八年级上册数学期末考试试卷及答案(人教版)

合集下载

人教版八年级上册数学期末试卷及答案

人教版八年级上册数学期末试卷及答案

人教版八年级上册数学期末试题一、单选题1.交通警察要求司机开车时遵章行驶,在下列交通标志中,是轴对称图形的是( )A .B .C .D . 2.要使分式5x 1-有意义,则x 的取值范围是( ) A .x 1≠ B .x 1> C .x 1< D .x 1≠-3.下列运算正确的是( )A .a+a= a 2B .a 6÷a 3=a 2C .(a+b)2 = a 2+b 2D .(a b3) 2= a 2 b 6 4.将多项式32x xy -分解因式,结果正确的是 ( ) A .22()x x y - B .2()x x y -C .2()x x y +D .()()x x y x y +- 5.已知m x =6,n x =3,则2-m n x 的值为( )A .9B .34C .12D .43 6.下列运算中正确的是( )A .623x x x= B .1x y x y --=-+ C .22222a ab b a b a b a b-++=-- D .11x x y y +=+ 7.若等腰三角形有两条边的长度为3和1,则此等腰三角形的周长为( )A .5B .7C .5或7D .6 8.若22(3)16x m x +-+是完全平方式,则m 的值等于( )A .1或5B .5C .7D .7或1- 9.如图,在ABC 中,AB AC =,120A ∠=︒,6BC =cm ,AB 的垂直平分线交BC 于点M ,交AB 于点E ,AC 的垂直平分线交BC 于点N ,交AC 于点F ,则MN 的长为( )A.4cm B.3cm C.2cm D.1cm,10.如图所示,在直角三角形ACB中,已知∠ACB=90°,点E是AB的中点,且DE AB DE交AC的延长线于点D、交BC于点F,若∠D=30°,EF=2,则DF的长是()A.5B.4C.3D.211.如图所示,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正∠ABC和正∠CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下四个结论:∠∠ACD∠∠BCE;∠AD=BE;∠∠AOB=60°;∠∠CPQ是等边三角形.其中正确的是()A.∠∠∠∠B.∠∠∠C.∠∠∠D.∠∠∠12.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数是()A.360°B.480°C.540°D.720°二、填空题13.因式分解:3269a a a -+=______.14.在平面直角坐标系中,(2,0)A ,(0,3)B ,若ABC ∆的面积为6,且点C 在坐标轴上,则符合条件的点C 的坐标为__________.15.若一个n 边形的每个内角都等于135°,则该n 边形的边数是____________.16.计算:()1020*******(1)2-⎛⎫-+--= ⎪⎝⎭___________. 17.当x _______时,分式293x x --的值为零. 18.已知点P(a+1,2a -4)关于x 轴的对称点在第一象限,则a 的取值范围是_________.19.如图,在平面直角坐标系中,点A ,B 分别在y 轴和x 轴上,∠ABO=60°,在坐标轴上找一点P ,使得∠PAB 是等腰三角形,则符合条件的点P 共有_____个.20.如图钢架中,焊上等长的13根钢条来加固钢架,若AP 1=P 1P 2=P 2P 3=…=P 13P 14=P 14A ,则∠A 的度数是______三、解答题21.(1)计算题:∠(a 2)3•(a 2)4÷(a 2)5∠(x ﹣y+9)(x+y ﹣9)(2)因式分解∠﹣2a 3+12a 2﹣18a∠(x 2+1)2﹣4x 2.22.计算题(1)先化简,再求值:22121222a a aa a a⎛⎫-+-÷⎪---⎝⎭其中a=3.(2)解方程:212x x x+=+23.如图所示,AB//DC,AD⊥CD,BE平分∠ABC,且点E是AD的中点,试探求AB、CD与BC的数量关系,并说明你的理由.24.如图某船在海上航行,在A处观测到灯塔B在北偏东60°方向上,该船以每小时15海里的速度向东航行到达C处,观测到灯塔B在北偏东30°方向上,继续向东航行到D处,观测到灯塔B在北偏西30°方向上,当该船到达D处时恰与灯塔B相距60海里.(1)判断BCD的形状;(2)求该船从A处航行至D处所用的时间.25.有公路l1同侧、l2异侧的两个城镇A,B,如下图.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置.(保留作图痕迹,不要求写出画法)26.已知等腰∠ABC一腰上的中线BD把三角形的周长分成21cm和12cm两部分,求底边BC的长.27.为了支援青海省玉树地区人民抗震救灾,四川省某休闲用品有限公司主动承担了为灾区生产2万顶帐篷的任务,计划用10天完成.(1)按此计划,该公司平均每天应生产帐篷顶;(2)生产2天后,公司又从其他部门抽调了50名工人参加帐篷生产,同时通过技术革新等手段使每位工人的工作效率比原计划提高了25%,结果提前2天完成了生产任务.求该公司原计划安排多少名工人生产帐篷?参考答案1.D【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项符合题意.故选:D.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.A【分析】根据分式分母不为0的条件进行求解即可.【详解】由题意得:x-1≠0,解得:x≠1,故选:A.3.D【分析】直接利用合并同类项法则、同底数幂的除法运算法则、幂的乘方运算法则和完全平方公式分别进行计算,再进行判断.【详解】A、a+a= 2a,故此选项错误;B、a 6÷a 3=a 6-3=a 3,故此选项错误;C、(a+b)2=a2+b2+2ab, 故此选项错误;D、(a b3) 2= a2 b6,故此选项计算正确.故选D.【点睛】考查了幂的乘方运算以及同底数幂的除法运算、合并同类项等知识,正确掌握运算法则是解题关键.4.D【详解】先提取公因式x,再根据平方差公式进行二次分解.平方差公式:a2-b2=(a-b)(a+b).解:x3-xy2=x(x2-y2)=x(x+y)(x-y),故选:D.本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.5.C【分析】根据同底数幂的除法的性质的逆用和幂的乘方的性质计算即可.【详解】解:∠x m=6,x n=3,∠x2m-n=(x m)2÷x n=62÷3=12.故选:C.【点睛】本题考查了同底数的幂的除法,幂的乘方的性质,把原式化成(x m)2÷x n是解题的关键.6.B【分析】根据分式的基本性质、同底数幂的除法、乘法公式判断即可.【详解】解:A、633xxx,故选项错误;B 、()1x y x y x y x y-+--==-++,故选项正确; C 、()()()222222a b a ab b a b a b a b a b a b --+-==-+-+,故选项错误; D 、11x x y y+≠+,故选项错误; 故选B .【点睛】本题考查了分式的基本性质,涉及到分式的基本性质、同底数幂的除法、乘法公式,解题的关键是要掌握基本知识.7.B【分析】因为已知长度为3和1两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论:【详解】∠当3为底时,其它两边都为1,∠1+1<3,∠不能构成三角形,故舍去.当3为腰时,其它两边为3和1,3、3、1可以构成三角形,周长为7.故选:B .【点睛】本题考查等腰三角形的性质,以及三边关系,分类讨论是关键.8.D【分析】根据完全平方公式,首末两项是x 和4这两个数的平方,那么中间一项为加上或减去x 和4积的2倍.【详解】解:∠多项式22(3)16xm x +-+是完全平方式, ∠222(3)16(4)x m x =x +-+±,∠2(3)8m =-±34m =-±解得:m=7或-1故选:D.【点睛】此题主要查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.9.C【分析】此类题要通过作辅助线来沟通各角之间的关系,首先求出∠BMA与∠CNA是等腰三角形,再证明∠MAN为等边三角形即可.【详解】解:连接AM,AN,∠AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,∠BM=AM,CN=AN,∠∠MAB=∠B,∠CAN=∠C,∠∠BAC=120°,AB=AC,∠∠B=∠C=30°,∠∠BAM+∠CAN=60°,∠AMN=∠ANM=60°,∠∠AMN是等边三角形,∠AM=AN=MN,∠BM=MN=NC,∠BC=6cm,∠MN=2cm.故答案为2cm.故选:C.【点睛】本题考查的知识点为线段的垂直平分线性质以及等腰三角形的性质;正确作出辅助线是解答本题的关键.10.B【分析】求出∠B=30°,结合EF=2,得到BF,连接AF,根据垂直平分线的性质得到FA=FB=4,再证明∠DAF=∠D,得到DF=AF=4即可.【详解】解:∠DE∠AB,则在∠AED中,∠∠D=30°,∠∠DAE=60°,在Rt∠ABC中,∠∠ACB=90°,∠BAC=60°,∠∠B=30°,在Rt∠BEF中,∠∠B=30°,EF=2,∠BF=4,连接AF,∠DE是AB的垂直平分线,∠FA=FB=4,∠FAB=∠B=30°,∠∠BAC=60°,∠∠DAF=30°,∠∠D=30°,∠∠DAF=∠D,∠DF=AF=4,故选B.【点睛】本题考查了垂直平分线的判定和性质,直角三角形的性质,解题的关键是掌握相应定理,构造线段AF.11.A【分析】由已知条件运用等边三角形的性质得到三角形全等,进而得到更多结论,然后运用排除法,对各个结论进行验证从而确定最后的答案.【详解】∠∠ABC和∠CDE是正三角形,∠AC=BC,CD=CE,∠ACB=∠DCE=60°,∠∠ACD=∠ACB+∠BCD,∠BCE=∠DCE+∠BCD,∠∠ACD=∠BCE,∠∠ADC∠∠BEC(SAS),故∠正确,∠AD=BE,故∠正确;∠∠ADC∠∠BEC,∠∠ADC=∠BEC,∠∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,故∠正确;∠CD=CE ,∠DCP=∠ECQ=60°,∠ADC=∠BEC ,∠∠CDP∠∠CEQ (ASA ).∠CP=CQ ,∠∠CPQ=∠CQP=60°,∠∠CPQ 是等边三角形,故∠正确;故选A .【点睛】考查等边三角形的性质及全等三角形的判定等知识点;得到三角形全等是正确解答本题的关键.12.A【分析】本题考查了三角形、四边形的内角和定理,正确作出辅助线,从图上看出∠E +∠F =∠FAD +∠EDA 是关键.【详解】连结AD.∠∠E +∠F =∠FAD +∠EDA ,∠∠FAB +∠ABC +∠BCD +∠CDE +∠E +∠F ,=∠FAB +∠ABC +∠BCD +∠CDE +∠FAD +∠EDA ,=∠DAB +∠ABC +∠BCD +∠CDA ,=360゜.故选A.【点睛】先连结AD ,易得∠E +∠F =∠FAD +∠EDA ,结合∠FAB +∠CDE +∠E +∠F =∠DAB +∠CDA 可将问题进行转化,即将角均转化的四边形ABCD 中;接下来根据四边形的内角和等于360°即可求出答案.13.2(3)a a【分析】先提公因式a ,再利用完全平方公式进行因式分解即可.【详解】解:原式22(69)(3)a a a a a =-+=-,故答案为:2(3)a a -.【点睛】本题考查提公因式法、公式法分解因式,解题的关键是掌握完全平方公式的结构特征.14.()2,0-或()6,0或()0,3-或()0,9【分析】根据C 点在坐标轴上分类讨论即可.【详解】解:∠如图所示,若点C 在x 轴上,且在点A 的左侧时,∠(0,3)B∠OB=3∠S ∠ABC =12AC·OB=6解得:AC=4∠(2,0)A∠此时点C 的坐标为:()2,0-;∠如图所示,若点C 在x 轴上,且在点A 的右侧时,同理可得:AC=4∠此时点C 的坐标为:()6,0;∠如图所示,若点C 在y 轴上,且在点B 的下方时,∠(2,0)A∠AO=2∠S ∠ABC =12BC·AO=6解得:BC=6∠(0,3)B∠此时点C 的坐标为:()0,3-;∠如图所示,若点C 在y 轴上,且在点B 的上方时,同理可得:BC=6∠此时点C 的坐标为:()0,9.故答案为()2,0-或()6,0或()0,3-或()0,9.15.8【分析】根据题意求得多边形的外角,根据360度除以多边形的外角即可求得n 边形的边数【详解】解:∠一个n 边形的每个内角都等于135°,∠则这个n 边形的每个外角等于18013545︒-︒=︒360458÷=∴该n 边形的边数是8故答案为:816.2【分析】分别利用零指数幂和负整数指数幂以及乘方运算化简各项,再作加减法.【详解】解:()()1020*********-⎛⎫-+-- ⎪⎝⎭ =121+-=2,故答案为:2.17.= -3【分析】根据分母为0是分式无意义,分式值为零的条件是分子等于零且分母不等于零列式计算即可.【详解】解:根据题意,∠分式293x x --的值为零, ∠29030x x ⎧-=⎨-≠⎩, ∠3x =-;故答案为:3=-.18.-1<a <2【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”,再根据各象限内的点的坐标的特点列出不等式组求解即可.【详解】∠点P (a+1,2a -4)关于x 轴的对称点在第一象限,∠点P 在第四象限,∠10240a a +⎧⎨-⎩>①<②, 解不等式∠得,a >-1,解不等式∠得,a <2,所以,不等式组的解集是-1<a<2.故答案为-1<a<2.【点睛】本题考查了关于x轴、y轴对称点的坐标,以及各象限内点的坐标的特点,判断出点P在第四象限是解题的关键.19.6【分析】当AB=AP,AB=BP,AP=BP时,根据两边相等的三角形是等腰三角形,可得答案.【详解】(1)分别以点A、B为圆心,AB为半径画∠A和∠B,两圆和两坐标轴的交点为所求的P点(与点A、B重合的除外);(2)作线段AB的垂直平分线与两坐标轴的交点为所求的P点(和(1)中重复的只算一次).如下图,符合条件的点P共有6个.20.12°【详解】设∠A=x,∠AP1=P1P2=P2P3=…=P13P14=P14A,∠∠A=∠AP2P1=∠AP13P14=x.∠∠P2P1P3=∠P13P14P12=2x,∠P3P2P4=∠P11P13P12=3x,……,∠P7P6P8=∠P8P9P7=7x.∠∠AP7P8=7x,∠AP8P7=7x.在∠AP7P8中,∠A+∠AP7P8+∠AP8P7=180°,即x+7x+7x=180°.解得x=12°,即∠A=12°.故答案为:12°21.(1)∠4a∠x2﹣y2+18y﹣81(2)∠﹣2a(a﹣3)2∠(x+1)2(x﹣1)2【分析】(1)∠原式利用幂的乘方运算法则计算,再利用单项式乘除单项式法则计算即可得到结果;∠原式利用平方差公式变形,再利用完全平方公式展开即可;(2)∠原式提取公因式,再利用完全平方公式分解即可;∠原式利用平方差公式及完全平方公式分解即可.【详解】解:(1)∠原式=a 14÷a 10=a 4;∠原式=x 2﹣(y ﹣9)2=x 2﹣y 2+18y ﹣81;(2)∠原式=﹣2a (a ﹣3)2;∠原式=(x 2+1+2x )(x 2+1-2x )=(x+1)2(x ﹣1)2.22.(1)11a a +-,2;(2)x=-1 【分析】(1)先计算括号里面的,再因式分解,然后将除法转化为乘法,约分即可.(2)去掉分母,将分式方程转化为整式方程,求出解后再检验.【详解】解:(1)22121222a a a a a a ⎛⎫-+-÷ ⎪---⎝⎭=()222112a a a a -⎛⎫÷ ⎪---⎝⎭ =()()()211221a a a a a +--⨯-- =11a a +-, 将a=3代入,原式=2;(2)212x x x +=+ 去分母得:()()2222x x x x +++=,去括号得:22242x x x x +++=,移项合并得:44x =-,系数化为1得:x=-1.经检验:x=-1是原方程的解.23.BC=AB+CD ,理由见解析【分析】过点E 作EF∠BC 于点F ,只要证明∠ABE∠∠FBE (AAS ),Rt∠CDE∠Rt∠CFE (HL ) 即可解决问题;【详解】解:证明:∠AB//DC,AD CD,∠∠A=∠D=90°,过点E作EF∠BC于点F,则∠EFB=∠A=90°,又∠BE平分∠ABC,∠∠ABE=∠FBE,∠BE=BE,∠∠ABE∠∠FBE(AAS),∠AE=EF,AB=BF,又点E是AD的中点,∠AE=ED=EF,∠Rt∠CDE∠Rt∠CFE(HL),∠CD=CF,∠BC=CF+BF=AB+CD.【点睛】本题考查全等三角形的判定和性质、角平分线的定义等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.24.(1)等边三角形;(2)8小时【分析】(1)根据题意可得∠BCD=∠BDC=60°,即可知∠BCD是等边三角形;(2)由(1)可求得BC,CD的长,然后易证得∠ABC是等腰三角形,继而求得AD的长,则可求得该船从A处航行至D处所用的时间;【详解】解:(1)根据题意得:∠BCD=90°-30°=60°,∠BDC=90°-30°=60°,∠∠BCD=∠BDC=60°,∠BC=BD,∠∠BCD是等边三角形;(2)∠∠BCD是等边三角形,∠CD=BD=BC=60海里,∠∠BAC=90°-60°=30°,∠∠ABC=∠BCD-∠BAC=30°,∠∠BAC=∠ABC,∠AC=BC=60海里,∠AD=AC+CD=120海里,∠该船从A处航行至D处所用的时间为:120÷15=8(小时);25.答案作图见解析【分析】根据题意知道,点C应满足两个条件,一是在线段AB的垂直平分线上;二是在两条公路夹角的平分线上,所以点C应是它们的交点.【详解】解:连接A,B两点,作AB的垂直平分线,作两直线交角的角平分线,交点有两个.(1)作两条公路夹角的平分线OD或OE;(2)作线段AB的垂直平分线FG;则射线OD,OE与直线FG的交点C1,C2就是所求的位置.考点:作图-应用与设计作图26.5cm【分析】根据图形和题意可知,有AB+AD=21 ,CD+BC=12或AB+AD=12,CD+BC=21两种情况,据此即可求出BC的长,然后再结合三角形的三边关系进行判断即可.【详解】解:∠∠ABC是等腰三角形,∠AB =AC ,∠BD 是AC 边上的中线,∠AD =CD设AB =AC =xcm ,BC =ycm ,∠BD 把三角形的周长分成21cm 和12cm 两部分,∠有AB +AD =21cm ,CD +BC =12cm 或AB +AD =12cm ,CD +BC =21cm 两种情况,则有:∠212122x x x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 解得: 145x y =⎧⎨=⎩ 即AB =AC =14cm ,BC =5cm ,根据三角形构成的条件可知,能够成三角形; ∠122212x x x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 解得:817x y =⎧⎨=⎩即AB =AC =8cm ,BC =17cm ,根据三角形构成的条件可知,不能够成三角形,不符合题意;综上所述,等腰三角形底边BC 为5cm .【点睛】本题主要考查二元一次方程组的应用,涉及到等腰三角形的性质和三角形三边关系,利用到分类讨论的数学思想,解题的关键是分两种情况讨论.27.(1)2000;(2)该公司原计划安排750名工人生产帐篷.【详解】试题分析:(1)直接利用20000÷10即可得到平均每天应生产帐篷多少顶; (2)设该公司原计划安排x 名工人生产帐篷,那么原计划每名工人每天生产帐篷2000x 顶,后来每名工人每天生产帐篷2000x×(1+25%)顶,然后根据已知条件即可列出方程10-2-2=()2000022000 1.25502000x x-⨯⨯⨯+,解方程即可求出该公司原计划安排多少名工人生产帐篷.试题解析:(1)该公司平均每天应生产帐篷20000÷10=2000顶;(2)设该公司原计划安排x 名工人生产帐篷,依题意得,(10-2-2)×2000x×1.25×(x+50)=20000-2×2000,即16000x=15000(x+50),1000x=750000,解得x=750,经检验x=750是方程的解,答:该公司原计划安排750名工人生产帐篷.考点:分式方程的应用.。

人教版八年级上册数学期末试卷及完整答案

人教版八年级上册数学期末试卷及完整答案

4女口果m…n=1,那么代数式厂2m…n*m2—mn人教版八年级上册数学期末试卷及完整答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.一5的相反数是()11A.——B.—C.5D.—5552.若y二土竺有意义,则X的取值范围是()x1L11A.x,且x丰0B.x丰C.x,D.x丰02223.已知:y丽是整数,则满足条件的最小正整数n()A.2B.3C.4D.5A.—3B.—1C.1D.35.若i:a+有意义,那么直角坐标系中点A(a,b)在()abA.第一象限B.第二象限C.第三象限D.第四象限6.下列运算正确的是()A.a2…a2=a4B.a3-a4=a12C.(a3)4=a12D.(ab)2=ab2—n J的值为(7. 为A8.如图,在△ABC 中,CD 平分ZACB 交AB 于点D,过点D 作DE 〃BC 交AC 于点如3 x>- 2E,若ZA=54°,ZB=48°,则ZCDE的大小为()AD.38°A.44° B.40° C.39°9•如图,菱形ABCD的周长为28, 则OE的长等于()A.2B.3.5 对角线AC,BD交于点O,E为AD的中点,C.7D.1410•如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S,S,贝I」S+S的值为()1212A.16B.17C.18D.19二、填空题(本大题共6小题,每小题3分,1.若a-b=1,贝U a2一b2一2b的值为・2.分解因式:2a2—4a+2,・共18分)X2+x+1113.若,4,贝寸x2+—+1,.xx24.如图,在△ABC中,点A的坐标为(0,1),点B的坐标为(0,4),点C 的坐标为(4,3),点D在第二象限,且ABD与厶ABC全等,点D的坐标是点,BD=12,则△DOE的周长为1•解方程:一=1. x€2x AIIII■1111Q J5.如图,在△ABC和厶DBC中,Z A=40°,AB二AC=2,Z BDC=140°,BD=CD,以点D 为顶点作Z MDN=70°,两边分别交AB,AC于点M,N,连接MN,则A AMN的周长为6.如图,「:ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中三、解答题(本大题共6小题,共72分)2.先化简再求值:(a-込竺)-聖二竺,其中a=1+.2,b=1-匹.aa3.已知2a-1的平方根为±3,3a+b-1的算术平方根为4,求a+2b的平方根.4.如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=1O,OC=8.在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐5.如图,在△OBC中,边BC的垂直平分线交ZBOC的平分线于点D,连接DB,DC,过点D作DF丄0C于点F.⑴若ZB0C=60°,求ZBDC的度数;⑵若ZB0C=€,则ZBDC=;(直接写出结果)(3)直接写出OB,OC,OF之间的数量关系.6.某开发公司生产的960件新产品需要精加工后,才能投放市场,现甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用20天,而甲工厂每天加工的数量是乙工厂每天加工的2数量的3,公司需付甲工厂加工费用为每天80元,乙工厂加工费用为每天120元.(1)甲、乙两个工厂每天各能加工多少件新产品?(2)公司制定产品加工方案如下:可以由每个厂家单独完成,也可以由两个厂家合作完成.在加工过程中,公司派一名工程师每天到厂进行技术指导,并负担每天15元的午餐补助费,请你帮公司选择一种既省时又省钱的加工方案,并说明理由.2、2(a-1)2参考答案、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、D4、D5、A6、C7、C8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)3、84、(-4,2)或(-4,3)5、46、15.三、解答题(本大题共6小题,共72分1、x=1a一b2、原式二a…b3、±34、E(4,8)D(0,5)5、(1)120°;(2)180°—a;(3)0B+0C=20F6、(1)甲工厂每天加工16件产品,乙工厂每天加工24件产品.(2)甲乙两工厂合作完成此项任务既省时又省钱.见解析.。

人教版数学八年级上册期末考试试卷附答案

人教版数学八年级上册期末考试试卷附答案

人教版数学八年级上册期末考试试题一、选择题(每小题只有一个正确答案。

每小题2分,共12分)1.(2分)下列平面图形中,不是轴对称图形的是()A.B.C.D.2.(2分)计算(﹣2x2y)3的结果是()A.﹣2x5y3B.﹣8x6y3C.﹣2x6y3D.﹣8x5y33.(2分)如果代数式有意义,那么x的取值范围是()A.x≥0B.x≠1C.x>0 D.x≥0且x≠1 4.(2分)一个三角形的三条边长分别为1、2、x,则x的取值范围是()A.1≤x≤3B.1<x≤3C.1≤x<3 D.1<x<35.(2分)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°6.(2分)如图,已知∠1=∠2,∠B=∠C,下列结论:(1)AB=AC;(2)∠BAE=∠CAD;(3)BE=DC;(4)AD=DE.中正确的个数是()A.1 B.2 C.3 D.4二、填空题(每小题3分,共24分)7.(3分)芝麻作为食品和药物,均广泛使用.经测算,一粒芝麻约有0.00000201千克,用科学记数法表示为.8.(3分)因式分解:ax2﹣ay2=.9.(3分)已知等腰三角形两边的长分别是9和4,则它的周长为.10.(3分)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,需添加一个条件是.(只需添加一个条件即可)11.(3分)如图是某超市一层到二层滚梯示意图.其中AB、CD分别表示超市一层、二层滚梯口处地面的水平线,∠ABC=150°,BC的长约为12米,则乘滚梯从点B到点C上升的高度h约为米.12.(3分)将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF =90°,AB=AC.∠E=30°,∠BCE=40°,则∠CDF=.13.(3分)计算+的结果是.14.(3分)如图,在△ABC中,CD是它的角平分线,DE⊥AC于点E.若BC=6cm,DE =2cm,则△BCD的面积为cm2.三、解答题(每题5分,共20分)15.(5分)计算:(π﹣3.14)0+()﹣1﹣|﹣2|﹣(﹣1)2020.16.(5分)计算:(a+3)(a﹣1)+a(a﹣2)17.(5分)已知一个多边形的内角和与外角和之比为9:2,求它的边数.18.(5分)解分式方程:﹣=1.四、解答题(每小题7分,共28分)19.(7分)如图,在平面直角坐标系中.(1)请画出△ABC关于y轴对称的△AB1C1,并写出B1、C1的坐标;(2)直接写出△ABC的面积:S△ABC=;(3)在x轴上找到一点P,使PA+PC的值最小,请标出点P在坐标轴上的位置.20.(7分)如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.21.(7分)已知:a+b=4,ab=2,求下列式子的值:①a2+b2②(a﹣b)222.(7分)如图所示,在△ABC中,BO,CO分别平分∠ABC和∠ACB;BD、CD分别平分∠ABC和∠ACB的外角.(1)若∠BAC=70°,求:∠BOC的度数;(2)探究∠BDC与∠A的数量关系.(直接写出结论,无需说明理由)五、解答题(每小题8分,共16分)23.(8分)学校在假期内对教室内的黑板进行整修,需在规定日期内完成.如果由甲工程小组做,恰好按期完成;如果由乙工程小组做,则要超过规定日期3天.结果两队合作了2天,余下部分由乙组独做,正好在规定日期内完成,问规定日期是几天?24.(8分)如图1,等边△ABC中,AD是BC边上的中线,E为AD上一点(点E与点A 不重合),以CE为一边且在CE下方作等边△CEF,连接BF.(1)猜想线段AE,BF的数量关系:(不必证明);(2)当点E为AD延长线上一点时,其它条件不变.①请你在图2中补全图形;②(1)中结论成立吗?若成立,请证明;若不成立请说明理由.六、解答题(每小题10分,共20分)25.(10分)如图①所示,从边长为a的正方形纸片中剪去一个边长为b的小正方形,再沿虚线AB剪开,把剪成的两张纸片拼成如图②所示的等腰梯形.(1)设图①中阴影部分的面积为S1,图②中阴影部分面积为S2,请直接用含a,b的式子表示S1和S2.(2)请写出上述过程中所揭示的乘法公式;(3)用这个乘法公式计算:①(x﹣)(x+)(x2+);②107×93.26.(10分)在△ABC中,AB=AC=2,∠B=40°,D是线段BC上一动点(不与B、C 两点重合),且∠ADE=40°.(1)若∠BDA=115°,则∠CDE=,∠AED=;(2)当DC等于多少时,△ABD≌△DCE?试说明理由;(3)在D点运动过程中,能使△ADE是等腰三角形吗?若能,请求出使△ADE是等腰三角形时的∠ADB的度数;若不能,请说明理由.答案与解析一、单项选择题1.(2分)下列平面图形中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【解答】解:A、是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项符合题意;D、是轴对称图形,故此选项不合题意;故选:C.【点评】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.(2分)计算(﹣2x2y)3的结果是()A.﹣2x5y3B.﹣8x6y3C.﹣2x6y3D.﹣8x5y3【分析】积的乘方法则,把每一个因式分别乘方,再把所得的幂相乘,据此求解即可.【解答】解:(﹣2x2y)3=(﹣2)3(x2)3y3=﹣8x6y3.故选:B.【点评】本题主要考查了幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.3.(2分)如果代数式有意义,那么x的取值范围是()A.x≥0B.x≠1C.x>0 D.x≥0且x≠1【分析】代数式有意义的条件为:x﹣1≠0,x≥0.即可求得x的范围.【解答】解:根据题意得:x≥0且x﹣1≠0.解得:x≥0且x≠1.故选:D.【点评】式子必须同时满足分式有意义和二次根式有意义两个条件.分式有意义的条件为:分母≠0;二次根式有意义的条件为:被开方数≥0.此类题的易错点是忽视了二次根式有意义的条件,导致漏解情况.4.(2分)一个三角形的三条边长分别为1、2、x,则x的取值范围是()A.1≤x≤3B.1<x≤3C.1≤x<3 D.1<x<3【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边长的范围.【解答】解:根据题意得:2﹣1<x<2+1,即1<x<3.故选:D.【点评】考查了三角形三边关系,本题需要理解的是如何根据已知的两条边求第三边的范围.5.(2分)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°【分析】本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数.【解答】解:∵等边三角形的顶角为60°,∴两底角和=180°﹣60°=120°;∴∠α+∠β=360°﹣120°=240°;故选:C.【点评】本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题6.(2分)如图,已知∠1=∠2,∠B=∠C,下列结论:(1)AB=AC;(2)∠BAE=∠CAD;(3)BE=DC;(4)AD=DE.中正确的个数是()A.1 B.2 C.3 D.4【分析】先证AB=AC,再证△ABE≌△ACD(AAS)得AD=AE,BE=CD,∠BAE =∠CAD,即可得出结论.【解答】解:∵∠B=∠C,∴AB=AC,故(1)正确;在△ABE和△ACD中,,∴△ABE≌△ACD(AAS),∴AD=AE,BE=CD,∠BAE=∠CAD,故(2)(3)正确,(4)错误,正确的个数有3个,故选:C.【点评】本题考查了全等三角形的判定与性质、等腰三角形的判定等知识,熟练掌握全等三角形的判定与性质是本题的关键.二、填空题(每小题3分,共24分)7.(3分)芝麻作为食品和药物,均广泛使用.经测算,一粒芝麻约有0.00000201千克,用科学记数法表示为 2.01×10﹣6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000201=2.01×10﹣6.故答案为:2.01×10﹣6.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(3分)因式分解:ax2﹣ay2=a(x+y)(x﹣y).【分析】首先提取公因式a,再利用平方差公式分解因式得出答案.【解答】解:ax2﹣ay2=a(x2﹣y2)=a(x+y)(x﹣y).故答案为:a(x+y)(x﹣y).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用平方差公式是解题关键.9.(3分)已知等腰三角形两边的长分别是9和4,则它的周长为22.【分析】因为等腰三角形的两边分别为4和9,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.【解答】解:当4为底时,其它两边都为9,即:9、9、4可以构成三角形,周长为22;当4为腰时,其它两边为9和4,因为4+4=8<9,所以不能构成三角形,故舍去.所以答案只有22.故答案为:22.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.10.(3分)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,需添加一个条件是∠D=∠B.(只需添加一个条件即可)【分析】利用全等三角形的判定与性质进而得出当∠D=∠B时,△ADF≌△CBE.【解答】解:当∠D=∠B时,在△ADF和△CBE中∵,∴△ADF≌△CBE(SAS),故答案为:∠D=∠B.(答案不唯一)11.(3分)如图是某超市一层到二层滚梯示意图.其中AB、CD分别表示超市一层、二层滚梯口处地面的水平线,∠ABC=150°,BC的长约为12米,则乘滚梯从点B到点C上升的高度h约为6米.【分析】先过点C作CE⊥AB,交AB的延长线于E,易求∠CBE=30°,在Rt△BCE中可知CE=BC,进而可求CE.【解答】解:过点C作CE⊥AB,交AB的延长线于E,如右图,∵∠ABC=150°,∴∠CBE=30°,在Rt△BCE中,∵BC=12,∠CBE=30°,∴CE=BC=6.故答案是6.【点评】本题考查了含30°角的直角三角形的性质,解题的关键是作辅助线构造直角三角形.12.(3分)将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF =90°,AB=AC.∠E=30°,∠BCE=40°,则∠CDF=25°.【分析】由∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,可求得∠ACE的度数,又由三角形外角的性质,可得∠CDF=∠ACE﹣∠F=∠BCE+∠ACB﹣∠F,继而求得答案.【解答】解:∵AB=AC,∠A=90°,∴∠ACB=∠B=45°,∵∠EDF=90°,∠E=30°,∴∠F=90°﹣∠E=60°,∵∠ACE=∠CDF+∠F,∠BCE=40°,∴∠CDF=∠ACE﹣∠F=∠BCE+∠ACB﹣∠F=45°+40°﹣60°=25°.故答案为:25°.13.(3分)计算+的结果是.【分析】利用分式加减法的计算方法进行计算即可.【解答】解:原式=﹣===,故答案为:.14.(3分)如图,在△ABC中,CD是它的角平分线,DE⊥AC于点E.若BC=6cm,DE =2cm,则△BCD的面积为6cm2.【分析】作DF⊥BC于F,根据角平分线的性质求出DF,根据三角形的面积公式计算即可.【解答】解:作DF⊥BC于F,∵CD是它的角平分线,DE⊥AC,DF⊥BC,∴DF=DE=2,∴△BCD的面积=×BC×DF=6(cm2),故答案为:6.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.三、解答题(每题5分,共20分)15.(5分)计算:(π﹣3.14)0+()﹣1﹣|﹣2|﹣(﹣1)2020.【分析】先算零指数幂、负整数指数幂、绝对值、乘方,再算加减法即可求解.【解答】解:(π﹣3.14)0+()﹣1﹣|﹣2|﹣(﹣1)2020=1+2﹣2﹣1=0.【点评】考查了实数的运算,解决此类题目的关键是熟练掌握零指数幂、负整数指数幂、绝对值、乘方等知识点的运算.16.(5分)计算:(a+3)(a﹣1)+a(a﹣2)【分析】根据整式混合运算的顺序和法则分别进行计算,再把所得结果合并即可.【解答】解:(a+3)(a﹣1)+a(a﹣2)=a2+2a﹣3+a2﹣2a=2a2﹣3;【点评】此题考查了整式的混合运算,在计算时要注意混合运算的顺序和法则以及运算结果的符号,是一道基础题.17.(5分)已知一个多边形的内角和与外角和之比为9:2,求它的边数.【分析】根据多边形的内角和与外角和之间的关系列出有关边数n的方程求解即可.【解答】解:设该多边形的边数为n则(n﹣2)×180°:360=9:2,解得:n=11.故它的边数为11.【点评】本题考查了多边形的内角与外角,解题的关键是牢记多边形的内角和公式与外角和定理.18.(5分)解分式方程:﹣=1.【分析】先去分母,再解整式方程,一定要验根.【解答】解:﹣=1(x+1)2﹣4=x2﹣1x2+2x+1﹣4=x2﹣1x=1,检验:把x=1代入x2﹣1=1﹣1=0,∴x=1不是原方程的根,原方程无解.【点评】本题考查了解分式方程,掌握分式方程一定要验根是解题的关键.四、解答题(每小题7分,共28分)19.(7分)如图,在平面直角坐标系中.(1)请画出△ABC关于y轴对称的△AB1C1,并写出B1、C1的坐标;(2)直接写出△ABC的面积:S△ABC=5;(3)在x轴上找到一点P,使PA+PC的值最小,请标出点P在坐标轴上的位置.【分析】(1)利用关于y轴对称的点的坐标特征写出B1、C1的坐标,然后描点即可;(2)用一个矩形的面积分别减去三个直角三角形的面积去计算△ABC的面积;(3)作A点关于x轴的对称点A′,然后连接A′C交x轴于P点.【解答】解:(1)如图,△AB1C1为所作,B1(﹣2,﹣4),C1(﹣4,﹣1);(2)S△ABC=3×4﹣×2×2﹣×2×3﹣×4×1=5;故答案为5;(3)如图,点P为所作.【点评】本题考查了作图﹣轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了最短路径问题.20.(7分)如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.【分析】(1)根据题目所给条件可分析出△ABE≌△CDF,△AFD≌△CEB;(2)根据AB∥CD可得∠1=∠2,根据AF=CE可得AE=FC,然后再证明△ABE≌△CDF即可.【解答】解:(1)△ABE≌△CDF,△AFD≌△CEB;(2)∵AB∥CD,∴∠1=∠2,∵AF=CE,∴AF+EF=CE+EF,即AE=FC,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS).【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.21.(7分)已知:a+b=4,ab=2,求下列式子的值:②(a﹣b)2.【分析】①根据(a+b)2=a2+2ab+b2,可得a2+b2=(a+b)2﹣2ab,再把a+b=4,ab=2代入计算即可;②根据(a﹣b)2=a2﹣2ab+b2=(a+b)2﹣4ab,再把a+b=4,ab=2代入计算即可.【解答】解:∵a+b=4,ab=2,∴①a2+b2=(a+b)2﹣2ab=42﹣2×2=16﹣4=12;②(a﹣b)2=a2﹣2ab+b2=(a+b)2﹣4ab=42﹣4×2=16﹣8=8.【点评】本题考查完全平方公式的应用,根据题中条件,变换形式即可.22.(7分)如图所示,在△ABC中,BO,CO分别平分∠ABC和∠ACB;BD、CD分别平分∠ABC和∠ACB的外角.(1)若∠BAC=70°,求:∠BOC的度数;(2)探究∠BDC与∠A的数量关系.(直接写出结论,无需说明理由)【分析】(1)根据三角形的角平分线定义和三角形的内角和定理求出∠OBC+∠OCB的度数,再根据三角形的内角和定理即可求出∠BOC的度数;(2)根据三角形外角平分线的性质可得∠BCD=(∠A+∠ABC)、∠DBC=(∠A+∠ACB);根据三角形内角和定理可得∠BDC=90°﹣∠A.【解答】解:(1)∵OB、OC分别是∠ABC和∠ACB的角平分线,∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠ACB),∵∠A=70°,∴∠OBC+∠OCB=(180°﹣70°)=55°,∴∠BOC=180°﹣(∠OBC+∠OCB)=125°;(2)∠BDC=90°﹣∠A.理由如下:∵BD、CD为△ABC两外角∠ABC、∠ACB的平分线,∴∠BCD=(∠A+∠ABC)、∠DBC=(∠A+∠ACB),由三角形内角和定理得,∠BDC=180°﹣∠BCD﹣∠DBC,=180°﹣[∠A+(∠A+∠ABC+∠ACB)],=180°﹣(∠A+180°),=90°﹣∠A;【点评】本题考查的是三角形内角和定理,涉及到三角形内角与外角的关系,角平分线的性质,三角形内角和定理,结合图形,灵活运用基本知识解决问题.五、解答题(每小题8分,共16分)23.(8分)学校在假期内对教室内的黑板进行整修,需在规定日期内完成.如果由甲工程小组做,恰好按期完成;如果由乙工程小组做,则要超过规定日期3天.结果两队合作了2天,余下部分由乙组独做,正好在规定日期内完成,问规定日期是几天?【分析】由题意可知甲的工作效率=1÷规定日期,乙的工作效率=1÷(规定日期+3);根据“结果两队合作了2天,余下部分由乙组独做,正好在规定日期内完成”可知甲做两天的工作量+乙做规定日期的工作量=1,由此可列出方程.【解答】解:设规定日期为x天,根据题意,得2(+)+×(x﹣2)=1解这个方程,得x=6经检验,x=6是原方程的解.∴原方程的解是x=6.答:规定日期是6天.【点评】找到关键描述语,找到等量关系是解决问题的关键.本题主要考查的等量关系为:工作时间=工作总量÷工作效率,当题中没有一些必须的量时,为了简便,应设其为1.24.(8分)如图1,等边△ABC中,AD是BC边上的中线,E为AD上一点(点E与点A 不重合),以CE为一边且在CE下方作等边△CEF,连接BF.(1)猜想线段AE,BF的数量关系:AE=BF(不必证明);(2)当点E为AD延长线上一点时,其它条件不变.①请你在图2中补全图形;②(1)中结论成立吗?若成立,请证明;若不成立请说明理由.【分析】(1)利用等边三角形的性质得出AC=BC,CE=CF,∠ACB=∠ECF=60°,进而得出∠ACE=∠BCF,进而判断出△ACE≌△BCF,即可得出结论;(2)①由题意补全图形,即可得出结论;②同(1)的方法,即可得出结论.【解答】解:(1)AE=BF,理由:∵△ABC和△CEF是等边三角形,∴AC=BC,CE=CF,∠ACB=∠ECF=60°,∴∠ACB﹣∠BCE=∠ECF﹣∠BCE,∴∠ACE=∠BCF,在△ACE和△BCF中,,∴△ACE≌△BCF(SAS),∴AE=BF,故答案为:AE=BF;(2)①补全图形如图2所示;②AE=BF仍然成立,理由:∵△ABC和△CEF是等边三角形,∴AC=BC,CE=CF,∠ACB=∠ECF=60°,∴∠ACB+∠BCE=∠ECF+∠BCE,∴∠ACE=∠BCF,在△ACE和△BCF中,,∴△ACE≌△BCF(SAS),∴AE=BF.【点评】此题是三角形综合题,主要考查了等边三角形的性质,全等三角形的判定和性质,判断出△ACE≌△BCF是解本题的关键.六、解答题(每小题10分,共20分)25.(10分)如图①所示,从边长为a的正方形纸片中剪去一个边长为b的小正方形,再沿虚线AB剪开,把剪成的两张纸片拼成如图②所示的等腰梯形.(1)设图①中阴影部分的面积为S1,图②中阴影部分面积为S2,请直接用含a,b的式子表示S1和S2.(2)请写出上述过程中所揭示的乘法公式;(3)用这个乘法公式计算:①(x﹣)(x+)(x2+);②107×93.【分析】(1)图①中的阴影部分的面积为两个正方形的面积差,图②中的阴影部分是上底为2b,下底为2a,高为a﹣b的梯形,利用梯形面积公式可得答案;(2)图①、图②面积相等可得等式;(3)①连续两次利用平方差公式可求结果;②将107×93转化为(100+7)(100﹣7),即可利用平方差公式求出结果.【解答】解:(1)S1=a2﹣b2,S2=(2a+2b)(a﹣b)=(a+b)(a﹣b);(2)a2﹣b2=(a+b)(a﹣b);(3)①原式=(x2﹣)(x2+)=x4﹣;②107×93=(100+7)(100﹣7)=1002﹣72=10000﹣49=9951.【点评】本题考查平方差公式的几何背景,掌握平方差公式的结构特征是解决问题的关键.26.(10分)在△ABC中,AB=AC=2,∠B=40°,D是线段BC上一动点(不与B、C 两点重合),且∠ADE=40°.(1)若∠BDA=115°,则∠CDE=25°,∠AED=65°;(2)当DC等于多少时,△ABD≌△DCE?试说明理由;(3)在D点运动过程中,能使△ADE是等腰三角形吗?若能,请求出使△ADE是等腰三角形时的∠ADB的度数;若不能,请说明理由.【分析】(1)利用等腰三角形的性质和三角形的外角性质解答即可;(2)先求出∠ADB=∠DEC,再由∠B=∠C,AB=DC=2,即可得出△ABD≌△DCE (AAS);(3)分两种情况讨论即可.【解答】解:(1)∵AB=AC,∴∠B=∠C=∠40°,∵∠BDA=115°,∴∠ADC=180°﹣115°=65°,∴∠CDE=∠ADC﹣∠ADE=65°﹣40°=25°,∴∠AED=∠CDE+∠C=25°+40°=65°,故答案为:25°,65°;(2)当DC=2时,△ABD≌△DCE,理由如下:∵∠C=40°,∴∠DEC+∠EDC=140°,∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,在△ABD和△DCE中,,∴△ABD≌△DCE(AAS);(3)△ADE能成为等腰三角形,理由如下:∵∠ADE=∠C=40°,∠AED>∠C,∴△ADE为等腰三角形时,只能是AD=DE或AE=DE,当AD=DE时,∠DAE=∠DEA=(180°﹣40°)=70°,∴∠EDC=∠AED﹣∠C=70°﹣40°=30°,∴∠ADB=180°﹣40°﹣30°=110°;当EA=ED时,∠ADE=∠DAE=40°,∴∠AED=180°﹣40°﹣40°=100°,∴∠EDC=∠AED﹣∠C=100°﹣40°=60°,∴∠ADB=180°﹣40°﹣60°=80°;综上所述,当∠ADB的度数为110°或80°时,△ADE是等腰三角形.【点评】此题考查了等腰三角形的判定与性质,全等三角形的判定与性质,三角形外角的性质等知识点,此题涉及到的知识点较多,综合性较强.21。

人教版数学八年级上册期末考试试卷及答案

人教版数学八年级上册期末考试试卷及答案

人教版数学八年级上册期末考试试题一、(在下列各题的四个选项中,只有一项是符合题意的.每小题3分,共36分)1.下列图形中不是轴对称图形的是()A.B.C.D.2.在代数式中,字母x的取值范围是()A.x>1B.x≥1C.x<1D.x 3.下列运算中,结果正确的是()A.(a+b)2=a2+b2B.C.(a﹣1)(a+1)=a2﹣1D.a6÷a2=a34.已知三角形两边长分别为4和8,则该三角形第三边的长可能是()A.4B.5C.12D.13 5.已知一个多边形的内角和为1080°,则这个多边形是()A.九边形B.八边形C.七边形D.六边形6.若分式的值为0,则x的值为()A.2或﹣1B.0C.2D.﹣1 7.使两个直角三角形全等的条件是()A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等D.斜边及一条直角边对应相等8.如图,已知AB=AC,AD是△ABC的高,下列结论不一定正确的是()A.∠B=60°B.∠B=∠C C.∠BAD=∠CAD D.BD=CD 9.如果代数式x2+mx+36是一个完全平方式,那么m的值为()A.6B.﹣12C.±12D.±610.如图,△ABC中,边AB的垂直平分线与AC交于点D,与AB交于点E,已知AC=6,BC=4,则△BCD的周长是()A.7B.8C.9D.1011.已知∠ABC=∠DEF,AB=DE,添加以下条件,不能判定△ABC≌△DEF的是()A.∠A=∠D B.∠ACB=∠DFE C.AC=DF D.BE=CF 12.已知x=+2,则代数式x2﹣x﹣2的值为()A.9B.9C.5D.5二、填空题(本大题共6个小题,每小题3分,共18分)13.分解因式:a2﹣4=.14.化简:=.15.如图,已知∠ACP=115°,∠B=65°,则∠A=.16.如图,Rt△ABC中,∠C=90°,∠A=30°,AB=8cm,则BC=cm.17.如图,在△ABC中,∠C=90°,以A为圆心,任意长为半径画弧,分别交AC,AB于点M,N,再分别以M,N为圆心,大于MN长为半径画弧,两弧交于点O,作射线AO,交BC于点E.已知CB=8,BE=5,则点E到AB的距离为.18.如图,∠A=∠B=90°,AB=100,E,F分别为线段AB和射线BD上的一点,若点E 从点B出发向点A运动,同时点F从点B出发向点D运动,二者速度之比为2:3,运动到某时刻同时停止,在射线AC上取一点G,使△AEG与△BEF全等,则AG的长为.三、(本大题共8个小题,解答应写出必要的文字说明、证明过程或验算步骤.)19.(6分)计算:+()﹣1﹣|1﹣|+(1901﹣)0.20.(6分)先化简,再求值:(x+y)(x﹣y)﹣x(x+2y)+3xy,其中x=1,y=3.21.(8分)如图,已知△ABC的三个顶点在格点上,网格上最小的正方形的边长为1.(1)点A关于x轴的对称点坐标为,点B关于y轴的对称点坐标为.(2)作出与△ABC关于x轴对称的图形△A1B1C1.(3)求△ABC的面积.22.(8分)解分式方程.(1)=;(2)=.23.(9分)如图,已知点D、E是△ABC内两点,且∠BAE=∠CAD,AB=AC,AD=AE.(1)求证:△ABD≌△ACE.(2)延长BD、CE交于点F,若∠BAC=86°,∠ABD=20°,求∠BFC的度数.24.(9分)某中学需要购进甲、乙两种笔记本电脑,经调查,每台甲种电脑的价格比每台乙种电脑的价格少0.2万元,且用12万元购买的甲种电脑的数量与用20万元购买的乙种电脑的数量相同.(1)求每台甲种电脑、每台乙种电脑的价格分别为多少万元;(2)学校计划用不超过34万元购进甲、乙两种电脑共80台,其中乙种电脑的数量不少于甲种电脑数量的1.5倍,学校有哪几种购买方案?25.(10分)在平面直角坐标系中,已知A(x,y),且满足x2+6x+y2﹣6y+18=0,过点A 作AB⊥y轴,垂足为B.(1)求A点坐标;(2)如图1,若分别以AB、AO为边作等边△ABC和等边△AOD,试判定线段AC和CD的数量关系和位置关系,并说明理由;(3)如图2,若在x轴正半轴上取一点M,连接BM并延长至N,以BN为直角边作等腰Rt△BNE,∠BNE=90°,过点A作AF∥y轴交BE于点F,连接MF,设OM=a,MF=b,AF=c,试证明:=.26.(10分)对于平面直角坐标系xOy中的线段AB和点M,给出定义:若M满足:MA =MB,则称M是线段AB的“富强点”,其中,当0°<∠AMB<60°,称M为线段AB的“民主点”;当60°≤∠AMB≤180°时,则称M为“文明点”.(1)如图1,点A,B的坐标分别为(0,2),(2,0),则在坐标M1(0,0),M2(2,3),M3(4,4)中,是线段AB的“富强点”为:;是线段AB的“文明点”为.(2)如图2,点A的坐标为(﹣3,0),AB=2,且∠OAB=30°.若M为线段AB 的“民主点”,直接写出M的横坐标m的取值范围;(3)在(2)的条件下,点P为y轴上的动点(不与B重合且BP≠AB),若T为AB的“富强点”,当线段TB和TP的和最小时,求T的坐标,以及此时T关于直线AB的对称点S 的坐标.参考答案与试题解析一、(在下列各题的四个选项中,只有一项是符合题意的.每小题3分,共36分)1.下列图形中不是轴对称图形的是()A.B.C.D.【分析】根据关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、不是轴对称图形,符合题意;D、是轴对称图形,不合题意;故选:C.2.在代数式中,字母x的取值范围是()A.x>1B.x≥1C.x<1D.x【解答】解:由题意得,x﹣1≥0,解得x≥1,故选:B.3.下列运算中,结果正确的是()A.(a+b)2=a2+b2B.C.(a﹣1)(a+1)=a2﹣1D.a6÷a2=a3【解答】解:A、(a+b)2=a2+2ab+b2,故此选项错误;B、+,故此选项错误;C、(a﹣1)(a+1)=a2﹣1,故此选项正确;D、a6÷a2=a4,故此选项错误;故选:C.4.已知三角形两边长分别为4和8,则该三角形第三边的长可能是()A.4B.5C.12D.13【解答】解:设第三边的长为x,∵三角形两边的长分别是4和8,∴8﹣4<x<8+4,即4<x<12,只有5有可能,故选:B.5.已知一个多边形的内角和为1080°,则这个多边形是()A.九边形B.八边形C.七边形D.六边形【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8.∴这个多边形的边数是8.故选:B.6.若分式的值为0,则x的值为()A.2或﹣1B.0C.2D.﹣1【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:由题意可得:x﹣2=0且x+1≠0,解得x=2.故选:C.7.使两个直角三角形全等的条件是()A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等D.斜边及一条直角边对应相等【解答】解:A、一个锐角对应相等,利用已知的直角相等,可得出另一组锐角相等,但不能证明两三角形全等,故本选项错误;B、两个锐角相等,那么也就是三个对应角相等,但不能证明两三角形全等,故本选项错误;C、一条边对应相等,再加一组直角相等才能得出两三角形全等,故本选项错误;D、当两个直角三角形的两直角边对应相等时,由ASA可以判定它们全等;当一直角边与一斜边对应相等时,由HL判定它们全等,故本选项正确;故选:D.8.如图,已知AB=AC,AD是△ABC的高,下列结论不一定正确的是()A.∠B=60°B.∠B=∠C C.∠BAD=∠CAD D.BD=CD【解答】解:∵AB=AC,∴∠B=∠C,∵AD是△ABC的高,∴AD平分∠BAC,BC=2BD=2CD,∴∠BAD=∠CAD,BD=CD,∴B、C、D都是正确的,故选:A.9.如果代数式x2+mx+36是一个完全平方式,那么m的值为()A.6B.﹣12C.±12D.±6【解答】解:∵x2+mx+36是一个完全平方式,∴x2+mx+36=(x±6)2,∴m=±12,故选:C.10.如图,△ABC中,边AB的垂直平分线与AC交于点D,与AB交于点E,已知AC=6,BC=4,则△BCD的周长是()A.7B.8C.9D.10【分析】根据线段垂直平分线的性质得到DA=DB,根据三角形的周长公式计算,得到答案.【解答】解:∵DE是边AB的垂直平分线,∴DA=DB,∴△BCD的周长=BC+CD+BD=BC+CD+DA=BC+AC=10,故选:D.11.已知∠ABC=∠DEF,AB=DE,添加以下条件,不能判定△ABC≌△DEF的是()A.∠A=∠D B.∠ACB=∠DFE C.AC=DF D.BE=CF【分析】根据全等三角形的判定方法一一判断即可.【解答】解:A、根据ASA,可以推出△ABC≌△DEF,本选项不符合题意.B、根据AAS,可以推出△ABC≌△DEF,本选项不符合题意.C、SSA,不能判定三角形全等,本选项符合题意.D、根据SAS,可以推出△ABC≌△DEF,本选项不符合题意.故选:C.12.已知x=+2,则代数式x2﹣x﹣2的值为()A.9B.9C.5D.5【分析】把已知条件变形得到x﹣2=,两边平方得到x2=4x+1,利用降次的方法得到原式=3x﹣1,然后把x的值代入计算即可.【解答】解:∵x=+2,∴x﹣2=,∴(x﹣2)2=5,即x2﹣4x+4=5,∴x2=4x+1,∴x2﹣x﹣2=4x+1﹣x﹣2=3x﹣1,当x=+2时,原式=3(+2)﹣1=3+5.故选:D.二、填空题(本大题共6个小题,每小题3分,共18分)13.分解因式:a2﹣4=(a+2)(a﹣2).【分析】有两项,都能写成完全平方数的形式,并且符号相反,可用平方差公式展开.【解答】解:a2﹣4=(a+2)(a﹣2).14.化简:=x.【分析】根据同分母的分式相加减法的法则,求出算式的值是多少即可.【解答】解:===x.故答案为:x.15.如图,已知∠ACP=115°,∠B=65°,则∠A=50°.【分析】根据三角形中一个外角等于与它不相邻的两个内角和求解.【解答】解:∵∠ACP=115°,∠B=65°,∴∠A=∠ACP﹣∠B=115°﹣65°=50°.故答案为:50°.16.如图,Rt△ABC中,∠C=90°,∠A=30°,AB=8cm,则BC=4cm.【分析】根据含30度角的直角三角形的性质直接求解即可.【解答】解:根据含30度角的直角三角形的性质可知:BC=AB=4cm.故答案为:4.17.如图,在△ABC中,∠C=90°,以A为圆心,任意长为半径画弧,分别交AC,AB于点M,N,再分别以M,N为圆心,大于MN长为半径画弧,两弧交于点O,作射线AO,交BC于点E.已知CB=8,BE=5,则点E到AB的距离为3.【分析】根据作图过程可得AE平分∠CAB,根据角平分线的性质即可得结论.【解答】解:根据作图过程可知:AE平分∠CAB,∵CB=8,BE=5,∴CE=BC﹣BE=8﹣5=3,∵∠C=90°,∴EC⊥AC,∴点E到AB的距离为3.故答案为:3.18.如图,∠A=∠B=90°,AB=100,E,F分别为线段AB和射线BD上的一点,若点E 从点B出发向点A运动,同时点F从点B出发向点D运动,二者速度之比为2:3,运动到某时刻同时停止,在射线AC上取一点G,使△AEG与△BEF全等,则AG的长为40或75.【分析】设BE=2t,则BF=3t,使△AEG与△BEF全等,由∠A=∠B=90°可知,分两种情况:情况一:当BE=AG,BF=AE时,列方程解得t,可得AG;情况二:当BE=AE,BF=AG时,列方程解得t,可得AG.【解答】解:设BE=2t,则BF=3t,因为∠A=∠B=90°,使△AEG与△BEF全等,可分两种情况:情况一:当BE=AG,BF=AE时,∵BF=AE,AB=60,∴3t=100﹣2t,解得:t=20,∴AG=BE=2t=2×20=40;情况二:当BE=AE,BF=AG时,∵BE=AE,AB=60,∴2t=100﹣2t,解得:t=25,∴AG=BF=3t=3×25=75,综上所述,AG=40或AG=75.故答案为:40或75.三、(本大题共8个小题,解答应写出必要的文字说明、证明过程或验算步骤.)19.(6分)计算:+()﹣1﹣|1﹣|+(1901﹣)0.【分析】根据二次根式的除法法则、负整数指数幂、绝对值的意义和零指数幂的意义计算.【解答】解:原式=+4+(1﹣)+1=+4+1﹣+1=6.20.(6分)先化简,再求值:(x+y)(x﹣y)﹣x(x+2y)+3xy,其中x=1,y=3.【分析】直接利用整式的混合运算法则化简,进而代入已知数据得出答案.【解答】解:原式=x2﹣y2﹣x2﹣2xy+3xy=﹣y2+xy,当x=1,y=3时,原式=﹣32+1×3=﹣9+3=﹣6.21.(8分)如图,已知△ABC的三个顶点在格点上,网格上最小的正方形的边长为1.(1)点A关于x轴的对称点坐标为(﹣2,﹣3),点B关于y轴的对称点坐标为(3,2).(2)作出与△ABC关于x轴对称的图形△A1B1C1.(3)求△ABC的面积.【分析】(1)根据轴对称的性质解决问题即可.(2)分别作出A,B,C的对应点A1,B1,C1即可.(3)利用分割法求三角形面积即可.【解答】解:(1)点A关于x轴的对称点坐标为(﹣2,﹣3),点B关于y轴的对称点坐标为(3,2)故答案为:(﹣2,﹣3),(3,2).(2)如图,△A1B1C1即为所求作.=4﹣×1×2﹣×1×1﹣×12=1.5.(3)S△ABC22.(8分)解分式方程.(1)=;(2)=.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:3(x+1)=4x,解得:x=3,检验:当x=3时,2x(x+1)≠0,所以x=3是原分式方程的解;(2)去分母得:x﹣1+2(x+1)=4,解得:x=1,检验:当x=1时,(x+1)(x﹣1)=0,因此x=1是增根,所以原分式方程无解.23.(9分)如图,已知点D、E是△ABC内两点,且∠BAE=∠CAD,AB=AC,AD=AE.(1)求证:△ABD≌△ACE.(2)延长BD、CE交于点F,若∠BAC=86°,∠ABD=20°,求∠BFC的度数.【分析】(1)由SAS证明△ABD≌△ACE即可;(2)先由全等三角形的性质得∠ACE=∠ABD=20°,再由等腰三角形的性质和三角形内角和定理得∠ABC=∠ACB=47°,则∠FBC=∠FCB=27°,即可得出答案.【解答】(1)证明:∵∠BAE=∠CAD,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)解:∵△ABD≌△ACE,∴∠ACE=∠ABD=20°,∵AB=AC,∴∠ABC=∠ACB=(180°﹣86°)=47°,∴∠FBC=∠FCB=47°﹣20°=27°,∴∠BFC=180°﹣27°﹣27°=126°.24.(9分)明德中学需要购进甲、乙两种笔记本电脑,经调查,每台甲种电脑的价格比每台乙种电脑的价格少0.2万元,且用12万元购买的甲种电脑的数量与用20万元购买的乙种电脑的数量相同.(1)求每台甲种电脑、每台乙种电脑的价格分别为多少万元;(2)学校计划用不超过34万元购进甲、乙两种电脑共80台,其中乙种电脑的数量不少于甲种电脑数量的1.5倍,学校有哪几种购买方案?【分析】(1)设每台甲种电脑的价格为x万元,则每台乙种电脑的价格为(x+0.2)万元,根据用12万元购买的甲种电脑的数量与用20万元购买的乙种电脑的数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买乙种电脑m台,则购买甲种电脑(80﹣m)台,根据“购买两种电脑的总费用不超过34万元,且购进乙种电脑的数量不少于甲种电脑数量的1.5倍”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数即可得出各购买方案.【解答】解:(1)设每台甲种电脑的价格为x万元,则每台乙种电脑的价格为(x+0.2)万元,根据题意得:=,解得:x=0.3,经检验,x=0.3是原分式方程的解,且符合题意,∴x+0.2=0.3+0.2=0.5.答:每台甲种电脑的价格为0.3万元、每台乙种电脑的价格为0.5万元.(2)设购买乙种电脑m台,则购买甲种电脑(80﹣m)台,根据题意得:,解得:48≤m≤50.又∵m为整数,∴m可以取48,49,50.∴学校有三种购买方案,方案1:购买甲种电脑32台,乙种电脑48台;方案2:购买甲种电脑31台,乙种电脑49台;方案3:购买甲种电脑30台,乙种电脑50台.25.(10分)在平面直角坐标系中,已知A(x,y),且满足x2+6x+y2﹣6y+18=0,过点A作AB⊥y轴,垂足为B.(1)求A点坐标;(2)如图1,若分别以AB、AO为边作等边△ABC和等边△AOD,试判定线段AC和CD的数量关系和位置关系,并说明理由;(3)如图2,若在x轴正半轴上取一点M,连接BM并延长至N,以BN为直角边作等腰Rt△BNE,∠BNE=90°,过点A作AF∥y轴交BE于点F,连接MF,设OM=a,MF=b,AF=c,试证明:=.【分析】(1)由非负数的性质可求出x=﹣3,y=3,则可得出答案;(2)由等边三角形的性质得出AB=AC,AO=AD,∠DAO=∠CAB=60°,证明△DAC≌△OAB(SAS),由全等三角形的性质可得出CD=OB,∠ACD=∠ABO=90°,则可得出结论;(3)在AF上取一点P,使得AP=OM=a,连接BP,证明△BAP≌△BOM(SAS),由全等三角形的性质得出∠ABP=∠OBM,BP=BM,证明△FBP≌△FMB(SAS),由全等三角形的性质得出FP=FM=b,则得出c=a+b,结论得证.【解答】解:(1)∵x2+6x+y2﹣6y+18=0,∴(x+3)2+(y﹣3)2=0,∴x+3=0,y﹣3=0,∴x=﹣3,y=3,∴点A的坐标为(﹣3,3);(2)CD=AC,CD⊥AC.理由如下:∵△ABC和△AOD为等边三角形,∴AB=AC,AO=AD,∠DAO=∠CAB=60°,∴∠DAO﹣∠CAO=∠CAB﹣∠CAO,∴∠DAC=∠OAB,∴△DAC≌△OAB(SAS),∴CD=OB,∠ACD=∠ABO=90°,由(1)可知BO=AB=3,又∵AB=AC,∴CD=OB=AB=AC,且CD⊥AC,(3)证明:在AF上取一点P,使得AP=OM=a,连接BP,∵AB=BO,AP=OM,∠PAB=∠MOB=90°,∴△BAP≌△BOM(SAS),∴∠ABP=∠OBM,BP=BM,∵∠ABP+∠PBO=90°,∴∠OBM+∠PBO=90°,又∵△BEN为等腰直角三角形,∴∠FBN=45°,∴∠PBF=90°﹣45°=45°=∠FBN,又∵BF=BF,∴△FBP≌△FMB(SAS),∴FP=FM=b,∴AF=FP+AP,即c=a+b.∴.26.(10分)对于平面直角坐标系xOy中的线段AB和点M,给出定义:若M满足:MA =MB,则称M是线段AB的“富强点”,其中,当0°<∠AMB<60°,称M为线段AB 的“民主点”;当60°≤∠AMB≤180°时,则称M为“文明点”.(1)如图1,点A,B的坐标分别为(0,2),(2,0),则在坐标M1(0,0),M2(2,3),M3(4,4)中,是线段AB的“富强点”为:M1,M3;是线段AB的“文明点”为M1.(2)如图2,点A的坐标为(﹣3,0),AB=2,且∠OAB=30°.若M为线段AB 的“民主点”,直接写出M的横坐标m的取值范围;(3)在(2)的条件下,点P为y轴上的动点(不与B重合且BP≠AB),若T为AB的“富强点”,当线段TB和TP的和最小时,求T的坐标,以及此时T关于直线AB的对称点S 的坐标.【分析】(1)根据“富强点”,“文明点”的定义判断即可.(2)过线段AB的中点C作线段AB的垂直平分线l,交y轴于点F,过A作AE⊥x轴交直线l于点E,连接BE,AF.求出点E,F的坐标,根据“民主点”的定义解决问题即可.(3)如图,作线段AB的垂直平分线l,则T在直线l上运动,由题意TB+TP=TA+TP≥AP′,(点到直线所有连线中,垂直段最短),此时,直线l与x轴的交点T′为所求的坐标,再根据对称性,求出S的坐标即可.【解答】解:(1)如图中,,根据定义可知:线段AB“富强点”为M1,M3,线段AB的“文明点”为M1.故答案为:M1,M3;M1.(2)过线段AB的中点C作线段AB的垂直平分线l,交y轴于点F,过A作AE⊥x轴交直线l于点E,连接BE,AF.∵∠OAB=30°,∠AOB=90°,∴∠ABO=60°,又∵EA=EB,∴△ABE是等边三角形,同理可证△ABF也是等边三角形,∴∠AEB=∠AFB=60°,由图可知,E的横坐标为﹣3,F的横坐标为0,当M在点E上方,或M在点F的下方时,满足:0°<∠AMB<60°,∴M的横坐标m的取值范围为:m>0或m<﹣3.(3)如图,作线段AB的垂直平分线l,则T在直线l上运动,∵T为线段AB的“富强点”,∴TA=TB,∴TB+TP=TA+TP≥AP′,(点到直线所有连线中,垂直段最短),此时,直线l与x轴的交点T′为所求的坐标.在Rt△ACT′中,∠CAT′=30°,AC=,∴AT′==2,∴OT′=OA﹣AT′=1,∴T′(﹣1,0),在Rt△ABO中,∠OAB=30°,∴OB=AB=,作T′个关于直线AB的对称点S,过点S作SM⊥OA于M,根据对称性,∠SAB=∠OAB =30°,∴∠SAT′=60°,∵∠AT′S=60°,∴△SAT′是等边三角形,∵SM⊥AT′,∴AM=T′M=1,∴SM==,∴所求T′关于直线AB的对称点S的坐标为:(﹣2,).。

人教版八年级上学期期末考试数学试卷(附带答案)精选全文

人教版八年级上学期期末考试数学试卷(附带答案)精选全文

精选全文完整版(可编辑修改)人教版八年级上学期期末考试数学试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.2.(4分)下列式子中是分式的是()A.B.C.D.3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y24.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.245.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣16.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±118.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣19.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.810.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时;③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:.以上结论正确的个数有()个.A.4 B.3 C.2 D.1二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是.13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=.14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为.15.(4分)已知,则代数式的值为.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于.18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是.若将N 的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).20.(8分)解方程:(1);(2).21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣1522.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是;B对应的扇形圆心角的度数是;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴同理可得:DC=DF∴AB+CD=即AB+CD=AD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.参考答案一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.【答案】C2.(4分)下列式子中是分式的是()A.B.C.D.【答案】B3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y2【答案】B4.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.24【答案】C5.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣1【答案】D6.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°【答案】D7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±11【答案】B8.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣1【答案】D9.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.8【答案】D10.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:以上结论正确的个数有()个.A.4 B.3 C.2 D.1【答案】B二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.【答案】见试题解答内容12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是9.【答案】见试题解答内容13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=8.【答案】见试题解答内容14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为﹣.【答案】见试题解答内容15.(4分)已知,则代数式的值为﹣2.【答案】﹣2.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为2【答案】见试题解答内容17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于20.【答案】见试题解答内容18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是4311.若将N的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是2729.【答案】4311;3331.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).【答案】16x2-14x-9;20.(8分)解方程:(1);(2).【答案】(1)x=4;(2)无解.21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣15【答案】(m-2)(x+y)(x-y);(x+5)(x-3).22.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.【答案】见试题解答内容23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了50名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是10;B对应的扇形圆心角的度数是108°;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?【答案】(1)50;(3)10,108°;(4)估计此次测试成绩优秀(45≤x≤50)的学生共有800人.24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴①(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴③同理可得:DC=DF∴AB+CD=④即AB+CD=AD.【答案】①EB=EF,②AE=AE③.AB=AF,④AF+FD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.【答案】(1)“红色教育”的订购单价是14元,“传统文化”经典读本的单价是10元;(2)12400元26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.【答案】(1)A(0,4),B(﹣6,0);(2)D(0,﹣4);(3)(﹣8,﹣8).27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.【答案】(1)a2;(3).。

人教版数学八年级上册期末试卷及参考答案

人教版数学八年级上册期末试卷及参考答案

人教版数学八年级上册期末试卷1一、选择题:(每小题3分,共30分)1.(3分)在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是()A.B.C.D.2.(3分)王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?()A.0根 B.1根 C.2根 D.3根3.(3分)如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE4.(3分)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240° D.300°5.(3分)下列计算正确的是()A.2a+3b=5ab B.(x+2)2=x2+4 C.(ab3)2=ab6D.(﹣1)0=16.(3分)如图,给出了正方形ABCD的面积的四个表达式,其中错误的是()A.(x+a)(x+a)B.x2+a2+2ax C.(x﹣a)(x﹣a)D.(x+a)a+(x+a)x 7.(3分)下列式子变形是因式分解的是()A.x2﹣5x+6=x(x﹣5)+6 B.x2﹣5x+6=(x﹣2)(x﹣3)C.(x﹣2)(x﹣3)=x2﹣5x+6 D.x2﹣5x+6=(x+2)(x+3)8.(3分)若分式有意义,则a的取值范围是()A.a=0 B.a=1 C.a≠﹣1 D.a≠09.(3分)化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x10.(3分)下列各式:①a0=1;②a2•a3=a5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x2+x2=2x2,其中正确的是()A.①②③B.①③⑤C.②③④D.②④⑤11.(3分)随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x 千米,根据题意可列方程为()A. B.C. D.12.(3分)如图,已知∠1=∠2,要得到△ABD≌△ACD,还需从下列条件中补选一个,则错误的选法是()A.AB=AC B.DB=DC C.∠ADB=∠ADC D.∠B=∠C二、填空题:(每空3分,共18分)13.(3分)分解因式:x3﹣4x2﹣12x=.14.(3分)若分式方程:有增根,则k=.15.(3分)如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是.(只需填一个即可)16.(3分)如图,在△ABC中,AC=BC,△ABC的外角∠ACE=100°,则∠A=度.17.(3分)如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为.18.(3分)已知2+=22×,3+=32×,4+=42×,…,若10+=102×(a,b为正整数),则a+b=.三.解答下列各题:(本题共7题,共66分)19.(9分)先化简,再求值:5(3a2b﹣ab2)﹣3(ab2+5a2b),其中a=,b=﹣.20.(9分)给出三个多项式:x2+2x﹣1,x2+4x+1,x2﹣2x.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.21.(9分)解方程:=.22.(9分)已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证:AD=CE;(2)求证:AD和CE垂直.23.(9分)如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.24.(9分)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?25.(12分)如图,在△ABC中,AB=AC,CD⊥AB于点D,CE为△ACD的角平分线,EF⊥BC于点F,EF交CD于点G.求证:BE=CG.参考答案与试题解析一、选择题:(每小题3分,共30分)1.(3分)在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是()A.B.C.D.【考点】轴对称图形.【分析】据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、不是轴对称图形,不符合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选B.【点评】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?()A.0根 B.1根 C.2根 D.3根【考点】三角形的稳定性.【专题】存在型.【分析】根据三角形的稳定性进行解答即可.【解答】解:加上AC后,原不稳定的四边形ABCD中具有了稳定的△ACD及△ABC,故这种做法根据的是三角形的稳定性.故选:B.【点评】本题考查的是三角形的稳定性在实际生活中的应用,比较简单.3.(3分)如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE【考点】全等三角形的性质.【分析】根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选D.【点评】本题主要考查了全等三角形的性质,根据已知的对应角正确确定对应边是解题的关键.4.(3分)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240° D.300°【考点】等边三角形的性质;多边形内角与外角.【专题】探究型.【分析】本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数.【解答】解:∵等边三角形的顶角为60°,∴两底角和=180°﹣60°=120°;∴∠α+∠β=360°﹣120°=240°;故选C.【点评】本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题5.(3分)下列计算正确的是()A.2a+3b=5ab B.(x+2)2=x2+4 C.(ab3)2=ab6D.(﹣1)0=1【考点】完全平方公式;合并同类项;幂的乘方与积的乘方;零指数幂.【分析】A、不是同类项,不能合并;B、按完全平方公式展开错误,掉了两数积的两倍;C、按积的乘方运算展开错误;D、任何不为0的数的0次幂都等于1.【解答】解:A、不是同类项,不能合并.故错误;B、(x+2)2=x2+4x+4.故错误;C、(ab3)2=a2b6.故错误;D、(﹣1)0=1.故正确.故选D.【点评】此题考查了整式的有关运算公式和性质,属基础题.6.(3分)如图,给出了正方形ABCD的面积的四个表达式,其中错误的是()A.(x+a)(x+a)B.x2+a2+2ax C.(x﹣a)(x﹣a)D.(x+a)a+(x+a)x 【考点】整式的混合运算.【专题】计算题.【分析】根据正方形的面积公式,以及分割法,可求正方形的面积,进而可排除错误的表达式.【解答】解:根据图可知,S正方形=(x+a)2=x2+2ax+a2=(x+a)a+(x+a)x故选C.【点评】本题考查了整式的混合运算、正方形面积,解题的关键是注意完全平方公式的掌握.7.(3分)下列式子变形是因式分解的是()A.x2﹣5x+6=x(x﹣5)+6 B.x2﹣5x+6=(x﹣2)(x﹣3)C.(x﹣2)(x﹣3)=x2﹣5x+6 D.x2﹣5x+6=(x+2)(x+3)【考点】因式分解的意义.【专题】因式分解.【分析】根据因式分解的定义:就是把整式变形成整式的积的形式,即可作出判断.【解答】解:A、x2﹣5x+6=x(x﹣5)+6右边不是整式积的形式,故不是分解因式,故本选项错误;B、x2﹣5x+6=(x﹣2)(x﹣3)是整式积的形式,故是分解因式,故本选项正确;C、(x﹣2)(x﹣3)=x2﹣5x+6是整式的乘法,故不是分解因式,故本选项错误;D、x2﹣5x+6=(x﹣2)(x﹣3),故本选项错误.故选B.【点评】本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.8.(3分)若分式有意义,则a的取值范围是()A.a=0 B.a=1 C.a≠﹣1 D.a≠0【考点】分式有意义的条件.【专题】计算题.【分析】根据分式有意义的条件进行解答.【解答】解:∵分式有意义,∴a+1≠0,∴a≠﹣1.故选C.【点评】本题考查了分式有意义的条件,要从以下两个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;9.(3分)化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x【考点】分式的加减法.【专题】计算题.【分析】将分母化为同分母,通分,再将分子因式分解,约分.【解答】解:=﹣===x,故选:D.【点评】本题考查了分式的加减运算.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.10.(3分)下列各式:①a0=1;②a2•a3=a5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x2+x2=2x2,其中正确的是()A.①②③B.①③⑤C.②③④D.②④⑤【考点】负整数指数幂;有理数的混合运算;合并同类项;同底数幂的乘法;零指数幂.【专题】计算题.【分析】分别根据0指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则对各小题进行逐一计算即可.【解答】解:①当a=0时不成立,故本小题错误;②符合同底数幂的乘法法则,故本小题正确;③2﹣2=,根据负整数指数幂的定义a﹣p=(a≠0,p为正整数),故本小题错误;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0符合有理数混合运算的法则,故本小题正确;⑤x2+x2=2x2,符合合并同类项的法则,本小题正确.故选D.【点评】本题考查的是零指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则,熟知以上知识是解答此题的关键.11.(3分)随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x 千米,根据题意可列方程为()A. B.C. D.【考点】由实际问题抽象出分式方程.【分析】根据乘私家车平均速度是乘公交车平均速度的2.5倍,乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,利用时间得出等式方程即可.【解答】解:设乘公交车平均每小时走x千米,根据题意可列方程为:=+,【点评】此题主要考查了由实际问题抽象出分式方程,解题关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,把列方程的问题转化为列代数式的问题.12.(3分)如图,已知∠1=∠2,要得到△ABD≌△ACD,还需从下列条件中补选一个,则错误的选法是()A.AB=AC B.DB=DC C.∠ADB=∠ADC D.∠B=∠C【考点】全等三角形的判定.【分析】先要确定现有已知在图形上的位置,结合全等三角形的判定方法对选项逐一验证,排除错误的选项.本题中C、AB=AC与∠1=∠2、AD=AD组成了SSA 是不能由此判定三角形全等的.【解答】解:A、∵AB=AC,∴,∴△ABD≌△ACD(SAS);故此选项正确;B、当DB=DC时,AD=AD,∠1=∠2,此时两边对应相等,但不是夹角对应相等,故此选项错误;C、∵∠ADB=∠ADC,∴,∴△ABD≌△ACD(ASA);故此选项正确;D、∵∠B=∠C,∴,∴△ABD≌△ACD(AAS);故此选项正确.【点评】本题考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,但SSA无法证明三角形全等.二、填空题:(每空3分,共18分)13.(3分)分解因式:x3﹣4x2﹣12x=x(x+2)(x﹣6).【考点】因式分解-十字相乘法等;因式分解-提公因式法.【分析】首先提取公因式x,然后利用十字相乘法求解即可求得答案,注意分解要彻底.【解答】解:x3﹣4x2﹣12x=x(x2﹣4x﹣12)=x(x+2)(x﹣6).故答案为:x(x+2)(x﹣6).【点评】此题考查了提公因式法、十字相乘法分解因式的知识.此题比较简单,注意因式分解的步骤:先提公因式,再利用其它方法分解,注意分解要彻底.14.(3分)若分式方程:有增根,则k=1.【考点】分式方程的增根.【专题】计算题.【分析】把k当作已知数求出x=,根据分式方程有增根得出x﹣2=0,2﹣x=0,求出x=2,得出方程=2,求出k的值即可.【解答】解:∵,去分母得:2(x﹣2)+1﹣kx=﹣1,整理得:(2﹣k)x=2,∵分式方程有增根,∴x﹣2=0,解得:x=2,把x=2代入(2﹣k)x=2得:k=1.故答案为:1.【点评】本题考查了对分式方程的增根的理解和运用,把分式方程变成整式方程后,求出整式方程的解,若代入分式方程的分母恰好等于0,则此数是分式方程的增根,即不是分式方程的根,题目比较典型,是一道比较好的题目.15.(3分)如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是∠A=∠F或AC∥EF或BC=DE(答案不唯一).(只需填一个即可)【考点】全等三角形的判定.【专题】开放型.【分析】要判定△ABC≌△FDE,已知AC=FE,AD=BF,则AB=CF,具备了两组边对应相等,故添加∠A=∠F,利用SAS可证全等.(也可添加其它条件).【解答】解:增加一个条件:∠A=∠F,显然能看出,在△ABC和△FDE中,利用SAS可证三角形全等(答案不唯一).故答案为:∠A=∠F或AC∥EF或BC=DE(答案不唯一).【点评】本题考查了全等三角形的判定;判定方法有ASA、AAS、SAS、SSS等,在选择时要结合其它已知在图形上的位置进行选取.16.(3分)如图,在△ABC中,AC=BC,△ABC的外角∠ACE=100°,则∠A=50度.【考点】三角形的外角性质;等腰三角形的性质.【分析】根据等角对等边的性质可得∠A=∠B,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵AC=BC,∴∠A=∠B,∵∠A+∠B=∠ACE,∴∠A=∠ACE=×100°=50°.故答案为:50.【点评】本题主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,等边对等角的性质,是基础题,熟记性质并准确识图是解题的关键.17.(3分)如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为2m+4.【考点】平方差公式的几何背景.【专题】压轴题.【分析】根据拼成的矩形的面积等于大正方形的面积减去小正方形的面积,列式整理即可得解.【解答】解:设拼成的矩形的另一边长为x,则4x=(m+4)2﹣m2=(m+4+m)(m+4﹣m),解得x=2m+4.故答案为:2m+4.【点评】本题考查了平方差公式的几何背景,根据拼接前后的图形的面积相等列式是解题的关键.18.(3分)已知2+=22×,3+=32×,4+=42×,…,若10+=102×(a,b为正整数),则a+b=109.【考点】分式的定义.【专题】规律型.【分析】根据题意找出规律解答.【解答】解:由已知得a=10,b=a2﹣1=102﹣1=99,∴a+b=10+99=109.【点评】本题属于找规律题目,关键是找出分母的规律,b=a2﹣1.根据题意解出未知数,代入所求代数式即可.三.解答下列各题:(本题共7题,共66分)19.(9分)先化简,再求值:5(3a2b﹣ab2)﹣3(ab2+5a2b),其中a=,b=﹣.【考点】整式的加减—化简求值.【分析】首先根据整式的加减运算法则将原式化简,然后把给定的值代入求值.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.【解答】解:原式=15a2b﹣5ab2﹣3ab2﹣15a2b=﹣8ab2,当a=,b=﹣时,原式=﹣8××=﹣.【点评】熟练地进行整式的加减运算,并能运用加减运算进行整式的化简求值.20.(9分)给出三个多项式:x2+2x﹣1,x2+4x+1,x2﹣2x.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.【考点】因式分解的应用;整式的加减.【专题】开放型.【分析】本题考查整式的加法运算,找出同类项,然后只要合并同类项就可以了.【解答】解:情况一:x2+2x﹣1+x2+4x+1=x2+6x=x(x+6).情况二:x2+2x﹣1+x2﹣2x=x2﹣1=(x+1)(x﹣1).情况三:x2+4x+1+x2﹣2x=x2+2x+1=(x+1)2.【点评】本题考查了提公因式法,公式法分解因式,整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.熟记公式结构是分解因式的关键.平方差公式:a2﹣b2=(a+b)(a﹣b);完全平方公式:a2±2ab+b2=(a±b)2.21.(9分)解方程:=.【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2+2x﹣x2+4=8,移项合并得:2x=4,解得:x=2,经检验x=2是增根,分式方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.22.(9分)已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证:AD=CE;(2)求证:AD和CE垂直.【考点】全等三角形的判定与性质;等腰直角三角形.【专题】证明题.【分析】(1)由等腰直角三角形的性质得出AB=BC,BD=BE,∠ABC=∠DBE=90°,得出∠ABD=CBE,证出△ABD≌△CBE(SAS),得出AD=CE;(2)△ABD≌△CBE得出∠BAD=∠BCE,再由∠BAD+∠ABC∠∠BGA=∠BCE+∠AFC+∠CGF=180°,得出∠AFC=∠ABC=90°,证出结论.【解答】(1)证明:∵△ABC和△DBE是等腰直角三角形,∴AB=BC,BD=BE,∠ABC=∠DBE=90°,∴∠ABC﹣∠DBC=∠DBE﹣∠DBC,即∠ABD=CBE,在△ABD和△CBE中,,∴△ABD≌△CBE(SAS),∴AD=CE;(2)延长AD分别交BC和CE于G和F,如图所示:∵△ABD≌△CBE,∴∠BAD=∠BCE,∵∠BAD+∠ABC∠∠BGA=∠BCE+∠AFC+∠CGF=180°,又∵∠BGA=∠CGF,∵∠BAD+∠ABC+∠BGA=∠BCE+∠AFC+∠CGF=180°,∴∠AFC=∠ABC=90°,∴AD⊥CE.【点评】本题考查了等腰直角三角形的性质和全等三角形的判定与性质;证明三角形全等是解决问题的关键.23.(9分)如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.【考点】全等三角形的判定与性质.【专题】证明题.【分析】求出∠DCE=∠ACB,根据SAS证△DCE≌△ACB,根据全等三角形的性质即可推出答案.【解答】证明:∵∠DCA=∠ECB,∴∠DCA+∠ACE=∠BCE+∠ACE,∴∠DCE=∠ACB,∵在△DCE和△ACB中,∴△DCE≌△ACB,∴DE=AB.【点评】本题考查了全等三角形的性质和判定的应用,主要考查学生能否运用全等三角形的性质和判定进行推理,题目比较典型,难度适中.24.(9分)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?【考点】分式方程的应用.【专题】应用题.【分析】(1)设这项工程的规定时间是x天,根据甲、乙队先合做15天,余下的工程由甲队单独需要5天完成,可得出方程,解出即可.(2)先计算甲、乙合作需要的时间,然后计算费用即可.【解答】解:(1)设这项工程的规定时间是x天,根据题意得:(+)×15+=1.解得:x=30.经检验x=30是原分式方程的解.答:这项工程的规定时间是30天.(2)该工程由甲、乙队合做完成,所需时间为:1÷(+)=18(天),则该工程施工费用是:18×(6500+3500)=180000(元).答:该工程的费用为180000元.【点评】本题考查了分式方程的应用,解答此类工程问题,经常设工作量为“单位1”,注意仔细审题,运用方程思想解答.25.(12分)如图,在△ABC中,AB=AC,CD⊥AB于点D,CE为△ACD的角平分线,EF⊥BC于点F,EF交CD于点G.求证:BE=CG.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】过点A作AP⊥BC于点P,求出∠BAP=∠PAC,求出∠BAP=∠PAC=∠BCD,∠ACE=∠ECD,推出2(∠BCD+∠ECD)=90°,求出∠BCE=∠FEC=45°,推出EF=FC,求出∠BEF=∠BAP=∠BCD,∠BFE=∠EFC=90°,根据ASA证出△BFE≌△GFC即可.【解答】证明:过点A作AP⊥BC于点P,∠APB=90°,∵AB=AC,∴∠BAP=∠PAC,∵CD⊥AB,∴∠B+∠BCD=180°﹣∠CDB=90°,∵∠B+∠BAP=180°﹣∠APB=90°,∴∠BAP=∠PAC=∠BCD,∵CE平分∠DCA,∴∠ACE=∠ECD,∵∠APC+∠PCA+∠PAC=180°,∴∠ACE+∠DCE+∠PCD+∠PAC=90°∴2(∠BCD+∠ECD)=90°,∴∠BCE=45°,∵EF⊥BC,∴∠EFC=90°∴∠FEC=180°﹣∠EFC﹣∠ECF=45°,∴∠FEC=∠ECF,∴EF=FC,∵EF⊥BC,∴∠EFC=∠APC=90°,∴EF∥AP,∴∠BEF=∠BAP=∠BCD,∵EF⊥BC,∴∠BFE=∠EFC=90°,∵在△BFE和△GFC中,,∴△BFE≌△GFC(ASA),∴BE=CG.【点评】本题考查了全等三角形的性质,等腰三角形的性质和判定,等边三角形的性质和判定,三角形的内角和定理等知识点的综合运用,题目的难度中等.人教版数学八年级上册期末试卷2一、选择题(本题有10小题,每小题4分,共40分,请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.(4分)将下列四种长度的三根木棒首尾顺次连接,能组成三角形的是()A.2,5,8 B.3,4,5 C.2,2,4 D.1,2,32.(4分)下列图形是对圆的面积进行四等分的几种作图,则它们是轴对称图形的个数为()A.1 B.2 C.3 D.43.(4分)下列运算中,正确的是()A.(a2)3=a5B.a2•a4=a6 C.3a2÷2a=a D.(2a)2=2a24.(4分)若分式的值是零,则x的值是()A.x=﹣2 B.x=±3 C.2 D.x=35.(4分)长方形的面积为x2﹣2xy+x,其中一边长是x,则另一边长是()A.x﹣2y B.x+2y C.x﹣2y﹣1 D.x﹣2y+16.(4分)如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE7.(4分)如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD 等于()A.4 B.3 C.2 D.18.(4分)如图(1),是一个长为2a宽为2b(a>b)的矩形,用剪刀沿矩形的两条对角轴剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,则中间空白部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b29.(4分)“五水共治”工程中,要挖掘一段a千米的排污管沟,如果由10个工人挖掘,要用m天完成;如果由一台挖掘机工作,要比10个工人挖掘提前3天完成,一台挖掘机的工作效率是一个工人工作效率的()A.B.C.D.10.(4分)在平面直角坐标系xOy中,对于点P(x,y),我们把点P1(﹣y+1,x+1)叫做点P的伴随点,已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,若点A1的坐标为(3,1),则点A2015的坐标为()A.(0,4) B.(﹣3,1)C.(0,﹣2)D.(3,1)二、填空题(本题有6小题,每小题5分,共30分11.(5分)点A(﹣3,2)关于x轴的对称点A′的坐标为.12.(5分)因式分解:x2﹣4y2=.13.(5分)等腰三角形一边等于4,另一边等于2,则周长是.14.(5分)若a﹣b=5,ab=3,则a2+b2=.15.(5分)当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个直角三角形为“特征三角形”,那么它的“特征角”等于度.16.(5分)如图,把面积为1的等边△ABC的三边分别向外延长m倍,得到△A1B1C1,那么△A1B1C1的面积是(用含m的式子表示)三、解答题(本题有8小题,第17-20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分17.(4分)分解因式:4xy2+4x2y+y3.18.(4分)解方程:.19.(8分)先化简再求值:(﹣)÷,其中x=3.20.(8分)在△ABC中,D是BC边上的中点,F、E分别是AD及其延长线上的点,CF∥BE.求证:CF=BE.21.(8分)一个等腰直角三角板如图搁置在两柜之间,且点D,C,E在同一直线上,已知稍高的柜高AD为80cm,两柜距离DE为140cm.求稍矮的柜高BE.22.(10分)某校为了丰富学生的校园生活,准备购进一批篮球和足球.其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相等.(1)篮球和足球的单价各是多少元?(2)该校打算用800元购买篮球和足球,恰好用完800元,问有哪几种购买方案?23.(12分)探究题:(1)都相等,都相等的多边形叫做正多边形;(2)如图,格点长方形MNPQ的各点分布在边长均为1的等边三角形组成的网格上,请在格点长方形MNPQ内画出一个面积最大的格点正六边形ABCDEF,并简要说明它是正六边形的理由;(3)正六边形有条对角线,它的外角和为度.24.(12分)阅读理解:(请仔细阅读,认真思考,灵活应用)【例】已知实数x满足x+=4,求分式的值.解:观察所求式子的特征,因为x≠0,我们可以先求出的倒数的值,因为=x+3+=x++3=4+3=7所以=【活学活用】(1)已知实数a满足a+=﹣5,求分式的值;(2)已知实数x满足x+=9,求分式的值.25.(14分)有公共顶点A的△ABD,△ACE都是的等边三角形.(1)如图1,将△ACE绕顶点A旋转,当E,C,B共线时,求∠BCD的度数;(2)如图2,将△ACE绕顶点A旋转,当∠ACD=90°时,延长EC角BD于F,①求证:∠DCF=∠BEF;②写出线段BF与DF的数量关系,并说明理由.参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分,请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.(4分)将下列四种长度的三根木棒首尾顺次连接,能组成三角形的是()A.2,5,8 B.3,4,5 C.2,2,4 D.1,2,3【考点】三角形三边关系.【分析】根据三角形三边关系定理:三角形两边之和大于第三边进行分析即可.【解答】解:A、2+5<8,不能组成三角形,故此选项错误;B、3+4>5,能组成三角形,故此选项正确;C、2+2=4,不能组成三角形,故此选项错误;D、1+2=3,不能组成三角形,故此选项错误;故选:B.【点评】此题主要考查了三角形的三边关系定理,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.2.(4分)下列图形是对圆的面积进行四等分的几种作图,则它们是轴对称图形的个数为()A.1 B.2 C.3 D.4【考点】轴对称图形.【分析】根据轴对称图形的概念求解即可.【解答】解:第一个图形是轴对称图形;第二个图形是轴对称图形;第三个图形不是轴对称图形;第四个图形是轴对称图形;所以一共有三个轴对称图形.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(4分)下列运算中,正确的是()A.(a2)3=a5B.a2•a4=a6 C.3a2÷2a=a D.(2a)2=2a2【考点】整式的除法;同底数幂的乘法;幂的乘方与积的乘方.【专题】计算题;整式.【分析】A、原式利用幂的乘方运算法则计算得到结果,即可作出判断;B、原式利用同底数幂的乘法法则计算得到结果,即可作出判断;C、原式利用单项式除以单项式法则计算得到结果,即可作出判断;D、原式利用积的乘方运算法则计算得到结果,即可作出判断.【解答】解:A、原式=a6,错误;B、原式=a6,正确;C、原式=a,错误;D、原式=4a2,错误,故选B【点评】此题考查了整式的除法,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.4.(4分)若分式的值是零,则x的值是()A.x=﹣2 B.x=±3 C.2 D.x=3【考点】分式的值为零的条件.【分析】直接利用分式的值为0,则分子为0,进而得出答案.【解答】解:∵分式的值是零,∴x+2=0,解得:x=﹣2.【点评】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.5.(4分)长方形的面积为x2﹣2xy+x,其中一边长是x,则另一边长是()A.x﹣2y B.x+2y C.x﹣2y﹣1 D.x﹣2y+1【考点】整式的除法.【专题】计算题;整式.【分析】根据面积除以一边长得到另一边长即可.【解答】解:根据题意得:(x2﹣2xy+x)÷x=x﹣2y+1,故选D【点评】此题考查了整式的除法,熟练掌握除法法则是解本题的关键.6.(4分)如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE【考点】全等三角形的判定.【分析】由EB=CF,可得出EF=BC,又有∠A=∠D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC≌△DEF,那么添加的条件与原来的条件可形成SSA,就不能证明△ABC≌△DEF了.【解答】解:A、添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故A 选项正确.B、添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故B选项错误.C、添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项错误.D、添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故D选项错误.。

人教版八年级数学上册期末综合测试卷(附有参考答案)

人教版八年级数学上册期末综合测试卷(附有参考答案)

人教版八年级数学上册期末测试卷(附有参考答案)(考试时长:100分钟;总分:120分)学校:___________班级:___________姓名:___________考号:___________一、单选题 1.若三角形的两条边的长度是4cm 和7cm ,则第三条边的长度可能是( )A .2cmB .5cmC .11cmD .12cm2.如图所示,点D ,E 分别是△ABC 的边BC ,AB 上的点,分别连结AD ,DE ,则图中的三角形一共有( )A .3个B .4个C .5个D .6个3.下列各题的计算,正确的是( )A .()3515=a aB .5210a a a ⋅=C .32242a a a -=-D .()3236ab a b -=4.下列等式中不成立的是( )A .()222396x y x xy y -=-+.B .()()22a b c c a b +-=--. C .2221124⎛⎫-=-+ ⎪⎝⎭m n m mn n . D .()22244x y x y -=-. 5.在学校“文明学生”表彰会上,6名获奖者每两位都相互握手祝贺,则他们一共握了多少次手( )A .6B .8C .13D .156.下列各命题的逆命题成立的是( )A .全等三角形的对应角相等B .如果两个数相等,那么它们的绝对值相等C .两直线平行,内错角相等D .如果两个角都是30°,那么这两个角相等 7.已知实数x 、y 满足33x ?y 27=-,当x 1>时,y 的取值范围是( )A .y 3<-B .3y 0-<<C .y 3<-或y 0>D .3y 0-<<或y 0>8.下列计算中,(1) m n mn a a a ⋅=; (2) ()22m n m n a a ++= ; (3) ()311211263n n n n a b ab a b -++⎛⎫⋅-=- ⎪⎝⎭;(4)633a a a ÷=;正确的有( )A .0个B .1个C .2个D .3个9.三角形的两边长分别是4和11,第三边长为34m +,则m 的取值范围在数轴上表示正确的是( )A .B .C .D . 10.要使分式21x x +-有意义,x 必须满足的条件是( ) A .1x ≠ B .0x ≠ C .2x ≠- D .2x ≠-且1x ≠11.《居室内空气中甲醛的卫生标准》(GB /T 16127-1995)规定:居室内空气中甲醛的最高容许浓度为0.00008g /m 3.将0.00008用科学记数法可表示为( )A .40.810-⨯B .4810-⨯C .50.810-⨯D .5810-⨯12.如图,AO ⊥OM ,OA=8,点B 为射线OM 上的一个动点,分别以OB 、AB 为直角边,B 为直角顶点,在OM 两侧作等腰Rt △OBF 、等腰Rt △ABE ,连接EF 交OM 于P 点,当点B 在射线OM 上移动时,PB 的长度是 ( )A .3.6B .4C .4.8D .PB 的长度随B 点的运动而变化二、填空题13.已知3x y -=,则代数式()()2122x x y y x +-+-的值为 .14.计算:(1)202220241(4)4⎛⎫-⨯-= ⎪⎝⎭ .(2)10298⨯= .15.在螳螂的示意图中AB DE ∥,ABC 是等腰三角形12672ABC CDE ∠=︒∠=︒,,则ACD ∠的度数是 .16.要测量河两岸相对的两点A ,B 间的距离(AB 垂直于河岸BF),先在BF 上取两点C ,D ,使CD =CB ,再作出BF 的垂线DE ,且使A ,C ,E 三点在同一条直线上,如图,可以得△EDC ≌△ABC ,所以ED =AB .因此测得ED 的长就是AB 的长.判定△EDC ≌△ABC 的理由是 .17.若()22224x k x x k +=++,则k = .18.一个多边形截去一个角后,形成一个新的多边形内角和为360°,那么原来的多边形的边数为19.如图,在ABC 中,AD 为BC 边上的高线,且AD BC =,点M 为直线BC 上方的一个动点,且ABC 面积为MBC 的面积2倍,则当MB MC +最小时,MBC ∠的度数为 °.20.计算()22x xy x -÷的结果是 .21.如图,用大小相等的小正方形拼大正方形,拼第1个正方形需要4个小正方形,拼第2个正方形需要9个小正方形,拼第3个正方形需要16个小正方形……按照这样的方法拼成的第n 个正方形比第(n )1-个正方形多 个小正方形.22.在等边△ABC 中,E 是∠B 的平分线上一点,∠AEB =105°,点P 在△ABC 上,若AE =EP ,则∠AEP 的度数为 .三、解答题23.化简:231124a a a -⎛⎫-÷⎪+-⎝⎭ 24.计算:(1)860.10.1÷;(2)741133⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭; (3)()()3a b a b -÷-;(4)()()53xy xy ÷;25.我们知道多项式的乘法可以利用图形的面积进行解释,例如,(2a+b )(a+b )=2a 2+3ab+b 2就能用图1或图2等图形的面积表示:(1)请你写出图3所表示的一个等式: .(2)试画出一个图形,使它的面积能表示成(a+b )(a+3b )=a 2+4ab+3b 2.26.有两块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦12000kg 和14000kg ,已知第一块试验田每公顷的产量比第二块少1500kg .如果设第一块试验田每公顷的产量为xkg ,那么x 满足怎样的分式方程?27.春笋含有丰富的营养成分,是春天的重要食材.今年4月初,某蔬菜批发市场一店主张先生用2000元购进一批春笋,很快售完;张先生又用3200元购进第二批春笋,所购春笋的重量是第一批的2倍,由于进货量增加,第二批春笋的进价比第一批每千克少2元,求第一批春笋每千克进价多少元?28.下表为抄录某运动会票务网公布的三种球类比赛的部分门票价格,某公司购买的门票种类、数量绘制的统计图如图所示.比赛项目票价(张/元)足球1000男篮800乒乓球x依据上述图表,回答下列问题:(1)其中观看足球比赛的门票有______张,观看乒乓球比赛的门票占全部门票的______%;(2)公司决定采用随机抽取的方式把门票分配给100名员工,在看不到门票的条件下,每人抽取一张(假设所有的门票形状、大小、质地完全相同且充分洗匀),问员工小华抽到男篮门票的概率是______;(3)若购买乒乓球门票的总款数占全部门票总款数的542,求每张乒乓球门票的价格.29.某高速路修建项目中有一项挖土工程,招标时接到甲、乙两个工程队的投标书,每施工一天,需付甲工程队工程款1.8万元,付乙工程队工程款1.3万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:(方案一)甲队单独完成这项工程,刚好按规定工期完成;(方案二)乙队单独完成这项工程要比规定工期多用5天;(方案三)若由甲乙两队合作做4天,剩下的工程由乙队单独做,也正好按规定工期完成.(1)请你求出完成这项工程的规定时间;(2)如果你是工程领导小组的组长,为了节省工程款,同时又能如期完成,你将选择哪一种方案?说明理由.30.如图1,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,点E,F分别在四边形ABCD∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系.的边BC,CD上,∠EAF=12(1)思路梳理将△ABE绕点A逆时针旋转至△ADG,使AB与AD重合,由∠B+∠ADC=180°,得∠FDG=180°,即点F,D,G三点共线,易证△AFG≌△AFE,故EF,BE,DF之间的数量关系为__;(2)类比引申如图2,在图1的条件下,若点E,F由原来的位置分别变到四边形ABCD的边CB,DC延长∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系,并给出证明.线上,∠EAF=12(3)联想拓展如图3,在△ABC中,∠BAC=90°,AB=AC,点D,E均在边BC上,且∠DAE=45°,若BD=1,EC=2,直接写出DE的长为________________.答案: 1.B 2.C 3.A 4.D 5.D 6.C 7.B 8.C 9.A 10.A 11.D 12.B 13.414.16 999615.45︒/45度16.ASA17.1218.5或4或3.19.4520.2x y -21.21n +/1+2n22.90︒或120︒23.2-a24.(1)0.01(2)127-(3)222a ab b -+(4)22x y 25.(1)(a +2b )(2a +b )=2a 2+5ab +2b 226.12000140001500x x =+. 27.第一批春笋每千克进价10元28.(1)50,20;(2)310;(3)每张乒乓球门票的价格为500元. 29.(1)20天(2)方案三30.(1)EF =BE +DF ;(2)EF =DF−BE ;(3)5.。

人教版八年级上册数学期末试卷含答案

人教版八年级上册数学期末试卷含答案

人教版八年级上册数学期末试题一、单选题1.要使分式7x x -有意义,则x 的取值范围是( ) A .7x = B .7x > C .7x < D .7x ≠2.下列图形中不是轴对称图形的是( )A .B .C .D .3.下列运算正确的是( )A .428x x x =B .235m m m +=C .933x x x ÷=D .32264()a b a b -=-4.下列命题中,不正确的是( )A .有一个外角是120°的等腰三角形是等边三角形B .一条线段可以看成是以它的垂直平分线为对称轴的轴对称图形C .等腰三角形的对称轴是底边上的中线D .等边三角形有3条对称轴5.满足下列条件的三条线段,,a b c 能构成三角形的是( )A .::1:2:3a b c =B .4,9a b a b c +=++=C .3,4,5a b c ===D .::1:1:2a b c =6.在平面直角坐标系中,点A (-2,3)关于y 轴对称的点的坐标( )A .(2,3)B .(2,-3)C .(-2,-3)D .(3,2) 7.为推进垃圾分类,推动绿色发展.某化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,两型号机器人的单价和为140万元.若设甲型机器人每台x 万元,根据题意,所列方程正确的是( ) A .360480140x x =- B .360480140x x=- C .360480140x x += D .360480140x x -= 8.已知:如图,∠1=∠2,则不一定能使∠ABD∠∠ACD 的条件是( )A .AB =AC B .BD =CD C .∠B =∠C D .∠BDA =∠CDA 9.如图,∠ABC 中,12AB BC AC ===cm ,现有两点M 、N 分别从点A 、点B 同时出发,沿三角形的边运动,已知点M 的速度为1cm/s ,点N 的速度为2cm/s .当点N 第一次到达B 点时,M 、N 同时停止运动.点M 、N 运动( )s 后,可得到等边三角形∠AMN .A .4B .6C .8D .不能确定 10.如图,已知∠1=∠2,要得到结论ABC∠ADC ,不能添加的条件是( )A . BC =DCB .∠ACB =∠ACDC .AB =AD D .∠B =∠D二、填空题11.数据0.000000005用科学记数法表示为______.12.当x =______时,分式21628x x --的值为0.13.因式分解ab 3-4ab =_____.14.已知2m a =,32n b =,m ,n 为正整数,则5102m n +=______.15.化简:()2184416x x x ⎛⎫-⋅+= ⎪--⎝⎭__________. 16.如图,∠AEB∠∠DFC ,AE∠CB ,DF∠BC ,垂足分别为E 、F ,且AE=DF ,若∠C=28°,则∠A=__________.17.已知一个正多边形的一个内角是120º,则这个多边形的边数是_______.18.若方程4x 2+(m+1)x+1=0的左边可以写成一个完全平方式,则m 的值为__. 19.如图,在∠ABC 中,14AB =,8BC =,AM 平分∠BAC ,15BAM ∠=︒,点D 、E 分别为线段AM 、AB 上的动点,则BD DE +的最小值是______.20.如图,已知30PMQ ∠=︒,点123,,A A A ...在射线MQ 上,点123,,B B B ...均在射线MP 上,112223334,,A B A A B A A B A △△△...均为等边三角形,若11MA =,则202120212022A B Az △的边长为__________.三、解答题21.先化简再求值22121(1)24x x x x ++-÷+-,其中x= -3.22.解方程:21133x x x x =+++.23.一个多边形的内角和比四边形的内角和多720°,并且这个多边形的各内角都相等,这个多边形的每个内角是多少度?24.如图,已知∠ABC 和线段DE ,求作一点P ,使点P 到∠ABC 两边的距离相等,且使PD =PE .(不写作法,保留作图痕迹)25.如图,在∠ABC 中,D 是AB 上一点,CF//AB ,DF 交AC 于点E ,DE EF =.(1)求证:ADE CFE ≌(2)若5AB =,3CF =,求BD 的长.26.如图,方格纸中的每个小方格都是边长为 1 个单位的正方形,在建立平面直角坐标系后,∠ABC 的顶点均在格点上,点 C 的坐标为(0,-1),(1)写出A,B 两点的坐标;(2)画出∠ABC 关于y 轴对称的∠A1B1C1;(3)求出∠ABC 的面积.27.如图,已知点D,E分别是ABC的边BA和BC延长线上的点,作∠DAC的平分线AF,若AF∠BC.(1)求证:ABC是等腰三角形(2)作∠ACE的平分线交AF于点G,若40∠=,求∠AGC的度数.B28.某市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?29.列方程解应用题:一批学生志愿者去距学校8km的老人院参加志愿服务活动,一部分学生骑自行车先走,过了15min后,其余学生乘汽车出发,结果他们同时到达.已知骑车学生的速度是汽车速度的一半,求骑车学生的速度.30.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是;(请选择正确的一个)A 、a 2﹣2ab+b 2=(a ﹣b )2B 、a 2﹣b 2=(a+b )(a ﹣b )C 、a 2+ab=a (a+b )(2)应用你从(1)选出的等式,完成下列各题:∠已知x 2﹣4y 2=12,x+2y=4,求x ﹣2y 的值.∠计算:(1﹣212)(1﹣213)(1﹣214)…(1﹣2119)(1﹣2120).参考答案1.D【分析】直接利用分式有意义的条件分析得出答案. 【详解】解:要使分式7x x -有意义, 则70x -≠,解得:7x ≠.故选:D .【点睛】本题主要考查了分式有意义的条件,正确把握定义是解题关键.2.B【分析】根据轴对称图形的定义,即可一一判定.【详解】解:等腰三角形、等腰梯形、矩形都是轴对称图形,直角三角形不一定是轴对称图形,故选:B .【点睛】本题考查了轴对称图形的定义,轴对称图形:如果把一个图形沿某条直线对折,对折后图形的一部分与另一部分完全重合,我们把具有这样性质的图形叫做轴对称图形,这条直线叫做对称轴.3.B【分析】计算出各个选项中的式子的结果,本题得以解决.【详解】2428x x x =,故选项A 错误;235m m m +=,故选项B 正确;936x x x ÷=,故选项C 错误;32264()a b a b -=,故选项D 错误;故选B .【点睛】本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法.4.C【分析】根据等边三角形的判定定理、轴对称图形的概念判断即可.【详解】解:A 、一个三角形的外角是120°,则内角为60°,∠这个等腰三角形是等边三角形,本选项说法正确,不符合题意;B 、一条线段可以看成是以它的垂直平分线为对称轴的轴对称图形,本选项说法正确,不符合题意;C 、等腰三角形的对称轴是底边上的中线所在的直线,本选项说法错误,符合题意;D 、等边三角形有3条对称轴,本选项说法正确,不符合题意;故选:C .【点睛】本题考查的是命题的真假判断以及等边三角形的判定,轴对称图形的概念等知识,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.C【分析】根据三角形三条边的关系计算即可,三角形任意两边之和大于第三边,任意两边之差小于第三边.【详解】A.设,,a b c 分别为,2,3(0)x x x x >,则有a b c +=,不符合三角形的三边关系,故不能构成三角形;B.当4a b +=时,5,45c =<,不符合三角形的三边关系,故不能构成三角形;C.当3a =,4b =,5c =时,345+>,符合三角形的三边关系,故能构成三角形;D.设,,a b c 分别为,,2(0)x x x x >,则有a b c +=,不符合三角形的三边关系,故不能构成三角形.故选C .【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.6.A【分析】关于y 轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【详解】解:点A (-2,3)关于y 轴对称点的坐标是(2,3).故选:A .【点睛】本题考查了关于y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.7.A【分析】甲型机器人每台x 万元,根据360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,列出方程即可.【详解】解:设甲型机器人每台x 万元,根据题意,可得360480140x x=-, 故选:A .【点睛】本题考查的是分式方程,解题的关键是熟练掌握分式方程.8.B【分析】利用全等三角形判定定理ASA ,SAS ,AAS 对各个选项逐一分析即可得出答案.【详解】A 、∠∠1=∠2,AD 为公共边,若AB=AC ,则∠ABD∠∠ACD (SAS );故A 不符合题意;B 、∠∠1=∠2,AD 为公共边,若BD=CD ,不符合全等三角形判定定理,不能判定∠ABD∠∠ACD ;故B 符合题意;C 、∠∠1=∠2,AD 为公共边,若∠B=∠C ,则∠ABD∠∠ACD (AAS );故C 不符合题意;D 、∠∠1=∠2,AD 为公共边,若∠BDA=∠CDA ,则∠ABD∠∠ACD (ASA );故D 不符合题意.故选:B .9.A【分析】设点M ,N 运动t 秒时,得到等边三角形AMN ,表示出AM ,AN 的长,根据60A ∠=︒ ,只要AM AN =,三角形AMN 就是等边三角形.【详解】解:设点M ,N 运动t 秒时,得到等边三角形AMN ,如图所示,则AM t =,2BN t =, ∠12AB BC AC ===,∠122AN AB BN t =-=-,∠AMN ∆是等边三角形,∠AM AN =,即122t t =-,解得4t =,∠点M ,N 运动4秒时,得到等边三角形AMN .故选:A【点睛】本题考查了等边三角形的性质和判定,根据题意分析出AM AN =时得到等边三角形AMN 是解题的关键.10.A【分析】根据全等三角形的判定方法,逐项判断即可求解.【详解】解:根据题意得:AC AC = ,∠1=∠2,A 、当BC =DC 时,是边边角,不能得到结论ABC∠ADC ,故本选项符合题意;B 、当∠ACB =∠ACD 时,是角边角,能得到结论ABC∠ADC ,故本选项不符合题意; C 、当AB =AD 时,是边角边,能得到结论ABC∠ADC ,故本选项不符合题意; D 、当∠B =∠D 时,是角角边,能得到结论ABC∠ADC ,故本选项不符合题意; 故选:A【点睛】本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法——边角边、角边角、角角边、边边边是解题的关键.11.9510-⨯【分析】根据绝对值小于1的数用科学记数法表示即可,把一个绝对值小于1的数数表示为10n a -⨯(1≤|a|< 10, n 为正整数)的形式,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定,不为0的数字前面有几个0,-n 就是负几.【详解】解:90.0000000052 10-=⨯,故选:B .【点睛】此题主要考查了用科学记数法表示绝对值小于1的数,一般形式为10n a -⨯(1≤|a|< 10, n 为正整数), n 为由原数左边起第一个不为零的数字前面的0的个数所决定,熟练掌握科学记数法表示绝对值小于1的数的方法是解题的关键.12.-4【分析】根据分式等于0可知2160x -=,且280x -≠.求出x 即可.【详解】根据题意可知2160280x x ⎧-=⎨-≠⎩,解得:4x =-.故答案为:-4.【点睛】本题考查分式的值为零的条件:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.13.ab (b+2)(b -2).【详解】试题解析:ab 3-4ab=ab (b 2-4)=ab (b+2)(b -2).考点:提公因式法与公式支的综合运用.14.52a b【分析】直接利用幂的乘方运算法则以及同底数幂的乘法运算法则计算得出答案.【详解】解:∠2m=a ,32n=b=25n ,m ,n 为正整数,∠25m+10n=(2m)5×(25n)2=a5b2,故答案是:a5b2.【点睛】本题主要考查了幂的乘方运算以及同底数幂的乘法运算,解题的关键是正确掌握相关运算法则.15.1【分析】先将小括号内的式子进行通分计算,然后再算括号外面的.【详解】解:218()(4)416x x x -⋅+-- 48(4)(4)(4)x x x x +-=⋅++- 4(4)(4)(4)x x x x -=⋅++- 1=,故答案为:1.【点睛】本题考查了分式的混合运算,能正确根据分式的运算法则进行化简是解此题的关键,注意运算顺序.16.62°【详解】∠∠AEB∠∠DFC ,∠∠C=∠B=28°,∠AE∠CB ,∠∠AEB=90°,∠∠A=62°.故答案为62°.17.6【分析】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角的个数,即多边形的边数.【详解】解:∠一个正多边形的一个内角是120º,∠这个正多边形的一个外角为:180º-120º=60º,∠多边形的外角和为360º,∠360º÷60º =6,则这个多边形是六边形.故答案为:6.【点睛】考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.18.-5或3【分析】利用完全平方公式的结构特征判断即可求出m 的值.【详解】解:∠4x 2+(m+1)x+1可以写成一个完全平方式,∠4x 2+(m+1)x+1=(2x±1)2=4x 2±4x+1,∠m+1=±4,解得:m =-5或3,故答案为:-5或3.【点睛】此题考查了完全平方式,熟练掌握完全平方公式的结构特征是解本题的关键.19.7【分析】作E关于AM的对称点E',连接DE',根据角平分线的性质以及轴对称的性质,垂线段最短,进而根据含30度角的直角三角形的性质求解即可.【详解】∴如图,作E关于AM的对称点E′,连接DE′,∠ED=E′D∠BD+DE≥BE′,当B,D,E′共线,且BE′∠AC时,BD+DE最小∠AM平分∠BAC,∠E′在AC上,∠AM平分∠BAC,∠BAM=15°,∠∠BAE′=30°∠AB=14,BE′∠AC∠BE′=12AB=7故答案为:7.【点睛】本题考查了角平分线的定义,轴对称的性质求最短距离,垂线段最短,含30度角的直角三角形的性质,正确的作出图形是解题的关键.20.22020.【详解】解:∠∠A1B1A2为等边三角形,∠∠B1A1A2=60°,∠∠PMQ=30°,∠∠MB1A1=∠B1A1A2-∠PMQ=30°,∠∠MB1A1=∠PMQ,∠A 1B 1=MA 1=1,同理可得:A 2B 2=MA 2=2,A 3B 3=MA 3=4=22,A 4B 4=MA 4=23,…∠∠A 2021B 2021A 2022的边长=22020,故答案为:22020.21.52. 【详解】原式221(1)2(2)(2)x x x x x +-+=÷++- 21(2)(2)·2(1)x x x x x ++-=++ 21x x -=+. 当3x =-时,原式325312--==-+ 22.32x =- 【分析】分式方程两边同乘3(x+1),解出x 的解,再检验解是否满足.【详解】解:方程两边都乘()31x +,得:()3231x x x -=+, 解得:32x =-, 经检验32x =-是方程的解, ∴原方程的解为32x =-. 【点睛】本题考查的知识点是分式方程的求解,解题关键是解出的解要进行检验. 23.135度.【详解】试题分析:首先由题意得出等量关系,即这个多边形的内角和比四边形的内角和多540°,由此列出方程解出边数,进一步可求出它每一个内角的度数.解:设这个多边形边数为n ,则(n ﹣2)•180=360+720,解得:n=8,∠这个多边形的每个内角都相等,∠它每一个内角的度数为1080°÷8=135°.答:这个多边形的每个内角是135度.24.见解析.【分析】作线段DE 的垂直平分线MN ,作∠ABC 的角平分线BO 交MN 于点P ,点P 即为所求.【详解】如图,点P 即为所求.【点睛】本题主要考查了线段垂直平分线与角平分线的画图,熟练掌握相关方法是解题关键.25.(1)见解析(2)2BD =【分析】(1)由题意易得,A ECF ADE F ∠=∠∠=∠,然后问题可求证;(2)由(1)可得3AD CF ==,然后问题可求解.(1)证明:∠CF//AB ,∠,A ECF ADE F ∠=∠∠=∠,在ADE ∆和CFE ∆中,A ECF ADE F DE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠ADE CFE ≌(AAS );(2)解:∠ADE CFE ∆∆≌,CF=3,∠3AD CF ==,∠532BD AB AD =-=-=.【点睛】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质及判定是解题的关键.26.(1) A (-1,2),B (-3,1).(2)见解析;(3)见解析【分析】(1)根据 A ,B 的位置写出坐标即可;(2)分别画出 A ,B ,C 的对应点 A 1,B 1,C 1 即可;利用分割法求面积即可;【详解】(1)由题意 A (-1,2),B (-3,1).(2)如图∠A1B1C1 即为所求.(3)S ABC =3×3 -12×1×2 -12×1×3 -12×2×3= 3.527.(1)证明见解析;(2)70AGC ∠=【分析】(1)根据角平分线的定义,得到∠DAF=∠CAF ,又根据//BC AF ,得到∠DAF=∠ABC ,∠CAG=∠ACB ,进一步得到∠ABC=∠ACB ,即可证明ABC 是等腰三角形;(2)在ACG 中,分别求得ACG ∠和CAG ∠的度数,利用三角形内角和求解即可.【详解】(1)证明:∠AF 是∠DAC 的角平分线∠∠DAF=∠CAF又∠//BC AF∠∠DAF=∠ABC ,∠CAG=∠ACB∠∠ABC=∠ACB∠AB=AC∠ABC 是等腰三角形(2)∠CG 是∠ACE 的角平分线∠∠ACG=∠ECG又∠40B ∠=,∠ACB=∠B∠40ACB ∠= ∠∠ACG=∠ECG=()118040702⨯-= 又∠∠CAG=∠ACB∠∠AGC=180407070--=【点睛】本题考查等腰三角形的判定,平行线的性质,角平分线的定义等相关知识点,牢记知识点是解题关键.28.10米【分析】设原计划每天铺设管道x 米,根据等量关系:铺设120米管道的时间+铺设(300﹣120)米管道的时间=27天,可列方程求解.【详解】解:设原计划每天铺设管道x 米, 依题意得:12030012027(120%)x x-+=+, 解得x=10,经检验,x=10是原方程的解,且符合题意.答:原计划每天铺设管道10米.考点:分式方程的应用.29.骑车学生的速度16㎞/h .【分析】设骑车学生的速度为xkm/h ,则汽车速度为2xkm/h ,根据骑车所用时间- 15分钟=汽车所用时间,列方程x x 81842,解方程即可. 【详解】解:设骑车学生的速度为xkm/h ,则汽车速度为2xkm/h,根据题意得:x x 81842, 方程两边都乘以4x 得:x 3216, 解得16x =,经检验得16x =是原方程的根,且符合题意,答:骑车学生的速度16㎞/h .【点睛】本题考查列分式方程解行程问题应用题,掌握列分式方程解行程问题应用题方法与步骤,抓住等量关系:骑车所用时间- 15分钟=汽车所用时间列方程是解题关键.30.(1)B;(2)∠3;∠21 40.【分析】(1)根据两个图形中阴影部分的面积相等,即可列出等式;(2)∠把x2﹣4y2利用(1)的结论写成两个式子相乘的形式,然后把x+2y=4代入即可求解;∠利用(1)的结论化成式子相乘的形式即可求解.【详解】(1)第一个图形中阴影部分的面积是a2﹣b2,第二个图形的面积是(a+b)(a﹣b),则a2﹣b2=(a+b)(a﹣b).故答案是B;(2)∠∠x2﹣4y2=(x+2y)(x﹣2y),∠12=4(x﹣2y)得:x﹣2y=3;∠原式=(1﹣12)(1+12)(1﹣13)(1+13)(1﹣14)(1+14) (1)119)(1+119)(1﹣120)(1+120)13243518201921 22334419192020 =⨯⨯⨯⨯⨯⨯⋯⨯⨯⨯⨯=1 2×21 20=21 40.。

人教版八年级上册数学期末考试试卷及答案

人教版八年级上册数学期末考试试卷及答案

人教版八年级上册数学期末考试试题一、单选题1.下列计算正确的是()A .a 2•a 3=a 6B .2ab+3ab =5a 2b 2C .a 8÷a 4=a 2D .(a 3)2=a 62.到三角形三条边距离相等的点是此三角形()A .三条角平分线的交点B .三条中线的交点C .三条高的交点D .三边中垂线的交点3.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC 的大小为()A .140°B .160°C .170°D .150°4.如图,在△ABC 中,已知点D ,E ,F 分别为BC ,AD ,AE 的中点,且S △ABC =12cm 2,则阴影部分面积S =()cm 2.A .1B .2C .3D .45.如图,在边长为a 的正方形中挖掉一个边长为b 的小正方形()a b >,把余下的部分剪成一个矩形,通过计算两个图形(阴影部分)的面积,验证了一个等式是()A .22()()a b a b a b -=+-B .222()2a b a ab b +=++C .222()2a b a ab b -=-+D .22(2)()2a b a b a ab b +-=+-6.202020214(0.25)-⨯的值为()A .4B .4-C .0.25D .0.25-7.若2x y +=,1xy =-,则()()1212x y --的值是()A .7-B .3-C .1D .98.如图,在△ABC 中,BC=10,CD 是∠ACB 的平分线.若P ,Q 分别是CD 和AC 上的动点,且△ABC 的面积为24,则PA+PQ 的最小值是()A .125B .4C .245D .59.已知,,a b c 满足22227,-21,617a b b c c a +==--=-,则a b c +-的值为()A .1B .-5C .-6D .-710.如图,△ABC 中,P 、Q 分别是BC 、AC 上的点,作PR ⊥AB ,PS ⊥AC ,垂足分别是R 、S ,若AQ=PQ ,PR=PS ,下面四个结论:①AS=AR ;②QP ∥AR ;③△BRP ≌△QSP ;④AP 垂直平分RS ,其中正确结论的序号是()A .①②B .①②③C .①②④D .①②③④二、填空题11.因式分解:225x y y -=______.12.am =6,an =3,则am﹣2n =__.13.如图,△ABC ≌△DBC ,∠A =45°,∠DCB =43°,则∠ABC =______.14.如图,ABC 的三边AB BC CA 、、的长分别为405060、、,其三条角平分线交于点O ,则::ABOBCO CAOS S S =______.15.一位工人师傅加工1500个零件后,把工作效率提高到原来的2.5倍,因此再加工1500个零件时,较前提早了18个小时完工,问这位工人师傅提高工作效率的前后每小时各加工多少个零件?设提高工作效率前每小时加工x 个零件,则根据题意可列方程为________.16.若x 4y 1+=,则xy 的最大值为_____.17.如图,已知△ABC 的面积为1,分别倍长(延长一倍)边AB ,BC ,CA 得到△A 1B 1C 1,再分别倍长边A 1B 1,B 1C 1,C 1A 1得到△A 2B 2C 2…按此规律,倍长2021次后得到的△A 2021B 2021C 2021的面积为_________.18.如图,△ABC ≌△ADE ,∠B=70°,∠C=30°,∠DAC=20°,则∠EAC 的度数为______.19.如图,在ABC ∆中,AB 的垂直平分线交AB 于E ,交BC 于D ,连结AD .若4AC cm =,ADC ∆的周长为11cm ,则BC 的长为__________cm .三、解答题20.解分式方程:21133x x+=--21.化简求值:2(2)(1)(1)a a a +-+-,其中3=2a 22.先化简,再求值:22241---÷+a a a a a请从-2,-1,0,1,2中选择一个合适的数,求此分式的值.23.如图所示,在△ABC 中,AD ⊥BC 于D ,CE ⊥AB 于E ,AD 与CE 交于点F ,且AD=CD ,(1)求证:△ABD ≌△CFD ;(2)已知BC=7,AD=5,求AF 的长.24.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y )2+2(x+y )+1.解:将“x+y”看成整体,令x+y=A ,则原式=A 2+2A+1=(A+1)2.再将“A”还原,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请解答下列问题:(1)因式分解:1+2(2x-3y )+(2x-3y )2.(2)因式分解:(a+b )(a+b-4)+4;25.在汕头市“创文”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了a 天完成,乙做另一部分用了y 天完成.若乙工程队还有其它工作任务,最多只能做52天.求甲工程队至少应做多少天?26.如图,在ABC 中,AB AD DC ==,26BAD ∠=︒,求B Ð和C ∠的度数.27.已知△ABC 为等边三角形,点D 为直线BC 上一动点(点D 不与点B ,点C 重合).以AD 为边作等边三角形ADE ,连接CE .(1)如图1,当点D 在边BC 上时.①求证:△ABD ≌△ACE ;②直接判断结论BC=DC+CE 是否成立(不需证明);(2)如图2,当点D 在边BC 的延长线上时,其他条件不变,请写出BC ,DC ,CE 之间存在的数量关系,并写出证明过程.28.如图1,射线OP平分∠MON,在射线OM,ON上分别截取线段OA,OB,使OA=OB,在射线OP上任取一点D,连接AD,BD.易得:AD=BD.(1)如图2,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,求证:BC=AC+AD;(2)如图3,在四边形ABDE中,AB=10,DE=2,BD=6,C为BD边中点.若AC平分∠BAE,EC平分∠AED,∠ACE=120°,求AE的值.参考答案1.D【分析】利用合并同类项的法则,幂的乘方的法则,同底数幂的乘法的法则,同底数幂的除法的法则对各项进行运算即可.【详解】解:A、a2•a3=a5,故该选项不符合题意;B、2ab+3ab=5ab,故该选项不符合题意;C、a8÷a4=a4,故该选项不符合题意;D、(a3)2=a6,故该选项符合题意;故选:D.【点睛】本题主要考查了合并同类项,幂的乘方,同底数幂的乘法,同底数幂的除法,解答的关键对相应的运算法则的掌握.2.A【分析】根据角平分线的性质进行解答即可.【详解】解: 角平分线上任意一点,到角两边的距离相等,到三角形三条边距离相等的点是三角形三个内角的平分线的交点,故选:A.3.B【详解】解:根据∠AOD=20°可得:∠AOC=70°,根据题意可得:∠BOC=∠AOB+∠AOC=90°+70°=160°.故选B.4.C【分析】根据三角形面积公式由点D为BC的中点得到S△ABD=S△ADC=12S△ABC=6,同理得到S△EBD=S△EDC=12S△ABD=3,则S△BEC=6,然后再由点F为EC的中点得到S△BEF=12S△BEC=3.【详解】解:∵点D为BC的中点,∴S△ABD=S△ADC=12S△ABC=6,∵点E为AD的中点,∴S△EBD =S△EDC=12S△ABD=3,∴S△EBC=S△EBD+S△EDC=6,∵点F为EC的中点,∴S△BEF =12S△BEC=3,即阴影部分的面积为3cm2.故选:C.【点睛】本题考查三角形的中线有关的面积计算问题.三角形的一条中线把原三角形分成两个等底同高的三角形,因此分得的两个三角形面积相等,利用这一特点可以求解有关的面积问题.5.A【分析】左图中阴影部分的面积=a2−b2,右图中矩形面积=(a+b)(a−b),根据二者面积相等,即可解答.【详解】解:由题意可得:a2−b2=(a−b)(a+b).故选:A.【点睛】此题主要考查了乘法的平方差公式,属于基础题型.6.D【分析】直接利用积的乘方把式子变形计算即可.【详解】202020214(0.25)-⨯=202020204(0.25)(0.25)⨯⨯--=20202020[4(0.25)2)](0.5--⨯⨯=2020[4(0.25)(0.25)]⨯⨯--=2020(1)(0.25)⨯--=1(0.25)-⨯=0.25-故选:D 7.A【分析】利用多项式乘以多项式法则计算,整理后将已知等式代入计算即可求出值.【详解】解:∵x+y=2,xy=-1,∴(1-2x )(1-2y )=1-2y-2x+4xy=1-2(x+y )+4xy=1-2×2-4=-7;故选:A .【点睛】本题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.8.C【分析】过点A 作AG ⊥BC 交于G ,交CD 于P 点,过点P 作PQ ⊥AC 交于Q 点,当A 、P 、G 三点共线时,AP+PQ 的值最小,求出AG 的长即为所求.【详解】解:过点A 作AG ⊥BC 交于G ,交CD 于P 点,过点P 作PQ ⊥AC 交于Q 点,∵CD 是∠ACB 的平分线,∴PG=PQ ,∴PA+PQ=AP+PG≥AG ,∴当A 、P 、G 三点共线时,AP+PQ 的值最小,∵BC=10,△ABC 的面积为24,∴AG=245,∴AP+PQ 的最小值为245,故选:C .9.A【详解】解:∵22227,-21,617a b b c c a +==--=-,∴(a 2+2b )+(b 2-2c )+(c 2-6a )=7+(-1)+(-17),∴a 2+2b+b 2-2c+c 2-6a=-11∴(a 2-6a+9)+(b 2+2b+1)+(c 2-2c+1)=0,∴(a-3)2+(b+1)2+(c-1)2=0∴a-3=0,b+1=0,c-1=0,∴a+b-c=3-1-1=1.故选:A .10.C【分析】连接AP ,RS ,证明Rt APR ≌Rt APS ,即可判断①,根据等边对等角可得QAP QPA ∠=∠,根据角平分线的性质可得BAP CAP ∠=∠,等量代换可得QPA BAP ∠=∠,进而即可判定QP ∥AR ,即可判断②,假设③成立,可得到BC AC =,与已知矛盾,进而可判断③,根据垂直平分线的判定定理即可判断④.【详解】连接AP ,RS ,如图,PR ⊥AB ,PS ⊥AC ,PR=PS ,AP ∴是BAC ∠的角平分线,BAP CAP∴∠=∠在Rt APR 与Rt APSPS PR PA PA=⎧⎨=⎩∴Rt APR ≌Rt APSAS AR∴=故①正确;AQ PQ= QAP QPA ∴∠=∠QPA BAP ∴∠=∠AR QP∴∥故②正确;假设△BRP ≌△QSP ;则SQ RB =,PBR PQS∠=∠ AR QP∥PQS BAC∠∠∴=BC AC∴=而题中没有说明BC AC =,故③不正确;,AR AS PR PS== ∴AP 是RS 是垂直平分线,故④正确故正确的有①②④故选C11.()()55y x x -+【详解】先提取公因式y ,再利用平方差公式,可得()()22555x y y y x x -=-+.故答案是()()55y x x -+.12.23【分析】直接利用同底数幂的除法运算法则结合幂的乘方运算法则进而将原式变形得出答案.【详解】∵am =6,an =3,∴am﹣2n=am÷(an)2=6÷32=23.故答案为:2 3.13.92°【分析】根据全等三角形的性质和三角形的内角和定理即可得到结论.【详解】解:∵△ABC≌△DBC,∴∠ACB=∠DCB=43°,∵∠A=45°,∴∠ABC=180°﹣∠A﹣∠ACB=92°,故答案为:92°.14.4:5:6【分析】首先过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,由OA,OB,OC是△ABC的三条角平分线,根据角平分线的性质,可得OD=OE=OF,又由△ABC 的三边AB、BC、CA长分别为40、50、60,即可求得S△ABO:S△BCO:S△CAO的值.【详解】解:过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,∵OA,OB,OC是△ABC的三条角平分线,∴OD=OE=OF,∵△ABC的三边AB、BC、CA长分别为40、50、60,∴S△ABO :S△BCO:S△CAO=(12AB•OD):(12BC•OF):(12AC•OE)=AB:BC:AC=40:50:60=4:5:6.故答案为:4:5:6.15.1500x−18=15002.5x【分析】关键描述语为:“较前提早了18个小时完工”;本题的等量关系为:原来加工1500个零件所用时间-18=现在加工1500个零件所用时间,把相应数值代入即可求解.【详解】解:原来加工1500个零件所用时间为:1500x,现在加工1500个零件所用时间为:15002.5x ,∴根据题意可列方程为1500x −18=15002.5x 故答案为:1500x −18=15002.5x .16.116【分析】利用完全平方公式列出关于xy 的不等式.求不等式的解,根据不等式的解,即可求得xy 的最大值.【详解】解:22(4)(4)160x y x y xy -=+-≥.41x y += ,1160xy ∴-≥,116xy ∴≤.故答案为:116.17.20217【分析】根据等底等高的三角形的面积相等可得三角形的中线把三角形分成两个面积相等的三角形,然后求出第一次倍长后△A 1B 1C 1的面积是△ABC 的面积的7倍,依此规律可得结论.【详解】解:连接AB 1、BC 1、CA 1,根据等底等高的三角形面积相等,△A 1BC 、△A 1B 1C 、△AB 1C 、△AB 1C 1、△ABC 1、△A 1BC 1、△ABC 的面积都相等,所以,1117A B C ABC S S = ,同理222111277A B C A B C ABC S S S == ,依此类推,△A 2021B 2021C 2021的面积为=72021S △ABC ,∵△ABC 的面积为1,∴△A 2021B 2021C 2021的面积=72021.故答案为:72021.【点睛】本题考查了三角形的面积,根据等底等高的三角形的面积相等求出一次倍长后所得的三角形的面积等于原三角形的面积的7倍是解题的关键.18.60°【分析】根据三角形内角和定理求出∠BAC ,根据全等三角形的性质计算即可.【详解】解:∵∠B=70°,∠C=30°,∴∠BAC=180°-70°-30°=80°,∵△ABC ≌△ADE ,∴∠DAE=∠BAC=80°,∴∠EAC=∠DAE-∠DAC=60°,故答案为60°.19.7【分析】由AB 的垂直平分线交AB 于E ,交BC 于D ,根据线段垂直平分线的性质,可得AD=BD ,又由△ADC 的周长为11cm ,即可求得AC +BC=11cm ,然后由AC=4cm ,即可求得BC 的长.【详解】解:∵AB 的垂直平分线交AB 于E ,交BC 于D ,∴AD=BD ,∵△ADC 的周长为11cm ,∴AC +CD +AD=AC +CD +BD=AC +BC=11cm ,∵AC=4cm ,∴BC=7cm .故答案为:7.20.x=4【分析】两边都乘以x-3化为整式方程求解,然后验根即可.【详解】解:两边都乘以x-3,得2-1=x-3,解得x=4,检验:当x=4时,x-3≠0,∴x=4是原方程的解.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x 的值后不要忘记检验.21.45a +,11【分析】先利用完全平方公式和平方差公式进行化简,再代值运算即可.【详解】解:2(2)(1)(1)a a a +-+-22441a a a =++-+45a =+把3=2a 代入得:345112⨯+=【点睛】本题主要考查了整式的化简求值,熟悉掌握完全平方公式和平方差公式是解题的关键.22.12a +,13【分析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的a 的值代入计算可得.【详解】解:22241---÷+a a a a a2(1)1(2)(2)a a a a a a -+=-⨯+-112a a +=-+12a =+,∵a≠0且a≠±2,a≠-1,∴a=1,则原式=11123=+.【点睛】本题主要考查了分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.23.(1)证明见解析;(2)3.【分析】(1)利用ASA ,可证△ABD ≌△CFD ;(2)由△ABD ≌△CFD ,得BD=DF ,所以BD=BC ﹣CD=2,所以AF=AD ﹣DF=5﹣2.【详解】(1)证明:∵AD ⊥BC ,CE ⊥AB ,∴∠ADB=∠CDF=∠CEB=90°,∴∠BAD+∠B=∠FCD+∠B=90°,∴∠BAD=∠ECD ,在△ABD 和CFD 中,ADB CDF BAD DCF AD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△CFD (AAS ),(2)∵△ABD ≌△CFD ,∴BD=DF ,∵BC=7,AD=DC=5,∴BD=BC ﹣CD=2,∴AF=AD ﹣DF=5﹣2=3.24.(1)(1+2x-3y )2;(2)(a+b-2)2.【分析】(1)将(2x-3y )看作一个整体,利用完全平方公式进行因式分解.(2)令A=a+b ,代入后因式分解,再代入即可将原式因式分解.【详解】解:(1)原式=(1+2x-3y )2.(2)令A=a+b ,则原式变为A (A-4)+4=A 2-4A+4=(A-2)2,故:(a+b )(a+b-4)+4=(a+b-2)2.故答案为(1)(1+2x-3y )2;(2)(a+b-2)2.25.(1)乙工程队单独做需要80天完成(2)甲工程队至少应做42天.【分析】(1)设乙工程队单独完成这项工作需要x 天,由题意列出分式方程,求出x 的值即可;(2)首先根据题意列出a 和y 的关系式,进而求出a 的取值范围,结合a 和y 都是正整数,即可求出a 的值.【详解】(1)设乙工程队单独完成这项工作需要x 天,由题意得:3011361120120x ⎛⎫++⨯= ⎪⎝⎭解得:x=80,经检验x=80是原方程的解.答:乙工程队单独做需要80天完成.(2)因为甲工程队做其中一部分用了a 天,乙工程队做另一部分用了y 天,依题意得:112080a y +=,∴2803y a =-.∵52y ≤,∴280523a -≤,解得:42a ≥.答:甲工程队至少应做42天.26.∠B =77°,∠C =38.5︒【分析】根据等腰三角形的性质及三角形内角和定理可求出∠B 和∠ADB 的度数,利用三角形外角性质即可求出∠C 的度数.【详解】解:∵AB =AD ,26BAD ∠=︒∴∠B =∠ADB =12×(180°﹣26°)=77°,∵AD =DC ,∴∠C=∠DAC ,∴∠C =12∠ADB =12×77°=38.5︒.27.(1)①见解析;②成立;(2)BC+CD=CE【分析】(1)①根据等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC ,AD=DE=AE ,进而就可以得出△ABD ≌△ACE ;②由△ABD ≌△ACE 就可以得出BC=DC+CE ;(2)由等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC ,AD=DE=AE ,进而就可以得出△ABD ≌△ACE ,就可以得出BC+CD=CE .【详解】解:(1)①证明:∵△ABC 是等边三角形∴AB=AC ∠BAC=60°∵△ADE 是等边三角形∴AD=AE ∠DAE=60°∴∠BAC -∠DAC=∠DAE -∠DAC ∴∠BAD=∠CAE ∴△ABD ≌△ACE②成立∵△ABD≌△ACE,∴BD=CE.∵BC=BD+CD,∴BC=CE+CD.(2)BC+CD=CE.∵△ABC是等边三角形∴AB=AC∠BAC=60°∵△ADE是等边三角形∴AD=AE∠DAE=60°∴∠BAC+∠DAC=∠DAE+∠DAC∴∠BAD=∠CAE∴△ABD≌△ACE∴BD=CE∵BC=BD-CD∴BC=CE-CD.28.(1)见解析;(2)15.【分析】(1)证△ECD≌△ACD(SAS),得EC=AC,DE=AD,∠CED=∠A=60°,再证BE=DE,则BE=AD,即可得出结论;(2)在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG,证△ACB≌△ACF(SAS),得CB=CF=3,AF=AB=10,∠BCA=∠FCA.同理可证△CGE≌△CDE (SAS),得CG=CD=3,GE=DE=2,∠DCE=∠GCE,再证△CFG是等边三角形,得FG=CG=3,即可求解.【详解】(1)证明:在CB上截取CE=AE,连接DE,如图所示:∵CD平分∠ACB,∴∠BCD=∠ACD,又∵CD=CD,∴△ECD≌△ACD(SAS),∴EC=AC,DE=AD,∠CED=∠A=60°,∵∠ACB=90°,∠A=60°,∴∠B=30°,又∵∠CED=∠EDB+∠B,∴∠EDB=60°-30°=30°,∴∠EDB=∠B,∴BE=DE,∴BE=AD,∵BC=EC+BE,∴BC=AC+AD;(2)解:在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG,如图所示:∵C是BD边的中点,BD=6,∴CB=CD=12BD=3,∵AC平分∠BAE,∴∠BAC=∠FAC,又∵AC=AC,∴△ACB≌△ACF(SAS),∴CB=CF=3,AF=AB=10,∠BCA=∠FCA.同理可证:△CGE≌△CDE(SAS),∴CG=CD=3,GE=DE=2,∠DCE=∠GCE,∵CB=CD,∴CG=CF,∵∠ACE=120°,∴∠BCA+∠DCE=180°-120°=60°,∴∠FCA+∠GCE=60°,∴∠FCG=180°-60°-60°=60°,∴△FGC是等边三角形,∴FG=FC=3,∴AE=AF+GE+FG=10+2+3=15.。

人教版数学八年级上册期末考试试卷附答案解析

人教版数学八年级上册期末考试试卷附答案解析

人教版数学八年级上册期末考试试卷一、选择题(本大题共16个小题;1-6小题,每题2分;7-16小题,每题3分;共42分.在每小题给出的四个选项中,只有一项是符合题目要求的,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,答在试卷上无效)1.下列图形对称轴最多的是()A.正方形B.等边三角形C.等腰三角形D.线段2.如果分式的值是零,则x的取值是()A.x=1 B.x=﹣1 C.x=±1 D.x=03.已知点P(1,a)与Q(b,2)关于x轴成轴对称,则a﹣b的值为()A.﹣1 B.1 C.﹣3 D.34.1纳米等于0.000000001米,则35纳米用科学记数法表示为()A.35×10﹣9米B.3.5×10﹣9米 C.3.5×10﹣10米D.3.5×10﹣8米5.如图,△ABC≌△ADE,若∠B=80°,∠C=30°,∠DAC=25°,则∠EAC的度数为()A.45°B.40°C.35°D.25°6.根据分式的基本性质,分式可变形为()A.B. C. D.7.如图,AE,AD分别是△ABC的高和角平分线,且∠B=36°,∠C=76°,则∠DAE 的度数为()A.40°B.20°C.18°D.38°8.计算:852﹣152=()A.70 B.700 C.4900 D.70009.已知三角形三边长分别为2,x,13,若x为正整数,则这样的三角形个数为()A.2 B.3 C.5 D.1310.若x2+mxy+4y2是完全平方式,则常数m的值为()A.4 B.﹣4C.±4 D.以上结果都不对11.如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组 B.2组 C.3组 D.4组12.若a>0且a x=2,a y=3,则a x﹣y的值为()A.6 B.5 C.﹣1 D.13.一个多边形截取一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为()A.5 B.5或6 C.5或7 D.5或6或714.计算++的结果是()A. B.C.D.15.如图,折叠直角三角形纸片的直角,使点C落在AB上的点E处,已知BC=24,∠B=30°,则DE的长是()A.12 B.10 C.8 D.616.如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点,若∠MON=35°,则∠GOH=()A.60°B.70°C.80°D.90°二、填空题(本大题共4个小题;每小题3分,共12分.请将答案写在答题卡的横线上,答在试卷上无效)17.若a﹣1=(﹣1)0,则a=.18.当x=2017时,分式的值为.19.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=.20.如图,在△ABC中,AB=AC,∠A=120°,BC=8cm,AB的垂直平分线交BC于点M,交AB于点D,AC的垂直平分线交BC于点N,交AC于点E,则MN的长为.三、解答题(本大题共7个小题,共66分.解答应写出文字说明,说理过程或演算步骤,请将解答过程写在答题卡的相应位置,答在试卷上无效)21.计算(1)(﹣3ab﹣1)2•(a﹣2b2)﹣3(2)÷(a﹣).22.阅读下面的问题,然后回答,分解因式:x2+2x﹣3,解:原式=x2+2x+1﹣1﹣3=(x2+2x+1)﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)上述因式分解的方法称为配方法.请体会配方法的特点,用配方法分解因式:(1)x2﹣4x+3(2)4x2+12x﹣7.23.(1)如图1:在△ABC中,AB=AC,AD⊥BC,DE⊥AB于点E,DF⊥AC于点F.证明:DE=DF.(2)如图2,在△ABC中,AB=AC,AD⊥BC,DE和DF分别平分∠ADB和∠ADC,求证:DE=DF.24.元旦晚会上,王老师要为她的学生及班级的六位科任老师送上贺年卡,网上购买贺年卡的优惠条件是:购买50或50张以上享受团购价.王老师发现:零售价与团购价的比是5:4,王老师计算了一下,按计划购买贺年卡只能享受零售价,如果比原计划多购买6张贺年卡就能享受团购价,这样她正好花了100元,而且比原计划还节约10元钱;(1)贺年卡的零售价是多少?(2)班里有多少学生?25.(1)如图①,你知道∠BOC=∠B+∠C+∠A的奥秘吗?请你用学过的知识予以证明;(2)如图②﹣1,则∠A+∠B+∠C+∠D+∠E=°;如图②﹣2,则∠A+∠B+∠C+∠D+∠E=°;如图②﹣3,则∠A+∠B+∠C+∠D+∠E=°;(3)如图③,下图是一个六角星,其中∠BOD=70°,则∠A+∠B+∠C+∠D+∠E+∠F=°.26.计算下列各式:(x﹣1)(x+1)=;(x﹣1)(x2+x+1)=;(x﹣1)(x3+x2+x+1)=;…(1)根据以上规律,直接写出下式的结果:(x﹣1)(x6+x5+x4+x3+x2+x+1)=;(2)你能否由此归纳出一般性的结论(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x+1)=(其中n为正整数);(3)根据(2)的结论写出1+2+22+23+24+…+235的结果.27.(1)问题背景:如图①:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E、F分别是BC、CD上的点.且∠EAF=60°.探究图中线段BE、EF、FD之间的数量关系.小明同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE ≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;(2)探索延伸:如图②,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立?说明理由;(3)实际应用:如图③,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.2小时后,甲、乙两舰艇分别到达E、F处,此时在指挥中心观测到两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.参考答案与试题解析一、选择题(本大题共16个小题;1-6小题,每题2分;7-16小题,每题3分;共42分.在每小题给出的四个选项中,只有一项是符合题目要求的,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,答在试卷上无效)1.下列图形对称轴最多的是()A.正方形B.等边三角形C.等腰三角形D.线段【考点】轴对称图形.【分析】根据轴对称图形的对称轴的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做轴对称图形的对称轴.【解答】解:A、有4条对称轴,即两条对角线所在的直线和两组对边的垂直平分线;B、有3条对称轴,即各边的垂直平分线;C、有1条对称轴,即底边的垂直平分线;D、有2条对称轴.故选:A.2.如果分式的值是零,则x的取值是()A.x=1 B.x=﹣1 C.x=±1 D.x=0【考点】分式的值为零的条件.【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.【解答】解:由题意可得x+1≠0且x2﹣1=0,解得x=1.故选A.3.已知点P(1,a)与Q(b,2)关于x轴成轴对称,则a﹣b的值为()A.﹣1 B.1 C.﹣3 D.3【考点】关于x轴、y轴对称的点的坐标.【分析】关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得a、b的值.【解答】解:∵点P(1,a)与Q(b,2)关于x轴成轴对称,∴b=1,a=﹣2,∴a﹣b=﹣3,故选:C.4.1纳米等于0.000000001米,则35纳米用科学记数法表示为()A.35×10﹣9米B.3.5×10﹣9米 C.3.5×10﹣10米D.3.5×10﹣8米【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:35×0.000000001=3.5×10﹣8;故选:D.5.如图,△ABC≌△ADE,若∠B=80°,∠C=30°,∠DAC=25°,则∠EAC的度数为()A.45°B.40°C.35°D.25°【考点】全等三角形的性质.【分析】根据全等三角形的性质求出∠D和∠E,根据三角形内角和定理计算即可.【解答】解:∵△ABC≌△ADE,∴∠D=∠B=80°,∠E=∠C=30°,∴∠DAE=180°﹣∠D﹣∠E=70°,∴∠EAC=∠EAD﹣∠DAC=45°,故选:A.6.根据分式的基本性质,分式可变形为()A.B. C. D.【考点】分式的基本性质.【分析】分式的恒等变形是依据分式的基本性质,分式的分子分母同时乘以或除以同一个非0的数或式子,分式的值不变.【解答】解:依题意得:=,故选C.7.如图,AE,AD分别是△ABC的高和角平分线,且∠B=36°,∠C=76°,则∠DAE 的度数为()A.40°B.20°C.18°D.38°【考点】三角形的外角性质;三角形内角和定理.【分析】△ABC中已知∠B=36°,∠C=76°,就可知道∠BAC的度数,则∠BAE就可求出;∠DAE是直角三角形△ADE的一个内角,则∠DAE=90°﹣∠ADE.【解答】解:∵△ABC中已知∠B=36°,∠C=76,∴∠BAC=68°.∴∠BAD=∠DAC=34,∴∠ADC=∠B+∠BAD=70°,∴∠DAE=20°.故填B.8.计算:852﹣152=()A.70 B.700 C.4900 D.7000【考点】因式分解-运用公式法.【分析】直接利用平方差进行分解,再计算即可.【解答】解:原式=(85+15)(85﹣15)=100×70=7000.故选:D.9.已知三角形三边长分别为2,x,13,若x为正整数,则这样的三角形个数为()A.2 B.3 C.5 D.13【考点】三角形三边关系.【分析】根据三角形的三边关系:三角形两边之和大于第三边,两边差小于第三边;解答即可;【解答】解:由题意可得,,解得,11<x<15,所以,x为12、13、14;故选B.10.若x2+mxy+4y2是完全平方式,则常数m的值为()A.4 B.﹣4C.±4 D.以上结果都不对【考点】完全平方式.【分析】完全平方公式:(a±b)2=a2±2ab+b2,这里首末两项是x和2y这两个数的平方,那么中间一项为加上或减去x和2y积的2倍,故m=±4.【解答】解:∵(x±2y)2=x2±4xy+4y2,∴在x2+mxy+4y2中,±4xy=mxy,∴m=±4.11.如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组 B.2组 C.3组 D.4组【考点】全等三角形的判定.【分析】要使△ABC≌△DEF的条件必须满足SSS、SAS、ASA、AAS,可据此进行判断.【解答】解:第①组满足SSS,能证明△ABC≌△DEF.第②组满足SAS,能证明△ABC≌△DEF.第③组满足ASA,能证明△ABC≌△DEF.第④组只是SSA,不能证明△ABC≌△DEF.所以有3组能证明△ABC≌△DEF.故符合条件的有3组.故选:C.12.若a>0且a x=2,a y=3,则a x﹣y的值为()A.6 B.5 C.﹣1 D.【考点】同底数幂的除法.【分析】根据同底数幂的除法公式即可求出答案.【解答】解:由题意可知:原式=a x÷a y=2÷3=13.一个多边形截取一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为()A.5 B.5或6 C.5或7 D.5或6或7【考点】多边形内角与外角.【分析】首先求得内角和为720°的多边形的边数,即可确定原多边形的边数.【解答】解:设内角和为720°的多边形的边数是n,则(n﹣2)•180=720,解得:n=6.则原多边形的边数为5或6或7.故选:D.14.计算++的结果是()A. B.C.D.【考点】分式的加减法.【分析】原式通分并利用同分母分式的加减法则计算即可得到结果.【解答】解:原式===,故选A15.如图,折叠直角三角形纸片的直角,使点C落在AB上的点E处,已知BC=24,∠B=30°,则DE的长是()A.12 B.10 C.8 D.6【考点】翻折变换(折叠问题).【分析】由轴对称的性质可以得出DE=DC,∠AED=∠C=90°,就可以得出∠BED=90°,根据直角三角形的性质就可以求出BD=2DE,然后建立方程求出其解即可.【解答】解:∵△ADE与△ADC关于AD对称,∴△ADE≌△ADC,∴DE=DC,∠AED=∠C=90°,∴∠BED=90°.∵∠B=30°,∴BD=2DE.∵BC=BD+CD=24,∴24=2DE+DE,∴DE=8.故选:C.16.如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点,若∠MON=35°,则∠GOH=()A.60°B.70°C.80°D.90°【考点】轴对称的性质.【分析】连接OP,根据轴对称的性质可得∠GOM=∠MOP,∠PON=∠NOH,然后求出∠GOH=2∠MON,代入数据计算即可得解.【解答】解:如图,连接OP,∵P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,∴∠GOM=∠MOP,∠PON=∠NOH,∴∠GOH=∠GOM+∠MOP+∠PON+∠NOH=2∠MON,∵∠MON=35°,∴∠GOH=2×35°=70°.故选B.二、填空题(本大题共4个小题;每小题3分,共12分.请将答案写在答题卡的横线上,答在试卷上无效)17.若a﹣1=(﹣1)0,则a=1.【考点】负整数指数幂;零指数幂.【分析】根据非零的零次幂等于1,负整数指数幂与正整数指数幂互为倒数,可得答案.【解答】解:a﹣1=(﹣1)0,得a﹣1==1,解得a=1,故答案为:1.18.当x=2017时,分式的值为2020.【考点】分式的值.【分析】先把分式化简,再代入解答即可.【解答】解:因为分式=,把x=2017代入x+3=2020,故答案为:2020.19.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=24°.【考点】多边形内角与外角.【分析】首先根据多边形内角和定理,分别求出正三角形、正方形、正五边形、正六边形的每个内角的度数是多少,然后分别求出∠3、∠1、∠2的度数是多少,进而求出∠3+∠1﹣∠2的度数即可.【解答】解:正三角形的每个内角是:180°÷3=60°,正方形的每个内角是:360°÷4=90°,正五边形的每个内角是:(5﹣2)×180°÷5=3×180°÷5=540°÷5=108°,正六边形的每个内角是:(6﹣2)×180°÷6=4×180°÷6=720°÷6=120°,则∠3+∠1﹣∠2=(90°﹣60°)+﹣=30°+12°﹣18°=24°.故答案为:24°.20.如图,在△ABC中,AB=AC,∠A=120°,BC=8cm,AB的垂直平分线交BC于点M,交AB于点D,AC的垂直平分线交BC于点N,交AC于点E,则MN的长为cm.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】首先连接AM,AN,由在△ABC中,AB=AC,∠A=120°,可求得∠B=∠C=30°,又由AB的垂直平分线交BC于点M,交AB于点D,AC的垂直平分线交BC于点N,交AC于点E,易得△AMN是等边三角形,继而求得答案.【解答】解:连接AM,AN,∵在△ABC中,AB=AC,∠A=120°,∴∠C=∠B=30°,∵AB的垂直平分线交BC于点M,交AB于点D,AC的垂直平分线交BC于点N,交AC于点E,∴AN=CN,AM=BM,∴∠CAN=∠C=30°,∠BAM=∠B=30°,∴∠ANC=∠AMN=60°,∴△AMN是等边三角形,∴AM=AN=MN,∴BM=MN=CN,∵BC=8cm,∴MN=cm.故答案为:cm.三、解答题(本大题共7个小题,共66分.解答应写出文字说明,说理过程或演算步骤,请将解答过程写在答题卡的相应位置,答在试卷上无效)21.计算(1)(﹣3ab﹣1)2•(a﹣2b2)﹣3(2)÷(a﹣).【考点】分式的混合运算;负整数指数幂.【分析】(1)原式利用幂的乘方与积的乘方运算法则计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:(1)(﹣3ab﹣1)2•(a﹣2b2)﹣3=9a2b﹣2•a6b﹣6=9a8b﹣8=;(2)÷(a﹣)=÷=•=.22.阅读下面的问题,然后回答,分解因式:x2+2x﹣3,解:原式=x2+2x+1﹣1﹣3=(x2+2x+1)﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)上述因式分解的方法称为配方法.请体会配方法的特点,用配方法分解因式:(1)x2﹣4x+3(2)4x2+12x﹣7.【考点】因式分解-十字相乘法等;因式分解-分组分解法.【分析】根据题意给出的方法即可求出答案.【解答】解:(1)x2﹣4x+3=x2﹣4x+4﹣4+3=(x﹣2)2﹣1=(x﹣2+1)(x﹣2﹣1)=(x﹣1)(x﹣3)(2)4x2+12x﹣7=4x2+12x+9﹣9﹣7=(2x+3)2﹣16=(2x+3+4)(2x+3﹣4)=(2x+7)(2x﹣1)23.(1)如图1:在△ABC中,AB=AC,AD⊥BC,DE⊥AB于点E,DF⊥AC于点F.证明:DE=DF.(2)如图2,在△ABC中,AB=AC,AD⊥BC,DE和DF分别平分∠ADB和∠ADC,求证:DE=DF.【考点】全等三角形的判定与性质;角平分线的性质.【分析】(1)由等腰三角形的性质和角平分线的性质定理直接证明即可;(2)利用等腰三角形的性质和全等三角形的判定定理ASA证得△AED≌△AFD,则由该全等三角形的对应边相等得到DE=DF.【解答】解:(1)证明:∵AB=AC,AD⊥BC,∴∠BAD=∠CAD,∵DE⊥AB,DF⊥AC∴DE=DF;(2)证明:∵AB=AC,AD⊥BC∴∠BAD=∠CAD,∵DE平分∠ADB,DF平分和∠ADC,∴∠ADE=∠ADF=45°,在△AED和△AFD中,,∴△AED≌△AFD(ASA),∴DE=DF.24.元旦晚会上,王老师要为她的学生及班级的六位科任老师送上贺年卡,网上购买贺年卡的优惠条件是:购买50或50张以上享受团购价.王老师发现:零售价与团购价的比是5:4,王老师计算了一下,按计划购买贺年卡只能享受零售价,如果比原计划多购买6张贺年卡就能享受团购价,这样她正好花了100元,而且比原计划还节约10元钱;(1)贺年卡的零售价是多少?(2)班里有多少学生?【考点】分式方程的应用.【分析】(1)首先设零售价为5x元,团购价为4x元,由题意可得等量关系:零售价用110元所购买的数量+6=团购价用100元所购买的数量,根据等量关系列出方程,计算出x的值;(2)根据(1)中求得的贺年卡的零售价求学生数.【解答】解:(1)设零售价为5x元,团购价为4x元,则解得,,经检验:x=是原分式方程的解,5x=2.5答:零售价为2.5元;(2)学生数为=38(人)答:王老师的班级里有38名学生.25.(1)如图①,你知道∠BOC=∠B+∠C+∠A的奥秘吗?请你用学过的知识予以证明;(2)如图②﹣1,则∠A+∠B+∠C+∠D+∠E=180°;如图②﹣2,则∠A+∠B+∠C+∠D+∠E=180°;如图②﹣3,则∠A+∠B+∠C+∠D+∠E=180°;(3)如图③,下图是一个六角星,其中∠BOD=70°,则∠A+∠B+∠C+∠D+∠E+∠F=140°.【考点】多边形内角与外角;三角形内角和定理;三角形的外角性质.【分析】(1)首先延长BO交AC于点D,可得BOC=∠BDC+∠C,然后根据∠BDC=∠A+∠B,判断出∠BOC=∠B+∠C+∠A即可.(2)a、首先根据外角的性质,可得∠1=∠A+∠B,∠2=∠C+∠D,然后根据∠1+∠2+∠E=180°,可得x=∠A+∠B+∠C+∠D+∠E=180,据此解答即可.b、首先根据外角的性质,可得∠1=∠A+∠B,∠2=∠C+∠D,然后根据∠1+∠2+∠E=180°,可得x=∠A+∠B+∠C+∠D+∠E=180,据此解答即可.c、首先延长EA交CD于点F,EA和BC交于点G,然后根据外角的性质,可得∠GFC=∠D+∠E,∠FGC=∠A+∠B,再根据∠GFC+∠FGC+∠C=180°,可得x=∠A+∠B+∠C+∠D+∠E=180°,据此解答即可.(3)根据∠BOD=70°,可得∠A+∠C+∠E=70°,∠B+∠D+∠F=70°,据此求出∠A+∠B+∠C+∠D+∠E+∠F的度数是多少即可.【解答】解:(1)如图①,延长BO交AC于点D,∠BOC=∠BDC+∠C,又∵∠BDC=∠A+∠B,∴∠BOC=∠B+∠C+∠A.(2)如图②,,根据外角的性质,可得∠1=∠A+∠B,∠2=∠C+∠D,∵∠1+∠2+∠E=180°,∴x=∠A+∠B+∠C+∠D+∠E=180°.如图③,,根据外角的性质,可得∠1=∠A+∠B,∠2=∠C+∠D,∵∠1+∠2+∠E=180°,∴x=∠A+∠B+∠C+∠D+∠E=180°.如图④,延长EA交CD于点F,EA和BC交于点G,,根据外角的性质,可得∠GFC=∠D+∠E,∠FGC=∠A+∠B,∵∠GFC+∠FGC+∠C=180°,∴x=∠A+∠B+∠C+∠D+∠E=180°.(3)如图⑤,,∵∠BOD=70°,∴∠A+∠C+∠E=70°,∴∠B+∠D+∠F=70°,∴∠A+∠B+∠C+∠D+∠E+∠F=70°+70°=140°.故答案为:180、180、180、140.26.计算下列各式:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;…(1)根据以上规律,直接写出下式的结果:(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;(2)你能否由此归纳出一般性的结论(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x+1)=x n﹣1(其中n为正整数);(3)根据(2)的结论写出1+2+22+23+24+…+235的结果.【考点】整式的混合运算;规律型:数字的变化类.【分析】利用多项式乘以多项式法则计算各式即可;(1)根据上述规律写出结果即可;(2)归纳总结得到一般性规律,写出即可;(3)利用得出的规律计算即可得到结果.【解答】解:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1,故答案为:x2﹣1;x3﹣1;x4﹣1;(1)(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;(2)(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x+1)=x n﹣1;故答案为:(1)x7﹣1;(2)x n﹣1;(3)1+2+22+23+24+…+235=(2﹣1)=236﹣1.27.(1)问题背景:如图①:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E、F分别是BC、CD上的点.且∠EAF=60°.探究图中线段BE、EF、FD之间的数量关系.小明同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE ≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是EF=BE+DF;(2)探索延伸:如图②,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立?说明理由;(3)实际应用:如图③,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.2小时后,甲、乙两舰艇分别到达E、F处,此时在指挥中心观测到两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.【考点】四边形综合题.【分析】(1)根据全等三角形的判定与性质,可得AG与BE的关系,∠BAE与∠DAG的关系,根据全等三角形的判定与性质,可得EF与GF的关系,根据等量代换,可得答案;(2)根据补角的性质,可得∠B=∠ADG,根据全等三角形的判定与性质,可得AG与BE的关系,∠BAE与∠DAG的关系,根据全等三角形的判定与性质,可得EF与GF的关系,根据等量代换,可得答案;(3)根据角的和差,可得∠OEF与∠AOB的关系,∠A与∠B的关系,根据(2)的探索,可得EF与AE、BF的关系,可得答案.【解答】解:(1)在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG.∵∠EAF=∠BAD,∴∠BAE+∠DAF=∠EAF=∠BAD.∵∠GAF=∠DAG+∠DAF,∴∠GAF=∠BAE+∠DAF.∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△GAF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,故答案为:EF=BE+DF;(2)EF=BE+DF仍然成立.证明:如图1,延长FD到G,使DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,∴∠B=∠ADG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG.∵∠EAF=∠BAD,∴∠BAE+∠DAF=∠EAF=∠BAD.∵∠GAF=∠DAG+∠DAF,∴∠GAF=∠BAE+∠DAF.∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△GAF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;(3)如图2,连接EF,延长AE、BF相交于点C,∵∠AOB=∠AON+∠NCH+∠BOH=30+90+20=140°,∠EOF=70°,∴∠EOF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,∴符合探索延伸中的条件,∴结论EF=AE+BF成立,即EF=2×(60+80)=280海里.答:此时两舰艇之间的距离是280海里.。

人教版八年级上册数学期末考试试卷及答案

人教版八年级上册数学期末考试试卷及答案

人教版八年级上册数学期末考试试题一、单选题1.当分式22x -有意义时,x 的取值范围是()A .2x >B .2x <C .2x ≠D .2x =2.在211133122x xy a x x y m π+++,,,,,中,分式的个数是()A .2B .3C .4D .53.下列图形中,不是..轴对称图形的是()A .B .C .D .4.已知三角形的三边长分别为2、x 、10,若x 为正整数,则这样的三角形个数为()A .1B .2C .3D .45.下列计算正确的是()A .2323a a a +=B .326a a a ⋅=C .()236a a =D .()2224a a -=-6.下列各式由左边到右边的变形中,是分解因式的为()A .()a x y ax ay+=+B .()24444x x x x -+=-+C .()2105521x x x x -=-D .()()2163443x x x x x -+=-++7.如果把分式xy x y +中的x 和y 都扩大2倍,则分式的值()A .扩大4倍B .扩大2倍C .不变D .缩小2倍8.若关于x 的方程2222x m x x ++=--有增根,则m 的取值是()A .0B .2C .-2D .19.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中αβ∠+∠的度数是A .180°B .220°C .240°D .260°10.张老师和李老师同时从学校出发,步行15千米去书店购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x 千米,根据题意,所列的方程是()A .1515112x x -=+B .1515112x x -=+C .1515112x x -=-D .1515112x x -=-二、填空题11.分解因式:x 2-9=______.12.将0.000000823用科学记数法表示为___________13.四边形的外角度数之比为1:2:3:4,则它最大的内角度数为_____.14.比较大小:4442333315.如图,Rt △ABC 中,∠BCA=90°,∠A=30°,BC=2cm ,DE 是AC 边的垂直平分线,连接CD ,则△BCD 的周长是__________________.16.已知12a b =,则分式252a b a b+-的值为______.17.对于实数a ,b ,c ,d ,规定一种运算a b c d =ad-bc ,如102(2)-=1×(-2)-0×2=-2,那么当(1)(2)(3)(1)x x x x ++--=27时,则x=_____.18.如图,在ABC 中,AB AC =,40A ∠=︒,E 为BC 延长线上一点,ABC ∠与ACE ∠的平分线相交于点D ,则∠D 的度数为______.三、解答题19.计算:(1)()201201742π-⎛⎫-+--- ⎪⎝⎭;(2)()()2323x y x y +--+.20.分解因式:(1)316m m -;(2)()228a b ab -+.21.解分式方程:(1)233x x =-;(2)28124x x x -=--.22.先化简,再求值:21211x x x x x x x --⎛⎫-÷ ⎪-+⎝⎭,其中3x =.23.如图:△ABC 和△ADE 是等边三角形,证明:BD=CE .24.在争创文明城市的活动中,某市一“少年突击队”决定清运一堆重达100吨的垃圾,开工后附近居民主动参加到义务劳动中,使清运垃圾的速度比原计划提高了一倍,结果提前4小时完成,“少年突击队”原计划每小时清运垃圾多少吨?25.已知,如图,点B 、F 、C 、E 在同一直线上,AC 、DF 相交于点G ,AB ⊥BE ,垂足为B ,DE ⊥BE ,垂足为E ,且AB =DE ,BF =CE .求证:(1)△ABC ≌△DEF ;(2)GF =GC .26.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,将以上三个等式两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯.解答下面的问题:(1)猜想并写()11n n =+.(2)求111112233420202021+++⋅⋅⋅⋅⋅⋅+⨯⨯⨯⨯的值.(3)探究并解方程:()()()()()211133366918x x x x x x x ++=++++++.27.已知:如图,点E ,A ,C 在同一条直线上,AB ∥CD ,AB=CE ,AC=CD .求证:BC=ED .28.如图,在ABC 中,D 是BC 的中点,过点D 的直线GF 交AC 于点F ,交AC 的平行线BG 于点G ,交AB 于点E ,连接EG 、EF .(1)求证:BG CF =.(2)请你判断:BE CF +与EF 的大小关系,并加以证明.参考答案1.C2.B3.C4.C5.C6.C7.B8.A9.C10.B11.(x +3)(x -3)12.8.23×10-713.144°14.<15.6cm.16.417.2218.20°【分析】根据角平分线的性质得到1,122DBC ABC DCE ACE ∠=∠∠=∠,再利用三角形外角的性质计算.【详解】解:∵ABC ∠与ACE ∠的平分线相交于点D ,∴1,122DBC ABC DCE ACE ∠=∠∠=∠,∵∠ACE=∠A+∠ABC ,∠DCE=∠D+∠DBC ,∴∠D=∠DCE-∠DBC=11()2022ACE ABC A ∠-∠=∠=︒,故答案为:20°.【点睛】此题考查了三角形的外角性质及角平分线的性质,熟记三角形外角的性质定理是解题的关键.19.(1)1;(2)224129x y y -+-【分析】(1)先计算负指数幂,零指数幂,绝对值,再计算加法即可;(2)先调整符号,利用平分差公式计算,再利用完全平方公式展开计算去括号即可.【详解】解:(1)()201201742π-⎛⎫-+--- ⎪⎝⎭,=414+-,=1;(2)()()2323x y x y +--+,=()()2323x y x y +---⎡⎤⎡⎤⎣⎦⎣⎦,=()2223x y --,=()224129x y y --+,=224129x y y -+-.20.(1)()()44m m m +-;(2)()22a b +【分析】(1)先提取公因式,然后再根据平方差公式进行因式分解即可;(2)先利用完全平方公式展开,然后合并同类项,进而再因式分解即可.【详解】解:(1)原式=()()()21644m m m m m -=+-;(2)原式=()22222448442a ab b ab a ab b a b -++=++=+.【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.21.(1)9x =;(2)无解【分析】先将分式方程化为整式方程,解出整式方程,再将所求的解代入最简公分母中检验,即可求解.【详解】解:(1)233x x =-方程两边同时乘以()3x x -,得:()233x x =-,解得:9x =,检验:当9x =时,()()39930x x -=⨯-≠,所以原方程的解为9x =;(2)28124x x x -=--方程两边同时乘以()24x -,得:()()2248x x x +--=,解得:2x =,检验:当2x =时,224240x -=-=,所以2x =是增根,原方程无解.【点睛】本题主要考查了解分式方程,熟练掌握解分式方程的一般步骤,并记住要检验是解题的关键.22.11x x +-,2【分析】根据分式的运算法则进行化简,再代入求值即可.解:原式()()()()()()()2221121212121111111211x x x x x x x x x x x x x x x x x x x x x x x ⎡⎤-+----+=-÷=÷=⨯=⎢⎥--+-+---⎢⎥⎣⎦.当x=3时,原式1312131x x ++===--.【点睛】本题考查分式化简求值,熟练掌握该知识点是解题关键.23.见解析【分析】根据等边三角形的性质可得到两组边对应相等,一组角相等,从而利用SAS 判定两三角形全等,根据全等三角形的对应边相等即可得到BD=CE .【详解】证明:∵△ABC 和△ADE 是等边三角形,∴AB=AC ,AD=AE ,∠BAC=∠DAE=60°.∴∠BAD=∠CAE .在△BAD 与△CAE 中,,,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩∴△BAD ≌△CAE (SAS ).∴BD=CE【点睛】此题考查了等边三角形的性质及全等三角形的判定与性质;证明线段相等常常通过三角形全等进行解决,全等的证明是正确解答本题的关键.24.12.5吨【分析】设原计划每小时清运x 吨,根据“使清运垃圾的速度比原计划提高了一倍,结果提前4小时完成,”列出方程,即可求解.【详解】解:设原计划每小时清运x 吨,根据题意得:10010042x x-=,解得:12.5x=,经检验,12.5x=是原方程的解,且符合题意,答:“少年突击队”原计划每小时清运垃圾12.5吨.【点睛】本题主要考查了分式方程的应用,明确题意,准确得到等量关系是解题的关键.25.(1)证明见解析,(2)证明见解析.【分析】(1)先根据BF=CE证明BC=EF,然后利用“边角边”即可证明△ABC和△DEF 全等;(2)根据全等三角形对应角相等可得∠ACB=∠DFE,再根据等角对等边证明即可.【详解】证明:(1)∵BF=CE,∴BF+FC=CE+FC,即BC=EF,∵AB⊥BE,DE⊥BE,∴∠B=∠E=90°,在△ABC和△DEF中,∵AB DEB E BC EF=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△DEF(SAS);(2)∵△ABC≌△DEF∴∠ACB=∠DFE∴GF=GC.【点睛】本题考查了全等三角形的判定与性质和等腰三角形的判定,比较简单,证明出BC =EF是解题的关键.26.(1)111n n⎛⎫-⎪+⎝⎭;(2)20202021;(3)2x=【分析】(1)根据材料可直接得出答案;(2)根据(1)的规律,将算式写出差的形式,计算即可;(3)先按照(1)的结论进行化简,再解分式方程,即可得到答案.【详解】解:(1)根据题意,可知:()111n n 1n n 1=-++;故答案为:111n n ⎛⎫- ⎪+⎝⎭;(2)由(1)可知,111112233420202021+++⋅⋅⋅⋅⋅⋅+⨯⨯⨯⨯=1111111(1()()(2233420202021-+-+-+⋅⋅⋅⋅⋅⋅+-=111111112233420202021-+-+-+⋅⋅⋅⋅⋅⋅+-=112021-=20202021;(3)由(1)可知,()()()()()211133366918x x x x x x x ++=++++++,∴211111113()33366918x x x x x x x -+-+-=++++++,∴21113()3918x x x -=++,∴2119918x x x -=++,∴299(9)18x x x =++,∴22918x x x +=+,∴2x =;经检验,2x =是原分式方程的解.∴2x =.【点睛】本题考查了解分式方程以及有理数的混合运算,掌握分式方程的解法是解题的关键.27.见解析【分析】首先由AB ∥CD ,根据平行线的性质可得∠BAC=∠ECD ,再由条件AB=CE ,AC=CD 可证出△BAC 和△ECD 全等,再根据全等三角形对应边相等证出CB=ED .【详解】证明:∵AB ∥CD ,∴∠BAC=∠ECD ,∵在△BAC 和△ECD 中,AB=EC ,∠BAC=∠ECD ,AC=CD ,∴△BAC ≌△ECD (SAS ).∴CB=ED .【点睛】本题考查了平行线的性质,全等三角形的判定和性质.28.(1)见解析;(2)BE CF EF +>,见解析【分析】(1)证BDG CDF ≌可得BG CF =;(2)根据全等得到DG DF =,再根据三角形三边关系即可得到结果.【详解】(1)∵BG ∥AC ,∴C GBD ∠=∠,∵D 是BC 的中点,∴BD=DC ,在△BDG 和△CDF 中,C GBDBD CD BDG CDF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴BDG CDF ≌,∴BG CF =;(2)BE CF EF +>,由BDG CDF ≌得DG DF =,∵ED GF ⊥,∴EG EF =,∵CF BG =,∴+>BG BE EG ,∴BE CF EF +>.。

2024年人教版初二数学上册期末考试卷(附答案)

2024年人教版初二数学上册期末考试卷(附答案)

2024年人教版初二数学上册期末考试卷(附答案)一、选择题:5道(每题1分,共5分)1. 下列哪个数是负数?A. 3B. 0C. 5D. 82. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零3. 下列哪个数是分数?A. 0.5B. 3/4C. 0.25D. 1.54. 下列哪个数是整数?A. 0.3B. 2/3C. 0D. 1.25. 下列哪个数是负整数?A. 3B. 0C. 5D. 8二、判断题5道(每题1分,共5分)1. 一个数的绝对值总是非负的。

( )2. 分数和小数都可以表示为整数。

( )3. 任何两个整数相乘的结果都是整数。

( )4. 任何两个正数相加的结果都是正数。

( )5. 任何两个负数相加的结果都是负数。

( )三、填空题5道(每题1分,共5分)1. 一个数的绝对值是它本身的数是______。

2. 下列哪个数是分数?______。

3. 下列哪个数是整数?______。

4. 下列哪个数是负整数?______。

5. 一个数的绝对值总是非负的。

( )四、简答题5道(每题2分,共10分)1. 简述绝对值的概念。

2. 简述分数的概念。

3. 简述整数的概念。

4. 简述负整数的概念。

5. 简述小数的概念。

五、应用题:5道(每题2分,共10分)1. 计算:| 3 | + 2 = ?2. 计算:3/4 + 0.5 = ?3. 计算:0 + 1 = ?4. 计算:3 4 = ?5. 计算:5 2 = ?六、分析题:2道(每题5分,共10分)1. 分析:为什么一个数的绝对值总是非负的?2. 分析:为什么分数和小数都可以表示为整数?七、实践操作题:2道(每题5分,共10分)1. 实践操作:请用尺子和圆规在纸上画一个半径为5cm的圆。

2. 实践操作:请用尺子和圆规在纸上画一个边长为4cm的正方形。

八、专业设计题:5道(每题2分,共10分)1. 设计一个包含10个数的数列,其中前5个数是正整数,后5个数是负整数。

人教版数学八年级上册期末考试试卷附答案

人教版数学八年级上册期末考试试卷附答案

人教版数学八年级上册期末考试试题一、选择题(共10个小题,每小题3分,满分30分:每小题给出的四个选项中,只有一个是正确的.)1.下面四个图形分别是节能、节水、低碳和绿色食品标志,是轴对称图形的是()A.B.C.D.2.在下列长度的三条线段中,能围成三角形的是()A.2,3,4 B.2,3,5 C.3,5,9 D.8,4,43.如果一个多边形的内角和等于720°,则它的边数为()A.3 B.4 C.5 D.64.下列运算中正确的是()A.2a3﹣a3=2 B.2a3•a4=2a7C.(2a3)2=4a5D.a8÷a2=a45.在△ABC中,∠C=90°,∠A=60°,AC=2.则AB的长为()A.1 B.2 C.3 D.46.分式的值为0,则y的值是()A.5 B.C.﹣5 D.07.若x2+kx+16能写成一个多项式的平方形式,则k的值为()A.±8 B.8 C.±4 D.48.如图,AE∥DF,AE=DF.添加下列的一个选项后.仍然不能证明△ACE≌△DBF的是()A.AB=CD B.EC=BF C.∠E=∠F D.EC∥BF9.如图,在△ABC中,AC的垂直平分线交AB于点D,CD平分∠ACB,若∠A=50°,则∠B的度数为()A.25°B.30°C.35°D.40°10.如图,△ABC和△ADE是等腰直角三角形,且∠BAC=∠DAE=90°,BD,CE交于点F,连接AF.则下列结论不正确的是()A.BD=CE B.BD⊥CE C.AF平分∠CAD D.∠AFE=45°二、填空题(共6个小题,每小题3分,共18分.)11.已知点P的坐标为(﹣2,3).则它关于y轴对称的点P'的坐标是.12.已知x+y=6,xy=7,则x2y+xy2的值是.13.如图,已知△ABC≌△DEF,∠B=57°,∠D=77°,则∠F=.14.(a2)﹣1(a﹣1b)3=.15.等腰三角形中有一个内角是70°,则另外两个内角的度数分别为.16.若(x+m)与(x+3)的乘积中不含x的一次项,则m=.三、解答题(共7小题,共48分,解答要求写出文字说明,证明过程或计算步骤.)17.(4分)计算:a÷b×.18.(4分)计算:(x+1)(x﹣1)﹣(x+2)2.19.(6分)如图,在平面直角坐标系中,每个小正方形的边长均为1,点A的坐标为(﹣2,3).点B的坐标为(﹣3,1),点C的坐标为(1,﹣2).(1)作出△ABC关于y轴对称的△A'B'C'.其中A',B',C'分别是A,B,C的对应点,不要求写作法;(2)在x轴上找一点P,使得PB+PA的值最小.(要求写作法)20.(6分)先化简,再求值:已知(+)÷,其中x满足x2+2x﹣5=0.21.(8分)如图,在△ABC中,∠C=90°,点D,点E在边BC上,且满足AD=BD,AE 平分∠BAD,若∠CAE=42°.求∠AEC和∠B的度数.22.(10分)某校组织八年级学生外出去博物馆参观,一部分学生步行,一部分学生骑车.已知骑车的路程是12km.而步行路程是骑车路程的.若骑车的速度是步行学生速度的2倍,且骑车时间比步行所需时间少用20分钟,求骑车的平均速度.23.(10分)如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.(1)利用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法);(2)在(1)的条件下,求证:AE⊥DE.四、解答题(共2小题,共24分,解答要求马出文字说明。

八年级上册数学期末考试试卷及答案(人教版)

八年级上册数学期末考试试卷及答案(人教版)

O xy O xy O xy O xy A .B .C .D .初二上学期数学期末试题及答案一、选择题(本大题满分30分,每小题3分.每小题只有一个符合题意的选项,请你将正确选项的代号填在答题栏内 ) 1.16的算术平方根是A .4B .±4C .2D .±2 2.方程组⎩⎨⎧-=-=+13y x y x 的解是A .⎩⎨⎧==21y x B .⎩⎨⎧-==21y x C .⎩⎨⎧==12y x D .⎩⎨⎧-==10y x3.甲乙丙三个同学随机排成一排照相,则甲排在中间的概率是 A .21 B .31 C .41 D .61 4.下列函数中,y 是x 的一次函数的是 ① y =x -6 ② y =x 2 ③ y =8x④ y =7-x A .① ② ③ B .① ③ ④ C . ① ② ③ ④ D .② ③ ④5. 在同一平面直角坐标系中,图形M 向右平移3单位得到图形N ,如果图形M 上某点A 的坐标为(5,-6 ),那么图形N 上与点A 对应的点A '的坐标是A .(5,-9 )B .(5,-3 )C .(2,-6 )D . (8,-6 )6.如图,若在象棋盘上建立平面直角坐标系,使“帅”位于点(1 2)--,,“馬”位于点(2 2)-,,则“兵”位于点( )A .(1 1)-,B .(2 1)--,C .(12)-,D .(3 1)-,7.正比例函数y =kx (k ≠0)的函数值y 随x 的增大而减小,则一次函数y=kx -k 的图像大致是(第15题图)(第6题图)O O O Ox /时y /件 A .B .C .D .y /件x /时x /时y /件y /件x /时8.某产品生产流水线每小时生产100件产品,生产前没产品积压,生产3小时后,安排工人装箱,若每小时装150件,则未装箱产品数量y (件)与时间t (时)关系图为( )9.已知代数式15x a -1y 3与-5x b y a +b 是同类项,则a 与b 的值分别是( )A .⎩⎨⎧-==12b aB .⎩⎨⎧-=-=12b aC .⎩⎨⎧==12b aD .⎩⎨⎧=-=12b a10.在全民健身环城越野赛中,甲乙两选手的行程y (千米)随时间t (时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时甲跑了10千米,乙跑了8千米;③乙的行程y 与时间t 的解析式为y =10t ;④第1.5小时,甲跑了12千米.其中正确的说法有A .1 个B .2 个C .3 个D . 4个二、填空题(本大题满分15分,每小题3分,请你将答案填写在题目中的横线上)11.已知方程3x +2y =6,用含x 的代数式表示y ,则y = . 12. 若点P (a +3, a -1)在x 轴上,则点P 的坐标为 .13.请写出一个同时具备:①y 随x 的增大而减小;②过点(0,-5)两条件的一次函数的表达式. 14.直线y =-21x +3向下平移5个单位长度,得到新的直线的解析式是 . 15.如图l 1的解析式为y =k 1x +b 1 , l 2的解析式为y =k 2x +b 2, 则方程组⎩⎨⎧+=+=2211b x k y b x k y 的解为 .(第15题图)Oxy l1l 23-122(第10题图)Oy /件t /时581015200.511.52甲乙三、解答题 (本大题满分55分, 解答要写出必要的文字说明或推演步骤)16.(本题满分4分,每小题2分) 计算:(1).4+3125-.(2).21.1+64.0. 17.(本题满分4分)解方程组: ⎩⎨⎧=+=+.134,1632y x y x18.(本题满分6分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A ,C 的坐标分别为(4-,5),(1-,3). ⑴请在如图所示的网格平面内画出平面直角坐标系; ⑵请作出△ABC 关于y 轴对称的△A ′B ′C ′; ⑶写出点B ′的坐标.19.(本题满分5分)木工师傅做一个人字形屋梁,如图所示,上弦AB =AC =5m ,跨度BC 为6m ,现有一根木料打算做中柱AD (AD 是△ABC 的中线),②①CB A(第18题)请你通过计算说明中柱AD 的长度 . (只考虑长度、不计损耗)20.(本题满分5分) 列方程组解应用题:甲乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇. 甲、乙两人每小时各走多少千米?21. (本题满分5分)小明和小亮想去看周末的一场足球比赛,但只有一张入场券.小明提议采用如下的方法来决定到底谁去看球赛:在九张卡片上分别写上1,2,3,4,5,6,7,8,9这九个数字,将它们背面朝上洗匀后,任意抽出一张,若抽出的卡片为奇数,小明去;否则,小亮去.你认为这个游戏公平吗?用数据(第19题)ABDC说明你的观点.22 错误!未找到引用源。

人教版八年级数学上册期末考试及答案【完整版】

人教版八年级数学上册期末考试及答案【完整版】

人教版八年级数学上册期末考试及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211xx-+的值为0,则x的值为()A.0 B.1 C.﹣1 D.±12.已知:将直线y=x﹣1向上平移2个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是()A.经过第一、二、四象限B.与x轴交于(1,0)C.与y轴交于(0,1)D.y随x的增大而减小3.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩则a+b的值为()A.﹣4 B.4 C.﹣2 D.24.如图,在四边形ABCD中,∠A=140°,∠D=90°,OB平分∠ABC,OC平分∠BCD,则∠BOC=()A.105°B.115°C.125°D.135°5.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是( )A.7086480x yx y+=⎧⎨+=⎩B.7068480x yx y+=⎧⎨+=⎩C.4806870x yx y+=⎧⎨+=⎩D.4808670x yx y+=⎧⎨+=⎩6.已知关于x的不等式组320x ax->⎧⎨->⎩的整数解共有5个,则a的取值范围是()A .﹣4<a <﹣3B .﹣4≤a <﹣3C .a <﹣3D .﹣4<a <327.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°9.如图所示,下列推理及括号中所注明的推理依据错误的是( )A .∵∠1=∠3,∴AB ∥CD (内错角相等,两直线平行)B .∵AB ∥CD ,∴∠1=∠3(两直线平行,内错角相等)C .∵AD ∥BC ,∴∠BAD+∠ABC =180°(两直线平行,同旁内角互补)D .∵∠DAM =∠CBM ,∴AB ∥CD (两直线平行,同位角相等)10.下列选项中,不能判定四边形ABCD 是平行四边形的是( )A .AD//BC ,AB//CDB .AB//CD ,AB CD =C .AD//BC ,AB DC =D .AB DC =,AD BC =二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:2()4()a a b a b ---=________.2.若式子x1x+有意义,则x的取值范围是__________.3.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.4.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a,b,c,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=________.5.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中有__________对全等三角形.6.如图,AD∥BC,∠D=100°,CA平分∠BCD,则∠DAC=________度.三、解答题(本大题共6小题,共72分)1.解方程:(1)12111xx x-=--(2)31523162x x-=--2.先化简,再求值:2282442xxx x x⎛⎫÷--⎪-+-⎝⎭,其中2x=.3.已知,a、b互为倒数,c、d互为相反数,求31ab c d+的值.4.如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x 轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8.在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标.5.已知平行四边形ABCD,对角线AC、BD交于点O,线段EF过点O交AD于点E,交BC于点F.求证:OE=OF.6.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、B5、A6、B7、C8、C9、D10、C二、填空题(本大题共6小题,每小题3分,共18分) 1、()()()22a b a a -+-2、x 1≥-且x 0≠3、如果两个角互为对顶角,那么这两个角相等4、a+c5、36、40°三、解答题(本大题共6小题,共72分)1、(1)2x 3=;(2)10x 9=. 2、22x -,12-.3、0.4、E (4,8) D (0,5)5、略.6、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上学期数学期末试题及答案、选择题(本大题满分30分,每小题3分•每小题只有一个符合题意的选项,请你将正确选项的代号填在答题栏)1. 16的算术平方根是A • 4B..±4 C . 2 D . ±2x y32 .方程组的争是x y1x1x1x2x 0A. B . C . D .y2y2y1y 13 •甲乙丙三个同学随机排成一排照相,则甲排在中间的概率是1111A .-B .-C .—D . —2346(第15题图)4.下列函数中,y是x的一次函数的是① y = x —6②y=—③x y= ④y= 7 —xx8A.①②③B.①③④ C . ①②③④ D .②③④5•在同一平面直角坐标系中,图形M向右平移3单位得到图形N,如果图形M上某点A 的坐标为(5,—6 ),那么图形N上与点A对应的点A的坐标是A • (5, —9 ) B. (5,—3 ) C. (2, —6 ) D •(8,—6 )6.如图,若在象棋盘上建立平面直角坐标系,使“帅”位于点1, 2), “馬”位于点2, 2),则“兵”位于点()A • ( 1,1) B. ( 2, 1)C. (1, 2) D• ( 3,1)(第6题图)7 •正比例函数y = kx(k丰0)的函数值y随x的增大而减小,则一次函数y = kx —k 的图像大致是yk y* y* y*&某产品生产流水线每小时生产100件产品,生产前没产品积压,生产3小时后,安排工人装箱,若每小时装150件,则未装箱产品数量y (件)与时间t(时)关系图为()19•已知代数式5X a-1y3与一5x b y a+b是同类项,则a 2 a 2A •B.b 1 b 1a与b的值分别是()a 2 a 2 C. D.b 1 b 110.在全民健身环城越野赛中, 甲乙两选手的行程y (千米)随时间t (时)变化的图象(全程)如图所示•有下列说法:①起跑后1小时,甲在乙的前面;②第1小时甲跑了10千米, 乙跑了8千米;③乙的行程y与时间t的解析式为y= 10t;④第1.5小时,甲跑了12千米.其中正确的说法有A. 1个B. 2个C. 3个D. 4个、填空题(本大题满分15分,每小题3分,请你将答案填写在题目中的横线上)11 .已知方程3x+ 2y = 6 ,用含x的代数式表示y,贝U y= _________________ .12. 若点P(a+ 3, a- 1)在x轴上,则点P的坐标为________ .13. 请写出一个同时具备:① y随x的增大而减小;②过点(0,—5)两条件的一次函数的表达式_______________________1 、、^ 亠^14 .直线y = —— x + 3向下平移5个单位长度,得到新的直线的解析式2是_____________ .15.如图|1的解析式为y = k1X + b 112的解析式为y k1x bi则方程组1的解为y k2x b2、解答题(本大题满分55分,解答要写出必要的文字说明或推演步骤)16. (本题满分4分,每小题2分)计算:(1). 44 + 3 125 .(2). J1.21 + J0.64 .17. (本题满分4分)解方程组:2x 3y 16,①x 4y 13.②18. (本题满分6分)在如图所示的形网格中,每个小形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A, C的坐标分别为(4 , 5), (1 , 3).⑴请在如图所示的网格平面画出平面直角坐标系;⑵请作出厶ABC关于y轴对称的厶A'B'C';⑶写出点B'的坐标.19. (本题满分5分)20 .(本题满分5分) 列方程组解应用题:甲乙两人从相距36千米的两地相向而行•如果甲比乙先走 2小时,那么他们在乙出发 2.5 小时后相遇;如果乙比甲先走 2小时,那么他们在甲出发 3小时后相遇•甲、乙两人每小时 各走多少千米?木工师傅做一个人字形屋梁,如图所示,上弦 根木料打算做中柱 AD (AD 是厶ABC 的中线), 请你通过计算说明中柱 AD 的长度.(只考虑长度、不计损耗)AB =AC = 5m ,跨度BC 为6m ,现有21 .(本题满分5分)小明和小亮想去看周末的一场足球比赛,但只有一入场券.小明提议采用如下的方法来决定到底谁去看球赛:在九卡片上分别写上1,2,3,4,5,6,7, 8,9这九个数字,将它们背面朝上洗匀后,任意抽出一,若抽出的卡片为奇数,小明去;否则,小亮去•你认为这个游戏公平吗?用数据说明你的观点.22错误!未找到引用源。

(本题满分5分)一次函数y=—2x+ 4的图像如图,图像与x轴交于点A,与y轴交于点B.(1)求A、B两点坐标.(2)求图像与坐标轴所围成的三角形的面积是多少.23 .(本题满分6分)列方程组解应用题:某城市规定:出租车起步价允许行驶的最远路程为3千米,超过3千米的部分按每千米另收费.甲说:“我乘这种出租车走了11千米,付了17元”;乙说:“我乘这种出租车走了23千米,付了35元” •请你算一算这种出租车的起步价是多少?超过3千米后,每千米的车费是多少?24 .(本题满分7分)为了学生的健康,学校课桌、课凳的高度都是按一定的关系科学设计的,小明对学校所添置的一批课桌、课凳进行观察研究,发现他们可以根据人的身长调节高度,于是,他测量了一套课桌、课凳上相对的四档高度,得到如下数据:(析式(不要求写出x的取值围).41厘米,写字台的高度是75⑵小明回家后,量了家里的写字台和凳子,凳子的高度是厘米,请你判断它们是否配套.25.(本题满分8分)某班师生组织植树活动,上午8时从学校出发,到植树地点植树后原路返校,如图为师生离校路程s与时间t之间的图象•请回答下列问题:(1 )直接写出在去植树地点的途中,师生的速度是多少千米/时?(2 )求师生何时回到学校?(3 )如果运送树苗的三轮车比师生迟半小时出发,与师生同路匀速前进,早半个小时到达植树地点,请在图中画出该三轮车运送树苗时,离校路程s与时间t之间的图象,并结合图象直接写出三轮车追上师生时离学校的路程.、填空题1 14. y = — 一x — 22三、解答题16 .解:(1).解:原式=2 + (— 5) = —3 .................... 2-分(2).解:原式=1.1 + 0.8 = 1 . 9 .................... 4-分17.解:②X 2 得:2x + 8y = 26. ③ .................... 4••分③—①得: 5y = 10 . y = 2. ................... 2•分将y =2代入②,得x = 5 .3..分..x 5, 所以原方程组的解是y 2.18.⑴⑵如图,⑶B'(2,1)每小题2分.19. 解:T AB = AC = 5 , AD 是厶 ABC 的中线,BC = 6,1八••• AD 丄 BC , BD = — BC = 3. ............................. 2•分…2 _____由勾股定理,得 AD = . AB 2 BD 2 = ,52 32 = 4. .......................................... 4•分•••这根中柱 AD 的长度是4m . .......................... 5•分20. 解:设甲每小时走 x 千米,乙每小时走 y 千米,由题意得:(2 2.5) x 2.5y 36•分3x (3 2)y 36、选择题1 . C 2. A评分标准与参考答案D 6. D 7. A 8. B 9. C 10. C311. 3— x212. (4, 0)13 . y = — x — 5(答案不唯一)15.解:(1)在去植树地点的途中,师生的速度是4千米/时.解得:%6y 3.64••分答:甲每小时走6千米,乙小时走3.6千米. 5••分1 • 分54理由:P (抽到奇数)=—,P (抽到偶数)=......9921.答:不公平.3•分. 5 4 >Z,A 小明去的机会大.99对小亮来说不公平. ......... 22. 解:(1)对于 y = — 2x + 4,令 y = 0,得一 2x + 4, • x = 2. ............................................................ 1 --分•… • 一次函数y = — 2x + 4的图象与x 轴的交点A 的坐标为(2, 0). 令 x = 0, 得 y = 4.• 一次函数y = — 2x + 4的图象与yC11(2) &AOB =OA OB =X 2 X 4 =2 2•图像与坐标轴所围成的三角形的面积是 4•分轴的交点B 的坐标为(0, 4).4 .....................解:设起步价是 x 元,超过3千米后每千米收费 y 元,由题意得:(11 (23 3)y 3)y 1735,解得:1.5答: 24. 将x = 37, y = 70; x = 42 , y = 78 代入 y = kx + b ,得37k b 70,3.分...42k b 78.k 1.6,解得............................................ ^4* •b 10.8.••• y = 1.6x + 10.8. ....................................⑵当 x = 41 时,y = 1.6 X 41 + 10.8 = 76.4.•家里的写字台和凳子不配套 .. ...................... 6 分 -- 7-分…25. 5'分…这种出租车的起步价是5元,超过3千米后,每千米的车费是1.5元.解:(1)设一次函数的解析式为: ............................. y = kx(2)设师生返校时的函数解析式为s kt b ,把(12 , 8 )、(13 , 3 )代入得,解得:3 13k b b 68••• s 5t 68 , .............................. 4•分•当S 0 时,t=13 . 6 ,•师生在13. 6时回到学校;........................... 6•分•(3 )图象正确1分.由图象得,当三轮车追上师生时,离学校4km ; .................... &分•88.5 99.510 11 12(第25题解答图)8 12k b, k 5,14 t8 6 4 3 2Word资料。

相关文档
最新文档