数学_高考数学知识点总结_41页
高考数学知识点归纳总结
高考数学知识点归纳总结
1. 函数与方程
- 函数的定义、性质和表示方法
- 一次函数、二次函数、指数函数和对数函数的性质和图像- 复合函数和反函数的概念
- 方程与不等式的性质和求解方法
2. 数列与数列的表示方法
- 数列的概念和性质
- 等差数列和等比数列的通项公式和求和公式
- 常用数列的性质和求解方法
- 数列极限的定义和性质
3. 三角函数
- 三角函数的概念和性质
- 周期函数和奇偶性
- 三角函数的图像和性质
- 三角函数的和差化积公式和倍角、半角公式
4. 平面几何
- 二维坐标系和向量的表示方法
- 直线和曲线的方程及其性质
- 三角形、四边形和圆的性质和判定方法
- 平面向量的概念、性质和运算方法
5. 空间几何
- 空间直线和平面的方程及其性质
- 空间几何体的性质和判定方法
- 空间向量的概念、性质和运算方法
- 空间平面及其与其它几何体的位置关系
6. 概率统计与数理方法
- 概率的基本概念和性质
- 随机事件的计算方法
- 排列组合与概率的应用
- 统计图表、描述统计量和概率分布的计算
7. 数学建模
- 建模的基本步骤和思维方法
- 数学模型的建立和求解方法
- 模型有效性和实际应用
- 模型的评价和改进方法
以上是高考数学的一些重要知识点和概念,理解和掌握这些内容对于高考数学的学习和考试是非常重要的。
高考数学知识点总结(超级详细).pdf
y 1 [ f (x) b]的反函数.
k
28.几个常见的函数方程
(1)正比例函数 f (x) cx , f (x y) f (x) f ( y), f (1) c .
(2)指数函数 f (x) ax , f (x y) f (x) f ( y), f (1) a 0 .
(6) f (x a) f (x) f (x a) ,则 f (x) 的周期 T=6a.
30.分数指数幂
0
1 1.
f (x) N M N
8.方程 f (x) 0 在 (k1, k2 ) 上有且只有一个实根,与 f (k1) f (k2 ) 0 不等价,前者是后者的一个必要而不是充分条件.特别地,
方 程 ax2 bx c 0(a 0) 有 且 只 有 一 个 实 根 在 (k1, k2 ) 内 , 等 价 于
注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.
16.函数的单调性
(1)设 x1 x2 a,b, x1 x2 那么
(x1 x2 ) f (x1) f (x2 ) 0
f (x1) f (x2 ) 0 x1 x2
f (x)在a,b上是增函数;
函数是奇函数;如果一个函数的图象关于 y 轴对称,那么这个函数是偶函数.
19.若函数 y f (x) 是偶函数,则 f (x a) f (x a) ;若函数 y f (x a) 是偶函数,则 f (x a) f (x a) .
20.对于函数 y f (x) ( x R ), f (x a) f (b x) 恒成立 , 则函数 f (x) 的对称轴 是函数 x a b ;两个函数 y f (x a) 与
高考数学知识点总结
高中数学知识点总结1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
{}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 中元素各表示什么?2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。
∅ 注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。
{}{}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为B A a ⊂(答:,,)-⎧⎨⎩⎫⎬⎭1013 3. 注意下列性质:{}()集合,,……,的所有子集的个数是;1212a a a n n ()若,;2A B A B A A B B ⊆⇔== (3)德摩根定律:()()()()()()C C C C C C U U U U U U A B A B A B A B ==,4. 你会用补集思想解决问题吗?(排除法、间接法) 如:已知关于的不等式的解集为,若且,求实数x ax x aM M M a --<∈∉50352的取值范围。
()(∵,∴·∵,∴·,,)335305555015392522∈--<∉--≥⇒∈⎡⎣⎢⎫⎭⎪M a a M a aa5. 可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和()()∨∧“非”().⌝若为真,当且仅当、均为真p q p q ∧若为真,当且仅当、至少有一个为真p q p q ∨ 若为真,当且仅当为假⌝p p 6. 命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。
)原命题与逆否命题同真、同假;逆命题与否命题同真同假。
7. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B 中有元素无原象。
关于高考数学常考重要知识点总结
关于高考数学常考重要知识点总结高考数学必考知识点1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h 为其高,3、正方体a-边长,S=6a2,V=a34、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc5、棱柱S-底面积h-高V=Sh6、棱锥S-底面积h-高V=Sh/37、棱台S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/38、拟柱体S1-上底面积,S2-下底面积,S0-中截面积h-高,V=h(S1+S2+4S0)/69、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—侧面积,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)11、直圆锥r-底半径h-高V=πr^2h/312、圆台r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径d-直径V=4/3πr^3=πd^3/614、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3 15、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/616、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/417、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)高考数学必考公式知识点1.适用条件:[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。
x为分离比,必须大于1。
高考数学最常考知识点总结
高考数学最常考知识点总结数学作为高考的一门必考科目,考察的内容涵盖了代数、几何、概率统计等多个方面。
在高考中,数学作为一门综合性强的学科,常考的知识点也多种多样。
下面就对高考数学常考的知识点进行总结,希望对大家复习备考有所帮助。
一、代数1. 一次函数一次函数是高考中常考的知识点。
它的一般式是y=kx+b,其中k是斜率,b是常数。
考生需要熟练掌握一次函数的性质、图像、平行于坐标轴的线段等相关知识。
2. 二次函数二次函数是高考数学中一种重要的函数形式。
其一般式为y=ax²+bx+c,其中a、b、c为常数,a≠0。
考生需要熟练掌握二次函数的性质,如开口方向、顶点坐标、对称轴等。
3. 不等式在高考数学中,不等式也是一种常考的知识点。
考生需要熟练掌握一元一次不等式、一元二次不等式、绝对值不等式等不等式的解法和性质。
4. 分式方程分式方程也是高考数学中常考的知识点。
考生需要熟练掌握分式方程的解法、性质和应用。
5. 幂函数幂函数也是高考数学中常考的知识点。
考生需要熟练掌握幂函数的性质、图像、增减性等相关知识。
6. 对数函数对数函数是高考数学中常考的知识点。
考生需要熟练掌握对数函数的性质、定义域、值域、图像等相关知识。
7. 序列与数列序列与数列是高考数学中常考的知识点。
考生需要熟练掌握常数列的概念、性质、通项公式、前n项和等相关知识。
8. 绝对值绝对值是高考数学中常考的知识点。
考生需要熟练掌握绝对值的性质、解法以及不等式中的应用等相关知识。
二、几何1. 平面向量平面向量是高考数学中常考的知识点。
考生需要熟练掌握平面向量的定义、性质、数量积、向量的共线条件等相关知识。
2. 直线与圆直线与圆是高考数学中常考的知识点。
考生需要熟练掌握直线与圆的位置关系、性质、切线方程、切点坐标等相关知识。
3. 三角形三角形是高考数学中常考的知识点。
考生需要熟练掌握三角形的性质、中线定理、高线定理、角平分线定理、外角定理等相关知识。
高考数学全套知识点(共42页,Word版)
高考数学全套知识点1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
{}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 中元素各表示什么?2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。
∅ 注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。
{}{}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为B A a ⊂(答:,,)-⎧⎨⎩⎫⎬⎭10133. 注意下列性质:{}()集合,,……,的所有子集的个数是;1212a a a n n(3)德摩根定律:()()()()()()C C C C C C U U U U U U A B A B A B A B Y I I Y ==,4. 你会用补集思想解决问题吗?(排除法、间接法)的取值范围。
5. 可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和()()∨∧“非”().⌝若为真,当且仅当、均为真p q p q ∧若为真,当且仅当、至少有一个为真p q p q ∨ 若为真,当且仅当为假⌝p p6. 命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。
)原命题与逆否命题同真、同假;逆命题与否命题同真同假。
7. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射? (一对一,多对一,允许B 中有元素无原象) 8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 9. 求函数的定义域有哪些常见类型?10. 如何求复合函数的定义域?[]如:函数的定义域是,,,则函数的定f x a b b a F(x f x f x ())()()>->=+-0义域是_。
高考必考数学知识点总结大全
高考必考数学知识点总结大全数学作为高考的一门必考科目,在大多数学生中都是令人头疼的一门学科。
因此,熟悉并掌握高考必考的数学知识点对于考生们来说是非常重要的。
本文将从代数、几何、概率与统计等角度,全面总结高考必考的数学知识点。
一、代数知识点:1. 一元二次方程与不等式:掌握解一元二次方程和一元二次不等式的方法和步骤。
特别是对于“正负解”的情况,要学会使用因式分解法、配方法等解题技巧。
2. 函数:熟悉函数的概念、性质与表示方式。
掌握各种函数的基本图像和性质,如幂函数、指数函数、对数函数、三角函数等。
重点掌握函数的增减性、奇偶性和周期性等特征。
3. 线性规划:了解线性规划的基本概念和解法。
能够根据给定的约束条件,确定目标函数,并求出使目标函数达到最大或最小值的解。
二、几何知识点:1. 三角学:掌握三角函数的定义、性质和计算方法。
熟悉正弦定理、余弦定理和正切定理的应用,能够解决与三角函数相关的各种问题。
2. 相似与全等三角形:了解相似三角形和全等三角形的定义与判定条件。
掌握相似三角形与比例的关系,能够应用相似三角形解决各类几何问题。
3. 空间几何:熟悉空间中点、直线、平面的位置关系和性质。
掌握空间几何中的距离、角度和垂直等概念,并能应用于解决空间几何问题。
三、概率与统计知识点:1. 随机变量与概率:了解随机变量的概念和常见分布,如离散型随机变量和连续型随机变量。
掌握计算随机变量的期望、方差和样本空间的概率等相关概念与计算方法。
2. 抽样调查与统计描述:熟悉常见的统计描述方法,如平均数、中位数、众数等,以及统计图表的绘制与解读。
能够根据给定的调查数据,进行数据整理、处理和分析,得出合理的结论。
3. 概率计算与统计推断:掌握概率计算和统计推断的方法。
能够应用统计学原理,进行假设检验和置信区间估计,从数据中得出有关总体的结论,并进行合理的推断。
以上所列出的数学知识点只是高考考试中的一部分,虽然看似繁杂,但只要掌握了相关的基本理论和解题技巧,考生们就能够在考试中应对自如。
高中数学高考知识点归纳
高中数学高考知识点归纳数学高考知识点总结11.三类角的求法:①找出或作出有关的角.②证明其符合定义,并指出所求作的角.③计算大小(解直角三角形,或用余弦定理).2.正棱柱——底面为正多边形的直棱柱正棱锥——底面是正多边形,顶点在底面的射影是底面的中心.正棱锥的计算集中在四个直角三角形中:3.怎样判断直线l与圆C的位置关系?圆心到直线的距离与圆的半径比较.直线与圆相交时,注意利用圆的〝垂径定理〞.4.对线性规划问题:作出可行域,作出以目标函数为截距的直线,在可行域内平移直线,求出目标函数的最值.不看后悔!清华名师揭秘学好高中数学的方法培养兴趣是关键.学生对数学产生了兴趣,自然有动力去钻研.如何培养兴趣呢?(1)欣赏数学的美感比如几何图形中的对称.变换前后的不变量.概念的严谨.逻辑的严密……通过对旋转变换及其不变量的讨论,我们可以证明反比例函数.〝对勾函数〞的图象都是双曲线——平面上到两个定点的距离之差的绝对值为定值(小于两个定点之间的距离)的点的集合.(2)注意到数学在实际生活中的应用.例如和日常生活息息相关的等额本金.等额本息两种不同的还款方式,用数列的知识就可以理解.学好数学,是现代公民的基本素养之一啊.(3)采用灵活的教学手段,与时俱进.利用多种技术手段,声.光.电多管齐下,老师可以借此把一些知识讲得更具体形象,学生也更容易接受,理解更深.(4)适当看一些科普类的书籍和文章.比如:学圆锥曲线的时候,可以看看一些建筑物的外形,它们被平面所截出的曲线往往就是各种圆锥曲线,很多文章对此都有介绍;还有圆锥曲线光学性质的应用,这方面的文章也不少.数学高考知识点总结2一.排列1定义(1)从n个不同元素中取出m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一排列.(2)从n个不同元素中取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Amn.2排列数的公式与性质(1)排列数的公式:Amn=n(n-1)(n-2)…(n-m+1)特例:当m=n时,Amn=n!=n(n-1)(n-2)…_3_2_1规定:0!=1二.组合1定义(1)从n个不同元素中取出m个元素并成一组,叫做从n个不同元素中取出m 个元素的一个组合(2)从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号Cmn表示.2比较与鉴别由排列与组合的定义知,获得一个排列需要〝取出元素〞和〝对取出元素按一定顺序排成一列〞两个过程,而获得一个组合只需要〝取出元素〞,不管怎样的顺序并成一组这一个步骤.排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关.因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据.三.排列组合与二项式定理知识点1.计数原理知识点①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分类)2.排列(有序)与组合(无序)Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)!Ann=n!Cnm=n!/(n-m)!m!Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?k!=(k+1)!-k!3.排列组合混合题的解题原则:先选后排,先分再排排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素.以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置. 捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑)插空法(解决相间问题)间接法和去杂法等等在求解排列与组合应用问题时,应注意:(1)把具体问题转化或归结为排列或组合问题;(2)通过分析确定运用分类计数原理还是分步计数原理;(3)分析题目条件,避免〝选取〞时重复和遗漏;(4)列出式子计算和作答.经常运用的数学思想是:①分类讨论思想;②转化思想;③对称思想.4.二项式定理知识点:①(a+b)n=Cn0a_+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1ab n-1+Cnnbn特别地:(1+_)n=1+Cn1_+Cn2_2+…+Cnr_r+…+Cnn_n②主要性质和主要结论:对称性Cnm=Cnn-m二项式系数在中间.(要注意n为奇数还是偶数,答案是中间一项还是中间两项)所有二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n奇数项二项式系数的和=偶数项而是系数的和Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1③通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项.特定项.常数项.有理项等有关问题.5.二项式定理的应用:解决有关近似计算.整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式.6.注意二项式系数与项的系数(字母项的系数,指定项的系数等,指运算结果的系数)的区别,在求某几项的系数的和时注意赋值法的应用.数学高考知识点总结31.定义:用符号〉,=,〈号连接的式子叫不等式.2.性质:①不等式的两边都加上或减去同一个整式,不等号方向不变.②不等式的两边都乘以或者除以一个正数,不等号方向不变.③不等式的两边都乘以或除以同一个负数,不等号方向相反.3.分类:①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式.②一元一次不等式组:a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集.4.考点:①解一元一次不等式(组)②根据具体问题中的数量关系列不等式(组)并解决简单实际问题③用数轴表示一元一次不等式(组)的解集数学高考知识点总结4考点一:集合与简易逻辑集合部分一般以选择题出现,属容易题.重点考查集合间关系的理解和认识.近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力.在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简.简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系.逻辑联结词.〝充要关系〞.命题真伪的判断.全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理.考点二:函数与导数函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域.函数的性质.函数与方程.基本初等函数(一次和二次函数.指数.对数.幂函数)的应用等,分值约为_分,解答题与导数交汇在一起考查函数的性质.导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间.极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数.不等式.方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题.参数的取值范围问题.方程根的个数问题.不等式的证明等问题.考点三:三角函数与平面向量一般是2道小题,1道综合解答题.小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充.大题中如果没有涉及正弦定理.余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像.性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用.向量重点考查平面向量数量积的概念及应用,向量与直线.圆锥曲线.数列.不等式.三角函数等结合,解决角度.垂直.共线等问题是〝新热点〞题型.考点四:数列与不等式不等式主要考查一元二次不等式的解法.一元二次不等式组和简单线性规划问题.基本不等式的应用等,通常会在小题中设置1到2道题.对不等式的工具性穿插在数列.解析几何.函数导数等解答题中进行考查.在选择.填空题中考查等差或等比数列的概念.性质.通项公式.求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数.方程.不等式等解决问题的能力,它们都属于中.高档题目.考点五:立体几何与空间向量一是考查空间几何体的结构特征.直观图与三视图;二是考查空间点.线.面之间的位置关系;三是考查利用空间向量解决立体几何问题:利用空间向量证明线面平行与垂直.求空间角等(文科不要求).在高考试卷中,一般有1_2个客观题和一个解答题,多为中档题.考点六:解析几何一般有1_2个客观题和1个解答题,其中客观题主要考查直线斜率.直线方程.圆的方程.直线与圆的位置关系.圆锥曲线的定义应用.标准方程的求解.离心率的计算等,解答题则主要考查直线与椭圆.抛物线等的位置关系问题,经常与平面向量.函数与不等式交汇,考查一些存在性问题.证明问题.定点与定值.最值与范围问题等.考点七:算法复数推理与证明高考对算法的考查以选择题或填空题的形式出现,或给解答题披层〝外衣〞.考查的热点是流程图的识别与算法语言的阅读理解.算法与数列知识的网络交汇命题是考查的主流.复数考查的重点是复数的有关概念.复数的代数形式.运算及运算的几何意义,一般是选择题.填空题,难度不大.推理证明部分命题的方向主要会在函数.三角.数列.立体几何.解析几何等方面,单独出题的可能性较小.对于理科,数学归纳法可能作为解答题的一小问.数学高考知识点总结5不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用.因此不等式应用问题体现了一定的综合性.灵活多样性,对数学各部分知识融会贯通,起到了很好的促进作用.在解决问题时,要依据题设与结论的结构特点.内在联系.选择适当的解决方案,最终归结为不等式的求解或证明.不等式的应用范围十分广泛,它始终贯串在整个中学数学之中.诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角.数列.复数.立体几何.解析几何中的值.最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明.知识整合1.解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根.函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化.在解不等式中,换元法和图解法是常用的技巧之一.通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数.数形结合,则可将不等式的解化归为直观.形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰.2.整式不等式(主要是一次.二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式.绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类.换元.数形结合是解不等式的常用方法.方程的根.函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用.3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观.形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰.4.证明不等式的方法灵活多样,但比较法.综合法.分析法仍是证明不等式的最基本方法.要依据题设.题断的结构特点.内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.比较法的一般步骤是:作差(商)→变形→判断符号(值).高中数学高考知识点归纳。
高考数学必考知识点总结
高考数学必考知识点总结高考数学必考知识点总结1考点一:集合与简易逻辑集合局部一般以选择题出现,属容易题。
重点考查集合间关系的理解和认识。
近年的试题加强了对集合计算化简能力的考查,并向无限集开展,考查抽象思维能力。
在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。
简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系〞、命题真伪的判断、全称命题和特称命题的否认等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。
考点二:函数与导数函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、根本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。
导数局部一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。
考点三:三角函数与平面向量一般是2道小题,1道综合解答题。
小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。
大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。
向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点〞题型.考点四:数列与不等式不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、根本不等式的应用等,通常会在小题中设置1到2道题。
对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查.在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目.考点五:立体几何与空间向量一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系;三是考查利用空间向量解决立体几何问题:利用空间向量证明线面平行与垂直、求空间角等(文科不要求).在高考试卷中,一般有1~2个客观题和一个解答题,多为中档题。
高考数学知识点归纳总结全
为为为为p 为q 为为为为┐p 为┐q为为为为q 为p为为为为为┐q 为┐p为为为为为为为为为为为为为为为为高中数学必修+选修知识点归纳必修1数学知识点第一章:集合与函数概念1、集合三要素:确定性、互异性、无序性。
2、 常见集合:正整数集合:或,整数集合:*N +N ,有理数集合:,实数集合:.Z Q R 3、并集.记作:.交集.记作:.B A B A 全集、补集{|,}U C A x x U x A =∈∉且(C U A)∩( C U B) = C U (A∪B) (C U A)∪( C U B) = C U (A∩B);;B B A = A B ⊆⇒简易逻辑:或:有真为真,全假为假。
且:有假为假,全真为真。
非:真假相反原命题:若P 则q ; 逆命题:若q 则p ;否命题:若┑P 则┑q;逆否命题:若┑q 则┑p 。
常用变换:①)()()()()()(y f x f y x f y f x f y x f =-⇔=+.证)()(])[()()()()(y f y x f y y x f x f x f y f y x f -=+-=⇔=-②)()()()()((y f x f y x f y f x f yxf +=⋅⇔-=证:)()()()(y f yxf y y x f x f +=⋅=4、设A 、B 是非空的数集,如果按照某种确定的对应关系,使对于集合f A 中的任意一个数,在集合B 中都x 有惟一确定的数和它对应,那()x f 么就称为集合A 到集合B B A f →:的一个函数,记作:.()A x x f y ∈=,5、定义域1⎧⎪⎨⎪⎩分母不等于零被开方大于等于零对数的幂大于零,底大于零不等于值域:利用函数单调性求出所给区间的最大值和最小值,6、函数单调性:(1)定义法:设那么2121],,[x x b a x x <∈、上是增函数;],[)(0)()(21b a x f x f x f 在⇔<-上是减函数.],[)(0)()(21b a x f x f x f 在⇔>-步骤:取值—作差—变形—定号—判断(2)导数法:设函数在某个区间内可导,若)(x f y =,则为增函数;若,则0)(>'x f )(x f 0)(<'x f 为减函数.)(x f 7、奇偶性为偶函数:图象关于轴对称.()x f ()()x f x f =-y 函数为奇函数图象关于原点对()x f ()()x f x f -=-称.若奇函数在区间上是递增函数,则()x f y =()+∞,0在区间上也是递增函数.()x f y =()0,∞-若偶函数在区间上是递增函数,则()x f y =()+∞,0在区间上是递减函数.()x f y =()0,∞-函数的几个重要性质:①如果函数对于一切,都有()x f y =R x ∈或f (2a-x )=f (x ),那函()()x a f x a f -=+数的图象关于直线对称.()x f y =a x = ②函数与函数的图象关于直线()x f y =()x f y -=对称;0=x 函数与函数的图象关于直线()x f y =()x f y -=对称;0=y 函数与函数的图象关于坐标()x f y =()x f y --=原点对称.二、函数与导数1、几种常见函数的导数①;②; ③'C 0=1')(-=n n nxx ; ④;x x cos )(sin '=x x sin )(cos '-=⑤; ⑥; ⑦a a a xx ln )('=xx e e =')(;⑧a x x a ln 1)(log '=xx 1)(ln '=2、导数的运算法则(1). '''()u v u v ±=±(2). '''()uv u v uv =+ (3).'''2()(0)u u v uvv vv-=≠3、复合函数求导法则复合函数的导数和函数(())y f g x =的导数间的关系为,(),()y f u u g x ==x u x y y u '''=⋅即对的导数等于对的导数与对的导数的y x y u u x 乘积.解题步骤:分层—层层求导—作积还原导数的应用:1、在点处的导数的几何意义:)(x f y =0x 函数在点处的导数是曲线在)(x f y =0x )(x f y =处的切线的斜率,相应的切线))(,(00x f x P )(0x f '方程是.))((000x x x f y y -'=-切线方程:过点的切线方程,设切点为()00,P x y ,则切线方程为,()11,x y ()()111'y y f x x x -=-再将P 点带入求出即可1x 2、函数的极值(----列表法) (1)极值定义:极值是在附近所有的点,都有<,0x )(x f )(0x f 则是函数的极大值;)(0x f )(x f极值是在附近所有的点,都有>,0x )(x f )(0x f 则是函数的极小值.)(0x f )(x f (2)判别方法:①如果在附近的左侧>0,右侧0x )('x f <0,那么是极大值;)('x f )(0x f ②如果在附近的左侧<0,右侧0x )('x f >0,那么是极小值.)('x f )(0x f 3、求函数的最值(1)求在内的极值(极大或者极小值)()y f x =(,)a b (2)将的各极值点与比较,其()y f x =(),()f a f b 中最大的一个为最大值,最小的一个为极小值。
高等数学知识点总结
高等数学知识点总结高等数学知识点总结1高考数学解答题部分主要考查七大主干知识:第一,函数与导数。
主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
第二,*面向量与三角函数、三角变换及其应用。
这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
第三,序列及其应用。
这部分是高考的重点和难点部分,主要产生一些综合题。
第四,不平等。
本文主要考察不等式的解法和证明,很少单独考察,主要是通过解题中的大小比较。
是高考的重点和难点。
第五,概率和统计。
这部分和我们的生活联系比较大,属应用题。
第六,空间位置关系的定性与定量分析,主要是证明*行或垂直,求角和距离。
第七,解析几何。
是高考的难点,计算量大,一般包含参数。
高考数学基础知识的考查全面,突出重点。
扎实的数学基础是成功解题的关键。
鉴于数学高考对基础知识和基本技能的强调,必须全面系统地复习高中数学基础知识,正确理解基本概念,正确掌握定理、原理、规律、公式,形成记忆和技能。
以恒变。
数学思想方法考试是在更高层次上对数学知识的抽象和概括的考试,是与数学知识相结合的。
对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用**的数学观点**材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,所有数学考试最终落在解题上。
考纲对数学思维能力、运算能力、空间想象能力以及实践能力和创新意识都提出了十分明确的考查要求,而解题训练是提高能力的必要途径,所以高考复习必须把解题训练落到实处。
训练的内容必须根据考纲的要求精心选题,始终紧扣基础知识,多进行解题的回顾、总结,概括提炼基本思想、基本方法,形成对通性通法的认识,真正做到解一题,会一类。
在临近高考的数学复习中,考生们更应该从三个层面上整体把握,同步推进。
1.知识层面也就是对每个章节、每个知识点的再认识、再记忆、再应用。
数学高考内容选修加必修,可归纳为12个章节,75个知识点细化为160个小知识点,而这些知识点又是纵横交错,互相关联,是“你中有我,我中有你”的。
高考数学知识点总结
高考数学知识点总结高考数学知识点总结(精选17篇)总结是对过去一定时期的工作、学习或思想情况进行回顾、分析,并做出客观评价的书面材料,它可以帮助我们有寻找学习和工作中的规律,让我们抽出时间写写总结吧。
那么总结应该包括什么内容呢?下面是店铺帮大家整理的高考数学知识点总结,供大家参考借鉴,希望可以帮助到有需要的朋友。
高考数学知识点总结篇1一、集合与函数1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解。
2.在应用条件时,易A忽略是空集的情况3.你会用补集的思想解决有关问题吗?4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?5.你知道“否命题”与“命题的否定形式”的区别。
6.求解与函数有关的问题易忽略定义域优先的原则。
7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称。
8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域。
9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调。
例如:。
10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法11. 求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示。
12.求函数的值域必须先求函数的定义域。
13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?14.解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。
17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。
高考数学知识点归纳
高考数学知识点归纳高考数学知识点1一、高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节主要是考函数和导数,因为这是整个高中阶段中最核心的部分,这部分里还重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析。
二、平面向量和三角函数对于这部分知识重点考察三个方面:是划减与求值,第一,重点掌握公式和五组基本公式;第二,掌握三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质;第三,正弦定理和余弦定理来解三角形,这方面难度并不大。
三、数列数列这个板块,重点考两个方面:一个通项;一个是求和。
四、空间向量和立体几何在里面重点考察两个方面:一个是证明;一个是计算。
五、概率和统计概率和统计主要属于数学应用问题的范畴,需要掌握几个方面:……等可能的概率;……事件;独立事件和独立重复事件发生的概率。
六、解析几何这部分内容说起来容易做起来难,需要掌握几类问题,第一类直线和曲线的位置关系,要掌握它的通法;第二类动点问题;第三类是弦长问题;第四类是对称问题;第五类重点问题,这类题往往觉得有思路却没有一个清晰的答案,但需要要掌握比较好的算法,来提高做题的准确度。
七、压轴题同学们在最后的备考复习中,还应该把重点放在不等式计算的方法中,难度虽然很大,但是也切忌在试卷中留空白,平时多做些压轴题真题,争取能解题就解题,能思考就思考。
高考数学直线方程知识点:什么是直线方程从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。
求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,两直线平行;有无穷多解时,两直线重合;只有一解时,两直线相交于一点。
常用直线向上方向与 X 轴正向的夹角( 叫直线的倾斜角 )或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。
2024高考数学知识点归纳总结
2024高考数学知识点归纳总结一、集合与常用逻辑用语。
1. 集合。
- 集合的概念:元素与集合的关系(属于、不属于),集合的表示方法(列举法、描述法、韦恩图)。
- 集合间的关系:子集(包含、真包含)、相等集合的判定与性质。
- 集合的运算:交集、并集、补集的定义、性质和运算规则。
例如:A∩ B = {xx∈ A且x∈ B},A∪ B={xx∈ A或x∈ B},∁_U A={xx∈ U且x∉ A}(U为全集)。
2. 常用逻辑用语。
- 命题:命题的概念(能判断真假的陈述句),命题的真假性判断。
- 四种命题:原命题、逆命题、否命题、逆否命题的相互关系(互为逆否命题同真同假)。
- 充分条件与必要条件:若pRightarrow q,则p是q的充分条件,q是p的必要条件;若pLeftrightarrow q,则p是q的充要条件。
- 逻辑联结词:“且”(∧)、“或”(∨)、“非”(¬)的含义和真假判断规则。
例如:p∧ q为真当且仅当p真且q真;p∨ q为真当且仅当p真或q真;¬ p 的真假与p相反。
二、函数。
1. 函数的概念。
- 函数的定义:设A,B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y = f(x)和它对应,那么就称f:A→ B为从集合A到集合B的一个函数。
- 函数的三要素:定义域、值域、对应关系。
定义域是自变量x的取值范围;值域是函数值y = f(x)的取值集合;同一函数的判定(定义域和对应关系相同)。
2. 函数的性质。
- 单调性:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D上的任意两个自变量的值x_1,x_2,当x_1 < x_2时,都有f(x_1)(或f(x_1)>f(x_2)),那么就说函数y = f(x)在区间D上是增函数(或减函数)。
判断函数单调性的方法有定义法、导数法等。
- 奇偶性:对于函数y = f(x)的定义域内任意一个x,都有f(-x)= - f(x)(或f(-x)=f(x)),那么函数y = f(x)是奇函数(或偶函数)。
高考数学知识点归纳(完整版)
高考数学知识点归纳(完整版)高考数学知识点归纳第一,函数与导数主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
第二,平面向量与三角函数、三角变换及其应用这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
第三,数列及其应用这部分是高考的重点而且是难点,主要出一些综合题。
第四,不等式主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。
是高考的重点和难点。
第五,概率和统计这部分和我们的生活联系比较大,属应用题。
第六,空间位置关系的定性与定量分析主要是证明平行或垂直,求角和距离。
主要考察对定理的熟悉程度、运用程度。
第七,解析几何高考的难点,运算量大,一般含参数。
高考数学知识点高考数学必考知识点归纳必修一:1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解) 高考数学必考知识点归纳必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角。
这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。
这部分知识高考占22---27分2、直线方程:高考时不单独命题,易和圆锥曲线结合命题3、圆方程高考数学必考知识点归纳必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。
高考数学必考知识点归纳必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。
2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。
09年理科占到5分,文科占到13分。
高考数学必考知识点归纳必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。
高考数学知识点总结大全
高考数学知识点总结大全高考数学知识点总结易错点1 遗忘空集致误错因分析:由于空集是任何非空集合的真子集,因此,对于集合B高三经典纠错笔记:数学A,就有B=A,φ≠B高三经典纠错笔记:数学A,B≠φ,三种情况,在解题中如果思维不够缜密就有可能忽视了B≠φ这种情况,导致解题结果错误。
尤其是在解含有参数的集合问题时,更要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。
空集是一个特殊的集合,由于思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。
易错点2 忽视集合元素的三性致误错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。
在解题时也可以先确定字母参数的范围后,再具体解决问题。
易错点3 四种命题的结构不明致误错因分析:如果原命题是“若 A则B”,则这个命题的逆命题是“若B则A”,否命题是“若┐A则┐B”,逆否命题是“若┐B则┐A”。
这里面有两组等价的命题,即“原命题和它的逆否命题等价,否命题与逆命题等价”。
在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的结构以及它们之间的等价关系。
另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的否定是全称命题。
如对“a,b都是偶数”的否定应该是“a,b 不都是偶数”,而不应该是“a ,b都是奇数”。
易错点4 充分必要条件颠倒致误错因分析:对于两个条件A,B,如果A=>B成立,则A是B的充分条件,B是A的必要条件;如果B=>A成立,则A是B的必要条件,B是A的充分条件;如果A<=>B,则A,B互为充分必要条件。
解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充要条件的概念作出准确的判断。
三角函数的单调性判断致误对于函数y=Asin(ωx+φ)的单调性,当ω>0时,由于内层函数u=ωx+φ是单调递增的,所以该函数的单调性和y=sin x 的单调性相同,故可完全按照函数y=sin x的单调区间解决;但当ω<0时,内层函数u=ωx+φ是单调递减的,此时该函数的单调性和函数y=sinx的单调性相反,就不能再按照函数y=sinx的单调性解决,一般是根据三角函数的奇偶性将内层函数的系数变为正数后再加以解决。
高考常考的数学知识点总结
高考常考的数学知识点总结高考常考数学知识点幂函数定义:形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域性质:对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。
当指数n是负整数时,设a=—k,则x=1/(x^k),显然x≠0,函数的定义域是(—∞,0)∪(0,+∞)。
因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于x 0,则a可以是任意实数;排除了为0这种可能,即对于x 0和x 0的所有实数,q不能是偶数;排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
高考数学知识点总结一、函数1.函数的基本概念函数的概念,函数的单调性,函数的奇偶性,这些属于函数的基本概念,已经在高一数学必修一中有了详细的介绍,在此不再赘述。
2.指数函数单调性是指数函数的重要性质,特别是函数图象的无限伸展性,x轴是函数图象的渐近线,当0+∞,y- 当a 1时,x- -∞,y- 当a 1时,a的值越大,第一象限内图象越靠近y轴,递增的速度越快;3.对数函数对数函数的性质是每年高考的必考内容之一,其中单调性和对数函数的定义域是热点问题,其单调性取决于底数与“1”的大小关系.二、三角函数1.命题趋势高考可能仍会将三角函数概念、同角三角函数的关系式和诱导公式作为基础内容,融于三角求值、化简及解三角形的考查中.由该部分知识的基础性决定这一部分知识可以和其他知识融合考查,高考中需要关注.2.三角函数式的化简要遵循“三看”原则(1)一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式.(2)二看”函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有”切化弦”(3)三看”结构特征”,分析结构特征,可以帮助我们找到变形的方向,常见的有“遇到分式要通分”等.多做三角函数练习题会对更加熟悉的掌握三角函数有帮助,这里给大家推荐李老师教的三角函数解题法。
高考数学知识点全总结
高考数学知识点全总结1. 函数与方程•函数基本概念:函数定义、函数图像、函数性质•一次函数与二次函数:一次函数的性质、二次函数的性质、解一次方程与二次方程•指数与对数:指数函数、对数函数、指数与对数方程•三角函数:三角函数的概念与性质、三角函数的图像、三角函数的诱导公式•函数的运算:函数的四则运算、复合函数、反函数•不等式:一元一次不等式、一元二次不等式、绝对值不等式2. 三角函数与解三角形•三角函数的定义:弧度与角度、常用三角函数的单位圆定义、三角函数的周期与图像•三角函数的基本关系:和差化积、积化和差、倍角公式、半角公式、诱导公式•解直角三角形:正弦定理、余弦定理、正弦定理的推论、余弦定理的推论、解三角形的一般步骤3. 三角恒等变换•三角恒等式的等式变换:同角三角函数的化简、平方公式与倍角公式、半角公式与二倍角公式、诱导公式与三倍角公式•三角恒等式的实际应用:证明与计算、几何证明与构造、等差数列的求和、排列组合与二项式定理•复数与指数形式:复数的概念与运算、复数的代数表示与三角形式、指数函数与三角函数的关系、欧拉公式4. 一元函数微分学•导数的概念:函数的变化率与导数的定义、导数的几何意义、导数的运算法则•函数的求导法则:常用初等函数的导数、复合函数的求导、反函数的求导、隐函数的求导•求函数的极值与最值:极值与最值的概念、可导函数的极值与最值、非可导函数的极值与最值•函数的应用问题:函数的变化率问题、图像与导数的关系、函数导数的应用、微分与线性近似5. 一元函数积分学•不定积分的概念:原函数与不定积分的关系、基本积分公式、分部积分法、换元积分法•定积分的概念:定积分的定义与性质、定积分的计算方法、变上限积分、变下限积分•函数积分的应用:定积分与面积计算、定积分与物理问题、定积分与几何问题、定积分与平均值问题6. 二元函数与微分学•二元函数的基本概念:二元函数的定义与性质、二元函数的图像与曲面、二元函数的极值与最值•偏导数与全微分:偏导数的定义与计算、全微分的概念与计算、一阶偏导数的几何意义•隐函数与参数方程:隐函数的概念与求导、参数方程的概念与求导、多元函数微分与微分法、二元函数的应用问题7. 二元函数与积分学•二重积分的概念:二重积分的定义与性质、二重积分的计算方法、变量替换法、极坐标法•三重积分的概念:三重积分的定义与性质、三重积分的计算方法、柱坐标法、球坐标法•二重积分的应用:计算几何体的体积、求平面区域的面积、质量、质心、惯性矩•三重积分的应用:计算物体的体积、计算质量、质心、转动惯量、力矩8. 统计与概率•随机事件与概率:随机事件与样本空间、概率的定义与性质、概率计算方法、互斥事件与对立事件•条件概率与独立性:条件概率的定义与性质、乘法定理与全概率定理、独立事件与互不独立事件•随机变量与期望值:随机变量的概念与常用分布、离散型随机变量与连续型随机变量、期望值与方差的计算•统计基本概念与抽样分布:总体与样本、抽样分布与中心极限定理、样本统计量的分布与点估计以上是高考数学的主要知识点总结,包括函数与方程、三角函数与解三角形、三角恒等变换、一元函数微分学、一元函数积分学、二元函数与微分学、二元函数与积分学、统计与概率等内容。
高考数学复习知识点讲义课件41---正弦、余弦函数的周期性与奇偶性
2
2
=cosx+π2的最小正周期 T=21π=2π,D 正确.故选 C、D.
答案:CD
2.(多选)若函数 f(x)=sin ωx 的最小正周期为 4π,则 ω 的值可能是 ( )
A.2
1 B.2
C.-12
D.-2
解析:因为函数 f(x)=sin ωx 的最小正周期为 4π,所以|ω|=2Tπ=24ππ=12, ω=±12.
答案:BC
[典例] 判断下列函数的奇偶性,并说明理由.
(1)y=|sin x|;
(2)y=1+cossinx
; x
(3)y=sin x+tan x;
(4)y= 1-cos x+ cos x-1.
[解] (1)对任意 x∈R ,因为 f(-x)=|sin(-x)|=|-sin x|=|sin x|=f(x),所
[对点训练] 1.(多选)下列函数中,最小正周期为 2π 的是
A.y=sin 2x B.y=cos12x C.y=cos12x+32π D.y=cosx+π2
()
解析: y=sin 2x 的最小正周期 T=22π=π,A 不正确;y=cos12x 的最小正周期
T=21π=4π,B 不正确;y=cos12x+32π的最小正周期 T=π1=2π,C 正确;y
()
解析:当 φ=π 时,f(x)=sin(x+π)=-sin x,是奇函数. 当 φ=π2时,f(x)=sinx+π2=cos x,是偶函数. 所以 A、C 错误,B 正确. 无论 φ 为何值,f(x)不可能恒为 0,故不存在 φ,使 f(x)既是奇函数,又是偶函 数,故 D 正确. 答案:BD
(2)判断函数y=Asin(ωx+φ)或y=Acos(ωx+φ)(其中A,ω,φ是常数,且 A≠0 , ω>0) 是 否 具 备 奇 偶 性 , 关 键 是 看 它 能 否 通 过 诱 导 公 式 转 化 为 y = Asin ωx(A≠0,ω>0)或y=Acos ωx(A≠0,ω>0)其中的一个.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新版名校学习资料集锦全国各大名校资料集合[全国通用]高中数学高考知识点总结1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
{}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 中元素各表示什么?2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。
∅ 注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。
{}{}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为B A a ⊂(答:,,)-⎧⎨⎩⎫⎬⎭10133. 注意下列性质:{}()集合,,……,的所有子集的个数是;1212a a a n n(3)德摩根定律:()()()()()()C C C C C C U U U U U U A B A B A B A B Y I I Y ==,4. 你会用补集思想解决问题吗?(排除法、间接法)的取值范围。
5. 可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和()()∨∧“非”().⌝ 若为真,当且仅当、均为真p q p q ∧若为真,当且仅当、至少有一个为真p q p q ∨若为真,当且仅当为假⌝p p6. 命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。
)原命题与逆否命题同真、同假;逆命题与否命题同真同假。
7. 对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B中有元素无原象。
)8. 函数的三要素是什么?如何比较两个函数是否相同?(定义域、对应法则、值域)9. 求函数的定义域有哪些常见类型?10. 如何求复合函数的定义域?[]0义域是_。
>->=+-如:函数的定义域是,,,则函数的定())()()f x a b b a F(x f x f x[]a a-(答:,)11. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?12. 反函数存在的条件是什么?(一一对应函数)求反函数的步骤掌握了吗?(①反解x;②互换x、y;③注明定义域)()()如:求函数的反函数f x xx xx ()=+≥-<⎧⎨⎪⎩⎪1002()()(答:)f x x x x x -=->--<⎧⎨⎪⎩⎪1110() 13. 反函数的性质有哪些?①互为反函数的图象关于直线y =x 对称; ②保存了原来函数的单调性、奇函数性;14. 如何用定义证明函数的单调性? (取值、作差、判正负) 如何判断复合函数的单调性?∴……)15. 如何利用导数判断函数的单调性?()在区间,内,若总有则为增函数。
(在个别点上导数等于a b f x f x '()()≥0零,不影响函数的单调性),反之也对,若呢?f x '()≤0值是( ) A. 0B. 1C. 2D. 3由已知在,上为增函数,则,即f x aa ()[)1313+∞≤≤ ∴a 的最大值为3)16. 函数f (x )具有奇偶性的必要(非充分)条件是什么? (f(x)定义域关于原点对称)若总成立为奇函数函数图象关于原点对称f x f x f x ()()()-=-⇔⇔ 若总成立为偶函数函数图象关于轴对称f x f x f x y ()()()-=⇔⇔ 注意如下结论:(1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。
17. 你熟悉周期函数的定义吗?函数,T是一个周期。
)如:18. 你掌握常用的图象变换了吗?与的图象关于轴对称-()()f x f x y-与的图象关于轴对称()()f x f x xf x f x ()()与的图象关于原点对称-- f x f x y x ()()与的图象关于直线对称-=1 f x f a x x a ()()与的图象关于直线对称2-= f x f a x a ()()()与的图象关于点,对称--20将图象左移个单位右移个单位y f x a a a a y f x a y f x a =>−→−−−−−−−−>=+=-()()()()()00 上移个单位下移个单位b b b b y f x a b y f x a b()()()()>−→−−−−−−−−>=++=+-00 注意如下“翻折”变换:19. 你熟练掌握常用函数的图象和性质了吗?()()一次函数:10y kx b k =+≠()()()反比例函数:推广为是中心,200y k x k y b k x ak O a b =≠=+-≠'()的双曲线。
()()二次函数图象为抛物线30244222y ax bx c a a x b a ac b a=++≠=+⎛⎝ ⎫⎭⎪+-应用:①“三个二次”(二次函数、二次方程、二次不等式)的关系——二次方程②求闭区间[m ,n ]上的最值。
③求区间定(动),对称轴动(定)的最值问题。
④一元二次方程根的分布问题。
如:二次方程的两根都大于ax bx c k b a k f k 20020++=⇔≥->>⎧⎨⎪⎪⎩⎪⎪∆()由图象记性质! (注意底数的限定!)()()“对勾函数”60y x k xk =+>利用它的单调性求最值与利用均值不等式求最值的区别是什么?20. 你在基本运算上常出现错误吗?log log log log log a a a a n a M N M N M nM =-=,121. 如何解抽象函数问题? (赋值法、结构变换法)()()()()()∈=+2x R f x f xy f x f y f x(),满足,证明是偶函数。
22. 掌握求函数值域的常用方法了吗?(二次函数法(配方法),反函数法,换元法,均值定理法,判别式法,利用函数单调性法,导数法等。
)如求下列函数的最值:23. 你记得弧度的定义吗?能写出圆心角为α,半径为R的弧长公式和扇形面积公式吗?24. 熟记三角函数的定义,单位圆中三角函数线的定义又如:求函数的定义域和值域。
y x =--⎛⎝ ⎫⎭⎪122cos π (∵)122120--⎛⎝ ⎫⎭⎪=-≥cos sin πx x∴,如图:sin x ≤2225. 你能迅速画出正弦、余弦、正切函数的图象吗?并由图象写出单调区间、对称点、对称轴吗?()y x k k k Z =-+⎡⎣⎢⎤⎦⎥∈sin 的增区间为,2222ππππ ()减区间为,22232k k k Z ππππ++⎡⎣⎢⎤⎦⎥∈()()图象的对称点为,,对称轴为k x k k Z πππ02=+∈ []()y x k k k Z =+∈cos 的增区间为,22πππ []()减区间为,222k k k Z ππππ++∈()图象的对称点为,,对称轴为k x k k Z πππ+⎛⎝ ⎫⎭⎪=∈20 y x k k k Z =-+⎛⎝ ⎫⎭⎪∈tan 的增区间为,ππππ22()()[]26. y =Asin x +正弦型函数的图象和性质要熟记。
或ωϕωϕy A x =+cos ()振幅,周期12||||A T =πω ()若,则为对称轴。
f x A x x 00=±=()()若,则,为对称点,反之也对。
f x x 0000=()五点作图:令依次为,,,,,求出与,依点202322ωϕππππx x y +(x ,y )作图象。
()根据图象求解析式。
(求、、值)3A ωϕ解条件组求、值ωϕ()∆正切型函数,y A x T =+=tan ||ωϕπω 27. 在三角函数中求一个角时要注意两个方面——先求出某一个三角函数值,再判定角的范围。
28. 在解含有正、余弦函数的问题时,你注意(到)运用函数的有界性了吗?29. 熟练掌握三角函数图象变换了吗? (平移变换、伸缩变换) 平移公式:()点(,),平移至(,),则1P x y a h k P x y x x h y y k→=−→−−−−−=+=+⎧⎨⎩()''''' ()曲线,沿向量,平移后的方程为,200f x y a h k f x h y k ()()()==--=→如:函数的图象经过怎样的变换才能得到的y x y x =-⎛⎝ ⎫⎭⎪-=2241sin sin π图象?30. 熟练掌握同角三角函数关系和诱导公式了吗?“·”化为的三角函数——“奇变,偶不变,符号看象限”,k παα2±“奇”、“偶”指k 取奇、偶数。
()如:cos tan sin 947621πππ+-⎛⎝ ⎫⎭⎪+=又如:函数,则的值为y y =++sin tan cos cot ααααA. 正值或负值B. 负值C. 非负值D. 正值31. 熟练掌握两角和、差、倍、降幂公式及其逆向应用了吗? 理解公式之间的联系:应用以上公式对三角函数式化简。
(化简要求:项数最少、函数种类最少,分母中不含三角函数,能求值,尽可能求值。
) 具体方法:()()角的变换:如, (1222)βαβααβαβαβ=+-+=-⎛⎝ ⎫⎭⎪--⎛⎝ ⎫⎭⎪(2)名的变换:化弦或化切 (3)次数的变换:升、降幂公式(4)形的变换:统一函数形式,注意运用代数运算。
()()如:已知,,求的值。
sin cos cos tan tan ααααββα121232-=-=--(由已知得:,∴sin cos sin cos sin tan αααααα221122===()()[]()()∴··)tan tan tan tan tan tan βαβααβααβαα-=--=--+-=-+=212312123121832. 正、余弦定理的各种表达形式你还记得吗?如何实现边、角转化,而解斜三角形?(应用:已知两边一夹角求第三边;已知三边求角。
)正弦定理:a A b B c C R a R Ab R Bc R Csin sin sin sin sin sin ===⇔===⎧⎨⎪⎩⎪2222()求角;1C()(()由已知式得:112112-++-=cos cos A B C()由正弦定理及得:212222a b c =+33. 用反三角函数表示角时要注意角的范围。
[]反正弦:,,,arcsin x x ∈-⎡⎣⎢⎤⎦⎥∈-ππ2211[][]反余弦:,,,arccosx x ∈∈-011π ()反正切:,,arctan x x R ∈-⎛⎝ ⎫⎭⎪∈ππ22 34. 不等式的性质有哪些?答案:C35. 利用均值不等式:()a b ab a b R a b ab ab a b 222222+≥∈+≥≤+⎛⎝ ⎫⎭⎪+,;;求最值时,你是否注 意到“,”且“等号成立”时的条件,积或和其中之一为定a b R ab a b ∈++()()值?(一正、二定、三相等) 注意如下结论:当且仅当时等号成立。