七年级数学平行线的性质1
初一数学下册:平行线的性质相关知识点
1. 两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等。
2. 两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补。
3 . 两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等。
两个角的数量关系两直线的位置关系:1、垂直于同一直线的两条直线互相平行。
2、平行线间的距离,处处相等。
3、如果两个角的两边分别平行,那么这两个角相等或互补。
4、平行线的传递性如果两条直线都与第三条直线平行,那么这两条直线也互相平行.5、平行线间的距离两条平行线中,任意一条直线上的所有点到另一条直线的距离都是一个定值,这个定值叫做这两条平行线间的距离.平行线的性质书写(1)∵AB∥CD(已知)∴∠1=∠2(两直线平行,同位角相等)(2)∵AB∥CD(已知)∴∠3=∠2(两直线平行,内错角相等)(3)∵AB∥CD(已知)∴∠2+∠4=180°(两直线平行,同旁内角互补)平行线的性质与判定①平行线的性质与判定是互逆的关系两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补。
其中,由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质。
★要点提示★1.由性质1推导性质2,进一步导出性质3,再运用平行线的知识得出平行线的传递性,体现了几何演绎的思想和方法,要逐步领会和掌握.2.几何学习要注意“看图说话”、“用图说话”,要逐步学会文字语言、图形语言、符号语言的转换和各自功效.如平行线的传递性,可用符号语言表示为:对于直线a、b、c,如果a∥b,b∥c,则a∥c.3.有了平行线间的距离,至此就学了几何中的三种距离:两点间的距离,点到直线的距离,两平行线间的距离.两点间的距离是两点间线段的长度,后两种都可转化为两点间的距离.两平行线间的距离是一条直线上任意点到另一条直线的距离(点到直线的距离),而点到直线的距离是该点到直线的垂线段的长度,即点到垂足(点到点)的距离.。
浙教版数学七年级下册1.4《平行线的性质》教学设计1
浙教版数学七年级下册1.4《平行线的性质》教学设计1一. 教材分析《平行线的性质》是浙教版数学七年级下册1.4节的内容,主要包括平行线的传递性质、同位角、内错角和同旁内角的概念及它们之间的关系。
本节内容是学生学习几何的基础知识,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析七年级的学生已经掌握了平行线的概念,但对平行线的性质和角度关系还不够了解。
学生的空间想象力有所不同,逻辑思维能力也各有差异。
因此,在教学过程中,需要关注学生的个体差异,引导学生通过观察、操作、思考、交流和总结,逐步掌握平行线的性质。
三. 教学目标1.知识与技能:使学生掌握平行线的传递性质,理解同位角、内错角和同旁内角的概念及它们之间的关系。
2.过程与方法:培养学生观察、操作、思考、交流和总结的能力,提高空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队协作精神。
四. 教学重难点1.教学重点:平行线的传递性质,同位角、内错角和同旁内角的概念及它们之间的关系。
2.教学难点:平行线性质的灵活运用,角度关系的推导和证明。
五. 教学方法1.情境教学法:通过生活实例和几何图形,引导学生发现平行线的性质,激发学生的学习兴趣。
2.动手操作法:让学生通过折纸、拼图等动手操作活动,观察和体验平行线的性质,培养学生的空间想象能力。
3.合作交流法:鼓励学生分组讨论,共同探讨平行线的性质,提高学生的团队协作能力。
4.引导发现法:教师引导学生发现问题,引导学生通过思考和总结,得出平行线的性质,培养学生的逻辑思维能力。
六. 教学准备1.教学素材:准备相关的图片、图形和实例,制作PPT。
2.教学工具:准备黑板、粉笔、直尺、圆规等。
3.学生活动材料:准备折纸、拼图等动手操作材料。
七. 教学过程1.导入(5分钟)通过展示生活中常见的平行线现象,如楼梯、铁路等,引导学生回顾平行线的概念,激发学生的学习兴趣。
七年级数学下册 5.3平行线的性质(八大题型)(解析版 )
七年级下册数学《第五章相交线与平行线》5.3平行线的性质平行线性质定理性质定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.几何语言表示:∵a∥b(已知),∴∠2=∠3(两直线平行,同位角相等).性质定理2:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,同位角相等.几何语言表示:∵a∥b(已知),∴∠2=∠4.(两直线平行,内错角相等).性质定理3:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.几何语言表示:∵a∥b(已知),∴∠1+∠2=180°(同旁内角互补,两直线平行).平行线的判定与性质(1)平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.(2)应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.(3)平行线的判定与性质的联系与区别:区别:性质由形到数,用于推导角的关系并计算;判定由数到形,用于判定两直线平行.联系:性质与判定的已知和结论正好相反,都是角的关系与平行线相关.(4)辅助线规律,经常作出两平行线平行的直线或作出联系两直线的截线,构造出三类角.概念:判断一件事情的语句,叫做命题.【注意】(1).只要对一件事情作出了判断,不管正确与否,都是命题.(2).如果一个句子没有对某一件事情作出任何判断,那么它就不是命题.命题的组成每个命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.【注意】在改写成“如果……那么……”的形式时,需对命题的语序进行调整或增减词语,使句子完整通顺,但不改变原意.真命题:如果题设成立,那么结论一定成立,这样的命题叫做真命题;假命题:题设成立时,不能保证结论一定成立,这样的命题叫做假命题.【注意】判断一个命题是假命题,只要举出一个反例,它符合命题的题设,但不满足结论就可以了.定理:经过推理证实的真命题叫做定理,定理可以作为继续推理论证的依据.【拓展】数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理.如直线公理:两点确定一条直线.证明:在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这个推理过程叫做证明.()2=a(a≥0)(任何一个非负数都可以写成一个数的平方的形式).【注意】(1)证明中的每一步推理都要有根据,不能“想当然”.这些根据,可以是已知条件,也可以是学过的定义、基本事实、定理等.(2).定理一定是真命题,但真命题不一定是定理.证明的一般步骤:①根据题意画出图形;②依据题设、结论,结合图形,写出已知、求证;③经过分析,找出由已知条件推出结论的方法,或依据结论探寻所需要的条件,再由题设进行挖掘,寻求证明的途径;④书写证明过程.是()A.40°B.50°C.60°D.70°【分析】由垂线可得∠ACB=90°,从而可求得∠B的度数,再结合平行线的性质即可求∠BCD的度数.【解答】解:∵BC⊥AE,∴∠ACB=90°,∵∠A=50°,∴∠B=180°﹣∠ACB﹣∠A=40°,∵CD∥AB,∴∠BCD=∠B=40°.故选:A.【点评】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,内错角相等.解题技巧提炼两直线平行时,应联想到平行线的三个性质,由两条直线平行的位置关系得到两个相关角的数量关系,由角的关系求相应角的度数.【变式1-1】(2023秋•简阳市期末)如图,a∥b,∠1=40°,∠2=∠3,则∠4=()A.70°B.110°C.140°D.150°【分析】先根据a∥b,∠1=40°得出∠2+∠3的度数,由平角的定义得出∠5的度数,再由∠2=∠3得出∠2的度数,再得出∠2+∠5的度数,进而可得出结论.【解答】解:∵a∥b,∠1=40°,∴∠2+∠3=180°﹣40°=140°,∴∠5=180°﹣140°=40°,∵∠2=∠3,∴∠2=70°,∴∠2+∠5=70°+40°=110°,∴∠4=∠2+∠5=110°.故选:B.【点评】本题考查的是平行线的性质,熟知两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键.【变式1-2】(2022春•五莲县期末)如图,已知AB∥DE∥CF,若∠ABC=70°,∠CDE=130°,则∠BCD的度数为()A.10°B.15°C.20°D.35°【分析】由AB∥CF,∠ABC=70°,易求∠BCF,又DE∥CF,∠CDE=130°,那么易求∠DCF,于是∠BCD=∠BCF﹣∠DCF可求.【解答】解:∵AB∥CF,∠ABC=70°,∴∠BCF=∠ABC=70°,又∵DE∥CF,∴∠DCF+∠CDE=180°,∴∠DCF=50°,∴∠BCD=∠BCF﹣∠DCF=70°﹣50°=20°.故选:C.【点评】本题主要考查了平行线的性质,两直线平行,内错角相等;两直线平行,同旁内角互补.【变式1-3】(2021秋•霍州市期末)如图,如果AB∥EF、EF∥CD,若∠1=50°,则∠2+∠3的和是()A.200°B.210°C.220°D.230°【分析】由平行线的性质可用∠2、∠3分别表示出∠BOE和∠COF,再由平角的定义可得出答案.【解答】解:∵AB∥EF,∴∠2+∠BOE=180°,∴∠BOE=180°﹣∠2,同理可得∠COF=180°﹣∠3,∵O在EF上,∴∠BOE+∠1+∠COF=180°,∴180°﹣∠2+∠1+180°﹣∠3=180°,∴∠2+∠3=180°+∠1=180°+50°=230°,故选:D.【点评】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行,④a∥b,b∥c⇒a∥c.【变式1-4】(2022秋•安岳县期末)已知∠1的两边分别平行于∠2的两边,若∠1=40°,则∠2的度数为.【分析】①图1时,由两直线平行,同位角相等,等量代换和角的和差计算出∠2的度数为40°;②图2时,同两直线平行,内错角相等,两直线平行,同旁内角互补,等量代换和角的和差计算出∠2的度数为140°.【解答】解:①若∠1与∠2位置如图1所示:∵AB∥DE,∴∠1=∠3,又∵DC∥EF,∴∠2=∠3,∴∠1=∠2,又∵∠1=40°,∴∠2=40°;②若∠1与∠2位置如图2所示:∵AB∥DE,∴∠1=∠3,又∵DC∥EF,∴∠2+∠3=180°,∴∠2+∠1=180°,又∵∠1=40°∴∠2=180°﹣∠1=180°﹣40°=140°,综合所述:∠2的度数为40°或140°,故答案为:40°或140°.【点评】本题综合考查了平行线的性质,角的和差,等量代换,邻补角性质,对顶角性质等相关知识点,重点掌握平行线的性质,难点是两个角的两边分别平行是射线平行,分类画出符合题意的图形后计算.【变式1-5】(2022春•海淀区月考)如图,点C在∠MON的一边OM上,过点C的直线AB∥ON,CD 平分∠ACM.当∠DCM=60°时,求∠O的度数.【分析】根据角平分线的定义,即可得到∠ACM的度数,进而得出∠OCB的度数,再依据平行线的性质,即可得到∠O的度数.【解答】解:∵CD平分∠ACM,∴∠ACM=2∠DCM.∵∠DCM=60°,∴∠ACM=120°.∵直线AB与OM交于点C,∴∠OCB=∠ACM=120°(对顶角相等),∵AB∥ON,∴∠O+∠OCB=180°(两直线平行,同旁内角互补),∴∠O=60°.【点评】本题主要考查了角的计算,平行线的性质以及角平分线的定义.解题的关键是熟练掌握平行线的性质:两直线平行,同旁内角互补.【变式1-6】(2023秋•海门区期末)如图,直线CE,DF相交于点P,且CE∥OB,DF∥OA.(1)若∠AOB=45°,求∠PDB的度数;(2)若∠CPD=45°,求∠AOB的度数;(3)像(1)(2)中的∠AOB,∠CPD称四边形PCOD的一组“对角”,则该四边形的另一组对角相等吗?请说明理由.【分析】(1)根据两直线平行,同位角相等即可求得答案;(2)根据两直线平行,同位角相等及两直线平行,内错角相等即可求得答案;(3)根据两直线平行,同旁内角互补即可证得结论.【解答】解:(1)∵DF∥OA,∠AOB=45°,∴∠PDB=∠AOB=45°;(2)∵CE∥OB,∴∠CPD=∠PDB,∵DF∥OA,∴∠PDB=∠AOB,∴∠AOB=∠CPD,∵∠CPD=45°,∴∠AOB=45°;(3)相等,理由如下:∵CE∥OB,DF∥OA,∴∠OCP+∠AOB=180°,∠CPD+∠ODP=180°,∵∠AOB=∠CPD,∴∠OCP=∠ODP.【点评】本题考查平行线性质,熟练掌握并利用平行线的性质是解题的关键.【变式1-7】(2021春•黄冈期中)如图,DB∥FG∥EC,A是FG上的一点,∠ADB=60°,∠ACE=36°,AP平分∠CAD,求∠PAG的度数.【分析】根据平行线的性质,可以得到∠DAG和∠CAG度数,然后根据AP平分∠CAD,即可得到∠PAG 的度数.【解答】解:∵DB∥FG∥EC,∴∠BDA=∠DAG,∠ACE=∠CAG,∵∠ADB=60°,∠ACE=36°,∴∠DAG=60°,∠CAG=36°,∴∠DAC=96°,∵AP平分∠CAD,∴∠CAP=48°,∴∠PAG=12°.【点评】本题考查平行线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.【变式1-8】(2023秋•原阳县校级期末)如图,已知AB∥CD,BE平分∠ABC.BE垂直于CE,求证:CE平分∠BCD.【分析】过E作EF∥AB交BC于点F,根据平行线的性质可求得∠ABC+∠BCD=180°,再结合垂线的定义可得∠ABE+∠DCE=90°,∠EBC+∠ECB=90°,再利用角平分线的定义可证明结论.【解答】证明:过E作EF∥AB交BC于点F,∴∠ABE=∠FEB,∵AB∥CD,∴EF∥CD,∠ABC+∠BCD=180°,∴∠DCE=∠FEC,∵BE⊥CE,∴∠BEF+∠CEF=∠ABE+∠DCE=90°,∴∠EBC+∠ECB=90°,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠DCE=∠BCE,∴CE平分∠BCD.【点评】本题主要考查平行线的性质,角平分线的定义,垂线的定义,证明∠ABE+∠DCE=90°,∠EBC+∠ECB=90°是解题的关键.【例题2】已知,如图所示,四边形ABCD中,∠B=90°,DE平分∠ADC,CE平分∠DCB,∠1+∠2=90°,试说明DA⊥AB.【分析】由角平分线的定义和条件可得∠ADC+∠BCD=180°,可证明DA∥BC,再由平行线的性质可得到∠A=90°,可证明DA⊥AB.【解答】证明:∵DE平分∠ADC,CE平分∠DCB,∴∠ADC=2∠1,∠BCD=2∠2,∵∠1+∠2=90°,∴∠ADC+∠BCD=180°,∴AD∥BC,∴∠A+∠B=180°,∴∠A=180°﹣∠B=90°,∴DA⊥AB.【点评】本题主要考查平行线的判定和性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.解题技巧提炼准确识别图形,理清图中各角度之间的关系是解题的关键,再综合角平分线的定义、对顶角的性质及邻补角的定义求解.【变式2-1】(2022春•龙岗区期末)已知,如图,∠1=∠ACB,∠2=∠3,FH⊥AB于H,求证:CD⊥AB.【分析】先根据垂直的定义得出∠BHF=90°,再由∠1=∠ACB得出DE∥BC,故可得出∠2=∠BCD,根据∠2=∠3得出∠3=∠BCD,所以CD∥FH,由平行线的性质即可得出结论.【解答】证明:FH⊥AB(已知),∴∠BHF=90°.∵∠1=∠ACB(已知),∴DE∥BC(同位角相等,两直线平行),∴∠2=∠BCD.(两直线平行,内错角相等).∵∠2=∠3(已知),∴∠3=∠BCD(等量代换),∴CD∥FH(同位角相等,两直线平行),∴∠BDC=∠BHF=90°,(两直线平行,同位角相等)∴CD⊥AB.【点评】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.【变式2-2】如图,已知DA⊥AB,DE平分∠ADC,CE平分∠DCB,且∠1+∠2=90°,试说明BC⊥AB.【分析】过E作EF∥AD,交CD于F,求出∠FEC=∠2=∠BCE,根据平行线的判定推出BC∥EF,即可得出答案.【解答】解:过E作EF∥AD,交CD于F,则∠ADE=∠DEF,∵DE平分∠ADC,∴∠1=∠ADE,∴∠1=∠DEF,∵∠1+∠2=90°,∴∠DEC=90°,∴∠DEF+∠FEC=90°,∴∠2=∠FEC,∵CE平分∠DCB,∴∠2=∠BCE,∴∠FEC=∠BCE,∴BC∥EF,∴BC∥AD,∵DA⊥AB,∴BC⊥AB.【点评】本题考查了平行线的性质和判定,三角形内角和定理,角平分线定义的应用,能正确作出辅助线,并综合运用定理进行推理是解此题的关键.【变式2-3】(2022春•海淀区校级月考)如图,AD∥BE,∠B=∠D,∠BAD的平分线交BC的延长线于点E,CF平分∠DCE.求证:CF⊥AE.【分析】由AD∥BE,∠B=∠D,可推出∠B+∠BAD=180°,∠B=∠DCE,AB∥CD,再由角平分线定义可得:∠BAE=12∠BAD,∠FCG=12∠DCE,进而得出:∠CGF=12∠BAD,∠FCG=12∠B,可推出:∠CGF+∠FCG=12(∠BAD+∠B)=12×180°=90°,根据三角形内角和为180°,可得∠CFG=90°,由垂直定义可证得结论.【解答】证明:∵AD∥BE,∴∠DCE=∠D,∠B+∠BAD=180°,∵∠B=∠D,∴∠B=∠DCE,∴AB∥CD,∴∠CGF=∠BAE,∵AE平分∠BAD,∴∠BAE=12∠BAD,∴∠CGF=12∠BAD,∵CF平分∠DCE,∴∠FCG=12∠DCE,∴∠FCG=12∠B,∴∠CGF+∠FCG=12(∠BAD+∠B)=12×180°=90°,∴∠CFG=180°﹣(∠CGF+∠FCG)=180°﹣90°=90°,∴CF⊥AE.【点评】本题考查了平行线的性质和判定,角平分线定义,垂直定义,三角形内角和定理等知识,解题的关键是掌握平行线判定定理和性质定理.【例题3】(2023秋•深圳期末)太阳灶、卫星信号接收锅、探照灯及其他很多灯具都与抛物线有关.如图,从点O照射到抛物线上的光线OB,OC反射后沿着与PO平行的方向射出,已知图中∠ABO=44°,∠BOC=133°,则∠OCD的度数为()A.88°B.89°C.90°D.91°【分析】依题意得AB∥OP∥CD,进而根据平行线的性质得∠BOP=∠ABO=44°,∠OCD=∠POC,从而可求出∠POC=∠BOC﹣∠BOP=89°,进而可得∠OCD的度数.【解答】解:∵AB∥OP∥CD,∠ABO=44°,∴∠BOP=∠ABO=44°,∠OCD=∠POC,∵∠BOC=133°,∴∠POC=∠BOC﹣∠BOP=133°﹣44°=89°,∴∠OCD=∠POC=89°.故选:B.【点评】此题主要考查了平行线的性质,准确识图,熟练掌握平行线的性质是解决问题的关键.解题技巧提炼给出一个实际问题,联系平行线的性质解答实际问题,有时需要通过作辅助线构造平行线,同时还会综合运用平行线的判定和性质.【变式3-1】如图,在A、B两地之间要修一条笔直的公路,从A地测得公路走向是北偏东48°,A,B 两地同时开工,若干天后公路准确接通,若公路AB长8千米,另一条公路BC长是6千米,且BC的走向是北偏西42°,则A地到公路BC的距离是千米.【分析】根据方位角的概念,图中给出的信息,再根据已知转向的角度求解.【解答】解:根据两直线平行,内错角相等,可得∠ABG=48°,∵∠ABC=180°﹣∠ABG﹣∠EBC=180°﹣48°﹣42°=90°,∴AB⊥BC,∴A地到公路BC的距离是AB=8千米,故答案为:8.【点评】此题是方向角问题,结合生活中的实际问题,将解三角形的相关知识有机结合,体现了数学应用于实际生活的思想.【变式3-2】(2022春•沧县期中)某学员在驾校练习驾驶汽车,两次拐弯后的行驶方向与原来的方向相反,则两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向左拐45°,第二次向左拐45°C.第一次向左拐60°,第二次向右拐120°D.第一次向左拐53°,第二次向左拐127°【分析】根据平行线的性质分别判断得出即可.【解答】解:∵两次拐弯后,按原来的相反方向前进,∴两次拐弯的方向相同,形成的角是同旁内角,且互补,故选:D.【点评】此题主要考查了平行线的性质,利用两直线平行,同旁内角互补得出是解题关键.【变式3-3】如图是潜望镜工作原理示意图,阴影部分是平行放置在潜望镜里的两面镜子.已知光线经过镜子反射时,有∠1=∠2,∠3=∠4,请解释进入潜望镜的光线l为什么和离开潜望镜的光线m是平行的?【分析】根据平行线的性质结合条件可得∠1=∠2=∠3=∠4,可证得∠5=∠6,可证明l∥m,据此填空即可.【解答】解:∵AB∥CD(已知),∴∠2=∠3(两直线平行,内错角相等),∵∠1=∠2,∠3=∠4(已知),∴∠1=∠2=∠3=∠4(等量代换),∴180°﹣∠1﹣∠2=180°﹣∠3﹣∠4(平角定义),即:∠5=∠6(等量代换),∴l∥m.【点评】本题主要考查平行线的判定和性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.【变式3-4】(2023秋•市南区期末)如图是一种躺椅及其简化结构示意图,扶手AB与底座CD都平行于地面,靠背DM与支架OE平行,前支架OE与后支架OF分别与CD交于点G和点D,AB与DM交于点N,当前支架OE与后支架OF正好垂直,∠ODC=32°时,人躺着最舒服,则此时扶手AB与靠背DM的夹角∠ANM=.【分析】由AB∥CD可求得∠BOD的度数,再根据OE∥DM即可求出∠ANM的度数.【解答】解:∵AB∥CD,∠ODC=32°,∴∠BOD=∠ODC=32°.∵OE⊥OF,∴∠EOF=90°,∴∠EOB=90°+32°=122°.∵OE∥DM,∠ANM=∠EOB=122°.故答案为:122°.【点评】本题考查了平行线的性质,垂直的定义,熟练掌握平行线的性质是解答本题的关键.【变式3-5】(2023秋•东莞市校级期末)如图为某椅子的侧面图,∠DEF=120°.DE与地面平行,∠ABD=50°,则∠ACB=.【分析】根据平行得到∠ABD=∠EDC=50°,再利用外角的性质和对顶角相等,进行求解即可.【解答】解:由题意得:DE∥AB,∴∠ABD=∠EDC=50°,∵∠DEF=∠EDC+∠DCE=120°,∴∠DCE=70°,∴∠ACB=∠DCE=70°,故答案为:70°.【点评】本题考查平行线的性质,三角形外角的性质,对顶角.熟练掌握相关性质,是解题的关键.【变式3-6】(2022•小店区校级开学)如图1是一个由齿轮、轴承、托架等元件构成的手动变速箱托架,其主要作用是动力传输.如图2是乎动变速箱托架工作时某一时刻的示意图,已知AB∥CD,CG∥EF,∠BAG=150°,∠AGC=80°,则∠DEF的度数为()A.110°B.120°C.130°D.140°【分析】过点F作FM∥CD,因为AB∥CD,所以AB∥CD∥FM,再根据平行线的性质可以求出∠MFA,∠EFA,进而可求出∠EFM,再根据平行线的性质即可求得∠DEF.【解答】解:如图,过点F作FM∥CD,∵AB∥CD,∴AB∥CD∥FM,∴∠DEF+∠EFM=180°,∠MFA+∠BAG=180°,∴∠MFA=180°﹣∠BAG=180°﹣150°=30°.∵CG∥EF,∴∠EFA=∠AGC=80°.∴∠EFM=∠EFA﹣∠MFA=80°﹣30°=50°.∴∠DEF=180°﹣∠EFM=180°﹣50°=130°.故选:C.【点评】本题考查平行线的性质,解题关键是结合图形利用平行线的性质进行角的转化和计算.【变式3-7】(2023春•岱岳区期末)如图,EF,MN分别表示两面互相平行的镜面,一束光线AB照射到镜面MN上,反射光线为BC,此时∠1=∠2;光线BC经镜面EF反射后的反射光线为CD,此时∠3=∠4,试判断AB与CD的位置关系,并说明理由.【分析】先根据MN∥EF得出∠2=∠3,再由∠1=∠2,∠3=∠4可得出∠1=∠2=∠3=∠4,故可得出∠1+∠2=∠3+∠4,再由∠ABC=180°﹣(∠1+∠2),∠BCD=180°﹣(∠3+∠4),故可得出∠ABC=∠BCD,据此得出结论.【解答】解:AB∥CD.理由:∵MN∥EF,∴∠2=∠3,∵∠1=∠2,∠3=∠4,∴∠1=∠2=∠3=∠4,∴∠1+∠2=∠3+∠4,∵∠ABC=180°﹣(∠1+∠2),∠BCD=180°﹣(∠3+∠4),∴∠ABC=∠BCD,∴AB∥CD.【点评】本题考查的是平行线的判定与性质,熟知两直线平行,内错角相等是解题的关键.【例题4】(2022春•秦淮区校级月考)已知直线a∥b,将一块含30°角的直角三角板(∠BAC=30°,∠ACB =90°)按如图所示的方式放置,并且顶点A,C分别落在直线a,b上,若∠1=22°.则∠2的度数是()A.38°B.45°C.52°D.58°【分析】根据已知易得∠DAC=52°,然后利用平行线的性质即可解答.【解答】解:如图:∵∠1=22°,∠BAC=30°,∴∠DAC=∠1+∠BAC=52°,∵直线a∥b,∴∠2=∠DAC=52°,故选:C.【点评】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.【变式4-1】(2022秋•琼海期中)如图,将三角板的直角顶点按如图所示摆放在直尺的一边上,则下列结论不一定正确的是()A.∠1=∠2B.∠2+∠3=90°C.∠3+∠4=180°D.∠1+∠2=90°【分析】根据平行线的性质定理求解.【解答】解:∵两直线平行,同位角相等,∴∠1=∠2,故选项A不符合题意;∠1+∠2不一定等于90°,故D符合题意;由题意可得:90°+∠2+∠3=180°,∴∠2+∠3=90°,故选项B不符合题意;∵两直线平行,同旁内角互补,∴∠3+∠4=180°,故选项C不符合题意;故选:D.【点评】本题主要考查平行线的性质,解题关键是熟练掌握平行线的性质定理.【变式4-2】(2023秋•榆树市校级期末)把一副三角板按如图所示摆放,使FD∥BC,点E落在CB的延长线上,则∠BDE的大小为度.【分析】由题意可得∠EDF=45°,∠ABC=60°,由平行线的性质可得∠BDF=∠ABC=60°,从而可求∠BDE的度数.【解答】解:由题意得:∠EDF=45°,∠ABC=60°,∵FD∥BC,∴∠BDF=∠ABC=60°,∴∠BDE=∠BDF﹣∠EDF=15°.故答案为:15.【点评】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,内错角相等.【变式4-3】(2023秋•新野县期末)如图,直线m∥n,且分别与直线l交于A,B两点,把一块含60°角的三角尺按如图所示的位置摆放,若∠2=98°,则∠1=.【分析】先根据平角的定义求出∠4的度数,再根据角平分线的性质即可得出答案.【解答】解:由已知可得,∠3=30°,∵∠2=98°,∴∠4=180°﹣∠2﹣∠3=52°,∵m∥n,∴∠1=∠4=52°.故答案为:52°.【点评】本题主要考查了平行线的性质,解题的关键是牢记平行线的性质.【变式4-4】(2022•大渡口区校级模拟)将一副直角三角板按如图所示的方式叠放在一起,若AC∥DE.则∠BAE的度数为()A.85°B.75°C.65°D.55°【分析】由题意得∠E=60°,∠DAE=∠B=90°,∠BAC=45°,由平行线的性质可求得∠CAE=120°,从而可求得∠CAD=30°,则∠BAD=15°,即可求∠BAE的度数.【解答】解:由题意得:∠E=60°,∠DAE=∠B=90°,∠BAC=45°,∵AC∥DE,∴∠E+∠CAE=180°,∴∠CAE=180°﹣∠E=120°,∴∠CAD=∠CAE﹣∠DAE=30°,∴∠BAD=∠BAC﹣∠CAD=15°,∴∠BAE=∠DAE﹣∠BAD=75°.故选:B.【点评】本题主要考查平行线的性质,解答的关键是熟记平行线的性质并灵活运用.【变式4-5】(2022秋•绿园区校级期末)如图,AB∥CD,一副三角尺按如图所示放置,∠AEG=20°,则∠HFD的度数为()A.40°B.35°C.30°D.25°【分析】将∠AEG,∠GEF的度数,代入∠AEF=∠AEG+∠GEF中,可求出∠AEF的度数,由AB∥CD,利用“两直线平行,内错角相等”,可求出∠DFE的度数,再结合∠HFD=∠DFE﹣∠EFH,即可求出∠HFD 的度数.【解答】解:∵∠AEG=20°,∠GEF=45°,∴∠AEF=∠AEG+∠GEF=20°+45°=65°.∵AB∥CD,∴∠DFE=∠AEF=65°,∴∠HFD=∠DFE﹣∠EFH=65°﹣30°=35°.故选:B.【点评】本题考查了平行线的性质,牢记“两直线平行,内错角相等”是解题的关键.【变式4-6】(2023秋•盐城期末)将一副三角板按如图所示的方式摆放,其中∠ACB=∠ECD=90°,∠A=45°,∠D=60°.若AB∥DE,则∠ACD的度数为.【分析】过点C作CF∥AB,则有AB∥CF∥DE,从而可得∠ACF=∠A=45°,∠DEF=∠D=60°,即可求∠ACD的度数.【解答】解:过点C作CF∥AB,如图,∵AB∥DE,∴AB∥CF∥DE,∴∠ACF=∠A=45°,∠DEF=∠D=60°,∴∠ACD=∠ACF+∠DCF=105°.故答案为:105°.【点评】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,内错角相等.【例题5】如图所示,把一张长方形纸条ABCD沿EF折叠,若∠1=58°,则∠AEG的度数()A.58°B.64°C.72°D.60°【分析】由平行线的性质得∠DEF=∠1=58°,由折叠的性质得∠GEF=∠DEF=58°,再由平角定义求出∠AEG即可.【解答】解:∵四边形ABCD是长方形,∴AD∥BC,∴∠DEF=∠1=58°,由折叠的性质得:∠GEF=∠DEF=58°,∴∠AEG=180°﹣58°﹣58°=64°;故选:B.【点评】本题考查了平行线的性质、翻折变换的性质、长方形的性质以及平角定义;熟练掌握平行线的性质和翻折变换的性质是解题的关键.【变式5-1】(2022秋•陈仓区期末)如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=26°,则∠α的度数是()A.77°B.64°C.26°D.87°【分析】依据平行线的性质,即可得到∠AEG的度数,再根据折叠的性质,即可得出∠α的度数.【解答】解:∵矩形纸条ABCD中,AD∥BC,∴∠AEG=∠BGD'=26°,∴∠DEG=180°﹣26°=154°,由折叠可得,∠α=12∠DEG=12×154°=77°,故选:A.【点评】本题主要考查了平行线的性质,折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.【变式5-2】(2023•台州)用一张等宽的纸条折成如图所示的图案,若∠1=20°,则∠2的度数为.【分析】利用平行线的性质和各角之间的关系即可求解.【解答】解:如图,标注三角形的三个顶点A、B、C.∠2=∠BAC=180°﹣∠ABC﹣∠ACB.∵图案是由一张等宽的纸条折成的,∴AB=AC,∴∠ABC=∠ACB.又∵纸条的长边平行,∴∠ABC=∠1=20°,∴∠2=∠BAC=180°﹣2∠ABC=180°﹣2∠1=180°﹣2×20°=140°.故答案为:140°.【点评】本题比较简单,主要考查了平行线的性质的运用.【变式5-3】(2022秋•昭阳区期中)如图,把△ABC沿线段DE折叠,使点A落在点F处,BC∥DE;若∠B=50°,则∠BDF的度数为()A.40°B.50°C.80°D.100°【分析】首先利用平行线的性质得出∠ADE=50°,再利用折叠前后图形不发生任何变化,得出∠ADE=∠EDF,从而求出∠BDF的度数.【解答】解:∵BC∥DE,若∠B=50°,∴∠ADE=50°,又∵△ABC沿线段DE折叠,使点A落在点F处,∴∠ADE=∠EDF=50°,∴∠BDF=180°﹣50°﹣50°=80°,故选:C.【点评】此题主要考查了折叠问题与平行线的性质,利用折叠前后图形不发生任何变化,得出∠ADE=∠EDF是解决问题的关键.【变式5-4】(2023秋•阳城县期末)将一张长方形纸条折成如图所示的形状,若∠1=110°,则∠2=.【分析】证明∠2=∠4,再利用三角形的外角的性质解决问题.【解答】解:如图,∵a∥b,∴∠2=∠5,由翻折变换的性质可知∠4=∠5,∴∠4=∠2,∵∠1=∠2+∠4=110°,∴∠2=∠4=55°,故答案为:55°.【点评】本题考查平行线的性质,翻折变换等知识,解题的关键是理解翻折变换的性质,属于中考常考题型.【变式5-5】(2022•沭阳县模拟)已知长方形纸条ABCD,点E,G在AD边上,点F,H在BC边上.将纸条分别沿着EF,GH折叠,如图,当DC恰好落在EA'上时,∠1与∠2的数量关系是()A.∠1+∠2=135°B.∠2﹣∠1=15°C.∠1+∠2=90°D.2∠2﹣∠1=90°【分析】根据折叠的性质和平角的定义解答即可.【解答】解:∵DC恰好落在EA'上,∴∠ED′G=90°,∴∠D′EG+∠D′GE=90°,∴∠A′EA+∠D′GD=360°﹣90°=270°,由折叠得,∠1=12∠A′EA,∠2=12∠D′GD,∴∠1+∠2=135°,故选:A.【点评】本题考查折叠的性质和角平分线的定义,由折叠的性质得到∠1=12∠A′EA,∠2=12∠D′GD是解题关键.【变式5-6】如图,长方形ABCD中,沿折痕CE翻折△CDE得△CD′E,已知∠ECD′被BC分成的两个角相差18°,则图中∠1的度数为()A.72°或48°B.72°或36°C.36°或54°D.72°或54°【分析】设∠FCD'=α,则∠BCE=α+18°或α﹣18°,分两种情况进行讨论:①当∠BCE=α+18°时,∠ECD'=2α+18°=∠DCE,②当∠BCE=α﹣18°时,∠ECD'=2α﹣18°=∠DCE,分别根据∠BCD=90°列式计算即可.【解答】解:如图,设∠FCD'=α,则∠BCE=α+18°或α﹣18°,①当∠BCE=α+18°时,∠ECD'=2α+18°=∠DCE,∵∠BCD=90°,∴α+18°+2α+18°=90°,解得α=18°,∴∠CFD'=90°﹣18°=72°=∠1;②当∠BCE=α﹣18°时,∠ECD'=2α﹣18°=∠DCE,∵∠BCD=90°,∴α﹣18°+2α﹣18°=90°,解得α=42°,∴∠CFD'=90°﹣42°=48°=∠1;综上所述,图中∠1的度数为72°或48°,故选:A.【点评】本题主要考查了折叠问题,解题时注意:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.【例题6】(2023秋•仁寿县期末)如图,在△ABC中,AD⊥BC,EF∥BC,EC⊥CF,∠EFC=∠ACF,则下列结论:①AD⊥EF;②CE平分∠ACB;③∠FEC=∠ACE;④AB∥CF.其中正确的结论个数是()A.1个B.2个C.3个D.4个【分析】根据平行线的性质得到AD⊥EF,故①符合题意;∠CEF=∠BCE,根据余角的性质得到∠CEF =∠ACE,故③符合题意;根据角平分线的定义得到CE平分∠ACB,故②符合题意;根据已知条件无法证明AB∥CF,故④不符合题意.【解答】解:∵AD⊥BC,EF∥BC,∴AD⊥EF,故①符合题意;∵EF∥BC,∴∠CEF=∠BCE,∵EC⊥CF,∴∠ECF=90°,∴∠CEF+∠F=∠ACE+∠ACF=90°,∵∠EFC=∠ACF,∴∠CEF=∠ACE,故③符合题意;∴∠ACE=∠BCE,∴CE平分∠ACB,故②符合题意;∵EC⊥CF,要使AB∥CF,则CE⊥AB,∵CE平分∠ACB,但AC不一定与BC相等,∴无法证明AB∥CF,故④不符合题意,故选:C.【点评】本题考查了平行线的判定与性质,根据题目的已知条件并结合图形进行分析是解题的关键.【变式6-1】(2023秋•浚县期末)如图a∥b,c与a相交,d与b相交,下列说法:①若∠1=∠2,则∠3=∠4;②若∠1+∠4=180°,则c∥d;③∠4﹣∠2=∠3﹣∠1;④∠1+∠2+∠3+∠4=360°,正确的有()A.①③④B.①②③C.①②④D.②③【分析】根据平行线的性质和判定逐一进行判断求解即可.【解答】解:①若∠1=∠2,则a∥e∥b,则∠3=∠4,故此说法正确;②若∠1+∠4=180°,由a∥b得到,∠5+∠4=180°,则∠1=∠5,则c∥d;故此说法正确;③由a∥b得到,∠5+∠4=180°,由∠2+∠3+∠5+180°﹣∠1=360°得,∠2+∠3+180°﹣∠4+180°﹣∠1=360°,则∠4﹣∠2=∠3﹣∠1,故此说法正确;④由③得,只有∠1+∠4=∠2+∠3=180°时,∠1+∠2+∠3+∠4=360°.故此说法错误.故选:B.【点评】此题考查了平行线的性质与判定,熟练掌握平行线的性质与判定是解题的关键.【变式6-2】(2022秋•南岗区校级期中)如图,AB∥CD∥EF,则下列各式中正确的是()A.∠1+∠2+∠3=180°B.∠1+∠2=180°+∠3C.∠1+∠3=180°+∠2D.∠2+∠3=180°+∠1【分析】根据两直线平行,同旁内角互补可得∠2+∠BDC=180°,再根据两直线平行,内错角相等可得∠3=∠CDE,而∠CDE=∠1+∠BDC,整理可得∠2+∠3﹣∠1=180°.【解答】解:∵AB∥CD∥EF,∴∠2+∠BDC=180°,∠3=∠CDE,又∠BDC=∠CDE﹣∠1,∴∠2+∠3﹣∠1=180°.故选:D.【点评】本题主要考查平行线的性质,从复杂图形中找出内错角,同旁内角是解题的关键.【变式6-3】(2023春•镇江期中)如图,AB∥CF,∠ACF=80°,∠CAD=20°,∠ADE=120°.(1)直线DE与AB有怎样的位置关系?说明理由;(2)若∠CED=71°,求∠ACB的度数.【分析】(1)根据平行线的性质,得出∠BAC=∠ACF=80°,根据∠CAD=20°,求出∠BAD=60°,根据∠BAD+∠ADE=180°,即可得出结论;(2)根据平行线的性质得出∠B=∠CED=71°,根据三角形内角和定理求出∠ACB=29°.【解答】解:(1)DE∥AB;理由如下:∵AB∥CF,∠ACF=80°,∴∠BAC=∠ACF=80°,∵∠CAD=20°,∴∠BAD=∠BAC﹣∠DAC=60°,∵∠ADE=120°,∴∠BAD+∠ADE=60°+120°=180°,∴DE∥AB.(2)DE∥AB,∠CED=71°,∴∠B=∠CED=71°,∵∠BAC=80°,∴∠ACB=180°﹣∠B﹣∠BAC=180°﹣71°﹣80°=29°.【点评】本题主要考查了平行线的判定和性质,三角形内角和定理的应用,解题的关键是熟练掌握平行线的判定.【变式6-4】(2022春•舞阳县期末)如图,点D在AC上,点F、G分别在AC、BC的延长线上,CE平分∠ACB并交BD于H,且∠EHD+∠HBF=180°.(1)若∠F=30°,求∠ACB的度数;(2)若∠F=∠G,求证:DG∥BF.【分析】(1)由对顶角相等、同旁内角互补,两直线平行判定BF∥EC,则同位角∠ACE=∠F,再根据角平分线的性质即可求解;(2)结合已知条件,角平分线的定义,利用等量代换推知同位角∠BCE=∠G,则易证DG∥BF.【解答】(1)解:∵∠EHD+∠HBF=180°,∠EHD=∠BHC,∴∠BHC+∠HBF=180°,∴BF∥EC,∴∠ACE=∠F=30°,又∵CE平分∠ACB,∴∠ACB=2∠ACE=60°.故∠ACB的度数为60°;(2)证明:∵CE平分∠ACB,∴∠BCE=∠ACE,∵∠ACE=∠F,∠F=∠G,∴∠BCE=∠G,∴DG∥EC,又∵BF∥EC,∴DG∥BF.【点评】本题考查了平行线的判定.解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.【变式6-5】(2022春•温江区校级期中)如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠D+∠AED=180°,∠C=∠EFG.。
七年级下册数学平行线及其判定
七年级下册数学平行线及其判定数学是一门严谨的学科,它涵盖了许多重要的概念和定理。
在这篇文章中,我们将讨论平行线及其判定。
平行线是指在二维平面上没有交点的直线。
在几何学中,平行线的性质和判定方法是非常重要的,我们将通过详细的解释和例子来帮助同学们更深入地理解这一概念。
1.平行线的定义首先,让我们来看一下平行线的定义。
在几何学中,两条直线是平行线,当且仅当它们在同一平面上且永远不相交。
这意味着无论我们如何延长这两条直线,它们也永远不会相交。
通过这个定义,我们可以很容易地理解什么是平行线。
但是,实际中我们如何判断两条直线是否平行呢?接下来,我们将讨论几种常见的平行线判定方法。
2.平行线的判定2.1直线与直线的判定首先,让我们来看一下两条直线是否平行的判定方法。
根据几何学的知识,我们知道,如果两条直线的斜率相等,那么它们就是平行线。
这是因为斜率代表了直线的倾斜程度,如果两条直线的斜率相等,那么它们的倾斜程度也相等,这就意味着它们是平行的。
举个例子,假设我们有两条直线,分别是y=2x+3和y=2x-1。
我们可以很容易地计算出它们的斜率都是2,这意味着这两条直线是平行的。
2.2点与直线的判定除了两条直线的斜率相等之外,我们还可以利用点与直线之间的关系来判定两条直线是否平行。
具体来说,如果一条直线上的一点到另一条直线的距离为0,则这两条直线是平行的。
这是因为如果两条直线是平行的,那么它们的距离永远不会改变,所以一个点到另一条直线的距离也永远是不变的。
举个例子,假设我们有一条直线L:y=2x+3,还有一点A(1,5),我们需要判断这个点到直线L的距离。
我们可以利用点到直线的距离公式来计算,如果计算出来的距离为0,那么这个点和直线是平行的。
2.3垂直线的判定有时候,我们也需要判断两条直线是否是垂直的。
其实,判断两条直线是否垂直与判断两条直线是否平行是类似的。
如果两条直线的斜率的乘积为-1,那么这两条直线是垂直的。
苏教版七年级数学下册 7.2 探索平行线的性质 知识点
7.2 探索平行线的性质知识点知识点一、平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.PS:只有当两直线平行时,才会有同位角相等、内错角相等以及同旁内角互补.例:如图,将长方形纸片ABCD沿对角线BD折叠,点C的对应点为E.若∠CBD=35°,则∠ADE的度数为()A.15°B.20°C.25°D.30°【分析】根据折叠的性质和平行线的性质,可以得到∠ADB和∠EDB的度数,然后即可得到∠ADE的度数.【解答】解:由折叠的性质可得,∠CDB=∠EDB,∵AD∥BC,∠CBD=35°,∴∠CBD=∠ADB=35°,∵∠C=90°,∴∠CDB=55°,∴∠EDB=55°,∴∠ADE=∠EDB﹣∠ADB=55°﹣35°=20°,故选:B.【点评】本题考查平行线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.知识点二、平行线的判定与性质的区别条件结论作用判定同位角相等两直线平行由角的数量关系确定直线的位置关系内错角相等两直线平行同旁内角互补两直线平行从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质. 例:下列说法中:①过一点有且只有一条直线与已知直线平行;②同旁内角互补,两直线平行;③直线外一点到这条直线的垂线段就是这个点到这条直线的距离;④同一平面内两条不相交的直线一定平行.其中正确的有()A.1个B.2个C.3个D.4个【分析】依据平行公理,平行线的判定,点到直线的距离的定义判定即可.【解答】解:①过直线外一点有且只有一条直线与已知直线平行,故本选项错误;②同旁内角互补,两直线平行,故本选项正确;③直线外一点到这条直线的垂线段的长度就是点到直线的距离,故本选项错误;④同一平面内两条不相交的直线一定平行,故本选项正确,综上所述,说法正确的有②④共2个.故选:B.【点评】本题考查了平行线的性质与判定,过直线外一点有且只有一条直线与已知直线平行等,熟记各性质是解题的关键.巩固练习一.选择题(共12小题)1.如图,将长方形纸片ABCD沿EF折叠后,点C,D分别落在点C′,D′处,若∠AFE=68°,则∠C′EF等于()A.68°B.80°C.40°D.55°2.将一张长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形(△ABC),BC为折痕,若∠1=42°,则∠2的度数为()A.48°B.58°C.60°D.69°3.如图,直线a∥b,直线l与a、b分别相交于A、B两点,过点A作直线l的垂线交直线b于点C,若∠1=60°,则∠2的度数为()A.60°B.40°C.30°D.20°4.如图,AB∥CD,∠EGB=50°,∠CHF=()A.25°B.30°C.50°D.130°5.如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E,若∠1=40°,则∠2的度数为()A.25°B.20°C.15°D.10°6.如图,已知直线AB∥CD,直线EF分别与AB、CD交于点M、N,点H在直线CD上,HG⊥EF于点G,过点作GP∥AB.则下列结论:①∠AMF与∠DNF是同旁内角;②∠PGM=∠DNF;③∠BMN+∠GHN=90°;④∠AMG+∠CHG=270°.其中正确结论的个数是()A.1个B.2 个C.3个D.4个7.如图,CD∥AB,点O在AB上,OE平分∠BOD,OF⊥OE,∠D=120°,∠AOF的度数是()A.20°B.30°C.40°D.60°8.如图,l1∥l2,则∠1、∠2、∠3关系是()A.∠2>∠1+∠3 B.无法确定C.∠3=∠1﹣∠2 D.∠2=∠1+∠39.如图,给出下列条件:①∠1=∠2;②∠3=∠4;③AB∥CE且∠ADC=∠B;④AB∥CE且∠BCD=∠BAD;其中能推出BC∥AD的条件为()A.①②B.②④C.②③D.②③④10.如图,AC∥BD,AE平分∠BAC交BD于点E,若∠1=64°,则∠2=()A.116°B.122°C.128°D.142°11.如图,AB∥CD,∠1=∠2,∠3=130°,则∠2等于()A.30°B.25°C.35°D.40°12.如图,AD∥BC,∠D=∠ABC,点E是边DC上一点,连接AE交BC的延长线于点H.点F是边AB 上一点.使得∠FBE=∠FEB,作∠FEH的角平分线EG交BH于点G,若∠DEH=100°,则∠BEG的度数为()A.30°B.40°C.50°D.60°二.填空题(共12小题)13.如图,已知a∥b,∠2=95°,∠3=140°,则∠1的度数为.14.一副三角板按如图所示放置,AB∥DC,则∠CAE的度数为.15.如图,点F在∠BAC的平分线AP上,点E在AB上,且EF∥AC,若∠BEF=40°,则∠AFE=°.16.如图,直线AB∥CD,∠A=60°,∠D=40°,则∠E=.17.如图,一束光线从点C出发,经过平面镜AB反射后,沿与AF平行的线段DE射出(此时∠1=∠2),若测得∠DCF=100°,则∠A=.18.将一把直尺和一块含30°角的三角板ABC接如图所标的位置放置,如果∠CDE=42°,那么∠BAF的度数为.19.如图,若AB∥CD,BF平分∠ABE,DF平分∠CDE,∠BED=90°,则∠BFD=.20.如图,如果∠1=∠3,∠2=64°,那么∠4的度数为.21.如图,AB∥CD,∠A=50°,则∠1=.22.如图,已知AM∥CN,点B为平面内一点,AB⊥BC于B,过点B作BD⊥AM于点D,点E、F在DM 上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,则∠EBC的度数为.23.如图,已知AB∥DE,∠ABC=76°,∠CDE=150°,则∠BCD的度数为°.24.如图,已如长方形纸片ABCD,O是BC边上一点,P为CD中点,沿AO折叠使得顶点B落在CD边上的点P处,则∠OAB的度数是.三.解答题(共6小题)25.几何说理填空:如图,F是BC上一点,FG⊥AC于点G,H是AB上一点,HE⊥AC于点E,∠1=∠2,求证:DE∥BC.证明:连接EF∵FG⊥AC,HE⊥AC,∴∠FGC=∠HEC=90°().∴∥().∴∠3=∠().又∵∠1=∠2,∴∠1+∠3=∠2+∠4.即∠DEF=∠EFC∴DE∥BC().26.如图,∠1=∠BCE,∠2+∠3=180°.(1)判断AC与EF的位置关系,并说明理由;(2)若CA平分∠BCE,EF⊥AB于F,∠1=72°,求∠BAD的度数.27.如图,∠ABC=∠ADC,BF平分∠ABC,DE平分∠ADC,∠1=∠2.问AB与CD,AD与BC平行吗?请说明理由.28.如图:已知,∠HCO=∠EBC,∠BHC+∠BEF=180°.(1)求证:EF∥BH;(2)若BH平分∠EBO,EF⊥AO于F,∠HCO=64°,求∠CHO的度数.29.如图,直线AB∥CD,CD∥EF,且∠B=30°,∠C=125°,求∠CGB的度数.30.已知EM∥BN.(1)如图1,求∠E+∠A+∠B的大小,并说明理由.(2)如图2,∠AEM与∠ABN的角平分线相交于点F.①若∠A=120°,∠AEM=140°,则∠EFD=.②试探究∠EFD与∠A的数量关系,并说明你的理由.(3)如图3,∠AEM与∠ABN的角平分线相交于点F,过点F作FG⊥BD交BN于点G,若4∠A=3∠EFG,求∠EFB的度数.一.选择题(共12小题)1.如图,将长方形纸片ABCD沿EF折叠后,点C,D分别落在点C′,D′处,若∠AFE=68°,则∠C′EF等于()A.68°B.80°C.40°D.55°【分析】根据平行线的性质,可以得到∠CEF的度数,然后根据折叠的性质,即可得到∠C′EF的度数,本题得以解决.【解答】解:∵∠AFE=68°,AD∥BC,∴∠AFE=∠CEF=68°,由折叠的性质可得,∠CEF=∠C′EF,∴∠C′EF=68°,故选:A.【点评】本题考查平行线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.2.将一张长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形(△ABC),BC为折痕,若∠1=42°,则∠2的度数为()A.48°B.58°C.60°D.69°【分析】根据平行线的性质,可以得到∠1=∠4,∠4=∠5,再根据∠1=42°和折叠的性质,即可得到∠2的度数,本题得以解决.【解答】解:如右图所示,∵长方形的两条长边平行,∠1=42°,∴∠1=∠4=42°,∠4=∠5,∴∠5=42°,由折叠的性质可知,∠2=∠3,∵∠2+∠3+∠5=180°,∴∠2=69°,故选:D.【点评】本题考查平行线的性质、折叠的性质,解答本题的关键是明确题意,利用数形结合的思想解答.3.如图,直线a∥b,直线l与a、b分别相交于A、B两点,过点A作直线l的垂线交直线b于点C,若∠1=60°,则∠2的度数为()A.60°B.40°C.30°D.20°【分析】根据平行线的性质可得∠1+∠2+90°=180°,由∠1=60°可求解∠2的度数.【解答】解:∵a∥b,∴∠1+∠2+∠BAC=180°,∵∠ABC=90°,∠1=60°,∴∠2=30°,故选:C.【点评】本题主要考查平行线的性质,掌握平行线的性质是解题的关键.4.如图,AB∥CD,∠EGB=50°,∠CHF=()A.25°B.30°C.50°D.130°【分析】根据平行线的性质可得∠EHD=∠EGB=50°,再利用对顶角的性质可求解.【解答】解:∵AB∥CD,∠EGB=50°,∴∠EHD=∠EGB=50°,∴∠CHF=∠EHD=50°.故选:C.【点评】本题主要考查平行线的性质,对顶角的性质,属于基础题.5.如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E,若∠1=40°,则∠2的度数为()A.25°B.20°C.15°D.10°【分析】根据矩形的性质可得CD∥AB,∠1+∠CBD=90°,可求解∠CBD的度数,由平行线的性质可求解∠ABD的度数,结合折叠的性质可得∠2+∠ABD=∠CBD,进而可求解.【解答】解:在矩形ABCD中,∠C=90°,AB∥CD,∴∠1+∠CBD=90°,CD∥AB,∵∠1=40°,∴∠CBD=50°,∠ABD=∠1=40°,由折叠可知:∠2+∠ABD=∠CBD,∴∠2+∠ABD=50°,∴∠2=10°.故选:D.【点评】本题主要考查矩形的性质,平行线的性质,折叠与对称的性质,由折叠得∠2+∠ABD=∠CBD 是解题的关键.6.如图,已知直线AB∥CD,直线EF分别与AB、CD交于点M、N,点H在直线CD上,HG⊥EF于点G,过点作GP∥AB.则下列结论:①∠AMF与∠DNF是同旁内角;②∠PGM=∠DNF;③∠BMN+∠GHN=90°;④∠AMG+∠CHG=270°.其中正确结论的个数是()A.1个B.2 个C.3个D.4个【分析】由平行公理的推论可求AB∥CD∥GP,利用平行线的性质和三角形的外角性质依次判断可求解.【解答】解:∵∠AMF与∠DNF不是同旁内角,∴①错误;∵AB∥CD,GP∥AB,∴AB∥CD∥GP,∴∠PGM=∠CNM=∠DNF,∠BMN=∠HNG,∠AMN+∠HNG=180°,故②正确;∵HG⊥MN,∴∠HNG+∠GHN=90°,∴∠BMN+∠GHN=90°,故③正确;∵∠CHG=∠MNH+∠HGN,∴∠MNH=∠CHG﹣90°,∴∠AMN+∠HNG=∠AMN+∠CHG﹣90°=180°,∴∠AMG+∠CHG=270°,故④正确,故选:C.【点评】本题考查了平行线的性质,垂线的性质,同位角,内错角,同旁内角的定义,掌握平行公理的推论是本题的关键.7.如图,CD∥AB,点O在AB上,OE平分∠BOD,OF⊥OE,∠D=120°,∠AOF的度数是()A.20°B.30°C.40°D.60°【分析】根据平行线的性质可得∠AOD=60°,易得∠DOB=120°,利用角平分线的性质可得∠DOE=60°,由角的和差易得结果.【解答】解:∵CD∥AB,∠D=120°,∴∠AOD+∠D=180°,∴∠AOD=60°,∠DOB=120°,∵OE平分∠BOD,∴∠DOE=60°,∵OF⊥OE,∴∠FOE=90°,∴∠DOF=90°﹣60°=30°,∴∠AOF=∠AOD﹣∠DOF=60°﹣30°=30°.故选:B.【点评】此题考查平行线的性质,关键是根据平行线的性质解答.8.如图,l1∥l2,则∠1、∠2、∠3关系是()A.∠2>∠1+∠3 B.无法确定C.∠3=∠1﹣∠2 D.∠2=∠1+∠3【分析】过∠2的顶点,作射线l,使l∥l1,利用平行线的性质得到∠1、∠2与∠α、∠β的关系,从而得出∠1、∠2、∠3关系.【解答】解:过∠2的顶点,作如图所示的射线l,使l∥l1,∵l1∥l2,l∥l1,∴l1∥l2∥l.∴∠1=∠α,∠2=∠β.∵∠α+∠β=∠2,∴∠1+∠3=∠2.故选:D.【点评】本题考查了平行线的性质,作l与l1平行并利用平行线的性质是解决本题的关键.9.如图,给出下列条件:①∠1=∠2;②∠3=∠4;③AB∥CE且∠ADC=∠B;④AB∥CE且∠BCD=∠BAD;其中能推出BC∥AD的条件为()A.①②B.②④C.②③D.②③④【分析】根据平行线的判定条件,逐一判断,排除错误答案.【解答】解:①∵∠1=∠2,∴AB∥CD,不符合题意;②∵∠3=∠4,∴BC∥AD,符合题意;③∵AB∥CD,∴∠B+∠BCD=180°,∵∠ADC=∠B,∴∠ADC+∠BCD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;④∵AB∥CE,∴∠B+∠BCD=180°,∵∠BCD=∠BAD,∴∠B+∠BAD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;故能推出BC∥AD的条件为②③④.故选:D.【点评】此题主要考查了平行线的判定,关键是掌握判定定理:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.10.如图,AC∥BD,AE平分∠BAC交BD于点E,若∠1=64°,则∠2=()A.116°B.122°C.128°D.142°【分析】根据邻补角定义可得∠3+∠4的度数,再根据角平分线定义可得∠4的度数,根据两直线平行同旁内角互补即可求出∠2的度数.【解答】解:∵∠1=64°,∴∠3+∠4=180°﹣64°=116°,∵AE平分∠BAC,∴∠3=∠4=116°÷2=58°,∵AC∥BD,∴∠2+∠4=180°,∴∠2=180°﹣58°=122°.故选:B.【点评】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.11.如图,AB∥CD,∠1=∠2,∠3=130°,则∠2等于()A.30°B.25°C.35°D.40°【分析】先根据平行线的性质求出∠GAB的度数,再根据邻补角的定义求出∠BAE的度数,最后根据∠1=∠2求出∠2即可.【解答】解:∵AB∥CD,∠3=130°,∴∠GAB=∠3=130°,∵∠BAE+∠GAB=180°,∴∠BAE=180°﹣∠GAB=180°﹣130°=50°,∵∠1=∠2,∴∠2∠BAE50°=25°.故选:B.【点评】本题主要考查了平行线的性质.解题的关键是掌握平行线的性质:两直线平行,同位角相等.12.如图,AD∥BC,∠D=∠ABC,点E是边DC上一点,连接AE交BC的延长线于点H.点F是边AB 上一点.使得∠FBE=∠FEB,作∠FEH的角平分线EG交BH于点G,若∠DEH=100°,则∠BEG的度数为()A.30°B.40°C.50°D.60°【分析】AD∥BC,∠D=∠ABC,则AB∥CD,则∠AEF=180°﹣∠AED﹣∠BEG=180°﹣2β,在△AEF中,100°+2α+180°﹣2β=180°,故β﹣α=40°,即可求解.【解答】解:设FBE=∠FEB=α,则∠AFE=2α,∠FEH的角平分线为EG,设∠GEH=∠GEF=β,∵AD∥BC,∴∠ABC+∠BAD=180°,而∠D=∠ABC,∴∠D+∠BAD=180°,∴AB∥CD,∠DEH=100°,则∠CEH=∠F AE=80°,∠AEF=180°﹣∠FEG﹣∠HEG=180°﹣2β,在△AEF中,在△AEF中,80°+2α+180﹣2β=180°故β﹣α=40°,而∠BEG=∠FEG﹣∠FEB=β﹣α=40°,故选:B.【点评】本题考查的是平行线的性质,涉及到角平行线、外角定理,本题关键是落脚于△AEF内角和为180°,即100°+2α+180°﹣2β=180°,题目难度较大.二.填空题(共12小题)13.如图,已知a∥b,∠2=95°,∠3=140°,则∠1的度数为125°.【分析】根据三角形的内角和外角的关系,可以求得∠5的度数,再根据平行线的性质,即可得到∠1的度数,本题得以解决.【解答】解:∵∠3=140°,∠3+∠4=180°,∴∠4=40°,∵∠2=95°,∠2=∠5+∠4,∴∠5=55°,∵a∥b,∴∠1+∠5=180°,∴∠1=125°,故答案为:125°.【点评】本题考查平行线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.14.一副三角板按如图所示放置,AB∥DC,则∠CAE的度数为15°.【分析】根据题意和图形,利用平行线的性质,可以得到∠BAE的度数,再根据∠2=30°,即可得到∠CAE的度数.【解答】解:由图可知,∠1=45°,∠2=30°,∵AB∥DC,∴∠BAE=∠1=45°,∴∠CAE=∠BAE﹣∠2=45°﹣30°=15°,故答案为:15°.【点评】本题考查平行线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.15.如图,点F在∠BAC的平分线AP上,点E在AB上,且EF∥AC,若∠BEF=40°,则∠AFE=20°.【分析】根据平行线的性质和角平分线的性质,可以得到∠AFE的度数.【解答】解:∵AP平分∠BAC,∴∠BAP=∠CAP,∵EF∥AC,∴∠EF A=∠CAP,∴∠BAP=∠EF A,∵∠BEF=40°,∠BEF=∠BAP+∠EF A,∴∠BAP=∠EF A=20°,即∠AFE=20°,故答案为:20.【点评】本题考查平行线的性质、角平分线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.16.如图,直线AB∥CD,∠A=60°,∠D=40°,则∠E=20°.【分析】根据平行线的性质,可以得到∠1的度数,再根据∠1=∠E+∠D,即可得到∠E的度数.【解答】解:∵AB∥CD,∠A=60°,∴∠A=∠1=60°,∵∠1=∠E+∠D,∠D=40°,∴∠E=∠1﹣∠D=60°﹣40°=20°,故答案为:20°.【点评】本题考查平行线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.17.如图,一束光线从点C出发,经过平面镜AB反射后,沿与AF平行的线段DE射出(此时∠1=∠2),若测得∠DCF=100°,则∠A=50°.【分析】由平行线的性质可得∠1=∠2=∠A,由外角的性质可求解.【解答】解:∵DE∥AF,∴∠2=∠A,∵∠1=∠2,∴∠1=∠2=∠A,∵∠DCF=∠A+∠1=2∠A=100°,∴∠A=50°,故答案为:50°.【点评】本题考查了平行线的性质,掌握平行线的性质是本题的关键.18.将一把直尺和一块含30°角的三角板ABC接如图所标的位置放置,如果∠CDE=42°,那么∠BAF的度数为12°.【分析】由DE∥AF得∠AFD=∠CDE=42°,再根据三角形的外角性质可得答案.【解答】解:由题意知DE∥AF,∠CDE=42°,∴∠AFD=∠CDE=42°,∵∠B=30°,∴∠BAF=∠AFD﹣∠B=42°﹣30°=12°,故答案为:12°.【点评】本题主要考查平行线的性质,解题的关键是掌握两直线平行同位角相等与三角形外角的性质.19.如图,若AB∥CD,BF平分∠ABE,DF平分∠CDE,∠BED=90°,则∠BFD=45°.【分析】根据平行线的性质和角平分线的性质,可以求得∠BFD的度数,本题得以解决.【解答】解:∵AB∥CD,∴∠ABE=∠4,∠1=∠2,∵∠BED=90°,∠BED=∠4+∠EDC,∴∠ABE+∠EDC=90°,∵BF平分∠ABE,DF平分∠CDE,∴∠1+∠3=45°,∵∠5=∠2+∠3,∴∠5=∠1+∠3=45°,即∠BFD=45°,故答案为:45°.【点评】本题考查平行线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.20.如图,如果∠1=∠3,∠2=64°,那么∠4的度数为116°.【分析】根据∠1=∠3,可以得到AB∥CD,从而可以得到∠2=∠5,再根据∠5+∠4=180°,即可得到∠4的度数.【解答】解:∵∠1=∠3,∴AB∥CD,∴∠2=∠5,∵∠2=64°,∴∠5=64°,∵∠5+∠4=180°,∴∠4=116°,故答案为:116°.【点评】本题考查平行线的性质和判定,解答本题的关键是明确题意,利用数形结合的思想解答.21.如图,AB∥CD,∠A=50°,则∠1=130°.【分析】由平行线的性质可得出∠2,根据对顶角相得出∠1.【解答】解:如图:∵AB∥CD,∴∠A+∠2=180°,∵∠A=50°,∴∠1=∠2=180°﹣∠A=180°﹣50°=130°.故答案为:130°.【点评】本题考查了平行线的性质,解题的关键是能够根据两直线平行,同旁内角互补和对顶角相等进行分析解答.22.如图,已知AM∥CN,点B为平面内一点,AB⊥BC于B,过点B作BD⊥AM于点D,点E、F在DM 上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,则∠EBC的度数为105°.【分析】先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.【解答】解:过点B作BG∥DM,如图:∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.故答案为:105°.【点评】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.23.如图,已知AB∥DE,∠ABC=76°,∠CDE=150°,则∠BCD的度数为46°.【分析】根据平行线的性质,可以求得∠BCF和∠DCF的度数,从而可以得到∠BCD的度数.【解答】解:过点C作CF∥AB,∵AB∥DE,∴AB∥DE∥CF,∴∠ABC=∠BCE,∠CDE+∠DCF=180°,∵∠ABC=76°,∠CDE=150°,∴∠BCF=76°,∠DCF=30°,∴∠BCD=46°,故答案为:46.【点评】本题考查平行线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.24.如图,已如长方形纸片ABCD,O是BC边上一点,P为CD中点,沿AO折叠使得顶点B落在CD边上的点P处,则∠OAB的度数是30°.【分析】根据折叠,得出相等的线段和相等的角,根据中点得出DP AP,进而得出∠DAP=30°,再根据折叠对称,得出答案.【解答】解:由折叠得,∠BAO=∠OAP,AB=AP,∵长方形纸片ABCD,∴AB=CD,∠D=∠DAB=∠B=90°,∵P为CD中点,∴PC=PD CD AP,在Rt△ADP中,∠DAP=30°,∴∠OAB=∠OAP(90°﹣30°)=30°,故答案为:30°.【点评】考查矩形的性质,直角三角形的边角关系,折叠轴对称的性质等知识,根据折叠对称相等的角和线段,是解决问题的关键.三.解答题(共6小题)25.几何说理填空:如图,F是BC上一点,FG⊥AC于点G,H是AB上一点,HE⊥AC于点E,∠1=∠2,求证:DE∥BC.证明:连接EF∵FG⊥AC,HE⊥AC,∴∠FGC=∠HEC=90°(垂直的性质).∴FG∥HE(同位角相等,两直线平行).∴∠3=∠4(两直线平行,内错角相等).又∵∠1=∠2,∴∠1+∠3=∠2+∠4.即∠DEF=∠EFC∴DE∥BC(内错角相等,两直线平行).【分析】要证明DE∥FC,可证明∠DEF=∠EFC,由于∠1=∠2,可证明∠3=∠4,需证明EH∥FG,可通过垂直的性质得到.【解答】证明:连接EF∵FG⊥AC,HE⊥AC,∴∠FGC=∠HEC=90°(垂线的性质).∴FG∥HE(同位角相等,两直线平行).∴∠3=∠4(两直线平行,内错角相等).又∵∠1=∠2,∴∠1+∠3=∠2+∠4.即∠DEF=∠EFC∴DE∥BC(内错角相等,两直线平行).故答案为:垂线的性质;FG,HE,同位角相等,两直线平行;4,两直线平行,内错角相等;内错角相等,两直线平行.【点评】本题考查了平行线的性质和判定,掌握平行线的性质和判定并学会分析是解决本题的关键.26.如图,∠1=∠BCE,∠2+∠3=180°.(1)判断AC与EF的位置关系,并说明理由;(2)若CA平分∠BCE,EF⊥AB于F,∠1=72°,求∠BAD的度数.【分析】(1)由∠1=∠BCE,可得到直线AD与EC平行,可得到∠2与∠4间关系,再由∠2+∠3=180°判断AC与EF的位置关系;(2)由(1)的结论及垂直可得到∠BAC的度数,再由平行线及角平分线的性质得到∠2的度数,利用角的和差关系可得结论.【解答】解:(1)AC∥EF.理由:∵∠1=∠BCE,∴AD∥CE.∴∠2=∠4.∵∠2+∠3=180°,∴∠4+∠3=180°.∴EF∥AC.(2)∵AD∥EC,CA平分∠BCE,∴∠ACD=∠4=∠2.∵∠1=72°,∴∠2=36°.∵EF∥AC,EF⊥AB于F,∴∠BAC=∠E=90°.∴∠BAD=∠BAC﹣∠2=54°.【点评】本题考查了平行线的性质和判定、角平分线的性质及垂直的性质等知识点,综合性较强,掌握平行线的性质和判定是解决本题的关键.27.如图,∠ABC=∠ADC,BF平分∠ABC,DE平分∠ADC,∠1=∠2.问AB与CD,AD与BC平行吗?请说明理由.【分析】先根据角平分线的定义得到∠2∠ABC,∠CDE∠ADC,由于∠ABC=∠ADC,则∠2=∠CDE,根据∠1=∠2,可得∠1=∠CDE,然后根据同旁内角互补,两直线平行得到AB∥CD,再根据平行线的性质由AB∥CD得到∠ADC+∠A=180°,由于∠ABC=∠ADC,则∠ABC+∠A=180°,再根据同旁内角互补,两直线平行可判断AD∥BC.【解答】解:AB与CD,AD与BC平行.理由如下:∵BF平分∠ABC,DE平分∠ADC,∴∠2∠ABC,∠CDE∠ADC,∵∠ABC=∠ADC,∴∠2=∠CDE,∵DE∥BF,∴∠1=∠2,∴∠1=∠2=∠CDE,∴AB∥CD,∴∠ADC+∠A=180°,∵∠ABC=∠ADC,∴∠ABC+∠A=180°,∴AD∥BC.【点评】本题考查了平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,同位角相等;两直线平行,同旁内角互补.28.如图:已知,∠HCO=∠EBC,∠BHC+∠BEF=180°.(1)求证:EF∥BH;(2)若BH平分∠EBO,EF⊥AO于F,∠HCO=64°,求∠CHO的度数.【分析】(1)要证明EF∥BH,可通过∠E与∠EBH互补求得,利用平行线的性质说明∠EBH=∠CHB 可得结论.(2)要求∠CHO的度数,可通过平角和∠FHC求得,利用(1)的结论及角平分线的性质求出∠FHB 及∠BHC的度数即可.【解答】证明:(1)∵∠HCO=∠EBC,∴EB∥HC.∴∠EBH=∠CHB.∵∠BHC+∠BEF=180°,∴∠EBH+∠BEF=180°.∴EF∥BH.(2)∵∠HCO=∠EBC,∴∠HCO=∠EBC=64°,∵BH平分∠EBO,∴∠EBH=∠CHB∠EBC=32°.∵EF⊥AO于F,EF∥BH,∴∠BHA=90°.∴∠FHC=∠BHA+∠CHB=122°.∵∠CHO=180°﹣∠FHC=180°﹣122°=58°.【点评】本题考查了平行线的性质和判定、角平分线的性质等知识点,理解题意学会分析是解决此类问题的关键.29.如图,直线AB∥CD,CD∥EF,且∠B=30°,∠C=125°,求∠CGB的度数.【分析】根据平行公理的推论可得直线AB∥CD∥EF,根据平行线的性质得出∠BGF=∠B=30°,∠C+∠CGF=180°,求出∠CGF=55°,即可得出答案.【解答】解:∵AB∥CD,CD∥EF,∴AB∥CD∥EF,∵∠B=30°,∠C=125°,∴∠BGF=∠B=30°,∠C+∠CGF=180°,∴∠CGF=55°,∴∠CGB=∠CGF﹣∠BGF=25°,【点评】本题主要考查了平行线的性质以及平行公理的推论,牢记“两直线平行,内错角相等”等平行线的性质是解题的关键.30.已知EM∥BN.(1)如图1,求∠E+∠A+∠B的大小,并说明理由.(2)如图2,∠AEM与∠ABN的角平分线相交于点F.①若∠A=120°,∠AEM=140°,则∠EFD=60°.②试探究∠EFD与∠A的数量关系,并说明你的理由.(3)如图3,∠AEM与∠ABN的角平分线相交于点F,过点F作FG⊥BD交BN于点G,若4∠A=3∠EFG,求∠EFB的度数.【分析】(1)过A作AQ∥EM,判定AQ∥BN,根据平行线的性质可求解;(2)①由(1)的结论可求解∠ABN=100°,利用角平分线的定义可求∠DEF=70°,∠FBC=50°,再结合平行线段的性质可求解;②可采用①的解题方法换算求解;(3)设∠EFD=x,则∠A=2x,根据4∠A=3∠EFG列方程,解方程即可求解.【解答】解:(1)过A作AQ∥EM,∴∠E+∠EAQ=180°,∵EM∥BN,∴AQ∥BN,∴∠QAB+∠B=180°,∵∠EAB=∠EAQ+∠QAB,∴∠E+∠EAB+∠B=360°;(2)①由(1)知∠AEM+∠A+∠ABN=360°,∵∠A=120°,∠AEM=140°,∴∠ABN=100°,∵∠AEM与∠ABN的角平分线相交于点F,∴∠DEF=70°,∠FBC=50°,∵EM∥BN,∴∠EDF=∠FBC=50°,∴∠EFD=180°﹣∠DEF﹣∠EDF=180°﹣70°﹣50°=60°,故答案为60°;②由(1)知∠AEM+∠A+∠ABN=360°,∴∠ABN=360°﹣∠AEM﹣∠A,∵∠AEM与∠ABN的角平分线相交于点F,∴∠DEF∠AEM,∠FBC∠ABN,∵EM∥BN,∴∠EDF=∠FBC∠ABN,∴∠EFD=180°﹣∠DEF﹣∠EDF=180°∠AEM∠ABN=180°(360°﹣∠A)∠A,即∠A=2∠EFD;(3)设∠EFD=x,则∠A=2x,由题意得4•2x=3(90+x),解得x=54°,答:∠EFB的度数为54°.【点评】本题主要考查平行线的性质与判定,角平分线的定义,三角形的内角和定理,注意方程思想的应用.。
初一数学:平行线(含解析)
平行线知识互联网板块一 平行线的定义、性质及判定知识导航【例1】 ⑴ 如下左图,AB CD ∥,AD AC ⊥,32ADC ∠=°,则CAB ∠的度数是________. ⑵ 如下中图,直线l 与直线a ,b 相交.若a b ∥,170∠=°,则2∠的度数是________. ⑶ 如下右图,已知a b ∥,170∠=°,240∠=°,则3∠=________. 图DCBA21ba lb a321CBA 【解析】⑴ 122°;⑵ 110°;⑶ 70°【例2】 ⑴ 根据图在()内填注理由:① ∵B CEF ∠ =∠(已知)∴AB CD ∥( )② ∵B BED ∠= ∠(已知)∴AB CD ∥( ) ③ ∵180B CEB ∠+∠=°(已知) ∴AB CD ∥( )⑵ 下列说法中,不正确的是( )A .如果两条直线都和第三条直线平行,那么这两条直线也互相平行B .过直线外一点,有且只有一条直线和已知直线相交C .同一平面内的两条不相交直线平行D .过直线外一点,有且只有一条直线与已知直线平行【解析】⑴ ① 同位角相等,两直线平行;② 内错角相等,两直线平行;③ 同旁内角互补,两直线平行.⑵ 本题主要考察两直线平行的识别.根据平行公理及其推论可知A 、D 正确;同一平面内的两条直线的位置关系只有相交和平行两种,C 正确;过直线外一点,有且只有一条直经典例题FC EB D A线与这条直线平行,而有无数条直线与这条直线相交,B 不正确.【例3】 请你分析下面的题目,从中总结规律,填写在空格上,并选择一道题目具体书写证明.⑴ 如图⑴,已知:AB CD ∥,直线EF 分别交AB ,CD 于M ,N ,MG ,NH 分别平分AME ∠,CNE ∠.求证:MG NH ∥.从本题我能得到的结论是:____________________________________.⑵ 如图⑵,已知:AB CD ∥,直线EF 分别交AB ,CD 于M ,N ,MG ,NH 分别平分BMF ∠,CNE ∠.求证:MG NH ∥.从本题我能得到的结论是:____________________________________.⑶ 如图⑶,已知:AB CD ∥,直线EF 分别交AB ,CD 于M ,N ,MG ,NH 分别平分AMF ∠,CNE ∠,相交于点O .求证:MG NH ⊥.从本题我能得到的结论是:____________________________________.(1)A B C DE FG H M N(2)NMFEDC B A GH (3)NM FEDC B A G H O 【解析】⑴ 两直线平行,同位角的角平分线平行.⑵ 证明:∵AB ∥CD ,∴BMFCNE ∠ 又∵MG ,NH 分别平分BMF从本题我能得到的结论是:两直线平行,内错角的角平分线平行.⑶ 证明:∵AB ∥CD ,∴180AMF CNE ∠+∠=又∵MG ,NH 分别平分AMF ∠,CNE ∠ ∴∴18090MON GMF HNE ∠= ,∴MG ⊥NH从本题我能得到的结论是:两直线平行,同旁内角的角平分线垂直.【例4】 证明:三角形三个内角的和等于180°.【解析】平角为180°,若能用平行线的性质,将三角形三个内角集中到同一个顶点,并得到一个平角,问题即可解决.证法1 : 如图所示,过ABC △的顶点A 作直线l BC ∥,则1BBAC所以180B BAC C ∠+∠+∠=°量代换).即三角形三个内角的和等于180°. 证法2 : 如图所示,延长BC ,过C 作CE AB ∥,则1A ∠=∠ (两直线平行,内错角相等),2B ∠= ∠ (两直线平行,同位角12180BCA ∠+∠+∠=°, 所以180BCA A B ∠+∠+∠=°,即三角形三个内角的和等于180°.【教师备案】利用平行线证明三角形内角和为180°的方法有很l21C BA 21D C EB A多,老师可以带着学生多练几个【例5】 如图,ABC △中CD AB ⊥于D ,DE BC ∥,交AC 于点E .过BC 上任意一点F ,作FG AB ⊥于G ,求证:12∠=∠.GFE 21D CBA【解析】∵FG AB CD AB ⊥⊥,, ∴GF CD ∥ ∴∠∵DE BC ∥, ∴2BCD ∠=∠, ∴12∠=∠【例6】 我们知道,光线从空气射入水中会发生折射现象.光线从水射入空气中,同样也会发生折射现象.如图,为光线从空气射入水中,再从水射入空气中的示意图.由于折射率相同,因此有14∠=∠,23∠=∠.请你用所学的知识来判断光线c 与d 是否平行?并说明理由.ba465dcba321【解析】c d ∥如图:∵25180∠+∠=°,36180∠+∠=°,23∠= ∠ ∴56∠= ∠(等角的补角相等)又∵14∠=∠∴1564∠+∠=∠+∠∴c d ∥(内错角相等,两直线平行)【例7】 (成都市初中数学竞赛)如图,已知AE 平分BAC ∠,BE AE ⊥,垂足为E ,ED AC ∥,36BAE ∠ = ° 求BED ∠ 的度数.EDCBA【解析】126°【例8】 ⑴ 如图所示AB CD ∥.求证:360B E D ∠+∠+∠=°EDCBA⑵ 已知,如图,AEC A C ∠=∠+∠,证明AB CD ∥ED CBA【解析】⑴ 如图,过E 点作EF AB ∥,则180B BEF ∠+∠=°因为AB CD ∥,所以EF CD ∥,180FED D ∠+∠=°所以360B BEF FED D ∠+∠+∠+∠=°又BEF FED BED ∠+∠=∠,∴360B BED D ∠+∠+∠=°即360B E D ∠+∠+∠=°F EDCBA ⑵ 解法一:过点E 作AEF A ∠=∠,则AB EF ∥, 又AEC A C AEF CEF ∠=∠+∠=∠+∠,∴C CEF ∠=∠,∴EF CD ∥,∴AB CD ∥. F ED CBA解法二:作180AEF A ∠+∠=°, 则AB EF ∥,∵360AEC AEF CEF ∠+∠+∠=°, ∴360A C AEF CEF ∠+∠+∠+∠=°, 经典例题板块二 平行线的构造∴180C CEF ∠+∠=°, ∴CD EF ∥, ∴AB CD ∥FE DCB A 【教师备案】这两个模型非常重要,建议各位老师分别从已知角度关系证明平行和已知平行证明角度关系两个方面讲解这两个小题,重点强调书写过程 【例9】 ⑴ 如图⑴,已知14MA NA ∥,探索1A ∠、2A ∠、3A ∠、4A ∠,1B ∠、2B ∠之间的关系.⑵ 如图⑵,已知1n MA NA ∥,探索1A ∠、2A ∠、…、n A ∠之间的关系.⑶ 如图⑶,已知1n MA NA ∥,探索1A ∠、2A ∠、…、n A ∠,1B ∠、2B ∠、…、1n B −∠之间的关系.MNA 4B 2A 2A 3B 1A 1MNA nA 4A 3A 2A 1B n -1B 2B 1A nA n -1A 2A 1NM图⑴ 图⑵ 图⑶【解析】⑴ 123412180A A A A B B ∠+∠+∠+∠=∠+∠+°;⑵ 123(1)180n A A A A n ∠+∠+∠++∠=−×° . ⑶ 12121n n A A A B B B −∠+∠++∠=∠+∠++∠ ;【例10】如图,已知,CD EF ∥,C F ABC +=∠∠∠,求证AB GF ∥G FDECBAQPABCEDFG【解析】如图,过点B 作PQ CD ∥交GF 的延长线于点Q 则PQ EF ∥,【拓1】 如图所示,已知CB OA ∥,100C OAB∠ =∠ ,E ,F 在CB 上,且满足FOB AOB ∠= ∠,OE 平分COF ∠.思维拓展⑴ 求EOB ∠的度数;⑵ 若平行移动AB ,那么OBC ∠:OFC ∠的值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值;⑶ 在平行移动AB 的过程中,是否存在某种情况,使OECOBA ∠=∠?若存在,求出其度数;若不存在,请说明理由.ABC E FO 【解析】⑴40°;⑵1:2;⑶存在,60OECOBA ∠=【拓2】 在同一平面内有1a ,2a ,3a ,…,97a 共97条直线,如果12a a ∥,23a a ⊥,34a a ∥,45a a ⊥,56a a ∥,67a a ⊥,…,那么1a 与97a 的位置关系是________.【解析】寻找规律,12a a ∥,13a a ⊥,14a a ⊥;15a a ∥,16a a ∥,17a a ⊥,18a a ⊥…,4个一循环,974241÷= ,所以971a a ∥【拓3】 在同一平面内有7条直线,证明:必有两条直线的夹角小于26°.【解析】由平行线的性质可知,平移某条直线不影响该直线与其它直线的夹角,故可将7条直线平移使其交于同一点(如下图),A 7A 6A 5A 4A 3A 2A 1O点O 把7条直线分成14条射线,记为1OA ,2OA ,…,14OA ,相邻两射线组成14个角,记为1α,2α,…,14α,其和为一个周角:1214360ααα+++=° , 若结论不成立,则26i α°≥,()1214i = ,,,, 相加,得360这一矛盾说明,在1α,2α,…,14α中,必有一个角小于26°,即必有两条直线的夹角小于26°.【拓4】 如图,已知ABCDFED BC A FEDBC A【解析】如右图所示,分别过点E ,F 做AB 和CD 的平行线,易得:AEC EAB ECD∠=∠+∠x 90°50°30°30°ABCD E FG HMNPR Qx 90°50°30°30°AB CDE FG HMNOP【解析】过点G ,H 作AB ,CD 的平行线,那么AB OG HQ CD ∥∥∥∵AB OG ∥,HQ CD ∥∵OG HQ ∥,∴60GHQ OGH HGE EGO ∠=∠=∠−∠=° ∵在MHQ ∆中,180MHQ HMQ MQH ∠+∠+∠=°又∵180MQR MQH ∠+∠=°,∴MHQ HMQ MQR ∠+∠=∠ ,∴40GHM GHQ MHQ ∠=∠−∠=°习题1. 如图:已知12∠=∠,A C ∠= ∠,求证:①ABDC ∥证明:∵12∠=∠( )∴______∥______( ). ∴C CBE ∠= ∠( )又∵C A ∠=∠( )∴A ∠=________( ) ∴______∥______( ).EDCBA21【解析】已知:AB ,CD ;内错角相等,两直线平行;两直线平行,内错角相等;已知;CBE ∠; 等量代换;AD ,BC ;同位角相等,两直线平行. 习题2. 如图所示,复习巩固⑴ 已知:AB CD ∥,12∠=∠,求证:BE CF ∥; ⑵ 已知:AB CD ∥,BE CF ∥,求证:12∠=∠.F 21E B DA C【解析】⑴ ∵AB CD ∥(已知),∴ABC BCD ∠= ∠(两直线平行,内错角相等) ∵12∠=∠(已知),∴EBC BCF ∠= ∠(等量减等量差相等) ∴BE CF ∥(内错角相等,两直线平行)⑵ ∵AB CD ∥(已知),∴ABC BCD ∠= ∠(两直线平行,内错角相等) 又BE CF ∥(已知),∴EBCBCF ∠= ∠(两直线平行,内错角相等) ∴12∠=∠(等量减等量差相等)习题3. 如图,A B C ,,和D E F ,,分别在同一直线上,AF 分别交CE ,BD 于点G ,H .已知H BCG FE D A习题4. 如图,在折线ABCDEFG 中,已知∠1=∠2=∠3=∠4=∠5,延长AB GF 、交于点M .试探索AMG ∠与3∠的关系,并说明理由.M5G4321DCFEBA【解析】3AMG ∠= ∠.理由:∵12∠=∠,∴AB CD ∥(内错角相等,两直线平行). ∵34∠= ∠,∴CD EF ∥(内错角相等,两直线平行). ∴AB EF又53习题5. (十二届希望杯)如图所示,AB ED ∥,A E α=∠+∠,B C D β=∠+∠+∠,证明:2βα=.DCEBA21D CFEBA21DCFEBA【解析】证法l :因为AB ED ∥,所以180A E α=∠+∠=°.(两直线平行,同旁内角互补)过C 作CF AB ∥.由AB ED ∥,得CF ED ∥ (平行于同一条直线的两条直线平行) 因为CF AB ∥,有1B ∠= ∠ (两直线平行,内错角相等) 又CF ED ∥,有2D ∠= ∠,(两直线平行,内错角相等)所以12360B C D BCD β=∠+∠+∠=∠+∠+∠=° (周角定义)所以2βα=(等量代换)证法2:由AB ED ∥,得180A E α=∠+∠=°.(两直线平行,同旁内角互补)过C 作CF AB ∥(如图). 由AB ED ∥,得CF ED ∥.(平行于同一条直线的两条直线平行)因为CF AB ∥,所以1180B ∠+∠=(两直线平行,同旁内角互补), 又CF ED ∥,所以2180D ∠+∠=(两直线平行,同旁内角互补) 所以(12)(1)(2)360BCD B D B D β=∠+∠+∠=∠+∠+∠+∠=∠+∠+∠+∠=°所以2βα=(等量代换). 习题6. 如图,已知:AB CD ∥,ABFDCE ∠=∠,求证:BFE FEC ∠=∠ FEDCBA4321ABC DEF 习题7. 如图,AB DE ∥,70ABC ∠=,147CDE ∠= °,求C ∠的度数. 147°70°ED CB AF147°70°E DCBA∴CF DE∥∴18018014733DCF CDE ∴703337BCD BCF DCF ∠=∠−∠=°−°=°.练习1. (2012年第23届“希望杯”初一决赛试题)下面四个命题:① 若两个角是同旁内角,则这两个角互补② 若两个角互补,则这两个角是同旁内角③ 若两个角不是同旁内角,则这两个角不互补④ 若两个角不互补,则这两个角不是同旁内角其中错误的命题个数是( )A .1B .2C .3D .4【解析】D练习2. 如图,已知AB CD ∥,CE 平分ACD ∠,且交AB 于E ,118A ∠=°,则AEC ∠=________. E BC DA 【解析】∵AB CD练习3. 如图,∵3E ∠=∠(已知),12∠=∠(已知) 又∵∠________=∠________( )∴∠________=∠________( )∴AB CE ∥( )【解析】2;3;对顶角相等;1;E ;等量代换;内错角相等,两直线平行. 练习4. 如图,AD 是ABC △的角平分线,2BAC B ∠=∠,DE BA ∥.试探究B ∠与ADE ∠有何关系?并对你的结论加以说明.补充练习12图F 3E D AAB C D E【解析】 B ADE ∠= ∠,证明略.练习5. 已知,如图所示,AB DE ∥,116D ∠=°,93DCB ∠,求B ∠的度数. E D C B A FED C BA 【解析】过点C 作直线CF AB ∥,因为AB DE ∥,所以AB DE CF ∥∥,练习6. 如图所示,两直线AB CD 、平行,则123456∠+∠+∠+∠+∠+∠=()A .630° B .720° C .800° D .900°65HG4321DC FE BA 【解析】分别过E F G H ,,,点做AB 的平行线,再求各个角度的和.选D。
人教版七年级数学下册第五章《平行线的性质1
2、问题探索 问当下题直图2线)A,B前与面C所D不发平现行的时式(子如都
不成立。这说明只有AB∥CD 时,前面的式子才能成立.
如果改变AB和CD的 位置关系,即直线AB 与CD不平行,那么你 刚才发现的结论
还成立吗?请同学们 动手画出图形,并用 量角器量一量各角的 大小,验证一下你的 A 结论.
教学内容
平行线的性质
教学目标
1、知识目标:使学生理解平行线的性质,能初步运用平行 线的性质进行有关计算.
2、能力目标:通过本节课的教学,培养学生的概括能力和 “观察-猜想-证明”的科学探索方法,培养学生的辩证思 维能力和逻辑思维能力.
3、情感目标:培养学生的主体意识,向学生渗透讨论的数 学思想,培养学生思维的灵活性和广阔性.
还有一些说不出名字的角, 如 ∠1与 ∠6等,书上没有 定义.
E
A
41 32
B
C
8ห้องสมุดไป่ตู้ 76
D
F
∠1= ∠5, ∠ 2=∠6, ∠ 3=∠7, ∠4= ∠8;
∠2= ∠8, ∠3=∠5, ∠ 1=∠7, ∠4=∠6;
∠2+ ∠5=180°, ∠3+ ∠8=180°, ∠1+ ∠6=180°, ∠4+ ∠7=180°;
问题4
(1)具有相等关系的两个 角,有的是同位角,有的 是内错角,如∠1与 ∠5等
(都1是)同具位有角相; 等∠2关与系∠的8等 两都角是内有错怎角样。的还位有置一些关说 系回不∠呢答出7,名?)∠字(4的与请角∠甲,6组等如.同∠学1与 ((22))互具有补互的补两关角系又的有两个 怎角样,的有位的是置同关旁系内呢角?,如 (∠请2与乙∠组5同等都学是回同答旁)内角;
7年级数学 平行线判定及性质 (1)
D EEF1 23 A CO知识精讲7 年级数学下:平行线的性质定理模块一:平行线的性质定理平行线的性质定理(1)两条平行线被第三条直线所截,同位角相等;简记为:两直线平行,同位角相等.(2)两条平行线被第三条直线所截,内错角相等;简记为:两直线平行,内错角相等.(3)两条平行线被第三条直线所截,同旁内角互补;简记为:两直线平行,同旁内角互补. 例题解析【例 1】如图,AC //DB , ∠DBC = 56 ,则∠ACB = . 【答案】124 度.【解析】因为 AC //DB (已知), 所以∠DBC + ∠ACB = 180︒ (两直线平行,同旁内角互补),因为∠DBC = 56 (已知),所以∠ACB = 180︒ - 56︒ = 124︒ (等式性质)D B【例 2】(1)如图,已知 DE //BC ,∠A = ∠C ,则与∠AED 相等的角(不包含∠AED )有 个;(2)如图,若 AB //FD ,则∠B = ,若 AC //ED ,则∠DFC = .AAB C 【答案】(1)2 个;(2) ∠3 ;∠2.B D 【解析】(1)因为 DE //BC (已知), 所以∠AED = ∠C (两直线平行,同位角相等),又因为∠A = ∠C (已知),所以∠A = ∠C = ∠AED (等量代换);(2)∠B = ∠3(两直线平行,同位角相等);∠DFC = ∠2. 【例 3】如图,直线 a / /b ,则 x - y 的值等于( ) aA .20B .80C .120D .180 b【答案】A【解析】因为 a / /b ,所以 x = 30又因为3y + x = 180 ,解得 y = 50 ,故 x - y = 30 - 50 = 20︒ .【例 4】如图,直线 a / /b ,点 B 在直线b 上,且 AB ⊥ BC , ∠1 =A . 35B . 45C . 55D .125【答案】A 【解析】因为 AB ⊥ BC (已知),所以∠ABC = 90︒ (垂直的意义)因为 a / /b (已知), 所以 ∠1 = ∠CBD (两直线平行,同位角相等) 因为∠1 = 55 (已知), 所以∠CBD = 55 (等量代换)因为∠2 + ∠ABC + ∠CBD = 180 (平角的意义)所以∠2 = 180︒ - 55︒ - 90︒ = 35︒ (等式性质)B【例5】如图,直线a / /b ,c ⊥d ,则下列说法中正确的个数有()(1)∠2 +∠4 = 90 ;(2)∠1 +∠4 = 90 ;(3)∠1 =∠3 ;(4)∠3 +∠4 = 90 .A.1 个B.2 个C.3 个D.4 个【答案】B【解析】(1)正确:因为a / /b ,所以∠2 与∠3 互为同位角,d又因为c ⊥d ,所以∠3 +∠4 = 90︒,所以∠2 +∠4 = 90︒;(2)错误:∠1 =∠4 (两直线平行,同位角相等);(3)错误∠1 +∠3 = 90︒;(4)正确.所以本题选B【例6】如果两个角的一边在同一条直线上,另一边互相平行,那么这两个角()A.相等或互补B.互补C.相等D.相等且互余【答案】A【解析】分为同侧相等和异侧互补两种情况,故选A.【例7】如图,已知AB / /CD ,∠x 等于()A.75 B.80 C.85 D.95 【答案】C【解析】如图可过的顶点作平行线,那么被分为上下两部分.上半部分与角B 互补;下半部分与角D 互为内错角;所以易知∠x = (180︒-120︒) + 25︒= 85︒.A B120°xD 25°C【例8】如图,AB / /CD,MP / / AB,MN 平分∠AMD,∠A = 40 ,∠D = 30 ,则∠NMP 等于()A.10 B.15 C.5 D.7.5 【答案】C【解析】因为AB / /MP (已知)所以∠A =∠AMP (两直线平行,内错角相等)因为AB / /CD (已知),所以MP / /CD (平行的传递性)所以∠D =∠DMP (两直线平行,内错角相等)B MCAN PD因为∠AMD =∠AMP +∠DMP (角的和差),∠A = 40 ,∠D = 30 (已知)所以∠AMD = 30 + 40 = 70 (等式性质)因为MN平分∠AMD (已知),所以∠AMN =∠NMD = 35 (角平分线的意义)所以∠NMP = 40︒- 35︒= 5︒(等式性质)E【例9】如图,AB / /CD ,∠1 = (2x + 20) ,∠2 = (8x - 40) ,求∠1 及∠2 的度数.【答案】∠1 = 40︒,∠2 = 40︒. A1 B【解析】因为AB / /CD (已知),所以∠1 =∠2 (两直线平行,同位角相等)2 即(2x + 20) = (8x - 40) C DF 解得:x = 10所以∠1 = 40︒,∠2 = 40︒(等式性质)H 2G1C F D3 1 24【例 10】如图,已知∠1 = 40 ,∠2 = 140 ,∠3 = 40 ,能推断出 AB / /CD / / EF 吗?为什么?【答案】能;见解析. 【解析】由题意,根据对顶角的性质,可知:∠2 + ∠1 = 180︒,∠2 + ∠3 = 180︒ 所以 AB //CD ,CD //EF (同旁内角互补,两直线平行) 所以 AB //EF ,即 AB //CD //EF ,即证.N【例 11】已若∠A 的两边与∠B 的两边分别平行,且∠A 是∠B 的 2 倍少 30°,求∠A 与∠B 的度数.【答案】∠B = 30︒,∠A = 30︒ 或∠B = 70︒ ,∠A = 110︒ .【解析】由题意可知, ∠A = ∠B 或∠A + ∠B = 180︒ ,又因为∠A 是∠B 的 2 倍少 30°,所以∠A = 2∠B - 30︒ ,即∠B = 30︒,∠A = 30︒ 或∠B = 70︒ ,∠A = 110︒【总结】本题考查平行线的性质及两个角的两边平行时的两种情况的讨论.【例 12】已知:如图, ∠1 = ∠2 ,∠3 = ∠B ,AC / / DE ,且 B 、C 、D 在一条直线上.试说明 AE / / BD .AE【答案】见解析. 【解析】因为 AC / / DE (已知), 所以∠2 = ∠4 (两直线平行,内错角相等)因为∠1 = ∠2 (已知),所以∠1 = ∠(4 等量代换)所以 AB / /CE (内错角相等,两直线平行) 所以∠B = ∠ECD (两直线平行,同位角相等) B 因为∠3 = ∠B (已知),所以∠3 = ∠ECD (等量代换)所以 AE / / BD (内错角相等,两直线平行)【例 13】已知:如图,E 、F 分别是 AB 和 CD 上的点,DE 、AF 分别交 BC 于 G 、H ,∠ A = ∠ D , ∠ 1= ∠ 2,试说明: ∠ B = ∠ C .E 【答案】见解析 A B【解析】因为∠1 = ∠(2 已知),∠1 = ∠AHB (对顶角相等)所以∠2 = ∠AHB (等量代换), 所以 AF / / E D (同位角相等,两直线平行) 所以∠D = ∠AFC (两直线平行,同位角相等)因为∠A = ∠D (已知), 所以∠A = ∠AFC (等量代换)所以 AB / /CD (内错角相等,两直线平行)所以∠B = ∠C (两直线平行,内错角相等)【例 14】如图,直线 GC 截两条直线 AB 、CD ,AE 是∠GAB 的平分线,CF 是∠ACD 的平 分线,且 AE / /CF ,那么 AB ∥CD 吗?为什么?【答案】见解析 【解析】因为 AE 是∠GAB 的平分线,CF 是∠ACD 的平分线(已知)所以∠GAE = ∠EAB ,∠ACF = ∠FCD (角平分线的性质)因为 AE / /CF (已知),所以∠GAE = ∠ACF (两直线平行, 3A1 E2 D同位角相等)所以∠EAB =∠FCD(等量代换)所以AB / /CD ( 同位角相等,两直线平行)【例15】如图∠1 =∠2 ,DC / /OA ,AB / /OD ,那么∠C =∠B【答案】见解析【解析】因为DC / /OA (已知),所以∠COA =∠C(两直线平行,内错角相等),即∠COB +∠1 =∠C因为AB / /OD (已知),所以∠DOB =∠B即∠2 +∠COB =∠B ,又因为∠1 =∠2 (已知),所以∠B =∠C (等量代换)【总结】本题考查平行线的判定及性质的综合运用.【例16】如图,已知AD 平分∠BAC ,∠1 =∠2 ,试说明∠1 =∠F 的理由.【答案】见解析F【解析】因为AD 平分∠BAC (已知),所以∠2 =∠BAD (角平分线的意义)因为∠1 =∠2 (已知),所以∠1 =∠BAD (等量代换)所以EF / / AD (同位角相等,两直线平行)所以∠F =∠2 (两直线平行,同位角相等) B C 所以∠1 =∠F (等量代换)【总结】本题考查平行线的判定及性质的运用.【例17】已知:如图,∠AGH =∠B,∠CGH =∠BEF ,EF⊥AB 于F,试说明CG⊥AB.【答案】见解析【解析】因为∠AGH =∠B (已知)C所以HG / /CB (同位角相等,两直线平行)所以∠CGH =∠BCG (两直线平行,内错角相等)E 因为∠CGH =∠BEF (已知),H所以∠BEF =∠BCG (等量代换)A B所以EF / /CG (同位角相等,两直线平行)G F因为EF⊥AB(已知),所以CG⊥AB.【例18】已知,正方形ABCD 的边长为4 cm ,求三角形EBC 的面积.D【答案】8 平方厘米. A E 【解析】由题意可知:三角形EBC 与正方形同底BC,且其高即是正方形的边DC,故三角形面积为正方形面积的一半:4 ⨯ 4 ÷ 2 = 8cm2C【例19】如图,AD//BC,BC =5AD ,求三角形ABC 与三角形ACD 的面积之比.2A D【答案】5: 2 .4B CBD EA GD【解析】因为 AD / /BC (已知)所以三角形 ABC 与三角形 ACD 的高相等(平行线间的距离处处相等)所以 S ∆ABC : S ∆ACD = BC : AD = 5:2 (两三角形高相等,面积比等于底之比)【例 20】如图, AB / /GE , CD / / FG ,BE =EF =FC ,三角形 AEG 的面积等于 7,求四边形 AEFD 的面积. 【答案】21 【解析】联结 BG 、CG . 因为 AB / /GE(已知)所以 S∆BEG B = S ∆AEG (同底等高的两个三角形面积相等) E F C因为 BE =EF (已知), 所以 S ∆BEG = S ∆GEF (等底等高的两个三角形面积相等)所以 S ∆AEG = S ∆GEF =7(等量代换), 同理 S ∆GEF = S ∆DFG = 7 .所以 S 四边形AEFD = S ∆AEG + S ∆GEF + S ∆DFG = 7 + 7 + 7 = 21.【例 21】已知 E 是平行四边形 ABCD 边 BC 上一点,DE 延长线交 AB 延长线于 F ,试说明CS ∆ABE 与S ∆CEF 相等的理由. 【答案】见解析 1A1 F【解析】因为 S △ADE = S △DCF = 2 S 四边形ABCD ,所以 S △CEF = S ∆DCF - S ∆DCE = 2S 四边形ABCD - S ∆DCE , 所以 S = S - S - S = S - 1 S - S = 1 S - S∆ABE 四边形ABCD ∆ADE ∆DCE 四边形ABCD 2 四边形ABCD ∆DCE 2 四边形ABCD ∆DCE所以 S ∆ABE = S ∆CEF模块二:辅助线的添加例题解析 【例 1】如图,已知 AB ∥ED ,试说明:∠B +∠D =∠C . 【答案】见解析 【解析】过点 C 作 AB 的平行线 CF , 因为 AB ∥ED (已知) 所以 AB / /CF / / ED (平行的传递性)A BC F 所以∠B = ∠BCF ,∠D = ∠DCF (两直线平行,内错角相等)所以∠B + ∠D = ∠BCF + ∠DCF = ∠BCD (等式性质) E D【例 2】如图所示,已知, ∠A +∠B +∠C = 360︒ ,试说明 AE ∥CD . 5F E【答案】见解析A E【解析】过点 B 向右作 BF //AE , 所以∠A + ∠ABF = 180(︒ 两直线平行,同旁内角互补)因为∠A +∠B +∠C = 360︒ (已知)B F所以∠FBC + ∠C = 180︒ (等式性质) C D所以 BF / /CD (同旁内角互补,两直线平行)所以 AE / /CD (平行的传递性)【例 3】如图,已知:AB //CD ,试说明: ∠ B + ∠ D + ∠ BED = 360︒ (至少用三种方法).【答案】见解析 A【解析】方法一:连接 BD则∠EBD +∠EDB +∠E =180°(三角形内角和等于 180因为 AB //CD (已知),所以∠ABD +∠BDC =180°(两直线平行,同旁内角互补) C 所以∠ABD +∠EBD +∠EDB +∠BDC +∠E =360°,即∠B +∠D +∠BED =360°方法二:过点 E 作 EF //CD ,因为 AB / /CD (已知), 所以 EF / / AB (平行的传递性)所以∠B +∠BEF =180°,∠D +∠DEF =180°(两直线平行,同旁内角互补)所以∠B +∠BEF +∠D +∠DEF =360°(等式性质)即∠B +∠D +∠BED =360°;方法三:过点 E 作 EF / / BA因为 AB / /CD (已知), 所以 EF / / AB (平行的传递性)所以∠ABE + ∠BEF = 180︒ ,∠FED + ∠EDC = 180︒ (两直线平行,同旁内角互补) 所以∠ B + ∠ D + ∠ BED = 360︒ (等式性质);方法四:过点 E 作 EF ⊥CD 的延长线与 F ,EG 垂直于 AB 的延长线于 G ,则有:∠B =∠BGE +∠GEB ,∠D =∠EDF +∠DFE ,所以∠B +∠D +∠BED =∠BGE +∠DFE +∠GED =180+180=360°.【例4】如图所示,在六边形 ABCDEF 中,AF ∥CD ,∠A =∠D ,∠B=∠E ,试说明 BC ∥EF 的理由.【答案】见解析 A F【解析】连接 AD 、BEB因为 AF ∥CD (已知) E所以∠FAD = ∠ADC (两直线平行,内错角相等) C D因为∠BAF = ∠CDE (已知), 所以∠BAD = ∠ADE (等式性质)所以 AB ∥DE (内错角相等,两直线平行)所以∠ABE = ∠BED (两直线平行,内错角相等)因为∠ABC = ∠FED (已知), 所以∠EBC = ∠BEF (等式性质)所以 BC ∥EF (内错角相等,两直线平行)【例 5】如图已知,AB //CD ,∠ABF = 2 ∠ABE ,∠CDF = 2 ∠CDE ,求∠E 和∠F 的关系.3 3【答案】∠E : ∠F = 3:2 . C【解析】过点 E 、点 F 分别作 AB 的平行线 EG 、FH . 6A BD2 1 因为 EG / / AB ,FH / / AB所以 AB / / EG / FH / /CD (等量代换)所以∠ABF = ∠BFH (两直线平行,内错角相等)所以∠CDF = ∠DFH (两直线平行,内错角相等)所以∠BFD = ∠DFH + ∠BFH = ∠CDF + ∠ABF (等量代换)同理: ∠BED = ∠DEG + ∠BEG = ∠ABE + ∠CDE (等量代换)因为∠ABF = 2 ∠ABE ,∠CDF = 2 ∠CDE3 3所以∠BFD = ∠DFH + ∠BFH = ∠CDF + ∠ABF = 2 (∠ABE + ∠CDE ) = 2∠BED3 3 所以∠E : ∠F = 3:2【例 6】如图,已知:AC //BD ,联结 AB ,则 AC 、BD 及线段 AB 把平面分成①②③④四个部分,规定:线上各点不属于任何一个部分,当点 P 落在某个部分时,联结 PA 、PB ,构成 ∠ PAC 、∠ APB 、∠ PBD 三个角(提示:有公共角断点的两条重合的射线所组成的角是 0 °角)(1) 当点 P 落在第①部分时,试说明: ∠ PAC + ∠ PBD = ∠ APB ;(2) 当点 P 落在第②部分时,试说明: ∠ PAC + ∠ PBD = ∠ APB 是否成立?(3)当点 P 落在第③部分时,全面探究∠ PAC 、 ∠ APB 、 ∠ PBD 之间的关系是 ,并写出动点 P 的具体位置和相应的结论,选择其中一种加以证明.A 3 A 3C C C A 3 C2 1B 4 D B 4 D B 4 B 4 D【解析】(1)过点 P 作 PE // AC .因为 AC / / BD ,所以 AC / / PE / / BD (平行的传递性)所以∠PAC = ∠APE ,∠BPE = ∠PBD (两直线平行,内错角相等)因为∠APB = ∠APE + ∠BPE (角的和差)所以∠APB = ∠PAC + ∠PBD (等量代换)(2)不成立,过点 P 作 AC 的平行线即可证明.(3)分类讨论如下:①当动点 P 在射线 BA 的右侧时,结论是∠PBD = ∠PAC + ∠APB ;②当动点 P 在射线 BA 上时,结论是∠PBD = ∠PAC + ∠APB 或∠PAC = ∠PBD + ∠APB 或∠APB = 0︒,∠PAC = ∠PBD (任写一个即可) ③当动点 P 在射线 BA 的左侧时,结论是∠PBD = ∠PAC + ∠APB .2 P 1 A3 2 1随堂练习【习题1】 填空:(1) 如图(1),AB //CD ,CE 平分∠ACD , ∠A = 120 ,则∠ECD ;(2) 如图(2),已知 AB //CD , ∠B = 100 ,EF 平分∠BEC , EG ⊥ EF ,则∠DEG = .【难度】★G B AFC 【答案】(1)30°; (2)50°.E图(2) C【解析】(1)因为 AB ∥CD (已知),所以∠A + ∠ACD = 180 (两直线平行,同旁内角互补)因为∠A = 120 (已知), 所以∠ACD = 180 -120 = 60 (等式性质)又因为 CE 平分∠ACD (已知), 所以∠ECD =30°(角平分线的意义)(2)因为 AB ∥CD (已知), 所以∠B + ∠BEC = 180 (两直线平行,同旁内角互补)因为∠B = 100 (已知), 所以∠BEC = 180 -100 = 80 (等式性质)又因为 EF 平分∠BEC (已知), 所以∠BEF =40°(角平分线的意义)因为 EG ⊥EF (已知), 所以∠GEF = 90 (垂直的意义)因为∠DEG + ∠GEF + ∠CEF = 180 (平角的意义)所以∠DEG = 180 - 90 - 40 = 50 (等式性质)【总结】本题考查平行线的性质的运用.【习题2】 填空:(1)如图,直线 a / /b ,三角形 ABC 的面积是 42 cm 2 ,AB =6 cm ,则 a 、b 间的距离为 ;(2)如图,在三角形 ABC 中,点 D 是 AB 的中点,则三角形 ACD 和三角形 ABC 的面 积之比为 .【难度】★ 【答案】(1)14 厘米 ;(2) 1 .2 AD【解析】(1)三角形 ABC 的高为: 42 ⨯ 2 ÷离B 为 14 厘米; C(2)因为三角形 ACD 和三角形 ABC 高相等,所以面积之比等于底之比,即 S ∆ACD = S ∆ABC AD =1AB 2【总结】本题考查平行线间距离及同高等底的三角形面积的之比.A B E 图(1) D D .【习题3】 如图,已知 FC //AB //DE , ∠α : ∠D : ∠B = 2 : 3 : 4 ,则∠α 、∠D 、∠B 的度数分别为 .【难度】★ 【答案】∠α = 72︒ , ∠D = 108︒ , ∠B = 144︒ . 【解析】因为 FC //AB //DE (已知),A 所以∠B + ∠CFB = 180 (∠D = ∠CFD (两直线平行,内错角相等)设∠α = 2x ,∠D = 3x ,∠B = 4x ,则可列方程:180 - 4x + 2x = 3x ,解得: x = 36︒则∠α = 72︒ , ∠D = 108︒ , ∠B = 144︒ .【习题4】 如果两个角的两边分别平行,其中一个角比另一个角的 3 倍多 12°,则这两个角是( ).A .42°和 138°B .都是 10°C .42°和 138°或都是 10°D .以上都不对【难度】★★【答案】A【解析】由题意假设这两个角分别为 A 、B ,则有: ∠A = ∠B 或∠A + ∠B = 180︒ ,又因为∠A 是∠B 的 3 倍多 12°,则有: ∠A = 3∠B + 12︒ ,即180︒- ∠B = 3∠B + 12︒,解得:∠B = 42︒,∠A = 138︒ .【总结】本题考查两角位置关系的可能性,注意两种情况的讨论.【习题5】 如图,已知 QR 平分∠PQN ,NR 平分∠QNM ,∠1+∠2=90°,那么直线 PQ 、MN的位置关系.P Q【难度】★★ 【答案】见解析. 1【解析】因为 QR 平分∠PQN ,NR 平分∠QNM (已知) R所以∠PQN = 2∠1 , ∠MNQ = 2∠2 (角平分线的意义)因为∠1+∠2=90°(因为),所以∠PQN +∠MNQ =180°(等式性质) 2 所以 PQ ∥MN (同旁内角互补,两直线平行) M N【总结】本题考查平行线的判定及角平分线意义的综合运用.【习题6】 如图,已知:AB ∥CD ,EF 和 AB 、CD 相交于 G 、H 两点,MG 平分∠BGH ,NH平分∠DHF ,试说明:GM ∥NH .【难度】★★ 【答案】略. 【解析】 AB / /CD (已知) ∴∠BGH = ∠DHF (两直线平行,同位角相等) 又 MG 平分∠BGH ,NH 平分∠DHF ∴∠1 = 1 ∠BGH , ∠2 = 1 ∠DHF 2 2 ∴∠1 = ∠(2 等量代换) ∴GM / / H N (同位角相等,两直线平行)【总结】本题考查平行线的判定A B 12 OC BC M1【习题7】 如图所示,在直角三角形 ABC 中,∠C =90°,AC =3,BC =4,AB =5,三角形内一点 O 到各边的距离相等,求这个距离是多少.【难度】★★【答案】1. 【解析】设这个距离是 x ,则有:S ∆ABC = 6 = 1( AC + BC + AB ) ⨯ x = 6x , 解得: x = 1 . 2 【总结】本题可以用面积法求解比较简单.【习题8】 如图,已知 AB ,CD 分别垂直 EF 于 B ,D ,且∠DCF =60°,∠1=30°.试说明: BM / / AF .A【难度】★★ 【答案】见解析. 【解析】因为 CD ⊥EF , 所以∠CDF = 90 (垂直的意义) 因为∠DCF =60°(已知), 所以∠F =30°(三角形的内角F 和等于 1D 80°) B E 因为∠1=30°(已知), 所以∠1=∠F (等量代换)所以 BM ∥AF (同位角相等,两直线平行)【总结】本题考查平行线的判定及垂直的意义的综合运用.【习题9】 如图,已知直线l 1 / /l 2 ;(1)若∠1 = (x + 2 y ) , ∠2 = x , ∠4 = ( y + 30) 求∠1 , ∠2 , ∠4 的度数;(2)若∠2 = x , ∠3 = y , ∠4 = [2(2x - y )] ,求 x 、 y 的值. 1 2 3 l【难度】★★ 【答案】见解析 4l 2【解析】(1)因为∠1+∠2=180°(平角的意义),所以 x + 2 y + x 180︒ ,即 x +y =90°因为l 1∥l 2 (已知), 所以∠2=∠4(两直线平行,同位角相等)即 x = y +30, 解得:x =60°,y =30°,所以∠1=120°,∠2=60°,∠4=60°;(2)因为∠3+∠2=180°(平角的意义), 所以 x +y =180°,因为l 1∥l 2 (已知), 所以∠2=∠4(两直线平行,同位角相等)即 x = 4x - 2 y , 解得:x =72°,y =108°.【总结】本题考查平行线的性质及角度的简单计算.【习题10】 如图, ∠ ADC =∠ABC , ∠ 1+ ∠ FDB =180°,AD 是∠FDB 的平分线,试说明 BC 为∠DBE 的平分线.【难度】★★★ E【答案】见解析. 【解析】因为∠ 1+ ∠ FDB =180°(已知), 又因为∠1 = ∠ABD (对顶角相等) 所以∠ABD + ∠BDF = 180 (等量代换)所以 AB / / F D (同旁内角互补,两直线平行)F D CA E C所以∠ABD = ∠2 (两直线平行,内错角相等)因为∠ADC = ∠ABC (已知), 所以∠ADB = ∠CBD (等式性质)因为 AE / / FC (已证), 所以∠EBD = ∠FDB (两直线平行,内错角相等)即∠ADB + ∠ADF = ∠CBD + ∠CBE (角的和差)因为 AD 是∠FDB 平分线, 所以∠ADB = ∠ADF = ∠CBD = ∠EBC (角平分线的意义) 即 BC 为∠DBE 的平分线【总结】本题综合性较强,主要考查平行线的判定定理及性质定理以及角平分线的综合运用.【习题11】 如图,已知∠ABC =∠ACB ,AE 是∠CAD 的平分线,问:△ABC 与△EBC 的面积是否相等?为什么? D【难度】★★★【答案】相等,证明见解析. F【解析】因为∠DAE + ∠EAC + ∠BAC = 180 (平角的意义)又∠ABC + ∠ACB + ∠BAC = 180 (三角形内角和等于 180°)所以∠DAE + ∠EAC = ∠ABC + ∠ACB (等式性质) B 因为∠ABC =∠ACB ,AE 是∠CAD 的平分线(已知)所以∠ABC = ∠ACB = ∠DAE = ∠CAE所以 AE / / B C (内错角相等,两直线平行)所以 AE 与 BC 间的距离相等(夹在平行线间的距离处处相等)所以△ABC 与△EBC 的面积相等(同底等高的两个三角形面积相等).【总结】本题综合性较强,主要考查平行线的判定定理及性质定理的综合运用,同时还考查了三角形的面积问题.课后作业【作业1】 如图,AB //CD ,直线l 分别交 AB 、CD 于 E 、F ,EG 平分∠BEF ,若∠EFG = 40 ,则∠EGF 的度数是( )A . 60B . 70C . 80D . 90【难度】★【答案】B 【解析】因为 AB //CD (已知),所以∠BEF + ∠EFG = 180 因为∠EFG = 40 (已知), 所以∠BEF =140°(等式性质) 因为 EG 平分∠BEF (已知),所以∠BEG = 1∠BEF = 70 (角平分线的意义)2 因为 AB //CD (已知), 所以∠BEG = ∠EGF (两直线平行,内错角相等)所以∠EGF =70°(等量代换)【总结】本题考查平行线的性质及角平分线的意义的运用.【作业2】 如图,AB //CD ,下列等式中正确的是( )A . ∠1 + ∠2 + ∠3 = 180B . ∠1 + ∠2 - ∠3 = 90C . ∠2 + ∠3 - ∠1 = 180D . ∠2 + ∠3 - ∠1 = 90【难度】★【答案】C A B C D2D 1 2E 3 【解析】由题意可得: (180︒- ∠3) + (180︒- ∠2) + ∠1 = 180︒ ,解得: ∠2 + ∠3 - ∠1 = 180︒【总结】本题考查平行线的性质.【作业3】 若两直线被第三条直线所截,则下列说法中正确的个数有( )(1)一对同位角的角平分线互相平行,(2)一对内错角的角平分线互相平行,(3)一对同旁内角的角平分线互相平行,(4)一对同旁内角的角平分线互相垂直A .3 个B .2 个C .1 个D .0 个【难度】★【答案】D【解析】(1)同位角不一定相等,×;(2)内错角不一定相等,×;(3)×; (4)只有当这对同旁内角互补时才成立,×【总结】本题考查三线八角的基本运用.【作业4】 直线 a ∥c ,且直线 a 到直线c 的距离是 3;直线b / /c ,直线b 到直线c 的距离为5,则直线 a 到直线b 的距离为( )A .2B .3C .8D .2 或 8【难度】★★【答案】D【解析】当直线 a 和直线 b 在直线 c 的两侧时,距离为 8;当直线 a 和直线 b 在直线 c 的同一侧时,距离为 2.【总结】本题考查平行线的性质,注意分类讨论.【作业5】 已知:如图 5,∠1=∠2=∠B ,EF ∥AB .试说明∠3=∠C . A【难度】★★【答案】略.【解析】因为∠1 = ∠B (已知) 所以 DE / / B C (同位角相等,两直线平行)所以∠2 = ∠C (两直线平行,同位角相等)又因为 EF / / AB (已知), 所以∠3 = ∠B 所以∠3 = ∠C (等量代换)B FC (两直线平行,同位角相等) 【总结】本题考查平行线的判定定理及性质定理的综合运用.【作业6】 已知:∠1=60o ,∠2=60o , AB //CD .试说明:CD //EF .【难度】★★ l【答案】略. 【解析】设∠2 的对顶角为∠3, 因为∠1=∠2 = 60o (已知),所以∠1=∠3(等量代换) 所以 AB ∥EF (同位角相等,两直线平行)A 1 BC D 又因为 AB ∥CD (已知) 所以 CD ∥EF (平行的传递性) E 2 F【总结】本题主要考查平行线的判定.D ′ C′ F【作业7】 如图,已知∠4=∠B ,∠1=∠3,试说明:AC 平分∠BAD .【难度】★★【答案】略. 【解析】因为∠4=∠B (已知)所以 CD ∥AB (同位角相等,两直线平行) 所以∠3=∠2(两直线平行,内错角相等) 又因为∠1=∠3(已知), 所以∠1=∠2(等量代换),A B所以 AC 平分∠BAD (角平分线的意义)【总结】本题考查平行线的判定定理及性质定理的综合运用.【作业8】 如图, AD / / BC ,BD 平分∠ABC ,且∠A : ∠ABC = 2 :1 ,求∠DBC 的度数.【难度】★★A D 【答案】30°.【解析】因为 AD ∥BC (已知)所以∠A +∠ABC =180°(两直线平行,同旁内角互补) B C又因为∠A :∠ABC =2:1(已知), 所以∠A =120°,∠ABC =60°(等式性质)又因为 BD 平分∠ABC (已知), 所以∠DBC =30°(角平分线的意义)【总结】本题考查平行线的性质及角平分线的综合运用【作业9】 如图,把一个长方形纸片沿 EF 折叠后,点 D 、C 分别落在 D ′、C ′的位置.若∠AED ′=65°,则∠C 'FB 的度数为 . A E D 【难度】★★【答案】65°【解析】因为翻折, 所以∠D 'EF = ∠DEF (翻折的性质) B 因为∠AED ' + ∠D 'EF + ∠DEF = 180 (平角的意义) 又∠AED ′=65°(已知), 所以∠D 'EF = ∠DEF = 180 - ∠AED '= 57.5 (等式性质)2 因为 AD / / BC (已知), 所以∠DEF + ∠EFC = 180 (两直线平行,同旁内角互补) ∠EFB = ∠DEF (两直线平行,内错角相等)所以∠EFB = 57.5 , ∠EFC = 180 - 57.5 = 122.5 (等式性质)因为∠EFC ' = ∠EFC (翻折的性质) 所以∠C 'FB = ∠EFC ' - ∠EFB = 65︒ .【总结】本题主要考查平行线的性质及翻折的性质的综合运用.【作业10】 如图,已知 AD //BC ,AB //EF ,DC //EG ,EH 平分∠FEG , ∠A = ∠D = 110 ,试说明线段 EH 的长是 AD 、BC 间的距离. AE D 【难度】★★【答案】见解析.【解析】因为 AD //BC (已知)所以∠A + ∠B = 180 , ∠C + ∠D = 180 (两直线平行,同旁内角互补)因为∠A = ∠D = 110 (已知), 所以∠B =∠C =70°(等式性质)B F H G因为 AB //EF ,DC //EG (已知),D4 3 C 1 2所以∠EFG=∠B,∠EGF=∠C(两直线平行,内错角相等)所以∠EFG = ∠EGF = 70°(等量代换),所以∠FEG=40°因为EH 平分∠FEG (已知),所以∠FEH=1∠FEG=20 (角平分线的意义)2所以∠FHE = 180 -∠FEH =∠EFH = 90 (三角形内角和等于180°)即EH 的长是AD、BC 间的距离.【总结】本题综合性较强,主要考查平行线的性质及三角形的内角和以及平行线间的距离.【作业11】如图,AB ⊥l ,CD ⊥l (点B、D 是垂足),直线EF 分别交AB、CD 于点G、H.如果∠EGB =m ,∠FGB =n ,且∠EHD = (3m -n ) ,试求出∠EGB 、∠BGF 、∠EHD的度数.【难度】★★★【答案】∠EGB = 60︒,∠BGF = 120︒,∠EHD = 60︒.【解析】因为AB ⊥l ,CD ⊥l (已知)所以AB / /CD (垂直于同一直线的两直线平行)所以∠FGB +∠EHD =180 (两直线平行,同旁内角互补)∠EGB =∠EHD (两直线平行,同位角相等)即n + 3m -n = 180 ,m = 3m -n ,解得:m = 60︒,n = 120︒.所以∠EGB = 60︒,∠BGF = 120︒,∠EHD = 60︒.【总结】本题主要考查平行线的性质的运用.【作业12】如图,已知AB / /CD ,EG、FH 分别平分∠AEF 、∠DFN ,那么∠GEF +∠DFH = 90 ,试说明理由.【难度】★★【答案】见解析.【解析】因为AB / /CD (已知)所以∠AEF =∠CFN (两直线平行,同位角相等)因为∠CFN +∠DFN = 180︒(平角的性质)又因为EG、FH 分别平分∠AEF 、∠DFN (已知)所以∠AEG +∠GEF +∠DFH +∠NFH = 180︒(角的和差)即2∠GEF +∠DFH = 180︒,所以∠GEF +∠DFH = 90 .【总结】本题考查平行线的性质及角平分线性质的综合应用.【作业13】如图,已知AB∥EF,∠B=45°,∠C=x°,∠D=y°,∠E=z°,试说明x、y、z 之间的关系.【难度】★★★【答案】见解析.【解析】由题意,过C、D 两点分别作AB 的平行线CM、DN 因为AB∥EF(已知)所以AB / /CM / / DN / / EF (平行的传递性)N所以∠B =∠BCM ,∠MCD =∠CDN ,∠EDN =∠E (两直线平行,内错角相等)因为∠B=45°,∠C=x°,∠D=y°,∠E=z°(已知)所以x - 45 =y -z (等式性质)即x -y +z = 45 .【总结】本题综合性较强,主要考查平行线的性质以及辅助线的添加,注意观察角度间的关系.。
2022-2023学年七年级数学下册《平行线的性质》精讲与精练高分突破含答案解析
5.3平行线的性质考点一:平行线的性质1:两条平行线被第三条直线所截,同位角相等.简单地说:两直线平行,同位角相等.2:两条平行线被第三条直线所截,内错角相等.简单地说:两直线平行,内错角相等.3:两条平行线被第三条直线所截,同旁内角互补.简单地说:两直线平行,同旁内角互补.注意:是先有两直线平行,才有以上的性质,前提是“线平行”。
一个结论:平行线间的距离处处相等。
例如:应用于说明矩形(包括长方形、正方形)的对边相等,还有梯形的对角线把梯形分成分别以上底为底的两等面积的三角形,或以下底为底的两等面积的三角形。
(因为梯形的上底与下底平行,平行线间的高相等,所以,就有等底等高的三角形。
)考点二、命题判断一件事情的语句叫命题。
命题包括“题设”和“结论”两部分,可写成“如果……那么……”的形式。
例如:“明天可能下雨。
”这句语句______命题,而“今天很热,明天可能下雨。
”这句语句_____命题。
(填“是”或“不是”)①命题分为真命题与假命题,真命题指题设成立,结论也成立的命题(或说正确的命题)。
假命题指题设成立,但结论不一定或根本不成立的命题(或说错误的命题)。
②逆命题:将一个命题的题设与结论互换位置之后,形成新的命题,就叫原命题的逆命题。
注:原命题是真命题,其逆命题不一定仍为真命题,同理,原命题为假命题,其逆命题也不一定为假命题。
题型一:平行线的性质1.(2022秋·河南新乡·七年级校考期末)如图,AF 是BAC ∠的平分线,DF AC ∥,若135∠=︒,则BAF ∠的度数为( )A .17.5°B .35°C .55°D .70°2.(2022秋·吉林长春·七年级长春市第四十五中学校考期末)如图,直线a b P ,一块含60︒角的直角三角板如图放置,若113∠=︒,则2∠的度数为( ).A .45︒B .47︒C .55︒D .57︒3.(2023春·全国·七年级专题练习)如图,AB CD P ,直线EF 交AB 于点E ,交CD 于点F ,EG 平分BEF ∠,交CD 于点G ,150∠=︒,则2∠等于( )A .50︒B .60︒C .65︒D .90︒题型二:根据平行线性质探究角的关系4.(2022春·浙江金华·七年级统考期末)将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)12∠=∠;(2)34∠=∠;(3)2490∠+∠=︒;(4)45180∠+∠=︒.其中正确的个数是( )A .1个B .2个C .3个D .4个5.(2023春·七年级单元测试)如图,平面内直线a b c ∥∥,点A ,B ,C 分别在直线a ,b ,c 上,BD 平分ABC ∠,并且满足αβ∠>∠,则α∠,∠β,γ∠关系正确的是( )A .2αβγ∠=∠+∠B .αβγ∠=∠+∠C .22αβγ∠=∠-∠D .2αβγ∠=∠+∠6.(2021春·浙江宁波·七年级校考期中)将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)23∠∠=;(2)34∠∠=;(3)2+4=90∠∠︒;(4)5290∠-∠=︒,其中正确的个数是( ).A .1B .2C .3D .4题型三:根据平行线性质求角的大小7.(2022秋·重庆江北·七年级校考期末)如图,已知OP 平分AOB ∠,30AOB ∠=︒,PC OA ∥,则CPO ∠为( )A .30︒B .10︒C .15︒D .5︒8.(2023春·江苏·七年级专题练习)如图,直线m n ∥,AC BC ⊥于点C ,125∠=︒,则2∠的度数为( )A .125︒B .115︒C .110︒D .105︒9.(2022春·黑龙江哈尔滨·七年级校考期中)如图,12l l ∥,将一副直角三角板作如下摆成,图中点A 、B 、C 在同一直线上,则1∠的度数为( )A .80︒B .85︒C .75︒D .70︒题型四:平行线性质在生活应用问题10.(2022春·内蒙古巴彦淖尔·七年级统考期中)一辆汽车在笔直的公路上行驶,两次拐弯后,与原来的方向恰好相反,那么两次拐弯的角度是( )A .第一次右拐50°,第二次左拐130°B .第一次左拐50°,第二次右拐50°C .第一次左拐50°,第二次左拐130°D .第一次右拐50°,第二次右拐50°11.(2022春·山西临汾·七年级统考期中)如图,木条a 、b 、c 通过B 、E 两处螺丝固定在一起,且40ABM ∠=︒,77BEF ∠=︒,将木条a 、木条b 、木条c 看作是在同一平面内的三条直线AC 、DF 、MN ,若使直线AC 、直线DF 达到平行的位置关系,则下列描述正确的是( )A .木条b 、c 固定不动,木条a 绕点B 顺时针旋转23B .木条b 、c 固定不动,木条a 绕点B 逆时针旋转103C .木条a 、c 固定不动,木条b 绕点E 逆时针旋转37D .木条a 、c 固定不动,木条b 绕点E 顺时针旋转15812.(2022春·江苏宿迁·七年级校考阶段练习)为了亮化某景点,石家庄市在两条笔直且互相平行的景观道MN 、QP 上分别放置A 、B 两盏激光灯,如图所示.A 灯发出的光束自AM 逆时针旋转至AN 便立即回转,B 灯发出的光束自BP 逆时针旋转至BQ 便立即回转,两灯不间断照射,A 灯每秒转动30°,B 灯每秒转动10°,B 灯先转动2秒,A 灯才开始转动,当B 灯光束第一次到达BQ 之前,两灯的光束互相平行时A 灯旋转的时间是( )A .1或6秒B .8.5秒C .1或8.5秒D .2或6秒题型五:平行线之间的距离13.(2023春·七年级单元测试)在同一平面内,设a 、b 、c 是三条互相平行的直线,已知a 与b 的距离为4cm ,b 与c 的距离为1cm ,则a 与c 的距离为( )A .1cmB .3cmC .5cm 或3cmD .1cm 或3cm14.(2023春·七年级课时练习)如图,12l l ∥,AB CD ∥,2CE l ⊥,2FG l ⊥.则下列结论正确的是( ).A .A 与B 之间的距离就是线段ABB .AB 与CD 之间的距离就是线段AC 的长度C .1l 与2l 之间的距离就是线段CE 的长度D .1l 与2l 之间的距离就是线段CD 的长度15.(2020春·湖南邵阳·七年级统考期末)如图,已知直线a // b // c ,直线d 与它们分别垂直且相交于A ,B ,C 三点,若AB=2,AC=6,则平行线b 、c 之间的距离是( )A .2B .4C .6D .8题型六:与命题有关的问题16.(2023春·广东江门·七年级统考期末)下列命题中,是假命题的是( )A .直角的补角是直角B .内错角相等,两直线平行C .一条直线有且只有一条垂线D .垂线段最短17.(2023春·七年级课时练习)关于原命题“如果a b =,那么22a b =”和它的逆命题“如果22a b =,那么a b =”,下列说法正确的是( )A .原命题是真命题,逆命题是假命题B .原命题、逆命题都是真命题C .原命题是假命题,逆命题是真命题D .原命题,逆命题都是假命题18.(2023春·全国·七年级专题练习)一栋公寓楼有5层,每层有一或两套公寓.楼内共有8套公寓.住户J 、K 、L 、M 、N 、O 、P 、Q 共8人住在不同公寓里.已知:(1)J 住在两套公寓的楼层.(2)K 住在P 的上一层.(3)二层只有一套公寓.(4)M 、N 住在同一层.(5)O 、Q 不同层.(6)Q 不住在一层或二层.(7)L 住在她所在层仅有的公寓里,且不在第一次或第五层.(8)M 在第四层;那么,J 住在第( )层.A .1B .2C .3D .5题型七:平行线的判定和性质的综合问题19.(2023秋·重庆沙坪坝·七年级校考期末)如图,AB CD ∥,连接CA 并延长至点H ,CF 平分ACD ∠,CE CF ⊥,90GAH AFC ∠∠=+︒.(1)求证AG CE ∥;(2)若120GAF ∠=︒,求AFC ∠的度数.20.(2023春·七年级单元测试)如图,180ADE BCF ∠+∠=︒,BE 平分ABC ∠,2ABC E ∠=∠.(1)求证:AD BC ∥;(2)求证:AB EF ∥;(3)若AF 平分BAD ∠,求证:90E F ∠+∠=︒.21.(2023春·江苏·七年级专题练习)已知 AM CN ∥,点B 在直线AM CN 、之间,88ABC ∠=︒.(1)如图1,请直接写出A ∠和C ∠之间的数量关系:_________.(2)如图2,A ∠和C ∠满足怎样的数量关系?请说明理由.(3)如图3,AE 平分MAB ∠,CH 平分NCB ∠,AE 与CH 交于点G ,则AGH ∠的度数为_________.一:选择题22.(2023秋·河南南阳·七年级南阳市第三中学校考期末)如图,若a b ∥,211933'∠=︒,则1∠等于( )A .6027'︒B .6073'︒C .11933'︒D .11973'︒23.(2023春·七年级课时练习)如图,直线l 、n 分别截A ∠的两边,且l n ∥.根据图中标示的角,判断下列各角的度数关系,正确的是( )A .13∠=∠B .24∠∠=C .46180∠+∠=︒D .34180∠+∠=︒24.(2023春·七年级课时练习)如图,已知AB CD P ,BC 是ABD ∠的平分线,若3100∠=︒,则2∠的度数为( )A .40︒B .50︒C .60︒D .80︒25.(2023秋·吉林长春·七年级校联考期末)如图,AB CD P ,155FGB ∠︒=,FG 平分EFD ∠,则BEF ∠的大小为( )A .100︒B .110︒C .120︒D .130︒26.(2022春·四川巴中·七年级统考期中)如图,已知AB CD EF ∥∥,160∠=︒,320∠=︒,则2∠的度数是( )A .105︒B .120︒C .135︒D .140︒27.(2023秋·甘肃天水·七年级校考期末)如图,1260∠=∠=︒,376∠=︒,则4∠的度数为( )A .102︒B .103︒C .104︒D .105︒28.(2022春·全国·七年级专题练习)如图,点E 在AB 的延长线上,下列条件中能够判定AB CD P 的条件有( )①180BAD ABC ∠+∠=︒;②12∠=∠;③3=4∠∠;④5E ADC ∠+∠=∠.A .①②B .②④C .①③D .③④29.(2023春·全国·七年级专题练习)如图,已知180AEF EFC ∠+∠=︒,M N ∠=∠,求证12∠=∠;30.(2023秋·河南新乡·七年级校考期末)如图,已知12∠=∠,3=4∠∠,5A ∠=∠,试说明:BE CF ∥.完善下面的解答过程,并填写理由或数学式:解:∵3=4∠∠(已知)∴AE ∥______(______)∴5EDC ∠=∠(______)∵5A ∠=∠(已知)∴EDC ∠=______(等量代换)∴DC AB ∥(______)∴5180ABC ∠+∠=︒(______)即523180∠+∠+∠=︒∵12∠=∠(已知)∴513180∠+∠+∠=︒(______)即3180BCF ∠+∠=︒∴BE CF ∥(______).一、单选题31.(2023春·七年级课时练习)如图,已知直线AB CD ∥,130GEF ∠=︒,135EFH ∠=︒,则12∠+∠的度数为( )A .35︒B .45︒C .65︒D .85︒32.(2023春·七年级单元测试)如图,直线EF 分别与直线AB CD 、相交于点G H 、,已知1250∠=∠=︒,GM 平分HGB ∠交直线CD 于点M ,则GMD ∠的度数为( )A .115︒B .120︒C .125︒D .130︒33.(2023春·全国·七年级专题练习)如图,AB EF ∥,90BCD ∠︒=,探索图中角α,β,γ之间的关系式正确的是( )A .360αβγ++︒=B .90αβγ++︒=C .αγβ+=D .180αβγ++︒= 34.(2023春·全国·七年级专题练习)如图,AB CD EF ∥∥,则下列各式中正确的是( )A.①②④B.②③④C.①②③二、填空题37.(2023春·广东江门·七年级统考期末)如图,将一块三角尺的直角顶点放在直尺的一边上,当的度数为________.38.(2023春·广东江门·七年级统考期末)如图,已知AB CD ∥,点M ,N 分别在直线AB 、CD 上,90MEN ∠=︒,CNE ENF ∠=∠,则α∠与∠β的数量关系________.39.(2023春·江苏·七年级专题练习)如图,AB CD ABD ∠P ,和BDC ∠的角平分线交于点E ,延长BE 交CD 于点F ,232∠=︒,则3∠=_________.40.(2023春·江苏·七年级专题练习)如图,直线12l l ,被直线3l 所截,3l 分别交12l l ,于点A 和点B ,过点B 的直线4l 交1l 于点C .若1130260350∠∠∠=︒=︒=︒,,,则4∠=_________.41.(2022春·四川成都·七年级校考阶段练习)有一副直角三角板ABC 和DEC ,其中45B ∠=︒,60D ∠=︒,如图所示叠放,边CD 与边AB 交于点G ,过点G 作GH 平分AGC ∠,若GH BC ∥,则ECA ∠=______度.三、解答题42.(2023春·广东江门·七年级统考期末)如图,已知点A 、D 在直线EF 上,12180∠+∠=︒,DB 平分ADC ∠,AD BC ∥.(1)求证: AB DC ∥;(2)若128DAB ∠=︒,求DBC ∠的度数.43.(2023春·七年级单元测试)如图,已知123180BDC ∠=∠∠+∠=︒,.(1)求证:AD CE ∥;(2)若DA 平分BDC ∠,DA FE ⊥于点A ,55FAB ∠=︒,求ABD ∠的度数.44.(2023春·江苏·七年级专题练习)如图,直线a b ⊥r r ,垂足为O ,ABC V 与直线a 、b 分别交于点E 、F ,且90C ∠=︒,EG FH ,分别平分MEC ∠和NFC ∠.(1)当PD 平分ODF ∠时,(2)当DP OB ∥时,求PDE ∠(3)当DP FD ⊥时,∠ADP 2(1)如图1,若BAP ∠,PAG ∠,ACE ∠的数量关系为___________.(2)如图2,在(1)的条件下,若5DBA ACE ∠=∠,30PAG ∠=︒,求证AB AC ⊥;(3)点B 、C 分别在点D 、E 的下方,若AB AC ⊥,PAG FAC ∠=∠,请在备用图中画出相应的图形,并求出DBA ∠的度数.1.B【分析】根据两直线平行,同位角相等,可得1FAC ∠=∠,再根据角平分线的定义可得BAF FAC ∠=∠,从而可得结果.【详解】解:∵DF AC ∥,∴135FAC ∠=∠=︒,∵AF 是BAC ∠的平分线,∴35BAF FAC ∠=∠=︒,故B 正确.故选:B .【点睛】本题考查了平行线的性质,角平分线的定义,熟记平行线的性质是解题的关键.2.B【分析】由平行线的性质,已知113ABD ∠=∠=︒,再根据角的和差,平行公理推论,平行线的性质解得∠2度数,进而得出答案.【详解】过点B 作BD a ∥,∴2CBD ∠=∠,∵a b ∥,∴BD b ∥,又∵113∠=︒,∴113ABD ∠=∠=︒,∵60ABC ∠=︒,∴601347DBC ∠=︒-︒=︒,∴247∠=︒.故选:B .【点睛】本题考查了平行线的性质,平行公理的推论,角的和差,对顶角的性质,等量代换等相关知识点,重点掌握平行线的性质,难点过一点作已知直线的平行线辅助线.3.C【分析】由AB CD P ,1=50∠︒,根据两直线平行,同旁内角互补,即可求得BEF ∠的度数,又由EG 平分BEF ∠,求得BEG ∠的度数,然后根据两直线平行,内错角相等,即可求得2∠的度数.【详解】解:∥ AB CD ,1180BEF ∴∠+∠=︒,1=50∠︒ ,130BEF ∴∠=︒,EG 平分BEF ∠,1652BEG BEF ∴∠=∠=︒,265BEG ∴∠=∠=︒,故选:C .【点睛】此题考查了平行线的性质与角平分线的定义,注意掌握两直线平行,同旁内角互补与两直线平行,内错角相等定理的应用.4.D【分析】根据两直线平行,同位角相等,内错角相等,同旁内角互补,可判断(1),(2),(4),由平角的定义可判断(3),逐一进行解答即可.【详解】解:∵纸条的两边互相平行,∴∠1=∠2,∠3=∠4,∠4+∠5=180︒,故(1)(2)(4)正确;∵三角板是直角三角板,∴∠2+∠4=1809090︒-︒=︒,故(3)正确;综上所述,正确的个数是4. 故选:D .【点睛】本题考查了平行线的性质以及平角的定义,熟记平行线的性质是解题的关键.5.A【分析】先根据平行线的性质可得1γα∠+∠=∠,2β∠=∠,从而可得ABC αβ∠=∠+∠,再根据角平分线的定义可得11212αβ∠=∠+∠,代入1γα∠+∠=∠即可得出答案.【详解】解:如图,a b c ∥∥,1γα∴∠+∠=∠①,2β∠=∠,12ABC γαβ∠∴∠+∠+∠=∠+∠=,BD Q 平分ABC ∠,1112212ABC αβ∠=∴∠=∠+∠,代入①得:1212αβγα∠+∠+∠=∠,2αβγ∴∠=∠+∠,【详解】解:AC BC ⊥Q 于点C ,90ACB ∴∠=︒,190ABC ∴∠+∠=︒,902565ABC ∴∠=︒-︒=︒,m n ∥,2180115ABC ∴∠=︒-∠=︒.故选:B .【点睛】本题主要考查平行线的性质,掌握两直线平行,同旁内角互补是解题的关键.9.C【分析】如图,过点C 作CM 1l ∥,则12l l CM ∥∥,根据平行线的性质可得∠1+∠ECM =180°,∠2=∠ACM ,再根据三角板的特点求解即可.【详解】解:如图,过点C 作CM 1l ∥,∵12l l ∥,∴12l l CM ∥∥,∴∠1+∠ECM =180°,∠2=∠ACM ,∵∠2=180°−45°=135°,∴∠ACM =135°,∴∠ECM =135°−30°=105°,∴∠1=180°−105°=75°,故选:C .【点睛】此题考查了平行线的性质,熟记“两直线平行,同旁内角互补;两直线平行,同位角相等”及作平行线是解题的关键.10.C【分析】根据两直线平行,同旁内角互补判断即可.【详解】解:因为两次拐弯后,与原来的方向恰好相反,所以两次拐弯的方向相同,形成的角是同旁内角,且互补.故选:C .【点睛】此题主要考查了平行线的性质,利用两直线平行,同旁内角互补得出是解题关键.11.C【分析】根据平行线的判定定理判断求解即可.【详解】解:A .木条b 、c 固定不动,木条a 绕点B 顺时针旋转23°,∴∠ABE =40°+23°=63°≠∠DEM ,∴AC 与DF 不平行,故A 不符合题意;B .木条b 、c 固定不动,木条a 绕点B 逆时针旋转103°,∴∠CBE =180°-(103°-40°)=117°≠∠DEM ,∴AC 与DF 不平行,故B 不符合题意;C .木条a 、c 固定不动,木条b 绕点E 逆时针旋转37°,∴∠DEM =77°-37°=40°=∠ABE ,∴AC //DF ,故C 符合题意;D .木条a 、c 固定不动,木条b 绕点E 顺时针旋转158°,∴∠DEM =360°-77°-158°=125°≠∠CBE ,∴AC 与DF 不平行,故D 不符合题意;故选:C .【点睛】此题考查了平行线的判定,熟记平行线的判定定理是解题的关键.12.C【分析】设A 灯旋转的时间为t 秒,求出t 的取值范围为016t <≤,再分①06t <≤,②612t <≤和③1216t <≤三种情况,先分别求出MAM '∠和PBP '∠的度数,再根据平行线的性质可得MAM PBP ''∠=∠,由此建立方程,解方程即可得.【详解】解:设A 灯旋转的时间为t 秒,A 灯光束第一次到达AN 所需时间为180630︒=︒秒,B 灯光束第一次到达BQ 所需时间为1801810︒=︒秒,B 灯先转动2秒,A 灯才开始转动,0182t ∴<≤-,即016t <≤,由题意,分以下三种情况:①如图,当06t <≤时,//AM BP '',30,10(2)MAM t PBP t ''∴∠=︒∠=︒+,//,//MN PQ AM BP '' ,1,1MAM PBP ''∴∠=∠∠=∠,MAM PBP ''∴∠=∠,即3010(2)t t ︒=︒+,解得1t =,符合题设;②如图,当612t <≤时,//AM BP '',18030(6)36030,10(2)MAM t t PBP t ''∴∠=︒-︒-=︒-︒∠=︒+,//,//MN PQ AM BP '' ,2180,2180MAM PBP ''∴∠+∠=︒∠+∠=︒,MAM PBP ''∴∠=∠,即3603010(2)t t ︒-︒=︒+,解得8.5t =符合题设;③如图,当1216t <≤时,//AM BP '',30(12)30360,10(2)MAM t t PBP t ''∴∠=︒-=︒-︒∠=︒+,同理可得:MAM PBP ''∠=∠,即3036010(2)t t ︒-︒=︒+,解得1916t =>,不符题设,舍去;综上,A 灯旋转的时间为1秒或8.5秒,故选:C .【点睛】本题考查了平行线的性质、一元一次方程的几何应用等知识点,正确求出时间t 的取值范围,并据此分三种情况讨论是解题关键.13.C【分析】分①直线b 在直线a 、c 的之间和②直线c 在直线a 、b 的之间两种情况,根据平行线间的距离求解即可得.【详解】解:①如图,当直线b 在直线a 、c 的中间时,a 与b 的距离为4cm ,b 与c 的距离为1cm ,a ∴与c 的距离为()415cm +=;②如图,当直线c 在直线a 、b 的中间时,a 与b 的距离为4cm ,b 与c 的距离为1cm ,a ∴与c 的距离为()413cm -=;综上,a 与c 的距离为5cm 或3cm ,故选:C .【点睛】本题考查了平行线间的距离,正确分两种情况讨论是解题关键.14.C【分析】根据两点间的距离和平行线间的距离的性质逐项判断即可.【详解】解:A 、A 与B 之间的距离就是线段AB 的长度,不符合题意,故本项错误;B 、AB 与CD 之间的距离就是线段HI 的长度,不符合题意,故本项错误;C 、1l 与2l 之间的距离就是线段CE 的长度,符合题意,故本项正确;D 、1l 与2l 之间的距离就是线段CE 或GF 的长度,不符合题意,故本项错误.故答案为:C .【点睛】本题考查了两点间的距离和平行线间的距离的性质,解决本题的关键是掌握以上基本的性质.15.B【分析】依据直线a ∥b ∥c ,直线d 与它们分别垂直且相交于A ,B ,C 三点,即可得到AB 长为直线a 和b 之间的距离,BC 长为直线b 和c 之间的距离,AC 长为直线a 和c 之间的距离,再根据AB=2,AC=6,即可得出直线b 与直线c 之间的距离为4.【详解】解:∵直线a ∥b ∥c ,直线d 与它们分别垂直且相交于A ,B ,C 三点,∴AB 长为直线a 和b 之间的距离,BC 长为直线b 和c 之间的距离,AC 长为直线a 和c 之间的距离,又∵AB=2,AC=6,∴BC=6-2=4,即直线b 与直线c 之间的距离为4.故选:B .【点睛】本题主要考查了平行线之间的距离,从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离.16.C【分析】根据补角的定义,平行线的判定,垂线的性质,逐项分析判断即可求解.【详解】解:A. 直角的补角是直角,是真命题,故该选项不符合题意;B. 内错角相等,两直线平行,是真命题,故该选项不符合题意;C. 同一平面内过直线上的一点有且只有一条垂线,原命题是假命题,符合题意;D. 垂线段最短,是真命题,故该选项不符合题意.故选:C .【点睛】本题考查了判断真假命题,掌握补角的定义,平行线的判定,垂线的性质是解题的关键.17.A【分析】根据互逆命题的定义即把一个命题的题设和结论互换和性质定理进行解答,即可求出答案.【详解】解:如果a b =,那么22a b =,所以原命题是真命题;命题“如果a b =,那么22a b =”的逆命题是如果22a b =,那么a b =,不一定成立,是假命题;故原命题是真命题,逆命题是假命题故选:A .【点睛】此题考查了互逆命题,掌握互逆命题的定义即两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题,其中一个命题称为另一个命题的逆命题是解题的关键.18.D【分析】首先根据已知,采取筛选法进行一个一个筛选,就能确定答案.【详解】解:由(4)和(8)得出M 和N 住在第四层.由(2)得K 只能在2或3层,又由(7)得出L 在3层且只有一户,K 在二层只有一户,P 则在一层.又由(5)和(6)知道O 只能在一层,Q 在五层.这时只有五层还有一套公寓,所以J 只能住在五层.故选:D .【点睛】用到的知识点是推理和论证,能根据已知,采取筛选法进行一个一个筛选是解此题的关键.19.(1)见解析(2)30AFC ∠=︒【分析】(1)根据平行线的性质及角平分线的定义推出AFC ACF ∠=∠,得到90ACF GAH ∠∠=+︒,根据垂直的定义求出90ACF ECH ∠∠+=︒,由此得到GAH ECH ∠=∠,即可推出结论;(2)根据平行线的性质推出2HAF ACD ACF =∠∠=∠,由90GAH ECH ACF ∠=∠=︒-∠,得到902120ACF ACF ︒-∠+∠=︒,求出30ACF ∠=︒即可.【详解】(1)证明:∵AB CD ∥,∴AFC DCF ∠=∠,∵CF 平分ACD ∠,∴DCF ACF ∠=∠,∴AFC ACF ∠=∠,∵90GAH AFC ∠∠=+︒,∴90ACF GAH ∠∠=+︒,∵CE CF ⊥,∴90ECF ∠=︒,∴90ACF ECH ∠∠+=︒,∴GAH ECH ∠=∠,∴AG CE ∥;(2)∵AB CD ∥,∴2HAF ACD ACF =∠∠=∠,∵90GAH ECH ACF ∠=∠=︒-∠,∴902120ACF ACF ︒-∠+∠=︒,∴30ACF ∠=︒,∴30AFC ∠=︒.【点睛】此题考查了平行线的性质和判定,角平分线的定义,正确掌握平行线的判定和性质是解题的关键.20.(1)见解析(2)见解析(3)见解析【分析】(1)求出ADF BCF Ð=Ð,根据平行线的判定得出即可;(2)根据角平分线的定义得出2ABC ABE ∠=∠,求出ABE E ∠=∠,根据平行线的判定得出即可;(3)根据平行线的性质得出180ADE BCF ∠+∠=︒,根据角平分线的定义得出12ABE ABC ∠=∠, 12BAF BAD ∠=∠,求出90ABE BAF ∠+∠=︒,根据三角形的内角和定理得出即可.【详解】(1)∵180ADE BCF ∠+∠=︒,180ADE ADF ∠+∠=︒,∴ADF BCF ∠=∠,∴AD BC ∥;(2)∵BE 平分ABC ∠,∴2ABC ABE ∠=∠,∵2ABC E ∠=∠,∴ABE E ∠=∠,∴AB EF ∥;(3)∵AD BC ∥,∴180DAB ABC ∠+∠=︒,∵BE 平分ABC ∠,AF 平分BAD ∠,∴12ABE ABC ∠=∠,12BAF BAD ∠=∠,∴90ABE BAF ∠+∠=︒,∴1809090AOB EOF Ð=°-°=°=Ð,∴18090E F EOF Ð+Ð=°-Ð=°.【点睛】本题考查了平行线的性质和判定,角平分线的定义,三角形的内角和定理等知识点,能灵活运用定理进行推理是解此题的关键.21.(1)88A C ∠+∠=︒(2)92C A ∠-∠=︒,见解析(3)46︒【分析】(1)过点B 作BE AM ∥,利用平行线的性质即可求得结论;(2)过点B 作BE AM ∥,利用平行线的性质即可求得结论;(3)利用(2)的结论和三角形的外角等于和它不相邻的两个内角的和即可求得结论.【详解】(1)解:过点B 作BE AM ∥,如图,∴A ABE ∠=∠.∵BE AM ∥,AM CN ∥,∴BE AM CN ∥∥.∴C CBE ∠=∠.∵88ABC ∠=︒.∴88A C ABE CBE ABC ∠+∠=∠+∠=∠=︒.故答案为:88A C ∠+∠=︒;(2)解:A ∠和C ∠满足:92C A ∠-∠=︒.理由:过点B 作BE AM ∥,如图,∴A ABE ∠=∠.∵BE AM ∥,AM CN ∥,∴BE AM CN ∥∥.∴180C CBE ∠+∠=︒.∴180CBE C ∠=︒-∠.∵88ABC ∠=︒.∴88ABE CBE ∠+∠=︒.∴18088A C ∠+︒-∠=︒.∴92C A ∠-∠=︒;(3)解:设CH 与AB 交于点F ,如图,∵AE 平分MAB ∠,CH 平分NCB ∠,∥,∵a b24.B【分析】根据平行线的性质可求ABD ∠的度数,然后根据角平分线定义求解即可.【详解】解:AB CD P ,3100∠=︒,3100ABD ∴∠=∠=︒,BC 是ABD ∠的平分线,121502ABD ∴∠=∠=∠=︒.故选:B .【点睛】本题考查了平行线的性质,角平分线的定义,根据平行线的性质求出ABD ∠的度数是解题的关键.25.D【分析】利用平行线的性质,角平分线的性质计算.【详解】解:155AB CD FGB ∠=︒ ∥,,180BEF EFD ∴∠+∠=︒,180********GFD FGB ∴∠=︒-∠=︒-︒=︒,FG 平分EFD ∠,222550EFD GFD ∴∠=∠=⨯︒=︒,180********BEF EFD ∴∠=︒-∠=︒-︒=︒,故选:D .【点睛】本题考查了平行线的性质和角平分线的性质,解题的关键是掌握平行线的性质.26.D【分析】由AB EF ∥,根据据两直线平行,内错角相等,可求出CDE ∠的度数,从而由3CEF AEF ∠=∠-∠可求得出CEF ∠的度数,再由CD EF ∥,根据两直线平行,同旁内角互补,求得2∠的度数即可.【详解】解:∵AB EF ∥,160∠=︒,∴160AEF ∠=∠=︒,∵320∠=︒,∴602040CEF ∠=︒-︒=︒,∵CD EF ∥,∴2180CEF ∠+∠=︒,∴218040140∠=︒-︒=︒.故选D .【点睛】本题主要考查平行线的性质.熟练掌握平行线的性质是解题的关键.27.C【分析】先根据对顶角相等可得5260∠=∠=︒,再根据平行线的判定可得a b P ,然后根据平行线的性质即可得.【详解】解:如图,260∠=︒ ,5260∴∠=∠=︒,160∠=︒ ,51∴∠=∠,a b ∴P ,4180180104376∠=︒-︒-︒=∴∠=︒,故选:C .【点睛】本题考查了对顶角相等、平行线的判定与性质,熟练掌握平行线的判定与性质是解题关键.28.B【分析】根据同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行三种判定方法进行判定即可.【详解】解:∵∠180BAD ABC ∠+∠=︒,∴BC AD ∥,故①不合题意;∵12∠=∠,∴AB CD P ,故②符合题意;∵3=4∠∠,∴BC AD ∥,故③不合题意;∵5E ADC ∠+∠=∠,5EDC ADC ∠+∠=∠,∴E EDC ∠=∠,∴AB CD P ,故④符合题意.故本题选:B .【点睛】本题考查平行线的判定,熟练掌握三种判定方法是解题关键.29.证明见解析【分析】先证明AB CD P ,再证明ME FN ∥,得到MEF EFN ∠=∠,利用等式的性质即可求解.【详解】证明:∵180AEF EFC ∠+∠=︒,∴AB CD P ,∴AEF DFE ∠=∠.∵M N ∠=∠,∴ME FN ∥,∴MEF EFN ∠=∠,∴AEF MEF EFD EFN ∠-∠=∠-∠,即12∠=∠.【点睛】本题考查了平行线的判定与性质,解题关键是牢记平行线的判定与性质.30.BC ;内错角相等,两直线平行;两直线平行,内错角相等;A ∠;同位角相等,两直线平行;两直线平行,同旁内角互补;等量代换;同旁内角互补,两直线平行.【分析】按照所给的证明思路,利用平行线的判定与性质定理,完善证明过程即可.【详解】解:∵3=4∠∠(已知)∴AE BC ∥(内错角相等,两直线平行)∴5EDC ∠=∠(两直线平行,内错角相等)∵5A ∠=∠(已知)∴EDC A ∠=∠(等量代换)∴DC AB ∥(同位角相等,两直线平行)∴5180ABC ∠+∠=︒(两直线平行,同旁内角互补)即523180∠+∠+∠=︒∵12∠=∠(已知)∴513180∠+∠+∠=︒(等量代换)即3180BCF ∠+∠=︒∴BE CF ∥(同旁内角互补,两直线平行).故答案为:BC ;内错角相等,两直线平行;两直线平行,内错角相等;A ∠;同位角相等,两直线平行;两直线平行,同旁内角互补;等量代换;同旁内角互补,两直线平行.【点睛】此题主要考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解答此题的关键.31.D【分析】由130GEF ∠=︒,135EFH ∠=︒可得1324265︒∠+∠+∠+∠=,由AB CD P 得34180∠+∠=︒,进而可求出12∠+∠的度数.【详解】解:如下图所示,∵130GEF ∠=︒,∴13130︒∠+∠=,∵135EFH ∠=︒,∵AB EF ∥,∴AB CM DN EF ∥∥∥,∴BCM DCM CDN EDN αγ∠∠∠∠=,=,=,∵CDN EDN CDN βγ∠+∠∠+==①,90BCD CDN α∠+∠︒==②,由①②得:90αβγ+-︒=.即90αβγ++︒=故选:B .【点睛】此题考查了平行线的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用是解题的关键.34.D【分析】根据平行线的性质(两直线平行,内错角相等、两直线平行,同旁内角互补)即可得到结论.【详解】∵AB CD EF ∥∥,∴31BDC ∠=∠+∠,=1802BDC ∠︒-∠,∴311802∠=∠+︒-∠,∴231801∠+∠=︒+∠,故选:D .【点睛】本题考查了平行线的性质,熟记性质是解题关键.35.C【分析】分别过E 、F 作GE AB ∥,FH CD ∥,再根据平行线的性质可以得到解答.【详解】解:分别过E 、F 作GE AB ∥,FH CD ∥,∵AB CD ∥,∴AB GE FH CD ∥∥∥,∴180ABE BEG ∠+∠=︒,180CDE DEG ∠+∠=︒,∴360ABE BEG CDE DEG ∠+∠+∠+∠=︒,即360ABE BED CDE ∠+∠+∠=︒,①正确;∴1β∠= EF CD ∥,CNE ENF ∠=∠()121802ENC α∴∠=∠=︒-∠∵1130350∠∠=︒=︒,,∴12l l ∥,∴45∠=∠,∵260350∠∠=︒=︒,,∴5180605070∠=︒-︒-︒=︒,在BCG V 中,180180904545BCG BGC B ∠=︒-∠-∠=︒-︒-︒=︒,30DCE ∠=︒ ,90453015ECA ACB BCG DCE ∴∠=∠-∠-∠=︒-︒-︒=︒.故答案为:15.【点睛】本题主要考查了平行线性质及判定,角平分线定义,关键是理解平行线性质,灵活运用角的和差关系计算.42.(1)见解析(2)26DBC ∠=︒【分析】(1)由已知条件得出180BAD CDA ∠+∠=︒,根据同旁内角互补两直线平行,即可得证;(2)根据已知条件得出18012852ADC ∠=︒-︒=︒,根据角平分线的定义得出1262ADB BDC ADC ∠=∠=∠=︒,根据平行线的性质即可求解.【详解】(1)证明:∵12180∠+∠=︒,1180,2180DAB ADC ∠+∠=︒∠+∠=︒,∴180BAD CDA ∠+∠=︒,∴AB DC ∥;(2)解:∵180BAD CDA ∠+∠=︒,128DAB ∠=︒,∴18012852ADC ∠=︒-︒=︒,∵DB 平分ADC ∠,∴1262ADB BDC ADC ∠=∠=∠=︒,∵AD BC ∥,∴26DBC ADB ∠=∠=︒.【点睛】本题考查了平行线的性质与判定,角平分线的定义,掌握平行线的性质与判定是解题的关键.43.(1)见解析(2)110︒【分析】(1)根据同位角相等,两直线平行可判定AB CD ∥,得到2ADC ∠=∠,等量代换得出3180ADC ∠+∠=︒,即可根据同旁内角互补,两直线平行得解;(2)由CE AE ⊥,AD CE ∥得出90CEF DAF ∠∠==︒,再根据平行线的性质即可求出235ADC ∠=∠=︒,再根据角平分线的定义即可得解.【详解】(1)证明:∵1BDC ∠=∠,∴AB CD ∥,∴2ADC ∠=∠,∵23180∠+∠=︒,∴3180ADC ∠+∠=︒,∴AD CE ∥;(2)解:∵CE AE ⊥于E ,∴90CEF ∠=︒,由(1)知AD CE ∥,∴90CEF DAF ∠∠==︒,∴2ADC DAF FAB ∠=∠=∠-∠,∵55FAB ∠=︒,∴35ADC ∠=︒,∵DA 平分BDC ∠,1BDC ∠=∠,∴1270BDC ADC ∠=∠=∠=︒,∴18070110ABD ∠=︒-︒=︒.【点睛】此题考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解题的基础.44.(1)180°(2)见解析【分析】(1)根据四边形的内角和解答即可;(2)根据四边形的内角和得出180OEC OFC ∠+∠=︒,由角平分线的定义得出()111809022CEG CFH MEC NFC ∠+∠=∠+∠=⨯︒=︒,过C 点作CD EG ∥,由平行线的性质与判定即可得出结论.【详解】(1)解:在四边形OECF 中由90C ∠=︒,a b ⊥r r ,得180OEC OFC ∠+∠=︒,故答案为:180°;(2)证明:在四边形OECF 中∵90C ∠=︒,a b ⊥r r ,得180OEC OFC ∠+∠=︒,∵180MEC OEC ∠=︒-∠,180NFC OFC ∠=︒-∠,∴()()180180MEC NFC OEC OFC ∠+∠=︒-∠+︒-∠∵90ODE ∠=︒,∴1409050PDE ∠=︒-︒=︒.(3)如图,∵DP FD ⊥,(4)如图,当PD 在EDF ∠的外部时,∵45EDF ∠=︒,23PDF ∠=∠同理可得:2453 PDF∠=⨯∴PDE EDF PDF∠=∠-∠【点睛】本题考查的是垂直的定义,角平分线的定义,平行线的性质,角的和差运算,清晰的分类讨论是解本题的,BAP PAC∴∠=∠∠BAP PAC∴∠=∠=∠故答案为:BAP∠=(2)证明:如图2,DBA BAG ∴∠=∠AP 平分BAC∠BAP PAC ∴∠=∠DBA BAG ∴∠=∠5DBA ACE ∠=∠ 在图3中,∵AB AC ⊥,∴90BAC ∠=︒,∵AP 平分BAC ∠,∴1452PAB PAC BAC ∠=∠=∠=︒,∵DM FG ∥,BAG DBA x∴∠=∠=45PAG PAB BAG x∴∠=∠+∠=︒+90BAC ∠=︒9090FAC BAG x∴∠=︒-∠=︒-PAG FAC∠=∠ 4590x x∴︒+=︒-解得:22.5x =︒,22.5DBA ∴∠=︒;在图4中,∵AB AC ⊥,∴90BAC ∠=︒,∵AP 平分BAC ∠,∴1452P AB P AC BAC ∠=∠=∠=''︒,∵DM FG ∥,BAG DBA x∴∠=∠=45P AG BAG P AB x ∴∠=∠-='∠-'︒()180********PAG P AG x x∴∠=︒-∠=︒--︒=︒-'90CAG x∠=︒- ()1801809090FAC CAG x x∴∠=︒∠=︒-︒-=︒+PAG FAC∠=∠ 22590x x∴︒-=︒+解得:67.5x =︒,67.5DBA ∴∠=︒;综上所述,DBA ∠的度数为22.5︒或67.5︒.【点睛】本题考查了平行线的性质和角平分线的定义综合题;熟练和灵活运用其性质建立好等量关系是解决本题的关键.。
初中数学平行线的性质知识点归纳摘抄
初中数学平行线的性质知识点归纳摘抄初中数学平行线的性质知识点归纳摘抄在同一平面内,永不相交的两条直线互为平行线。
虽然平行线在平面内定义,但也适用于立体几何。
平行线的性质性质1 两条平行线被第三条直线所截,同位角相等。
简单说成:两直线平行,同位角相等。
性质2 两条平行线被第三条直线所截,内错角相等。
简单说成:两直线平行,内错角相等。
性质3 两条平行线被第三条直线所截,同旁内角互补。
简单说成:两直线平行,同旁内角互补。
同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做着两条平行线的距离。
额外补充的是,在高等数学中的平行线的定义是相交于无限远的两条直线为平行线,因为理论上是没有绝对的平行的!初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
初中数学知识点:平面直角坐标系的构成对于平面直角坐标系的构成内容,下面我们一起来学习哦。
平面直角坐标系的构成在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。
通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。
水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
北师大版七年级数学下册平行线的性质(第一课时)课件
(1)∠1与∠3的大小有什么关系?∠2与ห้องสมุดไป่ตู้4呢?
A
DC
F
相等:∠1=∠3;
∠2 =∠4 。 1
23
4
B
E
解:∵AB∥DE , ∴∠1=∠3. (两直线平行,同位角相等) ∵∠1=∠2,∠3=∠4 ,∠1=∠3, ∴∠2=∠4.(等量代换)
(2)反射光线BC与EF也平行吗? 平行
解: 由(1)可知∠2=∠4 , ∴BC∥EF.
苹果
草莓
梨子
桃子
香蕉
草莓题:
如图,已知∠B=∠C,AE∥BC,试说明AE平分 ∠CAD。
苹果
草莓
梨子
桃子
香蕉
梨子题:
如图, 将一块直角三角板的直角顶点放在直 尺的一边上,如果∠1= 50 °,那么∠2的度 数是 40 °。
50°
3
苹果
草莓
梨子
桃子
香蕉
桃子题:
如图,已知直线a∥b, ∠1= 131 °,则∠2 等于( C )。
平行线的判定: 同位角相等,两直线平行。 内错角相等,两直线平行。 同旁内角互补,两直线平行。
平行线的性质
由“线” 来定“角”
——由“线”的位置关系(平行) 定“角” 的数量关系(相等或互补)。
平行关系 角的关系
P50做一做
如图:一束平行光线做A一B和做DE射向一个水平镜面后
被反射,此时∠1=∠2, ∠3=∠4。
(同位角相等,两直线平行)
比一比 、乐一乐:分组PK
规则:组长上来抽签,组内讨论后派一人
回答,并说明理由。
苹果
草莓
梨子
桃子
香蕉
苹果
草莓
第8讲 平行线的性质与用尺规作角七年级数学下册同步精品讲义
第8讲平行线的性质与用尺规作角目标导航1.掌握平行线的性质,并能依据平行线的性质进行简单的推理;2.了解平行线的判定与性质的区别和联系,理解两条平行线的距离的概念;3、理解尺规作图的含义;4、能用尺规作一些基本的图形;5、通过尺规作图的理解进行一些线段和角的计算。
知识精讲知识点01平行线的性质一、平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”.(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.二、平行的传递性如果两条直线都与第三条直线平行,那么这两条直线也互相平行.三、两条平行线的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.要点诠释:(1)求两条平行线的距离的方法是在一条直线上任找一点,向另一条直线作垂线,垂线段的长度就是两条平行线的距离.(2) 两条平行线的位置确定后,它们的距离就是个定值,不随垂线段的位置的改变而改变,即平行线间的距离处处相等.【知识拓展1】(2021秋•本溪期末)如图,将一个含有30°角的直角三角板放置在两条平行线a,b上,若∠1=115°,则∠2的度数为()A.85°B.75°C.55°D.95°【即学即练1】(2021秋•成都期末)如图,直线AB∥CD,点E在AC上,若∠A=130°,∠D=20°,则∠AED=()A.70°B.75°C.80°D.85°【即学即练2】(2021秋•武侯区期末)如图,把三角板的直角顶点放在直尺的一边上,已知直尺的对边平行,若∠1=25°,则∠2的度数为()A.25°B.55°C.65°D.75°【即学即练3】(2021秋•普宁市期末)如图,在△DEF中,点C在DF的延长线上,点B在EF上,且AB ∥CD,∠EBA=60°,则∠E+∠D的度数为()A.60°B.30°C.90°D.80°【即学即练4】(2021秋•铁西区期末)如图,AB∥CD∥EF,若∠ABC=125°,∠CEF=105°,则∠BCE的度数为.【即学即练5】(2021秋•宽城区期末)如图,直线m∥n.若∠1=40°,∠2=30°,则∠3的大小为度.【知识拓展2】(2021秋•成都期末)如图,AE∥BC,且∠ABD=∠ADB,∠DAE=∠E,若∠ABC=63°,求∠DBC的度数.【即学即练1】(2021秋•宝安区期末)生活中常见的探照灯、汽车大灯等灯具都与抛物线有关.如图,从光源P点照射到抛物线上的光线P A,PB等反射以后沿着与直线PF平行的方向射出,若∠CAP=α,∠DBP=β,则∠APB的度数为()A.2αB.2βC.α+βD.(α+β)【即学即练2】(2021秋•香坊区期末)如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,∠EAB=72°,以下四个说法:①∠CDF=30°;②∠ADB=50°;③∠ABD=22°;④∠CBN=108°;其中正确说法的个数是()A.1个B.2个C.3个D.4个【即学即练3】(2021秋•道里区期末)如图,AB∥CD,AD与BC相交于点F,BE平分∠ABC,DE平分∠ADC,∠AFB=96°,则∠BED的度数为度.【即学即练4】(2021秋•罗湖区期末)请解答下列各题:(1)阅读并回答:科学实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的角相等.如图1,一束平行光线AB与DE射向一个水平镜面后被反射.此时∠1=∠2,∠3=∠4.①由条件可知:∠1=∠3,依据是,∠2=∠4,依据是.②反射光线BC与EF平行,依据是.(2)解决问题:如图2,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b镜反射,若b射出的光线n平行于m,且∠1=42°,则∠2=;∠3=.【即学即练5】(2021秋•南关区期末)如图,已知AB∥DC,AC⊥BC,AC平分∠DAB,∠B=50°,求∠D的大小.阅读下面的解答过程,并填括号里的空白(理由或数学式).解:∵AB∥DC(),∴∠B+∠DCB=180°().∵∠B=(已知),∴∠DCB=180°﹣∠B=180°﹣50°=130°.∵AC⊥BC(已知),∴∠ACB=(垂直的定义).∴∠2=.∵AB∥DC(已知),∴∠1=().∵AC平分∠DAB(已知),∴∠DAB=2∠1=(角平分线的定义).∵AB∥DC(已知),∴+∠DAB=180°(两条直线平行,同旁内角互补).∴∠D=180°﹣∠DAB=.【即学即练6】(2021秋•长春期末)已知AM∥CN,点B在直线AM、CN之间,AB⊥BC于点B.(1)如图1,请直接写出∠A和∠C之间的数量关系:.(2)如图2,∠A和∠C满足怎样的数量关系?请说明理由.(3)如图3,AE平分∠MAB,CH平分∠NCB,AE与CH交于点G,则∠AGH的度数为.知识点02 用尺规作角1.作图—尺规作图的定义(1)尺规作图是指用没有刻度的直尺和圆规作图.只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.(2)基本要求它使用的直尺和圆规带有想像性质,跟现实中的并非完全相同.直尺必须没有刻度,无限长,且只能使用直尺的固定一侧.只可以用它来将两个点连在一起,不可以在上画刻度.圆规可以开至无限宽,但上面亦不能有刻度.它只可以拉开成你之前构造过的长度.2、作一个角等于已知角作一个角等于已知角的主要作用是作三角形和作平行线等.利用尺规作一个角等于已知角.已知:∠AOB(如图2-4-22所示).求作:∠A′O′B′,使∠A′O′B′=∠AOB.图2-4-22作法:(1)如图2-4-23所示,作射线O′B′;(2)以点O为圆心,以任意长为半径作弧,交OA于点D,交OB于点C;(3)以点O′为圆心,以OC长为半径作弧,交O′B′于点C′;(4)以点C′为圆心,以CD长为半径画弧,交前面的弧于点D′;(5)过点D′作射线O′A′.则∠A′O′B′就是所求作的角.图2-4-23【知识拓展1】(2021秋•无为市期末)下列尺规作图的语句正确的是()A.延长射线AB到DB.以点D为圆心,任意长为半径画弧C.作直线AB=3cmD.延长线段AB至C,使AC=BC【即学即练1】(2020秋•大连期末)下列作图语句中,叙述正确的是()A.延长线段AB到点C,使BC=ABB.画直线AB的中点CC.画直线AB=6cmD.延长射线OA到点B【即学即练2】只用的直尺和进行的作图称为尺规作图.【即学即练3】(2021春•铁岭月考)下列作图语句错误的个数是()①以点O为圆心作弧;②延长射线OM到点A;③延长线段AB到C,使BC=AB;④过三点A,B,C作直线.A.1个B.2个C.3个D.4个【即学即练4】(2021春•龙口市月考)下列画图语句中,正确的是()A.画射线OP=3cm B.画出A、B两点的距离C.延长射线OA D.连接A、B两点【即学即练5】(2011春•巴东县校级期末)作图题的书写步骤是、、,而且要画出,写出,保留.【即学即练6】(2019秋•成安县期末)下列画图语句中,正确的是()A.画射线OP=3cm B.连结A、B两点C.画出直线AB的中点D.画出A、B两点的距离【即学即练7】(2018秋•宁阳县期末)下列语句是有关几何作图的叙述.①以O为圆心作弧;②延长射线AB到点C;③作∠AOB,使∠AOB=∠1;④作直线AB,使AB=a;⑤过三角形ABC的顶点C作它的对边AB 的平行线.其中正确的有.(填序号即可)【即学即练8】如图,利用尺规,在△ABC的边AC上方作∠CAE=∠ACB,在射线AE上截取AD=BC,连接CD,并证明:CD∥AB(尺规作图要求保留作图痕迹,不写作法)【即学即练9】下列语句表示的图形是(只填序号)①过点O的三条直线与另条一直线分别相交于点B、C、D三点:.②以直线AB上一点O为顶点,在直线AB的同侧画∠AOC和∠BOD:.②过O点的一条直线和以O为端点两条射线与另一条直线分别相交于点B、C、D三点:.能力拓展类型一、平行线的性质例1、如图,已知AB∥CD,AP平分∠BAC,CP平分∠ACD,求∠APC的度数.【变式】如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°类型二、两平行线间的距离例2、如图,已知,l1∥l2,C1在l1上,并且C1A⊥l2,A为垂足,C2,C3是l1上任意两点,点B在l2上.设△ABC1的面积为S1,△ABC2的面积为S2,△ABC3的面积为S3,小颖认为S1=S2=S3,请帮小颖说明理由.【变式】下图是一个方形螺线.已知相邻均为1厘米,则螺线总长度是厘米.类型三、平行的性质与判定综合应用例3、如图所示,在长为50m,宽为22m的长方形地面上修筑宽度都为2 m的道路,余下的部分种植花草,求种植花草部分的面积.【变式】如图①,在宽为20m、长为30m的矩形地面上修建两条同样宽度的道路,余下部分作为耕地.根据图中数据,可得耕地的面积为()A.600m2B.551m2C.550m2D.500m2例4、如图所示,∠ABC的边BC与∠DEF的边DE交于点K,下面给出三个论断:①∠B=∠E;②AB∥DE;③BC∥EF.请你以其中的两个论断为条件,填入“已知”栏中,以一个论断为结论,填人“试说明”栏中,使之成为一个完整的正确命题,并将理由叙述出来.已知:如图所示,∠ABC的边BC与∠DEF的边DE交于点K,________,________,试说明________.【变式】已知,如图,∠1=∠2,∠3=65°,则∠4= .例5、如图,AB∥CD,点M,N分别为AB,CD上的点.(1)若点P1在两平行线内部,∠BMP1=45°,∠DNP1=30°,则∠MP1N=;(2)若P1,P2在两平行线内部,且P1P2不与AB平行,如图,请你猜想∠AMP1+∠P1 P2N与∠MP1 P2+∠P2ND的关系,并证明你的就论;(3)如图,若P1,P2,P3在两平行线内部,顺次连结M,P1,P2,P3,N,且P1P2,P2P3不与AB平行,直接写出你得到的就论.【变式】如图所示,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是()A.120°B.130°C.140°D.150°类型四:尺规作图的定义例6.下列作图属于尺规作图的是()A.用三角尺作AB的平行线B.用刻度尺画线段AB=3 cmC.用直尺和圆规作直线AB的平行线D.用量角器画∠AOB的平分线OC类型五:作一个角等于已知角例7.如图2-4-24所示,已知∠AOB,求作∠CBO,使∠CBO=∠AOB,交OA于点C.图2-4-24类型六:作已知角的和、差、倍例8.如图2-4-25所示,已知∠α,∠β,求作一个角,使它等于∠α与∠β的和.图2-4-25分层提分题组A 基础过关练一.选择题(共5小题)1.(2021秋•杜尔伯特县期末)如图,已知l1∥l2,∠A=45°,∠2=100°,则∠1的度数为()A.50°B.55°C.45°D.60°2.(2020秋•历下区期末)如图,将长方形纸片ABCD沿对角线BD折叠,点C的对应点为E,若∠CBD=35°,则∠AFB的度数为()A.70°B.75°C.80°D.85°3.如图,AB∥EF,∠C=90°,则α、β和γ的关系是()A.β=α+γB.α+β+γ=180°C.α+β﹣γ=90°D.β+γ﹣α=180°4.下列画图语句中,正确的是()A.画射线OP=3 cm B.画出A、B两点的距离C.画出A、B两点的中点D.连接A、B两点5.在下列各题中,属于尺规作图的是()A.利用三角板画45°的角B.用直尺和三角板画平行线C.用直尺画一工件边缘的垂线D.用圆规在已知直线上截取一条线段等于已知线段二.填空题(共3小题)6.(2021秋•道里区期末)如图,∠AOB内有一点P,过点P画PC∥OB,PD∥OA,∠AOB=60°,则∠CPD的度数为度.7.(2019秋•辉县市期末)一个小区大门的栏杆如图所示,BA垂直地面AE于A,CD平行于地面AE,那么∠ABC+∠BCD=度.8.(2020秋•石狮市期末)如图,AB∥CD,∠EGB=50°,则∠CHG的大小为.三.解答题(共4小题)9.(2021秋•临漳县期末)探究:如图①,DE∥BC,EF∥AB,若∠ABC=50°,求∠DEF的度数.请将下面的解答过程补充完整,并填空.解:因为DE∥BC,所以∠DEF=().因为EF∥AB,所以=∠ABC().所以∠DEF=∠ABC(等量代换).因为∠ABC=50°,所以∠DEF=°.应用:如图②,DE∥BC,EF∥AB,若∠ABC=65°,求∠DEF的度数.10.(2021春•原州区期末)如图,AD∥BC,∠CAE的平分线是AD,∠C=65°.请你计算出∠DAE、∠CAB和∠B的度数.11.(2021春•敦化市期末)如图,已知:AE∥BF,∠A=∠F,证明:∠C=∠D.12.(2021春•南丹县期末)如图,在△ABC中,点D、E、F分别在边AB、AC、CB上,且DE∥BC,EF ∥AB,若∠ABC=65°,求∠DEF的度数.请将下面的解答过程补充完整:解:∵DE∥BC(),∴∠DEF=∠CFE(),∵EF∥AB,∴∠CFE=∠ABC(),∴∠DEF=∠ABC().∵∠ABC=65°,∴∠DEF=.题组B 能力提升练一.选择题(共6小题)1.(2020秋•南岸区期末)如图,D是∠ABC的边BC上一点,DE∥BA,∠CBE和∠CDE的平分线交于点F,若∠F=α,则∠ABE的大小为()A.αB.αC.2αD.2.(2021秋•上思县期中)如图所示,若AB∥DE,且∠E=55°,则∠B+∠C的度数是()A.135°B.125°C.55°D.45°3.(2021•临沭县模拟)如图,已知AB∥CD,∠A=56°,∠E=18°,则∠C的度数是()A.32°B.34°C.36°D.38°4.(2021•河南模拟)将含30°角的直角三角尺如图摆放,直线a∥b,若∠1=65°,则∠2的度数为()A.45°B.50°C.55°D.60°5.(2021秋•常州期中)下列作图语句正确的是()A.连接AD,并且平分∠BAC B.延长射线ABC.作∠AOB的平分线OC D.过点A作AB∥CD∥EF6.下列作图不是尺规作图的是()A.用直尺和圆规作线段a等于已知线段B.用直尺和圆规作一个角等于已知角C.用刻度尺和圆规作一条10cm的线段D.用直尺和圆规作一个三角形二.填空题(共4小题)7.(2021秋•南岗区期末)如图,m∥n,l⊥n,垂足为点A,l交m于点B,点C在直线n上,请在直线m 上取一点D,连接CD,过点D作DE⊥CD交直线l于点E,若∠BED=60°,则∠ACD=度.8.(2021秋•道里区期末)如图,a∥b,∠1=∠2,∠3=40°,则∠4等于度.9.(2020秋•成都期末)如图,把一条两边边沿互相平行的纸带折叠,若∠β=56°,则∠α=.10.(2021春•沙坪坝区校级期中)如图,将一张长方形的纸片沿折痕EF翻折,使点B、C分别落在点M、N的位置,且∠AFM=∠EFM,则∠NED=°.三.解答题(共4小题)11.(2021秋•农安县期末)已知直线AB∥CD,P为平面内一点,连接P A、PD.(1)如图1,已知∠A=50°,∠D=150°,求∠APD的度数;(2)如图2,判断∠P AB、∠CDP、∠APD之间的数量关系为.(3)如图3,在(2)的条件下,AP⊥PD,DN平分∠PDC,若∠P AN+∠P AB=∠APD,求∠AND的度数.12.(2021秋•嵩县期末)已知一角的两边与另一个角的两边分别平行,试探索这两个角之间的关系,并说明你的结论.(1)如图1所示,AB∥EF,BC∥DE,则∠1与∠2的关系是;(2)如图2所示,AB∥EF,BC∥DE,则∠1与∠2的关系是;(3)经过上述探索,我们可以得到一个结论(试用文字语言表述):;(4)若两个角的两边分别平行,且一个角比另一个角的2倍少30°,则这两个分别是多少度?13.(2021秋•虎林市期末)(1)如图(1),AB∥EF.求证:∠BCF=∠B+∠F.(2)当点C在直线BF的右侧时,如图(2),若AB∥EF,则∠BCF与∠B、∠F的关系如何?请说明理由.14.(2020秋•开江县期末)当光线经过镜面反射时,入射光线、反射光线与镜面所夹的角对应相等.例如:在图①、图②中都有∠1=∠2,∠3=∠4.设镜子AB与BC的夹角∠ABC=α.(1)如图①,若α=90°,判断入射光线EF与反射光线GH的位置关系,并说明理由.(2)如图②,若90°<α<180°,入射光线EF与反射光线GH的夹角∠FMH=β.探索α与β的数量关系,并说明理由.(3)如图③,若α=130°,设镜子CD与BC的夹角∠BCD为钝角,入射光线EF与镜面AB的夹角∠1=x(0°<x<90°).已知入射光线EF从镜面AB开始反射,经过n(n为正整数,且n≤3)次反射,当第n次反射光线与入射光线EF平行时,请直接写出∠BCD的度数(可用含x的代数式表示).题组C 培优拔尖练一.选择题(共1小题)1.(2021春•红谷滩区校级期末)如图,将长方形ABCD沿线段EF折叠到EB'C'F的位置,若∠EFC'=100°,则∠DFC'的度数为()A.20°B.30°C.40°D.50°二.填空题(共7小题)2.(2021秋•香坊区校级期中)已知AB∥CD,∠ACD=60°,∠BAE:∠CAE=2:3,∠FCD=4∠FCE,若∠AEC=78°,则∠AFC=.3.(2021春•东港区校级期末)把一张对边互相平行的纸条,折成如图所示,EF是折痕,若∠EFB=32°,则下列结论:①∠C'EF=32°;②∠AEC=1480';③∠BGE=64°;④∠BFD=116°.正确的有个.4.(2021春•涡阳县期末)如图,AB∥CD,P2E平分∠P1EB,P2F平分∠P1FD,若设∠P1EB=x°,∠P1FD =y°则∠P1=(x+y)度(用x,y的代数式表示),若P3E平分∠P2EB,P3F平分∠P2FD,可得∠P3,P4E平分∠P3EB,P4F平分∠P3FD,可得∠P4…,依次平分下去,则∠P n=度.5.(2021春•辛集市期末)把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若∠EFG=49°,则∠2﹣∠1=.6.(2021春•乐清市期末)将一副三角板如图1所示摆放,直线GH∥MN,现将三角板ABC绕点A以每秒1°的速度顺时针旋转,同时三角板DEF绕点D以每秒2°的速度顺时针旋转,设时间为t秒,如图2,∠BAH=t°,∠FDM=2t°,且0≤t≤150,若边BC与三角板的一条直角边(边DE,DF)平行时,则所有满足条件的t的值为.7.(2021春•钦州期末)如图,已知AB∥CD,BE、DE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠CDE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠CDE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠CDE2的平分线,交点为E3,…第n(n≥2)次操作,分别作∠ABE n﹣1和∠CDE n﹣1的平分线,交点为E n,若∠E n=α度,则∠BED=度.8.(2021春•奉化区校级期末)如图,AB∥CD,∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∠E﹣∠F=33°,则∠E=.三.解答题(共5小题)9.(2021秋•农安县期末)如图,点P是∠AOB的边OB上的一点,过点P画OB的垂线,交OA于点C;(1)过点P画OA的垂线,垂足为H;(2)线段PH的长度是点P到的距离,是点C到直线OB的距离.线段PC、PH、OC这三条线段大小关系是(用“<”号连接)10.(2021秋•南岗区校级期中)已知,AB∥DE,点C在AB上方,连接BC、CD.(1)如图1,求证:∠BCD+∠CDE=∠ABC;(2)如图2,过点C作CF⊥BC交ED的延长线于点F,探究∠ABC和∠F之间的数量关系;(3)如图3,在(2)的条件下,∠CFD的平分线交CD于点G,连接GB并延长至点H,若BH平分∠ABC,求∠BGD﹣∠CGF的值.11.(2021•泉州模拟)如图,已知AB∥CD,BE平分∠ABD,DE平分∠BDC.(∠ABD的度数大于90°小于120°)(1)求证:∠BED=90°;(2)若点F为射线BE上一点,∠EDF=α,∠ABF的角平分线BG与∠CDF的角平分线DG交于点G,试用含α的式子表示∠BGD的大小;(3)延长BE交CD于点H,点F为线段BH上一动点,∠ABF邻补角的角平分线与∠CDF邻补角的角平分线DG交于点G,探究∠BGD与∠BFD之间的数量关系,请直接写出结论:.(题中所有的角都是大于0°小于180°的角)12.(2021春•靖江市期末)当光线经过镜面反射时,入射光线、反射光线与镜面所夹的角对应相等.例如:在图①、图③中,都有∠1=∠2,∠3=∠4.设镜子AB与BC的夹角∠ABC=α.(1)如图①,若α=90°,判断入射光线FE与反射光线GH的位置关系,并说明理由;(2)如图②,若α=135°,设镜子CD与BC的夹角∠BCD=θ(90°<θ<180°),入射光线FE与镜面AB的夹角∠1=m(0°<m<90°),已知入射光线FE从镜面AB开始反射,经过3次反射后,反射光线与入射光线FE平行,请用含有m的代数式直接表示θ的度数;(3)如图③,若90°<α<180°,∠1=20°,入射光线FE与反射光线GH的夹角∠FMH=β.若△MEG为锐角三角形,请求出α的取值范围.13.(2021春•江汉区期中)问题探究:如图①,已知AB∥CD,我们发现∠E=∠B+∠D.我们怎么证明这个结论呢?张山同学:如图②,过点E作EF∥AB,把∠BED分成∠BEF与∠DEF的和,然后分别证明∠BEF=∠B,∠DEF=∠D.李思同学:如图③,过点B作BF∥DE,则∠E=∠EBF,再证明∠ABF=∠D.问题解答:(1)请按张山同学的思路,写出证明过程;(2)请按李思同学的思路,写出证明过程;问题迁移:(3)如图④,已知AB∥CD,EF平分∠AEC,FD平分∠EDC.若∠CED=3∠F,请直接写出∠F的度数.。
第二节 平行线的性质和判定(含答案)...七年级数学 学而思
第二节 平行线的性质和判定1.平行线(1)定义:在同一平面内,不相交的两条直线叫做平行线,直线a 与直线b 互相平行,记作a∥b; 注:必须强调在同一平面内,否则无法说明平行.(2)平行公理:经过直线外一点,有且只有一条直线与已知直线平行,注:点必须在直线外,而不能在直线上; (3)平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也相互平行,即“平行于同一条直线的两直线平行”.2.两条直线的位置关系在同一平面内,两条直线的位置关系只有两种:(1)相交;(2)平行,注:判断同一平面内两条直线的位置关系时,可以根据它们的公共点的个数来确定:①有且只有一个公共点,两直线相交;②无公共点,两直线平行. 3.两直线平行的判定方法 (1)平行线的定义; (2)平行公理的推论;(3)同位角相等,两直线平行; (4)内错角相等,两直线平行; (5)同旁内角互补,两直线平行. 4.平行线的性质(1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)两直线平行,同旁内角互补.1.平行的判定和证明:证明平行一般从寻找相等的同位角,内错角或互补的同旁内角 出发,而这些角关系的获得条件一般有: ①已知平行条件; ②三角形内角和; ③角平分线; ④垂直;⑤互余互补关系.例1.如图5-2-1所示,如果,//,//CD EF EF AB 请写出一个关于3,2,1∠∠∠的等量关系125-- 225-- 325--检测1.如图5-2-2所示,已知a ‖b,0701=∠,,402ο=∠则=∠3 例2.如图5-2-3所示,已知,9021ο=∠+∠,,//AG CD FC DE ⊥求证:.//FH AG检测2.如图5-2-4所示,直线a ,b 被直线c 所截,下列条件能使b a //的是;61∠=∠①;62∠=∠②;31∠=∠③;75∠=∠④+∠2⑤;1807ο=∠.71∠=∠⑥例3.(江西兴国县期末)学习了平行线后,小龙同学想出了“过已知直线m 外一点P 画这条直线的平行线的新方法”,他是通过折一张半透明的正方形纸得到的.525--观察图5-2-5所示,经两次折叠展开后折痕CD 所在的直线即为过点P 的已知直线m 的平行线.从图中可知,小明画平行线的依据有( )①两直线平行,同位角相等; ②两直线平行,内错角相等; ③同位角相等,两直线平行; ④内错角相等,两直线平行. A.①② B.②③ C .③④ D .①④425--检测3.如图5-2-6所示,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在C D ,的位置,若,60ο=∠EFB 则=∠AED例4.已知,,100,//ο=∠=∠A B OA BC 试回答下列问题:725-- 825-- 925--(1)如图5-2-7所示,求证:;//AC OB(2)如图5-2-8所示,若点E ,F 在线段BC 上,且满足,AOC FOC ∠=∠并且OE 平分.BOF ∠则EOC ∠的度数等于 (在横线上填上答案即可);(3)在(2)的条件下,若平行移动AC ,如图5-2-9,那么OFB OCB ∠∠:的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值; (4)在(3)的条件下,如果平行移动AC 的过程中,若使,OCA OEB ∠=∠此时OCA ∠度数等于 (在横线上填上答案即可).检测4.(广东澄海区期末)如图5 -2 -10所示,直线MN 与直线AB 、CD 分别交于点E 、F ,1∠与2∠互补.(1)试判断直线AB 与直线CD 的位置关系,并说明理由; (2)如图5-2 -11所示,BEF ∠与FFD ∠的角平分线交于点P ,EP 与CD 交于点G .点H 是MN 上一点,且GHlEG ,求证:;//GH PF(3)如图5-2 -12所示,在(2)的条件下,连接PH ,K 是GH 上一点使=∠PHK ,HPK ∠作PQ 平分EPK ∠问HPQ ∠的大小是否发生变化?若不变,请求出其值;若变化,说明理由,625---122-5-5--1110225-第二节平行线的性质和判定(建议用时 35分钟)实战演练1.(浙江绍兴期末)如图5-2-1所示,,//,////DB EG DC EF AB 则图中与1∠相等的角(1∠除外)共有( )6.A 个 5.B 个 4.C 个 3.D 个2.(浙江金华中考)以下四种沿AB 折叠的方法中,不一定能判定纸带两条边线以,6互相平行的是( )125-- 225-- 325-- 425-- 525--A .如图5-2-2所示,展开后测得21∠=∠B .如图5-2-3所示,展开后测得4321∠=∠∠=∠且C .如图5-2-4所示,测得21∠=∠D .如图5-2-5所示,展开后再沿CD 折叠,两条折痕的交点为0,测得,OB OA =OD =OC3.如图5-2-6所示是五条胡同的路线图,),(F F D C B A →--→→→经过测量得到C B ∠=∠,70ο=,110ο=∠=∠E D 则图中互相平行的线有( )A .1对B .2对C .3对D .4对625-- 725-- 825-- 925--4.(山东聊城中考)如图5-2-7所示,,//CD AB ,68ο=∠B ,20ο=∠E 则D ∠的度数为( )ο28.A o B 38. ο48.C ο88.D5.如图5-2-8所示,HG EF BC AD ,,//交于点HI P ,平分,GHF ∠PM 平分EPH ∠HI 交PM 的反向延长线于Q ,//PN,HI 下列结论:,GEP EGP ∠=∠①若则;//AD PM 2=∠GEP ②;MPN ∠,2Q FPN ∠=∠③其中正确的是( )①②③.A ①③.B ②③.C ①②.D6,(山东聊城模拟)如图5-2-9所示,在四边形ABCD 中,=∠B ,120ο,50oD =∠将C ∠向内折出一个,PRC ∆恰好使,//AB CP //CR ,AD 则C ∠的度数是( )ο80.A ο85.B ο95.C o D 110.7.如图5 -2 - 10所示,已知,AB GF ⊥,21∠=∠,B AGH ∠=∠则下列结论:;//BC GH ①;HGM D ∠=∠②;//FG DE ③,AB HE ⊥④其中正确的是( )①②⋅A ③ ②③④⋅B ①③④⋅C ①②③④⋅D1125-- 1225--8.(广西玉州区期末)如图5 -2 - 11所示,已知BAD CD AB ∠,//和BCD ∠的平分线交于点E .,1001ο=∠,m BAD =∠ο则EC A ∠的度数为9,如图5 -2 - 12所示,直线,//21l l 若,125ο=∠A ,85ο=∠B 则=∠+∠21 10.如图 5 -2 - 13所示,已知,180ο=∠+∠BCD B .D B ∠=∠求证:.DFE E ∠=∠证明:οΘ180=∠+∠BCD B ( )CD AB //∴( )=∠∴B (两直线平行,同位角相等), D B ∠=∠Θ(已知), D DCE ∠=∠∴(等量代换), BF AD //∴( )DFE E ∠=∠∴( )11.如图5 -2 - 14所示,直线AB ,CD 被EF 所截,,21∠=∠,BME CNF ∠=∠求证:AB ,//CD .//NQ MP12.(山东招远市期耒)如图5-2 -15所示,点D ,E 分别在ABC ∆的边AB ,AC 上,点F 在DC 上,且,18021ο=∠+∠.3B ∠=∠求证:.//BC DE1325--1425--1525--13.小明将一直角三角板(ο30=∠A )放在如图5 -2 - 16所示的位置,且.21C ∠=∠+∠ (1)证明:;//b a(2)经测量知,1A ∠=∠求;2∠(3)如图5-2 - 17所示,将三角板进行适当转动,直角顶点始终在两直线间,M 在线段CD 上,且CEH CEM ∠=∠给出下列结论:BDFMEG∠∠①的值不变:BDF MEG ∠-∠②的值不变,可以证明,其中只有一个是正确的,请你作出正确的选择并直接写出此值,1625-- 1725--14.如图5-2-18所示,.F D B E C A ∠+∠+∠=∠+∠+∠求证:.//CD AF15.问题情景:如图5-2 - 19所示,,//CD AB ,130oPAB =∠,120ο=∠PCD 求APC ∠的度数. (1)天天同学看过图形后立即口答出:,110oAPC =∠请你补全他的推理依据.如图5 -2 - 20所示,过点P 作,//AB PE,//CD AB ΘCD AB PE ////∴( .180ο=∠+∠∴APE Aο180=∠+∠CPE C ( ),120,130οΘ=∠=∠PCD PAB O.60.50ο=∠=∴⊥CPE APE o1825--ο110=∠+∠=∠∴CPE APE APC ( )问题迁移:(2)如图5-2- 21所示,,//BC AD 当点P 在A ,B 两点之间运动时,,α∠=∠ADP ,β∠=∠BCP 求βα∠∠∠,与CPD 之间有何数量关系?请说明理由.(3)在(2)的条件下,如果点P 在A ,B 两点外侧运动时(点P 与点A ,B ,0三点不重合),请你直接写出CPD ∠与βα∠∠,之间的数量关系.1925-- 2025-- 2125--拓展创新16.(辽宁鞍山期末)实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.(1)如图5 -2 - 22所示,一束光线m 射到平面镜a 上,被a 反射到平面镜b 上,又被b 反射.若被6反射出的光线n 与光线m 平行,且,381ο=∠则=∠2 ;=∠3(2)在(1)中,若ο551=∠则=∠3 ;若,401ο=∠则=∠3(3)由(1).(2)猜想:当两平面镜a ,b 的夹角=∠3 时,可以使任何射到平面镜a 上的光线m ,经过平面镜a ,b 的两次反射后,入射光线m 与反射光线n 平行.你能说明理由吗?拓展1.有一款灯,内有两面镜子AB ,BC ,当光线经过镜子反射时,入射角等于反射角,即图5 -2 - 23、图5-2 -24中的.43,21∠=∠∠=∠2225--2325-- 2425--(1)如图5 -2 - 23所示,当BC AB ⊥时,说明为什么进入灯内的光线EF 与离开灯的光线GH 互相平行; (2)如图5-2 - 24所示,若两面镜子的夹角为)900(οο<<αα时,进入灯内的光线与离开灯的光线的夹角为),900(οο<<ββ试探索α与β的数量关系;(3)若两面镜子的夹角为),18090(οο<<αα进入灯内的光线与离开灯的光线所在直线的夹角为).900(οο<<ββ直接写出α与β的数量关系.拓展2.(湖北武昌区期末)一个长方形台球桌面ABCD )90,//,//(ο=∠A BC AD DC AB 如图5 -2 - 25所示,已知台球在与台球桌边沿碰撞的过程中,撞击线路与桌边的夹角等于反射线路与桌边的夹角,即.21∠=∠(1)台球经过如图5 -2 - 26所示的两次反弹后,撞击线路EF ,第二次反弹线路GH , 求证:;//GH EF(2)台球经过如图5 -2 - 27所示的两次反弹后,撞击线路EF 和第二次反弹线路GH 是否仍然平行,给出你的结论并说明理由.2525-- 2625-- 2725--极限挑战17.平面上有100条直线,其中有20条是互相平行的,问这100条直线最多能将平面分成部分,课堂答案培优答案。
七年级平行线与平移知识点
七年级平行线与平移知识点平移和平行线是初中数学中十分重要的一个章节。
初中数学中有一个非常重要的定理——平行线与平移定理,这个定理在初中数学学习中起到了至关重要的作用。
那么接下来就让我们来了解一下七年级平行线与平移的重要知识点吧。
一、平行线的基本概念在欧氏几何中,平行线指的是在同一平面内没有交点的两条直线。
平行线可以用符号“||”表示,相交的直线叫做交线。
平行线和交线的关系可以用平行关系、垂直关系等多种关系来表达。
初中数学学习中主要是关注平行关系和垂直关系。
二、平移的概念及性质平移是指在平面上将图形整体移动到另一个位置的变换。
平移变换后的图形与原图形的形状大小相同,位置不同。
平移变换可以用一个向量或坐标表示。
平移的性质有:1. 保形性:平移变换后的图形与原图形形状相同。
2. 保大小性:平移变换后的图形与原图形大小相同。
3. 保角度性:平移变换后的图形与原图形的角度是相等的。
三、平移的平行关系平移变换可以用矩阵表示。
若一个图形经过平移变换得到另一个图形,则称这两个图形平移关系。
平移关系中,相同的图形从一个平面移动到另一个平面,所移动的距离是相等的,方向也相同。
如果两个图形的关系是平移关系,那么这两个图形之间一定是平行的。
平行关系和平移关系是密切相关的。
四、平行线的性质平行线的性质包括1. 平行线的夹角等于对角线所夹的锐角或钝角。
2. 平行线交相等的交角。
3. 平行线所包含的角等于对应的内角。
5. 线段所在的平行线,线段长度是一样的。
5. 两条直线如果分别和一条过这两条直线上的点的直线平行,则这两条直线互相平行。
六、点、线段和直线的平移关系在平移变换中,点与点之间保持距离不变,线段和线段之间也保持距离不变,直线与直线之间还是平行的。
在平移变换中,图形的所有点、线段和直线都同时平移了一段距离。
七、训练技巧七年级平行线和平移知识点的训练技巧包括:1.掌握基本的理论知识。
2.进行练习,理解基本知识的实际应用。
人教版七年级数学下册《平行线的性质(第一课时)》教学设计
5.3 平行线的性质(第1课时)(学生独立回忆,思考并回答问题。
)【承上启下。
】2、师:反过来:如果两条直线平行,那么同位角、内错角、同旁内角又各有什么样的关系呢?这就是我们这节课要探究的问题。
二、探究合作交流一1、画两条平行线a//b,然后画一条截线c与a、b相交,标出如图的角. 度量所形成的8个角的度数,把结果填入下表:(学生自学,独立思考并回答问题)角∠1 ∠2 ∠3 ∠4度数角∠5 ∠6 ∠7 ∠8度数2、观察、猜想两条直线被第三条直线截得的同位角有什么关系?生回答可以用度量的方法或剪切的方法来验证。
(多媒体展示)3、如果改变截线的位置,你发现的结论还成立吗?(学生分组讨论,观察、思考问题)4、如果两直线不平行,上述结论还成立吗?变式1:已知条件不变,求∠3,∠4的度数? 变式2:已知∠3 =∠4,∠1=47°,求∠2的度数? 四、走进生活1如图,是一块梯形铁片的残余部分,量∠A =100°, ∠B =115°,梯形的另外两个角分别是多少度? 【让学生独立思考,同时,通过实例,培养学生分 析问题的能力,让学生从具体的实例中发现数学问题 ,使学生懂得数学来源于实际生活,服务于实际生活。
】五、巩固提升 六、总结升华、反思提升1.回顾本节课学习的主要内容,填写下表:2.运用平行线性质的前提条件是什么?3.本节课涉及的数学思想方法有哪些?4.本节课的学习,你还有哪些收获或疑惑? 归纳:性质:线的关系←角的关系判定:角的关系→线的关系【学生对本节课进行知识梳理,巩固教学目标。
】A BCD七、板书设计:5.3平行线的性质(第1课时)。
初一数学平行线的性质及其判定
平行线中考要求在同一平面内,不相交的两条直线叫做平行线,直线与直线互相平行,记作∥。
平行线的性质:平行线之间的距离处处相等.两条直线的位置关系在同一平面内,两条直线的位置关系只有两种:⑴相交;⑵平行。
因此当我们得知在同一平面内两直线不相交时,就可以肯定它们平行;反过来也一样(这里,我们把重合的两直线看成一条直线)注意:判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定:①有且只有一个公共点,两直线相交;②无公共点,则两直线平行;③两个或两个以上公共点,则两直线重合(因为两点确定一条直线)平行线的画法:平行线的画法是几何画图的基本技能之一,在以后的学习中,会经常遇到画平行线的问题.方法为:一“落”(三角板的一边落在已知直线上),二“靠”(用直尺紧靠三角板的另一边),三“移”(沿直尺移动三角板,直至落在已知直线上的三角板的一边经过已知点),四“画”(沿三角板过已知点的边画直线).☆平行公理――平行线的存在性与惟一性经过直线外一点,有且只有一条直线与这条直线平行☆平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行☆平行线的判定两直线平行的判定方法方法一两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行简称:同位角相等,两直线平行方法二两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行简称:内错角相等,两直线平行方法三两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行简称:同旁内角互补,两直线平行方法四垂直于同一条直线的两条直线互相平行方法五(平行线公理推论)如果两条直线都与第三条直线平行,那么这两条直线也互相平行方法六(平行线定义)在同一平面内,不相交的两条直线平行☆平行线的性质:性质一:两条平行线被第三条直线所截,同位角相等简称:两条直线平行,同位角相等性质二:两条平行线被第三条直线所截,内错角相等简称:两条直线平行,内错角相等性质三:两条平行线被第三条直线所截,同旁内角互补简称:两条直线平行,同旁内角互补☆两条平行线间的距离:同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度叫做这两条平行线的距离。
人教版七年级数学下册相交线与平行线《平行线的性质(第1课时)》示范教学设计
平行线的性质(第1课时)教学目标1.理解平行线的性质.2.经历平行线性质的探究过程,从中体会研究几何图形的一般方法.教学重点掌握平行线的性质.教学难点平行线的性质的探究过程.教学过程新课导入利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如果两条直线平行,同位角、内错角、同旁内角又各有什么关系呢?这就是我们要学习的平行线的性质.类似于研究平行线的判定,我们先来研究两条直线平行时,它们被第三条直线截得的同位角的关系.【设计意图】复习上节课所学的平行线的三种判定方法,引入探究课题,有意识地让学生回顾上节课内容,为后面类比研究平行线判定的过程来构建平行线性质的研究过程作好铺垫.新知探究一、探究学习【问题】画两条平行线a∥b,然后,画一条截线c与这两条平行线相交,度量所形成的八个角的度数,把结果填入下表:【师生活动】学生独立画出图形,并对角度进行度量,完成表格.【答案】画出图形如下:完成表格:【问题】∠1,∠2,…,∠8中,哪些是同位角?它们的度数之间有什么关系?由此猜想两条平行线被第三条直线截得的同位角有什么关系.【师生活动】在学生探究过程中,教师关注学生对同位角的标记是否准确,能否正确对角度进行度量,并鼓励学生独立完成猜想.【答案】同位角有:∠1和∠5,∠2和∠6,∠4和∠8,∠3和∠7.每对同位角的度数都相等.猜想:两条平行线被第三条直线所截,同位角相等.【追问】再任意画一条截线d,同样度量并比较各对同位角的度数,你的猜想还成立吗?【师生活动】教师引导学生随意画出另一条截线,对前面的猜想进行验证.【答案】画出图形,并标记出各角:任意画一条截线d,得到各对同位角为:∠1′和∠5′,∠2′和∠6′,∠3′和∠7′,∠4′和∠8′.经度量,∠1′=∠5′=∠3′=∠7′=70°,∠2′=∠6′=∠4′=∠8′=110°.所以猜想成立.【新知】用文字语言和符号语言分别概括发现的结论:一般地,平行线具有如下性质.性质1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.符号语言:∵AB∥CD,∴∠1=∠2.【动图】仔细观察下面的动图,巩固对平行线的性质1的掌握.【设计意图】让学生充分经历动手操作,独立思考,合作交流,验证猜想的探究过程,并且在这一过程中,锻炼学生由图形语言转化为文字语言、文字语言转化为符号语言的归纳能力和表达能力,为后面学习平行线的其他性质打下基础.【问题】上一节,我们利用“同位角相等,两直线平行”推出了“内错角相等,两直线平行”.类似地,你能由性质1,根据下图,推出两条平行线被第三条直线截得的内错角之间的关系吗?【师生活动】教师引导学生结合平行线的判定,作出猜想:∠1=∠2.【追问】怎样验证猜想?【师生活动】教师给出要验证的问题:已知直线a∥b,c是截线.试说明∠1=∠2.引导学生写出推理过程,并分析是否正确.【答案】解:∵a∥b,∴∠3=∠2(两直线平行,同位角相等).又∵∠1=∠3(对顶角相等),∴∠1=∠2.【追问】类比性质1,能用文字语言和符号语言分别对得出的结论进行表述吗?【答案】性质2:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.符号语言:∵AB∥CD,∴∠1=∠2.【动图】仔细观察下面的动图,巩固对平行线的性质2的掌握.【设计意图】在教师的引导下逐步构建研究思路,循序渐进地引导学生思考,从“说理”向“简单推理”过渡.【问题】由“两直线平行,同位角相等”,我们可以推出平行线关于同旁内角的什么性质?【师生活动】教师引导学生结合图形及前面学习的性质1进行探究,并鼓励学生独立得到猜想:∠2+∠4=180°,并让学生把要说明的问题转化为数学语言:如图,已知直线a ∥b,c是截线.试说明∠4+∠2=180°,然后完成解答.【答案】解:∵a∥b,∴∠3=∠2(两直线平行,同位角相等).∵∠3+∠4=180°,∴∠4+∠2=180°.【追问】类比性质1,2,能用文字语言和符号语言分别对得出的结论进行表述吗?【答案】性质3:两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.符号语言:∵AB∥CD,∴∠1+∠2=180°.【动图】仔细观察下面的动图,巩固对平行线的性质3的掌握.【总结】同位角相等、内错角相等、同旁内角互补都是平行线特有的性质,切不可忽略“两直线平行”这一前提条件.当两条直线不平行时,同位角、内错角就不相等,同旁内角也不互补.【设计意图】逐步培养学生的推理能力,使学生初步养成言之有据的习惯,从而能进行简单的推理.二、典例精讲【例1】如图,直线l与直线a,b相交,若a∥b,∠1=70°,则∠2的度数是多少?【师生活动】教师引导学生用前面学过的平行线的三个性质解答本题.【答案】解法一:∵∠1与∠3互为邻补角,∴∠3=180°-∠1=110°.又∵a∥b,∴∠2=∠3=110°(两直线平行,内错角相等).解法二:∵∠1与∠4互为邻补角,∴∠4=180°-∠1=110°.又∵a∥b,∴∠2=∠4=110°(两直线平行,同位角相等).解法三:∵∠1与∠5互为对顶角,∴∠5=∠1=70°.又∵a∥b,∴∠2=180°-∠5=110°(两直线平行,同旁内角互补).【归纳】当题目的已知条件中出现两直线平行时,要考虑到平行线的性质,从而将直线的位置关系转化为角的数量关系.应用平行线的性质解题时要辨析清楚“三线八角”,并将它们的关系记准确.【设计意图】帮助学生巩固平行线的性质、及文字语言、符号语言、图形语言之间的相互转化,为今后进一步学习推理打下基础.【例2】如图,已知∠1=108°,∠2=72°,∠3=60°,试求∠4的度数.【师生活动】学生独立解决,教师巡视纠错.【答案】解:∵∠1+∠2=108°+72°=180°,∴a∥b(同旁内角互补,两直线平行).∴∠4=∠3=60°(两直线平行,同位角相等).【归纳】几何中,图形之间的“位置关系”一般都与某些“数量关系”有着内在联系.由角的相等或互补关系,得到两条直线平行的结论是判定方法;而由两条直线平行,得到角相等或互补关系的结论是平行线性质的应用.【设计意图】考查学生是否掌握平行线的判定与性质之间的区别和联系,知道在涉及到相关角度或平行时如何入手解决.课堂小结板书设计一、平行线的性质1二、平行线的性质2三、平行线的性质3课后任务完成教材第20页练习第1题.。
北师大版七年级数学下册.1平行线的性质
知识点 2 两条直线平行,内错角相等
两条平行线被第三条直线截得的内错角会具 有怎样的数量关系?
性质2 两条平行线被第三条直线所截,内错角 相等.
简称为:两直线平行,内错角相等.
数学符号表示方法: 如图,∵a∥b(已知), ∴∠1=∠2(两直线平行,内错角角相等).
例3 如图,如果AB∥DF,DE∥BC,且∠1=65°,那 么你能说出∠2,∠3,∠4的度数吗?为什么?
导引:由DE∥BC,可得 ∠1=∠4,∠1+∠2=180°; 由DF∥AB,可得∠3=∠2, 从而得∠2,∠3,∠4的度数.
解:能.∠2=∠3=115°,∠4=65°. 理由如下: ∵DE∥BC(已知), ∴∠4=∠1=65°(两直线平行,内错角相等), ∠2+∠1=180°(两直线平行,同旁内角互补). ∴∠2=180°-∠1=180°-65°=115°. 又∵DF∥AB(已知), ∴∠3=∠2(两直线平行,同位角相等). ∴∠3=115°(等量代换).
例2 如图,已知∠B=∠C,AE∥BC,试说明AE平分 ∠CAD.
导引:要说明AE平分∠CAD,即说明 ∠DAE=∠CAE.由于AE∥BC, 根据两直线平行,同位角相等和 内错角相等可知∠DAE=∠B,∠EAC=∠C, 这就将说明∠DAE=∠CAE转化为说明∠B=∠C了.
解: ∵ AE∥BC(已知), ∴∠DAE=∠B(两直线平行,同位角相等), ∠EAC=∠C(两直线平行,内错角相等).
简称为:两直线平行,同位角相等.
E
C
P
D
2
A
1
B
F
数学符号表示方法: 如图,∵a∥b(已知), ∴∠1=∠2(两直线平行,同位角相等).
初中数学知识归纳平行线与三角形的性质
初中数学知识归纳平行线与三角形的性质初中数学知识归纳——平行线与三角形的性质在初中数学中,平行线与三角形是两个重要的概念。
了解平行线与三角形的性质,对于解决与它们相关的数学问题非常重要。
本文将对平行线与三角形的性质进行归纳总结,旨在帮助读者更好地理解和应用这些数学知识。
一、平行线的性质平行线是指在同一个平面上,永不相交的两条直线。
对于平行线的性质,我们可以总结如下:1. 定义:如果两条平行线被一条横线所截,那么它们对应的内角相等,而对应的外角相等。
2. 同位角性质:两条平行线被一条横线截断,那么同位角相等。
3. 内错角性质:两条平行线被一条横线截断,那么内错角相等。
4. 全等三角形性质:如果三角形的一对边分别平行于另一个三角形的一对边,并且对应边的长度相等,那么这两个三角形全等。
除了以上性质,学生们还需要了解平行线的判定方法。
常用的判定方法包括:通过证明两条线段的斜率相等、通过证明线段的夹角相等、通过证明两组对应角相等等。
熟练掌握这些方法,能够解决与平行线相关的问题。
二、三角形的性质三角形是由三条线段组成的图形,是初中数学中最基本的二维图形之一。
初中数学中,我们通常关注三角形的边长、角度和面积等性质。
1. 三角形的内角和性质:三角形的三个内角之和为180度。
这个性质在解决与三角形的角相关的问题时非常有用。
2. 等腰三角形:如果一个三角形的两边长度相等,那么这个三角形就是等腰三角形。
等腰三角形的特点是两个底角相等。
3. 直角三角形:如果一个三角形有一个内角是90度,那么这个三角形就是直角三角形。
直角三角形中,斜边的长度可以通过勾股定理来计算。
4. 等边三角形:如果一个三角形的三条边长度都相等,那么这个三角形就是等边三角形。
等边三角形的三个内角都是60度。
5. 相似三角形:如果两个三角形的对应角相等,并且对应边的比例相等,那么这两个三角形相似。
相似三角形的性质在比例和面积计算中经常使用。
以上仅是平行线与三角形性质的一部分,通过深入学习这些性质,我们可以掌握更多与平行线和三角形相关的数学知识,并且能够灵活运用这些知识解决问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.3 平行线的性质(1)
【教学目标】
1.经历从性质公理推出性质2的过程;
2.感受原命题与逆命题,从而了解平行线的性质公理与判定公理的区别,能在推理过程正确使用. 【对话探索设计】
〖探索1〗 反过来也成立吗
过去我们学过: 如果两个数的和为0,这两个数互为相反数.反过来,如果两个数互为相反数,那么这两个数的和为0.显然,这两个句子都是正确的.
现在换一个例子:如果一个整数个位上的数字是5,那么它一定能够被5整除.对吗?这句话反过来怎么说?对不对?
结论:如果一个句子是正确的,反过来说(因果对调),就未必正确. 〖探索2〗
上一节课,我们学过:同位角相等,两直线平行.反过来怎么说?猜一猜:它还是对的吗? 〖探索3〗
(1)用三角尺画两条平行线a 、b.说一说:不利用第三条直线能画出两条平行线吗?请画出第三条直线(把它记为c),并说明判定这两条直线平行的根据(公理或定理);
(2)在(1)中再画一条直线d 与直线a 、b 都相交,找出其中的一对同位角,用量角器量出它们的度数验证你原来的猜测.
结论:两条平行线被第三条直线所截,同位角相等.
与平行线的判定公理一样,这个结论也是基本事实,即人们在长期实践中总结出来的结论,我们把它叫做平行线的性质公理,它是平行线的第一条性质. 〖探索4〗
如图,请画直线c 截两条平行线a 、b;再在图中找出一对内错角.同学们一定能从直觉判断这对内错角也是相等的.也就是说:
两条平行线被第三条直线所截,内错角相等.它是平行线的第二条性质.
a
b
现在我们来试一试:如何根据性质1说出性质2成立的道理.
如图,
∵a∥b(已知),
∴∠1=∠3(____________________).
又∠3=________(对顶角相等),
∴∠1=∠2(___________).
以上过程说明了:由性质1可以得出性质2.
〖探索5〗
我们学过判定两直线平行的第三种方法:
两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.(简单地说: 同旁内角互补,两直线平行.)
把这条定理反过来,可以简单说成_____________________.
猜一猜:把这条定理反过来以后,还成立吗?
〖练习〗
P22练习
说一说:求这三个角的度数分别根据平行线的哪一条性质?
〖作业〗
P25.1、2、3
〖补充作业〗
如图: 直线a、b被直线c所截,
(1)若a∥b,可以得到∠1=∠2.根据什么?
(2)若∠1=∠2,可以得到a∥b.根据什么? (注意: (1)、(2)的根据一样吗?) a
b
1
2
c
a
b
1
2
3
c
5.3 平行线的性质(2)
【教学目标】
1.经历从性质公理推出性质3的过程;掌握平行线的性质,并能用它们作简单的逻辑推理;
2.掌握两条平行线的距离的概念,并能灵活运用. 【对话探索设计】 〖复习1〗
判定两条直线平行的第三种方法是:_______________________(简写). 平行线的第三条性质是: _______________________(简写). 〖复习2〗
如图,你会根据性质1自己说出性质2成立的道理吗? 已知: 直线a 、b 被直线c 所截,且a ∥b, 求证:∠1=∠2. 证明: 〖探索1〗
试模仿复习2,完成下面的证明过程(根据性质1说出性质3成立的道理):
如图,已知: 直线a 、b 被直线c 所截,且a ∥b, 求证:∠1+∠2=180º. 证明: 〖例题学习〗
P23.例(请注意解题的格式.) 〖探索2〗
如图,AB ∥CD,
a
b 1 2 3
c
a
b 1
2
3 c
(1)在AB 上任取一点E,向CD 画垂线段EF; (2)EF 是否也垂直于AB 呢?为什么? (3)在AB 上另取一点G,向CD 画垂线段GH; (4)在CD 上,点F 、H 外,任取一点I,向AB 画垂线段IJ;
(5)如果说EF ∥GH ∥IJ,对吗?为什么? (6)量出EF 、GH 、IJ 的长,说说你的发现.
〖探索3〗
从探索2我们可以得出结论:同时垂直于两条平行线,并且夹在这两条平行线间的线段是相等的.你能举出实际的例子吗? 〖概念学习〗
同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度.....,叫做这两条平行线间的距离. 〖概念复习与比较〗
如果说,连接两点间的线段,叫做这两点的距离,错在哪里?
类似地,如果说, 同时垂直于两条平行线,并且夹在这两条平行线间的线段..,叫做这两条平行线间的距离. 错在哪里? 〖概念应用1〗
(1)探索2的图中,两条平行线的距离是多少? (2)如图,若AB ∥CD,求AB 、CD 的距离; (3)如图,若AD ∥BC,求AD 、BC 的距离;
〖概念应用2〗
如图,你
能求出梯形上下底的
距离吗? 你能求出梯形上两腰的距离吗? 〖作业〗
P25.4,5,6,9
A
B
D
C A
B
D C
A D
5.3 平行线的性质(3)
【教学目标】
掌握命题的概念,并能分清命题的组成部分.
【对话探索设计】
〖概念理解1〗
前面,我们学过一些对某一件事情作出判断的句子,例如:
(1)如果两条直线都与第三条直线平行,那么,这两条直线也互相平行;
(2)等式两边加同一个数,结果仍是等式;
(3)如果一个数能够被2整除,那么它的个位上的数字一定是2.
像这样判断一件事情的语句,叫做命题.
〖探索1〗
下列语句,哪些是命题?哪些不是?
(1)过直线AB外一点P,作AB的平行线.
(2)过直线AB外一点P,可以作一条直线与AB平行吗?
(3)经过直线AB外一点P, 可以作一条直线与AB平行.
〖概念理解2〗
许多命题都由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.
命题常写成"如果……那么……"的形式,这时,"如果"后接的部分
.....是题
设,"那么"后接的的部分
......是结论.
〖探索2〗
命题"两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行"中,题设是什么?
〖探索3〗
把下列命题改写成"如果……那么……"的形式:
(1)互补的两个角不可能都是锐角;
(2)垂直于同一条直线的两条直线平行;
(3)对顶角相等.
〖探索4〗指出下列命题的题设和结论:
(1)如果两个数互为相反数,这两个数的商为-1;
(2)两直线平行,同旁内角互补;
(3)同旁内角互补,两直线平行;
(4)等式两边乘同一个数,结果仍是等式;
(5)绝对值相等的两个数相等.
〖探索5〗判断下列命题是否正确:
(1)如果两个数的和为0,这两个数互为相反数;
(2)如果两个数互为相反数,这两个数的和为0;
(3)如果两个数互为相反数,这两个数的商为-1;
(4)如果两个数的商为-1,这两个数互为相反数.
(5)如果两个角是邻补角,这两个角互补;
(6)如果两个角互补,这两个角是邻补角.
〖作业〗
P24.”讨论”,P25.7,8,P28.11.
〖补充作业〗
如图,已知直线a、b被直线c所截,在括号内为下面各小题的推理填上适当的根据:
(1)∵a∥b,∴∠1=∠3(_________________);
(2)∵∠1=∠3,∴a∥b(_________________);
(3)∵a∥b,∴∠1=∠2(__________________);
(4)∴a∥b,∴∠1+∠4=180º
(_____________________________________)
(5)∵∠1=∠2,∴a∥b(__________________);
(6)∵∠1+∠4=180º,∴a∥b(_______________). a
b
1
2
3 c
4。