2019版高考数学(理)高分计划一轮狂刷练:第7章 立体几何 7-5a含解析

合集下载

2019版高考数学理培优增分一轮全国经典版增分练:第7

2019版高考数学理培优增分一轮全国经典版增分练:第7

板块四 模拟演练·提能增分[A 级 基础达标]1.向量a =(-2,-3,1),b =(2,0,4),c =(-4,-6,2),下列结论正确的是( )A .a ∥b ,a ∥cB .a ∥b ,a ⊥cC .a ∥c ,a ⊥bD .以上都不对答案 C解析 因为c =(-4,-6,2)=2(-2,-3,1),所以a ∥c .又a ·b =(-2)×2+(-3)×0+1×4=0,所以a ⊥b .故选C.2.已知向量a =(1,0,-1),则下列向量中与a 成60°夹角的是( ) A .(-1,1,0) B .(1,-1,0) C .(0,-1,1) D .(-1,0,1) 答案 B解析 经检验,选项B 中向量(1,-1,0)与向量a =(1,0,-1)的夹角的余弦值为12,即它们的夹角为60°.故选B.3.已知平面α内有一个点M (1,-1,2),平面α的一个法向量是n =(6,-3,6),则下列点P 在平面α内的是( )A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4) 答案 A解析 ∵n =(6,-3,6)是平面α的法向量,∴n ⊥MP →,在选项A 中,MP →=(1,4,1),∴n ·MP →=0.故选A. 4.[2018·珠海模拟]已知A (1,-1,3),B (0,2,0),C (-1,0,1),若点D 在z 轴上,且AD →⊥BC →,则|AD →|等于( )A. 2B. 3C. 5D. 6 答案 B解析 ∵点D 在z 轴上,∴可设D 点坐标为(0,0,m ),则AD →=(-1,1,m -3),BC →=(-1,-2,1),由AD →⊥BC →,得AD →·BC →=m -4=0,∴m =4,AD →=(-1,1,1),|AD →|=1+1+1= 3.故选B.5.[2018·东营质检]已知A (1,0,0),B (0,-1,1),OA →+λOB →与OB →的夹角为120°,则λ的值为( )A .±66 B.66 C .-66 D .±6 答案 C解析 OA →+λOB →=(1,-λ,λ), cos120°=λ+λ1+2λ2·2=-12,得λ=±66. 经检验λ=66不合题意,舍去,∴λ=-66.故选C.6.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b,AA 1→=c ,则下列向量中与BM →相等的向量是( )A .-12a +12b +c B.12a +12b +c C .-12a -12b +c D.12a -12b +c答案 A解析 BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .故选A.7.[2018·舟山模拟]平行六面体ABCD -A 1B 1C 1D 1中,向量AB →,AD →,AA 1→两两的夹角均为60°,且|AB →|=1,|AD →|=2,|AA 1→|=3,则|AC 1→|等于( )A .5B .6C .4D .8 答案 A解析 设AB →=a ,AD →=b ,AA 1→=c ,则AC 1→=a +b +c ,|AC 1→|2=a 2+b 2+c 2+2a ·b +2b ·c +2c ·a =25,因此|AC 1→|=5.故选A.8.已知四边形ABCD 为平行四边形,且A (4,1,3),B (2,-5,1),C (3,7,-5),则点D 的坐标为________.答案 (5,13,-3)解析 设D (x ,y ,z ),则AB →=DC →.∴(-2,-6,-2)=(3-x,7-y ,-5-z ). ∴⎩⎪⎨⎪⎧3-x =-2,7-y =-6,-5-z =-2.解得⎩⎪⎨⎪⎧x =5,y =13,z =-3.∴D (5,13,-3).9.在空间直角坐标系中,以点A (4,1,9),B (10,-1,6),C (x,4,3)为顶点的△ABC 是以BC 为斜边的等腰直角三角形,则实数x 的值为________.答案 2解析 由题意知AB →·AC →=0,|AB →|=|AC →|,又AB →=(6,-2,-3),AC →=(x -4,3,-6),∴⎩⎪⎨⎪⎧6(x -4)-6+18=0,(x -4)2=4,解得x =2. 10.[2018·南昌模拟]已知O (0,0,0),A (1,2,3),B (2,1,2),P (1,1,2),点Q 在直线OP 上运动,当QA →·QB →取最小值时,点Q 的坐标是________.答案 ⎝ ⎛⎭⎪⎫43,43,83解析 由题意,设OQ →=λOP →,即OQ →=(λ,λ,2λ), 则QA →=(1-λ,2-λ,3-2λ),QB →=(2-λ,1-λ,2-2λ), ∴QA →·QB →=(1-λ)(2-λ)+(2-λ)(1-λ)+(3-2λ)·(2-2λ)=6λ2-16λ+10=6⎝⎛⎭⎪⎫λ-432-23,当λ=43时有最小值,此时Q 点坐标为⎝⎛⎭⎪⎫43,43,83.[B 级 知能提升]1.在空间四边形ABCD 中,AB →·CD →+AC →·DB →+AD →·BC →=( ) A .-1 B .0 C .1 D .不确定 答案 B解析 如图,令AB →=a ,AC →=b , AD →=c ,则AB →·CD →+AC →·DB →+AD →·BC → =a ·(c -b )+b ·(a -c )+c ·(b -a )=a ·c -a ·b +b ·a -b ·c +c ·b -c ·a =0.故选B.2.[2018·广西模拟]A ,B ,C ,D 是空间不共面的四点,且满足AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,M 为BC 中点,则△AMD 是( )A .钝角三角形B .锐角三角形C .直角三角形D .不确定 答案 C解析 ∵M 为BC 中点,∴AM →=12(AB →+AC →).∴AM →·AD →=12(AB →+AC →)·AD →=12AB →·AD →+12AC →·AD →=0,∴AM ⊥AD ,△AMD 为直角三角形.故选C.3.[2018·包头模拟]如图所示,PD 垂直于正方形ABCD 所在平面,AB =2,E 为PB 的中点,cos 〈DP →,AE →〉=33,若以DA ,DC ,DP 所在直线分别为x ,y ,z 轴建立空间直角坐标系,则点E 的坐标为________.答案 (1,1,1)解析 由已知得D (0,0,0),A (2,0,0),B (2,2,0),设P (0,0,a )(a >0),则E ⎝ ⎛⎭⎪⎫1,1,a 2,所以DP →=(0,0,a ),AE →=⎝⎛⎭⎪⎫-1,1,a 2,|DP →|=a ,|AE →|=(-1)2+12+⎝ ⎛⎭⎪⎫a 22=2+a 24=8+a 22.又cos 〈DP →,AE →〉=33,所以0×(-1)+0×1+a 22a ·8+a 22=33,解得a 2=4,即a =2,所以E (1,1,1).4.在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E ,F 分别是AB ,PB 的中点.(1)求证:EF ⊥CD ;(2)在平面P AD 内是否存在一点G ,使GF ⊥平面PCB .若存在,求出点G 坐标;若不存在,试说明理由.解 (1)证明:如图,以DA ,DC ,DP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,设AD =a ,则D (0,0,0),A (a,0,0),B (a ,a,0),C (0,a,0),E ⎝ ⎛⎭⎪⎫a ,a 2,0,P (0,0,a ),F ⎝ ⎛⎭⎪⎫a 2,a 2,a 2.EF →=⎝⎛⎭⎪⎫-a 2,0,a 2,DC →=(0,a,0).∵EF →·DC →=0,∴EF →⊥DC →,即EF ⊥CD . (2)假设存在满足条件的点G ,设G (x,0,z ), 则FG →=⎝⎛⎭⎪⎫x -a 2,-a 2,z -a 2,若使GF ⊥平面PCB ,则由FG →·CB →=⎝⎛⎭⎪⎫x -a 2,-a 2,z -a 2·(a,0,0)=a ⎝⎛⎭⎪⎫x -a 2=0,得x =a 2;由FG →·CP →=⎝⎛⎭⎪⎫x -a 2,-a 2,z -a 2·(0,-a ,a )=a 22+a ⎝⎛⎭⎪⎫z -a 2=0,得z =0.∴G 点坐标为⎝ ⎛⎭⎪⎫a 2,0,0,即存在满足条件的点G ,且点G 为AD 的中点.5.如图,直三棱柱ABC -A 1B 1C 1底面△ABC 中,CA =CB =1,∠BCA =90°,棱AA 1=2,M ,N 分别是A 1B 1,A 1A 的中点.(1)求BN →的模;(2)求cos 〈BA 1→,CB 1→〉的值; (3)求证:A 1B ⊥C 1M .解 如图,建立空间直角坐标系.(1)依题意,得B (0,1,0),N (1,0,1),所以|BN →| =(1-0)2+(0-1)2+(1-0)2 = 3.(2)依题意,得A 1(1,0,2), B (0,1,0),C (0,0,0), B 1(0,1,2).所以BA 1→=(1,-1,2),CB 1→=(0,1,2),BA 1→·CB 1→=3,|BA 1→|=6,|CB 1→|=5,所以cos 〈BA 1→,CB 1→〉=BA 1→·CB 1→|BA 1→||CB 1→|=3010.(3)证明:依题意,得C 1(0,0,2),M ⎝ ⎛⎭⎪⎫12,12,2,A 1B →=(-1,1,-2),C 1M →=⎝⎛⎭⎪⎫12,12,0.所以A 1B →·C 1M →=-12+12+0=0,A 1B →⊥C 1M →.所以A 1B⊥C 1M .。

教育最新K122019版高考数学(理)高分计划一轮狂刷练:第7章立体几何7-6a

教育最新K122019版高考数学(理)高分计划一轮狂刷练:第7章立体几何7-6a

[基础送分 提速狂刷练]一、选择题1.已知点O ,A ,B ,C 为空间不共面的四点,且向量a =OA →+OB →+OC →,向量b =OA →+OB →-OC →,则与a ,b 不能构成空间基底的向量是( )A.OA →B.OB →C.OC →D.OA →或OB →答案 C解析 根据题意得OC →=12(a -b ),所以OC →,a ,b 共面.故选C. 2.有4个命题:①若p =x a +y b ,则p 与a ,b 共面; ②若p 与a ,b 共面,则p =x a +y b ;③若MP →=xMA →+yMB →,则P ,M ,A ,B 共面; ④若P ,M ,A ,B 共面,则MP →=xMA →+yMB →. 其中真命题的个数是( ) A .1 B .2 C .3 D .4 答案 B解析 ①正确;②中,若a ,b 共线,p 与a 不共线,则p =x a +y b 就不成立;③正确;④中,若M ,A ,B 共线,点P 不在此直线上,则MP →=xMA →+yMB →不正确.故选B.3.在平行六面体ABCD -A ′B ′C ′D ′中,若AC ′→=xAB →+2yBC →-3zCC ′→,则x +y +z =( )A .1 B.76 C.56 D.23答案 B解析 ∵AC ′→=AC →+CC ′→=AD →+AB →+CC ′→=AB →+BC →+CC ′→=xAB →+2yBC →-3zCC ′→,∴x =1,y =12,z =-13, ∴x +y +z =1+12-13=76.故选B.4.已知四边形ABCD 满足AB →·BC →>0,BC →·CD →>0,CD →·DA →>0,DA →·AB →>0,则该四边形为( )A .平行四边形B .梯形C .平面四边形D .空间四边形答案 D解析 由已知条件得四边形的四个外角均为锐角,但在平面四边形中任一四边形的外角和都是360°,这与已知条件矛盾,所以该四边形是一个空间四边形.故选D.5. (2018·北京东城模拟)如图所示,已知P A ⊥平面ABC ,∠ABC =120°,P A =AB =BC =6,则|PC →|等于()A .6 2B .6C .12D .144答案 C解析 ∵PC →=P A →+AB →+BC →, ∴PC →2=P A →2+AB →2+BC →2+2AB →·BC →, ∴|PC →|2=36+36+36+2×36cos60°=144, ∴|PC →|=12.故选C.6.(2017·舟山模拟)平行六面体ABCD -A 1B 1C 1D 1中,向量AB →,AD →,AA 1→两两的夹角均为60°,且|AB →|=1,|AD →|=2,|AA 1→|=3,则|AC 1→|等于( )A .5B .6C .4D .8答案 A解析 设AB →=a ,AD →=b ,AA 1→=c ,则AC 1→=a +b +c ,|AC 1→|2=a 2+b 2+c 2+2a ·b +2b ·c +2c ·a =25,因此|AC 1→|=5.故选A.7.(2017·南充三模)已知正方体ABCD -A 1B 1C 1D 1,下列命题: ①(A 1A →+A 1D 1→+A 1B 1→)2=3A 1B 1→2; ②A 1C →·(A 1B 1→-A 1A →)=0;③向量AD 1→与向量A 1B →的夹角为60°;④正方体ABCD -A 1B 1C 1D 1的体积为|AB →·AA 1→·AD →|, 其中正确命题的序号是( ) A .①② B .①②③ C .①④ D .①②④答案A解析 设正方体边长为单位长为1,建立空间直角坐标系,如图. A 1A →=(0,0,1),A 1D 1→=(1,0,0),A 1B 1→=(0,1,0),A 1C →=(1,1,1),AD 1→=(1,0,-1),所以对于①,(A 1A →+A 1D 1→+A 1B 1→)2=(1,1,1)·(1,1,1)=3=3A 1B 1→2,故①正确;对于②,A 1C →·(A 1B 1→-A 1A →)=(1,1,1)·(0,1,-1)=0,故②正确; 对于③,因为AD 1→·A 1B →=(1,0,-1)·(0,1,1)=-1,向量AD 1→与向量A 1B →的夹角为120°,故③错误;④正方体ABCD -A 1B 1C 1D 1的体积为|AB →||AA 1→|·|AD →|,但是|AB →·AA 1→·AD →|=0,故④错误.故选A.8.对于空间任意一点O 和不共线的三点A ,B ,C ,且有OP →=xOA →+yOB →+zOC →(x ,y ,z ∈R ),则x =2,y =-3,z =2是P ,A ,B ,C 四点共面的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分又不必要条件答案 B解析 当x =2,y =-3,z =2时, 即OP →=2OA →-3OB →+2OC →,则AP →-AO →=2OA →-3(AB →-AO →)+2(AC →-AO →),即AP →=-3AB →+2AC →,根据共面向量定理,知P ,A ,B ,C 四点共面;反之,当P ,A ,B ,C 四点共面时,根据共面向量定理AP →=mAB →+nAC →,即OP →-OA →=m (OB →-OA →)+n (OC →-OA →), 即OP →=(1-m -n )OA →+mOB →+nOC →,即x =1-m -n ,y =m ,z =n ,这组数显然不止2,-3,2. 故是充分不必要条件.故选B.9.(2018·福州质检)正方体ABCD -A 1B 1C 1D 1的棱长为a ,点M在AC 1上且AM →=12MC 1→,N 为B 1B 的中点,则|MN →|为( )A.216aB.66aC.156aD.153a答案 A解析 以D 为原点建立如图所示的空间直角坐标系Dxyz ,则A (a,0,0),C 1(0,a ,a ),N ⎝ ⎛⎭⎪⎫a ,a ,a 2. 设M (x ,y ,z ),∵点M 在AC 1上且AM →=12MC 1→, ∴(x -a ,y ,z )=12(-x ,a -y ,a -z ), ∴x =23a ,y =a 3,z =a 3.∴M ⎝ ⎛⎭⎪⎫2a 3,a 3,a 3,∴|MN →|=⎝⎛⎭⎪⎫a -23a 2+⎝ ⎛⎭⎪⎫a -a 32+⎝ ⎛⎭⎪⎫a 2-a 32=216a .故选A.10.已知矩形ABCD ,AB =1,BC =2,将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中( )A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直答案 B解析 如图所示,在图1中,易知AE =CF =63,BE =EF =FD =33.在图2中,设AE →=a ,EF →=b ,FC →=c , 则〈a ,b 〉=〈b ,c 〉=90°,设〈a ,c 〉=θ, 则AC →=a +b +c ,BD →=3b , 故AC →·BD →=3b 2=1≠0,故AC 与BD 不垂直,A 不正确;AB →=AE →+EB →=a -b ,CD →=CF →+FD →=b -c , 所以AB →·CD →=-a ·c -b 2=-23cos θ-13.当cos θ=-12,即θ=2π3时,AB →·CD →=0,故B 正确,D 不正确; AD →=AE →+ED →=a +2b ,BC →=BF →+FC →=2b +c , 所以AD →·BC →=a ·c +4b 2=23cos θ+43=23(cos θ+2), 故无论θ为何值,AD →·BC →≠0,故C 不正确.故选B. 二、填空题11.(2017·银川模拟)已知点A (1,2,1),B (-1,3,4),D (1,1,1),若AP →=2PB →,则|PD →|的值是________.答案773解析 设P (x ,y ,z ),∴AP →=(x -1,y -2,z -1).PB →=(-1-x ,3-y ,4-z ),由AP →=2PB →,得点P 坐标为⎝ ⎛⎭⎪⎫-13,83,3,又D (1,1,1),∴|PD →|=773. 12.如图,已知ABCD 为正方形,P 是ABCD 所在平面外一点,P 在平面ABCD 上的射影恰好是正方形的中心O ,Q 是CD 的中点,若P A →=xPO →+yPQ →+PD →,则x +y =________.答案 0解析 P A →-PD →=DA →=OA →-OD →=-OC →-OD →=-(OC →+OD →)=-2OQ →=-2(PQ →-PO →)=2PO →-2PQ →.∵P A →=xPO →+yPQ →+PD →,∴P A →-PD →=xPO →+yPQ →, ∴2PO →-2PQ →=xPO →+yPQ →.∵PQ →与PO →不共线,∴x =2,y =-2,∴x +y =0.13.已知O (0,0,0),A (1,2,3),B (2,1,2),P (1,1,2),点Q 在直线OP 上运动,当QA →·QB →取最小值时,点Q 的坐标是________.答案 ⎝ ⎛⎭⎪⎫43,43,83解析 由题意,设OQ →=λOP →,即OQ →=(λ,λ,2λ), 则QA →=(1-λ,2-λ,3-2λ),QB →=(2-λ,1-λ,2-2λ), ∴QA →·QB →=(1-λ)(2-λ)+(2-λ)(1-λ)+(3-2λ)·(2-2λ)=6λ2-16λ+10=6⎝ ⎛⎭⎪⎫λ-432-23,当λ=43时有最小值,此时Q 点坐标为⎝ ⎛⎭⎪⎫43,43,83. 14.如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,E ,F 分别为AB ,BC 的中点.设异面直线EM 与AF 所成的角为θ,则cos θ的最大值为________.答案 25解析 以A 为坐标原点,射线AB ,AD ,AQ 分别为x 轴,y 轴,z 轴的正半轴,建立如图所示的空间直角坐标系.设正方形ABCD 和ADPQ 的边长为2,则E (1,0,0),F (2,1,0),M (0,y,2)(0≤y ≤2).所以AF →=(2,1,0),EM →=(-1,y,2).所以AF →·EM →=-2+y ,|AF →|=5,|EM →|=5+y 2. 所以cos θ=|AF →·EM →||AF →||EM →|=|-2+y |5·5+y 2=2-y 5·5+y2. 令2-y =t ,则y =2-t ,且t ∈[0,2].所以cos θ=t 5·5+(2-t )2=t 5·9-4t +t 2. 当t =0时,cos θ=0.当t ≠0时,cos θ=15·9t 2-4t +1=15·9⎝ ⎛⎭⎪⎫1t -292+59, 由t ∈(0,2],得1t ∈⎣⎢⎡⎭⎪⎫12,+∞, 所以 9⎝ ⎛⎭⎪⎫1t -292+59≥ 9×⎝ ⎛⎭⎪⎫12-292+59=52. 所以0<cos θ≤25,即cos θ的最大值为25.三、解答题15.(2018·唐山模拟)已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →.(1)求a 和b 夹角的余弦值;(2)设|c |=3,c ∥BC →,求c 的坐标.解 (1)因为A B →=(1,1,0),AC →=(-1,0,2),所以a ·b =-1+0+0=-1,|a |=2,|b |= 5. 所以cos 〈a ,b 〉=a ·b |a ||b |=-12×5=-1010. (2)BC →=(-2,-1,2),设c =(x ,y ,z ),因为|c |=3,c ∥BC →,所以x 2+y 2+z 2=3,存在实数λ使得c =λBC →,即⎩⎪⎨⎪⎧ x =-2λ,y =-λ,z =2λ,联立解得⎩⎪⎨⎪⎧ x =-2,y =-1,z =2,λ=1或⎩⎪⎨⎪⎧ x =2,y =1,z =-2,λ=-1,所以c =±(-2,-1,2).16.已知平行六面体ABCD -A 1B 1C 1D 1中,底面ABCD 是边长为1的正方形,AA 1=2,∠A 1AB =∠A 1AD =120°.(1)求线段AC 1的长;(2)求异面直线AC 1与A 1D 所成角的余弦值;(3)证明:AA 1⊥BD.解 (1)如图所示,设AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=1,|c |=2.a ·b =0,a ·c =b ·c =2×1×cos120°=-1.∵AC 1→=AB →+BC →+CC 1→=a +b +c ,∴|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2a ·b +2a ·c +2b ·c=1+1+22-2-2=2.∴|AC 1→|= 2.即AC 1长为 2.(2)∵AC 1→=a +b +c ,A 1D →=b -c ,∴AC 1→·A 1D →=(a +b +c )·(b -c ) =a ·b -a ·c +b 2-b ·c +b ·c -c 2 =1+12-22=-2.又|A 1D →|2=(b -c )2=b 2+c 2-2b ·c =1+4+2=7,∴|A 1D →|=7.∴cos 〈AC 1→,A 1D →〉=AC 1→·A 1D →|AC 1→||A 1D →|=-22×7=-147. ∴异面直线AC 1与A 1D 所成角的余弦值为147.(3)证明:∵AA 1→=c ,BD →=b -a ,∴AA 1→·BD →=c ·(b -a )=c ·b -c ·a =-1-(-1)=0.∴AA 1→⊥BD →,即AA 1⊥BD .。

(精品推荐)2019版高考数学(理)高分计划一轮狂刷练:第7章 立体几何 7-3a

(精品推荐)2019版高考数学(理)高分计划一轮狂刷练:第7章 立体几何 7-3a

[基础送分提速狂刷练]一、选择题1.(2016·浙江高考)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则()A.m∥l B.m∥nC.n⊥l D.m⊥n答案 C解析对于A,m与l可能平行或异面,故A错误;对于B,D,m与n可能平行、相交或异面,故B,D错误;对于C,因为n⊥β,l⊂β,所以n⊥l,故C正确.故选C.2.若l1,l2,l3是空间三条不同的直线,则下列命题正确的是() A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面答案 B解析当l1⊥l2,l2⊥l3时,l1与l3也可能相交或异面,故A不正确;l1⊥l2,l2∥l3⇒l1⊥l3,故B正确;当l1∥l2∥l3时,l1,l2,l3未必共面,如三棱柱的三条侧棱,故C不正确;l1,l2,l3共点时,l1,l2,l3未必共面,如正方体中从同一顶点出发的三条棱,故D不正确.故选B.3.(2016·雅安期末)已知正方体ABCD-A1B1C1D1,则过点A与AB,BC,CC1所成角均相等的直线有()A.1条B.2条C.4条D.无数条答案 C解析若直线和AB,BC所成角相等,得直线在对角面BDD1B1内或者和对角面平行,同时和CC1所成角相等,此时在对角面内只有体对角线BD1满足条件.此时过A的直线和BD1平行即可,同理体对角线A1C,AC1,DB1也满足条件.则过点A与AB,BC,CC1所成角均相等的直线只要和四条体对角线平行即可,共有4条.故选C.4.(2017·宁德期末)如图是正方体的平面展开图,则在这个正方体中,AM与BN所成角的大小为()A.0°B.45°C.60°D.90°答案 D解析 如图,把正方体的平面展开图还原成正方体ADNE -CMFB ,∵CD ∥BN ,CD ⊥AM , ∴AM ⊥BN ,∴在这个正方体中,AM 与BN 所成角的大小为90°.故选D. 5.如图所示,在底面为正方形,侧棱垂直于底面的四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为( )A.15B.25C.35D.45答案 D解析 连接BC 1,易证BC 1∥AD 1,则∠A 1BC 1即为异面直线A 1B 与AD 1所成的角.连接A 1C 1,设AB =1,则AA 1=2,A 1C 1=2,A 1B =BC 1=5,故cos ∠A 1BC 1=5+5-22×5×5=45.故选D.6.(2018·江西景德镇模拟)将图1中的等腰直角三角形ABC 沿斜边BC 上的中线AD 折起得到空间四面体ABCD (如图2),则在空间四面体ABCD 中,AD 与BC 的位置关系是( )A .相交且垂直B .相交但不垂直C .异面且垂直D .异面但不垂直答案 C解析 在题图1中,AD ⊥BC ,故在题图2中,AD ⊥BD ,AD ⊥DC ,又因为BD ∩DC =D ,所以AD ⊥平面BCD ,又BC ⊂平面BCD ,D 不在BC 上,所以AD ⊥BC ,且AD 与BC 异面.故选C.7.(2017·河北唐山模拟)已知P 是△ABC 所在平面外一点,M ,N分别是AB,PC的中点,若MN=BC=4,P A=43,则异面直线P A与MN所成角的大小是()A.30°B.45°C.60°D.90°答案 A解析取AC的中点O,连接OM,ON,则ON∥AP,ON=12AP,OM∥BC,OM=12BC,所以异面直线P A与MN所成的角为∠ONM(或其补角),在△ONM中,OM=2,ON=23,MN=4,由勾股定理的逆定理得OM⊥ON,则∠ONM=30°.故选A.8.如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为m,n,那么m+n=()A.8 B.9C.10 D.11答案 A解析如图,CE⊂平面ABPQ,从而CE∥平面A1B1P1Q1,易知CE与正方体的其余四个面所在平面均相交,∴m=4;∵EF∥平面BPP1B1,EF∥平面AQQ1A1,且EF与正方体的其余四个面所在平面均相交,∴n=4,故m+n=8.选A.9.下列各图是正方体和正四面体,P,Q,R,S分别是所在棱的中点,这四个点不共面的图形是()答案 D解析①在A中易证PS∥QR,∴P,Q,R,S四点共面.②在C中易证PQ∥SR,∴P,Q,R,S四点共面.③在D中,∵QR⊂平面ABC,PS∩面ABC=P且P∉QR,∴直线PS与QR为异面直线.∴P,Q,R,S四点不共面.④在B中P,Q,R,S四点共面,证明如下:取BC中点N,可证PS,NR交于直线B1C1上一点,∴P,N,R,S四点共面,设为α,可证PS∥QN,∴P,Q,N,S四点共面,设为β.∵α,β都经过P,N,S三点,∴α与β重合,∴P,Q,R,S四点共面.故选D.10.(2018·广东惠州三调)如图是一个几何体的平面展开图,其中四边形ABCD为正方形,E,F分别为P A,PD的中点,在此几何体中,给出下面4个结论:①直线BE与直线CF异面;②直线BE与直线AF异面;③直线EF∥平面PBC;④平面BCE⊥平面P AD.其中正确的有()A.1个B.2个C.3个D.4个答案 B解析将展开图还原为几何体(如图),因为四边形ABCD为正方形,E,F分别为P A,PD的中点,所以EF∥AD∥BC,则直线BE与CF共面,①错误;因为AF⊂平面P AD,B∉平面P AD,E∈平面P AD,E∉AF,所以BE与AF是异面直线,②正确;因为EF∥AD∥BC,EF ⊄平面PBC,BC⊂平面PBC,所以EF∥平面PBC,③正确;平面P AD 与平面BCE不一定垂直,④错误.故选B.二、填空题11.如图所示,是正方体的平面展开图,在这个正方体中,①BM与ED平行;②CN与BE是异面直线;③CN与BM成60°角;④DM与BN垂直.以上四个命题中,正确命题的序号是________.答案③④解析如图所示,把正方体的平面展开图还原成原来的正方体,显然BM与ED为异面直线,故命题①不成立;而CN与BE平行,故命题②不成立.∵BE∥CN,∴CN与BM所成角为∠MBE.∵∠MBE=60°,故③正确;∵BC⊥面CDNM,∴BC⊥DM,又∵DM⊥NC,∴DM⊥面BCN,∴DM⊥BN,故④正确,故填③④.12.(2018·仙桃期末)在空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,若AC=BD=2,且AC与BD成60°,则四边形EFGH 的面积为________.答案 32解析 如图所示,∵E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,∴EH ∥FG ∥BD ,EH =FG = 12BD =1.∴四边形EFGH 是平行四边形, 同理可得EF =GH =12AC =1, ∴四边形EFGH 是菱形.∵AC 与BD 成60°,∴∠FEH =60°或120°. ∴四边形EFGH 的面积=2×12EF 2sin60°=32.13.(2018·湖北武昌调研)若四面体ABCD 的三组对棱分别相等,即AB =CD ,AC =BD ,AD =BC ,则________(写出所有正确结论的编号).①四面体ABCD 每组对棱相互垂直; ②四面体ABCD 每个面的面积相等;③从四面体ABCD 每个顶点出发的三条棱两两夹角之和大于90°而小于180°;④连接四面体ABCD每组对棱中点的线段相互垂直平分;⑤从四面体ABCD每个顶点出发的三条棱的长可作为一个三角形的三边长.答案②④⑤解析对于①,把四面体ABCD放置在如图所示的长方体中,显然命题①错误;对于②,因四个面对应的三角形的三边分别对应相等,即它们为全等的三角形,所以②正确;对于③,当四面体ABCD为正四面体时,夹角之和等于180°,所以③错误;对于④,因每组对棱中点的连线分别与长方体的棱平行,且都经过长方体的中心,所以④正确;又命题⑤显然成立,故填②④⑤.14.如图,在正三角形ABC中,D,E,F分别为各边的中点,G,H分别为DE,AF的中点,将△ABC沿DE,EF,DF折成正四面体P-DEF,则四面体中异面直线PG与DH所成的角的余弦值为________.答案 23解析折成的正四面体,如图,连接HE ,取HE 的中点K ,连接GK ,PK ,则GK ∥DH ,故∠PGK (或其补角)即为所求的异面直线所成的角.设这个正四面体的棱长为2, 在△PGK 中,PG =3,GK =32, PK =12+⎝ ⎛⎭⎪⎫322=72,故cos ∠PGK =PG 2+GK 2-PK 22·PG ·GK =(3)2+⎝ ⎛⎭⎪⎫322-⎝ ⎛⎭⎪⎫7222×3×32=23,即异面直线PG 与DH 所成的角的余弦值为23. 三、解答题15.(2018·普宁期末)如图,直三棱柱ABC -A 1B 1C 1中,D 是AB 的中点.(1)在A1C上是否存在一点Q,使BC1∥DQ?(2)设AA1=AC=CB=2,AB=22,求异面直线AB1与CD所成角的大小.解(1)连接AC1交A1C于Q,连接DQ,∴DQ为△ABC1的中位线,DQ∥BC1,∴A1C上存在一点Q,使BC1∥DQ,Q为A1C的中点.(2)连接AB1,取BB1中点M,连接DM、CM,则DM是△ABB1的中位线,∴DM∥AB1,∴∠CDM就是所求异面直线所成角(或补角),∵AA1=AC=CB=2,AB=22,∴CM=5,DM=3,CD=2,∴DM2+CD2=CM2,满足勾股定理,∴∠CDM=90°,故异面直线AB1与CD所成角为90°.16.如图所示,在四棱锥P-ABCD中,底面是边长为2的菱形,∠DAB=60°,对角线AC与BD交于点O,PO⊥平面ABCD,PB与平面ABCD所成的角为60°.(1)求四棱锥的体积;(2)若E是PB的中点,求异面直线DE与P A所成角的余弦值.解(1)在四棱锥P-ABCD中,∵PO⊥平面ABCD,∴∠PBO是PB与平面ABCD所成的角,∴∠PBO=60°.在Rt△AOB中,BO=AB·sin30°=1,∵PO⊥OB,∴PO=BO·tan60°= 3.∵底面菱形的面积S=12×2×3×2=23,∴四棱锥P-ABCD的体积V P-ABCD=13×23×3=2.(2)取AB 的中点F ,连接EF ,DF ,如图所示,∵E 为PB 中点, ∴EF ∥P A ,∴∠DEF 为异面直线DE 与P A 所成的角(或其补角). 在Rt △AOB 中,AO =3=OP , ∴在Rt △POA 中,P A =6, ∴EF =62.在正三角形ABD 和正三角形PDB 中,DF =DE =3, 由余弦定理,得cos ∠DEF =DE 2+EF 2-DF 22DE ·EF=(3)2+⎝ ⎛⎭⎪⎫622-(3)22×3×62=6432=24. ∴异面直线DE 与P A 所成角的余弦值为24.。

【小初高学习】2019版高考数学(理)高分计划一轮狂刷练:第7章立体几何7-3a

【小初高学习】2019版高考数学(理)高分计划一轮狂刷练:第7章立体几何7-3a

[基础送分提速狂刷练]一、选择题1.(2016·浙江高考)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则()A.m∥l B.m∥nC.n⊥l D.m⊥n答案 C解析对于A,m与l可能平行或异面,故A错误;对于B,D,m与n可能平行、相交或异面,故B,D错误;对于C,因为n⊥β,l⊂β,所以n⊥l,故C正确.故选C.2.若l1,l2,l3是空间三条不同的直线,则下列命题正确的是() A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面答案 B解析当l1⊥l2,l2⊥l3时,l1与l3也可能相交或异面,故A不正确;l1⊥l2,l2∥l3⇒l1⊥l3,故B正确;当l1∥l2∥l3时,l1,l2,l3未必共面,如三棱柱的三条侧棱,故C不正确;l1,l2,l3共点时,l1,l2,l3未必共面,如正方体中从同一顶点出发的三条棱,故D不正确.故选B.3.(2016·雅安期末)已知正方体ABCD-A1B1C1D1,则过点A与AB,BC,CC1所成角均相等的直线有()A.1条B.2条C.4条D.无数条答案 C解析若直线和AB,BC所成角相等,得直线在对角面BDD1B1内或者和对角面平行,同时和CC1所成角相等,此时在对角面内只有体对角线BD1满足条件.此时过A的直线和BD1平行即可,同理体对角线A1C,AC1,DB1也满足条件.则过点A与AB,BC,CC1所成角均相等的直线只要和四条体对角线平行即可,共有4条.故选C.4.(2017·宁德期末)如图是正方体的平面展开图,则在这个正方体中,AM与BN所成角的大小为()A.0°B.45°C.60°D.90°答案 D解析 如图,把正方体的平面展开图还原成正方体ADNE -CMFB ,∵CD ∥BN ,CD ⊥AM , ∴AM ⊥BN ,∴在这个正方体中,AM 与BN 所成角的大小为90°.故选D. 5.如图所示,在底面为正方形,侧棱垂直于底面的四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为( )A.15B.25C.35D.45答案 D解析 连接BC 1,易证BC 1∥AD 1,则∠A 1BC 1即为异面直线A 1B 与AD 1所成的角.连接A 1C 1,设AB =1,则AA 1=2,A 1C 1=2,A 1B =BC 1=5,故cos ∠A 1BC 1=5+5-22×5×5=45.故选D.6.(2018·江西景德镇模拟)将图1中的等腰直角三角形ABC 沿斜边BC 上的中线AD 折起得到空间四面体ABCD (如图2),则在空间四面体ABCD 中,AD 与BC 的位置关系是( )A .相交且垂直B .相交但不垂直C .异面且垂直D .异面但不垂直答案 C解析 在题图1中,AD ⊥BC ,故在题图2中,AD ⊥BD ,AD ⊥DC ,又因为BD ∩DC =D ,所以AD ⊥平面BCD ,又BC ⊂平面BCD ,D 不在BC 上,所以AD ⊥BC ,且AD 与BC 异面.故选C.7.(2017·河北唐山模拟)已知P 是△ABC 所在平面外一点,M ,N 分别是AB ,PC 的中点,若MN =BC =4,P A =43,则异面直线P A 与MN 所成角的大小是 ( )A.30°B.45°C.60°D.90°答案 A解析取AC的中点O,连接OM,ON,则ON∥AP,ON=12AP,OM∥BC,OM=12BC,所以异面直线P A与MN所成的角为∠ONM(或其补角),在△ONM中,OM=2,ON=23,MN=4,由勾股定理的逆定理得OM⊥ON,则∠ONM=30°.故选A.8.如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为m,n,那么m+n=()A.8 B.9C.10 D.11答案 A解析如图,CE⊂平面ABPQ,从而CE∥平面A1B1P1Q1,易知CE与正方体的其余四个面所在平面均相交,∴m=4;∵EF∥平面BPP1B1,EF∥平面AQQ1A1,且EF与正方体的其余四个面所在平面均相交,∴n=4,故m+n=8.选A.9.下列各图是正方体和正四面体,P,Q,R,S分别是所在棱的中点,这四个点不共面的图形是()答案 D解析①在A中易证PS∥QR,∴P,Q,R,S四点共面.②在C中易证PQ∥SR,∴P,Q,R,S四点共面.③在D中,∵QR⊂平面ABC,PS∩面ABC=P且P∉QR,∴直线PS与QR为异面直线.∴P,Q,R,S四点不共面.④在B中P,Q,R,S四点共面,证明如下:取BC中点N,可证PS,NR交于直线B1C1上一点,∴P,N,R,S四点共面,设为α,可证PS∥QN,∴P,Q,N,S四点共面,设为β.∵α,β都经过P,N,S三点,∴α与β重合,∴P,Q,R,S四点共面.故选D.10.(2018·广东惠州三调)如图是一个几何体的平面展开图,其中四边形ABCD为正方形,E,F分别为P A,PD的中点,在此几何体中,给出下面4个结论:①直线BE与直线CF异面;②直线BE与直线AF异面;③直线EF∥平面PBC;④平面BCE⊥平面P AD.其中正确的有()A.1个B.2个C.3个D.4个答案 B解析将展开图还原为几何体(如图),因为四边形ABCD为正方形,E,F分别为P A,PD的中点,所以EF∥AD∥BC,则直线BE 与CF共面,①错误;因为AF⊂平面P AD,B∉平面P AD,E∈平面P AD,E∉AF,所以BE与AF是异面直线,②正确;因为EF∥AD∥BC,EF⊄平面PBC,BC⊂平面PBC,所以EF∥平面PBC,③正确;平面P AD与平面BCE不一定垂直,④错误.故选B.二、填空题11.如图所示,是正方体的平面展开图,在这个正方体中,①BM与ED平行;②CN与BE是异面直线;③CN与BM成60°角;④DM与BN垂直.以上四个命题中,正确命题的序号是________.答案③④解析如图所示,把正方体的平面展开图还原成原来的正方体,显然BM与ED为异面直线,故命题①不成立;而CN与BE平行,故命题②不成立.∵BE∥CN,∴CN与BM所成角为∠MBE.∵∠MBE=60°,故③正确;∵BC⊥面CDNM,∴BC⊥DM,又∵DM⊥NC,∴DM⊥面BCN,∴DM⊥BN,故④正确,故填③④.12.(2018·仙桃期末)在空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,若AC=BD=2,且AC与BD成60°,则四边形EFGH的面积为________.答案3 2解析如图所示,∵E,F,G,H分别是AB,BC,CD,DA的中点,∴EH∥FG∥BD,EH=FG=12BD =1.∴四边形EFGH 是平行四边形, 同理可得EF =GH =12AC =1, ∴四边形EFGH 是菱形.∵AC 与BD 成60°,∴∠FEH =60°或120°. ∴四边形EFGH 的面积=2×12EF 2sin60°=32.13.(2018·湖北武昌调研)若四面体ABCD 的三组对棱分别相等,即AB =CD ,AC =BD ,AD =BC ,则________(写出所有正确结论的编号).①四面体ABCD 每组对棱相互垂直; ②四面体ABCD 每个面的面积相等;③从四面体ABCD 每个顶点出发的三条棱两两夹角之和大于90°而小于180°;④连接四面体ABCD 每组对棱中点的线段相互垂直平分; ⑤从四面体ABCD 每个顶点出发的三条棱的长可作为一个三角形的三边长.答案 ②④⑤解析 对于①,把四面体ABCD 放置在如图所示的长方体中,显然命题①错误;对于②,因四个面对应的三角形的三边分别对应相等,即它们为全等的三角形,所以②正确;对于③,当四面体ABCD 为正四面体时,夹角之和等于180°,所以③错误;对于④,因每组对棱中点的连线分别与长方体的棱平行,且都经过长方体的中心,所以④正确;又命题⑤显然成立,故填②④⑤.14.如图,在正三角形ABC 中,D ,E ,F 分别为各边的中点,G ,H 分别为DE ,AF 的中点,将△ABC 沿DE ,EF ,DF 折成正四面体P -DEF ,则四面体中异面直线PG 与DH 所成的角的余弦值为________.答案 23解析折成的正四面体,如图,连接HE ,取HE 的中点K ,连接GK ,PK ,则GK ∥DH ,故∠PGK (或其补角)即为所求的异面直线所成的角.设这个正四面体的棱长为2,在△PGK 中,PG =3,GK =32,PK =12+⎝ ⎛⎭⎪⎫322=72, 故cos ∠PGK =PG 2+GK 2-PK 22·PG ·GK=(3)2+⎝ ⎛⎭⎪⎫322-⎝ ⎛⎭⎪⎫7222×3×32=23,即异面直线PG 与DH 所成的角的余弦值为23.三、解答题15.(2018·普宁期末)如图,直三棱柱ABC -A 1B 1C 1中,D 是AB 的中点.(1)在A 1C 上是否存在一点Q ,使BC 1∥DQ?(2)设AA 1=AC =CB =2,AB =22,求异面直线AB 1与CD 所成角的大小.解 (1)连接AC 1交A 1C 于Q ,连接DQ ,∴DQ 为△ABC 1的中位线,DQ ∥BC 1,∴A1C上存在一点Q,使BC1∥DQ,Q为A1C的中点.(2)连接AB1,取BB1中点M,连接DM、CM,则DM是△ABB1的中位线,∴DM∥AB1,∴∠CDM就是所求异面直线所成角(或补角),∵AA1=AC=CB=2,AB=22,∴CM=5,DM=3,CD=2,∴DM2+CD2=CM2,满足勾股定理,∴∠CDM=90°,故异面直线AB1与CD所成角为90°.16.如图所示,在四棱锥P-ABCD中,底面是边长为2的菱形,∠DAB=60°,对角线AC与BD交于点O,PO⊥平面ABCD,PB与平面ABCD所成的角为60°.(1)求四棱锥的体积;(2)若E是PB的中点,求异面直线DE与P A所成角的余弦值.解(1)在四棱锥P-ABCD中,∵PO⊥平面ABCD,∴∠PBO 是PB与平面ABCD所成的角,∴∠PBO=60°.在Rt△AOB中,BO =AB·sin30°=1,∵PO⊥OB,∴PO=BO·tan60°= 3.∵底面菱形的面积S=12×2×3×2=23,∴四棱锥P-ABCD的体积V P-ABCD=13×23×3=2.(2)取AB 的中点F ,连接EF ,DF ,如图所示,∵E 为PB 中点, ∴EF ∥P A ,∴∠DEF 为异面直线DE 与P A 所成的角(或其补角). 在Rt △AOB 中,AO =3=OP ,∴在Rt △POA 中,P A =6,∴EF =62.在正三角形ABD 和正三角形PDB 中,DF =DE =3,由余弦定理,得cos ∠DEF =DE 2+EF 2-DF 22DE ·EF =(3)2+⎝ ⎛⎭⎪⎫622-(3)22×3×62=6432=24. ∴异面直线DE 与P A 所成角的余弦值为24.。

2019版高考数学(理)高分计划一轮狂刷练:第7章 立体几何 7-2a Word版含解析

2019版高考数学(理)高分计划一轮狂刷练:第7章 立体几何 7-2a Word版含解析

[基础送分 提速狂刷练]一、选择题1.(2017·东北五校联考)如左图所示,在三棱锥D -ABC 中,已知AC =BC =CD =2,CD ⊥平面ABC ,∠ACB =90°.若其正视图、俯视图如右图所示,则其侧视图的面积为( )A. 6 B .2 C. 3 D. 2答案 D解析 由几何体的结构特征和正视图、俯视图,得该几何体的侧视图是一个直角三角形,其中一直角边为CD ,其长度为2,另一直角边为底面三角形ABC 的边AB 上的中线,其长度为2,则其侧视图的面积为S =12×2×2=2,故选D.2.某几何体的三视图如图所示,则该几何体的体积为( )A.16+8π B.8+8πC.16+16π D.8+16π答案 A解析由三视图可知该几何体由长方体和圆柱的一半组成(如图所示),其中长方体的长、宽、高分别为4,2,2,圆柱的底面半径为2,高为4.所以该几何体的体积V=4×2×2+12π×22×4=16+8π.故选A.3.(2018·合肥质检)一个几何体的三视图如图所示(其中正视图的弧线为四分之一圆周),则该几何体的表面积为()A .72+6πB .72+4πC .48+6πD .48+4π答案 A解析 由三视图知,该几何体由一个正方体的34部分与一个圆柱的14部分组合而成(如图所示),其表面积为16×2+(16-4+π)×2+4×(2+2+π)=72+6π.故选A.4.三棱锥P -ABC 的四个顶点都在体积为500π3的球的表面上,底面ABC 所在的小圆面积为16π,则该三棱锥的高的最大值为( )A .4B .6C .8D .10答案 C解析 依题意,设题中球的球心为O 、半径为R ,△ABC 的外接圆半径为r ,则4πR 33=500π3,解得R =5,由πr 2=16π,解得r =4,又球心O 到平面ABC 的距离为R 2-r 2=3,因此三棱锥P -ABC 的高的最大值为5+3=8.选C.5.(2017·广东广州一模)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称为阳马;将四个面都为直角三角形的三棱锥称为鳖臑.若三棱锥P -ABC 为鳖臑,P A ⊥平面ABC ,P A =AB =2,AC =4,三棱锥P -ABC 的四个顶点都在球O 的球面上,则球O 的表面积为( )A .8πB .12πC .20πD .24π答案 C解析 如图,因为四个面都是直角三角形,所以PC 的中点到每一个顶点的距离都相等,即PC 的中点为球心O ,易得2R =PC =20,所以R =202,球O 的表面积为4πR 2=20π.选C.6.(2016·山东高考)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )A.13+2π3B.13+2π3 C.13+2π6 D .1+2π6答案 C解析 由三视图可知四棱锥为正四棱锥,底面正方形的边长为1,四棱锥的高为1,球的直径为正四棱锥底面正方形的外接圆的直径,所以球的直径2R =2,则R =22,所以半球的体积为23πR 3=2π6,又正四棱锥的体积为13×12×1=13,所以该几何体的体积为13+2π6.故选C.7.(2018·河南郑州质检)某三棱锥的三视图如图所示,且三个三角形均为直角三角形,则xy 的最大值为( )A .32B .327C .64D .647答案 C解析 由三视图知三棱锥如图所示,底面ABC 是直角三角形,AB ⊥BC ,P A ⊥平面ABC ,BC =27,P A 2+y 2=102,(27)2+P A 2=x 2,因此xy =x102-[x 2-(27)2]=x128-x 2≤x 2+(128-x 2)2=64,当且仅当x 2=128-x 2,即x =8时取等号,因此xy 的最大值是64.选C.8.(2018·福建质检)空间四边形ABCD 的四个顶点都在同一球面上,E ,F 分别是AB ,CD 的中点,且EF ⊥AB ,EF ⊥CD .若AB =8,CD =EF =4,则该球的半径等于( )A.65216B.6528C.652D.65答案 C解析 如图,连接BF ,AF ,DE ,CE ,因为AE =BE ,EF ⊥AB ,所以AF =BF .同理可得EC =ED .又空间四边形ABCD 的四个顶点都在同一球面上,所以球心O 必在EF 上,连接OA ,OC .设该球的半径为R ,OE =x ,则R 2=AE 2+OE 2=16+x 2①,R 2=CF 2+OF 2=4+(4-x )2②,由①②解得R =652.故选C.9.(2018·雁塔期末)在六条棱长分别为2,3,3,4,5,5的所有四面体中,最大的体积是( )A.823B.5116C.4624 D .2 6答案 A解析 由题意可知,由棱长2、3、3、4、5、5构成的四面体有如下三种情况:左图中,由于32+42=52,即图中AD ⊥平面BCD , ∴V 1=13×12×232-12×4=823;中间图,由于此情况的底面与上相同,但AC 不与底垂直,故高小于4,于是得V 2<V 1;右图中,高小于2,底面积12×5× 32-⎝ ⎛⎭⎪⎫522=5114.∴V 3<13×5114×2=5116<823. ∴最大体积为823.故选A.10.(2017·衡水中学三调)已知正方体ABCD -A ′B ′C ′D ′的外接球的体积为3π2,将正方体割去部分后,剩余几何体的三视图如图所示,则剩余几何体的表面积为( )A.92+32 B .3+3或92+32 C .2+3 D.92+32或2+ 3答案 B解析 设正方体的棱长为a ,依题意得,4π3×33a 38=3π2,解得a =1.由三视图可知,该几何体的直观图有以下两种可能,图1对应的几何体的表面积为92+32,图2对应的几何体的表面积为3+ 3.故选B.二、填空题11.(2017·天津高考)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.答案 9π2解析 设正方体的棱长为a ,则6a 2=18,∴a = 3. 设球的半径为R ,则由题意知2R =a 2+a 2+a 2=3,∴R =32.故球的体积V =43πR 3=4π3×⎝ ⎛⎭⎪⎫323=9π2.12.(2016·四川高考)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是________.答案 33解析 由题意及正视图可知三棱锥的底面等腰三角形的底长为23,三棱锥的高为1,则三棱锥的底面积为12×22-(3)2×23=3,∴该三棱锥的体积为13×3×1=33.13.(2017·江苏高考)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切,记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.答案 32解析 设球O 的半径为R ,∵球O 与圆柱O 1O 2的上、下底面及母线均相切,∴圆柱O 1O 2的高为2R ,圆柱O 1O 2的底面半径为R .∴V 1V 2=πR 2·2R 43πR 3=32. 14.(2018·太原模拟)已知三棱锥A -BCD 中,AB =AC =BC =2,BD =CD =2,点E 是BC 的中点,点A 在平面BCD 内的射影恰好为DE 的中点,则该三棱锥外接球的表面积为________.答案 60π11解析如图,作出三棱锥A -BCD 的外接球,设球的半径为r ,球心O 到底面BCD 的距离为d ,DE 的中点为F ,连接AF ,过球心O 作AF 的垂线OH ,垂足为H ,连接OA ,OD ,OE ,AE .因为BD =2,CD =2,BC =2,所以BD ⊥CD ,则OE ⊥平面BCD ,OE ∥AF ,所以HF=OE =d .所以在Rt △BCD 中,DE =1,EF =12.又AB =AC =BC =2,所以AE =3,所以在Rt △AFE 中,AF =112,所以r 2=d 2+1=⎝ ⎛⎭⎪⎫112-d 2+14,解得r 2=1511,所以三棱锥A -BCD 的外接球的表面积S =4πr 2=60π11. 三、解答题15.(2017·梅州一模)如图所示的多面体是由一个直平行六面体被平面AEFG 所截后得到的,其中∠BAE =∠GAD =45°,AB =2AD =2,∠BAD =60°.(1)求此多面体的全面积;(2)求此多面体的体积.解(1)在△BAD 中,∵AB =2AD =2,∠BAD =60°,∴由余弦定理可得BD =3,则AB 2=AD 2+BD 2,∴AD ⊥BD .由已知可得,AG ∥EF ,AE ∥GF ,∴四边形AEFG 为平行四边形,GD =AD =1,∴EF =AG = 2.EB =AB =2,∴GF =AE =2 2.过G 作GH ∥DC 交CF 于H ,得FH =2,∴FC =3.过G 作GM ∥DB 交BE 于M ,得GM =DB =3,ME =1,∴GE =2.cos ∠GAE =8+2-42×22×2=34,∴sin ∠GAE =74. S ▱AEFG =2×12×2×22×74=7. 该几何体的全面积S =7+2×12×1×3+12×1×1+12×2×2+12×(1+3)×2+12×(2+3)×1=7+3+9.(2)V 多面体的体积=V A -BEGD +V G -BCD +V G -BCFE=13S BEGD ·AD +13S △BCD ·DG +13S 四边形BCFE ·BD=13·12(DG +BE )·BD ·AD +13·12BC ·CD ·sin60°·DG +13·12(BE +CF )·BC ·BD =332.16.一几何体按比例绘制的三视图如图所示(单位:m).(1)试画出它的直观图;(2)求它的表面积和体积.解 (1)直观图如图所示:(2)由三视图可知该几何体是长方体被截去一个三棱柱,且该几何体的体积是以A 1A ,A 1D 1,A 1B 1为棱的长方体的体积的34,在直角梯形AA 1B 1B 中,作BE ⊥A 1B 1于E ,则四边形AA 1EB 是正方形,∴AA 1=BE =1,在Rt △BEB 1中,BE =1,EB 1=1,∴BB 1=2,∴几何体的表面积S =S正方形ABCD +S 矩形A 1B 1C 1D 1+2S 梯形AA 1B 1B +S 矩形BB 1C 1C +S 正方形AA 1D 1D =1+2×1+2×12×(1+2)×1+1×2+1=7+2(m 2).∴几何体的体积V =34×1×2×1=32(m 3),∴该几何体的表面积为(7+2) m 2,体积为32 m 3.。

2019版高考数学一轮复习第七章立体几何分层限时跟踪练(7).doc

2019版高考数学一轮复习第七章立体几何分层限时跟踪练(7).doc

非常考案通用版2019版高考数学一轮复习第七章立体几何分层限时跟踪练(7)一、选择题1.一个几何体的三视图如图7­2­12所示,其中俯视图与侧视图均为半径是2的圆,则这个几何体的体积是( )图7­2­12A .16 πB .14 πC .12 πD .8 π【解析】 由三视图可知,该几何体为一个球切去四分之一个球后剩余部分,由于球的半径为2,所以这个几何体体积为34×43π×23=8π.【答案】 D2.(2015·北京高考)某三棱锥的三视图如图7­2­13所示,则该三棱锥的表面积是( )图7­2­13A .2+ 5B .4+ 5C .2+2 5D .5【解析】作出三棱锥的示意图如图,在△ABC 中,作AB 边上的高CD ,连接SD .在三棱锥S ­ABC 中,SC ⊥底面ABC ,SC =1,底面三角形ABC 是等腰三角形,AC =BC ,AB 边上的高CD =2,AD =BD =1,斜高SD =5,AC =BC = 5.∴S表=S △ABC +S △SAC +S △SBC +S △SAB =12×2×2+12×1×5+12×1×5+12×2×5=2+2 5.【答案】 C3.(2015·全国卷Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如图7­2­14,则截去部分体积与剩余部分体积的比值为( )图7­2­14A.18B.17C.16D.15【解析】由已知三视图知该几何体是由一个正方体截去了一个“大角”后剩余的部分,如图所示,截去部分是一个三棱锥.设正方体的棱长为1,则三棱锥的体积为V1=13×12×1×1×1=16,剩余部分的体积V2=13-16=56.所以V1V2=1656=15,故选D.【答案】 D4.(2015·安徽高考)一个四面体的三视图如图7­2­15所示,则该四面体的表面积是( )图7­2­15A.1+ 3 B.2+ 3C.1+2 2 D.2 2【解析】 根据三视图还原几何体如图所示,其中侧面ABD ⊥底面BCD ,另两侧面ABC 、ACD 为等边三角形,则S 表面积=2×12×2×1+2×34×(2)2=2+ 3. 【答案】 B5.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )A. 81π4 B .16π C .9π D.27π4【解析】 如图所示,设球半径为R ,底面中心为O ′且球心为O ,∵正四棱锥P ­ABCD 中AB =2,∴AO ′= 2. ∵PO ′=4, ∴在Rt △AOO ′中,AO 2=AO ′2+OO ′2,∴R 2=(2)2+(4-R )2,解得R =94,∴该球的表面积为4πR 2=4π×⎝ ⎛⎭⎪⎫942=81π4,故选A. 【答案】 A 二、填空题6.如图7­2­16,正方体ABCD ­A 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1­EDF 的体积为 .图7­2­16【解析】 VD 1­EDF =VF ­DD 1E =13 ·AB =13×12×1×1×1=16.【答案】 167.设甲、乙两个圆柱的底面积分别为S 1,S 2,体积分别为V 1,V 2,若它们的侧面积相等,且S 1S 2=94,则V 1V 2的值是 . 【解析】 设甲、乙两圆柱的底面半径分别为r 1,r 2,母线长分别为l 1,l 2,则由S 1S 2=94得r 1r 2=32.又两圆柱侧面积相等,即2πr 1l 1=2πr 2l 2,则l 1l 2=r 2r 1=23,所以V 1V 2=S 1l 1S 2l 2=94×23=32. 【答案】 328.已知一个棱长为2的正方体,被一个平面截后所得几何体的三视图如图7­2­17所示,则该几何体的体积是 .图7­2­17【解析】 根据三视图,画出其直观图,几何体由正方体切割而成,即正方体截去一个棱台.如图所示.其中正方体棱长为2,AF =AE =1,故所求几何体体积为V =23-13×2×12×1×1+12×2×2+12×1×1×12×2×2=173. 【答案】173三、解答题9.(2015·荥阳月考)已知球的两平行截面的面积分别为5π和8π,它位于球心的同一侧,且相距为1,求这个球的体积.【解】 如图,设以r 1为半径的截面面积为5π,圆心为O 1,以r 2为半径的截面面积为8π,圆心为O 2,O 1O 2=1,球的半径为R ,设OO 2=x ,可得下列关系式:r 22=R 2-x 2,πr 22=π(R 2-x 2)=8π,r 21=R 2-(x +1)2,πr 21=π[R 2-(x +1)2]=5π,∴R 2-x 2=8,R 2-(x +1)2=5,解得R =3,∴球的体积为V =43πR 3=43π×33=36π.10.(2015·全国卷Ⅱ)如图7­2­18,长方体ABCD ­A 1B 1C 1D 1中,AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.图7­2­18(1)在图中画出这个正方形(不必说明画法和理由); (2)求平面α把该长方体分成的两部分体积的比值. 【解】 (1)交线围成的正方形EHGF 如图所示.(2)如图,作EM ⊥AB ,垂足为M ,则AM =A 1E =4,EB 1=12,EM =AA 1=8. 因为四边形EHGF 为正方形,所以EH =EF =BC =10. 于是MH =EH 2-EM 2=6,AH =10,HB =6. 故S 四边形A 1EHA =12×(4+10)×8=56,S 四边形EB 1BH =12×(12+6)×8=72.因为长方体被平面α分成两个高为10的直棱柱, 所以其体积的比值为97⎝ ⎛⎭⎪⎫79也正确. [能 力 练]扫盲区 提素能1.(2015·山东高考)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3 B.4π3 C.5π3D .2π【解析】 过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示,该几何体的体积为V =V 圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3,选C. 【答案】 C2.如图7­2­19,直三棱柱ABC ­A 1B 1C 1的六个顶点都在半径为1的半球面上,AB =AC ,侧面BCC 1B 1是半球底面圆的内接正方形,则侧面ABB 1A 1的面积为( )图7­2­19A .2B .1 C. 2 D.22【解析】 由题意知,球心在侧面BCC 1B 1的中心O 上,BC 为截面圆的直径,∴∠BAC =90°,△ABC 的外接圆圆心N 是BC 的中点,同理△A 1B 1C 1的外心M 是B 1C 1的中点.设正方形BCC 1B 1的边长为x ,在Rt △OMC 1中,OM =x 2,MC 1=x 2,OC 1=R =1(R 为球的半径),∴⎝ ⎛⎭⎪⎫x 22+⎝ ⎛⎭⎪⎫x 22=1,即x =2,则AB =AC =1,∴S 矩形ABB 1A 1=2×1= 2.【答案】 C3.圆锥的全面积为15 π cm 2,侧面展开图的圆心角为60°,则该圆锥的体积为cm 3.【解析】 设底面圆的半径为r ,母线长为a ,则侧面积为12×(2πr )a =πra .由题意得⎩⎪⎨⎪⎧πra +πr 2=15π,πra =16πa 2,解得⎩⎪⎨⎪⎧r 2=157,a 2=36×157,故圆锥的高h =a 2-r 2=53,所以体积V =13πr 2h =13π×157×53=2537π(cm 3).【答案】2573π 4.已知正四面体的俯视图如图7­2­20所示,其中四边形ABCD 是边长为2的正方形,则这个正四面体的表面积为 ,体积为 .图7­2­20【解析】 由题意知正四面体的直观图E ­ACF 补成正方体如图所示. 由正方体棱长为2,知正四面体的棱长为22,正四面体表面积为34×(22)2×4=8 3.点E 到平面ACF 的距离为222-⎝⎛⎭⎪⎫32×22×232=433. 正四面体的体积为13×433×34×(22)2=83.【答案】 8 3835.如图7­2­21所示,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,求该多面体的体积.图7­2­21【解】 如图所示,分别过A ,B 作EF 的垂线,垂足分别为G ,H ,连接DG ,CH ,则原几何体分割为两个三棱锥和一个直三棱柱,∵三棱锥高为12,直三棱柱高为1,AG =12-⎝ ⎛⎭⎪⎫122=32,取AD 中点M ,则MG =22,∴S △AGD =12×1×22=24,∴V =24×1+2×13×24×12=23. 6.如图7­2­22,已知平行四边形ABCD 中,BC =2,BD ⊥CD ,四边形ADEF 为正方形,平面ADEF ⊥平面ABCD ,G ,H 分别是DF ,BE 的中点.记CD =x ,V (x )表示四棱锥F ­ABCD 的体积.图7­2­22(1)求V (x )的表达式; (2)求V (x )的最大值.【解】 (1)∵平面ADEF ⊥平面ABCD ,交线为AD 且FA ⊥AD ,∴FA ⊥平面ABCD . ∵BD ⊥CD ,BC =2,CD =x , ∴FA =2,BD =4-x 2(0<x <2), ∴S ▱ABCD =CD ·BD =x 4-x 2,∴V (x )=13S ▱ABCD ·FA =23x 4-x 2(0<x <2).(2)V (x )=23x 4-x 2=23-x 4+4x 2=23-x 2-22+4.∵0<x <2,∴0<x 2<4,∴当x 2=2,即x =2时,V (x )取得最大值,且V (x )max =43.。

2019版高考数学理培优增分一轮全国经典版增分练:第7

2019版高考数学理培优增分一轮全国经典版增分练:第7

板块四模拟演练·提能增分[A级基础达标]1.[2016·浙江高考]已知互相垂直的平面α,β交于直线l.若直线m,n满足m∥α,n⊥β,则()A.m∥l B.m∥n C.n⊥l D.m⊥n答案 C解析∵α∩β=l,∴l⊂β,∵n⊥β,∴n⊥l.故选C.2.[2015·福建高考]若l,m是两条不同的直线,m垂直于平面α,则“l⊥m”是“l∥α”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案 B解析由“m⊥α且l⊥m”推出“l⊂α或l∥α”,但由“m⊥α且l∥α”可推出“l⊥m”,所以“l⊥m”是“l∥α”的必要而不充分条件,故选B.3.[2017·天津河西模拟]设l是直线,α,β是两个不同的平面,则下列说法正确的是()A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l∥βD.若α⊥β,l∥α,则l⊥β答案 B解析对于A,若l∥α,l∥β,则α∥β或α与β相交,故A错误;易知B正确;对于C,若α⊥β,l⊥α,则l∥β或l⊂β,故C错误;对于D,若α⊥β,l∥α,则l与β的位置关系不确定,故D错误.故选B.4.[2018·济南模拟]已知如图,六棱锥P-ABCDEF的底面是正六边形,P A⊥平面ABCDEF.则下列结论不正确的是()A.CD∥平面P AFB.DF⊥平面P AFC.CF∥平面P ABD.CF⊥平面P AD答案 D解析A中,因为CD∥AF,AF⊂平面P AF,CD⊄平面P AF,所以CD∥平面P AF成立;B中,因为ABCDEF为正六边形,所以DF⊥AF,又因为P A⊥平面ABCDEF,所以P A⊥DF,又因为P A∩AF=A,所以DF⊥平面P AF成立;C中,因为CF∥AB,AB⊂平面P AB,CF⊄平面P AB,所以CF ∥平面P AB;而D中CF与AD不垂直.故选D.5.已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l ⊥m,l⊥n,l⊄α,l⊄β,则()A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l答案 D解析若α∥β,则m∥n,这与m、n为异面直线矛盾,所以A 不正确,α与β相交.将已知条件转化到正方体中,易知α与β不一定垂直,但α与β的交线一定平行于l,从而排除B,C.故选D.6.已知P为△ABC所在平面外一点,且P A,PB,PC两两垂直,则下列命题:①P A⊥BC;②PB⊥AC;③PC⊥AB;④AB⊥BC.其中正确的个数是________.答案 3解析如图所示.∵P A⊥PC,P A⊥PB,PC∩PB=P,∴P A⊥平面PBC.又∵BC⊂平面PBC,∴P A⊥BC.同理PB⊥AC,PC⊥AB.但AB不一定垂直于BC.7.设a,b为不重合的两条直线,α,β为不重合的两个平面,给出下列命题:①若a∥α,b∥β,且α∥β,则a∥b;②若a⊥α,且a⊥β,则α∥β;③若α⊥β,则一定存在平面γ,使得γ⊥α,γ⊥β;④若α⊥β,则一定存在直线l,使得l⊥α,l∥β.上面命题中,所有真命题的序号是________.答案②③④解析①中a与b可能相交或异面,故不正确.②垂直于同一直线的两平面平行,正确.③中存在γ,使得γ与α,β都垂直.④中只需直线l⊥α且l⊄β就可以.8.[2018·广东模拟]如图,在三棱锥D-ABC中,若AB=CB,AD=CD,E是AC的中点,则下列命题中正确的有________(写出全部正确命题的序号).①平面ABC⊥平面ABD;②平面ABD⊥平面BCD;③平面ABC⊥平面BDE,且平面ACD⊥平面BDE;④平面ABC⊥平面ACD,且平面ACD⊥平面BDE.答案③解析由AB=CB,AD=CD知AC⊥DE,AC⊥BE,从而AC⊥平面BDE,故③正确.9.如图所示,在四棱锥P-ABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC的中点.求证:(1)CD⊥AE;(2)PD⊥平面ABE.证明(1)∵P A⊥底面ABCD,CD⊂平面ABCD,∴CD⊥P A.又CD⊥AC,P A∩AC=A,故CD⊥平面P AC,AE⊂平面P AC.故CD⊥AE.(2)∵P A=AB=BC,∠ABC=60°,故P A=AC.∵E是PC的中点,故AE⊥PC.由(1)知CD⊥AE,由于PC∩CD=C,从而AE⊥平面PCD,故AE⊥PD.易知BA⊥PD,故PD⊥平面ABE.10.[2018·湖南永州模拟]如图,四棱锥S-ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1.(1)证明:SD⊥平面SAB;(2)求四棱锥S-ABCD的高.解(1)证明:如图,取AB的中点E,连接DE,DB,则四边形BCDE为矩形,∴DE=CB=2,∴AD=BD= 5.∵侧面SAB为等边三角形,AB=2,∴SA=SB=AB=2.又SD=1,∴SA2+SD2=AD2,SB2+SD2=BD2,∴∠DSA=∠DSB=90°,即SD⊥SA,SD⊥SB,SA∩SB=S,∴SD⊥平面SAB.(2)设四棱锥S-ABCD的高为h,则h也是三棱锥S-ABD的高.由(1),知SD⊥平面SAB.由V S-ABD=V D-SAB,得13S△ABD·h=13S△SAB·SD,∴h=S△SAB·SD S△ABD.又S△ABD=12AB·DE=12×2×2=2,S△SAB=34AB2=34×22=3,SD=1,∴h=S△SAB·SDS△ABD=3×12=32.故四棱锥S-ABCD的高为3 2.[B级知能提升]1.[2018·青岛质检]设a,b是两条不同的直线,α,β是两个不同的平面,则能得出a⊥b的是()A.a⊥α,b∥β,α⊥βB.a⊥α,b⊥β,α∥βC.a⊂α,b⊥β,α∥βD.a⊂α,b∥β,α⊥β答案 C解析对于C项,由α∥β,a⊂α可得a∥β,又b⊥β,得a⊥b.故选C.2.[2018·河北唐山模拟]如图,在正方形ABCD中,E,F分别是BC,CD的中点,G是EF的中点,现在沿AE,AF及EF把这个正方形折成一个空间图形,使B,C,D三点重合,重合后的点记为H,那么,在这个空间图形中必有()A.AG⊥平面EFH B.AH⊥平面EFHC.HF⊥平面AEF D.HG⊥平面AEF答案 B解析根据折叠前、后AH⊥HE,AH⊥HF不变,∴AH⊥平面EFH,B正确;∵过A只有一条直线与平面EFH垂直,∴A不正确;∵AG⊥EF,EF⊥GH,AG∩GH=G,∴EF⊥平面HAG,又EF⊂平面AEF,∴平面HAG⊥平面AEF,过H作直线垂直于平面AEF,一定在平面HAG内,∴C不正确;由条件证不出HG ⊥平面AEF,∴D不正确.故选B.3.如图,P A⊥⊙O所在平面,AB是⊙O的直径,C是⊙O上一点,AE⊥PC,AF⊥PB,给出下列结论:①AE⊥BC;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC,其中真命题的序号是________.答案①②④解析①AE⊂平面P AC,BC⊥AC,BC⊥P A⇒AE⊥BC,故①正确;②AE⊥PC,AE⊥BC⇒AE⊥平面PBC,PB⊂平面PBC⇒AE⊥PB,AF⊥PB,EF⊂平面AEF⇒EF⊥PB,故②正确;③若AF⊥BC⇒AF ⊥平面PBC,则AF∥AE与已知矛盾,故③错误;由②可知④正确.4.[2018·江西九江模拟]如图,在几何体ABCDEF 中,四边形ABCD 是菱形,BE ⊥平面ABCD ,DF ∥BE ,且DF =2BE =2,EF =3.(1)证明:平面ACF ⊥平面BEFD .(2)若cos ∠BAD =15,求几何体ABCDEF 的体积.解 (1)证明:∵四边形ABCD 是菱形,∴AC ⊥BD ,∵BE ⊥平面ABCD ,AC ⊂平面ABCD ,∴BE ⊥AC .∴AC ⊥平面BEFD ,AC ⊂平面ACF .∴平面ACF ⊥平面BEFD .(2)设AC 与BD 的交点为O ,AB =a (a >0),由(1)得AC ⊥平面BEFD ,∵BE ⊥平面ABCD ,∴BE ⊥BD ,∵DF ∥BE ,∴DF ⊥BD ,∴BD 2=EF 2-(DF -BE )2=8,∴BD =22,∴S四边形BEFD=12(BE+DF)·BD=32,∵cos∠BAD=1 5,∴BD2=AB2+AD2-2AB·AD·cos∠BAD=85a2=8,∴a=5,∴OA2=AB2-OB2=3,∴OA=3,∴V ABCDEF=2V A-BEFD=23S四边形BEFD·OA=2 6.5.[2017·全国卷Ⅲ]如图,四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD,若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.解(1)证明:如图,取AC的中点O,连接DO,BO.因为AD=CD,所以AC⊥DO.又由于△ABC是正三角形,所以AC ⊥BO .从而AC ⊥平面DOB ,又BD ⊂平面DOB ,故AC ⊥BD .(2)连接EO .由(1)及题设知∠ADC =90°,所以DO =AO .在Rt △AOB 中,BO 2+AO 2=AB 2.又AB =BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2,故∠DOB =90°.由题设知△AEC 为直角三角形,所以EO =12AC .又△ABC 是正三角形,且AB =BD ,所以EO =12BD .故E 为BD 的中点,从而E 到平面ABC 的距离为D 到平面ABC的距离的12,四面体ABCE 的体积为四面体ABCD 的体积的12,即四面体ABCE 与四面体ACDE 的体积之比为1∶1.。

2019届高考数学一轮复习第7单元立体几何作业理

2019届高考数学一轮复习第7单元立体几何作业理

第七单元立体几何课时作业(四十)第40讲空间几何体的三视图和直观图、表面积与体积基础热身1.[2017·衡水中学月考]一个三棱锥的正视图和俯视图如图K40-1所示,则该三棱锥的侧视图可能为()图K40-1图K40-22.[2017·衡阳联考]如图K40-3所示,某空间几何体的正视图与侧视图相同,则此几何体的表面积为()A.6πB.π+C.4πD.2π+图K40-33.三棱锥P-ABC及其三视图中的正视图和侧视图如图K40-4所示,则PB=()图K40-4A.2B.4C.D.164.[2017·潮州四校联考]已知某多面体内接于球构成一个简单组合体,如果该组合体的正视图、侧视图、俯视图均如图K40-5所示,且图中的四边形是边长为2的正方形,则该球的表面积是.图K40-55.[2017·厦门二模]某几何体的三视图如图K40-6所示,则该几何体的体积是.图K40-6能力提升6.如图K40-7,在正方体ABCD-A1B1C1D1中,P为BD1的中点,则△PAC在该正方体各个面上的射影可能是()图K40-7图K40-8A.①④B.②③C.②④D.①②7.如图K40-9,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为()图K40-9A.B.C.D.8.图K40-10中,小方格是边长为1的正方形,图中粗实线画出的是某几何体的三视图,则该几何体的体积为()A.8-πB.8-πC.8-πD.8-π图K40-109.某几何体的三视图如图K40-11,其正视图中的曲线部分为半圆,则该几何体的体积是()A.4+πB.6+3πC.6+πD.12+π图K40-1110.[2017·泸州四诊]某几何体的正视图和侧视图如图K40-12(1)所示,它的俯视图的直观图是△A'B'C',如图K40-12(2)所示,其中O'A'=O'B'=2,O'C'=,则该几何体的表面积为()(1)(2)图K40-12A.36+12B.24+8C.24+12D.36+811.某几何体的三视图如图K40-13所示,则该几何体的表面积为.图K40-1312.[2017·蚌埠质检]已知边长为的正三角形ABC的三个顶点都在球O的表面上,且OA 与平面ABC所成的角为60°,则球O的表面积为.13.[2017·淮北二模]我国古代数学经典名著《九章算术》中将底面为长方形且有一条侧棱与底面垂直的四棱锥称为阳马,将四个面都为直角三角形的三棱锥称为鳖臑(biēnào).若三棱锥P-ABC为鳖臑,且PA⊥平面ABC,PA=AB=2,且该鳖臑的外接球的表面积为24π,则该鳖臑的体积为.14.(12分)如图K40-14所示,在多面体ABCDEF中,已知四边形ABCD是边长为1的正方形,且△ADE,△BCF均为正三角形,EF∥AB,EF=2,求该多面体的体积.图K40-1415.(13分)某几何体按比例绘制的三视图如图K40-15所示(单位:m).(1)试画出该几何体的直观图;(2)求该几何体的表面积和体积.图K40-15难点突破16.(5分)[2017·石家庄二模]如图K40-16是一个底面半径为1的圆柱被平面截开所得的几何体,截面与底面所成的角为45°,过圆柱的轴的平面截该几何体所得的四边形ABB'A'为矩形,若沿AA'将其侧面剪开,则其侧面展开图的形状大致为()图K40-16图K40-1717.(5分)祖暅是我国齐梁时代的数学家,他提出了一条原理:“幂势既同,则积不容异.”这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.该原理在西方直到十七世纪才由意大利数学家卡瓦列利发现,比祖暅晚一千一百多年.椭球体是椭圆绕其轴旋转所成的旋转体.如图K40-18所示,将底面直径皆为2b,高皆为a的半椭球体及已被挖去了圆锥体的圆柱体放置于同一平面β上.以平行于平面β的平面在距平面β任意高度d处可横截得到S圆及S环两截面,可以证明S圆=S环总成立.据此,短轴长为4 cm,长轴长为6 cm的椭球体的体积是cm3.图K40-18加练一课(五) 空间几何体与球的切﹑接问题一、选择题(本大题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某正四棱锥的顶点都在同一球面上,若该正四棱锥的高为4,底面边长为2,则该球的表面积为()A.B.16πC.9πD.2.一块石材表示的几何体的三视图如图L5-1所示,将石材切削、打磨、加工成球,则能得到的最大球的半径为()A.1B.2C.3D.4图L5-13.[2017·山西三区八校二模]在矩形ABCD中,AC=2,现将△ABC沿对角线AC折起,使点B到达点B'的位置,得到三棱锥B'-ACD,则三棱锥B'-ACD的外接球的表面积是()A.πB.2πC.4πD.与点B'的位置有关图L5-24.若一个底面是正三角形的三棱柱的正视图如图L5-3所示,其顶点都在一个球面上,则该球的表面积为()A.πB.πC.πD.π图L5-35.四面体A-BCD的四个顶点都在球O的球面上,AB⊥平面BCD,△BCD是边长为3的等边三角形.若AB=2,则球O的表面积为()A.12πB.16πC.D.32π6.[2017·马鞍山质检]某几何体的三视图如图L5-4所示,则该几何体的外接球的表面积为()图L5-4A.25πB.26πC.32πD.36π7.空间四边形ABCD的四个顶点都在同一球面上,E,F分别是AB,CD的中点,且EF⊥AB,EF⊥CD,若AB=8,CD=EF=4,则该球的半径为()A.B.C.D.8.[2017·黄冈质检]某一简单几何体的三视图如图L5-5所示,则该几何体的外接球的表面积是()图L5-5A.13πB.16πC.25πD.27π9.[2017·湛江二模]底面是边长为1的正方形,侧面是等边三角形的四棱锥的外接球的体积为()A.B.C.D.二、填空题(本大题共7小题,每小题5分,共35分.把答案填在题中横线上)10.若正方体的外接球的表面积为6π,则该正方体的表面积为.11.设正三棱锥A-BCD的所有顶点都在球O的球面上, E, F分别是AB, BC的中点, EF⊥DE,且EF=1,则球O的表面积为.12.[2017·洛阳三模]已知直三棱柱ABC-A1B1C1中,AB=3,AC=4,AB⊥AC,AA1=2,则该三棱柱内切球的表面积与外接球的表面积的和为.13.[2017·唐山三模]直角三角形ABC的三个顶点都在球O的球面上, AB=AC=2,若球O的表面积为12π,则球心O到平面ABC的距离等于.14.球O内切于棱长为的正方体ABCD-A1B1C1D1,以A为顶点,以平面B1CD1被球O所截的圆面为底面的圆锥的侧面积为.15.[2017·宁德二检]已知菱形ABCD的边长为6,∠A=60°.沿对角线BD将该菱形折成锐二面角A-BD-C,连接AC.若三棱锥A-BCD的体积为,则该三棱锥的外接球的表面积为.16.[2017·山西大学附中二模]正三棱锥的高为1,底面边长为2,正三棱锥内有一个球与其四个面都相切,则该球的表面积是,体积是.课时作业(四十一)第41讲空间点、直线、平面之间的位置关系基础热身1.[2017·闽南八校二联]已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.[2017·郑州一模]已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b,c,则直线b和c的位置关系是()A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面3.下面四个说法中正确的个数为()(1)如果两个平面有四个公共点,那么这两个平面重合;(2)两条直线可以确定一个平面;(3)若M∈α,M∈β,α∩β=l,则M∈l;(4)在空间中,相交于同一点的三条直线在同一平面内.A.1B.2C.3D.44.[2017·佛山模拟]如图K41-1所示,在正三棱柱ABC-A1B1C1中,D是AC的中点,AA1∶AB=∶1,则异面直线AB1与BD所成的角为.图K41-15.如图K41-2是某个正方体的展开图,l1,l2是两条侧面对角线,则在正方体中,下面关于l1与l2的四个结论中正确的是.(填序号)①互相平行;②异面垂直;③异面且夹角为;④相交且夹角为.图K41-2能力提升6.l1,l2表示空间中的两条直线,若p:l1,l2是异面直线;q:l1,l2不相交,则()A.p是q的充分条件,但不是q的必要条件B.p是q的必要条件,但不是q的充分条件C.p是q的充分必要条件D.p既不是q的充分条件,也不是q的必要条件7.已知正方体ABCD-A1B1C1D1中,O是BD1的中点,直线A1C交平面AB1D1于点M,则下列结论错误的是 ()A.A1,M,O三点共线B.M,O,A1,A四点共面C.A1,O,C,M四点共面D.B,B1,O,M四点共面8.[2017·济南模拟]设a,b,c是两两不同的三条直线,下面四个说法中正确的是()A.若直线a,b异面,b,c异面,则a,c异面B.若直线a,b相交,b,c相交,则a,c相交C.若a∥b,则a,b与c所成的角相等D.若a⊥b,b⊥c,则a∥c9.已知m,n为异面直线,m⊥平面α,n⊥平面β,若直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则()A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l10.异面直线l与m成60°角,异面直线l与n成45°角,则异面直线m与n所成角的取值范围是()A.[15°,90°]B.[60°,90°]C.[15°,90°)D.[15°,60°]11.正四棱锥P-ABCD中,四条侧棱长均为2,底面ABCD是正方形,E为PC的中点,若异面直线PA与BE所成的角为45°,则该四棱锥的体积是()A.4B.2C.D.12.已知集合A={直线},B={平面},C=A∪B.若a∈A,b∈B,c∈C,给出下列四个说法:①若a∥b,c∥b,则a∥c;②若a⊥b,c⊥b,则a∥c;③若a∥b,c⊥b,则a⊥c;④若a⊥b,c∥b,则a⊥c.其中正确说法的序号是.13.如图K41-3所示是正方体和正四面体,P,Q,R,S分别是其所在棱的中点,则四个点共面的图形是.图K41-314.(12分)如图K41-4,平面ABEF⊥平面ABCD,四边形ABEF与四边形ABCD都是直角梯形,∠BAD=∠FAB=90°,BC AD,BE FA,G,H分别为FA,FD的中点.(1)求证:四边形BCHG是平行四边形.(2)C,D,F,E四点是否共面?为什么?图K41-415.(13分)[2017·成都七中月考]如图K41-5所示,在三棱锥P-ABC中,PA⊥底面ABC,D 是PC的中点.已知∠BAC=,AB=2,AC=2,PA=2.(1)求三棱锥P-ABC的体积;(2)求异面直线BC与AD所成角的余弦值.图K41-5难点突破16.(5分)[2017·包头十校联考]在正方体ABCD-A1B1C1D1中,点P在线段AD1上运动,则异面直线CP与BA1所成的角θ的取值范围是()图K41-6A.0<θ<B.0<θ≤C.0≤θ≤D.0<θ≤17.(5分)在直三棱柱ABC-A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为.课时作业(四十二)第42讲直线、平面平行的判定与性质基础热身1.[2017·江西六校联考]设α,β是两个不同的平面,m是直线,且m⊂α,则“m∥β”是“α∥β”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.[2017·潮州三校联考]在空间四边形ABCD中,E,F分别为AB,AD上的点,且AE∶EB=AF∶FD=1∶4,又H,G分别为BC,CD的中点,则()A.BD∥平面EFG,且四边形EFGH是平行四边形B.EF∥平面BCD,且四边形EFGH是梯形C.HG∥平面ABD,且四边形EFGH是平行四边形D.EH∥平面ADC,且四边形EFGH是梯形3.[2017·保定模拟]有下列四个说法:①若直线l平行于平面α内的无数条直线,则直线l∥α;②若直线a在平面α外,则a∥α;③若直线a∥b,b∥α,则a∥α;④若直线a∥b,b∥α,则a平行于平面α内的无数条直线.其中正确说法的个数是()A.1B.2C.3D.44.如图K42-1是正方体的平面展开图,关于这个正方体有以下判断:图K42-1①ED与NF所成的角为60°;②CN∥平面AFB;③BM∥DE;④平面BDE∥平面NCF.其中正确判断的序号是()A.①③B.②③C.①②④D.②③④5.如图K42-2,四棱锥P-ABCD的底面是直角梯形,AB∥CD,BA⊥AD,CD=2AB,PA⊥底面ABCD,E 为PC的中点,则BE与平面PAD的位置关系为.图K42-2能力提升6.若平面α∥平面β,点A,C∈α,B,D∈β,则直线AC∥直线BD的充要条件是()A.AB∥CDB.AD∥CBC.AB与CD相交D.A,B,C,D四点共面7.已知直线a与平面α,β,若α∥β,a⊂α,点B∈β,则在β内过点B的所有直线中()A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在唯一一条与a平行的直线8.[2017·长郡中学质检]在如图K42-3所示的三棱柱ABC-A1B1C1中,过A1B1的平面与平面ABC交于DE,则DE与AB的位置关系是()A.异面B.平行C.相交D.以上均有可能图K42-39.已知m,n是两条不同的直线,α,β,γ是三个不同的平面,下列说法中正确的是()A.若m∥α,n∥α,则m∥nB.若α⊥γ,β⊥γ,则α∥βC.若m∥α,m∥β,则α∥βD.若m⊥α,n⊥α,则m∥n10.[2017·浙江金丽衢十二校联考]已知平面α∥平面β,P是α,β外一点,过点P的直线m与α,β分别交于点A,C,过点P的直线n与α,β分别交于点B,D,且PA=6,AC=9,PD=8,则BD=()A.16B.24或C.14D.2011.如图K42-4是某长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为.图K42-412.已知a,b为两条不同的直线,α,β,γ为三个不同的平面,给出以下三个说法:①若a∥b,b⊂α,则a∥α;②若a∥b,a∥α,则b∥α;③若α∩β=a,b⊂γ,且b∥β,a⊂γ,则a∥b.其中正确说法的序号是.13.在正四棱柱ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,则点Q满足条件时,有平面D1BQ∥平面PAO.14.(10分)[2017·宜春二模]在四棱锥P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC 与BD的交点M恰好是AC的中点,又PA=AB=4,∠CDA=120°,点N在PB上,且PN=.求证:MN∥平面PDC.图K42-515.(13分)[2017·石家庄二模]如图K42-6,在三棱柱ABC-DEF中,侧面ABED是边长为2的菱形,且∠ABE=,BC=.点F在平面ABED内的正投影为G,且G在AE上,FG=,点M在CF上,且CM=CF.(1)证明:直线GM∥平面DEF;(2)求三棱锥M-DEF的体积.图K42-6难点突破16.(12分)[2018·南昌模拟]如图K42-7所示,在四棱锥P-ABCD中, ∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,PA=2,AB=1.设M,N分别为PD,AD的中点.(1)求证:平面CMN∥平面PAB;(2)求三棱锥P-ABM的体积.图K42-7课时作业(四十三)第43讲直线、平面垂直的判定与性质基础热身1.[2017·湖南六校联考]已知m和n是两条不同的直线,α和β是两个不重合的平面,下面给出的条件中一定能推出m⊥β的是()A.α⊥β且m⊂αB.α⊥β且m∥αC.m∥n且n⊥βD.m⊥n且α∥β2.[2017·唐山三模]已知平面α⊥平面β,则“直线m⊥平面α”是“直线m∥平面β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.[2017·深圳四校联考]若平面α,β满足α⊥β,α∩β=l,P∈α,P∉l,则下列说法中不正确的是()A.过点P垂直于平面α的直线平行于平面βB.过点P垂直于直线l的直线在平面α内C.过点P垂直于平面β的直线在平面α内D.过点P且在平面α内垂直于l的直线必垂直于平面β4.[2017·龙岩二模]已知三个不同的平面α,β,γ满足α⊥γ,β⊥γ,则α与β的关系是.5.在三棱锥P-ABC中,点P在平面ABC内的射影为点O,若PA⊥PB,PB⊥PC,PC⊥PA,则点O 是△ABC的心.能力提升6.[2017·南昌二模]已知直线m,n与平面α,β,γ满足α⊥β,α∩β=m,n⊥α,n⊂γ,则下列判断一定正确的是()A.m∥γ,α⊥γB.n∥β,α⊥γC.β∥γ,α⊥γD.m⊥n,α⊥γ7.将图K43-1①中的等腰直角三角形ABC沿斜边BC的中线AD折起,得到空间四面体ABCD(如图②),则在空间四面体ABCD中,AD与BC的位置关系是()图K43-1A.相交且垂直B.相交但不垂直C.异面且垂直D.异面但不垂直8.[2017·临汾三模]已知α为平面,a,b为两条不同的直线,则下列说法中正确的是()A.若直线a,b与平面α所成角都是30°,则直线a,b平行B.若直线a,b与平面α所成角都是30°,则直线a,b不可能垂直C.若直线a,b平行,则直线a,b中至少有一条与平面α平行D.若直线a,b垂直,则直线a,b与平面α不可能都垂直9.如图K43-2所示,在三棱锥P-ABC中,已知PA⊥底面ABC,AB⊥BC,E,F分别是线段PB,PC上的动点,则下列说法错误的是()A.当AE⊥PB时,△AEF一定为直角三角形B.当AF⊥PC时,△AEF一定为直角三角形C.当EF∥平面ABC时,△AEF一定为直角三角形D.当PC⊥平面AEF时,△AEF一定为直角三角形图K43-210.[2017·肇庆三模]在棱长为1的正方体ABCD-A1B1C1D1中,AC∩BD=O,E是线段B1C(含端点)上的动点,给出下列说法:①OE⊥BD1;②OE∥平面A1C1D;③三棱锥A1-BDE的体积为定值;④OE与A1C1所成的最大角为90°.其中说法正确的个数是()A.1B.2C.3D.411.[2017·邯郸二模]如图K43-3,在矩形ABCD中,AB=2AD,E为边AB的中点,将△ADE沿直线DE翻折到△A1DE(A1∉平面ABCD)的位置.若M,O分别为线段A1C,DE的中点,则在△ADE的翻折过程中,下列说法错误的是()A.与平面A1DE垂直的直线必与直线BM垂直B.过E作EG∥BM,G∈平面A1DC,则∠A1EG为定值C.一定存在某个位置,使DE⊥MOD.三棱锥A1-ADE外接球半径与棱AD的长之比为定值图K43-312.已知a,b,l表示三条不同的直线,α,β,γ表示三个不同的平面,有下列四个说法:①若α∩β=a,β∩γ=b,且a∥b,则α∥γ;②若a,b相交,且都在α,β外,a∥α,a∥β,b∥α,b∥β,则α∥β;③若α⊥β,α∩β=a,b⊂β,a⊥b,则b⊥α;④若a⊂α,b⊂α,l⊥a,l⊥b,l⊄α,则l⊥α.其中正确说法的序号是.13.[2017·厦门二模]正方体ABCD-A1B1C1D1的棱和六个面的对角线共有24条,其中与体对角线AC1垂直的有条.14.(10分)[2017·徐州、宿迁、连云港、淮安四市三模]如图K43-4,在四棱锥P-ABCD 中,底面ABCD是矩形,点E在棱PC上(异于点P,C),平面ABE与棱PD交于点F.(1)求证:AB∥EF;(2)若平面PAD⊥平面ABCD,求证:AF⊥EF.图K43-415.(13分)如图K43-5,在正三棱柱A1B1C1-ABC中,点D,E分别是A1C,AB的中点.(1)求证:ED∥平面BB1C1C;(2)若AB=BB1,求证:A1B⊥平面B1CE.图K43-5难点突破16.(12分)[2018·昆明检测]如图K43-6,在三棱柱ABC-A1B1C1中,侧棱CC1⊥底面ABC,M为BC的中点, AC=AB=3,BC=2,CC1=.(1)证明:B1C⊥平面AMC1;(2)求点A1到平面AMC1的距离.图K43-6课时作业(四十四)第44讲空间向量及其运算和空间位置关系基础热身1.[2017·上饶期中]如图K44-1所示,三棱锥O-ABC中,M,N分别是AB,OC的中点,设=a,=b,=c,用a,b,c表示,则= ()图K44-1A.(-a+b+c)B.(a+b-c)C.(a-b+c)D.(-a-b+c)2.[2017·唐山统考]已知正方体ABCD-A 1B1C1D1的棱长为a,点M在AC1上,且=,N 为B1B的中点,则||为()A.aB.aC.aD.a3.[2018·黑龙江齐齐哈尔实验中学期中]设ABCD-A1B1C1D1是棱长为a的正方体,则有()A.·=a2B.·=a2C.·=a2D.·=a24.已知a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a,b,c三个向量共面,则实数λ=.5.在空间直角坐标系中,以点A(4,1,9),B(10,-1,6),C(x,4,3)为顶点的△ABC是以BC为斜边的等腰直角三角形,则实数x的值为.能力提升6.[2017·台州统考]已知向量a=(2m+1,3,m-1),b=(2,m,-m),且a∥b,则实数m的值等于()A.B.-2C.0D.或-27.已知空间四边形ABCD的每条边和对角线的长都等于a,点E,F分别是BC,AD的中点,则·的值为()A.a2B.a2C.a2D.a28.如图K44-2所示,在平行六面体ABCD-A1B1C1D1中,AM=MC,A1N=2ND.设=a,=b,=c,=xa+yb+zc,则x+y+z= ()A.B.C.D.图K44-29.如图K44-3所示,已知PA⊥平面ABC,∠ABC=120°,PA=AB=BC=6,则||等于()A.6B.6C.12D.144图K44-310.已知空间向量a,b满足|a|=|b|=1,且a,b的夹角为,O为空间直角坐标系的原点,点A,B 满足=2a+b,=3a-b,则△OAB的面积为()A.B.C.D.11.[2017·泉州四校联考]O为空间中任意一点,A,B,C三点不共线,且=++t,若P,A,B,C四点共面,则实数t= .12.设A1,A2,A3,A4,A5是空间中给定的5个不同的点,则使=0成立的点M的个数为.13.[2017·北京西城区模拟]如图K44-4所示,正方体ABCD-A1B1C1D1的棱长为1,若动点P 在线段BD1上运动,则·的取值范围是.图K44-414.(10分)如图K44-5所示,在棱长为a的正方体OABC-O1A1B1C1中,E,F分别是棱AB,BC上的动点,且AE=BF=x,其中0≤x≤a,以O为原点建立空间直角坐标系O-xyz.(1)写出点E,F的坐标;(2)求证:A1F⊥C1E;(3)若A1,E,F,C1四点共面,求证:=+.图K44-515.(13分)如图K44-6所示,已知空间四边形ABCD的每条边和对角线长都等于1,点E,F,G 分别是AB,AD,CD的中点.计算:(1)·;(2)EG的长;(3)异面直线AG与CE所成角的余弦值.图K44-6难点突破16.(12分)如图K44-7所示,正三角形ABC的边长为4,CD是AB边上的高,E,F分别是AC和BC的中点,现将△ABC沿CD翻折成直二面角A-DC-B.(1)试判断直线AB与平面DEF的位置关系,并说明理由.(2)在线段BC上是否存在一点P,使AP⊥DE?如果存在,求出的值;如果不存在,请说明理由.图K44-7课时作业(四十五)第45讲第1课时空间角的求法基础热身1.如图K45-1所示,已知正方体ABCD-A1B1C1D1,E,F分别是A1C1和AD1的中点,则EF和CD所成的角是()A.30°B.45°C.60°D.90°图K45-12.[2018·河北枣强中学月考]已知向量m,n分别是直线l的方向向量和平面α的法向量,若cos<m,n>=-,则l与α所成的角为()A.30°B.60°C.120°D.150°3.[2017·郑州模拟]过正方形ABCD的顶点A作线段PA⊥平面ABCD,若AB=PA,则平面ABP 与平面CDP所成的锐二面角为()A.30°B.45°C.60°D.90°4.已知直三棱柱ABC-A1B1C1,∠ACB=90°,CA=CB=CC1,D为B1C1的中点,则异面直线BD和A1C 所成角的余弦值为.5.在长方体ABCD-A1B1C1D1中,AB=2,BC=AA1=1,则D1C1与平面A1BC1所成角的正弦值为.能力提升6.[2017·东营质检]已知A(1,0,0),B(0,-1,1),O为坐标原点,+λ与的夹角为120°,则λ的值为()A.±B.C.-D.±7.如图K45-2所示,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB=BC=AA1,∠ABC=90°,点E,F 分别是棱AB,BB1的中点,则直线EF和BC1所成的角是()A.30°B.45°C.60°D.90°图K45-28.[2017·邯郸一模]如图K45-3,在直三棱柱ABC-A1B1C1中,AB⊥AC,AB=AA1=2,AC=,过BC的中点D作平面ACB1的垂线,交平面ACC1A1于点E,则BE与平面ABB1A1所成角的正切值为()A.B.C.D.图K45-39.[2017·浙江五校联考]如图K45-4所示,在四棱锥P-ABCD中,侧面PAB⊥底面ABCD,底面ABCD为矩形,PA=PB,O为AB的中点,OD⊥PC,若PD与平面PAB所成的角为30°,则二面角D-PC-B的余弦值是()图K45-4A.B.-C.D.-10.[2017·珠海模拟]在正方体ABCD-A1B1C1D1中,O是BD的中点,点P在线段B1D1上,直线OP与平面A1BD所成的角为α,则sin α的取值范围是()A.,B.,C.,D.,11.[2017·衡阳二联]如图K45-5所示,在正方体ABCD-A1B1C1D1中,AB=2,A1C1∩B1D1=E,直线AC与直线DE所成的角为α,直线DE与平面BCC1B1所成的角为β,则cos(α-β)= .图K45-512.如图K45-6所示,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.设二面角D-AE-C为60°,AP=1,AD=,则三棱锥E-ACD的体积为.图K45-613.如图K45-7,四边形ABCD和ADPQ均为正方形,它们所在的平面互相垂直,动点M在线段PQ 上,E,F分别为AB,BC的中点.设异面直线EM与AF所成的角为θ,则cos θ的最大值为.图K45-714.(10分)[2017·南通一模]如图K45-8所示,在棱长为2的正方体ABCD-A1B1C1D1中,P 为棱C1D1的中点,Q为棱BB1上的点,且BQ=λBB1(λ≠0).(1)若λ=,求AP与AQ所成角的余弦值;(2)若直线AA1与平面APQ所成的角为45°,求实数λ的值.图K45-815.(13分)[2017·泉州质检]如图K45-9所示,在三棱锥A-BCD中,平面ABD⊥平面BCD,AB=AD,∠CBD=60°,BD=2BC=4,点E在CD上,DE=2EC.(1)求证:AC⊥BE;(2)若二面角E-BA-D的余弦值为,求三棱锥A-BCD的体积.图K45-9难点突破16.(12分)[2017·河南六市二联]如图K45-10所示,AB是半圆O的直径,C是半圆O上除A,B 外的一个动点,DC垂直于半圆O所在的平面,DC∥EB,DC=EB,AB=4,tan∠EAB=.(1)证明:平面ADE⊥平面ACD;(2)当三棱锥C-ADE的体积最大时,求二面角D-AE-B的余弦值的绝对值.图K45-10课时作业(四十五)第45讲第2课时空间向量的应用基础热身1.(12分)[2017·郴州三模]如图K45-11所示,C是以AB为直径的圆上异于A,B的点,平面PAC⊥平面ABC,PA=PC=AC=2,BC=4,E,F分别是PC,PB的中点,记平面AEF与平面ABC的交线为直线l.(1)求证:直线l⊥平面PAC.(2)直线l上是否存在点Q,使直线PQ分别与平面AEF,直线EF所成的角互余?若存在,求出AQ的值;若不存在,请说明理由.图K45-112.(12分)[2017·北京丰台区一模]如图K45-12①所示,平面五边形ABCDE中,AB∥CD,∠BAD=90°,AB=2,CD=1,△ADE是边长为2的正三角形.现将△ADE沿AD折起,得到四棱锥E-ABCD(如图②),且DE⊥AB.(1)求证:平面ADE⊥平面ABCD.(2)求平面BCE和平面ADE所成锐二面角的大小.(3)在棱AE上是否存在点F,使得DF∥平面BCE?若存在,求的值;若不存在,请说明理由.图K45-12能力提升3.(12分)[2017·濮阳一模]如图K45-13所示,四边形ABCD为梯形,AB∥CD,PD⊥平面ABCD,∠BAD=∠ADC=90°,DC=2AB=2,DA=.(1)线段BC上是否存在一点E,使平面PBC⊥平面PDE?若存在,请求出的值,并进行证明;若不存在,请说明理由.(2)若PD=,线段PC上有一点F,且PC=3PF,求直线AF与平面PBC所成角的正弦值.图K45-134.(12分)[2017·天津河西区一模]如图K45-14所示,在四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=AD=2,四边形ABCD满足AB⊥AD,BC∥AD,BC=4,点M为PC的中点,点E为BC边上的动点,且=λ.(1)求证:DM∥平面PAB.(2)求证:平面ADM⊥平面PBC.(3)是否存在实数λ,使得二面角P-DE-B的余弦值为?若存在,试求出实数λ的值;若不存在,说明理由.图K45-145.(12分)[2017·玉溪民族中学模拟]直三棱柱ABC-A1B1C1中, AA1=AB=AC=1, E,F分别是CC1,BC的中点, 且AE⊥A1B1,(1)证明: AB⊥平面A1ACC1.(2)棱A1B1上是否存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为?若存在,说明点D的位置;若不存在,说明理由.图K45-15难点突破6.(12分)[2017·北京昌平区二模]如图K45-16所示,三棱柱ABC-A1B1C1中,BC垂直于正方形A1ACC1所在平面,AC=2,BC=1,D为AC中点,E为线段BC1上的一点(端点除外),平面AB1E 与BD交于点F.(1)若E不是BC1的中点,求证:AB1∥EF.(2)若E是BC1的中点,求AE与平面BC1D所成角的正弦值.(3)在线段BC1上是否存在点E,使得A1E⊥CE?若存在,求出的值;若不存在,请说明理由.图K45-16课时作业(四十)1.D[解析] 由题图可知,该几何体为如图所示的三棱锥,其中平面ACD⊥平面BCD,该三棱锥的侧视图可能为等腰三角形,故选D.2.C[解析] 此几何体为一个组合体,上面部分为一个圆锥,下面部分为一个半球.故此几何体的表面积为S=×12+×2×2π×1=4π,故选C.3.B[解析] 由正视图和侧视图可知,AC=4,PC=4,AB=BC==4,则PB===4,故选B.4.12π[解析] 由三视图知,该组合体为正方体内接于球,正方体的棱长为2,设球的半径为R,则2R=2,即R=,则该球的表面积S=4πR2=4π×3=12π.5.[解析] 由三视图可知该几何体是三棱柱割去一个三棱锥后剩下的部分(如图),则该几何体的体积为×2×2×2-××1×1×2=4-=.6.A[解析] 由所给的正方体的直观图知,△PAC在该正方体上、下底面上的射影是①中图形,△PAC在该正方体前、后、左、右侧面上的射影是④中图形,故选A.7.C[解析] 由题意知,该几何体是由一个半圆柱与一个半球组成的组合体,其中半圆柱的底面半径为1,高为4,半球的半径为1,则该几何体的体积为×π×13+π×12×4=π,故选C.8.D[解析] 由三视图得,该几何体是正方体挖去一个半圆锥后剩余的部分,故该几何体的体积V=23-×π×12×2=8-,故选D.9.C[解析] 由三视图可知,该几何体是由半圆柱与三棱柱组成的,则该几何体的体积V=π×12×3+×2×2×3=6+π.10.C[解析] 由俯视图的直观图可得该几何体的底面是边长为4的等边三角形,由正视图与侧视图可得该几何体是高为6的三棱锥(如图所示的三棱锥P-ABC),其中PC⊥底面ABC,∴该几何体的表面积S=×42+2××4×6+×4×=24+12,故选C.11.11+2[解析] 由三视图知,该几何体是一个直四棱柱,上、下底面为直角梯形,直角梯形斜腰长为=,则底面周长为4+,故侧面积为2×(4+)=8+2,又两底面的面积和为2××1×(1+2)=3,所以该几何体的表面积为8+2+3=11+2.12.16π[解析] 边长为的正三角形ABC的外接圆的半径r=1,则球O的半径R==2,则球O的表面积S=4πR2=16π.13.[解析] 根据题意,三棱锥P-ABC为鳖臑,且PA⊥平面ABC,PA=AB=2,如图所示,可得∠PAB=∠PAC=∠ABC=∠PBC=90°.易知PC为外接球的直径,设外接球的半径为R.又该鳖臑的外接球的表面积为24π,则R2==6,则BC==4,则该鳖臑的体积为××2×4×2=.14.解:分别过A,B作EF的垂线,垂足分别为G,H,连接DG,CH,则原几何体被分割为两个三棱锥和一个直三棱柱.易知三棱锥的高为,直三棱柱的高为1,AG==,取AD的中点M,连接MG,则MG=,∴S△AGD=×1×=,∴V多面体ABCDEF=×1+2×××=.15.解:(1)直观图如图所示.(2)由三视图可知该几何体是长方体被截去一个三棱柱后剩余的部分,且该几何体的体积是以A1A,A1D1,A1B1为棱的长方体的体积的,∴该几何体的体积V=×1×2×1=(m3).在直角梯形AA1B1B中,作BE⊥A1B1于E,则四边形AA1EB是正方形,AA1=BE=1.在Rt△BEB1中,BE=1,EB1=1,∴BB1=,∴该几何体的表面积S=S正方形ABCD++2++=1+2×1+2××(1+2)×1+1×+1=7+ (m2),∴该几何体的表面积为(7+)m2,体积为 m3.16.A[解析] 用排除法.首先截线不可能是直线,排除B中图形;又圆柱被平面截开所得的截面是椭圆,而侧面展开图为平面图,不可能是圆或椭圆,排除C,D中的图形.故选A.17.16π[解析] 因为总有S圆=S环,所以半椭球体的体积为V圆柱-V圆锥=πb2a-πb2a=πb2a.又2a=6,2b=4,即a=3,b=2,所以椭球体的体积V=πb2a=π×22×3=16π.加练一课(五)1.A[解析] 由题意易知,球心在正四棱锥的高上,设球的半径为R,则(4-R)2+()2=R2,解得R=,所以该球的表面积为4π×=π,故选A.2.B[解析] 由三视图可得该几何体为三棱柱,能得到的最大球为三棱柱的内切球,球的半径为正视图中直角三角形内切圆的半径r.由切线长的性质,得(8-r)+(6-r)=,得r=2,故选B.3.C[解析] 三棱锥B'-ACD中,△AB'C和△ACD是有公共斜边AC的直角三角形,取AC的中点O,则有OB'=OA=OC=OD,∴O为三棱锥B'-ACD的外接球的球心,外接球半径R=OA=1,则三棱锥B'-ACD的外接球的表面积是4πR2=4π,故选C.4.C[解析] 由正视图知,三棱柱的底面边长为2,高为1.易知外接球的球心O在上、下底面两个三角形中心连线的中点上,连接球心和任意一个顶点的线段长即为球O的半径,则R2=+=(其中R为球O的半径),则球O的表面积S=4πR2=4π×=π,故选C.5.B[解析] 将四面体A-BCD补形成正三棱柱,则其外接球的球心为上、下底面的中心连线的中点.易得△BCD的外接圆半径为,所以外接球球O的半径R==2,所以球O的表面积S=4πR2=16π,故选B.6.C[解析] 由三视图可知,该几何体是以俯视图为底面,一条侧棱与底面垂直的三棱锥,如图中三棱锥A-BCD所示,设该几何体外接球的球心为O.由勾股定理可得CD==2,tan∠CBD=,即∠CBD=30°.由正弦定理可得△BCD的外接圆直径2r==4.设球O的半径为R,易知O为AD的中点,则由勾股定理得4R2=AB2+4r2=32,所以该几何体的外接球的表面积S=4πR2=32π,故选C.。

2019版高考数学(理)高分计划一轮狂刷练:第7章 立体几何 7-1a Word版含解析

2019版高考数学(理)高分计划一轮狂刷练:第7章 立体几何 7-1a Word版含解析

[基础送分提速狂刷练]一、选择题1.一个几何体的三视图如图所示,则该几何体的直观图可以是()答案 D解析由俯视图是圆环可排除A,B,C,进一步将已知三视图还原为几何体,故选D.2.如图所示,在正方体ABCD-A′B′C′D′中,M,E是AB 的三等分点,G,N是CD的三等分点,F,H分别是BC,MN的中点,则四棱锥A′-EFGH的侧视图为()答案 C解析在侧视图中A′E,A′G重合,A′H成为A′N,A′F,A′B重合,侧视图为向左倾斜的三角形.故选C.3.(2017·临沂模拟)如图甲,将一个正三棱柱ABC-DEF截去一个三棱锥A-BCD,得到几何体BCDEF,如图乙,则该几何体的正视图(主视图)是()答案 C解析由于三棱柱为正三棱柱,故平面ADEB⊥平面DEF,△DEF是等边三角形,所以CD在后侧面上的投影为AB的中点与D的连线,CD的投影与底面不垂直.故选C.4.(2018·江西景德镇质检)如图所示,正方体ABCD-A1B1C1D1上、下底面中心分别为O1,O2,将正方体绕直线O1O2旋转一周,其中由线段BC1旋转所得图形是()答案 D解析由图形的形成过程可知,在图形的面上能够找到直线,在B,D中选,显然B不对,因为BC1中点绕O1O2旋转得到的圆比B 点和C1点的小.故选D.5.(2017·内江模拟)如图,已知三棱锥P-ABC的底面是等腰直角三角形,且∠ACB=π2,侧面P AB⊥底面ABC,AB=P A=PB=2.则这个三棱锥的三视图中标注的尺寸x,y,z分别是()A.3,1, 2B.3,1,1 C .2,1, 2 D .2,1,1答案 B解析 ∵三棱锥P -ABC 的底面是等腰直角三角形,且∠ACB =π2,侧面P AB ⊥底面ABC ,AB =P A =PB =2;∴x 是等边△P AB 边AB 上的高,x =2sin60°=3,y 是边AB 的一半,y =12AB =1,z 是等腰直角△ABC 斜边AB 上的中线,z =12AB =1;∴x ,y ,z 分别是3,1,1.故选B.6.(2017·南昌二模)一个四面体的顶点在空间直角坐标系Oxyz中的坐标分别是(0,0,0),(1,0,1),(0,1,1),⎝ ⎛⎭⎪⎫12,1,0,绘制该四面体三视图时,按照如图所示的方向画正视图,则得到侧(左)视图可以为( )答案 B解析满足条件的四面体如下图,依题意投影到yOz平面为正投影,所以侧(左)视方向如图所示,所以得到侧(左)视图效果如上图.故选B.7.(2018·湖南郴州模拟)一只蚂蚁从正方体ABCD-A1B1C1D1的顶点A出发,经正方体的表面,按最短路线爬行到顶点C1的位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图的是()A.①②B.①③C.③④D.②④答案 D解析由点A经正方体的表面,按最短路线爬行到达顶点C1的位置,共有6种路线(对应6种不同的展开方式),若把平面ABB1A1和平面BCC1B1展到同一个平面内,连接AC1,则AC1是最短路线,且AC1会经过BB1的中点,此时对应的正视图为②;若把平面ABCD 和平面CDD1C1展到同一个平面内,连接AC1,则AC1是最短路线,且AC1会经过CD的中点,此时对应的正视图为④.而其他几种展开方式对应的正视图在题中没有出现.故选D.8.(2018·江西赣州模拟)某几何体的正视图和侧视图如图1,它的俯视图的直观图是矩形O1A1B1C1,如图2,其中O1A1=6,O1C1=2,则该几何体的侧面积为()A.48 B.64C.96 D.128答案 C解析由题图2及斜二测画法可知原俯视图为如图所示的平行四边形OABC,设CB与y轴的交点为D,则易知CD=2,OD=2×22=42,∴CO=CD2+OD2=6=OA,∴俯视图是以6为边长的菱形,由三视图知几何体为一个直四棱柱,其高为4,所以该几何体的侧面积为4×6×4=96.故选C.9.早在公元前三百多年我国已经运用“以度审容”的科学方法,其中商鞅铜方升是公元前344年商鞅督造的一种标准量器,其三视图如图所示(单位:寸),若π取3,其体积为12.6(立方寸),则图中的x为()A .1.2B .1.6C .1.8D .2.4答案 B解析 由三视图知,商鞅铜方升是由一个圆柱和一个长方体组合而成的,利用体积及已知线段长度即可求出x .故其体积为(5.4-x )×3×1+π×⎝ ⎛⎭⎪⎫122×x =16.2-3x +14πx =12.6,又π=3,故x =1.6.故选B.10.(2018·辽宁六校联考)如图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度h 随时间t 变化的可能图象是( )答案 B解析根据所给的三视图可知原几何体是倒放的圆锥,设圆锥的底面半径为R,高为H,水流的速度是v,则由题意得v t=13π⎝⎛⎭⎪⎫hH2R2h.当v t>0时,解得h=33v H2tπR2,这是一个幂型函数,所以容器中水面的高度h随时间t变化的图象类似于幂函数y=3x的图象,故选B.二、填空题11.如图所示,正方形O′A′B′C′的边长为1 cm,它是水平放置的一个平面图形的直观图,则原图形的周长是________cm.答案8解析根据直观图的画法可知,在原几何图形中,OABC为平行四边形,且有OB⊥OA,OB=22,OA=1,所以AB=3.从而原图的周长为8 cm.12.如图,点O为正方体ABCD-A′B′C′D′的中心,点E 为平面B′BCC′的中心,点F为B′C′的中点,则空间四边形D′OEF在该正方体的各个面上的投影可能是(填出所有可能的序号).答案①②③解析空间四边形D′OEF在正方体的平面DCC′D′上的投影是①;在平面BCC′B′上的投影是②;在平面ABCD上的投影是③,而不可能出现的投影为④的情况.13.一四面体的三视图如图所示,则该四面体四个面中最大的面积是________.答案 2 3解析 由三视图可知该四面体为D -BD 1C 1,由直观图可知面积最大的面为△BDC 1.在正三角形BDC 1中,BD =22,所以面积S =12×(22)2×32=2 3. 14.(2018·大连模拟)某四面体的三视图如图所示.该四面体的六条棱的长度中,最大的是________.答案27解析由三视图可知该四面体为V-ABC,如图所示.其中AE⊥BE,VC⊥平面ABE.EC=CB=2,AE=23,VC=2,所以VB2=VC2+CB2=8,VB=22,AC2=AE2+EC2=(23)2+22=16,所以VA2=AC2+VC2=16+22=20,VA=20=2 5.AB2=AE2+EB2=(23)2+42=28,所以AB=28=27>25>22,所以该四面体的六条棱的长度中,最大的为27.三、解答题15.已知正三棱锥V-ABC的正视图、侧视图和俯视图如图所示.(1)画出该三棱锥的直观图;(2)求出侧视图的面积.解 (1)如右图所示.(2)根据三视图间的关系可得BC = 23,∴侧视图中VA = 42-⎝ ⎛⎭⎪⎫23×32×232 =2 3.∴S △VBC =12×23×23=6.16.已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8,高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6,高为4的等腰三角形.(1)求该几何体的体积V ;(2)求该几何体的侧面积S .解 由正视图和侧视图的三角形结合俯视图可知该几何体是一个底面为矩形,高为4,顶点在底面的射影是矩形中心的四棱锥,如图.(1)V =13×(8×6)×4=64.(2)四棱锥的两个侧面VAD ,VBC 是全等的等腰三角形,取BC 的中点E ,连接OE ,VE ,则△VOE 为直角三角形,VE 为△VBC 边上的高,VE =VO 2+OE 2=4 2. 同理侧面VAB 、VCD 也是全等的等腰三角形,AB 边上的高h = 42+⎝ ⎛⎭⎪⎫622=5. ∴S 侧=2×⎝ ⎛⎭⎪⎫12×6×42+12×8×5=40+24 2.。

2019版高考数学(理)高分计划一轮狂刷练:第7章 立体几何 7-4a

2019版高考数学(理)高分计划一轮狂刷练:第7章 立体几何 7-4a

[重点保分两级优选练]A级一、选择题1.(2018·南开模拟)下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行答案 C解析若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A错误;一个平面内不共线且在另一个平面同侧的三点到另一个平面的距离相等,则这两个平面平行,故B错误;若两个平面垂直同一个平面,两平面可以平行,也可以相交,故D错误;故选C.2.下列命题中,错误的是()A.三角形的两条边平行于一个平面,则第三边也平行于这个平面B.平面α∥平面β,a⊂α,过β内的一点B有唯一的一条直线b,使b∥aC.α∥β,γ∥δ,α,β,γ,δ的交线为a,b,c,d,则a∥b∥c ∥dD.一条直线与两个平面成等角是这两个平面平行的充要条件答案 D解析D错误,当两平面平行时,则该直线与两个平面成等角;反之,如果一条直线与两个平面成等角,这两个平面可能是相交平面,如图,α⊥β,直线AB与α,β都成45°角,但α∩β=l.故选D.3.(2018·福建联考)设l,m,n表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题:①若m∥l,且m⊥α,则l⊥α;②若m⊥l,m⊥α,则l∥α;③若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n;④若α∩β=m,β∩γ=l,γ∩α=n,且n∥β,则l∥m.其中正确命题的个数是()A.1 B.2C.3 D.4答案 B解析对①,两条平行线中有一条与一平面垂直,则另一条也与这个平面垂直,故①正确;对②,直线l可能在平面α内,故②错误;对③,三条交线除了平行,还可能相交于同一点,故③错误;对④,结合线面平行的判定定理和性质定理可判断其正确.综上①④正确.故选B.4.(2018·昆明七校模拟)一个正方体的平面展开图及该正方体直观图的示意图如图所示,在正方体中,设BC 的中点为M ,GH 的中点为N ,则MN 与平面BDH 的关系是( )A .MN ∩平面BDH =MB .MN ⊂平面BDHC .MN ∥平面BDHD .MN ⊥平面BDH答案 C解析 连接BD ,设O 为BD 的中点,连接OM ,OH ,AC ,BH ,MN ,如图所示.∵M ,N 分别是BC ,GH 的中点,∴OM ∥CD ,且OM =12CD ,NH ∥CD ,且NH =12CD ,∴OM ∥NH ,OM =NH ,则四边形MNHO 是平行四边形,∴MN ∥OH ,又MN ⊄平面BDH ,OH ⊂平面BDH ,∴MN ∥平面BDH .故选C.5.如图所示,P 是三角形ABC 所在平面外一点,平面α∥平面ABC ,α分别交线段P A ,PB ,PC 于A ′,B ′,C ′,若P A ′∶AA ′=2∶3,则△A ′B ′C ′与△ABC 面积的比为( )A .2∶5B .3∶8C .4∶9D .4∶25答案 D解析 ∵平面α∥平面ABC ,平面P AB ∩α=A ′B ′,平面P AB ∩平面ABC =AB ,∴A ′B ′∥AB .又∵P A ′∶AA ′=2∶3,∴A ′B ′∶AB =P A ′∶P A =2∶5.同理B ′C ′∶BC =A ′C ′∶AC =2∶5.∴△A ′B ′C ′与△ABC 相似,∴S △A ′B ′C ′∶S △ABC =4∶25,故选D.6.在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B和AC 上的点,若A 1M =AN =2a 3,则MN 与平面BB 1C 1C 的位置关系是( )A.相交B.平行C.垂直D.不能确定答案 B解析连接CD1,在CD1上取点P,使D1P=2a3,∴MP∥BC,PN∥AD1.∴MP∥平面BB1C1C,PN∥平面AA1D1D.∴平面MNP∥平面BB1C1C,∴MN∥平面BB1C1C.故选B.7.(2018·宜昌一模)如图,在三棱柱ABC-A1B1C1中,AM=2MA1,BN=2NB1,过MN作一平面交底面三角形ABC的边BC,AC于点E,F,则()A.MF∥NEB.四边形MNEF为梯形C.四边形MNEF为平行四边形D.A1B1∥NE答案 B解析在平行四边形AA1B1B中,AM=2MA1,BN=2NB1.所以AM綊BN,所以MN綊AB,又MN⊄平面ABC,AB⊂平面ABC,所以MN∥平面ABC.又MN⊂平面MNEF,平面MNEF∩平面ABC=EF,所以MN∥EF,所以EF∥AB,显然在△ABC中,EF∥MN,EF≠MN,所以四边形MNEF为梯形.故选B.8.(2017·安徽阜阳一中模拟)过平行六面体ABCD-A1B1C1D1任意两条棱的中点作直线,其中与平面DBB1D1平行的直线共有() A.4条B.6条C.8条D.12条答案 D解析如图所示,在平行六面体ABCD-A1B1C1D1中,E,F,G,H,M,N,P,Q分别为相应棱的中点,容易证明平面EFGH,平面MNPQ均与平面BDD1B1平行,平面EFGH和平面MNPQ中分别有6条直线(相应四边形的四条边和两条对角线)满足要求,故共有12条直线符合要求.故选D.9.(2018·河南三市联考)如图所示,侧棱与底面垂直,且底面为正方形的四棱柱ABCD-A1B1C1D1中,AA1=2,AB=1,M,N分别在AD1,BC上移动,始终保持MN∥平面DCC1D1,设BN=x,MN=y ,则函数y =f (x )的图象大致是 ( )答案 C解析 过M 作MQ ∥DD 1,交AD 于Q ,连接QN .∵MN ∥平面DCC 1D 1,MQ ∥平面DCC 1D 1,MN ∩MQ =M ,∴平面MNQ ∥平面DCC 1D 1,又平面ABCD 与平面MNQ 和DCC 1D 1分别交于QN 和DC ,∴NQ ∥DC ,可得QN =CD =AB =1,AQ =BN =x .∵MQ AQ =DD 1AD =2,∴MQ =2x .在Rt △MQN 中,MN 2=MQ 2+QN 2,即y 2=4x 2+1,∴y 2-4x 2=1(x ≥0,y ≥1),∴函数y =f (x )的图象为焦点在y 轴上的双曲线上支的一部分.故选C.10.(2018·昆明模拟)在三棱锥S -ABC 中,△ABC 是边长为6的正三角形,SA =SB =SC =15,平面DEFH 分别与AB ,BC ,SC ,SA 交于D ,E ,F ,H .D ,E 分别是AB ,BC 的中点,如果直线SB ∥平面DEFH ,那么四边形DEFH 的面积为( )A.452B.4532 C .45D .45 3答案 A 解析取AC 的中点G ,连接SG ,BG .易知SG ⊥AC ,BG ⊥AC , 故AC ⊥平面SGB ,所以AC ⊥SB .因为SB ∥平面DEFH ,SB ⊂平面SAB ,平面SAB ∩平面DEFH =HD ,则SB ∥HD .同理SB ∥FE .又D ,E 分别为AB ,BC 的中点,则H ,F 也为AS ,SC 的中点,从而得HF 綊12AC 綊DE ,所以四边形DEFH为平行四边形.又AC ⊥SB ,SB ∥HD ,DE ∥AC ,所以DE ⊥HD ,所以四边形DEFH 为矩形,其面积S =HF ·HD =⎝ ⎛⎭⎪⎫12AC ·⎝ ⎛⎭⎪⎫12SB =452.故选A. 二、填空题11.如图,四边形ABDC 是梯形,AB ∥CD ,且AB ∥平面α,M 是AC 的中点,BD 与平面α交于点N ,AB =4,CD =6,则MN =________.答案 5解析 ∵AB ∥平面α,AB ⊂平面ABDC ,平面ABDC ∩平面α=MN ,∴AB ∥MN .又M 是AC 的中点,∴MN 是梯形ABDC 的中位线,故MN =12(AB +CD )=5.12.如图所示,在四面体ABCD 中,M ,N 分别是△ACD ,△BCD 的重心,则四面体的四个面中与MN 平行的是________.答案 平面ABC 、平面ABD解析 连接AM 并延长,交CD 于E ,连接BN ,并延长交CD 于F ,由重心性质可知,E ,F 重合为一点,且该点为CD 的中点E ,连接MN ,由EM MA =EN NB =12,得MN ∥AB ,因此,MN ∥平面ABC 且MN ∥平面ABD .13.正方体ABCD -A 1B 1C 1D 1的棱长为1 cm ,过AC 作平行于对角线BD 1的截面,则截面面积为________cm 2.答案 64解析 如图所示,截面ACE ∥BD 1,平面BDD 1∩平面ACE =EF ,其中F 为AC 与BD 的交点,∴E 为DD 1的中点,∴S △ACE =12×2×32=64(cm 2).14.如图,在正四棱柱A 1C 中,E ,F ,G ,H 分别是棱CC 1,C 1D 1,D 1D ,DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 只需满足条件________时,就有MN ∥平面B 1BDD 1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)答案 M 位于线段FH 上(答案不唯一)解析 连接HN ,FH ,FN ,则FH ∥DD 1,HN ∥BD ,∴平面FHN ∥平面B 1BDD 1,只要M ∈FH ,则MN ⊂平面FHN ,∴MN ∥平面B 1BDD 1.B 级三、解答题15.(2018·石家庄质检二)如图,在三棱柱ABC -DEF 中,侧面ABED 是边长为2的菱形,且∠ABE =π3,BC =212.点F 在平面ABED 内的正投影为G ,且点G 在AE 上,FG =3,点M 在线段CF 上,且CM =14CF .(1)证明:直线GM ∥平面DEF ; (2)求三棱锥M -DEF 的体积.解 (1)证明:∵点F 在平面ABED 内的正投影为G , ∴FG ⊥平面ABED ,∴FG ⊥GE . 又BC =212=EF ,FG =3,∴GE =32.∵四边形ABED 是边长为2的菱形,且∠ABE =π3, ∴AE =2,∴AG =12.如图,过点G 作GH ∥AD 交DE 于点H ,连接FH .则GH AD =GE AE ,∴GH =32,由CM =14CF 得MF =32=GH .易证GH ∥AD ∥MF ,∴四边形GHFM 为平行四边形,∴MG ∥FH . 又GM ⊄平面DEF ,∴GM ∥平面DEF .(2)由(1)知GM ∥平面DEF ,连接GD ,则有V M -DEF =V G -DEF . 又V G -DEF =V F -DEG =13FG ·S △DEG =13FG ·34S △DAE =34, ∴V M -DEF =34.16.(2018·郑州质检二)如图,高为1的等腰梯形ABCD 中,AM =CD =13AB =1,M 为AB 的三等分点,现将△AMD 沿MD 折起,使平面AMD ⊥平面MBCD ,连接AB ,AC .(1)在AB 边上是否存在点P ,使AD ∥平面MPC?(2)当点P 为AB 边的中点时,求点B 到平面MPC 的距离.解 (1)当AP =13AB 时,有AD ∥平面MPC .理由如下: 连接BD 交MC 于点N ,连接NP .在梯形MBCD 中,DC ∥MB ,DN NB =DC MB =12, ∵△ADB 中,AP PB =12,∴AD ∥PN .∵AD ⊄平面MPC ,PN ⊂平面MPC ,∴AD ∥平面MPC . (2)∵平面AMD ⊥平面MBCD , 平面AMD ∩平面MBCD =DM ,平面AMD 中AM ⊥DM ,∴AM ⊥平面MBCD . ∴V P -MBC =13×S △MBC ×AM 2=13×12×2×1×12=16. 在△MPC 中,MP =12AB =52,MC =2, 又PC =⎝ ⎛⎭⎪⎫122+12=52,∴S △MPC =12×2×⎝ ⎛⎭⎪⎫522-⎝ ⎛⎭⎪⎫222=64.∴点B到平面MPC的距离为d=3VP-MBCS△MPC =3×1664=63.17.(2018·简阳市模拟)如图,已知四棱锥P-ABCD中,底面ABCD为平行四边形,点M,N,Q分别是P A,BD,PD的中点.(1)求证:MN∥PC;(2)求证:平面MNQ∥平面PBC.证明(1)由题意:P-ABCD是四棱锥,底面ABCD为平行四边形,点M,N,Q分别是P A,BD,PD的中点,连接AC,∴N是AC 的中点.∴MN是三角形ACP的中位线,∴MN∥PC.(2)由(1)可得MN∥PC.∵M,Q分别是P A,PD的中点,∴MQ是三角形ADP的中位线,∴MQ∥AD.又由AD∥BC,∴MQ∥BC.由MQ∥BC,MN∥PC,BC⊂平面PBC,PC⊂平面PBC,BC∩PC =C,同理MQ⊂平面MNQ,MN⊂平面MNQ,MQ∩MN=M.∴平面MNQ∥平面PBC.18.(2018·德州模拟)如图,几何体E-ABCD是四棱锥,△ABD 为正三角形,CB=CD,CE⊥BD.(1)求证:BE=DE;(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.证明(1)如图,取BD中点为O,连接OC,OE,则由BC=CD,知CO⊥BD.又CE⊥BD,EC∩CO=C,CO,EC⊂平面EOC,所以BD⊥平面EOC,所以BD⊥OE.又因为O是BD中点,所以BE=DE.(2)如图,取AB的中点N,连接DM,DN,MN,因为M是AE的中点,所以MN∥BE.又MN⊄平面BEC,BE⊂平面BEC,所以MN∥平面BEC.又因为△ABD为正三角形,所以∠BDN=30°,又CB=CD,∠BCD=120°,因此∠CBD=30°.所以DN∥BC.又DN⊄平面BEC, BC⊂平面BEC,所以DN∥平面BEC.又MN∩DN=N,故平面DMN∥平面BEC,又DM⊂平面DMN,所以DM∥平面BEC.。

2019版高考数学(理)高分计划一轮狂刷练:第7章 立体几何 7-7a Word版含解析

2019版高考数学(理)高分计划一轮狂刷练:第7章 立体几何 7-7a Word版含解析

[重点保分 两级优选练]A 级一、选择题1.已知点A (2,-5,1),B (2,-2,4),C (1,-4,1),则向量AB →与AC →的夹角为( )A .30°B .45°C .60°D .90°答案 C解析 由已知得AB →=(0,3,3),AC →=(-1,1,0), ∴cos 〈AB →,AC →〉=AB →·AC →|AB →||AC →|=332×2=12.∴向量AB →与AC →的夹角为60°.故选C.2.(2018·伊宁期末)三棱锥A -BCD 中,平面ABD 与平面BCD 的法向量分别为n 1,n 2,若〈n 1,n 2〉=π3,则二面角A -BD -C 的大小为( )A.π3B.2π3C.π3或2π3D.π6或π3 答案 C解析 ∵二面角的范围是[0,π],且〈n 1,n 2〉=π3,∴二面角A -BD -C 的大小为π3或2π3.故选C.3.(2017·太原期中)已知直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为正方形,AA 1=2AB ,E 为AA 1的中点,则异面直线BE 与CD 1所成角的余弦值为( )A.1010B.15C.31010D.35答案 C解析 如图,以D 为坐标原点建立如图所示空间直角坐标系. 设AA 1=2AB =2,则B (1,1,0),E (1,0,1),C (0,1,0),D 1(0,0,2). ∴BE →=(0,-1,1),CD 1→=(0,-1,2). ∴cos 〈BE →,CD 1→〉=1+22·5=31010.故选C.4.如图所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别在A 1D ,AC 上,且A 1E =23A 1D ,AF =13AC ,则( )A .EF 至多与A 1D ,AC 之一垂直B .EF ⊥A 1D ,EF ⊥AC C .EF 与BD 1相交 D .EF 与BD 1异面 答案 B解析 以D 点为坐标原点,以DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示.设正方体棱长为1,则A 1(1,0,1),D (0,0,0),A (1,0,0),C (0,1,0),E ⎝⎛⎭⎪⎫13,0,13,F ⎝⎛⎭⎪⎫23,13,0,B (1,1,0),D 1(0,0,1),A 1D →=(-1,0,-1),AC →=(-1,1,0),EF →=⎝ ⎛⎭⎪⎫13,13,-13,BD 1→=(-1,-1,1),EF →=-13BD 1→,A 1D →·EF →=AC →·EF →=0,从而EF ∥BD 1,EF ⊥A 1D ,EF ⊥AC .故选B.5.(2018·河南模拟)如图所示,直三棱柱ABC -A 1B 1C 1的侧棱长为3,底面边长A 1C 1=B 1C 1=1,且∠A 1C 1B 1=90°,D 点在棱AA 1上且AD =2DA 1,P 点在棱C 1C 上,则PD →·PB 1→的最小值为()A.52 B .-14 C.14 D .-52答案 B解析 建立如图所示的直角坐标系,则D (1,0,2),B 1(0,1,3), 设P (0,0,z )(0≤z ≤3),则PD →=(1,0,2-z ),PB 1→=(0,1,3-z ), ∴PD →·PB 1→=0+0+(2-z )(3-z )=⎝⎛⎭⎪⎫z -522-14,故当z =52时,PD →·PB 1→取得最小值为-14.故选B.6.(2018·沧州模拟)如图所示,在正方体ABCD -A ′B ′C ′D ′中,棱长为1,E ,F 分别是BC ,CD 上的点,且BE =CF =a (0<a <1),则D ′E 与B ′F 的位置关系是()A .平行B .垂直C .相交D .与a 值有关答案B解析 建立如图所示空间直角坐标系.则D ′(0,0,1),E (1-a,1,0),B ′(1,1,1),F (0,1-a,0), ∴D ′E →=(1-a,1,-1),B ′F →=(-1,-a ,-1).∴D ′E →·B ′F →=(1-a )×(-1)+1×(-a )+(-1)×(-1)=a -1-a +1=0.∴D ′E →⊥B ′F →,即D ′E ⊥B ′F .故选B.7.(2017·聊城期中)在三棱锥P -ABC 中,P A ⊥平面ABC ,∠BAC =90°,D ,E ,F 分别是棱AB ,BC ,CP 的中点,AB =AC =1,P A =2,则直线P A 与平面DEF 所成角的正弦值为( )A.15B.255C.55D.25答案 C解析 以A 为原点,AB ,AC ,AP 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,由AB =AC =1,P A =2,得A (0,0,0),B (1,0,0),C (0,1,0),P (0,0,2),D ⎝⎛12,0,0 ),E ( 12,12,0 ),F ⎝⎛⎭⎪⎫0,12,1,∴P A →=(0,0,-2),DE →=⎝⎛⎭⎪⎫0,12,0,DF →=⎝⎛⎭⎪⎫-12,12,1.设平面DEF 的法向量为n =(x ,y ,z ),则由⎩⎨⎧n ·DE →=0,n ·DF →=0,得⎩⎨⎧y =0,-x +y +2z =0,取z =1,则n =(2,0,1),设P A 与平面DEF 所成的角为θ,则sin θ=|P A →·n ||P A →||n |=55,∴P A 与平面DEF 所成角的正弦值为55.故选C.8.(2018·江西红色七校模拟)已知二面角α-l -β等于120°,A ,B 是棱l 上两点,AC ,BD 分别在半平面α,β内,AC ⊥l ,BD ⊥l ,且AB =AC =BD =1,则CD 的长等于( )A. 2B. 3 C .2 D. 5答案 C解析 解法一:依题意可知二面角α-l -β的大小等于AC →与BD →所成的角,因为CD →=CA →+AB →+BD →,所以CD →2=CA →2+AB →2+BD →2+2CA →·AB →+2CA →·BD →+2AB →·BD →,因为AC ⊥AB ,BD ⊥AB ,AB =AC =BD=1,所以CD →2=1+1+1+2CA →·BD →=3+2|CA →||BD →|·cos 〈CA →,BD →〉=3+2cos 〈CA →,BD →〉,因为〈AC →,BD →〉=120°,所以〈CA →,BD →〉=60°, 因此CD →2=3+2×12=4,所以|CD →|=2,故选C.解法二:在β内作AE 綊BD .连接CE 、DE ,易知∠CAE =120°,CE ⊥DE ,∴CE 2=AC 2+AE 2-2×AC ×AE cos120°=3. 在Rt △CED 中,CD 2=CE 2+ED 2=4,∴CD =2. 故选C.9.(2017·南阳期中)若正三棱柱ABC -A 1B 1C 1的所有棱长都相等,D 是A 1C 1的中点,则直线AD 与平面B 1DC 所成角的正弦值为( )A.35B.45C.34D.55答案 B解析如图,取AC 的中点为坐标原点,建立空间直角坐标系. 设各棱长为2,则有A (0,-1,0),D (0,0,2),C (0,1,0),B 1(3,0,2). 所以C D →=(0,-1,2),CB 1→=(3,-1,2),A D →=(0,1,2). 设n =(x ,y ,z )为平面B 1CD 的法向量,则有⎩⎨⎧n ·CD →=0,n ·CB 1→=0⇒⎩⎨⎧-y +2z =0,3x -y +2z =0⇒n =(0,2,1).∴cos 〈AD →,n 〉=AD →·n |AD →||n |=45,即直线AD 与平面B 1DC 所成角的正弦值.故选B.10.(2018·福建龙岩模拟)如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为4,点E ,F 分别是线段AB ,C 1D 1上的动点,点P 是上底面A 1B 1C 1D 1内一动点,且满足点P 到点F的距离等于点P 到平面ABB 1A 1的距离,则PE 的最小值是( )A .5B .4C .4 5D .2 5答案 D解析 以D 为原点,直线DA 为x 轴,直线DC 为y 轴,直线DD 1为z 轴,建立空间直角坐标系,设AE =a ,D 1F =b ,0≤a ≤4,0≤b ≤4,P (x ,y,4),0≤x ≤4,0≤y ≤4,则F (0,b,4),E (4,a,0),PF →=(-x ,b -y,0),∵点P 到点F 的距离等于点P 到平面ABB 1A 1的距离,∴当E ,F 分别是AB ,C 1D 1的中点,P 为正方形A 1B 1C 1D 1的中心时,PE 取最小值,此时P (2,2,4),E (4,2,0),∴|PE |min =(2-4)2+(2-2)2+(4-0)2=2 5.故选D.二、填空题11.在棱长为2的正方体ABCD -A 1B 1C 1D 1中,O 是底面ABCD 的中心,E ,F 分别是CC 1,AD 的中点,则异面直线OE 和FD 1所成的角的余弦值等于________.答案155解析 以D 为原点,分别以DA ,DC ,DD 1为x 轴,y 轴,z 轴建立空间直角坐标系,∴F (1,0,0),D 1(0,0,2),O (1,1,0),E (0,2,1). ∴FD 1→=(-1,0,2), OE →=(-1,1,1).∴cos 〈FD 1→,OE →〉=1+25·3=155.12.(2018·曲阜模拟)如图,在正方形ABCD 中,EF ∥AB ,若沿EF 将正方形折成一个二面角后,AE ∶ED ∶AD =1∶1∶2,则AF 与CE 所成角的余弦值为________.答案 45解析 ∵AE ∶ED ∶AD =1∶1∶2,∴AE ⊥ED ,即AE ,DE ,EF 两两垂直,所以建立如图所示的空间直角坐标系,设AB =EF =CD =2,则E (0,0,0),A (1,0,0),F (0,2,0),C (0,2,1),∴AF →=(-1,2,0),EC →=(0,2,1),∴cos 〈AF →,EC →〉=AF →·EC →|AF →||EC →|=45×5=45,∴AF 与CE 所成角的余弦值为45.13.(2017·青海质检)等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C -AB -D 的余弦值为33,M ,N 分别是AC ,BC 的中点,则EM ,AN所成角的余弦值等于________.答案 16解析 过C 点作CO ⊥平面ABDE ,垂足为O ,取AB 中点F ,连接CF ,OF ,则∠CFO 为二面角C -AB -D 的平面角,设AB =1,则CF =32,OF =CF ·cos ∠CFO =12,OC =22, 则O 为正方形ABDE 的中心, 如图所示建立直角坐标系Oxyz ,则E ⎝ ⎛⎭⎪⎫0,-22,0,M ⎝ ⎛⎭⎪⎫24,0,24,A ⎝ ⎛⎭⎪⎫22,0,0, N ⎝ ⎛⎭⎪⎫0,24,24,EM →=⎝ ⎛⎭⎪⎫24,22,24,AN →=⎝ ⎛⎭⎪⎫-22,24,24,cos 〈EM →,AN →〉=EM →·AN →|EM →||AN →|=16.14.(2018·临沂期末)如图,在四棱锥P -ABCD 中,侧面P AD 为正三角形,底面ABCD 为正方形,侧面P AD ⊥底面ABCD ,M 为底面ABCD 内的一个动点,且满足MP =MC ,则点M 在正方形ABCD 内的轨迹为________.(填序号)答案 ①解析 以D 为原点,DA ,DC 所在直线分别为x 轴,y 轴建立空间直角坐标系如图.设M (x ,y,0),设正方形边长为a ,则P ⎝ ⎛⎭⎪⎫a 2,0,32a ,C (0,a,0),则MC =x 2+(y -a )2,MP =⎝ ⎛⎭⎪⎫x -a 22+y 2+⎝⎛⎭⎪⎫-32a 2.由MP =MC ,得x =2y ,所以点M 在正方形ABCD 内的轨迹为直线y =12x 的一部分.B 级三、解答题15.(2018·广东五校诊断)如图,菱形ABCD 中,∠ABC =60°,AC 与BD 相交于点O ,AE ⊥平面ABCD ,CF ∥AE ,AB =AE =2.(1)求证:BD ⊥平面ACFE ;(2)当直线FO 与平面BED 所成的角为45°时,求异面直线OF 与BE 所成的角的余弦值大小.解 (1)证明:∵四边形ABCD 是菱形,∴BD ⊥AC . ∵AE ⊥平面ABCD ,BD ⊂平面ABCD ,∴BD ⊥AE .∵AC ∩AE =A ,∴BD ⊥平面ACFE .(2)以O 为原点,OA →,OB →的方向为x ,y 轴正方向,过O 且平行于CF 的直线为z 轴(向上为正方向),建立空间直角坐标系,则B (0,3,0),D (0,-3,0),E (1,0,2),F (-1,0,a )(a >0),OF →=(-1,0,a ).设平面EBD 的法向量为n =(x ,y ,z ),则有⎩⎨⎧n ·OB →=0,n ·OE →=0,即⎩⎨⎧3y =0,x +2z =0,令z =1,则n =(-2,0,1),由题意得sin45°=|cos 〈OF →,n 〉|=|OF →·n ||OF →||n |=|2+a |a 2+1·5=22,解得a =3或-13.由a >0,得a =3,OF →=(-1,0,3),BE →=(1,-3,2), cos 〈OF →,BE →〉=-1+610×8=54,故异面直线OF 与BE 所成的角的余弦值为54.16.(2014·全国卷Ⅱ)如图,四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥平面ABCD ,E 为PD 的中点.(1)证明:PB ∥平面AEC ;(2)设二面角D -AE -C 为60°,AP =1,AD =3,求三棱锥E -ACD 的体积.解 (1)证明:连接BD 交AC 于点O ,连接EO . 因为ABCD 为矩形,所以O 为BD 的中点. 又E 为PD 的中点,所以EO ∥PB .又EO ⊂平面AEC ,PB ⊄平面AEC ,所以PB ∥平面AEC . (2)因为P A ⊥平面ABCD ,ABCD 为矩形,所以AB ,AD ,AP 两两垂直.如图,以A 为坐标原点,AB →的方向为x 轴的正方向,|AP →|为单位长度,建立空间直角坐标系Axyz ,则D (0,3,0),E ⎝⎛⎭⎪⎫0,32,12,AE→=⎝⎛⎭⎪⎫0,32,12.设B (m,0,0)(m >0),则C (m ,3,0),AC →=(m ,3,0). 设n 1=(x ,y ,z )为平面ACE 的法向量,则⎩⎨⎧n 1·AC →=0,n 1·AE →=0,即⎩⎪⎨⎪⎧mx +3y =0,32y +12z =0,可取n 1=⎝ ⎛⎭⎪⎫3m ,-1,3.又n 2=(1,0,0)为平面DAE 的法向量, 由题设得|cos 〈n 1,n 2〉|=12,即 33+4m 2=12, 解得m =32.因为E 为PD 的中点,所以三棱锥E -ACD 的高为12. 三棱锥E -ACD 的体积V =13×12×3×32×12=38.17.(2017·河北衡水中学调研)如图1所示,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是线段AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图2所示.(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求直线BD 与平面A 1BC 所成角的正弦值.解 (1)证明:在题图1中,连接CE , 因为AB =BC =1,AD =2,E 是AD 的中点,∠BAD =π2,所以四边形ABCE 为正方形,四边形BCDE 为平行四边形,所以BE ⊥AC .在题图2中,BE ⊥OA 1,BE ⊥OC , 又OA 1∩OC =O , 从而BE ⊥平面A 1OC .又CD ∥BE ,所以CD ⊥平面A 1OC . (2)由(1)知BE ⊥OA 1,BE ⊥OC ,所以∠A 1OC 为二面角A 1-BE -C 的平面角,又平面A 1BE ⊥平面BCDE ,所以∠A 1OC =π2,所以OB ,OC ,OA 1两两垂直.如图,以O 为原点,OB ,OC ,OA 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则B ⎝ ⎛⎭⎪⎫22,0,0,E ⎝ ⎛⎭⎪⎫-22,0,0, A 1⎝ ⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0,得BC →=⎝ ⎛⎭⎪⎫-22,22,0,A 1C →=⎝ ⎛⎭⎪⎫0,22,-22,由CD →=BE →=(-2,0,0),得D ⎝ ⎛⎭⎪⎫-2,22,0.所以BD →=⎝ ⎛⎭⎪⎫-322,22,0. 设平面A 1BC 的法向量为n =(x ,y ,z ), 直线BD 与平面A 1BC 所成的角为θ,则⎩⎨⎧n ·BC →=0,n ·A 1C →=0,得⎩⎨⎧-x +y =0,y -z =0,取x =1,得n =(1,1,1).从而sin θ=|cos 〈BD →,n 〉|=25×3=3015, 即直线BD 与平面A 1BC 所成角的正弦值为3015.18.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P -ABCD 中,侧棱PD ⊥底面ABCD ,且PD =CD ,过棱PC 的中点E ,作EF ⊥PB 交PB 于点F ,连接DE ,DF ,BD ,BE .(1)证明:PB ⊥平面DEF .试判断四面体DBEF 是否为鳖臑?若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(2)若平面DEF 与平面ABCD 所成二面角的大小为π3,求DC BC 的值.解 (1)证明:如图,以D 为原点,射线DA ,DC ,DP 分别为x ,y ,z 轴的正半轴,建立空间直角坐标系.设PD =DC =1,BC =λ,则D (0,0,0),P (0,0,1),B (λ,1,0),C (0,1,0),PB →=(λ,1,-1),点E 是PC 的中点,所以E ⎝ ⎛⎭⎪⎫0,12,12,DE →=⎝ ⎛⎭⎪⎫0,12,12, 于是PB →·DE →=0,即PB ⊥DE .又已知EF ⊥PB ,而DE ∩EF =E ,所以PB ⊥平面DEF . 因PC →=(0,1,-1),DE →·PC →=0,则DE ⊥PC ,所以DE ⊥平面PBC . 由DE ⊥平面PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形,即四面体BDEF 是一个鳖臑,其四个面的直角分别为∠DEB ,∠DEF ,∠EFB ,∠DFB .(2)由PD ⊥平面ABCD ,所以DP →=(0,0,1)是平面ABCD 的一个法向量;由(1)知PB ⊥平面DEF ,所以BP →=(-λ,-1,1)是平面DEF 的一个法向量.若平面DEF 与平面ABCD 所成二面角的大小为π3,则cos π3=⎪⎪⎪⎪⎪⎪⎪⎪BP →·DP →|BP →||DP →|=⎪⎪⎪⎪⎪⎪⎪⎪1λ2+2=12,解得λ= 2. 所以DC BC =1λ=22. 故当平面DEF 与平面ABCD 所成二面角的大小为π3时,DC BC =22.。

2019版高考数学(理)高分计划一轮狂刷练:第7章 立体几何 7-5a

2019版高考数学(理)高分计划一轮狂刷练:第7章 立体几何 7-5a

[重点保分两级优选练]A级一、选择题1.设l为直线,α,β是两个不同的平面,下列命题中正确的是( )A.若l∥α,l∥β,则α∥βB.若l⊥α,l⊥β,则α∥βC.若l⊥α,l∥β,则α∥βD.若α⊥β,l∥α,则l⊥β答案 B解析 如图所示,在正方体A1B1C1D1-ABCD中,对于A项,设l为AA1,平面B1BCC1,平面DCC1D1为α,β.A1A∥平面B1BCC1,A1A∥平面DCC1D1,而平面B1BCC1∩平面DCC1D1=C1C;对于C项,设l为A1A,平面ABCD为α,平面DCC1D1为β.A1A⊥平面ABCD;A1A∥平面DCC1D1,而平面ABCD∩平面DCC1D1=DC;对于D项,设平面A1ABB1为α,平面ABCD为β,直线D1C1为l,平面A1ABB1⊥平面ABCD,D1C1∥平面A1ABB1,而D1C1∥平面ABCD.故A,C,D三项都是错误的.而对于B项,根据垂直于同一直线的两平面平行,知B项正确.故选B.32.(2017·山西临汾二模)已知点A,B在半径为的球O表面上运动,且AB=2,过AB作相互垂直的平面α,β,若平面α,β截球O所得的截面分别为圆M,N,则( )A.MN长度的最小值是2B.MN的长度是定值2C.圆M面积的最小值是2πD.圆M、N的面积和是定值8π答案 B解析 如图所示,平面ABC为平面α,平面ABD为平面β,则BD⊥BC.2BC2+BD2+4=12,∴CD=2,∵M,N分别是AC,AD的中点,2∴MN的长度是定值.故选B.3.(2017·江西南昌摸底)如图,在四面体ABCD中,已知AB⊥AC,BD⊥AC,那么点D在平面ABC内的射影H必在( )A.直线AB上B.直线BC上C.直线AC上D.△ABC内部答案 A解析 因为AB⊥AC,BD⊥AC,AB∩BD=B,所以AC⊥平面ABD,又AC⊂平面ABC,所以平面ABC⊥平面ABD,所以点D在平面ABC内的射影H必在直线AB上.故选A.4.(2018·江西九江模拟)如图,在三棱锥D-ABC中,若AB=CB,AD=CD,E是AC的中点,则下列命题中正确的是( )A.平面ABC⊥平面ABDB.平面ABD⊥平面BCDC.平面ABC⊥平面BDE,且平面ACD⊥平面BDED.平面ABC⊥平面ACD,且平面ACD⊥平面BDE答案 C解析 因为AB=CB,且E是AC的中点,所以BE⊥AC,同理,DE⊥AC,由于DE∩BE=E,于是AC⊥平面BDE.因为AC⊂平面ABC,所以平面ABC⊥平面BDE.又AC⊂平面ACD,所以平面ACD⊥平面BDE.故选C.5.(2018·甘肃二诊)已知长方体ABCD-A1B1C1D1中,3AA1=,AB=4,若在棱AB上存在点P,使得D1P⊥PC,则AD的取值范围是( )A.(0,1] B.(0,2]3C.(1,] D.[1,4)答案 B解析 连接DP,由D1P⊥PC,DD1⊥PC,且D1P,DD1是平面DD1P内两条相交直线,得PC⊥平面DD1P,PC⊥DP,即点P在以CD为直径的圆上,又点P在AB上,则AB与圆有公共点,即0<AD ≤CD =2.故选B.126.(2018·河北模拟)在四棱锥P -ABCD 中,底面ABCD 是直角梯形,BA ⊥AD ,AD ∥BC ,AB =BC =2,PA =3,PA ⊥底面ABCD ,E 是棱PD 上异于P ,D 的动点.设=m ,则“0<m <2”是PE ED “三棱锥C -ABE 的体积不小于1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B 解析 如图,过E 点作EH ⊥AD ,H 为垂足,则EH ⊥平面ABCD .∵VC -ABE =V E -ABC ,∴三棱锥C -ABE 的体积为EH .若三棱锥C -ABE 的体积不小23于1,则EH ≥,又PA =3,∴=m ≤1,32PE ED ∴0<m ≤1.故选B.7.如图,三棱锥P -ABC 的所有棱长都相等,D ,E ,F 分别是AB ,BC ,CA 的中点,下面四个结论中不成立的是( )A.BC∥平面PDFB.DF⊥平面PAEC.平面PDF⊥平面ABCD.平面PAE⊥平面ABC答案 C解析 ∵BC∥DF,∴BC∥平面PDF,A正确.∵BC⊥PE,BC⊥AE,∴BC⊥平面PAE.又∵DF∥BC,∴DF⊥平面PAE,B正确.∵BC⊥平面PAE,BC⊂平面ABC,∴平面PAE⊥平面ABC,D正确.故选C.8.(2018·湖北武汉月考)如图,在矩形ABCD中,3AB=,BC=1,将△ACD沿AC折起,使得D折起后的位置为D1,且D1在平面ABC上的射影恰好落在AB上,在四面体D1-ABC的四个面中,有n对平面相互垂直,则n等于( )A.2 B.3C.4 D.5答案 B解析 设D1在平面ABC上的射影为E,连接D1E,则D1E⊥平面ABC,∵D1E⊂平面ABD1,∴平面ABD1⊥平面ABC.∵D1E⊥平面ABC,BC⊂平面ABC,∴D1E⊥BC,又AB⊥BC,D1E∩AB=E,∴BC⊥平面ABD1.又BC⊂平面BCD1,∴平面BCD1⊥平面ABD1.∵BC⊥平面ABD1,AD1⊂平面ABD1,∴BC⊥AD1,又CD1⊥AD1,BC∩CD1=C,∴AD1⊥平面BCD1,又AD1⊂平面ACD1,∴平面ACD1⊥平面BCD1.∴共有3对平面互相垂直.故选B.9.(2018·静海月考)如图所示,三棱锥P-ABC的底面在平面α内,且AC⊥PC,平面PAC⊥平面PBC,点P,A,B是定点,则动点C的轨迹是( )A.一条线段B.一条直线C.一个圆D.一个圆,但要去掉两个点答案 D解析 ∵平面PAC⊥平面PBC,而平面PAC∩平面PBC=PC.又AC⊂平面PAC,且AC⊥PC,∴AC⊥平面PBC,而BC⊂平面PBC,∴AC⊥BC,∴点C在以AB为直径的圆上,∴点C的轨迹是一个圆,但是要去掉A和B两点.故选D.10.(2018·吉林期末)已知一个四棱锥的三视图如图所示,则该四棱锥的四个侧面中,直角三角形的个数是( )A.4 B.3C.2 D.1答案 A解析 满足条件的四棱锥的底面为矩形,且一条侧棱与底面垂直,画出满足条件的直观图如图四棱锥P-ABCD所示,不妨令PA⊥矩形ABCD,∴PA⊥AB,PA⊥AD,PA⊥CB,PA⊥CD,故△PAB和△PAD都是直角三角形.又矩形中CB⊥AB,CD⊥AD.这样CB垂直于平面PAB内的两条相交直线PA、AB,CD垂直于平面PAD内的两条相交直线PA、AD,由线面垂直的判定定理可得CB⊥平面PAB,CD⊥平面PAD,∴CB⊥PB,CD⊥PD,故△PBC和△PDC都是直角三角形,故直角三角形有△PAB、△PAD、△PBC、△PDC共4个.故选A.二、填空题11.(2017·开封二模)三棱锥S -ABC 中,∠SBA =∠SCA =90°,△ABC 是斜边AB =a的等腰直角三角形,则以下结论中:①异面直线SB 与AC 所成的角为90°;②直线SB ⊥平面ABC ;③平面SBC ⊥平面SAC ;④点C 到平面SAB 的距离是a .12其中正确的是________.答案 ①②③④解析 由题意知AC ⊥平面SBC ,故AC ⊥SB ,故①正确;再根据SB ⊥AC ,SB ⊥AB ,可得SB ⊥平面ABC ,平面SBC ⊥平面SAC ,故②③正确;取AB 的中点E ,连接CE ,可证得CE ⊥平面SAB ,故CE 的长度即为点C 到平面SAB 的距离,为a ,④正确.1212.(2017·苏州期末)如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,底面ABCD 为正方形,则下列结论:①AD∥平面PBC;②平面PAC⊥平面PBD;③平面PAB⊥平面PAC;④平面PAD⊥平面PDC.其中正确的结论序号是________.答案 ①②④解析 ①由底面为正方形,可得AD∥BC,AD⊄平面PBC,BC⊂平面PBC,可得AD∥平面PBC;②在正方形ABCD中,AC⊥BD,PA⊥底面ABCD,可得PA⊥BD,PA∩AC=A,可得BD⊥平面PAC,BD⊂平面PBD,即有平面PAC⊥平面PBD;③PA⊥底面ABCD,可得PA⊥AB,PA⊥AC,可得∠BAC为二面角B-PA-C的平面角,显然∠BAC=45°,故平面PAB⊥平面PAC不成立;④在正方形ABCD中,可得CD⊥AD,PA⊥底面ABCD,可得PA⊥CD,PA∩AD=A,可得CD⊥平面PAD,CD⊂平面PCD,即有平面PAD⊥平面PDC.综上可得,①②④正确.13.(2017·三元月考)如图,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ADB沿BD折起,使CD ⊥平面ABD ,构成三棱锥A -BCD .则在三棱锥A -BCD 中,平面BCD ,平面ADC ,平面ABC ,平面ABD ,互相垂直的有________.答案 平面ABD ⊥平面ACD 、平面ABD ⊥平面BCD 、平面ABC ⊥平面ACD解析 ∵在四边形ABCD 中,AD ∥BC ,AD =AB ,∠BCD =45°,∠BAD =90°,∴BD ⊥CD .由CD ⊥平面ABD ,CD ⊂平面BCD ,所以平面ABD ⊥平面BCD ,由CD ⊥平面ABD ,则CD ⊥AB ,又AD ⊥AB .故AB ⊥平面ADC ,所以平面ABC ⊥平面ADC ,平面ABD ⊥平面ADC .14.(2018·泰安模拟)如图,四边形ABCD 中,AB =AD =CD =1,BD =,BD ⊥CD .将四边形ABCD 沿对角线BD 2折成四面体A ′-BCD ,使平面A ′BD ⊥平面BCD ,则∠BA ′C =________,V A ′-BCD =________.答案 90° 16解析 由题设知:△BA ′D 为等腰直角三角形,CD ⊥平面A ′BD ,得BA ′⊥平面A ′CD ,∴∠BA ′C =90°,V A ′-BCD =V C -A ′BD =.16B 级三、解答题15.(2018·临汾期末)在三棱柱ABC -A 1B 1C 1,侧面ABB 1A 1为矩形,AB =2,AA 1=2,D 是AA 1中点,BD 与AB 1交于点O ,且2OC ⊥平面ABB 1A 1.证明:平面AB 1C ⊥平面BCD .证明 ∵ABB 1A 1为矩形,AB =2,AA 1=2,D 是AA 1的中点,2∴∠BAD =90°,∠ABB 1=90°,BB 1=2,AD =AA 1=,2122∴tan ∠ABD ==,AD AB 22tan ∠AB 1B ==,AB BB 122∴∠ABD =∠AB 1B ,∴∠AB 1B +∠BAB 1=∠ABD +∠BAB 1=,π2∴∠AOB =,即AB 1⊥BD .π2∵CO⊥平面ABB1A1,AB1⊂平面ABB1A1,∴AB1⊥CO,又BD∩CO=O,∴AB1⊥平面BCD.∵AB1⊂平面AB1C,∴平面AB1C⊥平面BCD.16.(2018·黄冈调研)在三棱锥P-ABC中,△PAB是等边三角形,PA⊥AC,PB⊥BC.(1)证明:AB⊥PC;(2)若PC=2,且平面PAC⊥平面PBC,求三棱锥P-ABC的体积.解 (1)证明:在Rt△PAC和Rt△PBC中PC2-PA2PC2-PB2AC=,BC=.∵PA=PB,∴AC=BC.取AB中点M,连接PM,CM,则AB⊥PM,AB⊥MC,∴AB⊥平面PMC,而PC⊂平面PMC,∴AB ⊥PC .(2)在平面PAC 内作AD ⊥PC ,垂足为D ,连接BD .∵平面PAC ⊥平面PBC ,∴AD ⊥平面PBC ,又BD ⊂平面PBC ,∴AD ⊥BD ,又Rt △PAC ≌Rt △PBC ,∴AD =BD ,∴△ABD 为等腰直角三角形.设AB =PA =PB =a ,则AD =a ,22在Rt △PAC 中,由PA ·AC =PC ·AD 得a ·=2×a ,∴a =.4-a 2222∴S △ABD =AD ·BD =·2=,1212(22a )12∴V P -ABC =S △ABD ·PC =××2=.1313121317.(2018·绵阳期末)如图,在正三棱柱ABC -A 1B 1C 1中,点D是AB 的中点,M 是AA 1上一点,AM =tAA 1.(1)求证:BC 1∥平面A 1CD ;(2)若3AB =2AA 1,当t 为何值时,B 1M ⊥平面A 1CD?解 (1)证明:连接AC 1,交A 1C 于点O ,那么点O 是AC 1的中点,连接OD ,由点D 是AB 的中点,可得BC 1∥OD ,BC 1⊄平面A 1CD ,OD ⊂平面A 1CD ,可得BC 1∥平面A 1CD .(2)由3AB =2AA 1,D 为AB 中点可得=,AD AA 113∴当=时,A 1M A 1B 113可得Rt △A 1AD ∽Rt △B 1A 1M ,∴∠DA 1A =∠MB 1A 1,∴∠A 1MB 1+∠DA 1A =∠A 1MB 1+∠MB 1A 1=90°,∴B 1M ⊥A 1D .∵D 是AB 的中点,∴CD ⊥AB ,又∵CD ⊥AA 1,AB ∩AA 1=A ,∴CD ⊥平面AA 1B 1B .∵B 1M ⊂平面AA 1B 1B ,∴CD ⊥B 1M .∵CD ∩A 1D =D ,∴B 1M ⊥平面A 1CD ,此时=,3AB =2AA 1,A 1M A 1B 113所以A 1M =AA 1,故AM =AA 1,2979即当t =时,B 1M ⊥平面A 1CD .7918.(2018·昌平区调研)已知正四棱柱ABCD -A 1B 1C 1D 1中,M是DD 1的中点.(1)求证:BD 1∥平面AMC ;(2)求证:AC ⊥BD 1;(3)在线段BB 1上是否存在点P ,当=λ时,平面A 1PC 1∥平BPBB 1面AMC ?若存在,求出λ的值并证明;若不存在,请说明理由.解 (1)证明:在正四棱柱ABCD -A 1B 1C 1D 1中,连接BD 交AC 于N ,连接MN .因为ABCD 为正方形,所以N 为BD 中点,在△DBD 1中,因为M 为DD 1中点,所以BD 1∥MN .因为MN ⊂平面AMC ,BD 1⊄平面AMC ,所以BD 1∥平面AMC .(2)证明:因为ABCD 为正方形,所以AC ⊥BD .因为DD 1⊥平面ABCD ,所以DD 1⊥AC .因为DD 1∩BD =D ,所以AC ⊥平面BDD 1.因为BD 1⊂平面BDD 1,所以AC ⊥BD 1.(3)当λ=,即点P 为线段BB 1的中点时,平面A 1PC 1∥平面12AMC .因为AA 1∥CC 1,且AA 1=CC 1,所以四边形AA 1C 1C 是平行四边形,所以AC ∥A 1C 1.取CC 1的中点Q ,连接MQ ,QB .因为M 为DD 1中点,所以MQ ∥AB ,且MQ =AB ,所以四边形ABQM 是平行四边形.所以BQ ∥AM .同理BQ ∥C 1P .所以AM ∥C 1P .因为A 1C 1∩C 1P =C 1,AC ∩AM =A ,所以平面A 1PC 1∥平面AMC .。

2019版高考数学(理)高分计划一轮狂刷练及答案解析:第7章立体几何7-3a

2019版高考数学(理)高分计划一轮狂刷练及答案解析:第7章立体几何7-3a

[基础送分提速狂刷练]
一、选择题
1.(2016·浙江高考)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则()
A.m∥l B.m∥n
C.n⊥l D.m⊥n
答案 C
解析对于A,m与l可能平行或异面,故A错误;对于B,D,m与n可能平行、相交或异面,故B,D错误;对于C,因为n⊥β,l?β,所以n⊥l,故C正确.故选 C.
2.若l1,l2,l3是空间三条不同的直线,则下列命题正确的是() A.l1⊥l2,l2⊥l3?l1∥l3
B.l1⊥l2,l2∥l3?l1⊥l3
C.l1∥l2∥l3?l1,l2,l3共面
D.l1,l2,l3共点?l1,l2,l3共面
答案 B
解析当l1⊥l2,l2⊥l3时,l1与l3也可能相交或异面,故A不正确;l1⊥l2,l2∥l3?l1⊥l3,故B正确;当l1∥l2∥l3时,l1,l2,l3未必共面,如三棱柱的三条侧棱,故C不正确;l1,l2,l3共点时,l1,l2,l3未必共面,如正方体中从同一顶点出发的三条棱,故D不正确.故选B.
3.(2016·雅安期末)已知正方体ABCD-A1B1C1D1,则过点A与AB,BC,CC1所成角均相等的直线有()
A.1条B.2条
C.4条D.无数条
答案 C
解析若直线和AB,BC所成角相等,得直线在对角面BDD1B1。

2019版高考数学一轮复习第7章立体几何77立体几何中的向量方法课后作业理.doc

2019版高考数学一轮复习第7章立体几何77立体几何中的向量方法课后作业理.doc

7. 7立体几何中的向量方法E 课后作业孕谀[重点保分两级优选练]A 级一.选择题解析 由己知得AB= (0, 3, 3), AC= (—1, 1, 0),・•・向量AB^AOf}夹角为60° .故选C.2・(2018 •伊宁期末)三棱锥A-BCD 中,平面肋〃与平面如 的法向量分别为巾,*若 S, rii} =丁,则二面角A — BD — C 的大小为()兀 A •了2 Ji B- 3 兀小2 n C. 丁或丁答案cJI JI D •石或亍n解析・・•二面角的范闱是[0,叮,且 5, 2 ・・・二面角A-BD-C 的大小为才或手•故选C.3. (2017 •太原期中)已知直四棱柱ABCD-A^Qa 中,底\ki ABCD 为正方形,A4: = 2個 〃为M 的中点,则异面直线处与所成角的余弦值为(3 °*51.已知点 水2, -5, 1), 〃(2, -2, 4), A. 30° C. 60°答案C C (l, -4, 1),则向量弭〃与SC 的夹角为()B. 45° D. 90°/.cos 〈AB, AC)=AE ・ AC3 13迈 ><迈_空\AB\\ AC\A. VTo 10答案C解析如图,以〃为坐标原点建立如图所示空间直角坐标系. 设创=2AB=2,则2(1, 1,0), E(l,0, 1), do, 1,0), 〃(0,0,2).:・BE=5, -1, 1),勿=(0, -1,2).f I—/.cos〈BE, CM =』.]^=警2 故选C.24.如图所示,在正方体ABCD— A\B:CA中,E, F分别在滋上,且恥=評,AF=则()A.EF至多与AO /Q之一垂直B.EF丄 A\D, EFl ACC.防与Z®相交D.防与加异面答案B"(0,0,1), A ;D=(~}f 0, -1), AC={~\, 1,0),EF= -^BDx, AD ・ EF=AC• EF=0,从而 EF 〃BU, EFSD,5. (2018 -河南模拟)如图所示,直三棱柱ABC-A^Q 的侧棱长为3,底面边长解析 以刃, 方体棱长为1,则 4(1,0,1),力(0,0,0),水 1,0,0), C(0, 1,0), 4*,0,§丿…⑶3--I ,0|, 2/(1, 1,0),血=(一1, -1,1),EFA_AC.故选 B.如图所示.设正=1,且, 〃点在棱曲I上且AD=2DA\, P点在棱GC上,则刃・%的最小值为() . oD.--答案B解析建立如图所示的直角坐标系,1 C4则 〃(l,0,2), B (0,1,3), 设 ^(0,0, z)(0WzW3),则/沪(1,0,2 — 刃,/Z=(0, 1,3 — z),:・PD ・必= 0 + 0+(2 —z) (3 —z)=(z_才一$,―► —►5 1故当z=㊁时,PD ・/侈取得最小值为一才故选B. 66 (2018 •沧州模拟)如图所示,在正方体ABCD-A 1 £ C D f中,棱长为1, E,尸分 别是处〃上的点,且BE=CF=80S ⑴,则〃 E 与B'尸的位置关系是()A.平行 C.相交答案BB.垂直 D.与白值有关解析建立如图所示空间直角坐标系.则〃(0, 0, 1), £*(1—0 1,0), B‘ (1, 1, 1),尸(0,1—② 0),:.D'£=仃一禺1, —1), B‘ F= (—1, —a, — 1)./• D f E• B‘ F= (1 —a) X (— 1) +1 X (—臼)+ (—1) X (— 1) = a— 1 —白 +1=0.•••〃EW E 即〃ELB9尺故选B.7.(2017 •聊城期中)在三棱锥”一血农中,/%丄平U ABC Z场C=90° , D, E,尸分别是棱個BC,彷的屮点,AB=AC=\, PA=2,则直线必与平面财所成角的正弦值为()1 2A/5咗 5C.迺D. £b 5答案c解析以/为原点,AB, AC,〃所在直线分别为才轴,y轴,z轴建立如图所示的空间直角坐标系,由AB=AC=\, PA=2,得弭(0, 0, 0), 〃(1, 0, 0), 0(0, 1,0),戶(0, 0, 2), , 2 30,0:>酹,0),0, 1\ ・••刊=(0,0, —2), 〃/=(0, 0), DF=设平面对的法向量为n= (^, y, z),y=0,则由S 得]I 「 c—[_x+y+2z=0,・ DF=Q,取z=l,则n=(2, 0, 1),设必与平面财所成的角为0,—>则S in 0=丹•川=迺,.••刃与平面财所成角的正弦值为芈.故选C.f o b\PA\ |/?|8.(2018 •江西红色七校模拟)已知二面角a_l— B等于120。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[重点保分两级优选练]A级一、选择题1.设l为直线,α,β是两个不同的平面,下列命题中正确的是()A.若l∥α,l∥β,则α∥βB.若l⊥α,l⊥β,则α∥βC.若l⊥α,l∥β,则α∥βD.若α⊥β,l∥α,则l⊥β答案 B解析如图所示,在正方体A1B1C1D1-ABCD中,对于A项,设l为AA1,平面B1BCC1,平面DCC1D1为α,β.A1A∥平面B1BCC1,A1A ∥平面DCC1D1,而平面B1BCC1∩平面DCC1D1=C1C;对于C项,设l为A1A,平面ABCD为α,平面DCC1D1为β.A1A⊥平面ABCD;A1A∥平面DCC1D1,而平面ABCD∩平面DCC1D1=DC;对于D项,设平面A1ABB1为α,平面ABCD为β,直线D1C1为l,平面A1ABB1⊥平面ABCD,D1C1∥平面A1ABB1,而D1C1∥平面ABCD.故A,C,D三项都是错误的.而对于B项,根据垂直于同一直线的两平面平行,知B项正确.故选B.2.(2017·山西临汾二模)已知点A,B在半径为3的球O表面上运动,且AB=2,过AB作相互垂直的平面α,β,若平面α,β截球O所得的截面分别为圆M,N,则()A.MN长度的最小值是2B.MN的长度是定值 2C.圆M面积的最小值是2πD.圆M、N的面积和是定值8π答案 B解析如图所示,平面ABC为平面α,平面ABD为平面β,则BD⊥BC.BC2+BD2+4=12,∴CD=22,∵M,N分别是AC,AD的中点,∴MN的长度是定值 2.故选B.3.(2017·江西南昌摸底)如图,在四面体ABCD中,已知AB⊥AC,BD⊥AC,那么点D在平面ABC内的射影H必在()A.直线AB上B.直线BC上C.直线AC上D.△ABC内部答案 A解析因为AB⊥AC,BD⊥AC,AB∩BD=B,所以AC⊥平面ABD,又AC⊂平面ABC,所以平面ABC⊥平面ABD,所以点D在平面ABC内的射影H必在直线AB上.故选A.4.(2018·江西九江模拟)如图,在三棱锥D-ABC中,若AB=CB,AD=CD,E是AC的中点,则下列命题中正确的是()A.平面ABC⊥平面ABDB.平面ABD⊥平面BCDC.平面ABC⊥平面BDE,且平面ACD⊥平面BDED.平面ABC⊥平面ACD,且平面ACD⊥平面BDE答案 C解析因为AB=CB,且E是AC的中点,所以BE⊥AC,同理,DE⊥AC,由于DE∩BE=E,于是AC⊥平面BDE.因为AC⊂平面ABC,所以平面ABC⊥平面BDE.又AC⊂平面ACD,所以平面ACD⊥平面BDE.故选C.5.(2018·甘肃二诊)已知长方体ABCD-A1B1C1D1中,AA1=3,AB=4,若在棱AB上存在点P,使得D1P⊥PC,则AD的取值范围是()A.(0,1] B.(0,2]C.(1,3] D.[1,4)答案 B解析连接DP,由D1P⊥PC,DD1⊥PC,且D1P,DD1是平面DD1P内两条相交直线,得PC⊥平面DD1P,PC⊥DP,即点P在以CD为直径的圆上,又点P在AB上,则AB与圆有公共点,即0< AD≤12 CD=2.故选B.6.(2018·河北模拟)在四棱锥P-ABCD中,底面ABCD是直角梯形,BA ⊥AD ,AD ∥BC ,AB =BC =2,P A =3,P A ⊥底面ABCD ,E 是棱PD 上异于P ,D 的动点.设PE ED =m ,则“0<m <2”是“三棱锥C-ABE 的体积不小于1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 如图,过E 点作EH ⊥AD ,H 为垂足,则EH ⊥平面ABCD .∵V C -ABE =V E -ABC ,∴三棱锥C -ABE 的体积为23EH .若三棱锥C -ABE 的体积不小于1,则EH ≥32,又P A =3,∴PE ED =m ≤1,∴0<m ≤1.故选B.7.如图,三棱锥P -ABC 的所有棱长都相等,D ,E ,F 分别是AB ,BC ,CA 的中点,下面四个结论中不成立的是( )A .BC ∥平面PDFB .DF ⊥平面P AED.平面P AE⊥平面ABC答案 C解析∵BC∥DF,∴BC∥平面PDF,A正确.∵BC⊥PE,BC⊥AE,∴BC⊥平面P AE.又∵DF∥BC,∴DF⊥平面P AE,B正确.∵BC⊥平面P AE,BC⊂平面ABC,∴平面P AE⊥平面ABC,D正确.故选C.8.(2018·湖北武汉月考)如图,在矩形ABCD中,AB=3,BC =1,将△ACD沿AC折起,使得D折起后的位置为D1,且D1在平面ABC上的射影恰好落在AB上,在四面体D1-ABC的四个面中,有n对平面相互垂直,则n等于()A.2 B.3C.4 D.5答案 B解析设D1在平面ABC上的射影为E,连接D1E,则D1E⊥平面ABC,∵D1E⊂平面ABD1,∵D1E⊥平面ABC,BC⊂平面ABC,∴D1E⊥BC,又AB⊥BC,D1E∩AB=E,∴BC⊥平面ABD1.又BC⊂平面BCD1,∴平面BCD1⊥平面ABD1.∵BC⊥平面ABD1,AD1⊂平面ABD1,∴BC⊥AD1,又CD1⊥AD1,BC∩CD1=C,∴AD1⊥平面BCD1,又AD1⊂平面ACD1,∴平面ACD1⊥平面BCD1.∴共有3对平面互相垂直.故选B.9.(2018·静海月考)如图所示,三棱锥P-ABC的底面在平面α内,且AC⊥PC,平面P AC⊥平面PBC,点P,A,B是定点,则动点C的轨迹是()A.一条线段B.一条直线C.一个圆D.一个圆,但要去掉两个点答案 D解析∵平面P AC⊥平面PBC,而平面P AC∩平面PBC=PC.又AC⊂平面P AC,且AC⊥PC,∴AC⊥平面PBC,而BC⊂平面PBC,∴AC⊥BC,∴点C在以AB为直径的圆上,∴点C的轨迹是一个圆,但是要去掉A和B两点.故选D.10.(2018·吉林期末)已知一个四棱锥的三视图如图所示,则该四棱锥的四个侧面中,直角三角形的个数是()A.4 B.3C.2 D.1答案 A解析满足条件的四棱锥的底面为矩形,且一条侧棱与底面垂直,画出满足条件的直观图如图四棱锥P-ABCD所示,不妨令P A⊥矩形ABCD,∴P A ⊥AB ,P A ⊥AD ,P A ⊥CB ,P A ⊥CD ,故△P AB 和△P AD 都是直角三角形.又矩形中CB ⊥AB ,CD ⊥AD .这样CB 垂直于平面P AB 内的两条相交直线P A 、AB ,CD 垂直于平面P AD 内的两条相交直线P A 、AD ,由线面垂直的判定定理可得CB ⊥平面P AB ,CD ⊥平面P AD ,∴CB ⊥PB ,CD ⊥PD ,故△PBC 和△PDC 都是直角三角形,故直角三角形有△P AB 、△P AD 、△PBC 、△PDC 共4个.故选A.二、填空题11.(2017·开封二模)三棱锥S -ABC 中,∠SBA =∠SCA =90°,△ABC 是斜边AB =a 的等腰直角三角形,则以下结论中:①异面直线SB 与AC 所成的角为90°;②直线SB ⊥平面ABC ;③平面SBC ⊥平面SAC ;④点C 到平面SAB 的距离是12a .其中正确的是________.答案 ①②③④解析 由题意知AC ⊥平面SBC ,故AC ⊥SB ,故①正确;再根据SB ⊥AC ,SB ⊥AB ,可得SB ⊥平面ABC ,平面SBC ⊥平面SAC ,故②③正确;取AB 的中点E ,连接CE ,可证得CE ⊥平面SAB ,故CE 的长度即为点C 到平面SAB 的距离,为12a ,④正确.12.(2017·苏州期末)如图,四棱锥P-ABCD中,P A⊥底面ABCD,底面ABCD为正方形,则下列结论:①AD∥平面PBC;②平面P AC⊥平面PBD;③平面P AB⊥平面P AC;④平面P AD⊥平面PDC.其中正确的结论序号是________.答案①②④解析①由底面为正方形,可得AD∥BC,AD⊄平面PBC,BC⊂平面PBC,可得AD∥平面PBC;②在正方形ABCD中,AC⊥BD,P A⊥底面ABCD,可得P A⊥BD,P A∩AC=A,可得BD⊥平面P AC,BD⊂平面PBD,即有平面P AC⊥平面PBD;③P A⊥底面ABCD,可得P A⊥AB,P A⊥AC,可得∠BAC为二面角B-P A-C的平面角,显然∠BAC=45°,故平面P AB⊥平面P AC不成立;④在正方形ABCD中,可得CD⊥AD,P A⊥底面ABCD,可得P A⊥CD,P A∩AD=A,可得CD⊥平面P AD,CD⊂平面PCD,即有平面P AD⊥平面PDC.综上可得,①②④正确.13.(2017·三元月考)如图,在四边形ABCD中,AD∥BC,AD =AB,∠BCD=45°,∠BAD=90°,将△ADB沿BD折起,使CD⊥平面ABD,构成三棱锥A-BCD.则在三棱锥A-BCD中,平面BCD,平面ADC,平面ABC,平面ABD,互相垂直的有________.答案平面ABD⊥平面ACD、平面ABD⊥平面BCD、平面ABC ⊥平面ACD解析∵在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,∴BD⊥CD.由CD⊥平面ABD,CD⊂平面BCD,所以平面ABD⊥平面BCD,由CD⊥平面ABD,则CD⊥AB,又AD⊥AB.故AB⊥平面ADC,所以平面ABC⊥平面ADC,平面ABD⊥平面ADC.14.(2018·泰安模拟)如图,四边形ABCD中,AB=AD=CD=1,BD=2,BD⊥CD.将四边形ABCD沿对角线BD折成四面体A′-BCD,使平面A′BD⊥平面BCD,则∠BA′C=________,V A′-BCD =________.答案90°1 6解析由题设知:△BA′D为等腰直角三角形,CD⊥平面A′BD,得BA′⊥平面A′CD,∴∠BA′C=90°,V A′-BCD=V C-A′BD=16.B级三、解答题15.(2018·临汾期末)在三棱柱ABC-A1B1C1,侧面ABB1A1为矩形,AB=2,AA1=22,D是AA1中点,BD与AB1交于点O,且OC ⊥平面ABB1A1.证明:平面AB1C⊥平面BCD.证明∵ABB1A1为矩形,AB=2,AA1=22,D是AA1的中点,∴∠BAD=90°,∠ABB1=90°,BB1=22,AD=12AA1=2,∴tan∠ABD=ADAB=22,tan∠AB1B=ABBB1=22,∴∠ABD=∠AB1B,∴∠AB1B+∠BAB1=∠ABD+∠BAB1=π2,∴∠AOB=π2,即AB1⊥BD.∵CO⊥平面ABB1A1,AB1⊂平面ABB1A1,∴AB1⊥CO,又BD∩CO=O,∴AB1⊥平面BCD.∵AB1⊂平面AB1C,∴平面AB1C⊥平面BCD.16.(2018·黄冈调研)在三棱锥P-ABC中,△P AB是等边三角形,P A⊥AC,PB⊥BC.(1)证明:AB⊥PC;(2)若PC=2,且平面P AC⊥平面PBC,求三棱锥P-ABC的体积.解(1)证明:在Rt△P AC和Rt△PBC中AC=PC2-P A2,BC=PC2-PB2.∵P A=PB,∴AC=BC.取AB中点M,连接PM,CM,则AB⊥PM,AB⊥MC,∴AB⊥平面PMC,而PC⊂平面PMC,∴AB⊥PC.(2)在平面P AC 内作AD ⊥PC ,垂足为D ,连接BD .∵平面P AC ⊥平面PBC ,∴AD ⊥平面PBC ,又BD ⊂平面PBC , ∴AD ⊥BD ,又Rt △P AC ≌Rt △PBC , ∴AD =BD ,∴△ABD 为等腰直角三角形. 设AB =P A =PB =a ,则AD =22a ,在Rt △P AC 中,由P A ·AC =PC ·AD 得a ·4-a 2=2×22a ,∴a = 2.∴S △ABD =12AD ·BD =12·⎝ ⎛⎭⎪⎫22a 2=12, ∴V P -ABC =13S △ABD ·PC =13×12×2=13.17.(2018·绵阳期末)如图,在正三棱柱ABC -A 1B 1C 1中,点D 是AB 的中点,M 是AA 1上一点,AM =tAA 1.(1)求证:BC 1∥平面A 1CD ;(2)若3AB =2AA 1,当t 为何值时,B 1M ⊥平面A 1CD?解 (1)证明:连接AC 1,交A 1C 于点O ,那么点O 是AC 1的中点,连接OD ,由点D 是AB 的中点,可得BC 1∥OD ,BC 1⊄平面A 1CD ,OD ⊂平面A 1CD ,可得BC 1∥平面A 1CD .(2)由3AB =2AA 1,D 为AB 中点可得AD AA 1=13,∴当A 1M A 1B 1=13时,可得Rt △A 1AD ∽Rt △B 1A 1M , ∴∠DA 1A =∠MB 1A 1,∴∠A 1MB 1+∠DA 1A =∠A 1MB 1+∠MB 1A 1=90°, ∴B 1M ⊥A 1D .∵D 是AB 的中点,∴CD ⊥AB , 又∵CD ⊥AA 1,AB ∩AA 1=A , ∴CD ⊥平面AA 1B 1B .∵B 1M ⊂平面AA 1B 1B ,∴CD ⊥B 1M .∵CD ∩A 1D =D ,∴B 1M ⊥平面A 1CD ,此时A 1M A 1B 1=13,3AB =2AA 1,所以A 1M =29AA 1,故AM =79AA 1, 即当t =79时,B 1M ⊥平面A 1CD .18.(2018·昌平区调研)已知正四棱柱ABCD -A 1B 1C 1D 1中,M 是DD 1的中点.(1)求证:BD 1∥平面AMC ; (2)求证:AC ⊥BD 1;(3)在线段BB1上是否存在点P,当BPBB1=λ时,平面A1PC1∥平面AMC?若存在,求出λ的值并证明;若不存在,请说明理由.解(1)证明:在正四棱柱ABCD-A1B1C1D1中,连接BD交AC 于N,连接MN.因为ABCD为正方形,所以N为BD中点,在△DBD1中,因为M为DD1中点,所以BD1∥MN.因为MN⊂平面AMC,BD1⊄平面AMC,所以BD1∥平面AMC.(2)证明:因为ABCD为正方形,所以AC⊥BD.因为DD1⊥平面ABCD,所以DD1⊥AC.因为DD1∩BD=D,所以AC⊥平面BDD1.因为BD1⊂平面BDD1,所以AC⊥BD1.(3)当λ=12,即点P为线段BB1的中点时,平面A1PC1∥平面AMC. 因为AA1∥CC1,且AA1=CC1,所以四边形AA1C1C是平行四边形,所以AC∥A1C1.取CC1的中点Q,连接MQ,QB.因为M为DD1中点,所以MQ∥AB,且MQ=AB,所以四边形ABQM是平行四边形.所以BQ∥AM.同理BQ∥C1P.所以AM∥C1P.因为A1C1∩C1P=C1,AC∩AM=A,所以平面A1PC1∥平面AMC.。

相关文档
最新文档