸收,前者归于甲基及次甲基的不对称δC-H,后者归于甲基的δS 1380cm-1峰对结构非常敏感,对于识别甲基很有用。

(1)孤立甲基在1380cm-1附近出现单峰,其强度对分子中甲基数目的增多而增强,(2)偕二甲基–CH(CH3)2 此峰变为双峰(1391- 1380cm-1(S)和1372-1365 cm-1(S)),而且两个峰的强度大约相等。

1380cm-1附近出现双峰是验证分子中有偕二甲基的根据,(必须注意:环己烷醇、甾体和二萜类含有的乙酰氧基-OOC-CH3,其中甲基在1380-1365 cm-1出现双峰,不要误认为分子中有异丙基)。

(3)叔丁基1380 cm-1的峰也分裂为双峰,但这两个峰一强一弱(1380 cm-1为弱峰,1365 cm-1峰为强峰),足以与偕二甲基区分。

(4)当化合物具有四个以上邻接的CH2基团时,几乎总是在(715-725,通常在720cm-1处)有谱带(CH2面内摇摆),它在鉴别上是有用的。

3、C-C骨架振动在1250-800cm-1范围,因特征性不强用途不大。

总结:d C-H 1460 , 1380cm-1孤立的甲基-CH3 1380单峰C(CH3)2 1380双峰,强度1:1(1391- 1380cm-1, 1372-1365 cm- 1)-C(CH3)3 1380双峰,强度1:2(低频率为高频率峰强度的2倍)( 1380 cm-1为弱峰,1365 cm-1峰为强峰)当化合物具有四个以上邻接的CH2基团时,几乎总是在(715-725,通常在720cm-1处)有谱带(CH2以内摇摆),它在鉴别上是有用的。

二、烯烃烯烃分子有三类特征吸收峰(ν=C-H、νC=C、δ=C-H)1、ν=C-H(包括苯环的C-H、环丙烷的C-H)在3000cm-1以上,苯出现在3010-3100cm-1的范围内,在甲基及亚甲基伸缩振动大峰左侧出现一个小峰,这是识别不饱和化合物的一个有效特征吸收。

2、νC=C孤立烯烃双键的伸缩振动吸收位置在1680-1600cm-1,其强度和位置决定于双键碳原子取代基数目及其性质。

分子对称性越高,吸收峰越弱。

如果有四个取代烷基时,常常不能看到它的吸收峰,一元取代烯RCH=CH2 和偏二取代烯R2C=CH2的νC=C强于三元取代烯R2C=CHR 和四元取代烯R2C=CH2;顺式强于反式,末端双键强于链中双键。

(1)C5以上无张力环烯的νC=C 与开链烯的频率相同,环张力愈大,νC=C 环内愈低,但环外双键νC=C 愈高。

(2)在共轭体系中,由于共轭使键趋于平均化,而使C=C的力常数降低,伸缩振动向低波移,例如C=C-C=C中,C=C 吸收移至1600cm-1区域,由于两个C=C 的振动偶合. 在1650cm-1 有时还能看到另一个峰,但1600cm-1 的峰是鉴定共轭双键的特征峰。

3 δC-H面内变形振动在1500-1000cm-1,结构不敏感,也不特征,用途不大。

面外弯曲振动在1000-700cm-1,对结构敏感,对不同类型的烯烃有其特征吸收,而且比较固定,可以借以判断双键取代情况和构型很有用,如:RCH=CH2 995-985 cm-1 (s) δ-CH=935-905cm-1 (s) δ=CH2R2C=CH2 895-885 cm-1 (s)三、炔烃:有三个特征带:ν≡C-H ,δ≡C-H ,ν C≡C1、ν≡C-H在四氯化碳溶液中位于3320-3310cm-1,强峰,固体或液体时在3300-3250cm-1。

峰形较窄,易于OH和NH区别开。

2、δ≡C-H≡C-H的面外弯曲振动通常在900-610cm-1出现一宽的谱带,有时在1375-1225cm-1处,出现它的倍频峰,此峰也很宽,但很弱。

3、ν C≡C碳碳叁键的力常数比碳碳双键的高得多,所以C≡C的伸缩振动出现在高波数区域。

一般一元取代炔烃RC≡CH 的νC≡C在2140-2100cm-1,二元取代炔烃在RC≡CR1 的νC≡C 在2260-2190cm-1,乙炔和二取代乙炔因分子对称,没有VC≡C的吸收峰。

所以看不到νC≡C 的谱带,不一定表示没有C≡C。

四、芳香烃的红外光谱芳香族化合物有三种特征吸收带:即苯环上的芳氢伸缩振动,面外弯曲振动和骨架振动。

1、芳环上的νC-H3010-3080cm-1(m)2、芳环的骨架伸缩振动νC-C1650-1450cm-1(m)出现2~4个吸收峰,由于芳环为一共轭体系,其C=C伸缩振动频率位于双键区的低频一端,往往1500cm-1附近的吸收峰比1600cm-1强。

3、芳环的面外弯曲振动(g=C-H )在650-900cm-1,这一区域的吸收峰位置与芳环上取代基性质无关,而与芳环上相连H的个数有关,相连H越多, g=C-H 振动频率愈低,吸收强度越大.五、醇和酚羟基化合物有三个特征吸收带,即νO-H ,νC-O,δO-H。

1、νO-H游离的醇和酚的νO-H在3700-3500cm-1以内(峰尖、强),缔和的羟基在3500-3200cm-1以内峰形强而宽。

大部分是以氢键缔和的形式存在,只有在气相和非极性溶剂中,很稀的溶液内减少分子间氢键,出现游离的νO-H吸收带,分子间氢键与溶液浓度有关,形成分子内氢键的与浓度无关,但频率更低,例如水杨醛、邻硝基苯酚、邻羟基苯乙酮等。

它们VO-H 出现在3200-2500cm-1。

2、δO-H醇和酚的δO-H(面内弯曲振动)吸收带在1500~1300cm-1附近。

3、νC-O位于1250~1000cm-1附近,通常是谱图中最强吸收峰之一,可根据这个区域的吸收峰确定伯醇、仲醇和叔醇。

各种醇的δO-H和νC-O的吸收如下:范围δO-H (面内)cm-1 νC-O cm-1伯醇1350-1260 1050仲醇1350-1260 1100叔醇 1410-1310 1150酚1410-1310 1300-1200六、醚醚的特征吸收谱带是C-O-C不对称伸缩振动谱带,各种醚的不对称νC-O-C 为:1、脂肪醚:1150-1060cm-1(s)2、芳香醚两个C-O 伸缩振动吸收1270 ~ 1230 cm-1(为Ar-O 伸缩)1050 ~ 1000 cm-1(为R-O 伸缩3、乙烯醚:1225-1200cm-1(s)注意: 醇、酯和内酯在此区域附近也有吸收,但光谱中同时存在–OH 和C=O 其它特征峰时。

4、六元环中的C-O-C 基团与无环醚中的此基团的吸收具有相同的频率当环变小时,不对称C-O-C 伸缩振动逐渐向低波移。

5、在环氧乙烷类中有三条特征谱带可作为这种基团的存在的标志:1280-1240cm-1 (S-m)环的不对称伸缩振动950-810cm-1 (S-m)环的对称伸缩振动?840-750cm-1 (S)七、羰基化合物(包括醛、酮、羧酸、酯、酸酐和酰胺等)羰基吸收峰是在1900-1600cm-1区域出现强的C=O伸缩吸收谱带,这个谱带由于其位置的相对恒、强度高、受干扰小,已成为红外光谱图中最容易辨别的谱带之一。

此吸收峰最常出现在1755-1670cm-1,但不同类别的化合物C=O 吸收峰也各不相同。

相关文档
最新文档