初二数学上期末能力提高测试题

合集下载

广东初二初中数学期末考试带答案解析

广东初二初中数学期末考试带答案解析

广东初二初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.正比例函数y=﹣2x的图象经过的点是()A.(1,2)B.(1,﹣2)C.(﹣2,1)D.(﹣2,﹣1)2.计算的结果是()A.12B.C.D.43.要使有意义,则x的取值范围是()A.x≥0B.x≥4C.x≤4D.x≥﹣44.下列命题中正确的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行的四边形是平行四边形5.我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定7名同学参加决赛,他们的决赛成绩各不相同,其中李华已经知道自己的成绩,但能否进前四名,他还必须清楚这七名同学成绩的()A.众数B.平均数C.中位数D.方差6.如图,已知在▱ABCD中,∠A+∠C=140°,则∠B的度数是()A.110°B.120°C.140°D.160°7.以下列长度(单位:cm)为边长的三角形是直角三角形的是()A.5,6,7B.7,8,9C.6,8,10D.5,7,98.下列根式中,属于最简二次根式的是()A.B.C.D.9.已知过点(2,﹣3)的直线y=ax+b(a≠0)不经过第一象限,设s=a+2b,则s的取值范围是()A.﹣5≤s≤﹣B.﹣6<s≤﹣C.﹣6≤s≤﹣D.﹣7<s≤﹣二、填空题1.化简:= .2.直线y=kx+3经过点(1,2),则k= .3.在Rt △ABC 中,∠C=90°,AB=15,AC=12,则BC= .4.如图,菱形ABCD 中,∠A=60°,BD=7,则菱形ABCD 的周长为 .5.已知一次函数y=﹣2x+1的图象经过A (x 1,y 1),B (x 2,y 2)两点,若x 1<x 2,则y 1 y 2.(填“>”、“<”或“=”)三、解答题1.如图,在平面直角坐标系中,四边形OABC 是边长为2的正方形,顶点A 、C 分别在x ,y 轴的正半轴上.点Q 在对角线OB 上,且QO=OC ,连接CQ 并延长CQ 交边AB 于点P .则点P 的坐标为 .2.5分)八(2)班组织了一次环保知识竞赛,甲乙两队各5人的成绩如下表所示(10分制).甲981069(1)指出甲队成绩的中位数; (2)指出乙队成绩的众数;(3)若计算出方差为:=1.84,=1.04,判断哪队的成绩更整齐?3.(5分)如图,在Rt △ABC 中,∠C=90°,∠B=60°,AB=8,求AC 的长.4.(7分)已知一次函数的图象经过点A (1,1)和点B (2,﹣1),求这个一次函数的解析式.5.(7分)如图,已知四边形ABCD 是平行四边形.(1)作∠A 的平分线交BC 于点E .(用尺规作图,保留作图痕迹,不用写作法) (2)在(1)中,若AD=6,EC=2,求平行四边形ABCD 的周长.6.(7分)某公司招聘人才,对应聘者分别进行阅读能力,思维能力和表达能力三项测试,其中甲、乙两人的成绩如下表:(单位:分)项目 阅读思维表达(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将能被录用?(2)根据实际需要,公司将阅读、思维和表达能力三项测试得分按3:5:2的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?7.(8分)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BC相交于点N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长.8.已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC 分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B出发后几小时,两人相遇?四、计算题(5分)计算:.广东初二初中数学期末考试答案及解析一、选择题1.正比例函数y=﹣2x的图象经过的点是()A.(1,2)B.(1,﹣2)C.(﹣2,1)D.(﹣2,﹣1)【答案】B.【解析】由y=﹣2x可得(x≠0),这四个选项中只要纵坐标与横坐标的比值等于-2,说明这个点在正比例函数y=﹣2x的图象上,四个选项中只有选项B的纵坐标与横坐标的比值等于-2,所以只有点B在正比例函数y=﹣2x的图象上,故答案选B.【考点】正比例函数图象上点的坐标特征.2.计算的结果是()A.12B.C.D.4【答案】B.【解析】根据二次根式的乘法法则可得.故答案选B.【考点】二次根式的乘法法则.3.要使有意义,则x的取值范围是()A.x≥0B.x≥4C.x≤4D.x≥﹣4【答案】C.【解析】要使有意义,必须满足4-x≥0,即x≤4,故答案选C.【考点】二次根式有意义的条件.4.下列命题中正确的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行的四边形是平行四边形【答案】B.【解析】选项A,根据菱形的判定定理可得一组邻边相等的平行四边形是菱形,选项A错误;选项B,根据矩形的判定定理可得有一个角是直角的平行四边形是矩形,选项B正确;选项C,根据菱形的判定定理可得对角线垂直的平行四边形是菱形,选项C错误;选项D,根据平行四边形的判定定理可得两组对边平行的四边形是平行四边形,选项D错误.故答案选B.【考点】特殊四边形的判定定理.5.我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定7名同学参加决赛,他们的决赛成绩各不相同,其中李华已经知道自己的成绩,但能否进前四名,他还必须清楚这七名同学成绩的()A.众数B.平均数C.中位数D.方差【答案】C.【解析】由题意可知,总共有7个人,且他们的分数互不相同,第4的成绩是中位数,李华要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,进行比较即可知能否进前四名.故答案选C.【考点】中位数.6.如图,已知在▱ABCD中,∠A+∠C=140°,则∠B的度数是()A.110°B.120°C.140°D.160°【答案】A.【解析】根据平行四边形的性质可得∠A=∠C,又因∠A+∠C=140°,即可知∠A=∠C=70°.再由平行线的性质可得∠A+∠B=180°即可得∠B=110°,故答案选A.【考点】平行四边形的性质;平行线的性质.7.以下列长度(单位:cm)为边长的三角形是直角三角形的是()A.5,6,7B.7,8,9C.6,8,10D.5,7,9【答案】C.【解析】选项A中,52+62≠72;选项B中,72+82≠92;选项D中,52+72≠92;根据勾股定理的逆定理可得,选项A、B、D中的三条线段都不能组成直角三角形;选项C中,62+82=102,根据勾股定理的逆定理可得,选项C中三条线段能组成直角三角形.故答案选C.【考点】勾股定理的逆定理.8.下列根式中,属于最简二次根式的是()A .B .C .D .【答案】D .【解析】最简二次根式必须满足两个条件:•被开方数中不含有未开尽方的因数或因式;‚被开方数中不含有分母.选项A 、B 、C 不符合条件,只有选项D 符合条件,故答案选D . 【考点】最简二次根式.9.已知过点(2,﹣3)的直线y=ax+b (a≠0)不经过第一象限,设s=a+2b ,则s 的取值范围是( ) A .﹣5≤s≤﹣ B .﹣6<s≤﹣ C .﹣6≤s≤﹣D .﹣7<s≤﹣【答案】B .【解析】由直线y=ax+b (a≠0)不经过第一象限可得a <0,b≤0,又因直线y=ax+b (a≠0)经过点(2,﹣3),可得2a+b=—3,所以,b=—2a —3,因此 s=a+2b=a+2(—2a —3)=—3a —6,由a <0可得s >—6,‚s=a+2b=+2b=,由b≤0可得s≤—,所以s 的取值范围是﹣6<s≤﹣.故答案选B .【考点】一次函数图象与系数的关系.二、填空题1.化简:= . 【答案】5.【解析】由二次根式的性质可得=5. 【考点】二次根式的性质.2.直线y=kx+3经过点(1,2),则k= . 【答案】-1.【解析】把(1,2)代入直线y=kx+3,即可得方程k+3=2,解得k=-1. 【考点】一次函数图象上点的坐标特征.3.在Rt △ABC 中,∠C=90°,AB=15,AC=12,则BC= . 【答案】9.【解析】在Rt △ABC 中,∠C=90°,AB=15,AC=12,根据勾股定理可得,BC=.【考点】勾股定理.4.如图,菱形ABCD 中,∠A=60°,BD=7,则菱形ABCD 的周长为 .【答案】28.【解析】根据菱形四条边都相等的性质可得AB=AD ,又因∠A=60°,根据有一个角是60°的等腰三角形是等边三角形即可判定△ABD 为等边三角形,所以AB=AD=BD=7,再根据菱形的性质即可得菱形ABCD 的周长为7×4=28. 【考点】菱形的性质;等边三角形的判定及性质.5.已知一次函数y=﹣2x+1的图象经过A (x 1,y 1),B (x 2,y 2)两点,若x 1<x 2,则y 1 y 2.(填“>”、“<”或“=”) 【答案】>【解析】一次函数y=﹣2x+1中,k=﹣2<0,根据一次函数的性质可得y 随x 的增大而减小,又因x 1<x 2,即可判定y 1>y 2.【考点】一次函数的性质.三、解答题1.如图,在平面直角坐标系中,四边形OABC 是边长为2的正方形,顶点A 、C 分别在x ,y 轴的正半轴上.点Q 在对角线OB 上,且QO=OC ,连接CQ 并延长CQ 交边AB 于点P .则点P 的坐标为 .【答案】(2,4﹣2).【解析】已知正方形OABC 是边长为2,根据勾股定理可求得OB=2,由QO=OC 可得BQ=OB ﹣OQ=2﹣2,再由AB ∥OC 可判定△BPQ ∽△OCQ ,根据相似三角形的性质可得,即,解得BP=2﹣2,所以AP=AB ﹣BP=2﹣(2﹣2)=4﹣2,即可得点P 的坐标为(2,4﹣2). 【考点】相似三角形的判定与性质;正方形的性质.2.5分)八(2)班组织了一次环保知识竞赛,甲乙两队各5人的成绩如下表所示(10分制).甲981069(1)指出甲队成绩的中位数; (2)指出乙队成绩的众数;(3)若计算出方差为:=1.84,=1.04,判断哪队的成绩更整齐?【答案】(1)9;(2)8;(3)乙队.【解析】(1)把甲队成绩由高到低排列为10,9,9,8,6,中间的数是9,即为中位数为9;(2)乙队数据中出现次数最多的数为8,即众数8;(3)方差反映了一组数据的稳定程度,方差越小,成绩越整齐. 试题解析:解:(1)甲队成绩由高到低排列为:10,9,9,8,6,由此可知甲队成绩的中位数是9; (2)乙队成绩中8出现的次数最多,所以乙队成绩的众数是8; (3)因为=1.84>=1.04,所以成绩更整齐的是乙队. 【考点】中位数;众数;方差.3.(5分)如图,在Rt △ABC 中,∠C=90°,∠B=60°,AB=8,求AC 的长.【答案】.【解析】在Rt △ABC 中,利用直角三角形的两锐角互余可得∠A=30°,再根据30°的锐角所对的直角边等于斜边的一半可得BC 的长,最后利用勾股定理即可求AC 得长. 试题解析:解:如图所示, 在Rt △ABC 中,∠C=90°,∠B=60°, ∴∠A=30°, 又∵AB=8, ∴BC=4, ∴AC=. 【考点】直角三角形的性质;勾股定理.4.(7分)已知一次函数的图象经过点A (1,1)和点B (2,﹣1),求这个一次函数的解析式.【答案】y=﹣2x+3.【解析】把A(1,1)和点B(2,﹣1),代入一次函数y=kx+b,可得到一个关于k、b的方程组,再解方程组即可得到k、b的值,即可得到一次函数的解析式.试题解析:解:设一次函数y=kx+b的图象经过两点A(1,1)和点B(2,﹣1)∵A(1,1)和点B(2,﹣1),∴,解得:,∴一次函数解析式为:y=﹣2x+3.【考点】用待定系数法求一次函数解析式.5.(7分)如图,已知四边形ABCD是平行四边形.(1)作∠A的平分线交BC于点E.(用尺规作图,保留作图痕迹,不用写作法)(2)在(1)中,若AD=6,EC=2,求平行四边形ABCD的周长.【答案】(1)详见解析;(2)20.【解析】(1)以点A为圆心,任意长为半径画弧,交AD,AB于两点,分别以这两点为圆心,大于这两点的距离为半径画弧,两弧交于一点O,作射线AO,交BC于点E;(2)根据在平行四边形ABCD中,AD∥CB,∠DAE=∠BEA,由(1)知,∠DAE=∠BAE,∠BEA=∠BAE,得到AB=EB,在平行四边形ABCD中,BC=AD=6,由EC=2,所以EB=BC﹣EC=6﹣2=4=AB,所以平行四边形ABCD的周长为:2×(6+4)=20.试题解析:解:(1)如图所示:(2)∵在平行四边形ABCD中,AD∥CB,∴∠DAE=∠BEA,由(1)知,∠DAE=∠BAE,∴∠BEA=∠BAE,∴AB=EB,在平行四边形ABCD中,BC=AD=6,∵EC=2,∴EB=BC﹣EC=6﹣2=4=AB,∴平行四边形ABCD的周长为:2×(6+4)=20.【考点】作已知角的角平分线;平行四边形的性质;等腰三角形的判定.6.(7分)某公司招聘人才,对应聘者分别进行阅读能力,思维能力和表达能力三项测试,其中甲、乙两人的成绩如下表:(单位:分)项目阅读思维表达(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将能被录用?(2)根据实际需要,公司将阅读、思维和表达能力三项测试得分按3:5:2的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?【答案】(1)乙将被录用;(2)甲将被录用.【解析】(1)根据平均数的计算公式分别进行计算后比较大小即可判定谁将能被录用;(2)根据加权平均数的计算公式分别计算后比较大小即可判定谁将能被录用.=(93+86+73)÷3=84(分),试题解析:解:(1)∵甲的平均成绩是:x甲乙的平均成绩为:x 乙=(95+81+79)÷3=85(分), ∴x 乙>x 甲, ∴乙将被录用; (2)根据题意得:=85.5(分),=84.8(分); ∴x 甲>x 乙, ∴甲将被录用.【考点】算术平均数;加权平均数.7.(8分)如图,在矩形ABCD 中,对角线BD 的垂直平分线MN 与AD 相交于点M ,与BC 相交于点N ,连接BM ,DN .(1)求证:四边形BMDN 是菱形; (2)若AB=4,AD=8,求MD 的长.【答案】(1)详见解析;(2)MD 长为5.【解析】(1)根据矩形性质可知AD ∥BC ,从而得∠MDO=∠NBO ,∠DMO=∠BNO ,利用AAS 可证△DMO ≌△BNO ,根据全等三角形的对应角相等可得OM=ON ,再由对角线互相平分的四边形是平行四边形可得平行四边形BMDN ,根据对角线互相垂直的平行四边形是菱形即可判定菱形BMDN ;根据菱形性质可知DM=BM ,设MD 长为x ,则MB=DM=x ,AM=8-x ,在Rt △AMB 中,根据勾股定理得出BM 2=AM 2+AB 2,即x 2=x 2﹣16x+64+16,解得x 的值即可. 试题解析:(1)证明:∵四边形ABCD 是矩形, ∴AD ∥BC ,∠A=90°,∴∠MDO=∠NBO ,∠DMO=∠BNO , ∵在△DMO 和△BNO 中,,∴△DMO ≌△BNO (AAS ), ∴OM=ON , ∵OB=OD ,∴四边形BMDN 是平行四边形, ∵MN ⊥BD ,∴平行四边形BMDN 是菱形.(2)解:∵四边形BMDN 是菱形, ∴MB=MD ,设MD 长为x ,则MB=DM=x , 在Rt △AMB 中,BM 2=AM 2+AB 2 即x 2=(8﹣x )2+42, 解得:x=5,所以MD 长为5.【考点】矩形的性质;勾股定理;平行四边形的判定;菱形的性质及判定.8.已知甲、乙两地相距90km ,A ,B 两人沿同一公路从甲地出发到乙地,A 骑摩托车,B 骑电动车,图中DE ,OC 分别表示A ,B 离开甲地的路程s (km )与时间t (h )的函数关系的图象,根据图象解答下列问题.(1)A 比B 后出发几个小时?B 的速度是多少?(2)在B出发后几小时,两人相遇?【答案】(1)A比B后出发1小时,B的速度为20km/h;(2)B出发小时后两人相遇.【解析】(1)观察图象即可得出A比B后出发1小时;由点C的坐标为(3,60)即可求出B的速度;(2)根据图象确定有关点的坐标,然后利用待定系数法求出OC、DE的解析式,联立两函数解析式建立方程求解即可得答案.试题解析:解:(1)由图可知,A比B后出发1小时,B的速度:60÷3=20(km/h);(2)由图可知点D(1,0),C(3,60),E(3,90),设OC的解析式为y=kx,则3k=60,解得k=20,所以,y=20x,设DE的解析式为y=mx+n,则,解得,所以,y=45x﹣45,由题意得,解得,所以,B出发小时后两人相遇.【考点】一次函数的应用.四、计算题(5分)计算:.【答案】原式=.【解析】先化简二次根式后再合并同类二次根式即可.试题解析:解:原式=.【考点】二次根式的加减法.。

八年级上册数学 全册全套试卷测试卷附答案

八年级上册数学 全册全套试卷测试卷附答案

八年级上册数学全册全套试卷测试卷附答案一、八年级数学全等三角形解答题压轴题(难)1.(1)问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC,CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是延长FD到点G,使DG=BE,连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;(2)探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=12∠BAD,上述结论是否仍然成立,并说明理由;(3)结论应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等.接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进,1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇与指挥中心O 之间夹角∠EOF=70°,试求此时两舰艇之间的距离.(4)能力提高:如图4,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°.若BM=1,CN=3,试求出MN的长.【答案】(1)EF=BE+FD;(2)EF=BE+FD仍然成立;(3)210;(4)MN10.【解析】试题分析:(1)由△AEF≌△AGF,得EF=GF,又由BE=DG,得EF=GF=DF+DG=DF+BE;(2)延长FD到点G,使DG=BE,连接AG,证明△ABE≌△ADG,再证△AEF≌△AGF,得EF=FG,即可得到答案;(3)连接EF,延长AE,BF相交于点C,根据探索延伸可得EF=AE+FB,即可计算出EF的长度;(4)在△ABC外侧作∠CAD=∠BAM,截取AD=A M,连接CD,DN,证明△ACD≌△ABM,得到CD=BM,再证MN=ND,则求出ND的长度,即可得到答案.解:(1)由△AEF≌△AGF,得EF=GF,又由BE=DG,得EF=GF=DF+DG=DF+BE;(2)EF=BE+FD仍然成立.证明:如答图1,延长FD到点G,使DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADG+∠ADC=180°,∴∠B=∠ADG,在△ABE与△ADG中,AB=AD,∠B=∠ADG,BE=DG,∴△ABE≌△ADG.∴AE=AG,∠BAE=∠DAG.又∵∠EAF=12∠BAD,∴∠F AG=∠F AD+∠DAG=∠F AD+∠BAE=∠BAD-∠EAF=∠BAD-12∠BAD=12∠BAD,∴∠EAF=∠GAF.在△AEF与△AGF中,AE=AG,∠EAF=∠GAF,AF=AF,∴△AEF≌△AGF.∴EF=FG.又∵FG=DG+DF=BE+DF.∴EF=BE+FD.(3)如答图2,连接EF,延长AE,BF相交于点C,在四边形AOBC中,∵∠AOB=30°+90°+20°=140°,∠FOE=70°=12∠AOB,又∵OA=OB,∠OAC+∠OBC=60°+120°=180°,符合探索延伸中的条件,∴结论EF=AE+FB成立.∴EF=AE+FB=1.5×(60+80)=210(海里).答:此时两舰艇之间的距离为210海里;(4)如答图3,在△ABC外侧作∠CAD=∠BAM,截取AD=AM,连接CD,DN,在△ACD与△ABM中,AC=AB,∠CAD=∠BAM,AD=AM,则△ACD≌△ABM,∴CD=BM=1,∠ACD=∠ABM=45°,∵∠NAD=∠NAC+∠CAD=∠NAC+∠BAM=∠BAC-∠MAN=45°,∴∠MAD=∠MAN+∠NAD=90°=2∠NAD,又∵AM=AD,∠NCD+∠MAD=(∠ACD+∠ACB)+90°=180°,∴对于四边形AMCD符合探索延伸,则ND=MN,∵∠NCD=90°,CD=1,CN=3,∴MN=ND=10.2.在四边形ABCD 中,E 为BC 边中点.(Ⅰ)已知:如图,若AE 平分∠BAD,∠AED=90°,点F 为AD 上一点,AF=AB.求证:(1)△ABE≌AFE;(2)AD=AB+CD(Ⅱ)已知:如图,若AE 平分∠BAD,DE 平分∠ADC,∠AED=120°,点F,G 均为AD上的点,AF=AB,GD=CD.求证:(1)△GEF 为等边三角形;(2)AD=AB+12BC+CD.【答案】(Ⅰ)(1)证明见解析;(2)证明见解析;(Ⅱ)(1)证明见解析;(2)证明见解析.【解析】【分析】(Ⅰ)(1)运用SAS 证明△ABE ≌AFE 即可;(2)由(1)得出∠AEB=∠AEF ,BE=EF ,再证明△DEF ≌△DEC (SAS ),得出DF=DC ,即可得出结论;(Ⅱ)(1)同(Ⅰ)(1)得△ABE ≌△AFE (SAS ),△DGE ≌△DCE (SAS ),由全等三角形的性质得出BE=FE ,∠AEB=∠AEF ,CE=GE ,∠CED=∠GED ,进而证明△EFG 是等边三角形;(2)由△EFG 是等边三角形得出GF=EE=BE=12BC ,即可得出结论. 【详解】(Ⅰ)(1)∵AE 平分∠BAD ,∴∠BAE=∠FAE ,在△ABE 和△AFE 中, AB AF BAE FAE AE AE ⎪∠⎪⎩∠⎧⎨===,∴△ABE ≌△AFE (SAS ),(2)∵△ABE ≌△AFE ,∴∠AEB=∠AEF ,BE=EF ,∵E 为BC 的中点,∴BE=CE ,∴FE=CE ,∵∠AED=∠AEF+∠DEF=90°,∴∠AEB+∠DEC=90°,∴∠DEF=∠DEC ,在△DEF 和△DEC 中,FE CE DEF DEC DE DE ⎪∠⎪⎩∠⎧⎨===,∴△DEF ≌△DEC (SAS ),∴DF=DC ,∵AD=AF+DF ,∴AD=AB+CD ;(Ⅱ)(1)∵E 为BC 的中点,∴BE=CE=12BC , 同(Ⅰ)(1)得:△ABE ≌△AFE (SAS ),△DEG ≌△DEC (SAS ),∴BE=FE ,∠AEB=∠AEF ,CE=GE ,∠CED=∠GED ,∵BE=CE ,∴FE=GE ,∵∠AED=120°,∠AEB+∠CED=180°-120°=60°,∴∠AEF+∠GED=60°,∴∠GEF=60°,∴△EFG 是等边三角形,(2)∵△EFG 是等边三角形,∴GF=EF=BE=12BC , ∵AD=AF+FG+GD , ∴AD=AB+CD+12BC . 【点睛】本题考查了全等三角形的判定与性质、等边三角形的判定与性质等知识;熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.3.如图,在ABC ∆中,90C ∠=︒,4cm AC BC ==,点D 是斜边AB 的中点.点E 从点B 出发以1cm/s 的速度向点C 运动,点F 同时从点C 出发以一定的速度沿射线CA 方向运动,规定当点E 到终点C 时停止运动.设运动的时间为x 秒,连接DE 、DF .(1)填空:ABC S ∆=______2cm ;(2)当1x =且点F 运动的速度也是1cm/s 时,求证:DE DF =;(3)若动点F 以3cm /s 的速度沿射线CA 方向运动,在点E 、点F 运动过程中,如果存在某个时间x ,使得ADF ∆的面积是BDE ∆面积的两倍,请你求出时间x 的值.【答案】(1)8;(2)见解析;(3)45或4. 【解析】【分析】(1)直接可求△ABC 的面积;(2)连接CD ,根据等腰直角三角形的性质可求:∠A=∠B=∠ACD=∠DCB=45°,即BD=CD ,且BE=CF ,即可证△CDF ≌△BDE ,可得DE=DF ;(3)分△ADF 的面积是△BDE 的面积的两倍和△BDE 与△ADF 的面积的2倍两种情况讨论,根据题意列出方程可求x 的值.【详解】解:(1)∵S △ABC =12⨯AC×BC ∴S △ABC =12×4×4=8(cm 2) 故答案为:8(2)如图:连接CD∵AC=BC ,D 是AB 中点∴CD 平分∠ACB又∵∠ACB=90°∴∠A=∠B=∠ACD=∠DCB=45°∴CD=BD依题意得:BE=CF∴在△CDF 与△BDE 中BE CF B DCA BD CD =⎧⎪∠=∠⎨⎪=⎩∴△CDF ≌△BDE (SAS )∴DE=DF(3)如图:过点D 作DM ⊥BC 于点M ,DN ⊥AC 于点N ,∵AD=BD ,∠A=∠B=45°,∠AND=∠DMB=90°∴△ADN ≌△BDM (AAS )∴DN=DM当S △ADF =2S △BDE .∴12×AF×DN=2×12×BE×DM ∴|4-3x|=2x ∴x 1=4,x 2=45综上所述:x=45或4 【点睛】本题考查了动点问题的函数图象,全等三角形的性质和判定,利用分类思想解决问题是本题的关键.4.如图1,在等边△ABC 中,E 、D 两点分别在边AB 、BC 上,BE =CD ,AD 、CE 相交于点F .(1)求∠AFE 的度数;(2)过点A 作AH ⊥CE 于H ,求证:2FH +FD =CE ;(3)如图2,延长CE 至点P ,连接BP ,∠BPC =30°,且CF =29CP ,求PF AF的值. (提示:可以过点A 作∠KAF =60°,AK 交PC 于点K ,连接KB ) 【答案】(1)∠AFE =60°;(2)见解析;(3)75【解析】【分析】 (1)通过证明 BCE CAD ≌ 得到对应角相等,等量代换推导出60AFE ∠=︒; (2)由(1)得到60AFE ∠=︒,CE AD = 则在Rt AHF △ 中利用30°所对的直角边等于斜边的一半,等量代换可得;(3)通过在PF 上取一点K 使得KF =AF ,作辅助线证明ABK 和ACF 全等,利用对应边相等,等量代换得到比值.(通过将ACF 顺时针旋转60°也是一种思路.)【详解】(1)解:如图1中.∵ABC 为等边三角形,∴AC =BC ,∠BAC =∠ABC =∠ACB =60°,在BCE 和CAD 中,60BE CD CBE ACD BC CA =⎧⎪∠=∠=︒⎨⎪=⎩,∴ BCE CAD ≌(SAS ),∴∠BCE =∠DAC ,∵∠BCE +∠ACE =60°,∴∠DAC +∠ACE =60°,∴∠AFE =60°.(2)证明:如图1中,∵AH ⊥EC ,∴∠AHF =90°,在Rt △AFH 中,∵∠AFH =60°,∴∠FAH =30°,∴AF =2FH ,∵ EBC DCA ≌,∴EC =AD ,∵AD =AF +DF =2FH +DF ,∴2FH +DF =EC .(3)解:在PF 上取一点K 使得KF =AF ,连接AK 、BK ,∵∠AFK =60°,AF =KF ,∴△AFK 为等边三角形,∴∠KAF =60°,∴∠KAB =∠FAC ,在ABK 和ACF 中,AB AC KAB ACF AK AF =⎧⎪∠=∠⎨⎪=⎩,∴ ABK ACF ≌(SAS ),BK CF =∴∠AKB =∠AFC =120°,∴∠BKE =120°﹣60°=60°,∵∠BPC =30°,∴∠PBK =30°, ∴29BK CF PK CP ===, ∴79PF CP CF CP =-=, ∵45()99AF KF CP CF PK CP CP CP ==-+=-= ∴779559CP PF AF CP == . 【点睛】掌握等边三角形、直角三角形的性质,及三角形全等的判定通过一定等量代换为本题的关键.5.如图,在ABC ∆中,5BC = ,高AD 、BE 相交于点O , 23BD CD =,且AE BE = . (1)求线段 AO 的长;(2)动点 P 从点 O 出发,沿线段 OA 以每秒 1 个单位长度的速度向终点 A 运动,动点 Q 从 点 B 出发沿射线BC 以每秒 4 个单位长度的速度运动,,P Q 两点同时出发,当点 P 到达 A 点时,,P Q 两点同时停止运动.设点 P 的运动时间为 t 秒,POQ ∆的面积为 S ,请用含t 的式子表示 S ,并直接写出相应的 t 的取值范围;(3)在(2)的条件下,点 F 是直线AC 上的一点且 CF BO =.是否存在t 值,使以点 ,,B O P 为顶 点的三角形与以点 ,,F C Q 为顶点的三角形全等?若存在,请直接写出符合条件的 t 值; 若不存在,请说明理由.【答案】(1)5;(2)①当点Q 在线段BD 上时,24QD t =-,t 的取值范围是102t <<;②当点Q 在射线DC 上时,42QD t =-,,t 的取值范围是152t <≤;(3)存在,1t =或53. 【解析】【分析】(1)只要证明△AOE ≌△BCE 即可解决问题;(2)分两种情形讨论求解即可①当点Q 在线段BD 上时,QD=2-4t ,②当点Q 在射线DC 上时,DQ=4t-2时;(3)分两种情形求解即可①如图2中,当OP=CQ 时,BOP ≌△FCQ .②如图3中,当OP=CQ 时,△BOP ≌△FCQ ;【详解】解:(1)∵AD 是高,∴90ADC ∠=∵BE 是高,∴90AEB BEC ∠=∠=∴90EAO ACD ∠+∠=,90EBC ECB ∠+∠=,∴EAO EBC ∠=∠在AOE ∆和BCE ∆中,EAO EBC AE BEAEO BEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴AOE ∆≌BCE ∆∴5AO BC ==;(2)∵23BD CD =,=5BC ∴=2BD ,=3CD ,根据题意,OP t =,4BQ t =,①当点Q 在线段BD 上时,24QD t =-, ∴21(24)22S t t t t =-=-+,t 的取值范围是102t <<. ②当点Q 在射线DC 上时,42QD t =-,∴21(42)22S t t t t =-=-,t 的取值范围是152t <≤ (3)存在. ①如图2中,当OP=CQ 时,∵OB=CF ,∠POB=∠FCQ ,∴△BOP ≌△FCQ .∴CQ=OP ,∴5-4t ═t ,解得t=1,②如图3中,当OP=CQ 时,∵OB=CF ,∠POB=∠FCQ ,∴△BOP ≌△FCQ .∴CQ=OP ,∴4t-5=t ,解得t=53. 综上所述,t=1或53s 时,△BOP 与△FCQ 全等. 【点睛】 本题考查三角形综合题、全等三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二、八年级数学 轴对称解答题压轴题(难)6.如图,将两个全等的直角三角形△ABD 、△ACE 拼在一起(图1).△ABD 不动,(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC(图2),证明:MB=MC.(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC (图3),判断并直接写出MB、MC的数量关系.(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.【答案】(1)见解析;(2)MB=MC.理由见解析;(3)MB=MC还成立,见解析.【解析】【分析】(1)连接AM,根据全等三角形的对应边相等可得AD=AE,AB=AC,全等三角形对应角相等可得∠BAD=∠CAE,再根据等腰三角形三线合一的性质得到∠MAD=∠MAE,然后利用“边角边”证明△ABM和△ACM全等,根据全等三角形对应边相等即可得证;(2)延长DB、AE相交于E′,延长EC交AD于F,根据等腰三角形三线合一的性质得到BD=BE′,然后求出MB∥AE′,再根据两直线平行,内错角相等求出∠MBC=∠CAE,同理求出MC∥AD,根据两直线平行,同位角相等求出∠BCM=∠BAD,然后求出∠MBC=∠BCM,再根据等角对等边即可得证;(3)延长BM交CE于F,根据两直线平行,内错角相等可得∠MDB=∠MEF,∠MBD=∠MFE,然后利用“角角边”证明△MDB和△MEF全等,根据全等三角形对应边相等可得MB=MF,然后根据直角三角形斜边上的中线等于斜边的一半证明即可.【详解】(1)如图(2),连接AM,由已知得△ABD≌△ACE,∴AD=AE,AB=AC,∠BAD=∠CAE.∵MD=ME,∴∠MAD=∠MAE,∴∠MAD-∠BAD=∠MAE-∠CAE,即∠BAM=∠CAM.在△ABM和△ACM中,AB=AC,∠BAM=∠CAM,AM=AM,∴△ABM≌△ACM(SAS),∴MB=MC.(2)MB=MC.理由如下:如图(3),延长CM交DB于F,延长BM到G,使得MG=BM,连接CG.∵CE∥BD,∴∠MEC=∠MDF,∠MCE=∠MFD.∵M是ED的中点,∴MD=ME.在△MCE和△MFD中,∠MCE=∠MFD,∠MEC=∠MDF,MD=ME,∴△MCE≌△MFD(AAS).∴MF=MC.∴在△MFB和△MCG中,MF=MC,∠FMB=∠CMG,BM=MG,∴△MFB≌△MCG(SAS).∴FB=GC,∠MFB=∠MCG,∴CG∥BD,即G、C、E在同一条直线上.∴∠GCB=90°.在△FBC和△GCB中,FB=GC,∠FBC=∠GCB,BC=CB,∴△FBC≌△GCB(SAS).∴FC=GB.∴MB=12GB=12FC=MC.(3)MB=MC还成立.如图(4),延长BM交CE于F,延长CM到G,使得MG=CM,连接BG.∵CE∥BD,∴∠MDB=∠MEF,∠MBD=∠MFE.又∵M是DE的中点,∴MD=ME.在△MDB和△MEF中,∠MDB=∠MEF,∠MBD=∠MFE,MD=ME,∴△MDB≌△MEF(AAS),∴MB=MF.∵CE∥BD,∴∠FCM=∠BGM.在△FCM和△BGM中,CM=MG,∠CMF=∠GMB,MF=MB,∴△FCM≌△BGM(SAS).∴CF=BG,∠FCM=∠BGM.∴CF//BG,即D、B、G在同一条直线上.在△CFB和△BGC中,CF=BG,∠FCB=∠GBC,CB=BC,∴△CFB≌△BGC(SAS).∴BF=CG.∴MC=12CG=12BF=MB.【点睛】本题考查了全等三角形的判定与性质,等腰三角形三线合一的性质,等角对等边的性质,直角三角形斜边上的中线等于斜边的一半的性质,以及三角形的中位线定理,综合性较强,但难度不大,作辅助线构造出等腰三角形或全等三角形是解题的关键.7.如图,ABC 中,A ABC CB =∠∠,点D 在BC 所在的直线上,点E 在射线AC 上,且AD AE =,连接DE .(1)如图①,若35B C ∠=∠=︒,80BAD ∠=︒,求CDE ∠的度数;(2)如图②,若75ABC ACB ∠=∠=︒,18CDE ∠=︒,求BAD ∠的度数;(3)当点D 在直线BC 上(不与点B 、C 重合)运动时,试探究BAD ∠与CDE ∠的数量关系,并说明理由.【答案】(1)40°;(2)36°;(3)∠BAD 与∠CDE 的数量关系是2∠CDE=∠BAD .【解析】【分析】(1)根据等腰三角形的性质得到∠BAC=110°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(2)根据三角形的外角的性质得到∠E=75°-18°=57°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β,分3种情况:①如图1,当点D 在点B 的左侧时,∠ADC=x°-α,②如图2,当点D 在线段BC 上时,∠ADC=y°+α,③如图3,当点D 在点C 右侧时,∠ADC=y°-α,根据这3种情况分别列方程组即,解方程组即可得到结论.【详解】(1)∵∠B=∠C=35°,∴∠BAC=110°,∵∠BAD=80°,∴∠DAE=30°,∵AD=AE ,∴∠ADE=∠AED=75°,∴∠CDE=∠AED-∠C=75°−35°=40°;(2)∵∠ACB=75°,∠CDE=18°,∴∠E=75°−18°=57°,∴∠ADE=∠AED=57°,∴∠ADC=39°,∵∠ABC=∠ADB+∠DAB=75°,∴∠BAD=36°.(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β①如图1,当点D 在点B 的左侧时,∠ADC=x°﹣α∴y x a y x a β⎧=+⎨=-+⎩①②,①-②得,2α﹣β=0, ∴2α=β;②如图2,当点D 在线段BC 上时,∠ADC=y°+α∴y x a y a x β⎧=+⎨+=+⎩①②,②-①得,α=β﹣α, ∴2α=β;③如图3,当点D 在点C 右侧时,∠ADC=y°﹣α∴180180y a x x y a β︒︒⎧-++=⎨++=⎩①②,②-①得,2α﹣β=0, ∴2α=β.综上所述,∠BAD 与∠CDE 的数量关系是2∠CDE=∠BAD .【点睛】考核知识点:等腰三角形性质综合运用.熟练运用等腰三角形性质和三角形外角性质,分类讨论分析问题是关键.8.已知△ABC .(1)在图①中用直尺和圆规作出B 的平分线和BC 边的垂直平分线交于点O (保留作图痕迹,不写作法).(2)在(1)的条件下,若点D 、E 分别是边BC 和AB 上的点,且CD BE =,连接OD OE 、求证:OD OE =;(3)如图②,在(1)的条件下,点E 、F 分别是AB 、BC 边上的点,且△BEF 的周长等于BC 边的长,试探究ABC ∠与EOF ∠的数量关系,并说明理由.【答案】(1)见解析;(2)见解析;(3)ABC ∠与EOF ∠的数量关系是2180ABC EOF ∠+∠=,理由见解析.【解析】【分析】(1)利用基本作图作∠ABC 的平分线;利用基本作图作BC 的垂直平分线,即可完成; (2)如图,设BC 的垂直平分线交BC 于G ,作OH ⊥AB 于H ,用角平分线的性质证明OH=OG ,BH=BG ,继而证明EH =DG ,然后可证明OEH ODG ∆≅∆,于是可得到OE=OD ;(3)作OH ⊥AB 于H ,OG ⊥CB 于G ,在CB 上取CD=BE ,利用(2)得到 CD=BE ,OEH ODG ∆≅∆,OE=OD ,EOH DOG ∠=∠,180ABC HOG ∠+∠=,可证明EOD HOG ∠=∠,故有180ABC EOD ∠+∠=,由△BEF 的周长=BC 可得到DF=EF,于是可证明OEF OGF ∆≅∆,所以有EOF DOF ∠=∠,然后可得到ABC ∠与EOF ∠的数量关系.【详解】解:(1)如图,就是所要求作的图形;(2)如图,设BC 的垂直平分线交BC 于G ,作OH ⊥AB 于H ,∵BO 平分∠ABC ,OH ⊥AB ,OG 垂直平分BC ,∴OH=OG ,CG=BG ,∵OB=OB,∴OBH OBG ∆≅∆,∴BH=BG ,∵BE=CD ,∴EH=BH-BE=BG-CD=CG-CD=DG ,在OEH ∆和ODG ∆中,90OH OG OHE OGD EH DG =⎧⎪∠=∠=⎨⎪=⎩, ∴OEH ODG ∆≅∆,∴OE=OD .(3)ABC ∠与EOF ∠的数量关系是2180ABC EOF ∠+∠=,理由如下; 如图 ,作OH ⊥AB 于H ,OG ⊥CB 于G ,在CB 上取CD=BE ,由(2)可知,因为 CD=BE ,所以OEH ODG ∆≅∆且OE=OD ,∴EOH DOG ∠=∠,180ABC HOG ∠+∠=,∴EOD EOG DOG EOG EOH HOG ∠=∠+∠=∠+∠=∠,∴180ABC EOD ∠+∠=,∵△BEF 的周长=BE+BF+EF=CD+BF+EF=BC∴DF=EF,在△OEF 和△OGF 中,OE OD EF FD OF OF =⎧⎪=⎨⎪=⎩, ∴OEF OGF ∆≅∆,∴EOF DOF ∠=∠,∴2EOD EOF ∠=∠,∴2180ABC EOF ∠+∠=.【点睛】本题考查了角平分线的性质、垂直平分线的性质及全等三角形的判定与性质,还考查了基本作图.熟练掌握相关性质作出辅助线是解题关键,属综合性较强的题目,有一定的难度,需要有较强的解题能力.9.已知等边△ABC 的边长为4cm ,点P ,Q 分别是直线AB ,BC 上的动点.(1)如图1,当点P从顶点A沿AB向B点运动,点Q同时从顶点B沿BC向C点运动,它们的速度都为lcm/s,到达终点时停止运动.设它们的运动时间为t秒,连接AQ,PQ.①当t=2时,求∠AQP的度数.②当t为何值时△PBQ是直角三角形?(2)如图2,当点P在BA的延长线上,Q在BC上,若PQ=PC,请判断AP,CQ和AC之间的数量关系,并说明理由.【答案】(1)①∠AQP=30°;②当t=43秒或t=83秒时,△PBQ为直角三角形;(2)AC=AP+CQ,理由见解析.【解析】【分析】(1)①由△ABC是等边三角形知AQ⊥BC,∠B=60°,从而得∠AQB=90°,△BPQ是等边三角形,据此知∠BQP=60°,继而得出答案;②由题意知AP=BQ=t,PB=4﹣t,再分∠PQB=90°和∠BPQ=90°两种情况分别求解可得.(2)过点Q作QF∥AC,交AB于F,知△BQF是等边三角形,证∠QFP=∠PAC=120°、∠BPQ=∠ACP,从而利用AAS可证△PQF≌△CPA,得AP=QF,据此知AP=BQ,根据BQ+CQ=BC=AC可得答案.【详解】解:(1)①根据题意得AP=PB=BQ=CQ=2,∵△ABC是等边三角形,∴AQ⊥BC,∠B=60°,∴∠AQB=90°,△BPQ是等边三角形,∴∠BQP=60°,∴∠AQP=∠AQB﹣∠BQP=90°﹣60°=30°;②由题意知AP=BQ=t,PB=4﹣t,当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,得:4﹣t=2t,解得t=43;当∠BPQ=90°时,∵∠B=60°,∴BQ =2BP ,得t =2(4﹣t ),解得t =83;∴当t =43秒或t =83秒时,△PBQ 为直角三角形; (2)AC =AP +CQ ,理由如下:如图所示,过点Q 作QF ∥AC ,交AB 于F ,则△BQF 是等边三角形,∴BQ =QF ,∠BQF =∠BFQ =60°,∵△ABC 为等边三角形,∴BC =AC ,∠BAC =∠BFQ =60°,∴∠QFP =∠PAC =120°,∵PQ =PC ,∴∠QCP =∠PQC ,∵∠QCP =∠B +∠BPQ ,∠PQC =∠ACB +∠ACP ,∠B =∠ACB ,∴∠BPQ =∠ACP ,在△PQF 和△CPA 中,∵BPQ ACP QFP PAC PQ PC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△PQF ≌△CPA (AAS ),∴AP =QF ,∴AP =BQ ,∴BQ +CQ =BC =AC ,∴AP +CQ =AC .【点睛】考核知识点:等边三角形的判定和性质.利用全等三角形判定和性质分析问题是关键.10.如图,已知ABC ∆()AB AC BC <<,请用无刻度直尺和圆规,完成下列作图(不要求写作法,保留作图痕迹):∆沿着过点M的某一条直线折叠,点B与点(1)在边BC上找一点M,使得:将ABCC能重合,请在图①中作出点M;∆沿着过点N的某一条直线折叠,点B能落在(2)在边BC上找一点N,使得:将ABC⊥,请在图②中作出点N.边AC上的点D处,且ND AC【答案】(1)见详解;(2)见详解.【解析】【分析】(1)作线段BC的垂直平分线,交BC于点M,即可;(2)过点B作BO⊥BC,交CA的延长线于点O,作∠BOC的平分线交BC于点N,即可.【详解】(1)作线段BC的垂直平分线,交BC于点M,即为所求.点M如图①所示:(2)过点B作BO⊥BC,交CA的延长线于点O,作∠BOC的平分线交BC于点N,即为所求.点N如图②所示:【点睛】本题主要考查尺规作图,掌握尺规作线段的中垂线和角平分线,是解题的关键.三、八年级数学整式的乘法与因式分解解答题压轴题(难)11.(1)你能求出(a﹣1)(a99+a98+a97+…+a2+a+1)的值吗?遇到这样的问题,我们可以先从简单的情况入手,分别计算下列各式的值.(a﹣1)(a+1)=;(a ﹣1)(a 2+a +1)= ;(a ﹣1)(a 3+a 2+a +1)= ;…由此我们可以得到:(a ﹣1)(a 99+a 98+…+a +1)= .(2)利用(1)的结论,完成下面的计算:2199+2198+2197+…+22+2+1.【答案】(1)21a -,31a -,41a -,1001a -(2)20021-【解析】【分析】根据简单的多项式运算推出同类复杂多项式运算结果的一般规律,然后根据找出的规律进行解决较难的运算问题.【详解】解:(1)21a - 31a - 41a - 1001a -(2)1991981972222221+++⋅⋅⋅++=()21- ⨯(1991981972222221+++⋅⋅⋅++)=20021-.【点睛】考查了学生的基础运算能力和对同一类运算问题计算结果的一般规律性洞察力.12.先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、十字相乘法等等,其中十字相乘法在高中应用较多.十字相乘法:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数(如图),如:将式子232x x ++和223x x +-分解因式,如图:()()23212x x x x ++=++;()()223123x x x x +-=-+.请你仿照以上方法,探索解决下列问题:(1)分解因式:2712y y ;(2)分解因式:2321x x --.【答案】(1)(x ﹣3)(x ﹣4);(2)(x ﹣1)(3x+1).【解析】【分析】(1)将1分成1乘以1,12分成-3乘以-4,交叉相乘的结果为-7,即可得到答案;(2)将3分成1乘以3,-1分成-1乘以1,由此得到分解因式的结果.【详解】(1)y2﹣7y+12=(x﹣3)(x﹣4);(2)3x2﹣2x﹣1=(x﹣1)(3x+1).【点睛】此题考查十字相乘法分解因式,将二次项系数及常数项分解成两个因数相乘,交叉相乘的结果相加得到一次项的系数,能准确分解因数是解题的关键.13.一个四位正整数m各个数位上的数字互不相同且都不为0,四位数m的前两位数字之和为5,后两位数字之和为11,称这样的四位数m为“半期数”;把四位数m的各位上的数字依次轮换后得到新的四位数m′,设m′=abcd,在m′的所有可能的情况中,当|b+2c﹣a ﹣d|最小时,称此时的m′是m的“伴随数”,并规定F(m′)=a2+c2﹣2bd;例如:m=2365,则m′为:3652,6523,5236,因为|6+10﹣3﹣2|=11,|5+4﹣6﹣3|=0,|2+6﹣5﹣6|=3,0最小,所以6523叫做2365的“伴随数”,F(5236)=52+32﹣2×2×6=10.(1)最大的四位“半期数”为;“半期数”3247的“伴随数”是.(2)已知四位数P=abcd是“半期数”,三位数Q=2ab,且441Q﹣4P=88991,求F(P')的最大值.【答案】(1)4192,7324;(2)42.【解析】【分析】(1)根据“半期数”的定义分析最大的四位“半期数”应该是千位最大,最大只能为4,所以百位是1,十位最大是9,个位是2,所以最大半期数为:4192,分析3247的所有可能为,2473,4732,7324.根据题意|b+2c﹣a﹣d|最小的数是7324,所以3247的“伴随数”是:7324.(2)根据定义可知a+b=5,c+d=11.再根据441Q﹣4P=88991,可以算出P的值,从而求出F(P')的最大值.【详解】解;(1)根据题意可得最大的四位“半期数”应该是千位最大,最大只能为4,所以百位是1,十位最大是9,个位是2,所以最大半期数为:4192.∵3247的所有可能为,2473,4732,7324.∵|4+14﹣2﹣3|=13,|7+6﹣4﹣2|=7,|3+4﹣7﹣4|=4, 4最小,所以7324为3247的“伴随数”.故答案为4192;7324.(2)∵P为“半期数”∴a+b=5,c+d=11,∴b=5﹣a,d=11﹣c,∴P=1000a+100(5﹣a)+10c+11﹣c=900a+9c+511.∵Q=200+10a+c,∴441Q﹣4P=88991,∴441(200+10a+c)﹣4(900a+9c+511)=88991化简得:2a+c=7①当a=1时,c=5,此时这个四位数为1456符合题意;②当a =2时,c =3,此时这个四位数为2338不符合题意,舍去;③当a =3时,c =1,不符合题意,舍去;综上所述:这个四位数只能是1456,则P '可能为4561,5614,6145.∵|5+12﹣4﹣1|=12,|6+2﹣5﹣4|=1,|1+8﹣6﹣5|=2,1最小,所以5614为P 的“伴随数”,∴F (5614)=a 2+c 2﹣2bd =25+1﹣2×6×4=﹣22;F (4561)=a 2+c 2﹣2bd =16+36﹣2×5×1=42;F (6145)=a 2+c 2﹣2bd =36+16﹣2×1×5=42;∴F (P ')的最大值为42.【点睛】解决本道题的关键是理解好半期数的定义:一个四位正整数m 各个数位上的数字互不相同且都不为0,四位数m 的前两位数字之和为5,后两位数字之和为11,称这样的四位数m 为“半期数”,然后根据当|b +2c ﹣a ﹣d |最小时,称此时的m '是m 的“伴随数”来确定伴随数.14.阅读下列材料:利用完全平方公式,可以将多项式2(0)ax bx c a ++≠变形为2()a x m n ++的形式, 我们把这样的变形方法叫做多项式2ax bx c ++的配方法.运用多项式的配方法及平方差公式能对一些多项式进行分解因式.例如:21124x x ++=222111111()()2422x x ++-+ =21125()24x +- =115115()()2222x x +++-=(8)(3)x x ++ 根据以上材料,解答下列问题:(1)用多项式的配方法将281x x +-化成2()x m n ++的形式;(2)下面是某位同学用配方法及平方差公式把多项式2340x x --进行分解因式的解答过程:老师说,这位同学的解答过程中有错误,请你找出该同学解答中开始出现错误的地方,并用“ ”标画出来,然后写出完整的、正确的解答过程:(3)求证:x ,y 取任何实数时,多项式222416x y x y +--+的值总为正数.【答案】(1)2(4)17x +- ;(2)(5)(8)x x +-;(3)见解析【解析】试题分析:(1)根据配方法,可得答案;(2)根据配方法,可得平方差公式,再根据平方差公式,可得答案;(3)根据交换律、结合率,可得完全平方公式,根据完全平方公式,可得答案.试题解析:解:(1)281x x +-=2228441x x ++--=2(4)17x +-(2)2340x x -- =222333()()40222x x -+-- =23169()24x -- =313313()()2222x x -+-- =(5)(8)x x +- (3)证明:222416x y x y +--+=22214411x x y y -++-++=22(1)(2)11x y -+-+∵2(1)x -≥0,2(2)y -≥0,∴22(1)(2)110x y -+-+>.∴x ,y 取任何实数时,多项式222416x y x y +--+的值总是正数.点睛:本题考查了配方法,利用完全平方公式:a 2±2ab +b 2=(a ±b )2配方是解题关键.15.阅读材料后解决问题:小明遇到下面一个问题:计算(2+1)(22+1)(24+1)(28+1).经过观察,小明发现如果将原式进行适当的变形后可以出现特殊的结构,进而可以应用平方差公式解决问题,具体解法如下:(2+1)(22+1)(24+1)(28+1)=(2+1)(2﹣1)(22+1)(24+1)(28+1)=(22﹣1)(22+1)(24+1)(28+1)=(24﹣1)(24+1)(28+1)=(28﹣1)(28+1)=216﹣1请你根据小明解决问题的方法,试着解决以下的问题:(1)(2+1)(22+1)(24+1)(28+1)(216+1)=_____.(2)(3+1)(32+1)(34+1)(38+1)(316+1)=_____.(3)化简:(m+n)(m2+n2)(m4+n4)(m8+n8)(m16+n16).【答案】232﹣13231 2-;【解析】【分析】(1)原式变形后,利用题中的规律计算即可得到结果;(2)原式变形后,利用题中的规律计算即可得到结果;(3)分m=n与m≠n两种情况,化简得到结果即可.【详解】(1)原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=232-1;(2)原式=12(3-1)(3+1)(32+1)(34+1)(38+1)(316+1)=32312-;(3)(m+n)(m2+n2)(m4+n4)(m8+n8)(m16+n16).当m≠n时,原式=1m n-(m-n)(m+n)(m2+n2)(m4+n4)(m8+n8)(m16+n16)=3232m nm n--;当m=n时,原式=2m•2m2…2m16=32m31.【点睛】此题考查了平方差公式,弄清题中的规律是解本题的关键.四、八年级数学分式解答题压轴题(难)16.如图,小刚家、王老师家、学校在同一条路上,小刚家到王老师家的路程为3千米,王老师家到学校的路程为0.5千米.由于小刚的父母战斗在抗震救灾第一线,为了使他能按时到校,王老师每天骑自行车送小刚上学.已知王老师骑自行车的速度是步行的3倍,每天比平时步行上班多用了20分钟,问王老师的步行速度及骑自行车的速度各是多少?【答案】王老师的步行速度是5km /h ,则王老师骑自行车的速度是15km /h .【解析】【分析】王老师接小刚上学走的路程÷骑车的速度-平时上班走的路程÷步行的速度=2060小时. 【详解】设王老师的步行速度是km /h x ,则王老师骑自行车是3km /h x , 由题意可得:330.50.520360x x ++-=,解得:5x =, 经检验,5x =是原方程的根,∴315x =答:王老师的步行速度是5km /h ,则王老师骑自行车的速度是15km /h .【点睛】本题考查列分式方程解应用题.重点在于准确地找出相等关系,需注意①王老师骑自行车接小刚所走路程是(3+3+0.5)千米;②注意单位要统一.17.我们知道,假分数可以化为整数与真分数的和的形式,例如:76112333+==+. 在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”. 例如:像33x x -+,23x x -,…这样的分式是假分式;像23x -,23x x -,…这样的分式是真分式. 类似的,假分式也可以化为整式与真分式的和(差)的形式. 例如:将分式2253x x x +-+拆分成一个整式与一个真分式的和(差)的形式. 方法一:解:由分母为3x +,可设225(3)()x x x x a b +-=+++则由22225(3)()33(3)(3)x x x x a b x ax x a b x a x a b +-=+++=++++=++++ 对于任意x ,上述等式均成立,∴3235a a b +=⎧⎨+=-⎩,解得12a b =-⎧⎨=-⎩∴225(3)(1)2(3)(1)22133333x x x x x x x x x x x x +-+--+-==-=--+++++ 这样,分式2253x x x +-+就被拆分成一个整式与一个真分式的和(差)的形式. 方法二:解:2225332(3)(3)2(3)32213333333x x x x x x x x x x x x x x x x x x x +-+---+-+-++===--=--+++++++ 这样,分式2253x x x +-+就拆分成一个整式与一个真分式的和(差)的形式. (1)请仿照上面的方法,选择其中一种方法将分式2731x x x ---拆分成一个整式与一个真分式的和(差)的形式;(2)已知整数x 使分式225112x x x +-+的值为整数,求出满足条件的所有整数x 的值. 【答案】(1)961x x ---;(2)x=-1或-3或11或-15. 【解析】【分析】 (1)先变形2731x x x ---=26691x x x x --+--,由“真分式”的定义,仿照例题即可得出结论;(2)先把分式化为真分式,再根据分式的值为整数确定整数x 的值.【详解】解:(1)2731x x x ---=26691x x x x --+-- =(1)6(1)91x x x x ----- =961x x ---; (2)225112x x x +-+= 2242132x x x x +++-+ =2(2)(2)132x x x x +++-+ =13212x x +-+,∵x是整数,225112x xx+-+也是整数,∴x+2=1或x+2=-1或x+2=13或x+2=-13,∴x=-1或-3或11或-15.【点睛】本题考查了逆用整式和分式的加减法对分式进行变形.解决本题的关键是理解真分式的定义对分子进行拆分.18.某商场计划销售A,B两种型号的商品,经调查,用1500元采购A型商品的件数是用600元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多30元.(1)求一件A,B型商品的进价分别为多少元?(2)若该商场购进A,B型商品共100件进行试销,其中A型商品的件数不大于B型的件数,已知A型商品的售价为200元/件,B型商品的售价为180元/件,且全部能售出,求该商品能获得的利润最小是多少?【答案】(1)B型商品的进价为120元, A型商品的进价为150元;(2)5500元.【解析】分析:(1)设一件B型商品的进价为x元,则一件A型商品的进价为(x+30)元,根据“用1500元采购A型商品的件数是用600元采购B型商品的件数的2倍”,这一等量关系列分式方程求解即可;(2)根据题意中的不等关系求出A商品的范围,然后根据利润=单价利润×减数函数关系式,根据函数的性质求出最值即可.详解:(1)设一件B型商品的进价为x元,则一件A型商品的进价为(x+30)元.由题意: =×2,解得x=120,经检验x=120是分式方程的解,答:一件B型商品的进价为120元,则一件A型商品的进价为150元.(2)因为客商购进A型商品m件,销售利润为w元.m≤100﹣m,m≤50,由题意:w=m(200﹣150)+(100﹣m)(180﹣120)=﹣10m+6000,∵﹣10<0,∴m=50时,w有最小值=5500(元)点睛:此题主要考查了分式方程和一次函数的应用等知识,解题关键是理解题意,学会构建方程或一次函数解决问题,注意解方式方程时要检验.19.八年级某同学在“五一”小长假中,随父母驾车去蜀南竹海观光旅游.去时走高等级公路,全程90千米;返回时,走高速公路,全程120千米.返回时的平均速度是去时平均速度的1.6倍,所用时间比去时少用了18分钟.求返回时的平均速度是多少千米每小时?【答案】返回时的平均速度是80千米/小时.。

期末能力提升测试卷(试题)六年级数学上册西师大版(有答案)

期末能力提升测试卷(试题)六年级数学上册西师大版(有答案)

2022-2023学年度第一学期期末能力提升测试卷六年级数学一、填空题(共25分)1.25吨的12是()吨;比25吨多12是()吨。

2.把243+343+443+543+643改写成一道乘法算式是()。

3.比的后项是80,比值是45,比的前项是()。

4.甲、乙两数的和是60,甲数是乙数的14,那么乙数是()。

5.一个三角形3个内角度数的比是7∶3∶2。

这个三角形最大的角是(),这是一个()三角形。

6.盒子中有形状大小相同的橙色书签5张,紫色书签2张。

小丽从盒子中任意抽取一张,抽到()书签的可能性大,抽到()书签的可能性小。

7.有一组分数分别如下排列:1 2、14、18,12、14、18,12、14、18……这列数中前20个数的和是()。

8.小娟要剪一个面积是12.56cm2的圆形纸片,她至少要准备一张边长是()cm的正方形纸。

9.一根木头锯成3段要23分钟,如果锯成6段要()分钟。

10.将7∶8的后项加上24,要使比值不变,前项要加上()。

11.把一个直径为4cm的圆形纸片平均分成若干等份,拼成一个近似的长方形。

这个长方形的周长是()cm,面积是()cm2。

12.配一种消毒水,药和水的比是1∶500,现在用药3kg,需要用水()kg。

13.甲地到乙地的距离是240km,在一幅比例尺是1∶8000000的地图上,应画()cm。

14.一个长方形的周长是48m,长与宽的比是5∶3,它的面积是()2m。

15.如图所示,一个正方形被分成A、B、C、D四个部分。

其中,A和B的面积比是2∶3,B和C的面积比是2∶1。

如果D的面积是42cm2,那么这个正方形的面积是()cm2。

16.如图,长方形草地ABCD被分为面积相等的甲、乙、丙、丁四份.其中甲的长与宽的比是2:1,那么乙的长与宽的比是().二、选择题(共10分)17.学校购买了一批跳绳,高年级分到其中的15,余下的按3∶2的比例分配给中、低年级,请问高、中、低年级是按什么比例分配这批跳绳的?()。

北师大版二年级上册数学期末测试卷(能力提升)

北师大版二年级上册数学期末测试卷(能力提升)

北师大版二年级上册数学期末测试卷一.选择题(共6题,共14分)1.姐姐有2元,买铅笔用去8角,买橡皮用去5角,还剩多少钱?()A.3角B.7角C.1元3角2.从0、1、2、9中任意选两个数相乘,积最大是(),积最小是()。

A.18B.1C.03.小丽买巧克力,一包要3元,她一共买了9包,花了( )元。

A.12B.26C.274.8个4是( )。

A.12B.24C.325.在除法里,0不能作()。

A.被除数B.除数C.商6.( )的长度大约是1厘米。

A.数学书B.图钉C.小刀二.判断题(共6题,共12分)1.当除数是7时,余数一定比7小。

()2.一个数除以7,余数可能是6、5、4、3、2、1。

()3.在除法中,余数一定要比除数小。

()4.22根同样长的小棒能搭几个三角形?列式22÷3=6(个)……4(根)。

()5.16里面最多有4个3。

()6.余数一定比除数大。

()三.填空题(共9题,共27分)1.写出得数和口诀:35÷7=(),口诀:()。

2.一个乘法算式中,乘数是7,积是21,另一个乘数是()。

3.在○里填上“>”“<”或“=”。

5角○5元5元6角○6元5角 89角○8元9角10元1角○10元1分 3元○2元9角 3角4分○3元4角4.18里面有()个6,18是6的()倍。

5.新民村在一条56米长的大路边种树,每两棵树相隔7米,一共种树()棵。

(路的两端都要种树。

)6.在括号内填上“>”“<”或“=”。

24÷3()2×221÷7()24÷645÷9()35÷5 2×3()54÷981÷9()18÷94×6()24÷37.24里面有()个4。

把12平均分成2份,每份是()。

8.填上>,<或=。

(1)6()35÷5(2)72()3×9(3)4()24÷6(4)9()27÷99.比一比。

八年级数学上册全册全套试卷培优测试卷

八年级数学上册全册全套试卷培优测试卷

八年级数学上册全册全套试卷培优测试卷一、八年级数学全等三角形解答题压轴题(难)1.如图,在ABC 中,45ABC ∠=,AD ,BE 分别为BC ,AC 边上的高,连接DE ,过点D 作DF DE ⊥与点F ,G 为BE 中点,连接AF ,DG .(1)如图1,若点F 与点G 重合,求证:AF DF ⊥;(2)如图2,请写出AF 与DG 之间的关系并证明.【答案】(1)详见解析;(2)AF=2DG,且AF ⊥DG,证明详见解析.【解析】【分析】(1) 利用条件先△DAE ≌△DBF,从而得出△FDE 是等腰直角三角形,再证明△AEF 是等腰直角三角形,即可.(2) 延长DG 至点M,使GM=DG,交AF 于点H,连接BM, 先证明△BGM ≌△EGD,再证明△BDM ≌△DAF 即可推出.【详解】解:(1)证明:设BE 与AD 交于点H..如图,∵AD,BE 分别为BC,AC 边上的高,∴∠BEA=∠ADB=90°.∵∠ABC=45°,∴△ABD 是等腰直角三角形.∴AD=BD.∵∠AHE=∠BHD,∴∠DAC=∠DBH.∵∠ADB=∠FDE=90°,∴∠ADE=∠BDF.∴△DAE ≌△DBF.∴BF=AE,DF=DE.∴△FDE 是等腰直角三角形.∴∠DFE=45°.∵G 为BE 中点,∴BF=EF.∴AE=EF.∴△AEF 是等腰直角三角形.∴∠AFE=45°.∴∠AFD=90°,即AF ⊥DF.(2)AF=2DG,且AF ⊥DG.理由:延长DG 至点M,使GM=DG,交AF 于点H,连接BM,∵点G 为BE 的中点,BG=GE.∵∠BGM ∠EGD,∴△BGM ≌△EGD.∴∠MBE=∠FED=45°,BM=DE.∴∠MBE=∠EFD,BM=DF.∵∠DAC=∠DBE,∴∠MBD=∠MBE+∠DBE=45°+∠DBE.∵∠EFD=45°=∠DBE+∠BDF,∴∠BDF=45°-∠DBE.∵∠ADE=∠BDF,∴∠ADF=90°-∠BDF=45°+∠DBE=∠MBD.∵BD=AD,∴△BDM ≌△DAF.∴DM=AF=2DG,∠FAD=∠BDM.∵∠BDM+∠MDA=90°,∴∠MDA+∠FAD=90°.∴∠AHD=90°.∴AF ⊥DG.∴AF=2DG,且AF ⊥DG【点睛】本题考查三角形全等的判定和性质,关键在于灵活运用性质.2.取一副三角板按图()1拼接,固定三角板60,()30ADC D ACD ∠=∠=,将三角板45()ABC BAC BCA ∠=∠=绕点A 依顺时针方向旋转一个大小为a 的角00)45(a ≤≤得到ABM ,图()2所示.试问:()1当a 为多少时,能使得图()2中//AB CD ?说出理由,()2连接BD ,假设AM 与CD 交于,E BM 与CD 交于F ,当00)45(a ≤≤时,探索DBM CAM BDC ∠+∠+∠值的大小变化情况,并给出你的证明.【答案】(1)15°;(2)DBM CAM BDC ∠+∠+∠的大小不变,是105,证明见解析.【解析】【分析】(1)由//AB CD 得到30BAC C ∠=∠=,即可求出a ;(2)DBM CAM BDC ∠+∠+∠的大小不变,是105︒,由FEM CAM C ∠=∠+∠,30C ∠=︒, EFM BDC DBM ∠=∠+∠, 45M ∠=︒,即可利用三角形内角和求出答案.【详解】()1当a 为15时,//AB CD ,理由:由图()2,若//AB CD ,则30BAC C ∠=∠=, 453015a CAM BAM BAC ∴=∠=∠-∠=-︒=︒,所以,当a 为15时,//AB CD .注意:学生可能会出现两种解法:第一种:把//AB CD 当做条件求出a 为15,第二种:把a 为15当做条件证出//AB CD ,这两种解法都是正确的.()2DBM CAM BDC ∠+∠+∠的大小不变,是105︒证明: ,30FEM CAM C C ∠=∠+∠∠=︒,30FEM CAM ∴∠=∠+︒,EFM BDC DBM ∠=∠+∠,DBM CAM BDC EFM CAM ∴∠+∠+∠=∠+∠,180,45EFM FEM M M ∠+∠+∠=∠=︒,3045180BDC DBM CAM ∴∠+∠+∠+︒+︒=︒,1803045105DBM CAM BDC ∴∠+∠+∠=︒--=︒,所以,DBM CAM BDC ∠+∠+∠的大小不变,是105.【点睛】此题考查旋转的性质,平行线的性质,三角形的外角定理,三角形的内角和,(2)中将角度和表示为三角形的外角是解题的关键.3.(1)问题背景:如图1,在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°,E 、F 分别是BC ,CD 上的点,且∠EAF =60°,探究图中线段BE ,EF ,FD 之间的数量关系.小王同学探究此问题的方法是延长FD 到点G ,使DG =BE ,连结AG ,先证明△ABE ≌△ADG ,再证明△AEF ≌△AGF ,可得出结论,他的结论应是 ;(2)探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=12∠BAD,上述结论是否仍然成立,并说明理由;(3)结论应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等.接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进,1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇与指挥中心O 之间夹角∠EOF=70°,试求此时两舰艇之间的距离.(4)能力提高:如图4,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°.若BM=1,CN=3,试求出MN的长.【答案】(1)EF=BE+FD;(2)EF=BE+FD仍然成立;(3)210;(4)MN.【解析】试题分析:(1)由△AEF≌△AGF,得EF=GF,又由BE=DG,得EF=GF=DF+DG=DF+BE;(2)延长FD到点G,使DG=BE,连接AG,证明△ABE≌△ADG,再证△AEF≌△AGF,得EF=FG,即可得到答案;(3)连接EF,延长AE,BF相交于点C,根据探索延伸可得EF=AE+FB,即可计算出EF的长度;(4)在△ABC外侧作∠CAD=∠BAM,截取AD=A M,连接CD,DN,证明△ACD≌△ABM,得到CD=BM,再证MN=ND,则求出ND的长度,即可得到答案.解:(1)由△AEF≌△AGF,得EF=GF,又由BE=DG,得EF=GF=DF+DG=DF+BE;(2)EF=BE+FD仍然成立.证明:如答图1,延长FD到点G,使DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADG+∠ADC=180°,∴∠B=∠ADG,在△ABE与△ADG中,AB=AD,∠B=∠ADG,BE=DG,∴△ABE≌△ADG.∴AE=AG,∠BAE=∠DAG.又∵∠EAF=12∠BAD,∴∠F AG=∠F AD+∠DAG=∠F AD+∠BAE=∠BAD-∠EAF=∠BAD-12∠BAD=12∠BAD,∴∠EAF=∠GAF.在△AEF与△AGF中,AE=AG,∠EAF=∠GAF,AF=AF,∴△AEF≌△AGF.∴EF=FG.又∵FG=DG+DF=BE+DF.∴EF=BE+FD.(3)如答图2,连接EF,延长AE,BF相交于点C,在四边形AOBC中,∵∠AOB=30°+90°+20°=140°,∠FOE=70°=12∠AOB,又∵OA=OB,∠OAC+∠OBC=60°+120°=180°,符合探索延伸中的条件,∴结论EF=AE+FB成立.∴EF=AE+FB=1.5×(60+80)=210(海里).答:此时两舰艇之间的距离为210海里;(4)如答图3,在△ABC外侧作∠CAD=∠BAM,截取AD=AM,连接CD,DN,在△ACD与△ABM中,AC=AB,∠CAD=∠BAM,AD=AM,则△ACD≌△ABM,∴CD=B M=1,∠ACD=∠ABM=45°,∵∠NAD=∠NAC+∠CAD=∠NAC+∠BAM=∠BAC-∠MAN=45°,∴∠MAD=∠MAN+∠NAD=90°=2∠NAD,又∵AM=AD,∠NCD+∠MAD=(∠ACD+∠ACB)+90°=180°,∴对于四边形AMCD符合探索延伸,则ND=MN,∵∠NCD=90°,CD=1,CN=3,∴MN=ND=10.4.如图,在△ABC中,∠ABC为锐角,点D为直线BC上一动点,以AD为直角边且在AD 的右侧作等腰直角三角形ADE,∠DAE=90°,AD=AE.(1)如果AB=AC,∠BAC=90°.①当点D在线段BC上时,如图1,线段CE、BD的位置关系为___________,数量关系为___________②当点D在线段BC的延长线上时,如图2,①中的结论是否仍然成立,请说明理由.(2)如图3,如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.探究:当∠ACB多少度时,CE⊥BC?请说明理由.【答案】(1)①垂直,相等.②都成立,理由见解析;(2)45°,理由见解析【解析】【分析】(1)①根据∠BAD=∠CAE ,BA=CA ,AD=AE ,运用“SAS ”证明△ABD ≌△ACE ,根据全等三角形性质得出对应边相等,对应角相等,即可得到线段CE 、BD 之间的关系;②先根据“SAS ”证明△ABD ≌△ACE ,再根据全等三角形性质得出对应边相等,对应角相等,即可得到①中的结论仍然成立;(2)先过点A 作AG ⊥AC 交BC 于点G ,画出符合要求的图形,再结合图形判定△GAD ≌△CAE ,得出对应角相等,即可得出结论.【详解】(1):(1)CE 与BD 位置关系是CE ⊥BD ,数量关系是CE=BD .理由:如图1,∵∠BAD=90°-∠DAC ,∠CAE=90°-∠DAC ,∴∠BAD=∠CAE .又 BA=CA ,AD=AE ,∴△ABD ≌△ACE (SAS )∴∠ACE=∠B=45°且 CE=BD .∵∠ACB=∠B=45°,∴∠ECB=45°+45°=90°,即 CE ⊥BD .故答案为垂直,相等;②都成立,理由如下:∵∠BAC =∠DAE =90°,∴∠BAC +∠DAC =∠DAE +∠DAC ,∴∠BAD =∠CAE ,在△DAB 与△EAC 中,AD AE BAD CAE AB AC ⎧⎪∠∠⎨⎪⎩=== ∴△DAB ≌△EAC ,∴CE =BD ,∠B =∠ACE ,∴∠ACB +∠ACE =90°,即CE ⊥BD ;(2)当∠ACB=45°时,CE⊥BD(如图).理由:过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,∵∠ACB=45°,∠AGC=90°﹣∠ACB,∴∠AGC=90°﹣45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,在△GAD与△CAE中,AC AGDAG EACAD AE⎧⎪∠∠⎨⎪⎩===∴△GAD≌△CAE,∴∠ACE=∠AGC=45°,∠BCE=∠ACB+∠ACE=45°+45°=90°,即CE⊥B C.5.(1)如图(a)所示点D是等边ABC边BA上一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边DCF,连接AF.你能发现线段AF与BD之间的数量关系吗?并证明.(2)如图(b)所示当动点D运动至等边ABC边BA的延长线上时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?(直接写出结论)(3)①如图(c)所示,当动点D在等边ABC边BA上运动时(点D与点B不重合),连接DC,以DC为边在BC 上方、下方分别作等边DCF和等边DCF',连接AF、BF',探究AF、BF'与AB有何数量关系?并证明.②如图(d)所示,当动点D在等边ABC边BA的延长线上运动时,其他作法与(3)①相同,①中的结论是否成立?若不成立,是否有新的结论?并证明.【答案】(1)AF=BD,理由见解析;(2)AF=BD,成立;(3)①AF BF AB'+=,证明见解析;②①中的结论不成立新的结论是AF AB BF '=+,理由见解析【解析】【分析】(1)根据等边三角形的三条边、三个内角都相等的性质,利用全等三角形的判定定理SAS 可证得BCD ACF △≌△,然后由全等三角形的对应边相等知AF BD = .(2)通过证明BCD ACF △≌△,即可证明AF BD =.(3)①'AF BF AB += ,利用全等三角形BCD ACF △≌△的对应边BD AF = ,同理'BCF ACD △≌△ ,则'BF AD = ,所以'AF BF AB +=;②①中的结论不成立,新的结论是'AF AB BF =+ ,通过证明BCF ACD △≌△,则'BF AD =(全等三角形的对应边相等),再结合(2)中的结论即可证得'AF AB BF =+ .【详解】(1)AF BD =证明如下:ABC 是等边三角形,BC AC ∴=,60BCA ︒∠=.同理可得:DC CF =,60DCF ︒∠=.BCA DCA DCF DCA ∴∠-∠=∠-∠.即BCD ACF ∠=∠.BCD ACF ∴△≌△.AF BD ∴=.(2)证明过程同(1),证得BCD ACF △≌△,则AF BD =(全等三角形的对应边相等),所以当动点D 运动至等边△ABC 边BA 的延长线上时,其他作法与(1)相同,AF BD =依然成立.(3)①AF BF AB '+=证明:由(1)知,BCD ACF △≌△.BD AF ∴=.同理BCF ACD '△≌△.BF AD '∴=.AF BF BD AD AB '∴+=+=.②①中的结论不成立新的结论是AF AB BF '=+;BC AC =,BCF ACD '∠=∠,F C DC '=,BCF ACD '∴△≌△.BF AD '∴=.又由(2)知,AF BD =.AF BD AB AD AB BF '∴==+=+.即AF AB BF '=+.【点睛】本题考查了三角形的综合问题,掌握等边三角形的三条边、三个内角都相等的性质、全等三角形的判定定理、全等三角形的对应边相等是解题的关键.二、八年级数学 轴对称解答题压轴题(难)6.如图,在ABC ∆中,CE 为三角形的角平分线,AD CE ⊥于点F 交BC 于点D (1)若9628BAC B ︒︒∠=∠=,,直接写出BAD ∠= 度(2)若2ACB B ∠=∠,①求证:2AB CF =②若 ,CF a EF b ==,直接写出BD CD= (用含 ,a b 的式子表示)【答案】(1)34;(2)①见详解;②2b a b- 【解析】【分析】 (1)由三角形内角和定理和角平分线定义即可得出答案;(2)①证明B BCE ∠=∠,得出BE=CE ,过点A 作//AH BC 交CE 与点H ,则,H BCE ACE EAH B ∠=∠=∠∠=∠,得出AH=AC ,H EAH ∠=∠,得出AE=HE ,由等腰三角形的性质可得出HF=CF ,即可得出结论;②证明AHF DCF ≅,得出AH=DC ,求出HF=CF=a ,HE=HF-EF=a-b ,CE=a+b ,由 //AH BC 得出AH AE a b BC BE a b-==+,进而得出结论. 【详解】 解:(1)∵9628BAC B ︒︒∠=∠=,,∴180962856ACB ∠=︒-︒-︒=︒,∵CE 为三角形的角平分线,∴1282ACE ACB ∠=∠=︒, ∵AD CE ⊥,∴902862CAF ∠=︒-︒=︒,∴966234BAD ∠=︒-︒=︒.故答案为:34;(2)①证明:∵22ACB B BCE ∠=∠=∠∴B BCE ∠=∠∴BE CE=过点A作//AH BC交CE与点H,如图所示:则,H BCE ACE EAH B∠=∠=∠∠=∠∴AH=AC,H EAH∠=∠∴AE=HE∵AD CE⊥∴HF=CF∴AB=HC=2CF;②在AHF△和DCF中,H DCFHF CFAFH DFC∠=∠⎧⎪=⎨⎪∠=∠⎩∴AHF DCF≅∴AH=DC∵,CF a EF b==∴HF CF a==,由①得AE HE HF EF a b==-=-,BE CE a b==+∵//AH BC∴AH AE a bBC BE a b-==+∴CD a bBC a b-=+∴2BD bCD a b=-.故答案为:2ba b-.【点睛】本题考查的知识点是全等三角形的判定及其性质、等腰三角形的判定及其性质、三角形的内角和定理、三角形的角平分线定理等,掌握以上知识点是解此题的关键.7.知识背景:我们在第十一章《三角形》中学习了三角形的边与角的性质,在第十二章《全等三角形》中学习了全等三角形的性质和判定,在第十三章《轴对称》中学习了等腰三角形的性质和判定.在一些探究题中经常用以上知识转化角和边,进而解决问题.问题:如图1,ABC 是等腰三角形,90BAC ∠=︒,D 是BC 的中点,以AD 为腰作等腰ADE ,且满足90DAE ∠=︒,连接CE 并延长交BA 的延长线于点F ,试探究BC 与CF 之间的数量关系.图1发现:(1)BC 与CF 之间的数量关系为 .探究:(2)如图2,当点D 是线段BC 上任意一点(除B 、C 外)时,其他条件不变,试猜想BC 与CF 之间的数量关系,并证明你的结论.图2拓展:(3)当点D 在线段BC 的延长线上时,在备用图中补全图形,并直接写出BCF 的形状.备用图【答案】(1)BC CF =;(2)BC CF =,证明见解析;(3)画图见解析,等腰直角三角形.【解析】【分析】(1)根据等腰三角形的性质即可得BC CF =;(2)由等腰直角三角形的性质可得()ABD ACE SAS ∴≌,再根据全等三角形的性质及等角对等边即可证明;(3)作出图形,根据等腰三角形性质易证()ABD ACE SAS ∴≌,进而根据角度的代换,得出结论.【详解】解:(1)BC CF =.∵△ABC 是等腰三角形,且90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒.90DAE ∠=︒,DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠-∠=∠-∠,BAD CAE ∴∠=∠. ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =,()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒.45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒,90B F ∴∠+∠=︒,45F ∴∠=︒,B F ∴∠=∠,BC CF ∴=.(2)BC CF =.证明:ABC 是等腰三角形,且90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒.90DAE ∠=︒,DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠-∠=∠-∠,BAD CAE ∴∠=∠. ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =,()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒.45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒,90B F ∴∠+∠=︒,45F ∴∠=︒,B F ∴∠=∠,BC CF ∴=.(3)BCF 是等腰直角三角形.提示:如图,ABC 是等腰三角形,90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒.90DAE ∠=︒,DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠+∠=∠+∠,BAD CAE ∴∠=∠.ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =,()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒.45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒,90B BFC ∴∠+∠=︒,45BFC ∴∠=︒,B BFC ∴∠=∠, BCF ∴是等腰三角形,90BCF ∠=︒, BCF ∴是等腰直角三角形.【点睛】本题考查等腰三角形及全等三角形的性质,熟练运用角度等量代换及等腰三角形的性质是解题的关键.8.(1)操作:如图,在已知内角度数的三个三角形中,请用直尺从某一顶点画一条线段,把原三角形分割成两个等腰三角形,并在图中标注相应的角的度数(2)拓展,△ABC中,AB=AC,∠A=45°,请把△ABC分割成三个等腰三角形,并在图中标注相应的角的度数.(3)思考在如图所示的三角形中∠A=30°.点P和点Q分别是边AC和BC上的两个动点.分别连接BP和PQ把△ABC分割成三个三角形.△ABP,△BPQ,△PQC若分割成的这三个三角形都是等腰三角形,求∠C的度数所有可能值直接写出答案即可.【答案】(1)见解析;(2)见解析;(3)∠C所有可能的值为10°、20°、25°,35°、40°、50°、80°、100°.【解析】【分析】(1)在图1、图2、图3中,分别作AB、AB、BC的垂直平分线,根据垂直平分线的性质及外角的性质求出各角度数即可;(2)分别作AB、BC的垂直平分线,交于点O,连接OA、OB、OC可得三角形OAB、OAC、OBC为等腰三角形,根据等腰三角形的性质及外角性质求出各角度数即可;(3)分PB=PA、AB=AP、BA=BP时,PB=PQ、BP=BQ、QB=QP,PQ=QC、PC=QC、PQ=PC等10种情况,根据等腰三角形的性质分别求出∠C的度数即可.【详解】(1)在图1、图2、图3中,分别作AB、AB、BC的垂直平分线,如图1,∵∠ABC=23°,∠BAC=90°,∴∠C=90°-23°=67°,∵MN垂直平分AB,∴BD=AD,∴△ABD是等腰三角形,∴∠BAD=∠ABC=23°,∴∠ADC=2∠ABC=46°,∵∠BAC=90°,∴∠DAC=∠BAC-∠BAD=67°,∴∠DAC=∠C,∴△DAC是等腰三角形,同理:图2中,∠ADC=46°,∠DAC=88°,∠C=46°,△ABD和△ACD是等腰三角形,图3中,∠BCD=23°,∠ADC=46°,∠ACD=46°,△BCD和△ACD是等腰三角形.(2)作AB、BC的垂直平分线,交于点O,连接OA、OB、OC,∵点O是三角形垂直平分线的交点,∴OA=OB=OC,∴△OAB、△OAC、△OBC是等腰三角形,∵AB=AC,∠BAC=45°,∴∠ABC=∠ACB=67.5°,∴AD是BC的垂直平分线,∴∠BAD=∠CAD=22.5°,∴∠OBA=∠OAB=22.5°,∠OCA=∠OAC=22.5°,∴∠OBC=∠OCB=45°.(3)①如图,当PB=PA,PB=PQ,PQ=CQ时,∵∠A=30°,PB=PQ,∴∠ABP=∠A=30°,∴∠APB=120°,∵PB=PQ,PQ=CQ,∴∠PQB=∠PBQ,∠C=∠CPQ,∴∠PBQ=2∠C,∴∠APB=∠PBQ+∠C=3∠C=120°,解得:∠C=40°.②如图,当PB=PA,PB=BQ,PQ=CQ时,∴∠PQB=2∠C,∠PQB=∠BPQ,∴∠PBQ=180°-2∠PQB=180°-4∠C,∴180°-4∠C+∠C=120°,解得:∠C=20°,③如图,当PA=PB,BQ=PQ,CQ=CP时,∵∠PQC=2∠PBQ,∠PQC=12(180°-∠C),∴∠PBQ=14(180°-∠C),∴14(180°-∠C)+∠C=120°,解得:∠C=100°.④如图,当PA=PB,BQ=PQ,PQ=CP时,∵∠PQC=∠C=2∠PBQ,又∵∠C+∠PBQ=120°,∴∠C=80°;⑤如图,当AB=AP,BP=BQ,PQ=QC时,∵∠A=30°,∴∠APB=12(180°-30°)=75°,∵BP=BQ,PQ=CQ,∴∠BPQ=∠BQP,∠QPC=∠QCP,∴∠BQP=2∠C,∴∠PBQ=180°-4∠C,∴∠C+180°-4∠C=75°,解得:∠C=35°.⑥如图,当AB=AP,BQ=PQ,PC=QC时,∴∠PQC=2∠PBC,∠PQC=12(180°-∠C),∴∠PBC=14(180°-∠C),∴14(180°-∠C)+∠C=75°,解得:∠C=40°.⑦如图,当AB=AP,BQ=PQ,PC=QP时,∵∠C=∠PQC=2∠PBC,∠C+∠PQC=75°,∴∠C=50°;⑧当AB=AP,BP=PQ,PQ=CQ时,∵AB=BP ,∠A=30°,∴∠ABP=∠APB=75°,又∵∠PBQ=∠PQB=2∠C ,且有∠PBQ+∠C=180°-30°-75°=75°,∴3∠C=75°,∴∠C=25°;⑨当AB=BP ,BP=PQ ,PQ=CQ 时,∵AB=BP ,∴∠BPA=∠A=30°,∵∠PBQ=∠PQB=2∠C ,∴2∠C+∠C=30°,解得:∠C=10°.⑩当AB=BP ,BQ=PQ ,PQ=CQ 时,∴∠PQC=∠C=2∠PBQ ,∴12∠C+∠C=30°, 解得:∠C=20°.综上所述:∠C 所有可能的值为10°、20°、25°,35°、40°、50°、80°、100°.【点睛】本题考查复杂作图及等腰三角形的性质,熟练掌握等腰三角形的性质是解题关键.9.数学课上,张老师举了下面的例题:例1 等腰三角形ABC 中,110A ∠=,求B 的度数.(答案:35)例2 等腰三角形ABC 中,40A ∠=,求B 的度数.(答案:40或70或100) 张老师启发同学们进行变式,小敏编了如下两题:变式1: 等腰三角形ABC 中,∠A=100°,求B 的度数.变式2: 等腰三角形ABC 中,∠A= 45° ,求B 的度数.(1)请你解答以上两道变式题.(2)解(1)后,小敏发现,A∠的度数不同,得到B的度数的个数也可能不同.如果在等腰三角形ABC中,设A x∠=,当B只有一个度数时,请你探索x的取值范围.【答案】(1)变式1: 40°;变式2: 90°或67.5°或45°;(2)90°≤<180°或x=60°【解析】【分析】(1)根据等腰三角形的性质和三角形内角和定理,分类讨论,即可得到答案;(2)在等腰三角形ABC中,当B只有一个度数时,A∠只能作为顶角时,或∠A=60°,进而可得到答案.【详解】变式1:∵等腰三角形ABC中,∠A=100°,∴∠A为顶角,∠B为底角,∴∠B=1801002-=40°;变式2: ∵等腰三角形ABC中,∠A= 45°,∴当AB=BC 时,∠B =90°,当AB=AC 时,∠B =67.5°,当BC=AC时∠B =45°;(2)等腰三角形ABC中,设A x∠=,当90°≤x<180°,∠A为顶角,此时,B只有一个度数,当x=60°时,三角形ABC是等边三角形,此时,B只有一个度数,综上所述:90°≤x<180°或x=60°【点睛】本题主要考查等腰三角形的性质,分类讨论思想的应用,是解题的关键.10.探究题:如图,AB⊥BC,射线CM⊥BC,且BC=5cm,AB=1cm,点P是线段BC(不与点B、C重合)上的动点,过点P作DP⊥AP交射线CM于点D,连结AD.(1)如图1,若BP=4cm,则CD=;(2)如图2,若DP平分∠ADC,试猜测PB和PC的数量关系,并说明理由;(3)若△PDC是等腰三角形,则CD=cm.(请直接写出答案)【答案】(1)4cm;(2)PB=PC,理由见解析;(3)4【解析】【分析】(1)根据AAS 定理证明△ABP ≌△PCD ,可得BP =CD ;(2)延长线段AP 、DC 交于点E ,分别证明△DPA ≌△DPE 、△APB ≌△EPC ,根据全等三角形的性质解答;(3)根据等腰直角三角形的性质计算.【详解】解:(1)∵BC =5cm ,BP =4cm ,∴PC =1cm ,∴AB =PC ,∵DP ⊥AP ,∴∠APD =90°,∴∠APB +∠CPD =90°,∵∠APB +∠CPD =90°,∠APB +∠BAP =90°,∴∠BAP =∠CPD ,在△ABP 和△PCD 中,B C BAP CPD AB PC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABP ≌△PCD ,∴BP =CD =4cm ;(2)PB =PC ,理由:如图2,延长线段AP 、DC 交于点E ,∵DP 平分∠ADC ,∴∠ADP =∠EDP .∵DP ⊥AP ,∴∠DPA =∠DPE =90°,在△DPA 和△DPE 中,ADP EDP DP DPDPA DPE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△DPA ≌△DPE (ASA ),∴PA =PE .∵AB ⊥BP ,CM ⊥CP ,∴∠ABP =∠ECP =Rt ∠.在△APB 和△EPC 中,ABP ECP APB EPC PA PE ∠=∠⎧⎪∠=⎨⎪=⎩,∴△APB ≌△EPC (AAS ),∴PB =PC ;(3)∵△PDC 是等腰三角形,∴△PCD 为等腰直角三角形,即∠DPC =45°,又∵DP ⊥AP ,∴∠APB =45°,∴BP =AB =1cm ,∴PC =BC ﹣BP =4cm ,∴CD =CP =4cm ,故答案为:4.【点睛】本题考查了三角形的全等的证明、全等三角形的性质以及等腰三角形的性质.做出辅助线证明三角形全等是本题的关键.三、八年级数学整式的乘法与因式分解解答题压轴题(难)11.先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、十字相乘法等等,其中十字相乘法在高中应用较多.十字相乘法:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数(如图),如:将式子232x x ++和223x x +-分解因式,如图:()()23212x x x x ++=++;()()223123x x x x +-=-+.请你仿照以上方法,探索解决下列问题:(1)分解因式:2712y y ;(2)分解因式:2321x x --.【答案】(1)(x ﹣3)(x ﹣4);(2)(x ﹣1)(3x+1).【解析】【分析】(1)将1分成1乘以1,12分成-3乘以-4,交叉相乘的结果为-7,即可得到答案; (2)将3分成1乘以3,-1分成-1乘以1,由此得到分解因式的结果.【详解】(1)y 2﹣7y+12=(x ﹣3)(x ﹣4);(2)3x 2﹣2x ﹣1=(x ﹣1)(3x+1).【点睛】此题考查十字相乘法分解因式,将二次项系数及常数项分解成两个因数相乘,交叉相乘的结果相加得到一次项的系数,能准确分解因数是解题的关键.12.阅读下列因式分解的过程,再回答所提出的问题:1+x +x (x +1)+x (x +1)2=(1+x )[1+x +x (x +1)]=(1+x )2(1+x )=(1+x )3(1)上述分解因式的方法是 ,共应用了 次.(2)若分解1+x +x (x +1)+x (x +1)2+…+ x (x +1)2004,则需应用上述方法 次,结果是 .(3)分解因式:1+x +x (x +1)+x (x +1)2+…+ x (x +1)n (n 为正整数).【答案】(1)提公因式,两次;(2)2004次,(x +1)2005;(3) (x +1)1n +【解析】【分析】(1)根据已知材料直接回答即可;(2)利用已知材料进而提取公因式(1+x ),进而得出答案;(3)利用已知材料提取公因式进而得出答案.【详解】(1)上述分解因式的方法是:提公因式法,共应用了2次.故答案为提公因式法,2次;(2)1+x+x (x+1)+x (x+1)2+…+ x (x +1)2004,=(1+x )[1+x+x (1+x )+…+ x (x +1)2003]⋯=22003(1)(1)(1)(1)(1)x x x x x +++++个=(1+x )2005,故分解1+x+x (x+1)+x (x+1)2+…+ x (x +1)2004,,则需应用上述方法2004次,结果是:(x+1)2005.(3)分解因式:1+x+x (x+1)+x (x+1)2…+x (x+1)n (n 为正整数)的结果是:(x+1)n+1.故答案为(x+1)n+1.【点睛】此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.13.任何一个正整数n 都可以进行这样的分解:n =p ×q (p 、q 是正整数,且p ≤q ).如果p ×q 在n 的所有这种分解中两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解,并且规定F (n )=p q .例如18=1×18=2×9=3×6,这时就有F (18)=3162=.请解答下列问题:(1)计算:F (24);(2)当n 为正整数时,求证:F (n 3+2n 2+n )=1n . 【答案】(1)23;(2) 1n . 【解析】分析:(1)根据最佳分解的意义,把24分解成两数的积,找出差的绝对值最小的两数,求比值即可;(2)根据(1)的求法,确定差的绝对值最小的两数的特点,然后根据要求变形即可. 详解:(1)∵24=1×24=2×12=3×8=4×6,其中4与6的差的绝对值最小,∴F(24)=46=23. (2)∵n 3+2n 2+n =n(n +1)2,其中n(n +1)与(n +1)的差的绝对值最小,且(n +1)≤n(n +1),∴F(n 3+2n 2+n)=()n 1n n 1++=1n. 点睛: 本题主要考查实数的运算,理解最佳分解的定义,并将其转化为实数的运算是解题的关键.14.阅读材料:要把多项式am+an+bm+bn 因式分解,可以先把它进行分组再因式分解:am+an+bm+bn=(am +an )+(bm +bn )=a (m +n )+b (m +n )=(a +b )(m +n ),这种因式分解的方法叫做分组分解法.(1)请用上述方法因式分解:x 2-y 2+x-y(2)已知四个实数a 、b 、c 、d 同时满足a 2+ac=12k ,b 2+bc=12k .c 2+ac=24k ,d 2+ad=24k ,且a≠b ,c≠d ,k≠0①求a+b+c 的值;②请用含a 的代数式分别表示b 、c 、d【答案】(1)(x −y )(x +y +1);(2)①0a b c ++=;②3b a =-,2c a =,3d a =-【解析】【分析】(1)将x 2 - y 2分为一组,x-y 分为一组,前一组利用平方差公式化为(x+y)(x-y),再提取公因式即可求解.(2)①已知22a ac b bc +=+=12k ,可得220a b ac bc -+-=,将等号左边参照(1)因式分解,即可求解.②由a 2+ac=12k ,c 2+ac=24k 可得2(a 2+ac)= c 2+ac ,即可得出c=2a ,同理得出3b a =-,3d a =-【详解】(1)x 2-y 2+x-y = (x 2 -y 2)+(x-y)=(x+y)(x-y)+(x-y)=(x-y)(x+y+1)故答案为:(x-y)(x+y+1)(2)①22a ac b bc +=+=12k220a b ac bc -+-=()()0a b a b c -++=∵a b∴0a b c ++=②∵a 2+ac=12k ,c 2+ac=24k2(a 2+ac)= c 2+ac∴2a 2+ac- c 2=0得(2a-c)(a+c)=0∵a 2+ac=12k ≠0即a(a+c)≠0∴c=2a ,a 2=4k∵b 2+bc=12k∴b 2+2ba=3a 2则(a −b )(3a +b )=0∵a ≠b∴3b a =-同理可得d 2+ad=24k ,c 2+ac=24kd 2+ad=c 2+ac(d −c )(a +d +c )=0∵c d ≠∴0a d c ++=∴3d a =-故答案为:0a b c ++=;3b a =-,2c a =,3d a =-【点睛】本题考查了用提取公因式法、运用公式法、分组分解法进行因式分解.15.探究题:观察下列式子:(x 2-1)÷(x -1)=x +1;(x 3-1)÷(x -1)=x 2+x +1;(x 4-1)÷(x -1)=x 3+x 2+x +1;(x 5-1)÷(x -1)=x 4+x 3+x 2+x +1;(1)你能得到一般情况下(1)(1)n x x -÷-的结果吗?(n 为正整数)(2)根据(1)的结果计算:1+2+22+23+24+…+262+263.【答案】(1)12n n x x --++…+1;(2)6421-. 【解析】【分析】(1)根据已知的式子可得到的式子是关于x 的一个式子,最高次数是n-1,共有n 项; (2)把2当作x ,即可把所求的式子看成是两个二项式的商的形式,逆用(1)的结果即可求解.【详解】由题意可得:(1)()()1211n n n x x x x ---÷-=++ (1)(2)()()234626364641222222212121+++++⋯++=-÷-=-. 【点睛】 考查了多项式与多项式的除法,观察所给式子,发现运算规律是解题的关键.四、八年级数学分式解答题压轴题(难)16.已知下面一列等式:111122⨯=-;11112323⨯=-;11113434⨯=-;11114545⨯=-;… (1)请你按这些等式左边的结构特征写出它的一般性等式:(2)验证一下你写出的等式是否成立; (3)利用等式计算:11(1)(1)(2)x x x x ++++11(2)(3)(3)(4)x x x x ++++++. 【答案】(1)一般性等式为111=(+11n n n n -+);(2)原式成立;详见解析;(3)244x x+.【分析】 (1)先要根据已知条件找出规律;(2)根据规律进行逆向运算;(3)根据前两部结论进行计算. 【详解】 解:(1)由111122⨯=-;11112323⨯=-;11113434⨯=-;11114545⨯=-;…, 知它的一般性等式为111=(+11n n n n -+); (2)1111(1)(1)n n n n n n n n +-=-+++111(1)1n n n n ==⋅++, ∴原式成立;(3)11(1)(1)(2)x x x x ++++11(2)(3)(3)(4)x x x x ++++++ 1111112x x x x =-+-+++11112334x x x x +-+-++++ 114x x =-+ 244x x=+. 【点睛】 解答此题关键是找出规律,再根据规律进行逆向运算.17.阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现:当0a >,0b >时,∵2()20a b a ab b -=-+≥,∴2a b ab +≥,当且仅当a b =时取等号.请利用上述结论解决以下问题:(1)当0x >时,1x x +的最小值为_______;当0x <时,1x x+的最大值为__________. (2)当0x >时,求2316x x y x++=的最小值. (3)如图,四边形ABCD 的对角线AC ,BD 相交于点O ,△AOB 、△COD 的面积分别为4和9,求四边形ABCD 面积的最小值.【答案】(1)2,-2;(2)11;(3)25【分析】(1)当x >0时,按照公式a=b 时取等号)来计算即可;x <0时,由于-x >0,-1x>0,则也可以按照公式a=b 时取等号)来计算; (2)将2316x x y x++=的分子分别除以分母,展开,将含x 的项用题中所给公式求得最小值,再加上常数即可;(3)设S △BOC =x ,已知S △AOB =4,S △COD =9,则由等高三角形可知:S △BOC :S △COD =S △AOB :S △AOD ,用含x 的式子表示出S △AOD ,四边形ABCD 的面积用含x 的代数式表示出来,再按照题中所给公式求得最小值,加上常数即可.【详解】解:(1)当x >0时,12x x +≥= 当x <0时,11x x x x ⎛⎫+=--- ⎪⎝⎭∵12x x --≥= ∴12x x ⎛⎫---≤- ⎪⎝⎭∴当0x >时,1x x +的最小值为2;当0x <时,1x x+的最大值为-2; (2)由2316163x x y x x x++==++ ∵x >0,∴163311y x x =++≥= 当16x x= 时,最小值为11; (3)设S △BOC =x ,已知S △AOB =4,S △COD =9则由等高三角形可知:S △BOC :S △COD =S △AOB :S △AOD∴x :9=4:S △AOD∴:S △AOD =36x∴四边形ABCD 面积=4+9+x+361325x ≥+= 当且仅当x=6时取等号,即四边形ABCD 面积的最小值为25.【点睛】本题考查了配方法在最值问题中的应用,同时本题还考查了分式化简和等高三角形的性质,本题难度中等略大.18.小明和小强两名运动爱好者周末相约到滨江大道进行跑步锻炼.(1)周六早上6点,小明和小强同时从家出发,分别骑自行车和步行到离家距离分别为4500米和1200米的滨江大道入口汇合,结果同时到达.若小明每分钟比小强多行220米,求小明和小强的速度分别是多少米/分?(2)两人到达滨江大道后约定先跑1000米再休息.小强的跑步速度是小明跑步速度的m 倍,两人在同起点,同时出发,结果小强先到目的地n 分钟.①当3m =,6n =时,求小强跑了多少分钟?②小明的跑步速度为_______米/分(直接用含m n ,的式子表示).【答案】(1)小强的速度为80米/分,小明的速度为300米/分;(2)①小强跑的时间为3分;②1000(1)m mn-. 【解析】【分析】 (1)设小强的速度为x 米/分,则小明的速度为(x+220)米/分,根据路程除以速度等于时间得到方程,解方程即可得到答案;(2)①设小明的速度为y 米/分,由m =3,n =6,根据小明的时间-小强的时间=6列方程解答;②根据路程一定,时间与速度成反比,可求小强的时间进而求出小明的时间,再根据速度=路程除以时间得到答案.【详解】(1)设小强的速度为x 米/分,则小明的速度为(x+220)米/分, 根据题意得:1200x =4500220x +. 解得:x =80. 经检验,x =80是原方程的根,且符合题意.∴x+220=300.答:小强的速度为80米/分,小明的速度为300米/分.(2)①设小明的速度为y 米/分,∵m =3,n =6, ∴1000100063y y -=,解之得10009y =. 经检验,10009y =是原方程的解,且符合题意,∴小强跑的时间为:10001000(3)39÷⨯=(分) ②小强跑的时间:1n m -分钟,小明跑的时间:11n mn n m m +=--分钟, 小明的跑步速度为: 1000(1)10001mn m m mn -÷=-分. 故答案为:1000(1)m mn-. 【点睛】 此题考查分式方程的应用,正确理解题意根据路程、时间、速度三者的关系列方程解答是解题的关键.19.某市2018年平均每天的垃圾处理量为40万吨/天,2019年平均每天的垃圾排放量比2018年平均每天的垃圾排放量多100万吨;2019年平均每天的垃圾处理量是2018年平均每天的垃圾处理量的2. 5倍. 若2019年平均每天的垃圾处理率是2018年平均每天的垃圾处理率的1. 25倍. (注:=垃圾处理量垃圾处理率垃圾排放量) (1)求该市2018年平均每天的垃圾排放量;(2)预计该市2020年平均每天的垃圾排放量比2019年平均每天的垃圾排放量增加10%. 如果按照创卫要求“城市平均每天的垃圾处理率不低于90%”,那么该市2020年平均每天的垃圾处理量在2019年平均每天的垃圾处理量的基础上,至少还需要増加多少万吨才能使该市2020年平均每天的垃圾处理率符合创卫的要求?【答案】(1)100;(2)98.【解析】【分析】(1)设2018年平均每天的垃圾排放量为x 万吨,根据题意列方程求出x 的值即可;(2)设设2020年垃圾的排放量还需要増加m 万吨,根据题意列出不等式,解得m 的取值范围即可得到答案.【详解】(1)设2018年平均每天的垃圾排放量为x 万吨,40 2.540 1.25100x x⨯=⨯+, 解得:x=100,经检验,x=100是原分式方程的解,答:2018年平均每天的垃圾排放量为100万吨.(2)由(1)得2019年垃圾的排放量为200万吨,设2020年垃圾的排放量还需要増加m 万吨,40 2.5200(110%)m ⨯+⨯+≥90%, m ≥98,∴至少还需要増加98万吨才能使该市2020年平均每天的垃圾处理率符合创卫的要求.【点睛】此题考查分式方程的实际应用,一元一次不等式的实际应用,正确理解题意,找到各量之间的关系是解题的关键.20.水蜜桃是无锡市阳山的特色水果,水蜜桃一上市,水果店的老板用2000元购进一批水密桃,很快售完;老板又用3300元购进第二批水蜜桃,所购件数是第一批的32倍,但进价比第一批每件多了5元.(1)第一批水蜜桃每件进价是多少元?(2)老板以每件65元的价格销售第二批水蜜桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批水密桃的销售利润不少于288元,剩余的仙桃每件售价最多打几折?(利润=售价-进价)【答案】(1)50;(2)6折.【解析】【分析】(1)根据题意设第一批水蜜桃每件进价是x 元,利用第二批水密桃进价建立方程求解即可;(2)根据题意设剩余的仙桃每件售价最多打m 折,并建立不等式,求出其解集即可得出剩余的仙桃每件售价最多打几折.【详解】解:(1)设第一批水蜜桃每件进价是x 元,则有: 20003(5)33002x x ⨯⨯+=,解得50x =, 所以第一批水蜜桃每件进价是50元.(2)由(1)得出第二批水密桃的进价为:55元,数量为:33006055=件, 设剩余的仙桃每件售价最多打m 折,则有: 6580606065(180)3300288m ⨯⨯+⨯⨯--≥%%,解得0.6m ≥,即最多打6折.【点睛】本题考查分式方程的实际应用以及不等式的实际应用,理解题意并根据题意建立方程和不等式是解题的关键.五、八年级数学三角形解答题压轴题(难)21.如图①所示,在三角形纸片ABC 中,70C ∠=︒,65B ∠=︒,将纸片的一角折叠,。

初二数学试卷分析范文(热门15篇)

初二数学试卷分析范文(热门15篇)

初二数学试卷分析范文1一、试卷分析本套试卷共6页,分值为100分。

主要考察了八年级数学第十六章分式和十七章反比例函数的内容。

其中包括:分式、分式的运算、分式的方程、反比例函数及其x质以及实际问题与反比例函数。

试卷的总体难度适宜,能坚持以纲为纲,以本为本的原则,注重考察基础知识的掌握,覆盖面较广,控制题目的烦琐程度,题目力求简洁明快,不在运算的复杂上做文章。

第一题为选择题共十个小题,学生出错率较高的题有2、3、6、8、10。

第2题涉及到分式的运算,题目难度适中,部分学生由于粗心马虎造成失分;第3题考查反比例函数x质的掌握,题目比较容易,学生对反比例函数的基本x质掌握不熟练导致出错;第6小题考查解分式方程中化分式方程为整式方程,本小题涉及到变号问题,学生做起来感觉吃力;第8和10小题涉及到实际问题,学生应用数学知识解决实际问题的能力较弱,所以出错率较高。

第二题为填空题共七个小题,学生出错率较高的题是12和16。

其中12题考查反比例函数的形式及其x质,出错的原因还是基础知识掌握不牢。

16题涉及到增根,学生出错是由于对增根的理解不到位。

第三题为解答题共七个小题。

18题考查分式的混合运算,19题考查解分式方程,题目难度较低,属于简单题。

20题是先化简再求值。

实质也是考查分式的混合运算,只是难度较18题略有提高,学生多在化简过程中出现错误。

21题主要考查用待定系数法确定反比例函数的关系式,题目简单,学生一般会拿到分数。

22题实质也是解分式方程,是对解分式方程能力的拓展和提高,有一定难度,学生出错率也较高。

23题是列分式方程解应用题,难度适中,学生出错的原因与8和10相同。

24小题考查反比例函数与实际问题,难度不大,一般都能做对。

二、学生分析我所带班级是八年级一班,学生程度参差不齐,两级分化现象严重。

学生学习氛围不太浓厚,部分学生学习态度不端正。

程度较好的学生对题目的应变能力较弱,程度一般的学生对基础知识的掌握还有欠缺,对部分概念的理解不到位。

初一数学期末复习能力提高题(绝对很好)

初一数学期末复习能力提高题(绝对很好)

第20题图BCE 初一数学能力提高题一、填空选择题1、时钟3:40,时针与分针所夹的角是 度.2、若关于x 、y 的代数式323232mx nxy x xy y -+-+中不含三次项,则2013(3)m n -= .3、如图,C 、D 将线段AB 分成2∶3∶4三部分,E 、F 、G 分别是AC 、CD 、DB 的中点,且EG =24cm ,则AF 的长=4、已知a 、b 、c 在数轴上的对应点如下图所示,化简2a c a b c b +-++-= .5、下列是有规律排列的一列数:21-,42, 83-,164,325-,…,请观察此数列的规律,按此规律,第n 个数应是___________.6.观察上面的一系列等式:32-12=8×1;52-32=8×2;72-52=8×3;92-72=8×4;……则第n 个等式为 . ¥7.已知,-a a =,1-=bb ,c c = ,化简c b c a b a -+-++= .8. 2012-x 2-x 1x +++ 的最小值为 . 9.方程()()()()1x 27-1-x 41-x 31-1x 3+=+的解为10.如果代数式2633a a -+的值为11,那么代数式227a a --的值为 .11.如图,点C 为线段AB 上一点, CB =a ,D 、E 两点分别为AC 、AB 的中点,则线段DE 的长为12. .有理数a ,b ,c 满足0>c b a ++,且0<abc ,=+++abcabc cc bb aa _______.13.有一个运算程序,可以使得:n b a =⊕,则()11+=⊕+n b a ,()21-=+⊕n b a ,现在已知211=⊕,则=⊕20142014________.14、已知:4,41ab a b =+=,求代数式(67)[8(86)]ab b a ab b a ++--+=、15.如图,将一副三角板的直角顶点重合,摆放在桌面上,若145AOD ∠=BOC ∠,则的度数为__.16.在计数制中,通常我们使用的是“十进位制”,即“逢十进一”。

2024年人教版初二数学上册期末考试卷(附答案)

2024年人教版初二数学上册期末考试卷(附答案)

2024年人教版初二数学上册期末考试卷(附答案)一、选择题:5道(每题1分,共5分)1. 下列哪个数是负数?A. 3B. 0C. 5D. 82. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零3. 下列哪个数是分数?A. 0.5B. 3/4C. 0.25D. 1.54. 下列哪个数是整数?A. 0.3B. 2/3C. 0D. 1.25. 下列哪个数是负整数?A. 3B. 0C. 5D. 8二、判断题5道(每题1分,共5分)1. 一个数的绝对值总是非负的。

( )2. 分数和小数都可以表示为整数。

( )3. 任何两个整数相乘的结果都是整数。

( )4. 任何两个正数相加的结果都是正数。

( )5. 任何两个负数相加的结果都是负数。

( )三、填空题5道(每题1分,共5分)1. 一个数的绝对值是它本身的数是______。

2. 下列哪个数是分数?______。

3. 下列哪个数是整数?______。

4. 下列哪个数是负整数?______。

5. 一个数的绝对值总是非负的。

( )四、简答题5道(每题2分,共10分)1. 简述绝对值的概念。

2. 简述分数的概念。

3. 简述整数的概念。

4. 简述负整数的概念。

5. 简述小数的概念。

五、应用题:5道(每题2分,共10分)1. 计算:| 3 | + 2 = ?2. 计算:3/4 + 0.5 = ?3. 计算:0 + 1 = ?4. 计算:3 4 = ?5. 计算:5 2 = ?六、分析题:2道(每题5分,共10分)1. 分析:为什么一个数的绝对值总是非负的?2. 分析:为什么分数和小数都可以表示为整数?七、实践操作题:2道(每题5分,共10分)1. 实践操作:请用尺子和圆规在纸上画一个半径为5cm的圆。

2. 实践操作:请用尺子和圆规在纸上画一个边长为4cm的正方形。

八、专业设计题:5道(每题2分,共10分)1. 设计一个包含10个数的数列,其中前5个数是正整数,后5个数是负整数。

人教版八年级数学上册 全册全套试卷测试卷附答案

人教版八年级数学上册 全册全套试卷测试卷附答案
小王同学探究此问题的方法是延长FD到点G,使DG=BE,连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;
(2)探索延伸:
如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF= ∠BAD,上述结论是否仍然成立,并说明理由;
(3)结论应用:
如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等.接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进,1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇与指挥中心O之间夹角∠EOF=70°,试求此时两舰艇之间的距离.
∴∠ACB=∠EBA,
∴180°﹣∠GBA=180°﹣∠ACB,
即∠ABG=∠ACN,
∵∠GAN=∠GBO,
∴∠AGB=∠ANC,
在△ABG与△ACN中,

∴△ABH≌△ACN(AAS),
∴BF=CN,
∴NB﹣HB=NB﹣CN=BC=2OB,
∵OB=2
∴NB﹣FB=2×2=4(是定值),
即当点H在GB的延长线上运动时,NB﹣HB的值不会发生变化.
(3)如图3,点G在射线AD上,且GA=GB,H为GB延长线上一点,作∠HAN交y轴于点N,且∠HAN=∠HBO,求NB﹣HB的值.
【答案】(1) (2)详见解析;(3)NB﹣FB=4(是定值),即当点H在GB的延长线上运动时,NB﹣HB的值不会发生变化.
【解析】
【分析】
(1)由点D,点B的坐标和四边形AOBD的面积为12,可列方程组,解方程组即可;

(能力提高)湘教版八年级上册数学期末测试卷及含答案

(能力提高)湘教版八年级上册数学期末测试卷及含答案

湘教版八年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、已知:线段AB,BC,∠ABC=90。

.求作:矩形ABCD.以下是甲、乙两同学的作业:对于两人的作业,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对2、若x<y,则下列式子中错误的是()A.x﹣2<y﹣2B.x+2<y+2C. <D.﹣2x<﹣2y3、若a<b,则下列不等式一定成立的是()A.a-5>b-5B.-2a>-2bC.2a-5>2b-5D.-2a>-3b4、已知,,且的周长为20,,,则等于()A.3B.5C.9D.115、从分数组{,,,,,}中删去两个分数,使剩下的数之和为1,则删去两个数是()A. 与B. 与C. 与D. 与6、对于的理解错误的是()A.是实数B.是最简二次根式C. <2D.与是同类项7、如图,△ABC中,D、E两点分别在AC、BC上,AB=AC,CD=DE,若∠A=40°,∠ABD:∠DBC=3:4,则∠BDE=()A.24°B.25°C.30°D.35°8、计算的结果为()A.5B.20C.5 mD.20 m9、如图,△ABC内接于⊙O,将沿BC翻折,交AC于点D,连接BD,若∠BAC=66°,则∠ABD的度数是()A.66B.44C.46D.4810、计算结果为()A.0B.C.D.11、下列运算中,正确的是()A. =±2B. =﹣3C.(﹣1)0=1D.﹣|﹣3|=312、实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最小的是()A.aB.bC.cD.d13、如图,已知,,于点C,于点G,若,则长度是()A.3B.4C.5D.614、如图,数轴上有M、N、P、Q四个点,其中点P所表示的数为a,则数-3a 所对应的点可能是( )A.MB.NC.PD.Q15、不能使两个直角三角形全等的条件是()A.斜边、直角边对应相等B.两直角边对应相等C.一锐角和斜边对应相等D.两锐角对应相等二、填空题(共10题,共计30分)16、计算:=________17、已知2a﹣1的平方根是±3,3a﹣b﹣1的立方根是2,a+b的平方根________.18、计算的结果为________.19、﹣8的立方根是________,9的算术平方根是________.20、如图,△ABC是⊙O的内接三角形,∠A=119°,过点C的圆的切线交BO 于点P,则∠P的度数为________.21、若最简二次根式与是同类二次根式,则m=________;n=________.22、一个数的算术平方根和这个数的立方根相等,则这个数是________.23、不等式组的解集为________.24、有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:=________(用含字母x和n的代数式表示).则第n次运算的结果yn25、如图,在长方形ABCD中,E是AD的中点,F是CE的中点.若△BDF的面积是5平方厘米,则长方形ABCD的面积是________平方厘米.三、解答题(共5题,共计25分)26、先化简,再求值:÷(m﹣1﹣),其中m=﹣3.27、如图,在等边中,点,分别在边,上,且,与交于点.28、如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q.(1)求证:△ADC≌△BEA;(2)若PQ=4,PE=1,求AD的长.29、已知,如图:AE⊥AB,BC⊥AB,AE=AB,ED=AC.求证:ED⊥AC.30、如图,△ABC中,D为BC中点,BF∥CE.求证:BF=CE参考答案一、单选题(共15题,共计45分)1、A2、D3、B4、C5、C6、D7、C8、C9、D10、C11、C12、C13、D14、A15、D二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、29、30、。

初二数学练习题卷子推荐

初二数学练习题卷子推荐

初二数学练习题卷子推荐在初二数学学习过程中,练习题的重要性不言而喻。

练习题可以帮助学生巩固所学的知识,提升解题能力,培养逻辑思维和分析问题的能力。

本文将向大家推荐几个适合初二学生使用的数学练习题卷子。

一、适用于初二学生的数学练习题卷子1. 《初中数学练习题精选》这本练习题卷子是根据初二学生的数学课程内容编写的,题目涵盖了各个知识点和难度等级。

每个知识点都有相应的练习题,可以帮助学生全面巩固知识。

同时,该卷子还附带有解题思路和详细解答,方便学生自我检查和纠正错误。

2. 《初中数学学业水平测试模拟试卷》这本练习题卷子模拟了初二学期末的数学学业水平测试,题目难度适中,涵盖了各个考点和题型。

通过做这些模拟试卷,学生可以了解学业水平测试的出题风格和要求,为真正的考试做好充分的准备。

3. 《高效+快速迎考冲刺》这本练习题卷子主打高效训练和快速冲刺,适合那些对数学基础较为牢固,但希望在短时间内提升成绩的学生。

题目难度较高,注重概念应用和解题技巧。

通过反复做题,可以帮助学生熟练掌握各种解题方法,提高解题速度和准确度。

二、如何高效使用数学练习题卷子1. 定期规划练习时间定期规划练习时间,每天或每周都划出一定时间专门用来做数学练习题。

坚持有规律地练习,可以帮助学生逐渐形成良好的学习习惯。

2. 注重练习题的质量不只是追求数量,应注重练习题的质量。

选择那些与学校教材和考纲相符合的练习题,确保练习的内容和要求与实际考试相符。

同时,可以根据自己的学习情况和疑点,有针对性地选择练习题。

3. 善于总结和复习练习题的目的不仅仅是为了做对,更重要的是通过做题过程中的思考和分析,不断总结解题方法和规律。

做完一套练习题后,尽量及时查看解析,并对出错的题目进行复习和强化练习。

4. 多种途径获取练习题除了纸质印刷的练习题卷子,还可以通过课本、互联网等渠道获取练习题。

网络上有很多免费的数学练习题资源,可以根据自己的需要选择合适的题目进行练习。

黑龙江初二初中数学期末考试带答案解析

黑龙江初二初中数学期末考试带答案解析

黑龙江初二初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.下列各点中,在函数的图象上的是( ) A .(2,1)B .(﹣2,1)C .(2,﹣2)D .(1,2)2.如果把分式中的x 、y 都扩大到原来的10倍,则分式的值( )A .扩大100倍B .扩大10倍C .不变D .缩小到原来的3.下列各组线段中,能构成直角三角形的是( ) A .2,3,4 B .3,4,6C .5,12,13D .4,6,74.在下列函数中,y 随x 增大而增大的是( ) A .B .C .y=x ﹣3D .y=x 2+35.六个学生进行投篮比赛,投进的个数分别为2,3,3,5,10,13,这六个数的中位数为( ) A .3 B .4 C .5 D .66.一组数据的方差为s 2,将这组数据的每个数据都扩大三倍,所得到的一组新的数据的方差为( )A .9s 2B .s 2C .3s 2D .2s 27.如图,在菱形ABCD 中,AC=6cm ,BD=8cm ,则菱形AB 边上的高CE 的长是( )A .cmB .cmC .5cmD .10cm8.数据1,2,8,5,3,9,5,4,5,4的众数是 ;中位数是 .二、填空题1.用科学记数法表示:132000000= ;0.0012= ;﹣0.000 305= .2.已知一组数据x 1,x 2,…,x n 的平均数是,方差为s 2,则新的数据ax 1+b ,ax 2+b ,…,ax n +b 的平均数是 ,方差是 .3.已知反比例函数y=,其图象在第一、第三象限内,则k的值可为.(写出满足条件的一个k的值即可).4.一直角三角形的两边长分别为5和12,则第三边的长是.5.当x= 时,分式无意义.6.在直角坐标系中,点P(﹣2,3)到原点的距离是.7.如图,在正方形ABCD的外侧,作等边△ADE,则∠AEB= .8.若一组数据1、2、3、x的极差是6,则x的值为.9.如图,在梯形ABCD中,AD∥BC,E,F分别是对角线BD、AC的中点,AD=22cm,BC=38cm,则EF= .三、解答题1.解方程:①;②;③;④.2.已知函数y与x+1成反比例,且当x=﹣2时,y=﹣3.(1)求y与x的函数关系式;(2)当x=时,求y的值.3.若边长为4cm的菱形的两邻角度数之比为1:2,求菱形的面积为多少cm2?4.某公司招聘职员,对甲、乙两位候选人进行了面试和笔试,面试中包括形体和口才,笔试中包括专业水平和创新能力考察,他们的成绩(百分制)如下表:候选人面试笔试4:6:5:5的比确定,请计算甲、乙两人各自的平均成绩,看看谁将被录取?(2)若公司根据经营性质和岗位要求认为:面试成绩中形体占15%,口才占20%,笔试成绩中专业水平占40%,创新能力占25%,那么你认为该公司应该录取谁.5.已知反比例函数y=的图象与一次函数y=kx+m的图象相交于点A(2,1).(1)分别求出这两个函数的解析式;(2)当x取什么范围时,反比例函数值大于0;(3)若一次函数与反比例函数另一交点为B,且纵坐标为﹣4,当x取什么范围时,反比例函数值大于一次函数的值;(4)试判断点P(﹣1,5)关于x轴的对称点P′是否在一次函数y=kx+m的图象上.6.如图,以△ABC的三边为边,在BC的同侧作三个等边△ABD、△BEC、△ACF.(1)判断四边形ADEF的形状,并证明你的结论;(2)当△ABC满足什么条件时,四边形ADEF是菱形?是矩形?四、计算题已知E为平行四边形ABCD外一点,AE⊥CE,BE⊥DE,求证:平行四边形ABCD是矩形.黑龙江初二初中数学期末考试答案及解析一、选择题1.下列各点中,在函数的图象上的是()A.(2,1)B.(﹣2,1)C.(2,﹣2)D.(1,2)【答案】B.【解析】反比例函数的比例系数为k=xy=-2,四个选项中只有选项B符合要求,故答案选B..【考点】反比例函数图象上点的坐标特征.2.如果把分式中的x、y都扩大到原来的10倍,则分式的值()A.扩大100倍B.扩大10倍C.不变D.缩小到原来的【答案】C.【解析】把分式中的x、y都扩大到原来的10倍,可得=,故答案选C.【考点】分式的基本性质.3.下列各组线段中,能构成直角三角形的是()A.2,3,4B.3,4,6C.5,12,13D.4,6,7【答案】C.【解析】选项A,22+32=13≠42;选项B,32+42=25≠62;选项C,52+122=169=132;选项D,42+62=52≠72.由勾股定理的逆定理可得,只有选项C能够成直角三角形,故答案选C.【考点】勾股定理的逆定理.4.在下列函数中,y随x增大而增大的是()A.B.C.y=x﹣3D.y=x2+3【答案】C.【解析】选项A,根据正比例函数的性质可得在中,y随x的增大而减小;选项B,根据反比例函数的性质可得在中,在每个象限内,y随x的增大而减小;选项C,根据一次函数的性质可得在y=x﹣3中,y随x 的增大而增大;选项D,根据二次函数的性质可得在y=x2+3中,当x>0时,y随x的增大而增大,当x<0时,y随x增大而减小;故答案选C.【考点】二次函数的性质;一次函数的性质;正比例函数的性质;反比例函数的性质.5.六个学生进行投篮比赛,投进的个数分别为2,3,3,5,10,13,这六个数的中位数为()A.3B.4C.5D.6【答案】B.【解析】中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平数),叫做这组数据的中位数.根据中位数的定义可得,将这组数据是按从小到大的顺序排列为2,3,3,5,10,13,处于3,4位的两个数是3,5,所以这组数据的中位数为(3+5)÷2=4.故答案选B.【考点】中位数.6.一组数据的方差为s2,将这组数据的每个数据都扩大三倍,所得到的一组新的数据的方差为()A.9s2B.s2C.3s2D.2s2【答案】A.【解析】根据数据都扩大相同的倍数,方差扩大相同倍数的平方倍可得一这组数据的方差为s2,将这组数据中的每个数据都扩大3倍,所得到的一组数据的方差是32s2,即9s2.故答案选A.【考点】方差.7.如图,在菱形ABCD 中,AC=6cm ,BD=8cm ,则菱形AB 边上的高CE 的长是( )A .cmB .cmC .5cmD .10cm【答案】A .【解析】由菱形的性质可得AO=OC=3.BO=DO=4,△ABO 为直角三角形,在Rt △ABO 中,根据勾股定理即可得AB=5,根据菱形的面积=边长乘以高=两对角线乘积的一半可得S=×6cm×8cm=5cm×CE ,解得CE=cm ,故答案选A .【考点】菱形的性质.8.数据1,2,8,5,3,9,5,4,5,4的众数是 ;中位数是 . 【答案】5,4.5.【解析】把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.将数据从小到大重新排列后为1,2,3,4,4,5,5,5,8,9;观察数据可知最中间的两个数是4和5,故其中位数即这两个数平均数(4+5)÷2=4.5;出现次数最多的是5,所以众数为5.【考点】中位数;众数.二、填空题1.用科学记数法表示:132000000= ;0.0012= ;﹣0.000 305= .【答案】1.32×108;1.2×10﹣3;﹣3.05×10﹣4.【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.由此可得132 000 000=1.32×108;0.0012=1.2×10﹣3;﹣0.000 305=﹣3.05×10﹣4. 【考点】科学记数法.2.已知一组数据x 1,x 2,…,x n 的平均数是,方差为s 2,则新的数据ax 1+b ,ax 2+b ,…,ax n +b 的平均数是 ,方差是 .【答案】a +b ,a 2s 2.【解析】数据都加同一个数,平均数加这个数;数据都扩大相同的倍数,平均数也扩大相同的倍数,方差扩大数据扩大倍数的平方倍;数据都扩大相同的倍数,都加上同一个数,平均数扩大相同的倍数也加上相同的数,方差扩大相同倍数的平方倍.已知一组数据x 1,x 2,…,x n 的平均数是,方差为s 2,根据这个规律可得新的数据ax 1+b ,ax 2+b ,…,ax n +b 的平均数是a +b ,方差是 a 2s 2. 【考点】方差;算术平均数.3.已知反比例函数y=,其图象在第一、第三象限内,则k 的值可为 .(写出满足条件的一个k 的值即可).【答案】答案不唯一,只要符合k >2即可,如k=3. 【解析】已知反比例函数y=,其图象在第一、第三象限内,由反比例函数的性质可得k ﹣2>0,即k >2,k的值可为3(答案不唯一,只要符合k >2即可). 【考点】反比例函数的性质.4.一直角三角形的两边长分别为5和12,则第三边的长是 . 【答案】13或.【解析】设第三边为x ,分两种情况,(1)若12是直角边,则第三边x 是斜边,由勾股定理得52+122=x 2,解得x=13;(2)若12是斜边,则第三边x 为直角边,由勾股定理得52+x 2=122,解得x=;即第三边的长为13或.【考点】勾股定理.5.当x= 时,分式无意义.【答案】x=5.【解析】要使分式无意义,必须使x-5=0,即x=5.【考点】分式无意义的条件.6.在直角坐标系中,点P(﹣2,3)到原点的距离是.【答案】.【解析】在平面直角坐标系中找出P点,过P作PE垂直于x轴,连接OP,由P的坐标得出PE及OE的长,在直角三角形OPE中,利用勾股定理求出OP的长,即为P到原点的距离.如图,过P作PE⊥x轴,连接OP,由P(﹣2,3),可得PE=3,OE=2,在Rt△OPE中,根据勾股定理得OP2=PE2+OE2,代入数据即可求得OP=,即点P在原点的距离为.【考点】勾股定理;点的坐标.7.如图,在正方形ABCD的外侧,作等边△ADE,则∠AEB= .【答案】15°.【解析】由正方形的性质及等边三角形的性质可得AB=AD=AE,∠BAD=90°,∠DAE=60°,可得∠BAE=∠BAD+∠DAE=150°,再由等腰三角形的性质及三角形的内角和定理即可得∠AEB=15°.【考点】正方形的性质;等边三角形的性质;等腰三角形的性质;三角形的内角和定理.8.若一组数据1、2、3、x的极差是6,则x的值为.【答案】7或﹣3.【解析】极差是用一组数据中的最大值减去最小值所得的结果.本题分两种情况,当x为最大数时,可得x﹣1=6,解x=7;得当x为最小数是,可得3﹣x=6,解得x=﹣3.【考点】极差.9.如图,在梯形ABCD中,AD∥BC,E,F分别是对角线BD、AC的中点,AD=22cm,BC=38cm,则EF= .【答案】8cm.【解析】如图,连接DF并延长DF交BC于M,根据平行线的性质,利用AAS或ASA可证△AFD≌△CFM,根据全等三角形的性质可得AF=CF,再由三角形的中位线定理可得EF=BM=(BC﹣AD)=×(38﹣22)=8cm.【考点】全等三角形的判定及性质;三角形中位线定理.三、解答题1.解方程:①;②;③;④.【答案】(1)x=﹣3;(2)x=;(3)x=﹣;(4)x=﹣.【解析】将各分式方程去分母后转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.试题解析:解:①去分母得:2x﹣6=3x﹣3,解得:x=﹣3,经检验x=﹣3是分式方程的解;②去分母得:40+3x=108,解得:x=,经检验x=是分式方程的解;③去分母得:2x﹣5=6x﹣3,解得:x=﹣,经检验x=﹣是分式方程的解;④去分母得:3x=2x+3x+3,解得:x=﹣,经检验x=﹣是分式方程的解.【考点】分式方程的解法.2.已知函数y与x+1成反比例,且当x=﹣2时,y=﹣3.(1)求y与x的函数关系式;(2)当x=时,求y的值.【答案】(1);(2)2.【解析】(1)已知函数y与x+1成反比例,设函数解析式为,把x=﹣2时,y=﹣3代入即可;(2)把自变量的取值代入(1)中所求的函数解析式即可求得y的值.试题解析:解:(1)设,把x=﹣2,y=﹣3代入得.解得:k=3.∴.(2)把x=代入解析式得:.【考点】待定系数法求函数解析式.3.若边长为4cm的菱形的两邻角度数之比为1:2,求菱形的面积为多少cm2?【答案】菱形的面积为8cm2.【解析】已知如图,菱形ABCD的边长为4cm,∠A:∠ABC=1:2,由菱形的性质可得AD∥BC,AB=AD=4,则∠A+∠ABC=180°,即可得∠A=60°,所以△ABD为等边三角形,再根据等边三角形的面积公式,利用S菱形ABCD=2S △ABD 即可得菱形的面积.试题解析:解:如图,菱形ABCD 的边长为4cm ,∠A :∠ABC=1:2, ∵四边形ABCD 为菱形, ∴AD ∥BC ,AB=AD=4, ∴∠A+∠ABC=180°, ∴∠A+2∠A=180°,解得∠A=60°, ∴△ABD 为等边三角形,∴S 菱形ABCD =2S △ABD =2××42=8(cm 2).答:菱形的面积为8cm 2.【考点】菱形的性质.4.某公司招聘职员,对甲、乙两位候选人进行了面试和笔试,面试中包括形体和口才,笔试中包括专业水平和创新能力考察,他们的成绩(百分制)如下表:候选人面试笔试(1)若公司根据经营性质和岗位要求认为:形体、口才、专业水平、创新能力按照4:6:5:5的比确定,请计算甲、乙两人各自的平均成绩,看看谁将被录取?(2)若公司根据经营性质和岗位要求认为:面试成绩中形体占15%,口才占20%,笔试成绩中专业水平占40%,创新能力占25%,那么你认为该公司应该录取谁. 【答案】(1)应该录取乙;(2)应该录取乙.【解析】(1)由题意可知,形体、口才、专业水平、创新能力按照4:6:5:5的比确定,根据加权平均数的计算方法分别计算甲乙二人的加权平均数,比较即可得答案;(2)已知面试成绩中形体占15%,口才占20%,笔试成绩中专业水平占40%,创新能力占25%,根据加权平均数的计算方法分别计算甲乙二人的加权平均数,比较即可得答案.试题解析:解:(1)形体、口才、专业水平、创新能力按照4:6:5:5的比确定, 则甲的平均成绩为=91.2. 乙的平均成绩为=91.8.乙的成绩比甲的高,所以应该录取乙.(2)面试成绩中形体占15%,口才占20%,笔试成绩中专业水平占40%,创新能力占25%, 则甲的平均成绩为86×15%+90×20%+96×40%+92×25%=92.3. 乙的平均成绩为92×15%+88×20%+95×40%+93×25%=92.65. 乙的成绩比甲的高,所以应该录取乙. 【考点】加权平均数.5.已知反比例函数y=的图象与一次函数y=kx+m的图象相交于点A(2,1).(1)分别求出这两个函数的解析式;(2)当x取什么范围时,反比例函数值大于0;(3)若一次函数与反比例函数另一交点为B,且纵坐标为﹣4,当x取什么范围时,反比例函数值大于一次函数的值;(4)试判断点P(﹣1,5)关于x轴的对称点P′是否在一次函数y=kx+m的图象上.【答案】(1)y=,y=2x﹣3;(2)x>0;(3)点P′在直线上.【解析】(1)根据题意,反比例函数y=的图象过点A(2,1),可求得k的值,进而可得解析式;一次函数y=kx+m的图象过点A(2,1),代入求得m的值,从而得出一次函数的解析式;(2)根据(1)中求得的解析式,当y>0时,解得对应x的取值即可;(3)由题意可知,反比例函数值大于一次函数的值,即可得>2x﹣3,解得x的取值范围即可;(4)先根据题意求出P′的坐标,再代入一次函数的解析式即可判断P′是否在一次函数y=kx+m的图象上..试题解析:解:(1)根据题意,反比例函数y=的图象与一次函数y=kx+m的图象相交于点A(2,1),则反比例函数y=中有k=2×1=2,y=kx+m中,k=2,又∵过(2,1),解可得m=﹣3;故其解析式为y=,y=2x﹣3;(2)由(1)可得反比例函数的解析式为y=,令y>0,即>0,解可得x>0.(3)根据题意,要反比例函数值大于一次函数的值,即>2x﹣3,解可得x<﹣0.5或0<x<2.(4)根据题意,易得点P(﹣1,5)关于x轴的对称点P′的坐标为(﹣1,﹣5)在y=2x﹣3中,x=﹣1时,y=﹣5;故点P′在直线上.【考点】反比例函数与一次函数的交点问题.6.如图,以△ABC的三边为边,在BC的同侧作三个等边△ABD、△BEC、△ACF.(1)判断四边形ADEF的形状,并证明你的结论;(2)当△ABC满足什么条件时,四边形ADEF是菱形?是矩形?【答案】详见解析.【解析】(1)根据等边三角形的性质,利用SAS易证△BDE≌△BAC,即可得DE=AC=AF,同理可得EF=AB=AD,根据两组对边分别相等的四边形是平行四边形即可判定四边形ADEF为平行四边形;(2)AB=AC时,根据一组邻边相等的平行四边形为菱形即可判定平行四边形ADEF为菱形;要使平行四边形AEDF是矩形,则有∠DEF=90°,由∠DEF=∠BED+∠BEC+∠CEF,可推出∠BAC=150°时为矩形.试题解析:(1)四边形ADEF为平行四边形,证明:∵△ABD和△EBC都是等边三角形,∴BD=AB,BE=BC;∵∠DBA=∠EBC=60°,∴∠DBA﹣∠EBA=∠EBC﹣∠EBA,∴∠DBE=∠ABC;∵在△BDE和△BAC中,∴△BDE≌△BAC,∴DE=AC=AF,同理可证:△ECF≌△BCA,∴EF=AB=AD,∴ADEF为平行四边形;(2)AB=AC时,▱ADEF为菱形,当∠BAC=150°时▱ADEF为矩形.理由是:∵AB=AC,∴AD=AF.∴▱ADEF是菱形.∴∠DEF=90°=∠BED+∠BEC+∠CEF=∠BCA+60°+∠CBA=180﹣∠BAC+60°=240°﹣∠BAC,∴∠BAC=150°,∵∠DAB=∠FAC=60°,∴∠DAF=90°,∴平行四边形ADEF是矩形.【考点】等边三角形的性质;平行四边形的判定;菱形的判定;矩形的判定.四、计算题已知E为平行四边形ABCD外一点,AE⊥CE,BE⊥DE,求证:平行四边形ABCD是矩形.【答案】详见解析.【解析】如图,连接AC、BD交于点O,连接OE,已知AE⊥CE,BE⊥DE,根据直角三角形斜边上的中线等于斜边的一半得到OE=AC=BD,进而得到AC=BD,根据对角线相等的平行四边形是矩形即可判定平行四边形ABCD是矩形..试题解析:证明:连接AC、BD交于点O,连接OE,∵AE⊥CE,BE⊥DE,∴OE=AC=BD,∴AC=BD,∵四边形ABCD是平行四边形,∴平行四边形ABCD为矩形.【考点】平行四边形的性质;矩形的判定.。

(人教版)2020-2021学年初二数学第十一章 三角形(能力提升卷)【含答案】

(人教版)2020-2021学年初二数学第十一章 三角形(能力提升卷)【含答案】

第十一章 三角形能力提升卷班级___________ 姓名___________ 学号____________ 分数____________(考试时间:60分钟 试卷满分:120分)一.选择题(每题3分,共计30分)1.至少有两边相等的三角形是( )A .等边三角形B .等腰三角形C .等腰直角三角形D .锐角三角形【答案】B 【解析】本题中三角形的分类是:等腰三角形{两边相等:等腰三角形{直角三角形锐角三角形钝角三角形三边相等:等边三角形. 故选:B .2.(2020 •宜兴市期中)在如图的△ABC 中,正确画出AC 边上的高的图形是( )A .B .C .D .【答案】C 【解析】根据三角形高线的定义,AC 边上的高是过点B 向AC 作垂线垂足为D ,纵观各图形,A 、B 、D 都不符合高线的定义,C 符合高线的定义.故选:C .3.(2019•浉河区月考)如图已知BE =CE ,ED 为△EBC 的中线,BD =8,△AEC 的周长为24,则△ABC 的周长为( )A .40B .46C .50D .56【答案】A【解析】∵△ABC的周长为24,∴AE+EC+AC=24,∵EB=EC,∴AE+EB+AC=AB+AC=24,∵BD=CD=8,∴BC=16,∴△ABC的周长=AB+AC+BC=24+16=40,故选:A.4.(2020•洛龙区月考)已知△ABC的三边长为a,b,c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是()A.2b﹣2c B.﹣2b C.2a+2b D.2a【答案】A【解析】∵△ABC的三边长分别是a、b、c,∴a+b>c,b﹣a<c,∴a+b﹣c>0,b﹣a﹣c<0,∴|a+b﹣c|﹣|b﹣a﹣c|=a+b﹣c﹣(﹣b+a+c)=a+b﹣c+b﹣a﹣c=2(b ﹣c);故选:A.5.(2020•郑州二模)将一副直角三角板ABC和EDF如图放置(其中∠A=60°,∠F=45°),使点E落在AC边上,且ED∥BC,则∠AEF的度数为()A.145°B.155°C.165°D.170°【答案】C【解析】∵∠A=60°,∠F=45°,∴∠1=90°﹣60°=30°,∠DEF=90°﹣45°=45°,∵ED∥BC,∴∠2=∠1=30°,∴∠CEF=∠DEF﹣∠2=45°﹣30°=15°.∴∠AEF=180°﹣∠CEF=165°,故选:C.6.(2019 •内乡县期末)如图,顺次连结同一平面内A,B,C,D四点,已知∠A=40°,∠C=20°,∠ADC=120°,若∠ABC的平分线BE经过点D,则∠ABE的度数()A.20°B.30°C.40°D.60°【答案】B【解析】∵∠ADE=∠ABD+∠A,∠EDC=∠DBC+∠C,∴∠ADC=∠ADE+∠EDC=∠A+∠C+∠ABC,∴120°=40°+20°+∠ABC,∴∠ABC=60°,∵BE平分∠ABC,∴∠ABE=1∠ABC=30°,故选:B.27.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为()A.140°B.160°C.170°D.150°【答案】B【解析】∵将一副直角三角尺如图放置,∠AOD=20°,∴∠COA=90°﹣20°=70°,∴∠BOC=90°+70°=160°.故选:B.8.(2020•广饶县一模)如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.90°B.135°C.270°D.315°【答案】C【解析】∵四边形的内角和为360°,直角三角形中两个锐角和为90°∴∠1+∠2=360°﹣(∠A +∠B )=360°﹣90°=270°.故选:C .9.(2019 •淅川县期末)△ABC 的两边是方程组{x +2y =104x +3y =20的解,第三边长为奇数.符合条件的三角形有( )A .1个B .2个C .3个D .4个【答案】B【解析】方程组{x +2y =104x +3y =20的解为:{x =2y =4,∵△ABC 的两边是方程组{x +2y =104x +3y =20的解,第三边长为奇数,∴2<第三边长<6,1∴第三边长可以为:3,5.∴这样的三角形有2个.故选:B .10.(2020•新密市期末)已知,如图,在△ABC 中,∠C =150°,点E 是边AB 上点,∠DEF =65°,则∠ADE +∠BFE =( )A .180°B .215°C .205°D .185°【答案】B【解析】在四边形CDEF 中,∵∠C +∠CDE +∠CFE +∠DEF =360°,又∵∠C =150°,∠DEF =65°,∴∠CDE +∠CFE =360°°﹣65°﹣150°=145°,∴∠ADE +∠EFB =360°﹣(∠CDE +∠CFE )=215°,故选:B .二.填空题(每题3分,共计15分)11.(2019•双柏县一模)已知三角形两边的长分别为5、2,第三边长为奇数,则第三边的长为 .【答案】5【解析】第三边x 的范围是:3<x <7.∵第三边长是奇数,∴第三边是5cm .故答案为:5.12.(2020•广东二模)如果将一副三角板按如图方式叠放,那么∠1= .【答案】105°【解析】给图中角标上序号,如图所示.∵∠2+∠3+45°=180°,∠2=30°,∴∠3=180°﹣30°﹣45°=105°,∴∠1=∠3=105°.故答案为:105°.13.(2020•老城区月考)如图中,若BD 、CD 为角平分线,且∠A =50°,∠E =130°,∠则∠D = 度.【答案】90【解析】连接BC ,∵∠E =130°,∠A =50°,∴∠EBC +∠ECB =180°﹣130°=50°,∠ABC +∠ACB =180°﹣50°=130°,∴∠ABE +∠ACE =130°﹣50°=80°,∵BD 、CD 为角平分线,∴∠DBE =12∠DCE =12∠ACE ,∴∠DBE +∠DCE =12(∠ABE +∠ACE )=40°, ∴∠D =180°﹣(∠DBC +∠DCB )=180°﹣(∠DBE +∠DCE )﹣(∠EBC +∠ECB )=180°﹣(40°+50°)=90°,故答案为:90.14.(2019 •宛城区期末)如图所示,∠1=130°,则∠A +∠B +∠C +∠D +∠E +∠F 的度数为 .【答案】260°【解析】如图:∠1=∠B+∠C,∠DME=∠A+∠E,∠ANF=∠F+∠D,∵∠1=∠DME+∠ANF=130°,∴∠A+∠B+∠C+∠D+∠E+∠F=2×130°=260°.故答案为:260°.15.(2019 •宛城区期末)如图,△ABC中,∠A=70°,∠B=50°,点M,N分别是BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B'落在AC上.若△MB'C为直角三角形,则∠MNB'的度数为.【答案】55°或85°【解析】∵∠C=180°﹣∠A﹣∠B,∠A=70°,∠B=50°,∴∠C=180°﹣70°﹣50°=60°,当∠CB′M∠BMB′=75°,∴∠MNB′=180°=90°,∴∠CMB′=90°﹣60°=30°,由折叠的性质可知:∠NMB′=12﹣75°﹣50°=55°,当∠CMB′=90°时,∠NMB=∠NMB′=45°,∠MNB′=180°﹣50°﹣45°=85°,故答案为55°或85°.三.解答题(共75分)16.(8分)(2020•殷都区期中)如果一个多边形的每个外角都相等,且比内角小36°,求这个多边形的边数和内角和.【解析】设多边形的一个外角为x度,则一个内角为(x+36)度,依题意得x+x+36=180,解得x=72.360°÷72°=5.(5﹣2)×180°=540°故这个多边形的边数为5,内角和是540°.17. (9分)(2019 •内乡县期末)如图,在△BCD中,BC=1.5,BD=2.5,(1)若设CD的长为偶数,则CD的取值是.(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.【解析】(1)∵在△BCD中,BC=1.5,BD=2.5,∴1<CD<4,∵CD的长为偶数,∴CD的取值是2.故答案为2;(2)∵AE∥BD,∠BDE=125°,∴∠AEC=55°,又∵∠A=55°,∴∠C=70°.18.(9分)已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.【解析】(1)∵360°÷180°=2,630°÷180°=3…90°,∴甲的说法对,乙的说法不对,360°÷180°+2=2+2=4.答:甲同学说的边数n是4;(2)依题意有(n+x﹣2)×180°﹣(n﹣2)×180°=360°,解得x=2.故x的值是2.19.(9分)(2019 •内乡县期末)如图,在四边形ABCD 中,∠A =∠C =90°,BE 平分∠ABC ,DF 平分∠CDA .(1)求证:BE ∥DF ;(2)若∠ABC =56°,求∠ADF 的大小.【解析】(1)证明:∵∠A =∠C =90°,∴∠ABC +∠ADC =180°,∵BE 平分∠ABC ,DF 平分∠ADC ,∴∠1=∠2=12∠ABC ,∠3=∠4=12∠ADC , ∴∠1+∠3=12(∠ABC +∠ADC )=12×180°=90°,又∠1+∠AEB =90°,∴∠3=∠AEB ,∴BE ∥DF ;(2)解:∵∠ABC =56°,∴∠ADC =360°﹣∠A ﹣∠C ﹣∠ABC =124°,∵DF 平分∠CDA ,∴∠ADF =12∠ADC =62°.20.(9分)(2019 •东阿县期末)如图,已知D 为△ABC 边BC 延长线上一点,DF ⊥AB 于F ,且交AC 于E ,∠A =30°,∠D =55°(1)求∠ACD 的度数;(2)求∠FEC 的度数.【解析】(1)∵DF ⊥AB ,∴∠BFD =90°,∴∠B =90°﹣∠D =35°,∵∠ACD =∠B +∠A ,∠A =30°,∴∠ACD =65°.(2)∵∠FEC =∠ECD +∠D ,∠ECD =65°,∠D =55°,∴∠FEC =55°+65°=120°.21.(10分)(2019 •上蔡县期末)如图,△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,∠CAB =50°,∠C =60°,求∠DAE 和∠BOA 的度数.【解析】∵∠CAB =50°,∠C =60°∴∠ABC =180°﹣50°﹣60°=70°,又∵AD 是高,∴∠ADC =90°,∴∠DAC =180°﹣90°﹣∠C =30°,∵AE 、BF 是角平分线,∴∠CBF =∠ABF =35°,∠EAF =25°,∴∠DAE =∠DAC ﹣∠EAF =5°,∠AFB =∠C +∠CBF =60°+35°=95°,∴∠BOA =∠EAF +∠AFB =25°+95°=120°,∴∠DAC =30°,∠BOA =120°.故∠DAE =5°,∠BOA =120°.22.(10分)(2019 •卫辉市期末)如图,已知∠MON =90°,点A 、B 分别在射线OM 、ON 上移动,∠OAB 的平分线与∠OBA 的外角平分线交于点C .(1)当OA =OB 时,∠ACB = 45° .(2)请你猜想:随着A 、B 两点的移动,∠ACB 的度数大小是否变化?请说明理由.【解析】(1)∵OA =OB ,∠AOB =90°,∴∠ABO =∠OAB =45°,∴∠OBD =135°,∵∠OAB 的平分线与∠OBA 的外角平分线交于点C ,∴∠OBC =67.5°,∠CAB =22.5°∴∠ACB =180°﹣67.5°﹣45°﹣22.5°=45°故答案为45°.(2)随着A 、B 两点的移动,∠ACB 的度数大小不会变化.理由如下:∵AC 平分∠OAB∴∠BAC =∠OAC =12∠OAB ,∵BC 平分∠OBA 的外角∠OBD ∴∠CBD =∠OBC =12∠OBD , ∵∠OBD 是△AOB 的一个外角∴∠OBD =∠MON +∠OAB =90°+∠OAB ∴∠CBD =12∠OBD =12(90°+∠OAB )=45°+12∠OAB ∵∠CBD 是△ABC 的一个外角∴∠CBD =∠ACB +∠BAC ∴∠ACB =∠CBD ﹣∠BAC =45°+12∠OAB −12∠OAB=45°.23.(11分)问题情景:如图1,在同一平面内,点B 和点C 分别位于一块直角三角板PMN 的两条直角边PM ,PN 上,点A 与点P 在直线BC 的同侧,若点P 在△ABC 内部,试问∠ABP ,∠ACP 与∠A 的大小是否满足某种确定的数量关系?(1)特殊探究:若∠A =55°,则∠ABC +∠ACB = 125 度,∠PBC +∠PCB = 90 度,∠ABP +∠ACP = 35 度;(2)类比探索:请猜想∠ABP +∠ACP 与∠A 的关系,并说明理由;(3)类比延伸:改变点A 的位置,使点P 在△ABC 外,其它条件都不变,判断(2)中的结论是否仍然成立?若成立,请说明理由;若不成立,请直接写出∠ABP ,∠ACP 与∠A 满足的数量关系式.【解析】(1)由题意:∠ABC +∠ACB =125度,∠PBC +∠PCB =90度,∠ABP +∠ACP =35度. 故答案为125,90,35.(2)猜想:∠ABP +∠ACP =90°﹣∠A .理由:在△ABC 中,∠ABC +∠ACB =180°﹣∠A ,∵∠ABC =∠ABP +∠PBC ,∠ACB =∠ACP +∠PCB ,∴(∠ABP +∠PBC )+(∠ACP +∠PCB )=180°﹣∠A ,∴(∠ABP +∠ACP )+(∠PBC +∠PCB )=180°﹣∠A ,又∵在Rt △PBC 中,∠P =90°,∴∠PBC +∠PCB =90°,∴(∠ABP +∠ACP )+90°=180°﹣∠A ,∴∠ABP +∠ACP =90°﹣∠A .(3)判断:(2)中的结论不成立.①如图3﹣1中,结论:∠A +∠ACP ﹣∠ABP =90°.理由:设AB 交PN 于O .∵∠AOC=∠BOP,∴∠A+∠ACP=90°+∠ABP,∴∠A+∠ACP﹣∠ABP=90°.②如图3﹣2中,结论:∠A+∠ABP﹣∠ACP=90°.证明方法类似①③如图3﹣3中,结论:∠A﹣∠ABP﹣∠ACP=90°.理由:∵∠A+∠ABC+∠ACB=180°,∠P+∠ABP+∠ACP+∠ABC+∠ACB=180°,∴∠A=∠P+∠ABP+∠ACP,∴∠A﹣∠ABP﹣∠ACP=90°.。

人教版八年级上数学期末测试题(能力提升卷)

人教版八年级上数学期末测试题(能力提升卷)

人教版八年级上数学期末测试题(能力提升卷)一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列交通标志中,轴对称图形的是()A.B.C.D.2.(3分)要使分式有意义,则x的取值应满足()A.x≠0B.x≠﹣3C.x≠3D.x≠±33.(3分)点P(3,4)关于x轴对称的点是P′,P′关于y轴的对称点坐标是()A.(3,﹣4)B.(﹣3,4)C.(﹣3,﹣4)D.(3,4)4.(3分)2020年春季,全球发生了新型冠状病毒疫情,病毒直径约在100﹣300纳米之间,我们知道,1纳米=10﹣7cm,用科学记数法表示直径为150纳米的病毒相当于()A.150×10﹣7cm B.15×10﹣6cm C.1.5×10﹣5cm D.1.5×107cm 5.(3分)下列计算正确的是()A.a4+a2=a6B.a5•a2=a7C.(ab5)2=ab10D.a10÷a2=a56.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=2BC,分别以点A和B为圆心,以大于AB的长为半径作弧,两弧相交于点M和N,作直线MN,交AC于点E,连接BE,若CE=3,则BE的长为()A.5B.4C.3D.67.(3分)下列因式分解正确的是()A.x2﹣4=(x﹣2)2B.x2﹣2x﹣3=(x﹣1)2C.x2﹣2=(x+2)(x﹣2)D.(x﹣1)2﹣(2x﹣3)=(x﹣2)2 8.(3分)将分式、y的值同时扩大2倍,则扩大后分式的值()A.扩大2倍B.缩小2倍C.保持不变D.无法确定9.(3分)已知a,b为正整数,满足ab﹣3b﹣2a﹣28=0,则a+2b的最大值为()A.28B.43C.76D.7810.(3分)如图,AC平分∠BAD,∠B=∠D=90°,AD∥EC,AD=9cm,CE=7cm,则BE的长为()A.1cm B.2cm C.3cm D.4cm二.填空题(共6小题,满分18分,每小题3分)11.(3分)若分式的值为0,则x的值为.12.(3分)如图,五边形ABCDE中,∠A=140°,∠B=120°,∠E=90°,CP和DP 分别是∠BCD、∠EDC的外角平分线,且相交于点P,则∠CPD=.13.(3分)如图,已知△ABC的周长是20,OB,OC分别平分∠ABC和∠ACB,OD⊥BC 于点D,且OD=2,△ABC的面积是.14.(3分)已知m+n=6,mn=4,则m2﹣2mn+n2=.15.(3分)当a取值时,关于x的分式方程=a无解.16.(3分)如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=,Q为AC上的动点,P为Rt△ABC内一动点,且满足∠APB=120°,若D为BC的中点,则PQ+DQ 的最小值是.三.解答题(共8小题)17.计算:(1)(4a2b+6a2b2﹣ab2)÷2ab;(2)(x+2)(2x﹣1).18.分解因式:(1)﹣2ax2+16axy﹣32ay2;(2)a2(x﹣y)+4b2(y﹣x);(3)(m2﹣6)2﹣10(6﹣m2)+25.19.如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C.CD与BE交于点O.求证:△DOB≌△EOC.20.先化简再求值:,其中x=﹣2,y=+2.21.(1)如图所示,用三角板画出△ABC关于直线MN的轴对称图形;(2)如图,已知∠AOB和边OB上一点E,求作:一点P,使P到∠AOB两边的距离相等,且OP=EP.(尺规作图,不写作法,保留作图痕迹)22.甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)甲,乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有1600个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成如果总加工费不超过4200元,那么甲至少加工了多少天?23.我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.发现与证明:如图1,在▱ABCD中,AB≠BC,将△ABC沿AC翻折至△AB′C,连结B′D.证明下列结论.(1)B′D∥AC;(2)△AB′C与平行四边形ABCD重叠部分的图形是等腰三角形.应用与探究:在平行四边形ABCD中,已知∠B=30°,将△ABC沿AC翻折至△AB′C,连结B'D.(1)如图1,若AB=,∠AB′D=75°,则∠ACB=,BC=;(2)如图2,AB=2,BC=1,AB'与边CD相交于点E,求△AEC的面积.24.如图,在平面直角坐标系中,点O为坐标原点,点C的坐标为(0,3).将线段OC向右平移4个单位长度得到线段AB(点A和点B分别是点O和点C的对应点),连接BC.(1)直接写出点A,B的坐标;(2)动点P从点O出发,以每秒1个单位长度的速度沿O→A→B匀速运动,设点P的运动时间为t秒,△OBP的面积为S,请用含t的式子表示S;(3)在(2)的条件下,过点P作x轴的垂线交OB于点Q,PQ将△OPB的面积分成1:2的两部分,且△ABP的面积是△BPQ面积的3倍,求点Q的坐标.。

沪科版八年级上册数学期末测试卷及含答案(精炼题)(能力提高)

沪科版八年级上册数学期末测试卷及含答案(精炼题)(能力提高)

沪科版八年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、下列交通标志中,是轴对称图形但不是中心对称图形的是()A. B. C. D.2、已知,如图,一牧童在A处牧马,牧童家在B处,A,B两处距河岸的距离AC,BD的长分别为700米,500米,且CD的距离为500米,天黑前牧童从A点将马牵到河边去饮水后,再赶回家,那么牧童最少要走()米.A.1100B.1200C.1300D.14003、在四边形ABCD中,∠A=∠B=∠C,点E在边AB上,∠AED=60°,则一定有()A.∠ADE=20°B.∠ADE=30°C.∠ADE=∠ADCD.∠ADE =∠ADC4、下列图形:平行四边形、矩形、菱形、圆、等腰三角形,这些图形中只是轴对称图形的有()A.1个B.2个C.3个D.4个5、如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C'处,BC'交AD于点E,则线段DE的长为()A.3B.C.5D.6、明明家在电视塔西北300米处,亮亮家在电视塔西南300米处,则明明家在亮亮家的()A.正北B.东南C.西南D.正西7、已知二元一次方程组的解为,则函数和的图象交点为坐标为A. B. C. D.8、如图,射线l是下列哪个函数的图象A. B. C. D.9、点P1(,),点P2(,)是一次函数=-4+ 3 图象上的两个点,且<,则1与2的大小关系是()A. >B. >>0C. <D. <10、下列各组所列条件中,不能判断和全等的是().A. ,,B. ,,C. ,,D.,,11、如图,在四边形ABCD中,点E到AD,AB,BC三边的距离都相等,则∠AEB( )A.是锐角B.是直角C.是钝角D.度数不确定12、下列各条件中,不能判定出全等三角形的是()A.已知两边和夹角B.已知两角和夹边C.已知两边和其中一边的对角D.已知三边13、等腰三角形一底角为50°,则顶角的度数是()A.65B.70C.80D.4014、如图,在平行四边形ABCD中,AB=10,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F恰好为DC的中点,DG⊥AE,垂足为G.若DG=3,则AE的边长为()A.2B.4C.8D.1615、已知M(2,2).规定“把点M先作关于x轴对称,再向左平移1个单位”为一次变换.那么连续经过2018次变换后,点M的坐标变为().A.(-2016,2)B.(-2016,-2)C.(-2017,-2)D.(-2017,2)二、填空题(共10题,共计30分)16、如图,中,,,,为BC 边上一动点(不与B,C重合),点D关于AB,AC的对称点分别为点E,F,则EF的最小值为________.17、一次函数y=(m+2)x+3﹣m,若y随x的增大而增大,函数图象与y轴的交点在x轴的上方,则m的取值范围是________.18、在①平行四边形、②正方形、③等边三角形、④等腰梯形、⑤菱形、⑥圆、⑦正八边形这些图形中,既是轴对称图形又是中心对称图形的是________(填序号)19、如图所示的棋盘放置在某个平面直角坐标系内,棋子①的坐标为,棋子②的坐标为,那么棋子③的坐标是________.20、如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为________21、已知等腰三角形的周长为20,腰长为x,则x的取值范围是________ .22、已知一次函数,它的图象与两坐标轴围成的三角形面积为9,则=________23、等腰三角形的一个外角是,则它底角的度数是________.24、如图,已知点O是△ABC内一点,且点O到三边的距离相等,∠A=40°,则∠BOC=________.25、为了测量一个圆铁环的半径,某同学用了如下方法,将铁环平放在水平桌面上,用有一个角为30°的直角三角板和刻度尺按如图所示的方法得到相关数据,进而求出铁环半径,若测得PA=5cm,则铁环的半径是________cm.三、解答题(共5题,共计25分)26、如图,D是AB上的一点,E是AC上的一点,BE、CD相交于一点F,∠A=63°,∠ACD=34°,∠ABE=20°,求∠BDC和∠BFC的度数.27、如图,已知,求证:.28、如图所示,△ABC中,AB=AC,∠BAC=120°,AD⊥AC,CD=6cm,求BD的长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学上期末能力提高测试题(120分,100分钟)一、选择题(每题3分,共24分) 1.下列运算正确的是( ) A .b a b a +=+211 B .a ÷b ×b1=a C .1-=--x y y x D .3131-=- 2.若等腰三角形有两条边的长分别是3和1,则此等腰三角形的周长是( ) A .5 B .7 C .5或7 D .63.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如c b a ++就是完全对称式.下列四个代数式:①abc ;②ca bc ab ++;③a c c b b a 222++;④()2b a -.其中是完全对称式的是( )A .①②④B .①③C .②③D .①②③ 4.若022=-+x x ,则2012223+-+x x x 的值是( )A .2014B .2013C . 2014-D .2013- 5.若n 为整数,则能使11-+n n 也为整数的n 有( ) A .1个 B .2个 C .3个 D .4个6.〈湖北仙桃〉如图1,在△ABC 中,AB =AC ,∠A =120°,BC =6 cm ,AB 的垂直平分线交BC 于点M ,交AB 于点E ,AC 的垂直平分线交BC 于点N ,交AC 于点F ,则MN 的长为( ) A .4 cm B .3 cm C .2 cm D .1 cm图1 图2 图37.如图2所示,在直角三角形ABC 中,已知∠ACB =90°,点E 是AB 的中点,且DE ⊥AB ,DE 交AC 的延长线于点D 、交BC 于点F ,若∠D =30°,EF =2,则DF 的长是( )8.如图3所示,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正△ABC 和正△CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ .以下四个结论:①△ACD ≌△BCE ;②AD =BE ;③∠AOB =60°;④△CPQ 是等边三角形.其中正确的是( )A .①②③④B .②③④C .①③④D .①②③ 二、填空题(每题3分,共24分)9.因式分解:a a a 9623+- =___________.10.计算:()()201411212014--⎪⎭⎫ ⎝⎛+-- =___________.11.按图4所示程序计算: a →×2→2a +→÷a →a -→结果图4请将上面的计算程序用代数式表示出来并化简:_________. 12.如图5,将△ABC 纸片沿DE 折叠,图中实 线围成的图形面积与原三角形面积之比为2∶3,若图中实线围成的阴影部分面积为2,则 图5 重叠部分的面积为__________.13.〈辽宁沈阳〉已知等边三角形ABC 的高为4,在这个三角形所在的平面内有一点P ,若点P 到AB 的距离是1,点P 到AC 的距离是2,则点P 到BC 的最小距离和最大距离分别是__________.14.在平面直角坐标系中,A (2,0),B (0,3),若△ABC 的面积为6,且点C 在坐标轴上,则符合条件的点C 的坐标为___________.15.如图6所示,在平面直角坐标系中,点A (2,2)关于y 轴的对称点为B ,点C ()42--,关于y 轴的对称点为D .把一条长为2 014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A →B →C →D →A →…的规律紧绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是__________.图6 图716.如图7的钢架中,焊上等长的13根钢条来加固钢架.若A P P P P P P P AP 14141332211===== ,则∠A 的度数是________.三、解答题(17、18题每题5分,23、25题每题9分,24题8分,26题12分,其余每题6分,共72分)17.如图8均为2×2的正方形网格,每个小正方形的边长均为1.请分别在两个图中各画出一个与△ABC 成轴对称、顶点在格点上,且位置不同的三角形.图818.如图9,△ABC 中,∠A =40°,∠B =76°,CE 平分∠ACB ,CD ⊥AB 于D ,DF ⊥CE 交CE 于F ,求∠CDF 的度数.图919.在解题目:“当a =2 014时,求代数式1211342+-⎪⎭⎫⎝⎛--⋅--a a a a 的值”时,小明认为a 只要任取一个使原式有意义的值代入都有相同的结果,你认为他说的有道理吗?请说明理由.20.已知M =941012422+++-y y xy x ,当式中的x 、y 各取何值时,M 的值最小?求此最小值.21.是否存在实数x ,使分式63104-+x x 的值比分式245--x x 的值大1?若存在,请求出x 的值;若不存在,请说明理由.22.如图10所示,AB ∥DC ,AD ⊥CD ,BE 平分∠ABC ,且点E 是AD 的中点,试探求AB 、CD 与BC 的数量关系,并说明你的理由.图1023.如图11,某船在海上航行,在A 处观测到灯塔B 在北偏东60°方向上,该船以每小时15海里的速度向东航行到达C 处,观测到灯塔B 在北偏东30°方向上,继续向东航行到D 处,观测到灯塔B 在北偏西30°方向上,当该船到达D 处时恰与灯塔B 相距60海里 (1)判断△BCD 的形状;.图11(2)求该船从A 处航行至D 处所用的时间;(3)若该船从A 处向东航行6小时到达E 处,观测灯塔B ,灯塔B 在什么方向上?24.某地为某校师生交通方便,在通往该学校原道路的一段全长为300 m的旧路上进行整修铺设柏油路面.铺设120 m后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加20%,结果共用30天完成这一任务.(1)求原计划每天铺设路面的长度;(2)若市政部门原来每天支付工人工资为600元,提高工效后每天支付给工人的工资增长了30%,现市政部门为完成整个工程准备了25 000元的流动资金.请问,所准备的流动资金是否够支付工人工资?并说明理由.25.如图12所示,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.图12(1)如果点P在线段BC上以1厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过3秒后,△BPD与△CQP是否全等?请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD 与△CQP全等?(2)若点Q以(1)②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?26.数学课上,老师出示了如下框中的题目,在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图13,试确定线段AE与DB的数量关图13系,并说明理由.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E为AB的中点时,如图14(1),确定线段AE与DB的数量关系,请你直接写出结论:AE______DB(填“>”“<”或“=”).图14(2)特例启发,解答题目解:题目中,AE与DB的数量关系是:AE______DB(填“>”“<”或“=”),理由如下:如图14(2),过点E作EF∥BC,交AC于点F.(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC,若△ABC的边长为1,AE=2,求CD的长.(请你直接写出结果)参考答案及点拨 一、 点拨:因为ab b a b a +=+11,所以A 错误;因为a ÷b ×b 1=a ×b 1×b 1=2ba,所以B错误;因为1-=---=--y x y x x y y x ,所以C 正确;因为3131=-,所以D 错误.应选C . 点拨:分底边长为3和底边长为1两种情况讨论.(1)若底边长为1,则这个等腰三角形的周长为7;(2)若底边长为3,这个等腰三角形不存在.故选B .点拨:根据完全对称式的定义可知abc 、ca bc ab ++、()2b a -是完全对称式,而a c cb b a 222++不是完全对称式,应选A .解答本题的关键是按照新定义,将四个代数式进行变换,然后对照确定正确选项. 点拨:方法1:由022=-+x x 得22=+x x ,所以原式()222201222012x x x x x x x x =++-+=+-+ 2201222012x x =++=+.2014=方法2:由022=-+x x 得x x -=22,22=+x x ,所以原式()201420122201220122222=+=++=+-+-=x x x x x x .点拨:原式()121121-+=-+-=n n n ,要使11-+n n 为整数,则12-n 必须为整数,因此21=-n 或2-或1或1-,解得3=n 或1-或2或0;因此整数n 的值有4个, 应选D .点拨:如答图1,连接MA 、NA .∵AB 的垂直平分线交BC 于M ,交AB 于E ,AC 的垂直平分线交BC 于N ,交AC 于F ,∴BM =AM ,CN =AN ,∴∠MAB =∠B ,∠CAN =∠C ,∵∠BAC =120°,AB =AC ,∴∠B =∠C =30°,∴∠BAM =∠CAN =30°,∴∠AMN =∠ANM = 60°,∴△AMN 是等边三角形,∴AM =AN =MN ,∴BM=MN =NC ,∴MN =31BC =2 cm ,故选C .答图1点拨:在Rt △AED 中,因为∠D =30°,所以∠DAE =60°;在Rt △ABC 中,因为∠ACB =90°,∠BAC =60°,所以∠B =30°;在Rt △BEF 中,因为∠B =30°,EF =2,所以BF =4; 连接AF ,因为DE 是AB 的垂直平分线,所以F A =FB =4,∠F AB =∠B =30°;因为∠BAC=60°,所以∠DAF =30°,因为∠D =30°,所以∠DAF =∠D , 所以DF =AF =4.故应选B.8. A 点拨:由正△ABC 和正△CDE ,可知AC =BC ,∠ACB =∠DCE =60°,CD =CE ,所以∠ACD =∠BCE ,所以△ACD ≌△BCE ,从而AD =BE ,∠CAD =∠CBE ;在△ACP 和△BPO 中,因为∠APC =∠BPO ,∠CAD =∠CBE ,所以由三角形内角和定理可得∠AOB =∠ACB =60°;由条件可证△PCD ≌△QCE ,所以PC =QC ,又∠PCQ =60°,所以△CPQ 是等边三角形.应选A .二、9. ()23-a a 点拨:原式()()22396-=+-=a a a a a .因式分解时,首先考虑提取公因式,再考虑运用乘法公式分解,同时注意要分解到不能分解为止.10. 2 点拨:原式2121=-+=.在无括号的实数混合运算中,先计算乘方,再计算乘除,最后进行加减运算. 11.()222=-÷+a a aa 点拨:由流程图可得()2222=-+=-÷+a a a a a a .12. 2 点拨:设重叠部分的面积为x , 则实线围成的图形面积为2+x ,三角形ABC 面积为2+2x .由题意得()x x 22322+=+,解得x =2. 13. 1和7 点拨:点P 可在三角形内和三角形外,需要分情况求解.设点P 到△ABC 三边AB 、AC 、BC (或其延长线)的距离分别为321h h h 、、,△ABC 的高为h .(1)当点P 在等边三角形ABC 内时:连接P A 、PB 、PC ,利用面积公式可得h h h h =++321,则13=h ,所以点P 到BC 的最小距离是1;(2)当点P 在等边三角形ABC 外时(只考虑P 离BC 最远时的情况):同理可得321h h h h =++,此时73=h .综上可知,点P 到BC 的最小距离和最大距离分别是1和7.14.(0,2-)、(0,6)、(3,0-)、(9,0)点拨:分点C 在x 轴上和点C 在y 轴上两种情况讨论,可得符合条件的点C 的坐标.(1)当点C 在x 轴上时,设点C 的坐标为(0,x ),则63221=⨯-x ,解得x =6或2-,因此点C 的坐标为(0,2-)、(0,6);(2)当点C 在y 轴上时,设点C 的坐标为(0,y ),则62321=⨯-y ,解得y =3-或9,因此点C 的坐标为(3,0-)、(9,0);综上得点C 的坐标为(0,2-)、(0,6)、(3,0-)、(9,0).15.(4,2-) 点拨:因为A (2,2)关于y 轴的对称点为B ,所以点B 的坐标为(2,2-);因为C (4,2--)关于y 轴的对称点为D ,所以点D 的坐标为(4,2-),所以四边形ABCD 的周长为20,因为2 014÷20=100……14,说明细线绕了100圈,回到A 点后又继续绕了14个单位长度,故细线另一端到达点的坐标为(4,2-).本题利用周期的规律求解,因此求得细线绕四边形ABCD 一圈的长度是解题的关键.16. 12° 点拨:设∠A =x ,∵A P P P P P P P AP 14141332211===== , ∴∠A =∠12P AP =∠1413P AP =x ,∴∠312P P P =∠121413P P P =2x , ∴∠423P P P =∠111312P P P =3x ,…,∠867P P P =∠798P P P =7x , ∴∠87P AP =7x ,∠78P AP =7x ,在△87P AP 中,∠A +∠87P AP +∠78P AP =180°,即x +7x +7x =180°, 解得x =12°,即∠A =12°.三、17. 解:如答图2所示,画出其中任意两个即可.答图2点拨:对称轴可以是过正方形对边中点的直线,也可以是正方形对角线所在的直线.本题可以通过折叠操作找到对称轴,从而确定轴对称图形.18. 解:∵∠A =40°,∠B =76°,∴∠ACB = 647640180=--,∵CE 平分∠ACB ,∴∠ACE =∠BCE =32°,∴∠CED =∠A +∠ACE =40°+32°=72°,∵DF ⊥CE ,CD ⊥AB ,∴∠CFD =∠CDE =90°,∴∠CDF +∠ECD =∠ECD +∠CED =90°,∴∠CDF =∠CED =72°. 19. 解:小明说的有道理.理由:()().3121233221211342=+-+=+---⋅--+=+-⎪⎭⎫⎝⎛--⋅--a a a a a a a a a a a a 所以只要使原式有意义,无论a 取何值,原式的值都相同,为常数3.20. 解:M ()()5232544912422222+++-=+++++-=y y x y y y xy x ,因为()232y x -≥0,()22+y ≥0,所以当032=-y x 且02=+y ,即3-=x 且2-=y 时,M 的值最小,最小值为5.21. 解:不存在. 理由:若存在,则124563104=----+x x x x .方程两边同乘()23-x ,得()()23453104-=--+x x x , 解这个方程,得2=x .检验:当2=x 时,()023=-x ,原方程无解.所以,不存在实数x 使分式63104-+x x 的值比分式245--x x 的值大1.点拨:先假设存在,得到分式方程,再解分式方程,由分式方程的结果可说明理由.22. 解:AB +CD =BC .理由:如答图3,过点E 作EF ⊥BC 于点F . 因为AB ∥DC ,AD ⊥CD , 所以AD ⊥AB .因为BE 平分∠ABC ,所以EA=EF .在Rt △ABE 和Rt △FBE 中,因为EA =EF ,BE =BE , 所以Rt △ABE ≌Rt △FBE . 所以AB =BF .因为E 是AD 的中点,所以AE =ED ,所以ED =EF . 在Rt △EDC 和Rt △EFC 中,因为ED =EF ,EC =EC , 所以Rt △EDC ≌Rt △EFC . 所以DC =FC .所以AB +DC =BF +CF =BC ,即AB +CD =BC .答图323. 解:(1)由题意得:∠BCD =∠BDC =60°,∴∠CBD =60°. ∴△BCD 是等边三角形.(2)由题意得:∠BAC =30°,∠ACB =120°, ∴∠ABC =∠BAC =30°, ∴AC =BC = BD =60海里,∴AD = AC + CD =60+60=120(海里), ∴t =120÷15=8(小时).∴该船从A 处航行至D 处所用的时间为8小时.(3)若该船从A 处向东航行6小时到达E 处,连接BE . 此时AE =15×6=90(海里),∴CE =90-60=30(海里). ∴CE =DE =30海里.∵△BCD 是等边三角形, ∴BE 是CD 的垂直平分线. ∴灯塔B 在该船的正北方向上.24. 解:(1)设原计划每天铺设路面的长度为x m . 根据题意得()30201120300120=+-+x x.解之得x =9. 经检验:x =9是原方程的根,且符合题意.答:原计划每天铺设路面的长度为9 m . (2) 所准备的流动资金够支付工人工资. 理由:共支付工人工资为+⨯6009120()()=+=⨯+⨯⨯+-1300080006003019201120300 21000(元) . 因为21000<25000,所以所准备的流动资金够支付工人工资.25. 解:(1)①因为t =3秒,所以BP =CQ =1×3=3(厘米),因为AB =10厘米,点D 为AB 的中点,所以BD =5厘米.又因为PC =BP BC -,BC =8厘米,所以PC =538=-(厘米),所以PC =BD .因为AB =AC ,所以∠B =∠C ,所以△BPD ≌△CQP .②因为P v ≠Q v ,所以BP ≠CQ ,当△BPD ≌△CPQ 时,因为∠B =∠C ,AB =10厘米,BC =8厘米,所以BP =PC =4厘米,CQ =BD =5厘米,所以点P ,点Q 运动的时间为4秒,所以45=Q v 厘米/秒,即当点Q 的运动速度为45厘米/秒时,能够使 △BPD 与△CQP 全等.(2)设经过x 秒后点P 与点Q 第一次相遇,由题意,得10245⨯+=x x , 解得80=x .所以点P 共运动了80厘米.因为80=2×28+24,所以点P 、Q 在AB 边上相遇,所以经过80秒点P 与点Q 第一次在△ABC 的边AB 上相遇.26. 解:(1)= (2)=;在等边三角形ABC 中,∠ABC =∠ACB =∠BAC =60°,AB =BC =AC ,因为EF ∥BC ,所以∠AEF =∠AFE =60°=∠BAC .所以△AEF 是等边三角形,所以AE =AF =EF ,所以AF AC AE AB -=-,即BE =CF .因为ED =EC ,所以∠EDB =∠ECB ,又因为∠ABC =∠EDB +∠BED =60°,∠ACB =∠ECB +∠FCE =60°,所以∠BED =∠FCE ,所以△DBE ≌△EFC ,所以DB =EF ,所以AE =DB .(3)1或3.点拨:(1)利用等边三角形三线合一知,∠ECB =30°,又ED =EC ,则∠D =30°,所以 ∠DEC =120°,则∠DEB =30°=∠D ,所以DB =EB =AE ;(2)先证△AEF 为等边三角形,再证△EFC ≌△DBE ,可得AE =DB ;(3)当E 在射线AB 上时,如答图4(1),AB =BC =EB =1,∠EBC =120°,所以∠BCE =30°,因为ED =EC ,所以∠D =30°,则∠DEB =90°,所以DB =2EB =2,所以CD =2+1=3;当E 在射线BA 上时,如答图4(2),过点E 作EF ⊥BD 于点F ,则∠BEF =30°,所以BF =21BE =, 所以CF =,因为EC =ED ,EF ⊥CD ,所以CD =2CF =1.综上,CD 的长为1或3.答图4。

相关文档
最新文档