教育最新K122018-2019学年高中数学人教A版选修4-1创新应用教学案:第一讲二平行线分线段成比例定理-含答案

合集下载

【K12教育学习资料】2018-2019学年高中数学人教A版选修4-4创新应用教学案:第二讲章末小结

【K12教育学习资料】2018-2019学年高中数学人教A版选修4-4创新应用教学案:第二讲章末小结

(1)建立直角坐标系,设曲线上任一点P 坐标为(x ,y ); (2)选取适当的参数;(3)根据已知条件和图形的几何性质,物理意义,建立点P 坐标与参数的函数式; (4)证明这个参数方程就是所要求的曲线的方程.过点P (-2,0)作直线l 与圆x 2+y 2=1交于A 、B 两点,设A 、B 的中点为M ,求M 的轨迹的参数方程.[解] 设M (x ,y ),A (x 1,y 1),B (x 2,y 2),直线l 的方程为x =ty -2.由⎩⎪⎨⎪⎧x =ty -2,x 2+y 2=1消去x 得(1+t 2)y 2-4ty +3=0. ∴y 1+y 2=4t 1+t 2,则y =2t 1+t 2.x =ty -2=2t 21+t 2-2=-21+t 2,由Δ=(4t )2-12(1+t 2)>0得t 2>3.∴M 的轨迹的参数方程为⎩⎪⎨⎪⎧x =-21+t 2,y =2t 1+t2(t 为参数且t 2>3).在求出曲线的参数方程后,通常利用消参法得出普通方程.一般地,消参数经常采用的是代入法和三角公式法.但将曲线的参数方程化为普通方程,不只是把其中的参数消去,还要注意x ,y 的取值范围在消参前后应该是一致的,也就是说,要使得参数方程与普通方程等价,即它们二者要表示同一曲线.已知曲线的参数方程为⎩⎪⎨⎪⎧x =1+2cos t ,y =-2+2sin t (0≤t ≤π),把它化为普通方程,并判断该曲线表示什么图形?[解] 由曲线的参数方程⎩⎪⎨⎪⎧x =1+2cos t ,y =-2+2sin t ,得⎩⎪⎨⎪⎧x -1=2cos t ,y +2=2sin t . ∵cos 2t +sin 2t =1, ∴(x -1)2+(y +2)2=4. 由于0≤t ≤π, ∴0≤sin t ≤1.从而0≤y +2≤2,即-2≤y ≤0.∴所求的曲线的参数方程为(x -1)2+(y +2)2=4(-2≤y ≤0). 这是一个半圆,其圆心为(1,-2),半径为2.已知参数方程⎩⎨⎧x =⎝⎛⎭⎫t +1t sin θ, ①y =⎝⎛⎭⎫t -1t cos θ, ②(t ≠0).(1)若t 为常数,θ为参数,方程所表示的曲线是什么?(2)若θ为常数,t 为参数,方程所表示的曲线是什么? [解] (1)当t ≠±1时,由①得sin θ=xt +1t ,由②得cos θ=yt -1t .∴x 2⎝⎛⎭⎫t +1t 2+y 2⎝⎛⎭⎫t -1t 2=1. 它表示中心在原点,长轴长为2⎪⎪⎪⎪t +1t ,短轴长为2⎪⎪⎪⎪t -1t ,焦点在x 轴上的椭圆. 当t =±1时,y =0,x =±2sin θ,x ∈[-2,2], 它表示在x 轴上[-2,2]的一段线段. (2)当θ≠k π2(k ∈Z )时,由①得x sin θ=t +1t .由②得y cos θ=t -1t .平方相减得x 2sin 2θ-y 2cos 2θ=4,即x 24sin 2θ-y 24cos 2θ=1,它表示中心在原点,实轴长为4|sin θ|,虚轴长为4|cos θ|,焦点在x 轴上的双曲线. 当θ=k π(k ∈Z )时,x =0,它表示y 轴; 当θ=k π+π2(k ∈Z )时,y =0,x =±⎝⎛⎭⎫t +1t . ∵t +1t ≥2(t >0时)或t +1t≤-2(t <0时),∴|x |≥2.∴方程为y =0(|x |≥2),它表示x 轴上以(-2,0)和(2,0)为端点的向左、向右的两条射线.求直线的参数方程,根据参数方程参数的几何意义,求直线上两点间的距离,求直线的倾斜角,判断两直线的位置关系;根据已知条件求圆的参数方程,根据圆的参数方程解决与圆有关的最值、位置关系等问题.设曲线C 的参数方程为⎩⎪⎨⎪⎧x =2+3cos θ,y =-1+3sin θ(θ为参数),直线l 的方程为x -3y +2=0,则曲线C 上到直线l 距离为71010的点的个数为( )A .1B .2C .3D .4 [解析] 曲线C 的标准方程为:(x -2)2+(y +1)2=9, 它表示以(2,-1)为圆心,半径为3的圆,因为圆心(2,-1)到直线x -3y +2=0的距离d =|2+3+2|10=71010,且3-71010<71010,故过圆心且与l 平行的直线与圆相交的两点为满足题意的点.[答案] B(北京高考)直线⎩⎪⎨⎪⎧x =2+t ,y =-1-t ,(t 为参数)与曲线⎩⎪⎨⎪⎧x =3cos α,y =3sin α,(α为参数)的交点个数为________.[解析] 直线的普通方程为x +y -1=0,圆的普通方程为x 2+y 2=32,圆心到直线的距离d =22<3,故直线与圆的交点个数是2. [答案] 2求直线⎩⎪⎨⎪⎧x =-1+2t ,y =-2t 被曲线⎩⎪⎨⎪⎧x =1+4cos θ,y =-1+4sin θ截得的弦长.[解] 直线⎩⎪⎨⎪⎧x =-1+2t ,y =-2t ,的普通方程为x +y +1=0曲线⎩⎪⎨⎪⎧x =1+4cos θ,y =-1+4sin θ,即圆心为(1,-1),半径为4的圆则圆心(1,-1)到直线x +y +1=0的距离 d =|1-1+1|12+12=22.设直线被曲线截得的弦长为t ,则t =242-⎝⎛⎭⎫222=62, ∴直线被曲线截得的弦长为62.直线⎩⎨⎧x =-1+t2,y =32t(t 为参数)与圆x 2+y 2=a (a >0)相交于A 、B 两点,设P (-1,0),且|P A |∶|PB |=1∶2,求实数a 的值.[解] 法一:直线参数方程可化为:y =3(x +1)联立方程⎩⎪⎨⎪⎧y =3(x +1),x 2+y 2=a ,消去y ,得:4x 2+6x +3-a =0.设A (x 1,y 1)、B (x 2,y 2)(不妨设x 1<x 2),则 Δ=36-16(3-a )>0,① x 1+x 2=-32,②x 1·x 2=3-a4,③ |P A ||PB |=-1-x 1x 2+1=12,④ 由①②③④解得a =3.法二:将直线参数方程代入圆方程得 t 2-t +1-a =0设方程两根为t 1、t 2,则 Δ=1-4(1-a )>0⇒a >34.t 1+t 2=1,t 1·t 2=1-a .(*) 由参数t 的几何意义知 |P A ||PB |=-t 1t 2=12或|P A ||PB |=-t 2t 1=12. 由t 1t 2=-12,解得a =3.能根据条件求椭圆、双曲线、抛物线的参数方程,并利用圆锥曲线的参数方程解最值、直线与圆锥曲线的位置关系等问题.已知点P (3,2)平分抛物线y 2=4x 的一条弦AB ,求弦AB 的长. [解] 设弦AB 所在的直线方程为⎩⎪⎨⎪⎧x =3+t cos α,y =2+t sin α(t 为参数), 代入方程y 2=4x 整理得t 2sin 2α+4(sin α-cos α)t -8=0.①∵点P (3,2)是弦AB 的中点,由参数t 的几何意义可知,方程①的两个实根t 1、t 2满足关系t 1+t 2=0, sin α-cos α=0, ∴0≤α<π, ∴α=π4.∴|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=4·8sin 2π4=8. 过点B (0,-a )作双曲线x 2-y 2=a 2右支的割线BCD ,又过右焦点F 作平行于BD 的直线,交双曲线于G 、H 两点.求证:|BC ||GF |·|BD ||FH |=2. [证明] 当a >0时,设割线的倾斜角为α,则它的参数方程为⎩⎪⎨⎪⎧x =t cos α,y =-a +t sin α(t 为参数).①则过焦点F 平行于BD 的直线GH 的参数方程为⎩⎪⎨⎪⎧x =2a +t cos α,y =t sin α(t 为参数).② 将①代入双曲线方程,得t 2cos 2α+2at sin α-2a 2=0. 设方程的解为t 1,t 2,则有|BC |·|BD |=|t 1t 2|=⎪⎪⎪⎪⎪⎪2a 2cos 2α,同理,|GF |·|FH |=⎪⎪⎪⎪⎪⎪a 2cos 2α.∴|BC ||GF |·|BD ||FH |=2, 当a <0时,同理可得上述结果.一、选择题1.极坐标方程ρ=cos θ和参数方程⎩⎪⎨⎪⎧x =-1-t ,y =2+3t (t 为参数)所表示的图形分别是( )A .圆、直线B .直线、圆C .圆、圆D .直线、直线解析:选A 由ρ=cos θ,得x 2+y 2=x ,∴ρ=cos θ表示一个圆.由⎩⎪⎨⎪⎧x =-1-ty =2+3t得到3x +y =-1,表示一条直线.2.设r >0,那么直线x cos θ+y sin θ=r (θ是常数)与圆⎩⎪⎨⎪⎧x =r cos φ,y =r sin φ(φ是参数)的位置关系是( )A .相交B .相切C .相离D .视r 的大小而定 解析:选B 圆心到直线的距离d =|0+0-r |cos 2θ+sin 2θ=|r |=r ,故相切.3.双曲线⎩⎨⎧x =3tan θ,y =sec θ(θ为参数),那么它的两条渐近线所成的锐角是( )A .30°B .45°C .60°D .75°解析:选C 由⎩⎪⎨⎪⎧x =3tan θy =sec θ⇒y 2-x 23=1,两条渐近线的方程是y =±33x ,所以两条渐近线所夹的锐角是60°.4.若动点(x ,y )在曲线x 24+y 2b 2=1(b >0)上变化,则x 2+2y 的最大值为( )A.⎩⎪⎨⎪⎧b 24+4 (0<b <4),2b (b ≥4) B.⎩⎪⎨⎪⎧b 24+4(0<b <2),2b (b ≥2) C.b 24+4 D .2b 解析:选A 设动点的坐标为(2cos θ,b sin θ),代入x 2+2y =4cos 2θ+2b sin θ= -(2sin θ-b 2)2+4+b 24,当0<b <4时,(x 2+2y )max =b 24+4,当b ≥4时,(x 2+2y )max =-(2-b 2)2+4+b 24=2b .二、填空题5.直线⎩⎪⎨⎪⎧x =1+t sin 70°,y =2+t cos 70°(t 为参数)的倾斜角的大小为________.解析:原参数方程变为⎩⎪⎨⎪⎧x =1+t cos 20°y =1+t sin 20°(t 为参数),故直线的倾斜角为20°.答案:20°6.已知直线l 1:⎩⎪⎨⎪⎧x =1+3t ,y =2-4t (t 为参数)与直线l 2:2x -4y =5相交于点B ,又点A (1,2),则|AB |=________.解析:将⎩⎪⎨⎪⎧x =1+3t y =2-4t代入2x -4y =5得t =12,则B (52,0),而A (1,2),得|AB |=52.答案:527.圆的渐开线参数方程为:⎩⎨⎧x =π4cos φ+π4φsin φ,y =π4sin φ-π4φcos φ(φ为参数).则基圆的面积为________.解析:易知,基圆半径为π4.∴面积为π·(π4)2=116π3.答案:116π38.(重庆高考)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcos θ=4的直线与曲线⎩⎪⎨⎪⎧x =t 2,y =t 3(t 为参数)相交于A ,B 两点,则|AB |=________.解析:ρcos θ=4化为直角坐标方程为x =4 ①,⎩⎪⎨⎪⎧x =t 2,y =t 3,化为普通方程为y 2=x 3②, ①、②联立得A (4,8),B (4,-8),故|AB |=16. 答案:16 三、解答题9.经过P (-2,3)作直线交抛物线y 2=-8x 于A 、B 两点. (1)若线AB 被P 平分,求AB 所在直线方程; (2)当直线的倾斜角为π4时,求|AB |.解:设AB 的参数方程是⎩⎪⎨⎪⎧x =-2+t cos α,y =3+t sin α(t 为参数)代入抛物线方程,整理得t 2sin 2α+(6sin α+8cos α)t -7=0.于是t 1+t 2=-6sin α+8cos αsin 2α,t 1t 2=-7sin 2α. (1)若p 为AB 的中点,则t 1+t 2=0. 即6sin α+8cos α=0⇒tan α=-43.故AB 所在的直线方程为y -3=-43(x +2).即4x +3y -1=0.(2)|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2= (6sin α+8cos αsin 2α)2-4(-7sin 2α)=2sin 2α16+12sin 2α,又α=π4,∴|AB |=2sin 2π4 16+12sin (2×π4)=87.10.已知对于圆x 2+(y -1)2=1上任意一点P (x ,y ),不等式x +y +m ≥0恒成立,求实数m 的取值范围.解:圆x 2+(y -1)2=1的参数方程可写为⎩⎪⎨⎪⎧x =cos θ,y =1+sin θ.∵x +y +m ≥0恒成立,∴cos θ+1+sin θ+m ≥0恒成立.∵sin θ+1+cos θ=2sin (θ+π4)+1≥1-2,∴m ≥-(1-2).即m 的取值范围为[2-1,+∞).11.设P 为椭圆弧x 225+y 29=1(x ≥0,y ≥0)上的一动点,又已知定点A (10,6),以P 、A为矩形对角线的两端点,矩形的边平行于坐标轴,求此矩形的面积的最值.解:设P (5cos θ,3sin θ)(0≤θ≤π2),则矩形面积为S =(10-5cos θ)(6-3sin θ)=15[4+sin θcos θ-2(sin θ+cos θ)], 令t =sin θ+cos θ,则sin θcos θ=t 2-12,∴S =152(t -2)2+452.∵t ∈[1,2], ∴当t =1,即P (5,0)或P (0,3)处有最大值,最大值为30; 当t =2,即P (522,322)处有最小值,最小值为1352-30 2.(时间:90分钟 满分:120分)一、选择题(本大题共10个小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.方程⎩⎪⎨⎪⎧x =sin θ,y =cos 2θ(θ为参数)表示的曲线上的一个点的坐标是( )A .(2,-7)B .(1,0) C.⎝⎛⎭⎫12,12 D.⎝⎛⎭⎫13,23 解析:选C 由y =cos 2θ得y =1-2sin 2θ, ∴参数方程化为普通方程是y =1-2x 2(-1≤x ≤1), 当x =12时,y =1-2×(12)2=12,故选C.2.直线⎩⎪⎨⎪⎧x =1+2t ,y =2+t (t 为参数)被圆x 2+y 2=9截得的弦长为( )A.125B.125 5 C.95 5 D.9510解析:选B⎩⎪⎨⎪⎧x =1+2t ,y =2+t⇒⎩⎨⎧x =1+5t ×25,y =1+5t ×15,把直线⎩⎪⎨⎪⎧x =1+2t ,y =2+t 代入x 2+y 2=9得(1+2t )2+(2+t )2=9,5t 2+8t -4=0.|t 1-t 2|=(t 1+t 2)2-4t 1t 2=(-85)2+165=125,弦长为5|t 1-t 2|=1255.3.直线⎩⎨⎧x =1-15t ,y =-1+25t(t 为参数)的斜率是( )A .2 B.12C .-2D .-12解析:选C由⎩⎨⎧x =1-15t , ①y =-1+25t , ②①×2+②得2x +y -1=0, ∴k =-2.4.若圆的参数方程为⎩⎪⎨⎪⎧x =-1+2cos θ,y =3+2sin θ(θ为参数),直线的参数方程为⎩⎪⎨⎪⎧x =2t -1,y =6t -1(t为参数),则直线与圆的位置关系是( )A .过圆心B .相交而不过圆心C .相切D .相离解析:选B 直线与圆的普通方程分别为3x -y +2=0与(x +1)2+(y -3)2=4, 圆心(-1,3)到直线的距离 d =|-3-3+2|10=410=2105,而d <2且d ≠0,故直线与圆相交而不过圆心.5.参数方程⎩⎪⎨⎪⎧x =cos 2θ,y =sin θ(θ为参数)所表示的曲线为( )A .抛物线的一部分B .一条抛物线C .双曲线的一部分D .一条双曲线解析:选A x +y 2=cos 2θ+sin 2θ=1,即y 2=-x +1. 又x =cos 2θ∈[0,1],y =sin θ∈[-1,1], ∴为抛物线的一部分.6.点P (x ,y )在椭圆(x -2)24+(y -1)2=1上,则x +y 的最大值为( )A .3+ 5B .5+ 5C .5D .6解析:选A 椭圆的参数方程为⎩⎪⎨⎪⎧x =2+2cos θ,y =1+sin θ(θ为参数), x +y =2+2cos θ+1+sin θ=3+5sin (θ+φ), ∴(x +y )max =3+ 5.7.过点(3,-2)且与曲线⎩⎪⎨⎪⎧x =3cos θ,y =2sin θ(θ为参数)有相同焦点的椭圆方程是( )A.x 215+y 210=1B.x 2152+y 2102=1 C.x 210+y 215=1 D.x 2102+y 2152=1 解析:选A 化为普通方程是x 29+y 24=1.∴焦点坐标为(-5,0),(5,0),排除B 、C 、D.8.已知过曲线⎩⎪⎨⎪⎧x =3cos θ,y =5sin θ⎝⎛⎭⎫θ为参数且0≤θ≤π2上一点P 与原点O 的距离为13,则P 点坐标为( )A.⎝⎛⎭⎫332,52 B.⎝⎛⎭⎫322,522C.⎝⎛⎭⎫32,532 D.⎝⎛⎭⎫125,125 解析:选A 设P (3cos θ,5sin θ),则|OP |2=9cos 2θ+25sin 2θ=9+16sin 2θ=13, 得sin 2θ=14.又0≤θ≤π2,∴sin θ=12,cos θ=32.∴x =3cos θ=332.y =5sin θ=52.∴P 坐标为(332,52).9.设曲线⎩⎨⎧x =2cos θ,y =3sin θ与x 轴交点为M 、N ,点P 在曲线上,则PM 与PN 所在直线的斜率之积为( )A .-34B .-43C.34D.43解析:选A 令y =0得sin θ=0,∴cos θ=±1. ∴M (-2,0),N (2,0).设P (2cos θ,3sin θ). ∴k PM ·k PN =3sin θ2cos θ+2·3sin θ2cos θ-2=3sin 2θ4(cos 2θ-1)=-34.10.曲线⎩⎪⎨⎪⎧x =a sin θ+a cos θ,y =a cos θ+a sin θ(θ为参数)的图形是( )A .第一、三象限的平分线B .以(-a ,-a )、(a ,a )为端点的线段C .以(-2a ,-2a )、(-a ,-a )为端点的线段和以(a ,a )、(2a ,2a )为端点的线段D .以(-2a ,-2a )、(2a ,2a )为端点的线段解析:选D 显然y =x ,而x =a sin θ+a cos θ=2a sin(θ+π4),-2|a |≤x ≤2|a |.故图形是以(-2a ,-2a )、(2a ,2a )为端点的线段.二、填空题(本大题共4个小题,每小题5分,满分20分.把答案填写在题中的横线上) 11.(广东高考)已知曲线C 的极坐标方程为ρ=2cos θ.以极点为原点,极轴为x 轴的正半轴建立直角坐标系,则曲线C 的参数方程为________.解析:极坐标方程化为直角坐标方程为(x -1)2+y 2=1,令⎩⎪⎨⎪⎧cos θ=x -1,sin θ=y ,即⎩⎪⎨⎪⎧x =cos θ+1,y =sin θ(θ为参数). 答案:⎩⎪⎨⎪⎧x =cos θ+1,y =sin θ(θ为参数)12.设直线l 1的参数方程为⎩⎪⎨⎪⎧x =1+t ,y =a +3t (t 为参数),直线l 2的方程为y =3x -4,若直线l 1与l 2间的距离为10,则实数a 的值为________.解析:将直线l 1的方程化为普通方程得3x -y +a -3=0,直线l 2方程即3x -y -4=0,由两平行线的距离公式得|a -3+4|10=10⇒|a +1|=10⇒a =9或a =-11.答案:9或-1113.直线y =2x -12与曲线⎩⎪⎨⎪⎧x =sin φ,y =cos 2φ(φ为参数)的交点坐标为________.解析:⎩⎪⎨⎪⎧x =sin φ,y =cos 2φ⇒⎩⎪⎨⎪⎧x =sin φ, ①y =1-2sin 2φ, ②将①代入②中,得y =1-2x 2(-1≤x ≤1), ∴2x 2+y =1.由⎩⎪⎨⎪⎧y =2x -12,2x 2+y =1,解之得⎩⎨⎧x =12,y =12或⎩⎨⎧x =-32,y =-72(舍去).答案:(12,12)14.(陕西高考)如图,以过原点的直线的倾斜角θ为参数,则圆x 2+y 2-x =0的参数方程为________.解析:由题意得圆的方程为⎝⎛⎭⎫x -122+y 2=14,圆心⎝⎛⎭⎫12,0在x 轴上,半径为12,则其圆的参数方程为⎩⎨⎧x =12+12cos α,y =12 sin α(α为参数),注意α为圆心角,θ为同弧所对的圆周角,则有α=2θ,有⎩⎨⎧x =12+12cos 2θ,y =12sin 2θ,即⎩⎪⎨⎪⎧x =cos 2θ,y =sin θcos θ(θ为参数).答案:⎩⎪⎨⎪⎧x =cos 2θ,y =sin θcos θ(θ为参数)三、解答题(本大题共4个小题,满分50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(12分)求直线⎩⎨⎧x =1+45t ,y =-1-35t (t 为参数)被曲线ρ=2cos(θ+π4)所截的弦长.解:将方程⎩⎨⎧x =1+45t ,y =-1-35t ,ρ=2cos (θ+π4)分别化为普通方程3x +4y +1=0,x 2+y 2-x+y =0,圆心C (12,-12),半径为22,圆心到直线的距离d =110,弦长=2r 2-d 2=212-1100=75. 16.(12分)(辽宁高考)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =cos φ,y =sin φ(φ为参数),曲线C 2的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(a >b >0,φ为参数).在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线l :θ=α与C 1,C 2各有一个交点.当α=0时,这两个交点间的距离为2,当α=π2时,这两个交点重合.(1)分别说明C 1,C 2是什么曲线,并求出a 与b 的值;(2)设当α=π4时,l 与C 1,C 2的交点分别为A 1,B 1,当α=-π4时,l 与C 1,C 2的交点分别为A 2,B 2,求四边形A 1A 2B 2B 1的面积.解:(1)C 1,C 2的普通方程分别为x 2+y 2=1和x 29+y 2=1.因此C 1是圆,C 2是椭圆.当α=0时,射线l 与C 1,C 2交点的直角坐标分别为(1,0),(a ,0),因为这两点间的距离为2,所以a =3.当α=π2时,射线l 与C 1,C 2交点的直角坐标分别为(0,1),(0,b ),因为这两点重合,所以b =1.(2)C 1,C 2的普通方程分别为x 2+y 2=1和x 29+y 2=1.当α=π4时,射线l 与C 1交点A 1的横坐标为x =22,与C 2交点B 1的横坐标为x ′=31010.当α=-π4时,射线l 与C 1,C 2的两个交点A 2,B 2分别与A 1,B 1关于x 轴对称,因此四边形A 1A 2B 2B 1为梯形,故四边形A 1A 2B 2B 1的面积为(2x ′+2x )(x ′-x )2=25.17.(12分)已知经过A (5,-3)且倾斜角的余弦值是-35的直线,直线与圆x 2+y 2=25交于B 、C 两点.(1)求BC 中点坐标;(2)求过点A 与圆相切的切线方程及切点坐标.解:(1)直线参数方程为⎩⎨⎧x =5-35t ,y =-3+45t (t 为参数),代入圆的方程得t 2-545t +9=0.∴t M =t 1+t 22=275,则 x M =4425,y M =3325,中点坐标为M (4425,3325). (2)设切线方程为⎩⎪⎨⎪⎧x =5+t cos α,y =-3+t sin α(t 为参数),代入圆的方程得t 2+(10cos α-6sin α)t+9=0.Δ=(10cos α-6sin α)2-36=0,cos α=0或tan α=815.∴过A 点切线方程为x =5,8x -15y -85=0.又t 切=-b2a=3sin α-5cos α,t 1=3,t 2=-3.将t 1,t 2代入切线的参数方程知,相应的切点为(5,0),(4017,-7517).18.(14分)在双曲线x 2-2y 2=2上求一点P ,使它到直线x +y =0的距离最短,并求这个最短距离.解:设双曲线x 22-y 2=1上一点P (2sec α,tan α)(0≤α<2π,且α≠π2,α≠32π),则它到直线x +y =0的距离为d =|2sec α+tan α|2=|2+sin α|2|cos α|.于是d 2=2+22sin α+sin 2α2cos 2α,化简得,(1+2d 2)sin 2α+22sin α+2(1-d 2)=0. ∵sin α是实数,∴Δ=(22)2-8(1+2d 2)(1-d 2)≥0, ∴d ≥22. 当d =22时,sin α=-22, ∴α=54π或74π,这时x 0=-2,y 0=1.或x 0=2sec 74π=2,y 0=tan 74π=-1.故当双曲线上的点P 为(-2,1)或(2,-1)时, 它到直线x +y =0的距离最小,这个最小值为22. 模块综合检测(时间:90分钟 满分:120分)一、选择题(本大题共10个小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若直线l 的参数方程为⎩⎪⎨⎪⎧x =1+3t ,y =2-4t (t 为参数),则直线l 的倾斜角的余弦值为( )A .-45B .-35C.35D.45解析:选B 由l 的参数方程可得l 的普通方程为4x +3y -10=0,设l 的倾斜角为θ,则tan θ=-43,由1cos 2θ=sin 2θ+cos 2θcos 2θ=tan 2θ+1,得cos 2θ=925,又π2<θ<π,∴cos θ=-35.2.柱坐标⎝⎛⎭⎫2,π3,1对应的点的直角坐标是( )A .(3,-1,1)B .(3,1,1)C .(1,3,1)D .(-1,3,1)解析:选C 由直角坐标与柱坐标之间的变换公式 ⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,z =z ,可得⎩⎪⎨⎪⎧x =1,y =3,z =1.3.在极坐标系中,点A 的极坐标是(1,π),点P 是曲线C :ρ=2sin θ上的动点,则|P A |的最小值是( )A .0 B. 2 C.2+1 D.2-1解析:选D A 的直角坐标为(-1,0),曲线C 的直角坐标方程为x 2+y 2=2y ,即x 2+(y -1)2=1,|AC |=2,则|P A |min =2-1.4.直线⎩⎪⎨⎪⎧x =sin θ+t sin 15°,y =cos θ-t sin 75°(t 为参数,θ是常数)的倾斜角是( )A .105°B .75°C .15°D .165° 解析:选A 参数方程⎩⎪⎨⎪⎧x =sin θ+t sin 15°,y =cos θ-t sin 75°⇒⎩⎪⎨⎪⎧x =sin θ+t cos 75°,y =cos θ-t sin 75°, 消去参数t 得,y -cos θ=-tan 75°(x -sin θ), ∴k =-tan 75°=tan (180°-75°)=tan 105°.故直线的倾斜角是105°.5.双曲线⎩⎪⎨⎪⎧x =tan θ,y =21cos θ(θ为参数)的渐近线方程为( ) A .y =±22x B .y =±12xC .y =±2xD .y =±2x解析:选D 把参数方程化为普通方程得y 24-x 2=1,渐近线方程为y =±2x .6.已知直线⎩⎪⎨⎪⎧x =2-t sin 30°,y =-1+t sin 30°(t 为参数)与圆x 2+y 2=8相交于B 、C 两点,O 为原点,则△BOC 的面积为( )A .27 B.30 C.152 D.302解析:选C⎩⎪⎨⎪⎧x =2-t sin 30°,y =-1+t sin 30⇒⎩⎨⎧x =2-12t =2-22t ′,y =-1+12t =-1+22t ′(t ′为参数). 代入x 2+y 2=8,得t ′2-32t ′-3=0, ∴|BC |=|t ′1-t ′2|=(t ′1+t ′2)2-4t ′1t ′2=(32)2+4×3=30,弦心距d =8-304=22,S △BCO =12|BC |·d =152.7.已知点P 的极坐标为(π,π),则过点P 且垂直于极轴的直线的极坐标方程为( ) A .ρ=π B .ρ=cos θ C .ρ=πcos θ D .ρ=-πcos θ解析:选D 设M (ρ,θ)为所求直线上任意一点,由图形知OM cos ∠POM =π,∴ρcos (π-θ)=π. ∴ρ=-πcos θ.8.直线l :y +kx +2=0与曲线C :ρ=2cos θ相交,则k 满足的条件是( ) A .k ≤-34 B .k ≥-34C .k ∈RD .k ∈R 且k ≠0解析:选A 由题意可知直线l 过定点(0,-2),曲线C 的普通方程为x 2+y 2=2x ,即(x -1)2+y 2=1.由图可知,直线l 与圆相切时,有一个交点,此时|k +2|k 2+1=1,得-k =34.若满足题意,只需-k ≥34.即k ≤-34即可.9.参数方程⎩⎪⎨⎪⎧x =1+sin θ,y =cos 2⎝⎛⎭⎫π4-θ2(θ为参数,0≤θ<2π)所表示的曲线是( ) A .椭圆的一部分 B .双曲线的一部分C .抛物线的一部分,且过点⎝⎛⎭⎫-1,12 D .抛物线的一部分,且过点⎝⎛⎭⎫1,12 解析:选D 由y =cos 2(π4-θ2)=1+cos (π2-θ)2=1+sin θ2,可得sin θ=2y -1,由x =1+sin θ得x 2-1=sin θ, ∴参数方程可化为普通方程x 2=2y , 又x =1+sin θ∈[0,2].10.在极坐标系中,由三条直线θ=0,θ=π3,ρcos θ+ρsin θ=1围成的图形的面积为( )A.14 B.3-34 C.2-34 D.13解析:选B 三条直线的直角坐标方程依次为y =0,y =3x ,x +y =1,如图.围成的图形为△OPQ ,可得 S △OPQ =12|OQ |·|y P |=12×1×33+1=3-34. 二、填空题(本大题共4个小题,每小题5分,满分20分.把答案填写在题中的横线上)11.(江西高考)设曲线C 的参数方程为⎩⎪⎨⎪⎧x =t ,y =t 2(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________.解析:消去曲线C 中的参数t 得y =x 2,将x =ρcos θ,y =ρsin θ代入y =x 2中,得ρ2cos 2θ=ρsin θ,即ρcos 2θ-sin θ=0.答案:ρcos 2θ-sin θ=012.(安徽高考)在极坐标系中,圆ρ=4sin θ的圆心到直线θ=π6(ρ∈R )的距离是________.解析:将ρ=4sin θ化成直角坐标方程为x 2+y 2=4y ,即x 2+(y -2)2=4,圆心为(0,2).将θ=π6(ρ∈R )化成直角坐标方程为x -3y =0,由点到直线的距离公式可知圆心到直线的距离d =|0-23|2= 3.答案: 313.(广东高考)已知曲线C 的参数方程为⎩⎨⎧x = 2 cos t ,y =2sin t (t 为参数),C 在点(1,1)处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为________.解析:曲线C 的普通方程为:x 2+y 2= ( 2 cos t )2+( 2 sin t )2=(cos 2t +sin 2t )=2,由圆的知识可知,圆心(0,0)与切点(1,1)的连线垂直于切线l ,从而l 的斜率为-1,由点斜式可得直线l 的方程为y -1=-(x -1),即x +y -2=0.由ρcos θ=x ,ρsin θ=y ,可得l 的极坐标方程为ρcos θ+ρsin θ-2=0.答案:ρcos θ+ρsin θ-2=0或ρ(cos θ+sin θ)=214.(湖北高考)在直角坐标系xOy 中,椭圆C 的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数,a>b >0).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 与圆O 的极坐标方程分别为ρsin ⎝⎛⎭⎫θ+π4=22m (m 为非零常数)与ρ=b .若直线l 经过椭圆C 的焦点,且与圆 O 相切,则椭圆C 的离心率为________.解析:由题意知,椭圆C 的普通方程为x 2a 2+y 2b 2=1,直线l 的直角坐标方程为x +y =m ,圆O 的直角坐标方程为x 2+y 2=b 2,设椭圆C 的半焦距为c ,则根据题意可知,|m |=c ,|m |2=b ,所以有c =2b ,所以椭圆C 的离心率e =ca=cb 2+c 2=63. 答案:63三、解答题(本大题共4个小题,满分50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(12分)(新课标全国卷)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α(α为参数),M 是C 1上的动点,P 点满足OP ―→=2OM ―→,P 点的轨迹为曲线C 2.(1)求C 2的方程;(2)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=π3与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求|AB |.解:(1)设P (x ,y ),则由条件知M (x 2,y2).由于M 点在C 1上,所以⎩⎨⎧x2=2cos α,y2=2+2sin α.即⎩⎪⎨⎪⎧x =4cos α,y =4+4sin α.从而C 2的参数方程为⎩⎪⎨⎪⎧x =4cos α,y =4+4sin α.(α为参数)(2)曲线C 1的极坐标方程为ρ=4sin θ,曲线C 2的极坐标方程为ρ1=8sin θ. 射线θ=π3与C 1的交点A 的极径为ρ1=4sin π3,射线θ=π3与C 2的交点B 的极径为ρ2=8sin π3.所以|AB |=|ρ2-ρ1|=2 3.16.(12分)(福建高考)在平面直角坐标系中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 上两点M ,N 的极坐标分别为(2,0),⎝⎛⎭⎫233,π2,圆C 的参数方程为⎩⎨⎧x =2+2cos θ,y =-3+2sin θ(θ为参数).(1)设P 为线段MN 的中点,求直线OP 的平面直角坐标方程; (2)判断直线l 与圆C 的位置关系.解:(1)由题意知,M ,N 的平面直角坐标分别为(2,0),(0,233),又P 为线段MN 的中点, 从而点P 的平面直角坐标为(1,33), 故直线OP 的平面直角坐标方程为y =33x . (2)因为直线l 上两点M ,N 的平面直角坐标分别为(2,0),(0,233),所以直线l 的平面直角坐标方程为3x +3y -23=0. 又圆C 的圆心坐标为(2,-3),半径r =2,圆心到直线l 的距离d =|23-33-23|3+9=32<r ,故直线l 与圆C 相交.17.(12分)已知某圆的极坐标方程为ρ2-42ρcos(θ-π4)+6=0,求:(1)圆的普通方程和参数方程;(2)在圆上所有的点(x ,y )中x ·y 的最大值和最小值.解:(1)原方程可化为ρ2-42ρ(cos θcos π4+sin θsin π4)+6=0,即ρ2-4ρcos θ-4ρsinθ+6=0.①因为ρ2=x 2+y 2,x =ρcos θ,y =ρsin θ,所以①可化为x 2+y 2-4x -4y +6=0,即(x -2)2+(y -2)2=2,此方程即为所求圆的普通方程.设cos θ=2(x -2)2,sin θ=2(y -2)2,所以参数方程为⎩⎪⎨⎪⎧x =2+2cos θ,y =2+2sin θ(θ为参数). (2)由(1)可知xy =(2+2cos θ)·(2+2sin θ) =4+22(cos θ+sin θ)+2cos θ·sin θ =3+22(cos θ+sin θ)+(cos θ+sin θ)2.②设t =cos θ+sin θ,则t =2sin (θ+π4),t ∈[-2,2].所以xy =3+22t +t 2=(t +2)2+1.当t =-2时xy 有最小值为1; 当t =2时,xy 有最大值为9.18.(14分)曲线的极坐标方程为ρ=21-cos θ,过原点作互相垂直的两条直线分别交此曲线于A 、B 和C 、D 四点,当两条直线的倾斜角为何值时,|AB |+|CD |有最小值?并求出这个最小值.解:由题意,设A (ρ1,θ),B (ρ2,π+θ),C (ρ3,θ+π2),D (ρ4,θ+32π).则|AB |+|CD |=(ρ1+ρ2)+(ρ3+ρ4) =21-cos θ+21+cos θ+21+sin θ+21-sin θ=16sin 22θ.∴当sin 22θ=1即θ=π4或θ=34π时,两条直线的倾斜角分别为π4,3π4时,|AB |+|CD |有最小值16.。

高中数学 全册教案 新人教A版选修4-1

高中数学 全册教案 新人教A版选修4-1

高中数学选修4-1全套教案一 平行线分线段成比例定理教学目的:1.使学生理解平行线分线段成比例定理及其初步证明; 2.使学生初步熟悉平行线分线段成比例定理的用途、用法; 3.通过定理的教学,培养学生的联想能力、概括能力。

教学重点:取得“猜想”的认识过程,以及论证思路的寻求过程。

教学难点:成比例的线段中,对应线段的确认。

教学用具:圆规、三角板、投影仪及投影胶片。

教学过程:(一)旧知识的复习利用投影仪提出下列各题使学生解答。

1.求出下列各式中的x :y 。

(1)3x =5y ; (2)x=y 32; (3)3:2=γ:χ; (4)3:χ=5:γ。

2.已知γχχγχ+=求,27。

3.已知zy x z y x z -+++==32,432求γχ。

其中第1题以学生分别口答、共同核对的方式进行;第2、3题以学生各自解答,指定2人板演,而后共同核对板演所述,并追问理论根据的方式进行。

(二)新知识的教学1.提出问题,使学生思考。

在已学过的定理中,有没有包含两条线段的比是1:1的? 而后使学生试答,如果答出定理——过三角形一边的中点与另一边平行的直线,必平分第三边,那么追问理由,如果答不出,那么利用图1(若E 是AB 中点,EF//BC ,交AC 于F 点,则AF=FC )使学生观察,并予以分析而得出11==FC AF EB AE ,并指出此定理也可谓:如果E 是△ABC 的AB 边上一点,且11=EB AE ,EF//BC 交AC 于F 点,那么11==FC AE EB AE 。

2.引导学生探索与讨论。

就着上述结论提出,在△ABC 中,EF//BC 这个条件不变,但EB AE 不等于11,譬如EB AE =32时,FCAF应等于“几比几”?并使学生各自画图、进行度量,得出“猜想”——配合着黑板上画出的相应图观察、明确。

而后使学生试证,如能证明,则让学生进行证明,并明确论证的理论根据,如果学生不会证明,那么以“可否类比着平行线等分线段定理的证法?”引导,而后指定学生进行证明。

2018-2019学年高中数学人教A版选修4-1创新应用教学案:第一讲知识归纳与达标验收-含答案

2018-2019学年高中数学人教A版选修4-1创新应用教学案:第一讲知识归纳与达标验收-含答案

[对应学生用书P16]近两年高考中,由于各地的要求不同,所以试题的呈现形式也不同.但都主要考查相似三角形的判定与性质,射影定理,平行线分线段成比例定理;一般试题难度不大,解题中要注意观察图形特点,巧添辅助线对解题可起到事半功倍的效果.在使用平行线分线段成比例定理及其推论时,一定要搞清有关线段或边的对应关系,切忌搞错比例关系.1.如图,在梯形ABCD 中,AB ∥CD ,AB =4,CD =2,E ,F 分别为AD ,BC 上的点,且EF =3,EF ∥AB ,则梯形ABFE 与梯形EFCD 的面积比为________.解析:由CD =2,AB =4,EF =3, 得EF =12(CD +AB ),∴EF 是梯形ABCD 的中位线,则梯形ABFE 与梯形EFCD 有相同的高,设为h , 于是两梯形的面积比为 12(3+4)h ∶12(2+3)h =7∶5. 答案:7∶52.如图,圆O 上一点C 在直径AB 上的射影为D ,点D 在半径OC 上的射影为E .若AB =3AD ,则CEEO的值为________.解析:连接AC ,BC ,则∠ACB =90°.设AD =2,则AB =6, 于是BD =4,OD =1.如图,由射影定理得CD 2=AD ·BD =8,则CD =2 2. 在Rt △OCD 中,DE =OD ·CD OC =1×223=223.则CE =DC 2-DE 2=8-89=83, EO =OC -CE =3-83=13.因此CE EO =8313=8.答案:8[对应学生用书P16]的直线上截得的线段所呈现的规律,主要用来证明比例式成立、证明直线平行、计算线段的长度,也可以作为计算某些图形的周长或面积的重要方法,其中,平行线等分线段定理是线段的比为1的特例.[例1] 如图,在△ABC 中,DE ∥BC ,DH ∥GC . 求证:EG ∥BH . [证明] ∵DE ∥BC , ∴AE AC =AD AB. ∵DH ∥GC ,∴AH AC =ADAG .∴AE ·AB =AC ·AD =AH ·AG . ∴AE AH =AGAB.∴EG ∥BH . [例2] 如图,直线l 分别交△ABC 的边BC ,CA ,AB 于点D ,E ,F ,且AF =13AB ,BD =52BC ,试求EC AE.[解] 作CN ∥AB 交DF 于点N ,并作EG ∥AB 交BC 于点G ,由平行截割定理,知BF CN =DB DC ,CN AF =ECAE,两式相乘,得BF CN ·CN AF =DB DC ·ECAE ,即EC AE =BF AF ·DC DB. 又由AF =13AB ,得BFAF =2,由BD =52BC ,得DC DB =35,所以EC AE =2×35=65.角关系.其应用非常广泛,涉及到多种题型,可用来计算线段、角的大小,也可用来证明线段、角之间的关系,还可以证明直线之间的位置关系.其中,三角形全等是三角形相似的特殊情况.[例3] 如图所示,AD 、CF 是△ABC 的两条高线,在AB 上取一点P ,使AP =AD ,再从P 点引BC 的平行线与AC 交于点Q .求证:PQ =CF .[证明] ∵AD 、CF 是△ABC 的两条高线, ∴∠ADB =∠BFC =90°. 又∠B =∠B ,∴△ABD ∽△CBF . ∴AD CF =AB CB. 又∵PQ ∥BC ,∴△APQ ∽△ABC . ∴PQ BC =AP AB .∴AP PQ =AB BC .∴AD CF =AP PQ . 又∵AP =AD ,∴CF =PQ .[例4] 四边形ABCD 中,AB ∥CD ,CE 平分∠B CD ,CE ⊥AD 于点E ,DE =2AE ,若△CED 的面积为1,求四边形ABCE 的面积.[解] 如图,延长CB 、DA 交于点F ,又CE 平分∠BCD ,CE ⊥AD .∴△FCD 为等腰三角形,E 为FD 的中点. ∴S △FCD =12FD ·CE=12×2ED ·CE =2S △CED =2, EF =ED =2AE . ∴F A =AE =14FD .又∵AB ∥CD , ∴△FBA ∽△FCD .∴S △FBA S △FCD =(F A FD )2=(14)2=116.∴S △FBA =116×S △FCD =18. ∴S 四边形ABCE =S △FCD -S △CED -S △FBA =2-1-18=78.系,此定理常作为计算与证明的依据,在运用射影定理时,要特别注意弄清射影与直角边的对应关系,分清比例中项,否则在做题中极易出错.[例5] 如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于D ,DE ⊥AC于E ,EF ⊥AB 于F .求证:CE 2=BD ·DF .[证明] ∵∠ACB =90°,DE ⊥AC , ∴DE ∥BC .∴BD CE =AB AC .同理:CD ∥EF ,∴CE DF =AC AD. ∵∠ACB =90°,CD ⊥AB , ∴AC 2=AD ·AB . ∴AC AD =AB AC.∴CE DF =BD CE . ∴CE 2=BD ·DF .[对应学生用书P41] (时间:90分钟,满分:120分)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,已知AA ′∥BB ′∥CC ′,AB ∶BC =1∶3,那么下列等式成立的是( )A .AB =2A ′B ′ B .3A ′B ′=B ′C ′ C .BC =B ′C ′D .AB =A ′B ′解析:∵AA ′∥BB ′∥CC ′,∴AB BC =A ′B ′B ′C ′=13.∴3A ′B ′=B ′C ′. 答案:B2.如图,∠ACB =90°.CD ⊥AB 于D ,AD =3、CD =2,则AC ∶BC 的值是( )A .3∶2B .9∶4 C.3∶ 2D.2∶ 3解析:Rt △ACD ∽Rt △CBD ,∴AC BC =AD CD =32.答案:A3.在Rt △ABC 中,CD 为斜边AB 上的高,若BD =3 cm ,AC =2 cm ,则CD 和BC 的长分别为( )A. 3 cm 和3 2 cm B .1 cm 和 3 cm C .1 cm 和3 2 cm D. 3 cm 和2 3 cm 解析:设AD =x ,则由射影定理得x (x +3)=4, 即x =1(负值舍去), 则CD =AD ·BD =3(cm), BC =BD ·AB =3(3+1)=23(cm).答案:D4.如图,在△ABC 中,∠BAC =90°,AD 是斜边BC 上的高,DE 是△ACD 的高,且AC =5,CD =2,则DE 的值为( )A.2215B.215C.3215D.2125解析:AC 2=CD ·BC , 即52=2×BC , ∴BC =252.∴AB =BC 2-AC 2=2524-52=5212. ∵DE AB =DC BC ,∴DE =2215. 答案:A5.如图所示,给出下列条件:①∠B =∠ACD ;②∠ADC =∠ACB ;③AC CD =ABBC ;④AC 2=AD ·AB .其中单独能够判定△ABC ∽△ACD 的个数为( )A .1B .2C .3D .4解析:①由∠B =∠ACD ,再加上公共角∠A =∠A ,可得两个三角形相似;②由∠ADC =∠ACB ,再加上公共角∠A =∠A ,可得两个三角形相似;③AC CD =ABBC ,而夹角不一定相等,所以两个三角形不一定相似;④AC 2=AD ·AB 可得AC AD =ABAC,再加上公共角∠A =∠A ,可得两个三角形相似.答案:C6.如图,DE ∥BC ,S △ADE ∶S 四边形DBCE =1∶8,则AD ∶DB 的值为( )A .1∶4B .1∶3C .1∶2D .1∶5解析:由S △ADE ∶S 四边形DBCE =1∶8 得S △ADE ∶S △ABC =1∶9. ∵DE ∥BC , ∴△ADE ∽△ABC . ∴(ADAB )2=S △ADE S △ABC =19. ∴AD AB =13,AD DB =12. 答案:C7.△ABC 和△DEF 满足下列条件,其中不一定使△ABC 与△DEF 相似的是( ) A .∠A =∠D =45°38′,∠C =26°22′,∠E =108° B .AB =1,AC =1.5,BC =2,DE =12,EF =8,DF =16 C .BC =a ,AC =b ,AB =c ,DE =a ,EF =b ,DF =c D .AB =AC ,DE =DF ,∠A =∠D =40° 解析:A 中∠A =∠D ,∠B =∠E =108°, ∴△ABC ∽△DEF ;B 中AB ∶AC ∶BC =EF ∶DE ∶DF =2∶3∶4; ∴△ABC ∽△EFD ; D 中AB AC =DEDF,∠A =∠D , ∴△ABC ∽△DEF ;而C 中不能保证三边对应成比例. 答案:C8.在Rt △ACB 中,∠C =90°.CD ⊥AB 于D .若BD ∶AD =1∶4,则tan ∠BCD 的值是( ) A.14 B.13 C.12D .2解析:由射影定理得CD 2=AD ·BD ,又BD ∶AD =1∶4. 令BD =x ,则AD =4x (x >0), ∴CD 2=4x 2,∴CD =2x ,tan ∠BCD =BD CD =x 2x =12.答案:C9.在▱ABCD 中,E 为CD 上一点,DE ∶CE =2∶3,连接AE 、BE 、BD 且AE 、BD 交于点F ,则S △DEF ∶S △EBF ∶S △ABF =( )A .4∶10∶25B .4∶9∶25C .2∶3∶5D .2∶5∶25解析:∵AB ∥CD , ∴△ABF ∽△EDF . ∴DE AB =DF FB =25. ∴S △DEF S △ABF =(25)2=425.又△DEF 和△BEF 等高. ∴S △DEF S △EBF =DF FB =25=410. 答案:A10.如图,已知a ∥b ,AF BF =35,BCCD =3.则AE ∶EC =( )A.125 B.512 C.75D.57解析:∵a ∥b ,∴AE EC =AG CD ,AF BF =AGBD .∵BCCD =3,∴BC =3CD ,∴BD =4CD . 又AF BF =35, ∴AG BD =AF BF =35.∴AG 4CD =35.∴AG CD =125.EC CD 5答案:A二、填空题(本大题共4个小题,每小题5分,满分20分.把答案填写在题中的横线上) 11.如图,D ,E 分别是△ABC 边AB ,AC 上的点,且DE ∥BC ,BD =2AD ,那么△ADE 的周长∶△ABC 的周长等于________.解析:∵DE ∥BC ,∴△ADE ∽△ABC . ∵BD =2AD ,∴AB =3AD .∴AD AB =13.∴△ADE 的周长△ABC 的周长=AD AB =13. 答案:1312.如图,在△ABC 中,DE ∥BC ,DF ∥AC ,AE ∶AC =3∶5,DE =6,则BF =________.解析:∵DE ∥BC ,∴DE BC =AE AC ,∴BC =DE ·AC AE =6×53=10, 又DF ∥AC ,∴DE =FC =6. ∴BF =BC -FC =4. 答案:413.如图,在△ABC 中,DE ∥BC ,BE 与CD 相交于点O ,直线AO 与DE 、BC 分别交于N 、M ,若DN ∶MC =1∶4,则NE ∶BM =________,AE ∶EC =________.解析:OD OC =DN MC =14,∴OE OB =OD OC =14. ∴NE BM =OE OB =14.BC OC 4∴AE AC =DE BC =14. ∴AE ∶EC =1∶3. 答案:1∶4 1∶314.阳光通过窗口照到室内,在地面上留下2.7 m 宽的亮区(如图所示),已知亮区一边到窗下的墙角距离CE =8.7 m ,窗口高AB =1.8 m ,那么窗口底边离地面的高BC 等于________m.解析:∵BD ∥AE ,∴BCAB =CDDE .∴BC =AB ·CD DE.∵AB =1.8 m ,DE =2.7 m ,CE =8.7 m , ∴CD =CE -DE =8.7-2.7=6(m). ∴BC =1.8×62.7=4(m).答案:4三、解答题(本大题共4个小题,满分50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)如图,△ABC 中,BC 的中点为D ,∠ADB和∠ADC 的平分线分别交AB 、AC 于点M 、N .求证:MN ∥BC .证明:∵MD 平分∠ADB , ∴AD BD =AM MB. ∵ND 平分∠ADC ,∴AD DC =ANNC .∵BD =DC ,∴AM MB =AD BD =AD DC =AN NC. ∴MN ∥BC .16.(本小题满分12分)如图,已知:△ABC 中,AB =AC ,AD 是中线,P 是AD 上一点,过C 作CF ∥AB ,延长BP 交AC 于E ,交CF于F ,求证:BP 2=PE ·PF .证明:连接PC ,∵AB =AC ,AD 是中线,∴AD 是△ABC 的对称轴,故PC =PB ,∠PCE =∠ABP .∵CF ∥AB ,∴∠PFC =∠ABP ,故∠PCE =∠PFC ,∵∠CPE =∠FPC ,∴△EPC ∽△CPF ,故PC PF =PE PC, 即PC 2=PE ·PF ,∴BP 2=PE ·PF .17.(本小题满分12分)如图,四边形ABCD 是平行四边形,P 是BD 上任意一点,过P 点的直线分别交AB 、DC 于E 、F ,交DA 、BC的延长线于G 、H .(1)求证:PE ·PG =PF ·PH ;(2)当过P 点的直线绕点P 旋转到F 、H 、C 重合时,请判断PE 、PC 、PG 的关系,并给出证明.解:(1)证明:∵AB ∥CD ,∴PE PF =PB PD. ∵AD ∥BC ,∴PH PG =PB PD, ∴PE PF =PH PG.∴PE ·PG =PH ·PF .(2)关系式为PC 2=PE ·PG .证明:由题意可得到右图,∵AB ∥CD ,∴PE PC =PB PD. ∵AD ∥BC ,∴PC PG =PB PD. ∴PE PC =PC PG,即PC 2=PE ·PG . 18.(本小题满分14分)某生活小区的居民筹集资金1 600元,计划在一块上、下两底分别为10 m 、20 m 的梯形空地上种植花木(如图).(1)他们在△AMD 和△BMC 地带上种植太阳花,单位为8元/m 2,当△AMD 地带种满花后(图中阴影部分)共花了160元,请计算种满△BMC 地带所需的费用;(2)若其余地带要种的有玫瑰和茉莉花两种花木可供选择,单价分别为12元/m 2和10元/m 2,应选择种哪种花木,刚好用完所筹集的资金?解:(1)∵四边形ABCD 为梯形,∴AD ∥BC .∴△AMD ∽△CMB ,∴S △AMD S △CMB =(AD BC)2=14. ∵种植△AMD 地带花费160元,∴S △AMD =1608=20(m 2). ∴S △CMB =80(m 2).∴△CMB 地带的花费为80×8=640元.(2)S △ABM S △AMD=BM DM =BC AD =2, ∴S △ABM =2S △AMD =40(m 2).同理:S △DMC =40(m 2).所剩资金为:1600-160-640=800元,而800÷(S △ABM +S △DMC )=10(元/m 2).故种植茉莉花刚好用完所筹集的资金.。

[推荐学习]2018-2019学年高中数学人教A版选修4-4创新应用教学案:第一讲第1节平面直角坐标

[推荐学习]2018-2019学年高中数学人教A版选修4-4创新应用教学案:第一讲第1节平面直角坐标

[核心必知]1.平面直角坐标系 (1)平面直角坐标系的作用通过直角坐标系,平面上的点与坐标(有序实数对)、曲线与方程建立了联系,从而实现了数与形的结合.(2)坐标法解决几何问题的“三部曲”第一步:建立适当坐标系,用坐标和方程表示问题中涉及的几何元素,将几何问题转化为代数问题;第二步:通过代数运算解决代数问题;第三步:把代数运算结果翻译成几何结论.2.平面直角坐标系中的伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λ·x ,(λ>0),y ′=μ·y ,(μ>0)的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.[问题思考]1.用坐标法解决几何问题时,坐标系的建立是否是唯一的?提示:对于同一个问题,可建立不同的坐标系解决,但应使图形上的特殊点尽可能多地落在坐标轴,以便使计算更简单、方便.2.伸缩变换中的系数λ,μ有什么特点?在伸缩变换下,平面直角坐标系是否发生变化?提示:伸缩变换中的系数λ>0,μ>0,在伸缩变换下,平面直角坐标系保持不变,只是对点的坐标进行伸缩变换.已知Rt△ABC,|AB|=2a(a>0),求直角顶点C的轨迹方程.[精讲详析]解答此题需要结合几何图形的结构特点,建立适当的平面直角坐标系,然后设出所求动点的坐标,寻找满足几何关系的等式,化简后即可得到所求的轨迹方程.以AB所在直线为x轴,AB的中点为坐标原点,建立如图所示的直角坐标系,则有A(-a,0),B(a,0),设顶点C(x,y).法一:由△ABC是直角三角形可知|AB|2=|AC|2+|BC|2,即(2a)2=(x+a)2+y2+(x-a)2+y2,化简得x2+y2=a2.依题意可知,x≠±a.故所求直角顶点C的轨迹方程为x2+y2=a2(x≠±a).法二:由△ABC是直角三角形可知AC⊥BC,所以k AC·k BC=-1,则yx+a·yx-a=-1(x≠±a),化简得直角顶点C的轨迹方程为x2+y2=a2(x≠±a).法三:由△ABC是直角三角形可知|OC|=|OB|,且点C与点B不重合,所以x2+y2=a(x≠±a),化简得直角顶点C的轨迹方程为x2+y2=a2(x≠±a).求轨迹方程,其实质就是根据题设条件,把几何关系通过“坐标”转化成代数关系,得到对应的方程.(1)求轨迹方程的一般步骤是:建系→设点→列式→化简→检验.(2)求轨迹方程时注意不要把范围扩大或缩小,也就是要检验轨迹的纯粹性和完备性.(3)由于观察的角度不同,因此探求关系的方法也不同,解题时要善于从多角度思考问题.1.已知线段AB与CD互相垂直平分于点O,|AB|=8,|CD|=4,动点M满足|MA|·|MB|=|MC|·|MD|,求动点M的轨迹方程.解:以O为原点,分别以直线AB,CD为x轴、y轴建立直角坐标系,则A(-4,0),B(4,0),C(0,2),D(0,-2).设M(x,y)为轨迹上任一点,则|MA|=(x+4)2+y2,|MB|=(x-4)2+y2,|MC|=x2+(y-2)2,|MD|=x2+(y+2)2,∴由|MA|·|MB|=|MC|·|MD|,可得[(x+4)2+y2][(x-4)2+y2]=[x2+(y-2)2][x2+(y+2)2].化简,得y2-x2+6=0.∴点M的轨迹方程为x2-y2=6.已知△ABC中,AB=AC,BD、CE分别为两腰上的高.求证:BD=CE.[精讲详析]本题考查坐标法在几何中的应用.解答本题可通过建立平面直角坐标系,将几何证明问题转化为代数运算问题.如图,以BC 所在直线为x 轴,BC 的垂直平分线为y 轴建立平面直角坐标系. 设B (-a ,0),C (a ,0),A (0,h ).则直线AC 的方程为y =-ha x +h ,即:hx +ay -ah =0.直线AB 的方程为y =ha x +h ,即:hx -ay +ah =0.由点到直线的距离公式:|BD |=|2ah |a 2+h2,|CE |=|2ah |a 2+h2,∴|BD |=|CE |, 即BD =CE .(1)建立适当的直角坐标系,将平面几何问题转化为解析几何问题,即“形”转化为“数”,再回到“形”中,此为坐标法的基本思想,务必熟练掌握.(2)建立坐标系时,要充分利用图形的几何特征.例如,中心对称图形,可利用它的对称中心为坐标原点;轴对称图形,可利用它的对称轴为坐标轴;题设中有直角,可考虑以两直角边所在的直线为坐标轴等.2.已知△ABC 中,BD =CD ,求证:AB 2+AC 2=2(AD 2+BD 2). 证明:以A 为坐标原点O ,AB 所在直线为x 轴,建立平面直角坐系xOy ,则A (0,0),设B (a ,0),C (b ,c ),则D (a +b 2,c 2),∴AD 2+BD 2=(a +b )24+c 24+(a -b )24+c 24=12(a 2+b 2+c 2), AB 2+AC 2=a 2+b 2+c 2. ∴AB 2+AC 2=2(AD 2+BD 2).在平面直角坐标系中,求下列方程所对应的图形经过伸缩变换⎩⎨⎧x ′=13x ,y ′=12y后的图形是什么形状?(1)y 2=2x ;(2)x 2+y 2=1.[精讲详析] 本题考查伸缩变换的应用,解答此题需要先根据伸缩变换求出变换后的方程,然后再判断图形的形状.由伸缩变换⎩⎨⎧x ′=13x ,y ′=12y .可知⎩⎪⎨⎪⎧x =3x ′,y =2y ′.(1)将⎩⎪⎨⎪⎧x =3x ′,y =2y ′代入y 2=2x ,可得4y ′2=6x ′,即y ′2=32x ′.即伸缩变换之后的图形还是抛物线.(2)将⎩⎪⎨⎪⎧x =3x ′,y =2y ′代入x 2+y 2=1,得(3x ′)2+(2y ′)2=1,即x ′219+y ′214=1, 即伸缩变换之后的图形为焦点在y 轴上的椭圆.利用坐标伸缩变换φ:⎩⎪⎨⎪⎧x ′=λ·x ,(λ>0),y ′=μ·y ,(μ>0)求变换后的曲线方程,其实质是从中求出⎩⎨⎧x =1λx ′,y =1μy ′,然后将其代入已知的曲线方程求得关于x ′,y ′的曲线方程.3.将圆锥曲线C 按伸缩变换公式⎩⎪⎨⎪⎧3x ′=x ,2y ′=y 变换后得到双曲线x ′2-y ′2=1,求曲线C 的方程.解:设曲线C 上任意一点P (x ,y ),通过伸缩变换后的对应点为P ′(x ′,y ′), 由⎩⎪⎨⎪⎧3x ′=x ,2y ′=y得⎩⎨⎧x ′=13x ,y ′=12y .代入x ′2-y ′2=1得(x 3)2-(y 2)2=1,即x 29-y 24=1为所求.本课时考点常以解答题(多出现在第(1)小问)的形式考查轨迹方程的求法,湖北高考将圆锥曲线的类型讨论同轨迹方程的求法相结合,以解答题的形式考查,是高考命题的一个新热点.[考题印证](湖北高考改编)设A 是单位圆x 2+y 2=1上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x 轴的交点,点M 在直线l 上,且满足|DM |=m |DA |(m >0,且m ≠1).当点A 在圆上运动时,记点M 的轨迹为曲线C .求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求其焦点坐标.[命题立意] 本题考查圆锥曲线的相关知识以及轨迹方程的求法. [解]如图,设M (x ,y ),A (x 0,y 0),则由|DM |=m |DA |(m >0,且m ≠1),可得x =x 0,|y |=m |y 0|,所以x 0=x ,|y 0|=1m|y |. ①因为A 点在单位圆上运动,所以x 20+y 20=1. ②将①式代入②式即得所求曲线C 的方程为x 2+y 2m2=1(m >0,且m ≠1).因为m ∈(0,1)∪(1,+∞),所以当0<m <1时,曲线C 是焦点在x 轴上的椭圆, 两焦点坐标分别为(-1-m 2,0),(1-m 2,0);当m >1时,曲线C 是焦点在y 轴上的椭圆, 两焦点坐标分别为(0,-m 2-1),(0,m 2-1).一、选择题1.y =cos x 经过伸缩变换⎩⎪⎨⎪⎧x ′=2x ,y ′=3y 后,曲线方程变为( )A .y ′=3cos x ′2 B .y ′=3cos 2x ′C .y ′=13cos x ′2D .y ′=13cos 2x ′解析:选A 由⎩⎪⎨⎪⎧x ′=2x ,y ′=3y 得⎩⎨⎧x =12x ′,y =13y ′.又∵y =cos x ,∴13y ′=cos x ′2,即y ′=3cos x ′2. 2.直线2x +3y =0经伸缩变换后变为x ′+y ′=0,则该伸缩变换为( )A.⎩⎪⎨⎪⎧x ′=12x ,y ′=3yB.⎩⎪⎨⎪⎧x ′=2x ,y ′=3yC.⎩⎪⎨⎪⎧x ′=2x ,y ′=13yD.⎩⎨⎧x ′=12x ,y ′=13y 解析:选B 设变换为⎩⎪⎨⎪⎧x ′=λ·x ,(λ>0)y ′=μ·y ,(μ>0),将其代入方程x ′+y ′=0,得, λx +μy =0.又∵2x +3y =0,∴λ=2,μ=3.即⎩⎪⎨⎪⎧x ′=2x ,y ′=3y .3.将一个圆作伸缩变换后所得到的图形不可能是( ) A .椭圆 B .比原来大的圆 C .比原来小的圆 D .双曲线 解析:选D 由伸缩变换的意义可得.4.已知两定点A (-2,0),B (1,0),如果动点P 满足|P A |=2|PB |,则点P 的轨迹所围成的图形的面积等于( )A .πB .4πC .8πD .9π解析:选B 设P 点的坐标为(x ,y ), ∵|P A |=2|PB |,∴(x +2)2+y 2=4[(x -1)2+y 2]. 即(x -2)2+y 2=4.故P 点的轨迹是以(2,0)为圆心,以2为半径的圆, 它的面积为4π. 二、填空题5.将点P (2,3)变换为点P ′(1,1)的一个伸缩变换公式为________.解析:设伸缩变换为⎩⎪⎨⎪⎧x ′=hx (h >0)y ′=kx (k >0),由⎩⎪⎨⎪⎧1=2h1=3k,解得⎩⎨⎧h =12,k =13∴⎩⎨⎧x ′=x2,y ′=y 3.答案:⎩⎨⎧x ′=x 2,y ′=y36.将对数曲线y =log 3x 的横坐标伸长到原来的2倍得到的曲线方程为________. 解析:设P (x ,y )为对数曲线y =log 3x 上任意一点,变换后的对应点为P ′(x ′,y ′),由题意知伸缩变换为⎩⎪⎨⎪⎧x ′=2xy ′=y ,∴⎩⎪⎨⎪⎧x =12x ′,y =y ′.代入y =log 3x 得y ′=log 312x ′,即y =log 3x 2.答案:y =log 3x27.把圆x 2+y 2=16沿x 轴方向均匀压缩为椭圆x ′2+y ′216=1,则坐标变换公式是________.解析:设φ:⎩⎪⎨⎪⎧x ′=λ·x (λ>0),y ′=μ·y (μ>0),则⎩⎨⎧x =x ′λ,y =y ′μ.代入x 2+y 2=16得x ′216λ2+y ′216μ2=1.∴16λ2=1,16μ2=16. ∴⎩⎪⎨⎪⎧λ=14,μ=1.故⎩⎪⎨⎪⎧x ′=x 4,y ′=y .答案:⎩⎪⎨⎪⎧x ′=x 4,y ′=y8.已知A (2,-1),B (-1,1),O 为坐标原点,动点M ,其中m ,n ∈R ,且2m 2-n 2=2,则M 的轨迹方程为________.解析:设M (x ,y ),则(x ,y )=m (2,-1)+n (-1,1)=(2m -n ,n -m ),∴⎩⎪⎨⎪⎧x =2m -n ,y =n -m .又2m 2-n 2=2,消去m ,n 得x 22-y 2=1.答案:x 22-y 2=1三、解答题9.在同一平面直角坐标系中,将曲线x 2-36y 2-8x +12=0变成曲线x ′2-y ′2-4x ′+3=0,求满足条件的伸缩变换.解:x 2-36y 2-8x +12=0可化为 (x -42)2-9y 2=1.① x ′2-y ′2-4x ′+3=0可化为 (x ′-2)2-y ′2=1.②比较①②,可得⎩⎨⎧x ′-2=x -42,y ′=3y ,即⎩⎪⎨⎪⎧x ′=x 2,y ′=3y .所以将曲线x 2-36y 2-8x +12=0上所有点的横坐标变为原来的12,纵坐标变为原来的3倍,就可得到曲线x ′2-y ′2-4x ′+3=0的图象.10.在正三角形ABC 内有一动点P ,已知P 到三顶点的距离分别为|P A |,|PB |,|PC |,且满足|P A |2=|PB |2+|PC |2,求点P 的轨迹方程.解:以BC 的中点为原点,BC 所在的直线为x 轴,BC 的垂直平分线为y 轴,建立如图所示的直角坐标系,设点P (x ,y ),B (-a ,0),C (a ,0),A (0,3a ),(y >0,a >0)用点的坐标表示等式|P A |2=|PB |2+|PC |2,有x 2+(y -3a )2=(x +a )2+y 2+(x -a )2+y 2,化简得x 2+(y +3a )2=(2a )2,即点P 的轨迹方程为x 2+(y +3a )2=4a 2(y >0).11.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为33,以原点为圆心、椭圆短半轴长为半径的圆与直线y =x +2相切.(1)求a 与b ;(2)设该椭圆的左、右焦点分别为F 1和F 2,直线l 1过F 2且与x 轴垂直,动直线l 2与y 轴垂直,l 2交l 1于点P .求线段PF 1的垂直平分线与l 2的交点M 的轨迹方程,并指明曲线类型.解:(1)∴e =33, ∴e 2=c 2a 2=a 2-b 2a 2=13, ∴b 2a 2=23. 又圆x 2+y 2=b 2与直线y =x +2相切,∴b =21+1= 2. ∴b 2=2,a 2=3.因此,a =3,b = 2.(2)由(1)知F 1,F 2两点的坐标分别为(-1,0),(1,0),由题意可设P (1,t ).那么线段PF 1的中点为N (0,t 2). 设M (x ,y ),由于MN ―→=(-x ,t 2-y ), PF 1―→=(-2,-t ),则⎩⎪⎨⎪⎧MN ―→·PF 1―→=2x +t (y -t 2)=0y =t,消去t 得所求轨迹方程为y 2=-4x ,曲线类型为抛物线.。

教育最新K122018-2019学年高中数学人教A版选修4-5教学案:第三讲本讲知识归纳与达标验收

教育最新K122018-2019学年高中数学人教A版选修4-5教学案:第三讲本讲知识归纳与达标验收

对应学生用书P37 考情分析从近两年高考来看,对本部分内容还未单独考查,可也不能忽视,利用柯西不等式构造“平方和的积”与“积的和的平方”,利用排序不等式证明成“对称”形式,或两端是“齐次式”形式的不等式问题.真题体验1.(陕西高考)设a ,b ,m ,n ∈R ,且 a 2+b 2=5,ma +nb =5,则 m 2+n 2 的最小值为________.解析:由柯西不等式得(a 2+b 2)(m 2+n 2)≥(ma +nb )2,将已知代入得m 2+n 2≥5⇒ m 2+n 2≥5,当且仅当“a m =bn ”时等号成立.答案: 52.(福建高考)已知定义在R 上的函数f (x )=|x +1|+|x -2|的最小值为a . (1)求a 的值;(2)若p ,q ,r 是正实数,且满足p +q +r =a ,求证:p 2+q 2+r 2≥3. 解:(1)因为|x +1|+|x -2|≥|(x +1)-(x -2)|=3,当且仅当-1≤x ≤2时,等号成立,所以f (x )的最小值等于3,即a =3. (2)由(1)知p +q +r =3,又因为p ,q ,r 是正实数,所以(p 2+q 2+r 2)(12+12+12)≥(p ×1+q ×1+r ×1)2=(p +q +r )2=9, 即p 2+q 2+r 2≥3.对应学生用书P37柯西不等式的一般形式为(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a nb n )2(a i ,b i ∈R ,i =1,2,…,n ),形式简洁、美观、对称性强,灵活地运用柯西不等式,可以使一些较为困难的不等式证明问题迎刃而解.[例1] 已知a ,b ,c ,d 为不全相等的正数,求证: 1a 2+1b 2+1c 2+1d 2>1ab +1bc +1cd +1da. [证明] 由柯西不等式(1a 2+1b 2+1c 2+1d 2)(1b 2+1c 2+1d 2+1a 2)≥(1ab +1bc +1cd +1da )2,于是1a 2+1b 2+1c 2+1d 2≥1ab +1bc +1cd +1da ①等号成立⇔1a 1b =1b 1c =1c 1d =1d 1a ⇔b a =c b =d c =ad⇔a =b =c =d .又已知a ,b ,c ,d 不全相等,则①中等号不成立. 即1a 2+1b 2+1c 2+1d 2>1ab +1bc +1cd +1da .排序不等式具有自己独特的体现:多个变量的排列与其大小顺序有关,特别是与多变量间的大小顺序有关的不等式问题,利用排序不等式解决往往很简捷.[例2] 设a ,b ,c 为实数,求证: a 12bc +b 12ca +c 12ab≥a 10+b 10+c 10. [证明] 由对称性,不妨设a ≥b ≥c , 于是a 12≥b 12≥c 12,1bc ≥1ca ≥1ab .由排序不等式:顺序和≥乱序和得a 12bc +b 12ca +c 12ab ≥a 12ab +b 12bc +c 12ca =a 11b +b 11c +c 11a .① 又因为a 11≥b 11≥c 11,1a ≤1b ≤1c ,再次由排序不等式:反序和≤乱序和得 a 11a +b 11b +c 11c ≤a 11b +b 11c +c 11a .②由①②得a 12bc +b 12ca +c 12ab ≥a 10+b 10+c 10.有关不等式问题往往要涉及到对式子或量的范围的限定.其中含有多变量限制条件的最值问题往往难以处理.在这类题目中,利用柯西不等式或排序不等式处理往往比较容易.[例3] 已知5a 2+3b 2=158,求a 2+2ab +b 2的最大值.[解] ∵⎣⎡⎦⎤⎝⎛⎭⎫552+⎝⎛⎭⎫332[(5a )2+(3b )2] ≥⎝⎛⎭⎫55×5a +33×3b 2=(a +b )2=a 2+2ab +b 2,当且仅当5a =3b 即a =38,b =58时取等号.∴815×(5a 2+3b 2)≥a 2+2ab +b 2. ∴a 2+2ab +b 2≤815×(5a 2+3b 2)=815×158=1. ∴a 2+2ab +b 2的最大值为1.[例4] 已知正实数x 1,x 2,…,x n 满足x 1+x 2+…+x n =P ,P 为定值,求F =x 21x 2+x 22x 3+…+x 2n -1x n +x 2n x 1的最小值. [解]不妨设0<x 1≤x 2≤…≤x n 则1x 1≥1x 2≥…≥1x n>0 且0<x 21≤x 22≤…≤x 2n .∵1x 2,1 x 3,…,1x n ,1x 1为序列{1x n }的一个排列. 根据排序不等式,得F =x 21x 2+x 22x 3+…+x 2n -1x n +x 2n x 1≥x 21·1x 1+x 22·1x 2+…+x 2n ·1x n=x 1+x 2+…+x n =P (定值),当且仅当x 1=x 2=…=x n =Pn 时取等号.即F =x 21x 2+x 22x 3+…+x 2n -1x n +x 2nx 1的最小值为P .对应学生用书P51(时间:90分钟,总分120分)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设a ,b ∈R +且a +b =16,则1a +1b 的最小值是( )A.14 B .18C.116D.12解析:(a +b )⎝⎛⎭⎫1a +1b ≥⎝⎛⎭⎫a ·1a +b ·1b 2=4, ∴1a +1b ≥14. 当且仅当a ·1b =b ×1a ,即a =b =8时取等号. 答案:A2.已知2x +3y +4z =10,则x 2+y 2+z 2取到最小值时的x ,y ,z 的值为( ) A.53,109,56 B.2029,3029,4029C .1,12,13D .1,14,19解析:由柯西不等式得(22+32+42)(x 2+y 2+z 2)≥(2x +3y +4z )2, 即x 2+y 2+z 2≥10029.当且仅当x 2=y 3=z4时,取到最小值,所以联立⎩⎪⎨⎪⎧x 2=y 3=z 4,2x +3y +4z =10可得x =2029,y =3029,z =4029.答案:B3.已知a ,b ,c 为正数且a +b +c =32,则a 2+b 2+b 2+c 2+c 2+a 2的最小值为( ) A .4 B .4 2 C .6D .6 2解析:∵a ,b ,c 为正数. ∴ 2a 2+b 2=1+1a 2+b 2≤a +b .同理 2 b 2+c 2≤b +c , 2 c 2+a 2≤c +a ,相加得 2 (a 2+b 2+b 2+c 2+c 2+a 2)≤2(b +c +a )=62,即a 2+b 2+b 2+c 2+c 2+a 2≤6.当且仅当a =b =c =2时取等号.答案:C4.已知(x -1)2+(y -2)2=4,则3x +4y 的最大值为( ) A .21 B .11 C .18D .28解析:根据柯西不等式得[(x -1)2+(y -2)2][32+42]≥[3(x -1)+4(y -2)]2=(3x +4y -11)2,∴(3x +4y -11)2≤100. 可得3x +4y ≤21,当且仅当x -13=y -24=25时取等号. 答案:A5.已知:a ,b ,c 为正数,则(a +b +c )⎝⎛⎭⎫1a +b +1c 的最小值为( )A .1 B. 3 C .3D .4解析:(a +b +c )⎝ ⎛⎭⎪⎫1a +b +1c=[(a +b )2+(c )2]⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1a +b 2+⎝⎛⎭⎫1c 2 ≥⎝ ⎛⎭⎪⎫a +b ·1a +b +c ·1c 2=22=4. 当且仅当a +b =c 时取等号. 答案:D6.函数f (x )=2x -1+6-3x 的最大值为( ) A.15 B.30 C.1230 D .215解析:易知x ∈⎣⎡⎦⎤12,2且f (x )>0, ∴f (x )=2·x -12+3·2-x≤ [(2)2+(3)2]⎣⎡⎦⎤⎝⎛⎭⎫x -122+(2-x )2=5×32=1230. 当且仅当2·2-x =3·x -12,即2(2-x )=3(x -12).即x =1110时等号成立.答案:C7.设a ,b ,c 为正数,a +b +4c =1,则a +b +2c 的最大值是( ) A. 5 B. 3 C .2 3D.32解析:1=a +b +4c =(a )2+(b )2+(2c )2=13[(a )2+(b )2+(2c )2]·(12+12+12) ≥(a +b +2c )2·13,∴(a +b +2c )2≤3.即当且仅当a =b =4c 时等式成立,所求为 3. 答案:B8.函数f (x )=1-cos 2x +cos x ,则f (x )的最大值是( ) A. 3 B. 2 C .1D .2解析:由f (x )=1-cos 2x +cos x ,所以f (x )= 2 sin 2x +cos x ≤(2+1)(sin 2x +cos 2x )= 3.当且仅当cos x =33时取等号. 答案:A9.已知a +b +c =1,且a ,b ,c ∈R +,则2a +b +2b +c +2c +a 的最小值为( )A .1B .3C .6D .9解析:∵a +b +c =1, ∴2a +b +2b +c +2c +a=2(a +b +c )·⎝ ⎛⎭⎪⎫1a +b +1b +c +1c +a=[(a +b )+(b +c )+(c +a )]·⎝ ⎛⎭⎪⎫1a +b +1b +c +1c +a ≥(1+1+1)2=9.答案:D10.设c 1,c 2,…,c n 是a 1,a 2,…,a n 的某一排列(a 1,a 2,…,a n 均为正数),则a 1c 1+a 2c 2+…+a nc n的最小值是( ) A.1n B .n C .1D .不能确定解析:不妨设0<a 1≤a 2≤…≤a n ,则1a 1≥1a 2≥…≥1a n ,1c 1,1c 2,…,1c n 是1a 1,1a 2,…,1a n的一个排列,又反序和≤乱序和,所以a 1c 1+a 2c 2+…+a n c n ≥a 1a 1+a 2a 2+…+a na n=n .答案:B二、填空题(本大题共4小题,每小题5分,共20分.把正确答案填写在题中横线上) 11.x ,y ∈R ,若x +y =1,则x 2+y 2的最小值为________.解析:令a =(1,1),b =(x ,y ),则a ·b =x +y =1, 又|a·b |≤|a ||b |, ∴1≤(12+12)2·(x 2+y 2)2=2(x 2+y 2).当且仅当x =y =12时取等号.∴x 2+y 2≥12.答案:1212.已知A ,B ,C 是三角形三个内角的弧度数,则1A +1B +1C 的最小值是________.解析:(A +B +C )⎝⎛⎭⎫1A +1B +1C ≥(1+1+1)2=9,而A +B +C =π,故1A +1B +1C ≥9π,当且仅当A =B =C =π3时,等号成立.答案:9π13.函数y =22-x +2x -3的最大值是________. 解析:y =2×4-2x +2x -3≤[(2)2+1](4-2x +2x -3)= 3.当且仅当x =53时取等号.答案: 314.已知a ,b ,x ,y 均为正数,且1a >1b ,x >y ,则x x +a 与yy +b 的大小关系是________.解析:∵1a >1b ,∴b >a >0.又x >y >0,由排序不等式知,bx >ay .又x x +a -y y +b =bx -ay (x +a )(y +b )>0,∴x x +a >yy +b. 答案:x x +a >yy +b三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)已知实数a ,b ,c 满足a +2b +c =1,a 2+b 2+c 2=1,求证:-23≤c ≤1. 证明:因为a +2b +c =1,a 2+b 2+c 2=1, 所以a +2b =1-c ,a 2+b 2=1-c 2.由柯西不等式:(12+22)(a 2+b 2)≥(a +2b )2, 5(1-c 2)≥(1-c )2,整理得,3c 2-c -2≤0,解得-23≤c ≤1.∴-23≤c ≤1.16.(本小题满分12分)求函数y =1-sin x +4sin x -1的最大值. 解:由1-sin x ≥0,4sin x -1≥0, 得14≤sin x ≤1, 则y 2=⎝⎛⎭⎫1-sin x +2sin x -142≤(1+4)⎝⎛⎭⎫1-sin x +sin x -14 =154,即y ≤152, 当且仅当4(1-sin x )=sin x -14即sin x =1720时等号成立,所以函数y =1-sin x +4sin x -1的最大值为152. 17.(本小题满分12分)设a ,b ,c ∈R +, 求证:a 2b +c +b 2c +a +c 2a +b≥a +b +c 2.证明:∵[(b +c )+(c +a )+(a +b )]⎝ ⎛⎭⎪⎫a2b +c +b 2c +a +c 2a +b ≥⎝⎛⎭⎪⎫b +c ·a b +c +c +a ·b c +a +a +b ·c a +b 2=(a +b +c )2,即2(a +b +c )⎝ ⎛⎭⎪⎫a 2b +c +b 2c +a +c 2a +b ≥(a +b +c )2.又∵a ,b ,c ∈R +,∴a 2b +c +b 2c +a +c 2a +b≥a +b +c 2.18.(本小题满分12分)(1)已知:a ,b ∈R +,a +b =4,证明:1a +1b≥1;(2)已知: a ,b ,c ∈R +,a +b +c =9,证明:1a +1b +1c ≥1;并类比上面的结论,写出推广后的一般性结论(不需证明).证明:(1)根据柯西不等式: (a +b )⎝⎛⎭⎫1a +1b≥⎝⎛⎭⎫a ·1a +b ·1b 2=4,∵a +b =4, ∴1a +1b≥1. (2)根据柯西不等式: (a +b +c )⎝⎛⎭⎫1a +1b +1c≥⎝⎛⎭⎫a ·1a +b ·1b +c ·1c 2=9,∵a +b +c =9, ∴1a +1b +1c ≥1. 可以推广:若a 1+a 2+…+a n =n 2, 则1a 1+1a 2+…+1a n≥1.小学+初中+高中小学+初中+高中。

推荐学习K122018-2019学年高中数学人教A版选修4-4学案:第一讲本讲知识归纳与达标验收-含

推荐学习K122018-2019学年高中数学人教A版选修4-4学案:第一讲本讲知识归纳与达标验收-含

[对应学生用书P13]考情分析通过对近几年新课标区高考试题的分析可知,高考对本讲的考查集在考查极坐标方程、极坐标与直角坐标的互化等.预计今后的高考中,仍以考查圆、直线的极坐标方程为主.真题体验1.(安徽高考)在极坐标系中,圆ρ=2cos θ的垂直于极轴的两条切线方程分别为()A.θ=0(ρ∈R)和ρcos θ=2B.θ=π2(ρ∈R)和ρcos θ=2C.θ=π2(ρ∈R)和ρcos θ=1D.θ=0(ρ∈R)和ρcos θ=1解析:由题意可知,圆ρ=2cos θ可化为普通方程为(x-1)2+y2=1.所以圆的垂直于x轴的两条切线方程分别为x=0和x=2,再将两条切线方程化为极坐标方程分别为θ=π2(ρ∈R)和ρcos θ=2,故选B.答案:B2.(安徽高考)在极坐标系中,圆ρ=4sin θ的圆心到直线θ=π6(ρ∈R)的距离是________.解析:将ρ=4sin θ化成直角坐标方程为x2+y2=4y,即x2+(y-2)2=4,圆心为(0,2).将θ=π6(ρ∈R)化成直角坐标方程为x-3y=0,由点到直线的距离公式可知圆心到直线的距离d =|0-23|2= 3.答案: 33.(江西高考)若曲线的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为________.解析:∵ρ=2sin θ+4cos θ,∴ρ2=2ρsin θ+4ρcos θ, ∴x 2+y 2=2y +4x ,即x 2+y 2-4x -2y =0. 答案:x 2+y 2-4x -2y =0.[对应学生用书P13]利用问题的几何特征,建立适当坐标系,主要就是兼顾到它们的对称性,尽量使图形的对称轴(对称中心)正好是坐标系中的x 轴,y 轴(坐标原点).坐标系的建立,要尽量使我们研究的曲线的方程简单.[例1] 已知正三角形ABC 的边长为a ,在平面上求一点P ,使|P A |2+|PB |2+|PC |2最小,并求出此最小值.[解] 以BC 所在直线为x 轴,BC 的垂直平分线为y 轴,建立平面直角坐标系,如图,则A ⎝⎛⎭⎪⎫0,32a ,B ⎝ ⎛⎭⎪⎫-a 2,0,C ⎝ ⎛⎭⎪⎫a 2,0.设P (x ,y ),则|P A |2+|PB |2+|PC |2=x 2+⎝ ⎛⎭⎪⎫y -32a 2+⎝ ⎛⎭⎪⎫x +a 22+y 2+⎝ ⎛⎭⎪⎫x -a 22+y 2=3x 2+3y 2-3ay +5a 24=3x 2+3⎝⎛⎭⎪⎫y -36a 2+a 2≥a 2,当且仅当x =0,y =36a 时,等号成立.∴所求的最小值为a 2,此时P 点的坐标为P ⎝ ⎛⎭⎪⎫0,36a ,即为正三角形ABC的中心.设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎨⎧x ′=λ·x (λ>0)y ′=μ·y (μ>0)的作用下,点P (x ,y )对应点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换.[例2] 在同一平面直角坐标系中,经过伸缩变换⎩⎨⎧x ′=2x ,y ′=2y 后,曲线C变为曲线(x ′-5)2+(y ′+6)2=1,求曲线C 的方程,并判断其形状.[解] 将⎩⎪⎨⎪⎧x ′=2x ,y ′=2y 代入(x ′-5)2+(y ′+6)2=1中,得(2x -5)2+(2y +6)2=1. 化简,得(x -52)2+(y +3)2=14.该曲线是以(52,-3)为圆心,半径为12的圆.θ)=0如果曲线C 是由极坐标(ρ,θ)满足方程的所有点组成的,则称此二元方程F (ρ,θ)=0为曲线C 的极坐标方程.由于平面上点的极坐标的表示形式不唯一,因此曲线的极坐标方程和直角坐标方程也有不同之处,一条曲线上的点的极坐标有多组表示形式,有些表示形式可能不满足方程,这里要求至少有一组能满足极坐标方程.求轨迹方程的方法有直接法、定义法、相关点代入法,在极坐标中仍然适用,注意求谁设谁,找出所设点的坐标ρ,θ的关系.[例3] △ABC 底边BC =10,∠A =12∠B ,以B 为极点,BC 为极轴,建立极坐标系,求顶点A 的轨迹的极坐标方程.[解] 如图:令A (ρ,θ), △ABC 内,设∠B =θ,∠A =θ2, 又|BC |=10,|AB |=ρ. 由正弦定理,得ρsin (π-3θ2)=10sin θ2, 化简,得A 点轨迹的极坐标方程为ρ=10+20cos θ.互化的前提依旧是把直角坐标系的原点作为极点,x 轴的正半轴作为极轴并在两种坐标系下取相同的单位长度.互化公式为x =ρcos θ,y =ρsin θρ2=x 2+y 2,tan θ=yx (x ≠0)直角坐标方程化极坐标方程可直接将x =ρcos θ,y =ρsin θ代入即可,而极坐标方程化为直角坐标方程通常将极坐标方程化为ρcos θ,ρsin θ的整体形式,然后用x ,y 代替较为方便,常常两端同乘以ρ即可达到目的,但要注意变形的等价性.[例4] (天津高考)在以O 为极点的极坐标系中,圆ρ=4sin θ和直线ρsin θ=a 相交于A ,B 两点.若△AOB 是等边三角形,则a 的值为________.[解析] 由于圆和直线的直角坐标方程分别为x 2+y 2=4y 和y =a ,它们相交于A ,B 两点,△AOB 为等边三角形,所以不妨取直线OB 的方程为y =3x ,联立⎩⎪⎨⎪⎧x 2+y 2=4y ,y =3x ,消去y ,得x 2=3x ,解得x =3或x =0,所以y =3x =3,即a =3.[答案] 3[例5] 在极坐标系中,点M 坐标是(2,π3),曲线C 的方程为ρ=22sin(θ+π4); 以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 经过点M 和极点.(1)写出直线l 的极坐标方程和曲线C 的直角坐标方程; (2)直线l 和曲线C 相交于两点A 、B ,求线段AB 的长. [解] (1)∵直线l 过点M (2,π3)和极点, ∴直线l 的直角坐标方程是θ=π3(ρ∈R ). ρ=22sin(θ+π4)即ρ=2(sin θ+cos θ), 两边同乘以ρ得ρ2=2(ρsin θ+ρcos θ), ∴曲线C 的直角坐标方程为x 2+y 2-2x -2y =0. (2)点M 的直角坐标为(1,3),直线l 过点M 和原点, ∴直线l 的直角坐标方程为y =3x .曲线C 的圆心坐标为(1,1),半径r =2,圆心到直线l 的距离为d =3-12,∴|AB |=3+1.[对应学生用书P35] (时间:90分钟,总分120分)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.点M 的极坐标为(1,π),则它的直角坐标是( ) A .(1,0) B .(-1,0) C .(0,1)D .(0,-1)解析:x =1×cos π=-1,y =1×sin π=0, 即直角坐标是(-1,0). 答案:B2.已知曲线C 的极坐标方程ρ=2cos 2θ,给定两点P (0,π2),Q (2,π),则有( )A .P 在曲线C 上,Q 不在曲线C 上B .P 、Q 都不在曲线C 上C .P 不在曲线C 上,Q 在曲线C 上D .P 、Q 都在曲线C 上解析:当θ=π2时,ρ=2cos π=-2≠0,故点P 不在曲线上;当θ=π时,ρ=2cos 2π=2,故点Q 在曲线上.答案:C3.点P 的柱坐标为⎝ ⎛⎭⎪⎫16,π3,5,则其直角坐标为( )A.()5,8,83B.()8,83,5C.()83,8,5D.()4,83,5解析:∵ρ=16,θ=π3,z =5,∴x =ρcos θ=8,y =ρsin θ=83,z =5, ∴点P 的直角坐标是(8,83,5). 答案:B4.在同一坐标系中,将曲线y =2sin 3x 变为曲线y =sin x 的伸缩变换是( ) A.⎩⎪⎨⎪⎧x =3x ′y =12y ′B.⎩⎪⎨⎪⎧x ′=3x y ′=12y C.⎩⎨⎧x =3x ′y =2y ′D.⎩⎨⎧x ′=3x y ′=2y解析:将⎩⎪⎨⎪⎧x ′=λxy ′=μy 代入y =sin x ,得μy =sin λx ,即y =1μsin λx ,与y =2sin 3x 比较,得μ=12,λ=3,即变换公式为⎩⎨⎧x ′=3x ,y ′=12y .答案:B5.曲线ρ=5与θ=π4的交点的极坐标写法可以有( ) A .1个 B .2个 C .4个D .无数个解析:由极坐标的定义易知有无数个. 答案:D6.在极坐标系中,过点A (6,π)作圆ρ=-4cos θ的切线,则切线长为( ) A .2 B .6 C .2 3D .215解析:圆ρ=-4cos θ化为(x +2)2+y 2=4,点(6,π)化为(-6,0),所以切线长=42-22=12=2 3.答案:C7.极坐标方程ρ=cos θ与ρcos θ=12的图形是( )解析:把ρcos θ=12化为直角坐标方程,得x =12,把ρ=cos θ代为直角坐标方程,得x 2+y 2-x =0,即其圆心为⎝ ⎛⎭⎪⎫12,0,半径为12,故选项B 正确.答案:B8.极坐标方程θ=π3,θ=23π(ρ>0)和ρ=4所表示的曲线围成的图形面积是( )A.163πB.83πC.43πD.23π解析:三条曲线围成一个扇形, 半径为4,圆心角为2π3-π3=π3. ∴扇形面积为:12×4×π3×4=8π3. 答案:B9.在极坐标系中,曲线ρ=4sin(θ-π3)关于( ) A .线θ=π3轴对称B .线θ=5π6轴对称C .(2,π3)中心对称D .极点中心对称解析:ρ=4sin(θ-π3)可化为ρ=4cos(θ-5π6),可知此曲线是以(2,5π6)为圆心的圆,故圆关于θ=5π6对称.答案:B10.在极坐标系中有如下三个结论:①点P 在曲线C 上,则点P 的极坐标满足曲线C 的极坐标方程;②tan θ=1与θ=π4表示同一条曲线;③ρ=3与ρ=-3表示同一条曲线.在这三个结论中正确的是( )A .①③B .①C .②③D .③解析:在直角坐标系内,曲线上每一点的坐标一定适合它的方程,但在极坐标系内,曲线上所有点的坐标不一定适合方程,故①是错误的;tan θ=1不仅表示θ=π4这条射线,还表示θ=5π4这条射线,故②亦不对;ρ=3与ρ=-3差别仅在于方向不同,但都表示一个半径为3的圆,故③正确.答案:D二、填空题(本大题共4个小题,每小题5分,满分20分.把答案填写在题中的横线上)11.(天津高考)已知圆的极坐标方程为ρ=4cos θ,圆心为C ,点P 的极坐标为⎝ ⎛⎭⎪⎫4,π3,则|CP |=________. 解析:由圆的极坐标方程为ρ=4cos θ,得圆心C 的直角坐标为(2,0),点P 的直角坐标为(2,23),所以|CP |=2 3.答案:2 312.点A 的直角坐标为⎝ ⎛⎭⎪⎫332,92,3,则它的球坐标为________.解析:r =⎝ ⎛⎭⎪⎫3322+⎝ ⎛⎭⎪⎫922+32=6.cos φ=36=12,∴φ=π3. tan θ=92332=3,∴θ=π3.∴它的球坐标为⎝ ⎛⎭⎪⎫6,π3,π3.答案:⎝ ⎛⎭⎪⎫6,π3,π313.在极坐标系中,点A ⎝ ⎛⎭⎪⎫2,π2关于直线l :ρcos θ=1的对称点的一个极坐标为________.解析:由直线l 的方程可知直线l 过点(1,0)且与极轴垂直,设A ′是点A 关于l 的对称点,则四边OBA ′A 是正方形,∠BOA ′=π4,且OA ′=22,故A ′的极坐标可以是⎝ ⎛⎭⎪⎫22,π4. 答案:⎝ ⎛⎭⎪⎫22,π414.从极点作圆ρ=2a cos θ的弦,则各条弦中点的轨迹方程为________. 解析:数形结合,易知所求轨迹是以⎝ ⎛⎭⎪⎫a 2,0为圆心,a 2为半径的圆,求得方程是ρ=a cos θ⎝ ⎛⎭⎪⎫-π2≤θ≤π2. 答案:ρ=a cos θ⎝ ⎛⎭⎪⎫-π2≤θ≤π2三、解答题(本大题共4个小题,满分50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)(辽宁高考改编)将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C .设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.解:设(x 1,y 1)为圆上的点,在已知变换下变为C 上点(x ,y ),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1.由x 21+y 21=1得x 2+⎝ ⎛⎭⎪⎫y 22=1, 即曲线C 的方程为x 2+y 24=1. 由⎩⎨⎧ x 2+y 24=1,2x +y -2=0,解得⎩⎪⎨⎪⎧ x =1,y =0或⎩⎪⎨⎪⎧x =0,y =2. 不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝ ⎛⎭⎪⎫12,1,所求直线斜率为k =12,于是所求直线方程为y -1=12⎝ ⎛⎭⎪⎫x -12, 化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3,即ρ=34sin θ-2cos θ. 16.(本小题满分12分)极坐标方程ρ=-2cos θ与ρcos(θ+π3)=1表示的两个图形的位置关系是什么?解:ρ=-2cos θ可变为ρ2=-2ρcos θ,化为普通方程为x 2+y 2=-2x即(x +1)2+y 2=1它表示圆,圆心为(-1,0),半径为1.将ρcos(θ+π3)=1化为普通方程为x -3y -2=0.∵圆心(-1,0)到直线的距离为|-1-2|1+3=32>1 ∴直线与圆相离.17.(本小题满分12分)把下列极坐标方程化为直角坐标方程并说明表示什么曲线.(1)ρ=2a cos θ(a >0);(2)ρ=9(sin θ+cos θ);(3)ρ=4;(4)2ρcos θ-3ρsin θ=5.解:(1)ρ=2a cos θ,两边同时乘以ρ,得ρ2=2aρcos θ,即x 2+y 2=2ax .整理得x 2+y 2-2ax =0,即(x -a )2+y 2=a 2.是以(a,0)为圆心,a 为半径的圆.(2)两边同时乘以ρ得ρ2=9ρ(sin θ+cos θ),即x 2+y 2=9x +9y ,又可化为(x -92)2+(y -92)2=812,是以(92,92)为圆心,922为半径的圆.(3)将ρ=4两边平方得ρ2=16,即x 2+y 2=16.是以原点为圆心,4为半径的圆.(4)2ρcos θ-3ρsin θ=5,即2x -3y =5,是一条直线.18.(本小题满分14分)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-π3=1,M ,N 分别为曲线C 与x 轴,y 轴的交点.(1)写出曲线C 的直角坐标方程,并求M ,N 的极坐标;(2)设MN 的中点为P ,求直线OP 的极坐标方程.解:(1)由ρcos ⎝ ⎛⎭⎪⎫θ-π3=1,得ρ⎝ ⎛⎭⎪⎫12cos θ+32sin θ=1.从而C 的直角坐标方程为12x +32y =1,即x +3y =2.当θ=0时,ρ=2,得M (2,0);当θ=π2时,ρ=233,得N ⎝ ⎛⎭⎪⎫233,π2. (2)M 点的直角坐标为(2,0),N 点的直角坐标为⎝⎛⎭⎪⎫0,233. 所以P 点的直角坐标为⎝ ⎛⎭⎪⎫1,33, 则P 点的极坐标为⎝ ⎛⎭⎪⎫233,π6. 所以直线OP 的极坐标方程为θ=π6,ρ∈R .。

高中数学选修41教案

高中数学选修41教案

高中数学选修41教案高中数学选修41教案1上个学期,依据需要,学校安排我上高二数学文科,在这一学期里我从各方面严格要求自己,在教学上虚心向老老师请教,结合本校和班级同学的实际状况,针对性的开展教学工作,使工作有计划,有组织,有步骤。

经过了一学期,我对教学工作有了如下感想:一、仔细备课,做到既备同学又备教材与备教法。

上学期我依据教材资料及同学的实际状况设计课程教学,拟定教学方法,并对教学过程中遇到的问题尽可能的预先思索到,仔细写好教案。

每一课都做到“有备而去”,每堂课都在课前做好充分的预备,课后实时对该课作出小结,并仔细整理每一章节的知识要点,帮忙同学进行归纳总结。

二、加强上课技能,提高教学质量。

加强上课技能,提高教学质量是我们每一名新老师不断努力的目标。

由于应对的是文科生,基础普遍比较差,所以我主要是立足于基础,让同学学得简约,学得开心。

留意精讲精练,在课堂上讲得尽量少些,而让同学自己动口动手动脑尽量多些;同时在每一堂课上都充分思索每一个层次的同学学习需求和理解潜力,让各个层次的同学都得到提高。

三、虚心向其他老师学习,在教学上做到有疑必问。

在每个章节的学习上都上心征求其他有阅历老师的看法,学习他们的方法。

同时多听老老师的课,做到边听边学,给自己不断充电,弥补自己在教学上的不足,征求他们的看法,改善教学工作。

四、仔细批改作业、布置作业有针对性,有层次性。

作业是同学对所学知识巩固的过程。

为了做到布置作业有针对性,有层次性,我经常多方面的搜集资料,对各种辅导资料进行筛选,力求每一次练习都能让同学起到的效果。

同时对同学的作业批改实时、仔细,并分析同学的作业状况,将他们在作业过程涌现的问题实时评讲,并针对反映出的状况实时改善自己的教学方法,做到有的放矢。

然而,在确定成果、总结阅历的同时,我清晰地认识到我所获得的教学阅历还是肤浅的,在教学中存在的问题也不容忽视,也有一些困惑有待解决今后我将努力工作,上心向老老师学习以提高自己的教学水平。

2019-2020学年度最新高中数学人教A版选修4-1创新应用教学案:第一讲三相似三角形的判定-含答案

2019-2020学年度最新高中数学人教A版选修4-1创新应用教学案:第一讲三相似三角形的判定-含答案

2019-2020学年度最新高中数学人教A版选修4-1创新应用教学案:第一讲三相似三角形的判定-含答案相似三角形的判定及性质1.相似三角形的判定[对应学生用书P7]1.相似三角形(1)定义:对应角相等,对应边成比例的两个三角形叫做相似三角形,相似三角形对应边的比值叫做相似比或(相似系数).(2)预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.2.相似三角形的判定定理(1)判定定理1:对于任意两个三角形,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,简述为:两角对应相等,两三角形相似.(2)判定定理2:对于任意两个三角形,如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似,简述为:两边对应成比例且夹角相等,两三角形相似.引理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.(3)判定定理3:对于任意两个三角形,如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似,简述为:三边对应成比例,两三角形相似.[说明] 1.在这些判定方法中,应用最多的是判定定理1,即两角对应相等,两三角形相似.因为它的条件最容易寻求.在实际证明当中,要特别注意两个三角形的公共角.判定定理2则常见于连续两次证明相似时,在证明时第二次使用此定理的情况较多.2.引理是平行线分线段成比例定理的推论的逆定理,可以判定两直线平行.3.直角三角形相似的判定定理(1)定理:①如果两个直角三角形有一个锐角对应相等,那么它们相似;②如果两个直角三角形的两条直角边对应成比例那么它们相似.(2)定理:如果一个直角三角形的斜边和一条直角边与另一个三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.[说明]对于直角三角形相似的判定,除了以上方法外,还有其他特殊的方法,如直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.在证明直角三角形相似时,要特别注意直角这一隐含条件的利用.[对应学生用书P8][例1]如图,已知在△ABC中,AB=AC,∠A=36°,BD是角平分线,证明:△ABC∽△BCD.[思路点拨]已知AB=AC,∠A=36°,所以∠ABC=∠C=72°,而BD是角平分线,因此,可以考虑使用判定定理1.[证明]∵∠A=36°,AB=AC,∴∠ABC=∠C=72°.又∵BD平分∠ABC,∴∠ABD=∠CBD=36°,∴∠A=∠CBD.又∵∠C=∠C,∴△ABC∽△BCD.判定两三角形相似,可按下面顺序进行:(1)有平行截线,用预备定理;(2)有一对等角时,①找另一对等角,②找夹这个角的两边对应成比例;(3)有两对应边成比例时,①找夹角相等,②找第三边对应成比例,③找一对直角.1.如图,BC∥FG∥ED,若每两个三角形相似,构成一组相似三角形,那么图中相似的三角形的组数是()A .1B .2C .3D .4解析:△AED 与△AFG 相似,△AED 与△ABC 相似,△AFG 与△ABC 相似. 答案:C2.如图,O 是△ABC 内任一点,D ,E ,F 分别是OA ,OB ,OC 的中点,求证:△DEF ∽△ABC .证明:∵D ,E ,F 分别是OA ,OB ,OC 的中点, ∴DE =12AB ,EF =12BC ,FD =12CA .∴DE AB =EF BC =FD CA =12. ∴△DEF ∽△ABC .3.如图,D 在AB 上,且DE ∥BC 交AC 于E ,F 在AD 上,且AD 2=AF ·AB ,求证:△AEF ∽△ACD .证明:∵DE ∥BC ,∴AC AE =AB AD .①∵AD 2=AF ·AB ,∴AD AF =ABAD .②由①②两式得AC AE =ADAF ,又∠A 为公共角,∴△AEF ∽△ACD .[例2] ,Q 是CD 的中点,求证:△ADQ ∽△QCP .[思路点拨] 由于这两个三角形都是直角三角形,且已知条件是线段间的关系,故考虑证明对应边成比例,即只需证明AD QC =DQCP即可.[证明] 在正方形ABCD 中, ∵Q 是CD 的中点,∴ADQC=2. ∵BP PC =3,∴BC PC =4. 又BC =2DQ ,∴DQ CP =2.在△ADQ 和△QCP 中, AD QC =DQCP =2,∠C =∠D =90°, ∴△ADQ ∽△QCP .直角三角形相似的判定方法:(1)相似三角形的判定定理1,2,3都适用于直角三角形相似的判定.(2)两个直角三角形,已经具备直角对应相等,只要再证明有一对锐角相等,或夹直角的两边对应成比例,就可以证明这两个直角三角形相似.4.如图,∠C =90°,D 是AC 上的一点,DE ⊥AB 于E ,求证:△ADE ∽△ABC .证明:∵DE ⊥AB , ∴∠DEA =90°, ∵∠C =90°, ∴∠DEA =∠C . ∵∠A =∠A . ∴△ADE ∽△ABC5.如图,BD ,CE 是△ABC 的高,BD ,CE 交于F ,写出图中所有与△ACE 相似的三角形.解:∵∠ACE 为公共角,由直角三角形判定定理1,知Rt △FDC ∽Rt △ACE . 又∠A 为公共角,∴Rt △ABD ∽Rt △ACE . 又∵∠A +∠ACE =90°,∠A +∠ABD =90°, ∴∠ACE =∠ABD .∴Rt △FBE ∽Rt △ACE .故共有三个直角三角形,即Rt △ABD ,Rt △FBE , Rt △FCD 与Rt △ACE 相似.[例3] 如图,D 为△ABC 的边AB 上一点,过D 点作DE ∥BC ,DF ∥AC ,AF 交DE 于G ,BE 交DF 于H ,连接GH .求证:GH ∥AB .[思路点拨] 根据此图形的特点可先证比例式GE DE =EHEB 成立,再证△EGH ∽△EDB ,由相似三角形的定义得∠EHG =∠EBD 即可.[证明] ∵DE ∥BC , ∴GE FC =AG AF =DG FB ,即GE DG =CF FB . 又∵DF ∥AC ,∴EH HB =CF FB .∴GE DG =EH HB .∴GE ED =EH EB . 又∠GEH =∠DEB , ∴△EGH ∽△EDB . ∴∠EHG =∠EBD . ∴GH ∥AB .不仅可以由平行线得到比例式,也可以根据比例式的成立确定两直线的平行关系.有时用它来证明角与角之间的数量关系,线段之间的数量关系.6.如图,△ABC 的三边长是2、6、7,△DEF 的三边长是4、12、14,且△ABC 与△DEF 相似,则∠A =__________,∠B =__________,∠C =________.AB ( )=( )EF =AC ( )=________.解析:∠A =∠D ,∠B =∠E ,∠C =F . AB DE =BC EF =AC DF =12. 答案:∠D ∠E ∠F DE BC DF 127.如图,四边形ABCD 是平行四边形,点F 在BA 的延长线上,连接CF 交AD 于点E .(1)求证:△CDE ∽△F AE ;(2)当E 是AD 的中点,且BC =2CD 时, 求证:∠F =∠BCF .证明:(1)∵四边形ABCD 是平行四边形, ∴AB ∥CD .又∵点F 在BA 的延长线上, ∴∠DCF =∠F ,∠D =∠F AE . ∴△CDE ∽△F AE .(2)∵E 是AD 的中点,∴AE =DE . 由△CDE ∽△F AE ,得CD F A =DEAE .∴CD =F A .∴AB =CD =AF .∴BF =2CD .又∵BC =2CD ,∴BC =BF .∴∠F =∠BCF .8.如图,在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于D ,点E 是AC 的中点,ED 的延长线交AB 的延长线于F .求证:AB AC =DFAF.证明:∵E 是Rt △ADC 斜边AC 上的中点, ∴AE =EC =ED . ∴∠EDC =∠C =∠BDF . 又∵AD ⊥BC 且∠BAC =90°, ∴∠BAD =∠C . ∴∠BAD =∠BDF .又∠F =∠F ,∴△DBF ∽△ADF , ∴DB AD =DF AF. 又在Rt △ABD 与Rt △CBA 中,AB AC =DBAD ,∴AB AC =DF AF.[对应学生用书P10]一、选择题1.如图所示,AD ∥EF ∥BC ,GH ∥AB ,则图中与△BOC 相似的三角形共有( )A .1个B .2个C .3个D .4个解析:根据相似三角形的判定定理可得: △OEF ∽△OBC (∵EF ∥BC ); △CHG ∽△CBO (∵HG ∥OB ); △OAD ∽△OBC (∵AD ∥BC ).故与△BOC 相似的三角形共有3个. 答案:C2.下列判断中,不.正确的是( )A .两直角边分别是3.5,2和2.8,1.6的两个直角三角形相似B .斜边和一直角边长分别是25,4和5,2的两个直角三角形相似C .两条边长分别是7,4和14,8的两个直角三角形相似D .两个等腰直角三角形相似解析:由直角三角形相似判定定理知A 、B 、D 正确. 答案:C3.如图,要使△ACD ∽△BCA ,下列各式中必须成立的是( )A.AC AB =AD BCB.AD CD =AC BC C .AC 2=CD ·CB D .CD 2=AC ·AB解析:∠C =∠C ,只有AC CD =CBAC ,即AC 2=CD ·CB 时,才能使△ACD ∽△BCA .答案:C4.如图,在等边三角形ABC 中,E 为AB 中点,点D 在AC 上,使得AD AC =13,则有( ) A .△AED ∽△BED B .△AED ∽△CBD C .△AED ∽△ABD D .△BAD ∽△BCD解析:因为∠A =∠C ,BC AE =CDAD =2,所以△AED ∽△CBD . 答案:B 二、填空题5.如图,△ABC 中,DE ∥BC ,GF ∥AB ,DE ,GF 交于点O ,则图中与△ABC 相似的三角形共有________个,它们分别是____________________.解析:与△ABC 相似的有△GFC ,△OGE ,△ADE . 答案:3 △GFC ,△OGE ,△ADE6.如图所示,∠ACB =90°,CD ⊥AB 于点D ,BC =3,AC =4,则AD =________,BD =________.解析:由题设可求得AB =5, ∵Rt △ABC ∽Rt △ACD , ∴AB AC =AC AD .∴AD =AC 2AB =165. 又∵Rt △ABC ∽Rt △CBD , ∴AB CB =BC BD .∴BD =BC 2AB =95. 答案:165 957.已知:在△ABC 中,AD 为∠BAC 的平分线,AD 的垂直平分线EF 与AD 交于点E ,与BC 的延长线交于点F ,若CF =4,BC =5,则DF =________.解析:连接AF . ∵EF ⊥AD ,AE =ED , ∴AF =DF , ∠F AD =∠FDA .又∵∠F AD =∠DAC +∠CAF , ∠FDA =∠BAD +∠B , 且∠DAC =∠BAD ,∴∠CAF =∠B .而∠CF A =∠AFB , ∴△AFC ∽△BF A . ∴AF CF =BFAF. ∴AF 2=CF ·BF =4×(4+5)=36. ∴AF =6,即DF =6. 答案:6 三、解答题8.如图,已知△ABC 中,AB =AC ,D 是AB 的中点,E 在AB 的延长线上,且BE =AB ,求证:△ADC ∽△ACE .证明:∵D 是AB 的中点,∴AD AB =12.∵AB =AC ,∴AD AC =12.∵ BE =AB ,∴AB AE =12.又AB =AC ,∴AC AE =12.∴AD AC =AC AE. 又∠A 为公共角,∴△ADC ∽△ACE .9.如图,直线EF 交AB 、AC 于点F 、E ,交BC 的延长线于点D ,AC ⊥BC ,且AB ·CD =DE ·AC .求证:AE ·CE =DE ·EF . 证明:∵AB ·CD =DE ·AC ∴AB DE =ACCD . ∵AC ⊥BC ,∴∠ACB =∠DCE =90°. ∴△ACB ∽△DCE . ∴∠A =∠D .又∵∠AEF =∠DEC ,∴△AEF ∽△DEC . ∴AE DE =EF CE . ∴AE ·CE =DE ·EF .10.如图所示,在△ABC 中,∠ACB =90°,CD ⊥AB 于D ,AE 是∠CAB 的角平分线,CD 与AE 相交于点F ,EG ⊥AB 于G .求证:EG 2=FD ·EB .证明:因为∠ACE =90°,CD ⊥AB ,所以∠CAE +∠AEC =90°,∠F AD +∠AFD =90°. 因为∠AFD =∠CFE , 所以∠F AD +∠CFE =90°. 又因为∠CAE =∠F AD , 所以∠AEC =∠CFE . 所以CF =CE .因为AE 是∠CAB 的平分线,EG ⊥AB ,EC ⊥AC , 所以EC =EG ,CF =EG .因为∠B +∠CAB =90°,∠ACF +∠CAB =90°, 所以∠ACF =∠B .因为∠CAF =∠BAE , 所以△AFC ∽△AEB ,AF AE =CF EB .因为CD ⊥AB ,EG ⊥AB , 所以Rt △ADF ∽Rt △AGE . 所以AF AE =FD EG ,CF EB =FD EG.所以CF ·EG =FD ·EB ,EG 2=FD ·EB .2.相似三角形的性质[对应学生用书P11]1.相似三角形的性质定理相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比. 相似三角形周长的比等于相似比. 相似三角形面积的比等于相似比的平方.2.两个相似三角形的外接圆的直径比、周长比、面积比与相似比的关系相似三角形外接圆的直径比、周长比等于相似比,外接圆的面积比等于相似比的平方. [说明] 相似三角形中的“对应线段”不仅仅指对应边、对应中线、角平分线和高,应包括一切“对应点”连接的线段;同时也可推演到对应的内切圆、外接圆的半径.[对应学生用书P11][例1] 已知如图,△ABC 中,CE ⊥AB 于E ,BF ⊥AC 于F ,若S△ABC =36 cm 2,S △AEF =4 cm 2,求sin A 的值.[思路点拨] 由题目条件证明△AEC ∽△AFB ,得AE ∶AF =AC ∶AB ,由此推知△AEF ∽△ACB ,进而求出线段EC 与AC 的比值.[解] ∵CE ⊥AB 于E ,BF ⊥AC 于F , ∴∠AEC =∠AFB =90°. 又∵∠A =∠A ,∴△AEC ∽△AFB . ∴AE AF =AC AB. 又∵∠A =∠A ,∴△AEF ∽△ACB . ∴(AE AC )2=S △AEF S △ACB =436. ∴AE AC =26=13. 设AE =k , 则AC =3k , ∴EC =22k . ∴sin A =EC AC =223.利用相似三角形的性质进行有关的计算往往与相似三角形对应边的比及对应角相等有关,解决此类问题,要善于联想,变换比例式,从而达到目的.1.如图,在△ABC 中,D ,E 分别是AB ,AC 边上的点.AB =8 cm ,AC =10 cm ,若△ADE 和△ABC 相似,且S △ABC ∶S △ADE =4∶1,则AE =________cm.解析:因为△ADE ∽△ABC ,且S △ABC ∶S △ADE =4∶1,所以其相似比为2∶1,即AE AC =12或AEAB =12,所以AE =5或4(cm). 答案:5或42.如图,在▱ABCD 中,AE ∶EB =2∶3. (1)求△AEF 与△CDF 周长的比; (2)若S △AEF =8,求S △CDF .解:(1)∵四边形ABCD 是平行四边形, ∴AB ∥CD 且AB =CD .∵AE EB =23,∴AE AE +EB =22+3,即AE AB =25.∴AE CD =25.又由AB ∥CD 知△AEF ∽△CDF , ∴△AEF 的周长∶△CDF 的周长=2∶5. (2)S △AEF ∶S △CDF =4∶25, 又S △AEF =8,∴S △CDF =50.[例2] 如图,一天早上,小张正向着教学楼AB 走去,他发现教学楼后面有一水塔DC ,可过了一会抬头一看:“怎么看不到水塔了?”心里很是纳闷.经过了解,教学楼、水塔的高分别是20米和30米,它们之间的距离为30米,小张身高为1.6米.小张要想看到水塔,他与教学楼之间的距离至少应有多少米?[思路点拨] 此题的解法很多,其关键是添加适当的辅助线,构造相似三角形,利用相似三角形的知识解题.[解] 如图,设小张与教学楼的距离至少应有x 米,才能看到水塔.连接FD ,由题意知,点A 在FD 上,过F 作FG ⊥CD 于G ,交AB 于H ,则四边形FEBH ,四边形BCGH 都是矩形.∵AB ∥CD ,∴△AFH ∽△DFG . ∴AH ∶DG =FH ∶FG .即(20-1.6)∶(30-1.6)=x ∶(x +30), 解得x =55.2(米).故小张与教学楼的距离至少应有55.2米,才能看到水塔.此类问题是利用数学模型解实际问题,关键在于认真分析题意,将实际问题转化成数学问题,构造相似三角形求解.3.如图,△ABC 是一块锐角三角形余料,边BC =200 mm ,高AD =300 mm ,要把它加工成长是宽的2倍的矩形零件,使矩形较短的边在BC 上,其余两个顶点分别在AB 、AC 上,求这个矩形零件的边长.解:设矩形EFGH 为加工成的矩形零件,边FG 在BC 上,则点E 、H 分别在AB 、AC 上,△ABC 的高AD 与边EH 相交于点P ,设矩形的边EH 的长为x mm.因为EH ∥BC ,所以△AEH ∽△ABC . 所以AP AD =EH BC .所以300-2x 300=x 200,解得x =6007(mm),2x =1 2007(mm).答:加工成的矩形零件的边长分别为6007 mm 和1 2007mm.4.已知一个三角形的三边长分别为3 cm,4 cm,5 cm ,和它相似的另一个三角形的最长边为12 cm ,求另一个三角形内切圆和外接圆的面积.解:设边长为3 cm,4 cm,5 cm 的三角形的内切圆半径为r ,外接圆半径为R ,因为该三角形为直角三角形,所以R =52,且12(3+4+5)r =12×3×4,即r =1.∴S 内切圆=π(cm 2),S 外接圆=π·(52)2=25π4(cm 2).又两三角形的相似比为512,∴S ′内切圆=(125)2S 内切圆=144π25(cm 2),S ′外接圆=(125)2S 外接圆=36π(cm 2).[对应学生用书P12]一、选择题1.如图,△ABC 中,DE ∥BC ,若AE ∶EC =1∶2,且AD =4 cm ,则DB 等于( )A .2 cmB .6 cmC .4 cmD .8 cm解析:由DE ∥BC , 得△ADE ∽△ABC , ∴AD AB =AE AC . ∴AD DB =AE EC =12. ∴DB =4×2=8(cm). 答案:D2.如果两个相似三角形对应边上的中线之比为3∶4,周长之和是35,那么这两个三角形的周长分别是( )A .13和22B .14和21C .15和20D .16和19 解析:由相似三角形周长之比,中线之比均等于相似比可得.∴周长之比l 1l 2=34.又l 1+l 2=35,∴l 1=15,l 2=20,即两个三角形的周长分别为15,20. 答案:C3.如图所示,在▱ABCD 中,AB =10,AD =6,E 是AD 的中点,在AB 上取一点F ,使△CBF ∽△CDE ,则BF 的长是( )A .5B .8.2C .6.4D .1.8解析:∵△CBF ∽△CDE ,∴BF DE =CBCD .∴BF =DE ·CB CD =3×610=1.8.答案:D4.如图,是一个简单的幻灯机,幻灯片与屏幕平行,光源到幻灯片的距离是30 cm ,幻灯片到屏幕的距离是1.5 m ,幻灯片上小树的高度是10 cm ,则屏幕上小树的高度是( )A .50 cmB .500 cmC .60 cmD .600 cm解析:图中的两个三角形相似.设屏幕上小树的高度为x cm ,根据相似三角形对应高的比等于相似比,得x 10=30+15030,解得x =60 cm.答案:C 二、填空题5.在比例尺为1∶500的地图上,测得一块三角形土地的周长为12 cm ,面积为6 cm 2,则这块土地的实际周长是________m ,实际面积是________m 2.解析:这块土地的实际形状与地图上的形状是两个相似三角形,由比例尺可知,它们的相似比为1500,则实际周长是12×500=6 000(cm)=60 m ;实际面积是6×5002=1 500 000(cm 2)=150 m 2.答案:60 1506.如图,在△ABC 中,D 为AC 边上的中点,AE ∥BC ,ED 交AB于G ,交BC 延长线于F ,若BG ∶GA =3∶1,BC =10,则AE 的长为________.解析:∵AE ∥BC ,∴△BGF ∽△AGE . ∴BF ∶AE =BG ∶GA =3∶1. ∵D 为AC 中点,∴AE CF =ADDC=1. ∴AE =CF .∴BC ∶AE =2∶1.∵BC =10,∴AE =5. 答案:57.如图所示,在矩形ABCD 中,AE ⊥BD 于E ,S矩形ABCD =40 cm 2.S△ABE∶S △DBA =1∶5,则AE 的长为________. 解析:因为∠BAD =90°,AE ⊥BD , 所以△ABE ∽△DBA .所以S △ABE ∶S △DBA =AB 2∶DB 2. 因为S △ABE ∶S △DBA =1∶5, 所以AB ∶DB =1∶ 5. 设AB =k cm ,DB =5k cm , 则AD =2k cm.因为S 矩形ABCD =40 cm 2,所以k ·2k =40,所以k =25(cm). 所以BD =5k =10 (cm).AD =45(cm). 又因为S △ABD =12BD ·AE =20,所以12·10·AE =20.所以AE =4(cm). 答案:4 cm 三、解答题8.如图,已知△ABC 中,∠A =90°,AB =AC ,D 为AB 中点,E 是AC 上的点,BE 、CD 交于M .若AC =3AE ,求∠EMC 的度数.解:如图,作EF ⊥BC 于F , 设AB =AC =3,则AD =32,BC =32,CE =2,EF =FC = 2. ∴BF =BC -FC =2 2.∴EF ∶BF =2∶22=1∶2=AD ∶AC . ∴△FEB ∽△ADC .∴∠2=∠1. ∵∠EMC =∠2+∠MCB ,∴∠EMC =∠1+∠MCB =∠ACB =45°.9.如图,▱ABCD 中,E 是CD 的延长线上一点,BE 与AD 交于点F ,DE =12CD .(1)求证:△ABF ∽△CEB ;(2)若△DEF 的面积为2,求▱ABCD 的面积. 解:(1)证明:∵四边形ABCD 是平行四边形, ∴∠A =∠C ,AB ∥CD . ∴∠ABF =∠E . ∴△ABF ∽△CEB .(2)∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD .∴△DEF ∽△CEB ,△DEF ∽△ABF . ∵DE =12CD ,∴S △DEF S △CEB =(DE EC )2=19,S △DEF S △ABF =(DE AB)2=14.∵S △DEF =2,∴S △CEB =18,S △ABF =8,∴S 四边形BCDF =S △BCE -S △DEF =16. ∴S ▱ABCD =S 四边形BCDF +S △ABF =16+8=24.10.如图所示,在矩形ABCD 中,AB =12 cm ,BC =6 cm ,点P沿AB 边从点A 开始向点B 以2 cm /s 的速度移动,点Q 沿DA 边从点D 开始向点A 以1 cm/s 的速度移动,如果P 、Q 同时出发,用t 秒表示移动的时间(0≤t ≤6),那么:(1)当t 为何值时,△QAP 为等腰直角三角形?(2)对四边形QAPC 的面积,提出一个与计算结果无关的结论. (3)当t 为何值时,以点Q 、A 、P 为顶点的三角形与△ABC 相似? 解:(1)由题意可知:AQ =6-t (cm),AP =2t (cm). 若△QAP 为等腰直角三角形, 则AQ =AP ,即t =2(s).(2)S 四边形QAPC =S 矩形ABCD -S △DQC -S △PBC =12×6-12×12×t -12×6×(12-2t )=72-6t -36+6t =36(cm 2), 结论:无论P 、Q 运动到何处, S 四边形QAPC 都不变,为36 cm 2. (3)①△QAP ∽△ABC , ∴AQ AB =AP BC .∴6-t 12=2t6. ∴t =1.2 s. ②△QAP ∽△CBA ,∴AQ BC =AP AB .∴6-t 6=2t 12.∴t =3 s. 即t 为1.2 s 或3 s 时,以Q 、A 、P 为顶点的三角形与△ABC 相似.。

[推荐学习]2018-2019学年高中数学人教A版选修4-1学案创新应用:第一讲四直角三角形的射影定

[推荐学习]2018-2019学年高中数学人教A版选修4-1学案创新应用:第一讲四直角三角形的射影定

四直角三角形的射影定理[对应学生用书P14]1.射影(1)点在直线上的正射影:从一点向一直线所引垂线的垂足,叫做这个点在这条直线上的正射影.(2)线段在直线上的正射影:线段的两个端点在这条直线上的正射影间的线段.(3)射影:点和线段的正射影简称为射影.2.射影定理(1)文字语言:直角三角形斜边上的高是两直角边在斜边上射影的比例中项;两直角边分别是它们在斜边上射影与斜边的比例中项.(2)图形语言:如图,在Rt△ABC中,CD为斜边AB上的高,则有CD2=AD·BD,AC2=AD·AB,BC2=BD·AB.[对应学生用书P14][例1]如图,在Rt△ABC中,CD为斜边AB上的高,若AD=2 cm,DB=6 cm,求CD,AC,BC的长.[思路点拨]在直角三角形内求线段的长度,可考虑使用勾股定理和射影定理.[解]∵CD2=AD·DB=2×6=12,∴CD=12=23(cm).∵AC2=AD·AB=2×(2+6)=16,∴AC=16=4(cm).∵BC 2=BD ·AB =6×(2+6)=48, ∴BC =48=43(cm).故CD 、AC 、BC 的长分别为2 3 cm,4 cm,4 3 cm.(1)在Rt △ABC 中,共有AC 、BC 、CD 、AD 、BD 和AB 六条线段,已知其中任意两条,便可求出其余四条.(2)射影定理中每个等积式中含三条线段,若已知两条可求出第三条.1.如图,在Rt △ABC 中,∠C =90°,CD 是AB 上的高.已知BD=4,AB =29,试求出图中其他未知线段的长.解:由射影定理,得BC 2=BD ·AB , ∴BC =BD ·AB =4×29=229. 又∵AD =AB -BD =29-4=25. 且AC 2=AB 2-BC 2, ∴AC =AB 2-BC 2=292-4×29=529.∵CD 2=AD ·BD ,∴CD =AD ·BD =25×4=10.2.已知:CD 是直角三角形ABC 斜边AB 上的高,如果两直角边AC ,BC 的长度比为AC ∶BC =3∶4.求:(1)AD ∶BD 的值; (2)若AB =25 cm ,求CD 的长. 解:(1)∵AC 2=AD ·AB , BC 2=BD ·AB , ∴AD ·AB BD ·AB =AC 2BC 2. ∴AD BD =(AC BC )2=( 34)2=916. (2)∵AB =25 cm ,AD ∶BD =9∶16, ∴AD =99+16×25=9(cm),BD=169+16×25=16(cm).∴CD=AD·BD=9×16=12(cm).[例2]DG⊥BE,F、G分别为垂足.求证:AF·AC=BG·BE.[思路点拨]先将图分解成两个基本图形(1)(2),再在简单的图形中利用射影定理证明所要的结论.[证明]∵CD垂直平分AB,∴△ACD和△BDE均为直角三角形,且AD=BD.又∵DF⊥AC,DG⊥BE,∴AF·AC=AD2,BG·BE=DB2.∵AD2=DB2,∴AF·AC=BG·BE.将原图分成两部分来看,就可以分别在两个三角形中运用射影定理,实现了沟通两个比例式的目的.在求解此类问题时,关键就是把握基本图形,从所给图形中分离出基本图形进行求解或证明.3.如图所示,设CD是Rt△ABC的斜边AB上的高.求证:CA·CD=BC·AD.证明:由射影定理知:CD2=AD·BD,CA2=AD·AB,BC 2=BD ·AB .∴CA ·CD =AD 2·BD ·AB =AD ·BD ·AB , BC ·AD =AD ·AB ·BD . 即CA ·CD =BC ·AD .4.Rt △ABC 中有正方形DEFG ,点D 、G 分别在AB 、AC 上,E 、F 在斜边BC 上.求证:EF 2=BE ·FC .证明:过点A 作AH ⊥BC 于H .则DE ∥AH ∥GF . ∴DE AH =BE BH ,GF AH =FC CH . ∴DE ·GF AH 2=BE ·FC BH ·CH . 又∵AH 2=BH ·CH , ∴DE ·GF =BE ·FC . 而DE =GF =EF , ∴EF 2=BE ·FC .[对应学生用书P15]一、选择题1.已知Rt △ABC 中,斜边AB =5 cm ,BC =2 cm ,D 为AC 上一点,DE ⊥AB 交AB 于E ,且AD =3.2 cm ,则DE =( )A .1.24 cmB .1.26 cmC .1.28 cmD .1.3 cm解析:如图,∵∠A =∠A ,∴Rt △ADE ∽Rt △ABC , ∴AD AB =DE BC, DE =AD ·BC AB =3.2×25=1.28.答案:C2.已知直角三角形中两直角边的比为1∶2,则它们在斜边上的射影比为( ) A .1∶2 B .2∶1 C .1∶4D .4∶1解析:设直角三角形两直角边长分别为1和2,则斜边长为5,∴两直角边在斜边上的射影分别为15和45. 答案:C3.一个直角三角形的一条直角边为3 cm ,斜边上的高为2.4 cm ,则这个直角三角形的面积为( )A .7.2 cm 2B .6 cm 2C .12 cm 2D .24 cm 2解析:长为3 cm 的直角边在斜边上的射影为32-2.42=1.8(cm),由射影定理知斜边长为321.8=5(cm),∴三角形面积为12×5×2.4=6(cm 2).答案:B4.如图所示,在△ABC 中,∠ACB =90°,CD ⊥AB ,D 为垂足,若CD =6 cm ,AD ∶DB =1∶2,则AD 的值是( )A .6 cmB .3 2 cmC .18 cmD .3 6 cm解析:∵AD ∶DB =1∶2, ∴可设AD =t ,DB =2t . 又∵CD 2=AD ·DB ,∴36=t ·2t ,∴2t 2=36,∴t =32(cm),即AD =3 2 cm. 答案:B 二、填空题5.若等腰直角三角形的一条直角边长为1,则该三角形在直线l 上的射影的最大值为________.解析:射影的最大值即为等腰直角三角形的斜边长. 答案: 26.如图所示,四边形ABCD 是矩形,∠BEF =90°,①②③④这四个三角形能相似的是________.解析:因为四边形ABCD 为矩形, 所以∠A =∠D =90°.因为∠BEF =90°,所以∠1+∠2=90°. 因为∠2+∠3=90°,所以∠1=∠3. 所以△ABE ∽△DEF . 答案:①③7.在△ABC 中,∠A =90°,AD ⊥BC 于点D ,AD =6,BD =12,则CD =__________,AC =__________,AB 2∶AC 2=__________.解析:如图,AB 2=AD 2+BD 2,又AD =6,BD =12, ∴AB =6 5.由射影定理可得,AB 2=BD ·BC , ∴BC =AB 2BD=15.∴CD =BC -BD =15-12=3. 由射影定理可得,AC 2=CD ·BC , ∴AC =3×15=3 5. ∴AB 2AC 2=BD ·BC CD ·BC =BD CD =123=4. 答案:3 35 4∶1 三、解答题8.如图:在Rt △ABC 中,CD 是斜边AB 上的高,DE 是Rt △BCD 斜边BC 上的高,若BE =6,CE =2.求AD 的长是多少.解:因为在Rt △BCD 中,DE ⊥BC ,所以由射影定理可得:CD 2=CE ·BC , 所以CD 2=16,因为BD2=BE·BC,所以BD=6×8=4 3.因为在Rt△ABC中,∠ACB=90°,CD⊥AB,所以由射影定理可得:CD2=AD·BD,所以AD=CD 2BD =1643=433.9.如图,在△ABC中,CD⊥AB于D,且CD2=AD·BD,求证:∠ACB=90°.证明:∵CD⊥AB,∴∠CDA=∠BDC=90°.又∵CD2=AD·BD,即AD∶CD=CD∶BD,∴△ACD∽△CBD.∴∠CAD=∠BCD.又∵∠ACD+∠CAD=90°,∴∠ACB=∠ACD+∠BCD=∠ACD+∠CAD=90°.10.已知直角三角形周长为48 cm,一锐角平分线分对边为3∶5两部分.(1)求直角三角形的三边长;(2)求两直角边在斜边上的射影的长.解:(1)如图,设CD=3x,BD=5x,则BC=8x,过D作DE⊥AB,由题意可得,DE=3x,BE=4x,∴AE+AC+12x=48.又AE=AC,∴AC=24-6x,AB=24-2x.∴(24-6x)2+(8x)2=(24-2x)2,解得:x1=0(舍去),x2=2.∴AB=20,AC=12,BC=16,∴三边长分别为:20 cm,12 cm,16 cm.(2)作CF⊥AB于F点,∴AC2=AF·AB.∴AF=AC 2AB =12220=365(cm);同理:BF=BC 2AB =16220=645(cm).∴两直角边在斜边上的射影长分别为365cm,645cm.[对应学生用书P16]近两年高考中,由于各地的要求不同,所以试题的呈现形式也不同.但都主要考查相似三角形的判定与性质,射影定理,平行线分线段成比例定理;一般试题难度不大,解题中要注意观察图形特点,巧添辅助线对解题可起到事半功倍的效果.在使用平行线分线段成比例定理及其推论时,一定要搞清有关线段或边的对应关系,切忌搞错比例关系.1.如图,在梯形ABCD中,AB∥CD,AB=4,CD=2,E,F分别为AD,BC上的点,且EF=3,EF∥AB,则梯形ABFE与梯形EFCD的面积比为________.解析:由CD=2,AB=4,EF=3,得EF=12(CD+AB),∴EF是梯形ABCD的中位线,则梯形ABFE与梯形EFCD有相同的高,设为h,于是两梯形的面积比为 12(3+4)h ∶12(2+3)h =7∶5. 答案:7∶52.如图,圆O 上一点C 在直径AB 上的射影为D ,点D 在半径OC 上的射影为E .若AB =3AD ,则CEEO的值为________.解析:连接AC ,BC ,则∠ACB =90°. 设AD =2,则AB =6, 于是BD =4,OD =1.如图,由射影定理得CD 2=AD ·BD =8,则CD =2 2. 在Rt △OCD 中,DE =OD ·CD OC =1×223=223.则CE =DC 2-DE 2=8-89=83, EO =OC -CE =3-83=13.因此CE EO =8313=8.答案:8[对应学生用书P16]的直线上截得的线段所呈现的规律,主要用来证明比例式成立、证明直线平行、计算线段的长度,也可以作为计算某些图形的周长或面积的重要方法,其中,平行线等分线段定理是线段的比为1的特例.[例1] 如图,在△ABC 中,DE ∥BC ,DH ∥GC . 求证:EG ∥BH .[证明] ∵DE ∥BC , ∴AE AC =AD AB. ∵DH ∥GC ,∴AH AC =ADAG .∴AE ·AB =AC ·AD =AH ·AG . ∴AE AH =AGAB.∴EG ∥BH . [例2] 如图,直线l 分别交△ABC 的边BC ,CA ,AB 于点D ,E ,F ,且AF =13AB ,BD =52BC ,试求EC AE.[解] 作CN ∥AB 交DF 于点N ,并作EG ∥AB 交BC 于点G ,由平行截割定理,知BF CN =DB DC ,CN AF =EC AE,两式相乘,得BF CN ·CN AF =DB DC ·ECAE ,即EC AE =BF AF ·DC DB. 又由AF =13AB ,得BFAF =2,由BD =52BC ,得DC DB =35,所以EC AE =2×35=65.角关系.其应用非常广泛,涉及到多种题型,可用来计算线段、角的大小,也可用来证明线段、角之间的关系,还可以证明直线之间的位置关系.其中,三角形全等是三角形相似的特殊情况.[例3] 如图所示,AD 、CF 是△ABC 的两条高线,在AB 上取一点P ,使AP =AD ,再从P 点引BC 的平行线与AC 交于点Q .求证:PQ =CF .[证明] ∵AD 、CF 是△ABC 的两条高线, ∴∠ADB =∠BFC =90°. 又∠B =∠B ,∴△ABD ∽△CBF . ∴AD CF =AB CB. 又∵PQ ∥BC ,∴△APQ ∽△ABC . ∴PQ BC =AP AB .∴AP PQ =AB BC .∴AD CF =AP PQ . 又∵AP =AD ,∴CF =PQ .[例4] 四边形ABCD 中,AB ∥CD ,CE 平分∠BCD ,CE ⊥AD 于点E ,DE =2AE ,若△CED 的面积为1,求四边形ABCE 的面积.[解] 如图,延长CB 、DA 交于点F ,又CE 平分∠BCD ,CE ⊥AD .∴△FCD 为等腰三角形,E 为FD 的中点. ∴S △FCD =12FD ·CE=12×2ED ·CE =2S △CED =2, EF =ED =2AE . ∴F A =AE =14FD .又∵AB ∥CD , ∴△FBA ∽△FCD .∴S △FBAS △FCD =(F A FD )2=(14)2=116.∴S △FBA =116×S △FCD =18. ∴S 四边形ABCE =S △FCD -S △CED -S △FBA=2-1-18=78.系,此定理常作为计算与证明的依据,在运用射影定理时,要特别注意弄清射影与直角边的对应关系,分清比例中项,否则在做题中极易出错.[例5] 如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于D ,DE ⊥AC于E ,EF ⊥AB 于F .求证:CE 2=BD ·DF .[证明] ∵∠ACB =90°,DE ⊥AC , ∴DE ∥BC .∴BD CE =AB AC .同理:CD ∥EF ,∴CE DF =AC AD. ∵∠ACB =90°,CD ⊥AB , ∴AC 2=AD ·AB . ∴AC AD =AB AC . ∴CE DF =BD CE . ∴CE 2=BD ·DF .[对应学生用书P41] (时间:90分钟,满分:120分)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,已知AA ′∥BB ′∥CC ′,AB ∶BC =1∶3,那么下列等式成立的是( )A .AB =2A ′B ′ B .3A ′B ′=B ′C ′ C .BC =B ′C ′D .AB =A ′B ′解析:∵AA ′∥BB ′∥CC ′,∴AB BC =A ′B ′B ′C ′=13.∴3A ′B ′=B ′C ′. 答案:B2.如图,∠ACB =90°.CD ⊥AB 于D ,AD =3、CD =2,则AC ∶BC 的值是( )A .3∶2B .9∶4 C.3∶ 2D.2∶ 3解析:Rt △ACD ∽Rt △CBD ,∴AC BC =AD CD =32.答案:A3.在Rt △ABC 中,CD 为斜边AB 上的高,若BD =3 cm ,AC =2 cm ,则CD 和BC 的长分别为( )A. 3 cm 和3 2 cm B .1 cm 和 3 cm C .1 cm 和3 2 cm D. 3 cm 和2 3 cm 解析:设AD =x ,则由射影定理得x (x +3)=4, 即x =1(负值舍去), 则CD =AD ·BD =3(cm), BC =BD ·AB =3(3+1)=23(cm).答案:D4.如图,在△ABC 中,∠BAC =90°,AD 是斜边BC 上的高,DE 是△ACD 的高,且AC =5,CD =2,则DE 的值为( )A.2215B.215C.3215D.2125解析:AC 2=CD ·BC , 即52=2×BC , ∴BC =252.∴AB =BC 2-AC 2=2524-52=5212. ∵DE AB =DC BC ,∴DE =2215. 答案:A5.如图所示,给出下列条件:①∠B =∠ACD ;②∠ADC =∠ACB ;③AC CD =ABBC ;④AC 2=AD ·AB .其中单独能够判定△ABC ∽△ACD 的个数为( )A .1B .2C .3D .4解析:①由∠B =∠ACD ,再加上公共角∠A =∠A ,可得两个三角形相似;②由∠ADC =∠ACB ,再加上公共角∠A =∠A ,可得两个三角形相似;③AC CD =ABBC ,而夹角不一定相等,所以两个三角形不一定相似;④AC 2=AD ·AB 可得AC AD =ABAC,再加上公共角∠A =∠A ,可得两个三角形相似.答案:C6.如图,DE ∥BC ,S △ADE ∶S 四边形DBCE =1∶8,则AD ∶DB 的值为( )A .1∶4B .1∶3C .1∶2D .1∶5解析:由S △ADE ∶S 四边形DBCE =1∶8 得S △ADE ∶S △ABC =1∶9. ∵DE ∥BC , ∴△ADE ∽△ABC . ∴(AD AB )2=S △ADE S △ABC =19. ∴AD AB =13,AD DB =12. 答案:C7.△ABC 和△DEF 满足下列条件,其中不一定使△ABC 与△DEF 相似的是( )A .∠A =∠D =45°38′,∠C =26°22′,∠E =108°B .AB =1,AC =1.5,BC =2,DE =12,EF =8,DF =16 C .BC =a ,AC =b ,AB =c ,DE =a ,EF =b ,DF =cD .AB =AC ,DE =DF ,∠A =∠D =40° 解析:A 中∠A =∠D ,∠B =∠E =108°, ∴△ABC ∽△DEF ;B 中AB ∶AC ∶BC =EF ∶DE ∶DF =2∶3∶4; ∴△ABC ∽△EFD ; D 中AB AC =DEDF,∠A =∠D , ∴△ABC ∽△DEF ;而C 中不能保证三边对应成比例. 答案:C8.在Rt △ACB 中,∠C =90°.CD ⊥AB 于D .若BD ∶AD =1∶4,则tan ∠BCD 的值是( ) A.14 B.13 C.12D .2解析:由射影定理得CD 2=AD ·BD ,又BD ∶AD =1∶4. 令BD =x ,则AD =4x (x >0), ∴CD 2=4x 2,∴CD =2x ,tan ∠BCD =BD CD =x 2x =12.答案:C9.在▱ABCD 中,E 为CD 上一点,DE ∶CE =2∶3,连接AE 、BE 、BD 且AE 、BD 交于点F ,则S △DEF ∶S △EBF ∶S △ABF =( )A .4∶10∶25B .4∶9∶25C .2∶3∶5D .2∶5∶25 解析:∵AB ∥CD , ∴△ABF ∽△EDF .∴DE AB =DF FB =25. ∴S △DEF S △ABF =(25)2=425.又△DEF 和△BEF 等高. ∴S △DEF S △EBF =DF FB =25=410. 答案:A10.如图,已知a ∥b ,AF BF =35,BCCD =3.则AE ∶EC =( )A.125 B.512 C.75D.57解析:∵a ∥b ,∴AE EC =AG CD ,AF BF =AGBD .∵BCCD =3,∴BC =3CD ,∴BD =4CD . 又AF BF =35, ∴AG BD =AF BF =35.∴AG 4CD =35.∴AG CD =125. ∴AE EC =AG CD =125. 答案:A二、填空题(本大题共4个小题,每小题5分,满分20分.把答案填写在题中的横线上) 11.如图,D ,E 分别是△ABC 边AB ,AC 上的点,且DE ∥BC ,BD =2AD ,那么△ADE 的周长∶△ABC 的周长等于________.解析:∵DE ∥BC ,∴△ADE ∽△ABC . ∵BD =2AD ,∴AB =3AD .∴AD AB =13.∴△ADE 的周长△ABC 的周长=AD AB =13.答案:1312.如图,在△ABC 中,DE ∥BC ,DF ∥AC ,AE ∶AC =3∶5, DE =6,则BF =________.解析:∵DE ∥BC ,∴DE BC =AE AC ,∴BC =DE ·AC AE =6×53=10, 又DF ∥AC ,∴DE =FC =6. ∴BF =BC -FC =4. 答案:413.如图,在△ABC 中,DE ∥BC ,BE 与CD 相交于点O ,直线AO 与DE 、BC 分别交于N 、M ,若DN ∶MC =1∶4,则NE ∶BM =________,AE ∶EC =________.解析:OD OC =DN MC =14,∴OE OB =OD OC =14. ∴NE BM =OE OB =14. 又DE BC =OD OC =14, ∴AE AC =DE BC =14. ∴AE ∶EC =1∶3. 答案:1∶4 1∶314.阳光通过窗口照到室内,在地面上留下2.7 m 宽的亮区(如图所示),已知亮区一边到窗下的墙角距离CE =8.7 m ,窗口高AB =1.8 m ,那么窗口底边离地面的高BC 等于________m.解析:∵BD ∥AE ,∴BCAB =CDDE .∴BC =AB ·CD DE.∵AB =1.8 m ,DE =2.7 m ,CE =8.7 m , ∴CD =CE -DE =8.7-2.7=6(m). ∴BC =1.8×62.7=4(m).答案:4三、解答题(本大题共4个小题,满分50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)如图,△ABC 中,BC 的中点为D ,∠ADB和∠ADC 的平分线分别交AB 、AC 于点M 、N .求证:MN ∥BC .证明:∵MD 平分∠ADB , ∴AD BD =AM MB. ∵ND 平分∠ADC ,∴AD DC =ANNC .∵BD =DC ,∴AM MB =AD BD =AD DC =AN NC . ∴MN ∥BC .16.(本小题满分12分)如图,已知:△ABC 中,AB =AC ,AD 是中线,P 是AD 上一点,过C 作CF ∥AB ,延长BP 交AC 于E ,交CF 于F ,求证:BP 2=PE ·PF .证明:连接PC , ∵AB =AC ,AD 是中线,∴AD 是△ABC 的对称轴, 故PC =PB , ∠PCE =∠ABP . ∵CF ∥AB ,∴∠PFC =∠ABP , 故∠PCE =∠PFC , ∵∠CPE =∠FPC , ∴△EPC ∽△CPF , 故PC PF =PE PC, 即PC 2=PE ·PF , ∴BP 2=PE ·PF .17.(本小题满分12分)如图,四边形ABCD 是平行四边形,P 是BD 上任意一点,过P 点的直线分别交AB 、DC 于E 、F ,交DA 、BC 的延长线于G 、H .(1)求证:PE ·PG =PF ·PH ;(2)当过P 点的直线绕点P 旋转到F 、H 、C 重合时,请判断PE 、PC 、PG 的关系,并给出证明.解:(1)证明:∵AB ∥CD ,∴PE PF =PB PD .∵AD ∥BC ,∴PH PG =PBPD ,∴PE PF =PHPG.∴PE ·PG =PH ·PF . (2)关系式为PC 2=PE ·PG .证明:由题意可得到右图, ∵AB ∥CD , ∴PE PC =PB PD . ∵AD ∥BC ,∴PC PG =PB PD. ∴PE PC =PCPG,即PC 2=PE ·PG . 18.(本小题满分14分)某生活小区的居民筹集资金1 600元,计划在一块上、下两底分别为10 m 、20 m 的梯形空地上种植花木(如图).(1)他们在△AMD 和△BMC 地带上种植太阳花,单位为8元/m 2,当△AMD 地带种满花后(图中阴影部分)共花了160元,请计算种满△BMC 地带所需的费用;(2)若其余地带要种的有玫瑰和茉莉花两种花木可供选择,单价分别为12元/m 2和10元/m 2,应选择种哪种花木,刚好用完所筹集的资金?解:(1)∵四边形ABCD 为梯形,∴AD ∥BC . ∴△AMD ∽△CMB ,∴S △AMD S △CMB =(AD BC )2=14.∵种植△AMD 地带花费160元, ∴S △AMD =1608=20(m 2). ∴S △CMB =80(m 2).∴△CMB 地带的花费为80×8=640元. (2)S △ABMS △AMD =BM DM =BCAD =2, ∴S △ABM =2S △AMD =40(m 2). 同理:S △DMC =40(m 2).所剩资金为:1600-160-640=800元, 而800÷(S △ABM +S △DMC )=10(元/m 2). 故种植茉莉花刚好用完所筹集的资金.。

高中数学选修4 1教案

高中数学选修4 1教案

高中数学选修4 1教案在高中数学的教学过程中,编写一份优质的教案对于指导学生理解和掌握知识点至关重要。

今天,我们就来探讨如何编写一份高中数学选修4-1的教案范本。

## 教学目标在编写教案之前,首先要明确教学目标。

这些目标应当包括知识与技能、过程与方法、情感态度与价值观三个维度。

例如,对于选修4-1的内容,教学目标可以是:- 理解并掌握相关数学概念和定理。

- 能够运用所学知识解决实际问题。

- 培养学生的逻辑推理能力和数学思维。

- 激发学生对数学学科的兴趣和热爱。

## 教学内容接下来,要根据教学大纲和教材内容,确定本节课的教学内容。

例如,如果本节是关于“函数的概念与性质”,那么教学内容应包括:- 函数的定义- 函数的表示方法- 函数的性质(如单调性、周期性等)## 教学方法选择合适的教学方法对于提高教学效果至关重要。

可以采用以下几种方法:- 讲授法:用于讲解基本概念和定理。

- 探究法:引导学生通过问题解决学习新知识。

- 合作学习:鼓励学生小组讨论,共同解决问题。

## 教学过程教学过程是教案的核心部分,需要详细规划。

一般包括以下几个环节:1. 导入新课:可以通过提出问题、回顾旧知识或展示实际应用案例来引入新课内容。

2. 新课讲解:根据教学内容,系统地讲解新知识点。

3. 学生练习:设计适当的练习题,让学生巩固和应用所学知识。

4. 小结反馈:总结课堂重点,解答学生疑问,并进行形成性评价。

## 教学评价教学评价是检验教学效果的重要环节。

可以通过以下方式进行:- 随堂测验:通过小测试了解学生对知识点的掌握情况。

- 作业布置:布置适量作业,既能够巩固课堂所学,又能够检验学生的学习效果。

- 自我反思:教师应对自己的教学过程进行反思,以便不断改进教学方法和策略。

## 教学资源最后,不要忘记准备必要的教学资源,如多媒体课件、实物模型、数学工具软件等,这些都能有效辅助教学,提高学生的学习兴趣。

总之,一份好的教案应该是结构清晰、内容丰富、符合学生实际水平的。

高中数学人教A版选修4-1学案创新应用第二讲 知识归纳与达标验收 Word版含解析

高中数学人教A版选修4-1学案创新应用第二讲 知识归纳与达标验收 Word版含解析

[对应学生用书]近两年高考中,主要考查圆的切线定理,切割线定理,相交弦定理,圆周角定理以及圆内接四边形的判定与性质等.题目难度不大,以容易题为主.对于与圆有关的比例线段问题通常要考虑利用相交弦定理、割线定理、切割线定理、相似三角形的判定和性质等;弦切角是沟通圆内已知和未知的桥梁,它在解决圆内有关等角问题中可以大显身手;证明四点共圆也是常见的考查题型,常见的证明方法有:①到某定点的距离都相等;②如果某两点在一条线段的同侧时,可证明这两点对该线段的张角相等;③证明凸四边形的内对角互补(或外角等于它的内对角)等..(湖南高考)如图,已知,是⊙的两条弦,⊥,=,=,则⊙的半径等于.解析:设,的交点为,由已知可得为的中点,则在直角三角形中,==,设圆的半径为,延长交圆于点,由圆的相交弦定理可知·=·,即()=-,解得=.答案:.(新课标全国卷Ⅱ)如图,是⊙外一点,是切线,为切点,割线与⊙相交于点,,=,为的中点,的延长线交⊙于点.证明:()=;()·=.证明:()连接,.由题设知=,故∠=∠.因为∠=∠+∠,∠=∠+∠,∠=∠,所以∠=∠,从而=.因此=.()由切割线定理得=·.因为==,所以=,=.由相交弦定理得·=·,所以·=..(新课标全国卷Ⅱ)如图,为△外接圆的切线,的延长线交直线于点,,分别为弦与弦上的点,且·=·,,,,四点共圆.()证明:是△外接圆的直径;()若==,求过,,,四点的圆的面积与△外接圆面积的比值.解:()证明:因为为△外接圆的切线,所以∠=∠,由题设知=,故△∽△,所以∠=∠.因为,,,四点共圆,所以∠=∠,故∠=∠=°.所以∠=°,因此是△外接圆的直径.()连接,因为∠=°,所以过,,,四点的圆的直径为.由=,有=.又=·=,所以=+=.而=·=,故过,,,四点的圆的面积与△外接圆面积的比值为.[对应学生用书]内接四边形的判定和性质.[例]已知四边形为平行四边形,过点和点的圆与、分别交于、.求证:、、、四点共圆.[证明]连接,因为四边形为平行四边形,所以∠+∠=°.因为四边形内接于圆,。

2017-2018学年高中数学人教A版选修4-1创新应用教学案:第二讲 知识归纳与达标验收

2017-2018学年高中数学人教A版选修4-1创新应用教学案:第二讲 知识归纳与达标验收

[对应学生用书P35]近两年高考中,主要考查圆的切线定理,切割线定理,相交弦定理,圆周角定理以及圆内接四边形的判定与性质等.题目难度不大,以容易题为主.对于与圆有关的比例线段问题通常要考虑利用相交弦定理、割线定理、切割线定理、相似三角形的判定和性质等;弦切角是沟通圆内已知和未知的桥梁,它在解决圆内有关等角问题中可以大显身手;证明四点共圆也是常见的考查题型,常见的证明方法有:①到某定点的距离都相等;②如果某两点在一条线段的同侧时,可证明这两点对该线段的张角相等;③证明凸四边形的内对角互补(或外角等于它的内对角)等.1.(湖南高考)如图,已知AB ,BC 是⊙O 的两条弦,AO ⊥BC ,AB =3,BC =22,则⊙O 的半径等于________.解析:设AO ,BC 的交点为D ,由已知可得D 为BC 的中点,则在直角三角形ABD 中,AD =AB 2-BD 2=1,设圆的半径为r ,延长AO 交圆O 于点E ,由圆的相交弦定理可知BD ·CD =AD ·DE ,即(2)2=2r -1,解得r =32.答案:322.(新课标全国卷Ⅱ)如图,P 是⊙O 外一点,P A 是切线,A 为切点,割线PBC 与⊙O 相交于点B ,C ,PC =2P A ,D 为PC 的中点,AD 的延长线交⊙O 于点E .证明:(1)BE =EC ; (2)AD ·DE =2PB 2.证明:(1)连接AB ,AC .由题设知P A =PD ,故∠P AD =∠PDA .因为∠PDA =∠DAC +∠DCA ,∠P AD =∠BAD +∠P AB ,∠DCA =∠P AB , 所以∠DAC =∠BAD ,从而BE =EC . 因此BE =EC .(2)由切割线定理得P A 2=PB ·PC .因为P A =PD =DC ,所以DC =2PB ,BD =PB . 由相交弦定理得AD ·DE =BD ·DC , 所以AD ·DE =2PB 2.3.(新课标全国卷Ⅱ)如图,CD 为△ABC 外接圆的切线,AB 的延长线交直线CD 于点D ,E ,F 分别为弦AB 与弦AC 上的点,且BC ·AE =DC ·AF ,B ,E ,F ,C 四点共圆.(1)证明:CA 是△ABC 外接圆的直径;(2)若DB =BE =EA ,求过B ,E ,F ,C 四点的圆的面积与△ABC 外接圆面积的比值. 解:(1)证明:因为CD 为△ABC 外接圆的切线,所以∠DCB =∠A ,由题设知BC F A =DC EA ,故△CDB ∽△AEF ,所以∠DBC =∠EF A .因为B ,E ,F ,C 四点共圆,所以∠CFE =∠DBC , 故∠EF A =∠CFE =90°.所以∠CBA = 90°,因此CA 是△ABC 外接圆的直径. (2)连接CE ,因为∠CBE =90°,所以过B ,E ,F ,C 四点的圆的直径为CE . 由BD =BE ,有CE =DC . 又BC 2=DB ·BA =2DB 2, 所以CA 2=4DB 2+BC 2=6DB 2. 而DC 2=DB ·DA =3DB 2,故过B,E,F,C四点的圆的面积与△ABC外接圆面积的比值为12.[对应学生用书P35]接四边形的判定和性质.[例1]已知四边形ABCD为平行四边形,过点A和点B的圆与AD、BC分别交于E、F.求证:C、D、E、F四点共圆.[证明]连接EF,因为四边形ABCD为平行四边形,所以∠B+∠C=180°.因为四边形ABFE内接于圆,所以∠B+∠AEF=180°.所以∠AEF=∠C.所以C、D、E、F四点共圆.[例2]如图,ABCD是⊙O的内接四边形,延长BC到E,已知∠BCD∶∠ECD=3∶2,那么∠BOD等于()A.120°B.136°C.144°D.150°[解析]由圆内接四边形性质知∠A=∠DCE,而∠BCD∶∠ECD=3∶2,且∠BCD+∠ECD=180°,∠ECD=72°.又由圆周角定理知∠BOD=2∠A=144°.[答案] C要,结合此知识点所设计的有关切线的判定与性质、弦切角的性质等问题是高考选做题热点之一,解题时要特别注意.[例3] 如图,⊙O 是Rt △ABC 的外接圆,∠ABC =90°,点P 是圆外一点,P A 切⊙O 于点A ,且P A =PB .(1)求证:PB 是⊙O 的切线;(2)已知P A =3,BC =1,求⊙O 的半径.[解] (1)证明:如图,连接OB . ∵OA =OB ,∴∠OAB =∠OBA . ∵P A =PB ,∴∠P AB =∠PBA . ∴∠OAB +∠P AB = ∠OBA +∠PBA , 即∠P AO =∠PBO .又∵P A 是⊙O 的切线,∴∠P AO =90°. ∴∠PBO =90°.∴OB ⊥PB .又OB 是⊙O 半径,∴PB 是⊙O 的切线. (2)连接OP ,交AB 于点D .如图.∵P A =PB ,∴点P 在线段AB 的垂直平分线上. ∵OA =OB ,∴点O 在线段AB 的垂直平分线上. ∴OP 垂直平分线段AB . ∴∠P AO =∠PDA =90°.又∵∠APO =∠OP A ,∴△APO ∽△DP A . ∴AP DP =POP A.∴AP 2=PO ·DP . 又∵OD =12BC =12,∴PO (PO -OD )=AP 2.即PO 2-12PO =(3)2,解得PO =2.在Rt △APO 中,OA =PO 2-P A 2=1,即⊙O 的半径为1.圆的切线、割线、相交弦可以构成许多相似三角形,结合相似三角形的性质,又可以得到一些比例式、乘积式,在解题中,多联系这些知识,能够计算或证明角、线段的有关结论.[例4]如图,A,B是两圆的交点,AC是小圆的直径,D和E分别是CA和CB的延长线与大圆的交点,已知AC=4,BE=10,且BC=AD,求DE的长.[解]设CB=AD=x,则由割线定理得:CA·CD=CB·CE,即4(4+x)=x(x+10),化简得x2+6x-16=0,解得x=2或x=-8(舍去),即CD=6,CE=12.连接AB,因为CA为小圆的直径,所以∠CBA=90°,即∠ABE=90°,则由圆的内接四边形对角互补,得∠D=90°,则CD2+DE2=CE2,所以62+DE2=122,所以DE=6 3.[例5]△ABC中,AB=AC,以AB为直径作圆,交BC于D,O是圆心,DM是⊙O的切线交AC于M(如图).求证:DC2=AC·CM.[证明]连接AD、OD.∵AB是直径,∴AD⊥BC.∵OA=OD,∴∠BAD=∠ODA.又AB=AC,AD⊥BC,∴∠BAD=∠CAD.则∠CAD=∠ODA,OD∥AC.∵DM是⊙O切线,∴OD⊥DM.则DM⊥AC,DC2=AC·CM.[对应学生用书P43] (时间:90分钟,满分:120分)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.圆内接四边形的4个角中,如果没有直角,那么一定有( ) A .2个锐角和2个钝角 B .1个锐角和3个钝角 C .1个钝角和3个锐角D .都是锐角或都是钝角解析:由于圆内接四边形的对角互补,圆内接四边形的4个角中若没有直角,则必有2个锐角和2个钝角.答案:A2.如图,在⊙O 中,弦AB 长等于半径,E 为BA 延长线上一点,∠DAE =80°,则∠ACD 的度数是( )A .60°B .50°C .45°D .30°解析:∠BCD =∠DAE =80°, 在Rt △ABC 中,∠B =90°,AB =12AC ,∴∠ACB =30°.∴∠ACD =80°-30°=50°. 答案:B3.如图所示,在半径为2 cm 的⊙O 内有长为2 3 cm 的弦AB .则此弦所对的圆心角∠AOB 为( )A .60°B .90°C .120°D .150° 解析:作OC ⊥AB 于C ,则BC =3,在Rt △BOC 中cos ∠B =BO OB =32.∴∠B =30°.∴∠BOC =60°.∴∠AOB =120°. 答案:C4.如图,已知⊙O 的半径为5,两弦AB 、CD 相交于AB 的中点E ,且AB =8,CE ∶ED =4∶9,则圆心到弦CD 的距离为( )A.2143B.289 C.273D.809解析:过O 作OH ⊥CD ,连接OD ,则DH =12CD ,由相交弦定理知, AE ·BE =CE ·DE .设CE =4x ,则DE =9x , ∴4×4=4x ×9x ,解得x =23,∴OH =OD 2-DH 2=52-(133)2=2143.答案:A5.如图,P A 切⊙O 于A ,PBC 是⊙O 的割线,且PB =BC ,P A =32,那么BC 的长为( )A. 3 B .2 3 C .3D .3 3解析:根据切割线定理P A 2=PB ·PC , 所以(32)2=2PB 2.所以PB =3=BC . 答案:C6.两个同心圆的半径分别为3 cm 和6 cm ,作大圆的弦MN =6 3 cm ,则MN 与小圆的位置关系是( )A .相切B .相交C .相离D .不确定 解析:作OA ⊥MN 于A .连接OM .则MA =12MN =3 3.在Rt △OMA 中, OA =OM 2-AM 2=3(cm).∴MN 与小圆相切. 答案:A7.如图,P AB ,PDC 是⊙O 的割线,连接AD ,BC ,若PD ∶PB =1∶4,AD =2,则BC 的长是( )A .4B .5C .6D .8解析:由四边形ABCD 为⊙O 的内接四边形可得∠P AD =∠C ,∠PDA =∠B . ∴△P AD ∽△PCB .∴PD PB =AD CB =14.又AD =2,∴BC =8. 答案:D8.已知⊙O 的两条弦AB ,CD 交于点P ,若P A =8 cm ,PB =18 cm ,则CD 的长的最小值为( )A .25 cmB .24 cmC .20 cmD .12 cm解析:设CD =a cm ,CD 被P 分成的两段中一段长x cm ,另一段长为(a -x ) cm.则x (a -x )=8×18,即8×18≤(x +a -x 2)2=14a 2.所以a 2≥576=242,即a ≥24.当且仅当x =a -x ,即x =12a =12时等号成立.所以CD 的长的最小值为24 cm. 答案:B9.如图,点C 在以AB 为直径的半圆上,连接AC 、BC ,AB =10,tan ∠BAC =34,则阴影部分的面积为( )A.252πB.252π-24 C .24D.252π+24 解析:∵AB 为直径,∴∠ACB =90°, ∵tan ∠BAC =34,∴sin ∠BAC =35.又∵sin ∠BAC =BCAB ,AB =10,∴BC =35×10=6.AC =43×BC =43×6=8,∴S 阴影=S 半圆-S △ABC =12×π×52-12×8×6=252π-24. 答案:B10.在Rt △ABC 中,∠ACB =90°,以A 为圆心、AC 为半径的圆交AB 于F ,交BA 的延长线于E ,CD ⊥AB 于D ,给出四个等式:①BC 2=BF ·BA ;②CD 2=AD ·AB ; ③CD 2=DF ·DE ;④BF ·BE =BD ·BA . 其中能够成立的有( ) A .0个 B .2个 C .3个D .4个解析:①②不正确,由相交弦定理知③正确, 又由BC 2=BE ·BF ,BC 2=BD ·BA , 得BE ·BF =BD ·BA ,故④正确. 答案:B二、填空题(本大题共4个小题,每小题5分,满分20分.把正确答案填写在题中的横线上)11.四边形ABCD 内接于⊙O ,若∠BOD =120°,OB =1,则∠BAD =________,∠BCD =________,BCD 的长=________.解析:∠BAD =∠12BOD =60°,∠BCD =180°-∠BAD =120°, 由圆的半径OB =1,∠BOD =2π3,∴BCD 的长为2π3.答案:60°120°2π312.(陕西高考)如图,在圆O中,直径AB与弦CD垂直,垂足为E,EF⊥DB,垂足为F,若AB=6,AE=1,则DF·DB=________.解析:由相交弦定理可知ED2=AE·EB=1×5=5,又易知△EBD与△FED相似,得DF·DB=ED2=5.答案:513.如图,⊙O为△ABC的内切圆,AC,BC,AB分别与⊙O切于点D,E,F,∠C=90°,AD=3,⊙O的半径为2,则BC=________.解析:如图所示,分别连接OD,OE,OF.∵OE=OD,CD=CE,OE⊥BC,OD⊥AC,∴四边形OECD是正方形.设BF=x,则BE=x.∵AD=AF=3,CD=CE=2,∴(2+x)2+25=(x+3)2,解得x=10,∴BC=12.答案:1214.如图,AB为⊙O的直径,CB切⊙O于B,CD切⊙O于D,交AB的延长线于E,若EA=1,ED=2,则BC=________.解析:∵CE为⊙O的切线,D为切点,∴ED2=EA·EB.又∵EA=1,ED=2,得EB=4,又∵CB、CD均为⊙O的切线,∴CD=CB.在Rt△EBC中,设BC=x,则EC=x+2.由勾股定理得EB2+BC2=EC2.∴42+x2=(x+2)2,得x=3,∴BC=3.答案:3三、解答题(本大题共4个小题,满分50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)如图,设AB 为⊙O 的任一条不与直线l垂直的直径,P 是⊙O 与l 的公共点,AC ⊥l ,BD ⊥l ,垂足分别为C ,D ,且PC =PD ,求证:(1)l 是⊙O 的切线;(2)PB 平分∠ABD .证明:(1)连接OP ,因为AC ⊥l ,BD ⊥l ,所以AC ∥BD .又OA =OB ,PC =PD ,所以OP ∥BD ,从而OP ⊥l .因为P 在⊙O 上,所以l 是⊙O 的切线.(2)连接AP ,因为l 是⊙O 的切线,所以∠BPD =∠BAP .又∠BPD +∠PBD =90°,∠BAP +∠PBA =90°,所以∠PBA =∠PBD ,即PB 平分∠ABD .16.(本小题满分12分)(2012·辽宁高考)如图,⊙O 和⊙O ′相交于A ,B 两点,过A 作两圆的切线分别交两圆于C ,D 两点,连结DB 并延长交⊙O 于点E .证明:(1)AC ·BD =AD ·AB ;(2)AC =AE .证明:(1)由AC 与⊙O ′相切于A ,得∠CAB =∠ADB ,同理∠ACB =∠DAB ,所以△ACB ∽△DAB .从而AC AD =AB BD, 即AC ·BD =AD ·AB .(2)由AD 与⊙O 相切于A ,得∠AED =∠BAD ,又∠ADE =∠BDA ,得△EAD ∽△ABD .从而AE AB =AD BD, 即AE ·BD =AD ·AB .结合(1)的结论,AC =AE .17.(本小题满分12分)如图,AB 为圆O 的直径,CD 为垂直于AB 的一条弦,垂足为E ,弦BM 与CD 交于点F .(1)证明:A ,E ,F ,M 四点共圆;(2)证明:AC 2+BF ·BM =AB 2.证明:(1)连接AM ,则∠AMB =90°.∵AB ⊥CD ,∴∠AEF =90°.∴∠AMB +∠AEF =180°,即A ,E ,F ,M 四点共圆.(2)连接CB ,由A ,E ,F ,M 四点共圆,得BF ·BM =BE ·BA .在Rt △ACB 中,BC 2=BE ·BA ,AC 2+CB 2=AB 2,∴AC 2+BF ·BM =AB 2.18.(辽宁高考)(本小题满分14分)如图,EP 交圆于E ,C 两点,PD 切圆于D ,G 为CE 上一点且PG =PD ,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F .(1)求证:AB 为圆的直径;(2)若AC =BD ,求证:AB =ED .证明:(1)因为PD =PG ,所以∠PDG =∠PGD .由于PD 为切线,故∠PDA =∠DBA ,又由于∠PGD =∠EGA ,故∠DBA =∠EGA ,所以∠DBA +∠BAD =∠EGA +∠BAD ,从而∠BDA =∠PF A .由于AF ⊥EP ,所以∠PF A =90°,于是∠BDA =90°.故AB 是直径.由于AB是直径,故∠BDA=∠ACB=90°.在Rt△BDA与Rt△ACB中,AB=BA,AC=BD,从而Rt△BDA≌Rt△ACB,于是∠DAB=∠CBA.又因为∠DCB=∠DAB,所以∠DCB=∠CBA,故DC∥AB. 由于AB⊥EP,所以DC⊥EP,∠DCE为直角.于是ED为直径.由(1)得ED=AB.。

【配套K12】2018-2019学年高中数学人教A版选修4-4创新应用教学案:第一讲第3节第1课时圆

【配套K12】2018-2019学年高中数学人教A版选修4-4创新应用教学案:第一讲第3节第1课时圆

第1课时 圆的极坐标方程[核心必知]1.曲线的极坐标方程在极坐标系中,如果平面曲线C 上任意一点的极坐标中至少有一个满足方程f (ρ,θ)=0,并且坐标适合f (ρ,θ)=0的点都在曲线C 上,那么方程f (ρ,θ)=0叫做曲线C 的极坐标方程.2.圆的极坐标方程圆心为C (a ,0)(a >0)半径为a 的圆的极坐标方程为ρ=2a cos_θ.[问题思考]1.在直角坐标系中,曲线上每一点的坐标一定适合它的方程.那么,在极坐标系中,曲线上一点的所有极坐标是否一定都适合方程?提示:在直角坐标系内,曲线上每一点的坐标一定适合它的方程,可是在极坐标系内,曲线上一点的所有坐标不一定都适合方程.例如给定曲线ρ=θ,设点P 的一极坐标为(π4,π4),那么点P 适合方程ρ=θ,从而是曲线上的一个点,但点P 的另一个极坐标(π4,9π4)就不适合方程ρ=θ了.所以在极坐标系内,确定某一个点P 是否在某一曲线C 上,只需判断点P 的极坐标中是否有一对坐标适合曲线C 的方程即可.2.圆心在极点,半径为r 的圆的极坐标方程是什么?圆心在点⎝⎛⎭⎫a ,π2处且过极点的圆的方程又是什么?提示:圆心在极点,半径为r 的圆的极坐标方程为ρ=r ;圆心在点(a ,π2)处且过极点的圆的方程为ρ=2a sin_θ(0≤θ≤π).设一个直角三角形的斜边长一定,求直角顶点轨迹的极坐标方程.[精讲详析] 本题考查极坐标方程的求法,解答此题需要根据题目特点建立恰当的极坐标系,然后再求直角顶点的轨迹方程.设直角三角形的斜边为OD ,它的长度是2r ,以O 为极点,OD 所在射线为极轴,建立极坐标系,如图所示:设P (ρ,θ)为轨迹上的一点, 则OP =ρ,∠xOP =θ. 在直角三角形ODP 中, OP =OD ·cos θ,∵OP =ρ,OD =2r ,∴ρ=2r cos θ(ρ≠0,ρ≠2r ). 这就是所求轨迹的方程.(1)求曲线的极坐标方程的步骤如下: ①建立适当的极坐标系.②设P (ρ,θ)是曲线上任一点. ③列出ρ,θ的关系式. ④化简整理.(2)极坐标中的坐标是由长度与角度表示的,因此,建立极坐标方程常常可以在一个三角形中实现,找出这样的三角形便形成了解题的关键.1.设M 是定圆O 内一定点,任作半径OA ,连接MA ,过M 作MP ⊥MA 交OA 于P ,求P 点的轨迹方程.解:以O 为极点,射线OM 为极轴,建立极坐标系,如图. 设定圆O 的半径为r ,OM =a ,P (ρ,θ)是轨迹上任意一点. ∵MP ⊥MA ,∴|MA |2+|MP |2=|P A |2.由余弦定理,可知|MA |2=a 2+r 2-2ar cos θ,|MP |2=a 2+ρ2-2aρcos θ.而|P A |=r -ρ,由此可得a 2+r 2-2ar cos θ+a 2+ρ2-2aρcos θ=(r -ρ)2.整理化简,得ρ=a (a -r cos θ)a cos θ-r.求圆心在(ρ0,θ0),半径为r 的圆的方程. [精讲详析]在圆周上任取一点P (如图) 设其极坐标为(ρ,θ).由余弦定理知:CP 2=OP 2+OC 2-2OP ·OC cos ∠COP ,∴r 2=ρ20+ρ2-2ρρ0cos (θ-θ0).故其极坐标方程为r 2=ρ20+ρ2-2ρρ0cos (θ-θ0).(1)圆的极坐标方程是曲线的极坐标方程的一种特殊情况,其求解过程同曲线的极坐标方程的求法.(2)特别地,当圆心在极轴上即θ0=0时,方程为r 2=ρ20+ρ2-2ρρ0cos θ;若再有ρ0=r ,则其方程为ρ=2ρ0cos θ=2r cos θ;若ρ0=r ,θ0≠0,则方程为ρ=2r cos(θ-θ0),这几个方程经常用来判断图形的形状和位置.2.在极坐标系中,已知圆C 的圆心为⎝⎛⎭⎫3,π3,半径为3,Q 点在圆周上运动.(1)求圆C 的极坐标方程; (2)若P 是OQ 中点,求P 的轨迹. 解:(1)如图,设Q (ρ,θ)为圆上任意一点,连接DQ 、OQ , 则|OD |=6, ∠DOQ =π3-θ,或∠DOQ =θ-π3,∠DQO =π2.在Rt △ODQ 中,|OQ |=|OD |cos (θ-π3),即ρ=6cos (θ-π3).(2)若P 的极坐标为(ρ,θ),则Q 点的极坐标为(2ρ,θ).∴2ρ=6cos (θ-π3),∴ρ=3cos (θ-π3).∴P 的轨迹是圆.进行直角坐标方程与极坐标方程的互化 (1)y 2=4x ;(2)y 2+x 2-2x -1=0;(3)ρcos 2θ2=1;(4)ρ2cos 2θ=4;(5)ρ=12-cos θ.[精讲详析] 本题考查极坐标与直角坐标的互化公式. (1)将x =ρcos θ,y =ρsin θ代入y 2=4x , 得(ρsin θ)2=4ρcos θ. 化简,得ρsin 2θ=4cos θ.(2)将x =ρcos θ,y =ρsin θ代入y 2+x 2-2x -1=0, 得(ρsin θ)2+(ρcos θ)2-2ρcos θ-1=0, 化简,得ρ2-2ρcos θ-1=0. (3)∵ρcos 2θ2=1,∴ρ·1+cos θ2=1,即ρ+ρcos θ=2.∴x 2+y 2+x =2.化简,得y 2=-4(x -1).(4)∵ρ2cos 2θ=4,∴ρ2cos 2θ-ρ2sin 2θ=4,即x 2-y 2=4. (5)∵ρ=12-cos θ,∴2ρ-ρcos θ=1.∴2x 2+y 2-x =1.化简,得3x 2+4y 2-2x -1=0.直角坐标方程化为极坐标方程比较容易,只要运用公式x =ρcos θ及y =ρsin θ直接代入并化简即可;而极坐标方程化为直角坐标方程则相对困难一些,解此类问题常通过变形,构造形如ρcos θ,ρsin θ,ρ2的形式,进行整体代换.其中方程的两边同乘以(或同除以)ρ及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须同解,因此应注意对变形过程的检验.3.把极坐标方程ρcos ⎝⎛⎭⎫θ-π6=1化为直角坐标方程.解:由ρcos (θ-π6)=1得32ρcos θ+12ρsin θ=1,将ρcos θ=x ,ρsin θ=y 代入上式,得32x +y2=1, 即3x +y -2=0.利用圆的极坐标方程求圆心、半径,再利用圆心、半径解决问题,是高考命题的重点题型之一.湖南高考以填空题的形式考查了圆的极坐标方程与直角坐标方程的互化,是高考命题的一个新亮点.[考题印证](湖南高考)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.若曲线C 的极坐标方程为ρ=2sin θ,则曲线C 的直角坐标方程为________.[命题立意] 本题考查将圆的极坐标方程化为直角坐标方程的方法. [解析] ∵ρ=2sin θ, ∴ρ2=2ρsin θ, ∴x 2+y 2=2y ,即曲线C 的直角坐标方程为x 2+y 2-2y =0. 答案:x 2+y 2-2y =0一、选择题1.(北京高考)在极坐标系中,圆ρ=-2sin θ的圆心的极坐标是( )A.⎝⎛⎭⎫1,π2B.⎝⎛⎭⎫1,-π2C .(1,0)D .(1,π)解析:选B 因为该圆的直角坐标方程为x 2+y 2=-2y ,即为x 2+(y +1)2=1,圆心的直角坐标方程为(0,-1),化为极坐标是(1,-π2).2.极坐标方程ρ=cos ⎝⎛⎭⎫π4-θ所表示的曲线是( )A .双曲线B .椭圆C .抛物线D .圆解析:选D ∵ρ=cos (π4-θ)=22cos θ+22sin θ,ρ2=22ρcos θ+22ρsin θ, ∴x 2+y 2=22x +22y ,这个方程表示一个圆. 3.在极坐标方程中,曲线C 的方程是ρ=4sin θ,过点⎝⎛⎭⎫4,π6作曲线C 的切线,则切线长为( )A .4 B.7 C .22 D .2 3解析:选C ρ=4sin θ化为普通方程为x 2+(y -2)2=4,点(4,π6)化为直角坐标为(23,2),切线长、圆心到定点的距离及半径构成直角三角形,由勾股定理:切线长为(23)2+(2-2)2-22=2 2.4.(安徽高考)在极坐标系中,点⎝⎛⎭⎫2,π3到圆ρ=2cos θ的圆心的距离为( )A .2 B. 4+π29C.1+π29D. 3解析:选D 由⎩⎪⎨⎪⎧x =ρcos θ=2cos π3=1y =ρsin θ=2sin π3=3可知,点(2,π3)的直角坐标为(1,3),圆ρ=2cos θ的方程为x 2+y 2=2x ,即(x -1)2+y 2=1,则圆心到点(1,3)的距离为 3.二、填空题5.(江西高考)若曲线的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为________.解析:∵⎩⎪⎨⎪⎧x =ρcos θy =ρsin θ,ρ2=x 2+y 2,∴ρ2=2ρsin θ+4ρcos θ⇒x 2+y 2=2y +4x ⇒x 2+y 2-4x -2y =0.答案:x 2+y 2-4x -2y =06.在极坐标系中,已知圆C 的圆心坐标为C ⎝⎛⎭⎫2,π3,半径R =5,则圆C 的极坐标方程为________.解析:将圆心C (2,π3)化成直角坐标为(1,3),半径R =5,故圆C 的方程为(x -1)2+(y -3)2=5. 再将C 化成极坐标方程,得(ρcos θ-1)2+(ρsin θ-3)2=5.化简,得ρ2-4ρcos (θ-π3)-1=0,此即为所求的圆C 的极坐标方程.答案:ρ2-4ρcos (θ-π3)-1=07.(天津高考)已知圆的极坐标方程为ρ=4cos θ, 圆心为C, 点P 的极坐标为⎝⎛⎭⎫4,π3,则|CP |=________.解析:圆ρ=4cos θ的直角坐标方程为x 2+y 2=4x ,圆心C (2,0).点P 的直角坐标为(2,23),所以|CP |=2 3.答案:2 38.已知曲线C 与曲线ρ=53cos θ-5sin θ关于极轴对称,则曲线C 的极坐标方程是________.解析:曲线ρ=53cos θ-5sin θ=10cos (θ+π6),它关于极轴对称的曲线为ρ=10cos (-θ+π6)=10cos (θ-π6).答案:ρ=10cos (θ-π6)三、解答题 9.如图,在圆心极坐标为A (4,0),半径为4的圆中,求过极点O 的弦的中点轨迹的极坐标方程,并将其化为直角坐标方程.解:设M (ρ,θ)是轨迹上任意一点,连接OM 并延长交圆A 于点P (ρ0,θ0),则有θ0=θ,ρ0=2ρ.由圆心为(4,0),半径为4的圆的极坐标方程为ρ=8cos θ得ρ0=8cos θ0, 所以2ρ=8cos θ, 即ρ=4cos θ,故所求轨迹方程是ρ=4cos θ. 因为x =ρcos θ,y =ρsin θ, 由ρ=4cos θ得ρ2=4ρcos θ, 所以x 2+y 2=4x ,即x 2+y 2-4x =0为轨迹的直角坐标方程.10.指出极坐标方程ρ=2cos ⎝⎛⎭⎫θ+π3,ρ=2cos ⎝⎛⎭⎫θ-π3,ρ=2cos θ代表的曲线,并指出它们之间的关系.解:ρ=2cos (θ+π3)是以点(1,-π3)为圆心,半径为1的圆.ρ=2cos (θ-π3)是以点(1,π3)为圆心,半径为1的圆.ρ=2cos θ是以点(1,0)为圆心,半径为1的圆.因此曲线ρ=2cos (θ+π3),可看成曲线ρ=2cos θ绕极点顺时针旋转π3得到的曲线.ρ=2cos (θ-π3)是由曲线ρ=2cos θ绕极点逆时针旋转π3得到的曲线.11.已知半径为R 的定圆O ′外有一定点O ,|OO ′|=a (a >R ),P 为定圆O ′上的动点,以OP 为边作正三角形OPQ (O 、P 、Q 按逆时针方向排列),求Q 点的轨迹的极坐标方程.解:如图所示,以定点O 为极点,射线OO ′为极轴正向建立极坐标系, 则⊙O ′的极坐标方程是ρ2-(2a cos θ)ρ+a 2-R 2=0. 设Q (ρ,θ),则有P (ρ,θ-π3),又P 在⊙O ′上,∴ρ2-[2a cos (θ-π3)]ρ+a 2-R 2=0.即所求Q 点的轨迹方程是:最新K12教育教案试题 ρ2-2aρcos (θ-π3)+a 2-R 2=0.。

配套K122018-2019学年高中数学人教A版选修4-5创新应用教学案:第三讲第2节一般形式的柯西

配套K122018-2019学年高中数学人教A版选修4-5创新应用教学案:第三讲第2节一般形式的柯西

[核心必知]1.三维形式的柯西不等式设a1,a2,a3,b1,b2,b3是实数,则(a21+a22+a23)(b21+b22+b23)≥(a1b1+a2b2+a3b3)2,当且仅当b i=0(i=1,2,3)或存在一个数k,使得a i=kb i(i=1,2,3)时,等号成立.2.一般形式的柯西不等式设a1,a2,a3,…,a n,b1,b2,b3,…,b n是实数,则(a21+a22+…+a2n)(b21+b22+…+b2n)≥(a1b1+…+a n b n)2,当且仅当b i=0(i=1,2,…,n)或存在一个数k,使得a i=kb i(i=1,2,…,n)时,等号成立.[问题思考]1.在一般形式的柯西不等式的右端中,表达式写成a i·b i(i=1,2,3,…,n),可以吗?提示:不可以,a i·b i的顺序要与左侧a i,b i的顺序一致.2.在一般形式的柯西不等式中,等号成立的条件记为a i=kb i(i=1,2,3,…,n),可以吗?提示:不可以.若b i=0而a i≠0,则k不存在.设a ,b ,c 为正数,且不全相等. 求证:2a +b +2b +c +2c +a >9a +b +c. [精讲详析] 本题考查三维形式的柯西不等式的应用.解答本题需要构造两组数据a +b ,b +c ,c +a ;1a +b ,1b +c ,1c +a,然后利用柯西不等式解决.构造两组数a +b ,b +c , c +a ;1a +b,1b +c ,1c +a , 则由柯西不等式得(a +b +b +c +c +a )⎝ ⎛⎭⎪⎫1a +b +1b +c +1c +a ≥(1+1+1)2,①即2(a +b +c )⎝ ⎛⎭⎪⎫1a +b +1b +c +1c +a ≥9,于是2a +b +2b +c +2c +a ≥9a +b +c .由柯西不等式知, ①中有等号成立⇔a +b1a +b=b +c1b +c=c +a1c +a⇔a +b =b +c =c +a ⇔a =b =c . 因题设,a ,b ,c 不全相等,故①中等号不成立,于是2a +b +2b +c +2c +a >9a +b +c .柯西不等式的结构特征可以记为(a 1+a 2+…+a n )·(b 1+b 2+…+b n )≥(a 1b 1+a 2b 2+…+a n b n )2,其中a i ,b i ∈R +(i =1,2,…,n ),在使用柯西不等式时(要注意从整体上把握柯西不等式的结构特征),准确地构造公式左侧的两个数组是解决问题的关键.1.设a ,b ,c 为正数,求证:a 2b +b 2c +c 2a ≥a +b +c .证明:∵⎝⎛⎭⎫a 2b +b 2c +c 2a ()a +b +c=⎣⎡⎦⎤⎝⎛⎭⎫a b 2+⎝⎛⎭⎫b c 2+⎝⎛⎭⎫c a 2·[(b )2+(c )2+(a )2] ≥⎝⎛⎭⎫a b ·b +b c ·c +c a ·a 2=(a +b +c )2,即⎝⎛⎭⎫a 2b +b 2c +c 2a (a +b +c )≥(a +b +c )2, 又a ,b ,c ∈R +, ∴a +b +c >0,∴a 2b +b 2c +c 2a≥a +b +c ,当且仅当a =b =c 时等号成立。

【配套K12】2018-2019学年高中数学人教A版选修4-5创新应用教学案:第三讲第1节二维形式的

【配套K12】2018-2019学年高中数学人教A版选修4-5创新应用教学案:第三讲第1节二维形式的

[核心必知]1.二维形式的柯西不等式(1)若a ,b ,c ,d 都是实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时,等号成立.(2)二维形式的柯西不等式的推论:(a +b )(c +d )(a ,b ,c ,d 为非负实数); a 2+b 2·c 2+d 2≥|ac +bd |(a ,b ,c ,d ∈R ); a 2+b 2·c 2+d 2≥|ac |+|bd |(a ,b ,c ,d ∈R ). 2.柯西不等式的向量形式设α,β是两个向量,则|α·β|≤|α||β|,当且仅当β是零向量,或存在实数k ,使α=k β时,等号成立.3.二维形式的三角不等式(1)x 21+y 21+x 22+y 22x 1,y 1,x 2,y 2∈R ).(2)推论:(x 1-x 3)2+(y 1-y 3)2+(x 2-x 3)2+(y 2-y 3)2≥(x 1,x 2,x 3,y 1,y 2,y 3∈R ).[问题思考]1.在二维形式的柯西不等式的代数形式中,取等号的条件可以写成a b =cd 吗?提示:不可以.当b ·d =0时,柯西不等式成立,但a b =cd 不成立.2.不等式x21+y21+x22+y22≥(x1-x2)2+(y1-y2)2(x1,x2,y1,y2∈R)中,等号成立的条件是什么?提示:当且仅当P1(x1,y1),P2(x2,y2),O(0,0)三点共线,且P1,P2在原点两旁时,等号成立.2·a2+c2≥a+c,设a,b,c为正数,求证:a2+b2+b2+c2+a2+c2≥2(a+b+c).[精讲详析]本题考查柯西不等式的应用.解答本题需要根据不等式的结构,分别使用柯西不等式,然后将各组不等式相加即可.由柯西不等式:a2+b2·12+12≥a+b,即2·a2+b2≥a+b,同理:2·b2+c2≥b+c,2·a2+c2≥a+c,将上面三个同向不等式相加得:2(a2+b2+b2+c2+a2+c2)≥2(a+b+c),∴a2+b2+b2+c2+a2+c2≥2·(a+b+c).利用二维柯西不等式的代数形式证题时,要抓住不等式的基本特征:(a2+b2)(c2+d2)≥(ac+bd)2,其中a,b,c,d∈R或(a+b)·(c+d)≥(ac+bd)2,其中a,b,c,d∈R+.1.设a 1,a 2,a 3为正数,求证:a 31+a 21a 2+a 1a 22+a 32+a 32+a 22a 3+a 2a 23+a 33+a 33+a 23a 1+a 3a 21+a 31≥2(a 31+a 32+a 33).证明:因为a 31+a 21a 2+a 1a 22+a 32=(a 1+a 2)·(a 21+a 22),由柯西不等式得[(a 1)2+(a 2)2](a 21+a 22)≥(a 1a 1+a 2a 2)2, 于是a 31+a 21a 2+a 1a 22+a 32≥(a 31+a 32)2.故a 31+a 21a 2+a 1a 22+a 32≥a 31+a 32, 同理a 32+a 22a 3+a 2a 23+a 33≥a 32+a 33,a 33+a 23a 1+a 3a 21+a 31≥a 33+a 31.将以上三个同向不等式相加,即得a 31+a 21a 2+a 1a 22+a 32+a 32+a 22a 3+a 2a 23+a 23+a 33+a 23a 1+a 3a 21+a 31≥2(a 31+a 32+a 33).设a ,b ,c ,d 是4个不全为零的实数,求证: ab +2bc +cd a 2+b 2+c 2+d 2≤ 2+12.[精讲详析] 本题考查柯西不等式的灵活应用,解答本题需要从欲证不等式左边的分子入手,将其进行适当的变形,创造利用柯西不等式的条件. ab +2bc +cd =(ab +cd )+(bc -ad )+(bc +ad ) ≤2[(ab +cd )2+(bc -ad )2]+(b 2+a 2)(c 2+d 2)=2·(a 2+c 2)(b 2+d 2)+(a 2+b 2)(c 2+d 2)≤2·(a 2+c 2)+(b 2+d 2)2+(a 2+b 2)+(c 2+d 2)2=2+12(a 2+b 2+c 2+d 2).∴ab +2bc +cd a 2+b 2+c 2+d2≤2+12.利用柯西不等式证明某些不等式时,有时需要将数学表达式适当的变形.这种变形往往要求具有很高的技巧,必须善于分析题目的特征,根据题设条件,综合地利用添、拆、分解、组合、配方、变量代换、数形结合等方法才能发现问题的本质,找到突破口.2.设a ,b ∈R +,且a +b =2.求证:a 22-a +b 22-b ≥2.证明:根据柯西不等式,有[(2-a )+(2-b )]⎝ ⎛⎭⎪⎫a 22-a +b 22-b=[(2-a )2+(2-b )2]⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a 2-a 2+⎝ ⎛⎭⎪⎫b 2-b 2≥⎝⎛⎭⎪⎫2-a ·a 2-a +2-b ·b 2-b 2=(a +b )2=4.∴a 22-a +b 22-b ≥4(2-a )+(2-b )=2. ∴原不等式成立.若3x +4y =2,求x 2+y 2的最小值.[精讲详析] 本题考查柯西不等式的应用.解答本题需要熟知柯西不等式的结构,凑成柯西不等式的结构,然后利用柯西不等式求最值.由柯西不等式得(x 2+y 2)(32+42)≥(3x +4y )2, 25(x 2+y 2)≥4,所以x 2+y 2≥425. 当且仅当x 3=y4时等号成立,由⎩⎪⎨⎪⎧3x +4y =2,x 3=y 4.得⎩⎨⎧x =625,y =825.因此,当x =625,y =825时,x 2+y 2取得最小值,最小值为425.利用柯西不等式求最值的方法(1)先变形凑成柯西不等式的结构特征,是利用柯西不等式求解的先决条件;(2)有些最值问题从表面上看不能利用柯西不等式,但只要适当添加上常数项或为常数的各项,就可以应用柯西不等式来解,这也是运用柯西不等式解题的技巧;(3)而有些最值问题的解决需要反复利用柯西不等式才能达到目的,但在运用过程中,每运用一次前后等号成立的条件必须一致,不能自相矛盾,否则就会出现错误.多次反复运用柯西不等式的方法也是常用的技巧之一.3.如何把一条长为m 的绳子截成2段,各围成一个正方形,使这2个正方形的面积和最小?解:设这2段的长度分别为x ,y ,则x +y =m ,且2个正方形的面积和S =⎝⎛⎭⎫x 42+⎝⎛⎭⎫y 42=116(x 2+y 2).因为(x 2+y 2)(12+12)≥(x +y )2=m 2,等号当且仅当x =y =m 2时成立, 所以x 2+y 2有最小值m 22,从而S 有最小值m 232.把绳子两等分后,这2段所围成的2个正方形的面积和最小.柯西不等式在求最值中的应用是考试的热点.本考题以解答题的形式考查了柯西不等式在求最值中的应用,是高考命题的一个新亮点.[考题印证]已知实数a 、b 、c 、d 满足a 2+b 2=1,c 2+d 2=2,求ac +bd 的最大值.[命题立意] 本题考查柯西不等式在求最值中的应用. [解] ∵a 2+b 2=1,c 2+d 2=2,∴由柯西不等式(a 2+b 2)(c 2+d 2)≥(ac +bd )2, 得(ac +bd )2≤1×2=2. ∴-2≤ac +bd ≤ 2.当且仅当ad =bc ,即c a =db =2时取最大值 2.∴ac +bd 的最大值为 2.一、选择题1.若a ,b ∈R ,且a 2+b 2=10,则a +b 的取值范围是( ) A .[-25,2 5 ] B .[-210,210 ] C .[-10,10 ] D .(-5, 5 ] 解析:选A ∵a 2+b 2=10, ∴(a 2+b 2)(12+12)≥(a +b )2, 即20≥(a +b )2, ∴-25≤a +b ≤2 5.2.已知x +y =1,那么2x 2+3y 2的最小值是( ) A.56 B.65 C.2536 D.3625解析:选B 2x 2+3y 2=(2x 2+3y 2)⎝⎛⎭⎫12+13·65≥65(2x ·22+3y ·33)2=65(x +y )2=65. 3.已知a ,b ∈R +且a +b =1,则P =(ax +by )2与Q =ax 2+by 2的关系是( ) A .P ≤Q B .P <Q C .P ≥Q D .P >Q解析:选A 设m =(ax ,b y ),n =(a ,b ),则|ax +by |=|m·n |≤|m ||n |=(ax )2+(by )2·(a )2+(b )2=ax 2+by 2·a +b =ax 2+by 2,∴(ax +by )2≤ax 2+by 2.即P ≤Q .4.已知p ,q ∈R +,且p 3+q 3=2,则p +q 的最大值为( ) A .2 B .8 C.12D .4解析:选A 设m =(p 32,q 32),n =(p 12,q 12), 则p 2+q 2=p 32p 12+q 32q 12=|m ·n |≤|m |·|n | =p 3+q 3·p +q =2·p +q .又∵(p +q )2≤2(p 2+q 2), ∴(p +q )22≤p 2+q 2≤2p +q .∴(p +q )4≤8(p +q ). ∴p +q ≤2. 二、填空题5.设a ,b ,c ,d ,m ,n 都是正实数,P =ab +cd ,Q =ma +nc ·b m +dn,则P 与Q 的大小________.解析:由柯西不等式,得 P =am ·b m+nc ×d n≤(am )2+(nc )2×⎝⎛⎭⎫ b m 2+⎝⎛⎭⎫ d n 2=am +nc ×b m +dn=Q . 答案:P ≤Q6.函数f (x )=x -6+12-x 的最大值为________. 解析:由柯西不等式得 (x -6+12-x )2≤(12+12)·[(x -6)2+(12-x )2]=12,∴x -6+12-x ≤23(当x =9时,“=”成立).答案:2 37.设xy >0,则⎝⎛⎭⎫x 2+4y 2⎝⎛⎭⎫y 2+1x 2的最小值为________. 解析:原式=⎣⎡⎦⎤x 2+⎝⎛⎭⎫2y 2⎣⎡⎦⎤⎝⎛⎭⎫1x 2+y 2≥⎝⎛⎭⎫x ·1x +2y ·y 2=9. 答案:98.已知a ,b ∈R +,且a +b =1,则(4a +1+4b +1)2的最大值是________. 解析:(4a +1+4b +1)2=(1×4a +1+1×4b +1)2≤(12+12)(4a +1+4b +1)=2[4(a +b )+2]=2(4×1+2)=12.答案:12 三、解答题9.已知a 2+b 2=1, x 2+y 2=1,求证:|ax +by |≤1. 证明:由柯西不等式得 (ax +by )2≤(a 2+b 2)(x 2+y 2)=1. 故|ax +by |≤1成立.10.已知实数a 、b 、c 满足a +2b +c =1,a 2+b 2+c 2=1. 求证:-23≤c ≤1.证明:因为a +2b +c =1,a 2+b 2+c 2=1, 所以a +2b =1-c ,a 2+b 2=1-c 2. 由柯西不等式得(12+22)(a 2+b 2)≥(a +2b )2,5(1-c 2)≥(1-c )2, 整理得,3c 2-c -2≤0, 解得-23≤c ≤1.所以-23≤c ≤1.11.若x 2+4y 2=5.求x +y 的最大值及最大值点. 解:由柯西不等式得 [x 2+(2y )2]⎣⎡⎦⎤12+⎝⎛⎭⎫122≥(x +y )2即(x +y )2≤5×54=254,x +y ≤52.当且仅当x 1=2y12,即x =4y 时取等号.由⎩⎪⎨⎪⎧x 2+4y 2=5,x =4y ,得⎩⎪⎨⎪⎧x =2,y =12或⎩⎪⎨⎪⎧x =-2,y =-12(舍去). ∴x +y 的最大值为52,最大值点为⎝⎛⎭⎫2,12.。

2018-2019学年高中数学人教A版选修4-1课件创新应用:第三讲 圆锥曲线性质的探讨

2018-2019学年高中数学人教A版选修4-1课件创新应用:第三讲 圆锥曲线性质的探讨
解析:如果梯形 ABCD 所在平面平行于投影方向,则梯 形 ABCD 在 α 上的射影是一条线段. 如果梯形 ABCD 所在平面不平行于投影方向,则平行线 的射影仍是平行线,不平行的线的射影仍不平行,则梯形 ABCD 在平面 α 上的射影仍是梯形.
答案:一条线段或梯形
3.已知△ABC 的边 BC 在平面 α 内,A 在平面 α 上的射影为 A′(A′不在 BC 上). (1)当∠BAC=90° 时,求证:△A′BC 为钝角三角形; (2)当∠BAC=60° 时, AB、 AC 与平面 α 所成的角分别是 30° 和 45° 时,求 cos∠BA′C.
椭圆 . (1)定理 1:圆柱形物体的斜截口是_______
(2)定理 2:在空间中,取直线 l 为轴,直线 l′与 l 相交于 O 点,夹角为 α,l′围绕 l 旋转得到以 O 为顶点,l′为母线的 圆锥面,任取平面 π,若它与轴 l 的交角为 β(当 π 与 l 平行时, 记 β=0),则
椭圆 . ①β>α,平面 π 与圆锥的交线为_____
图形,叫做这个图形的平行射影.
3.正射影与平行射影的联系与区别 正射影与平行射影的投影光线与投影方向都是平行 的.因此,正射影也是平行射影,不同的是正射影的光线与 投影面垂直.而平行射影的投影光线与投影面斜交.平面图 形的正射影与原投影面积大小相等.而一般平行射影的面积 要小于原投影图形的面积.
4.两个定理
(
)
解析:正射影是平行射影的特例,则选项 A 不正确,选项 B 正确;对同一个图形,当投影线垂直于投影面时,其平行射 影就是正射影,否则不相同,则选项 C 不正确;当投影线 垂直于投影面, 且圆面平行于投影面时, 圆的平行射影是圆, 则选项 D 不正确.

2017-2018学年高中数学人教A版选修4-1创新应用教学案:第三讲 圆锥曲线性质的探讨

2017-2018学年高中数学人教A版选修4-1创新应用教学案:第三讲 圆锥曲线性质的探讨

[对应学生用书P37]1.正射影的概念给定一个平面α,从一点A作平面α的垂线,垂足为点A′,称点A′为点A在平面α上的正射影.一个图形上点A′所组成的图形,称为这个图形在平面α上的正射影.2.平行射影设直线l与平面α相交,称直线l的方向为投影方向,过点A作平行于l的直线(称为投影线)必交α于一点A′,称点A′为A沿l的方向在平面α上的平行射影.一个图形上各点在平面α上的平行射影所组成的图形,叫做这个图形的平行射影.3.正射影与平行射影的联系与区别正射影与平行射影的投影光线与投影方向都是平行的.因此,正射影也是平行射影,不同的是正射影的光线与投影面垂直.而平行射影的投影光线与投影面斜交.平面图形的正射影与原投影面积大小相等.而一般平行射影的面积要小于原投影图形的面积.4.两个定理(1)定理1:圆柱形物体的斜截口是椭圆.(2)定理2:在空间中,取直线l为轴,直线l′与l相交于O点,夹角为α,l′围绕l 旋转得到以O为顶点,l′为母线的圆锥面,任取平面π,若它与轴l的交角为β(当π与l 平行时,记β=0),则①β>α,平面π与圆锥的交线为椭圆.②β=α,平面π与圆锥的交线为抛物线.③β<α,平面π与圆锥的交线为双曲线.[对应学生用书P37][例1]()A.椭圆B.圆C.线段D.射线[思路点拨]要确定椭圆在投影面上的平行射影,关键看投影面与椭圆所在平面的位置关系.[解析]因为椭圆所在平面与投影面平行,所以椭圆的平行射影无论投射线的方向如何,始终保持与原图形全等.[答案] A平面图形可以看作点的集合,找到平面图形中关键点的正射影,就可找到平面图形正射影的轮廓,从而确定平面图形的正射影.1.下列说法正确的是()A.平行射影是正射影B.正射影是平行射影C.同一个图形的平行射影和正射影相同D.圆的平行射影不可能是圆解析:正射影是平行射影的特例,则选项A不正确,选项B正确;对同一个图形,当投影线垂直于投影面时,其平行射影就是正射影,否则不相同,则选项C不正确;当投影线垂直于投影面,且圆面平行于投影面时,圆的平行射影是圆,则选项D不正确.答案:B2.梯形ABCD中,AB∥CD,若梯形不在α内,则它在α上的射影是____________.解析:如果梯形ABCD所在平面平行于投影方向,则梯形ABCD在α上的射影是一条线段.如果梯形ABCD所在平面不平行于投影方向,则平行线的射影仍是平行线,不平行的线的射影仍不平行,则梯形ABCD在平面α上的射影仍是梯形.答案:一条线段或梯形3.已知△ABC的边BC在平面α内,A在平面α上的射影为A′(A′不在BC上).(1)当∠BAC =90°时,求证:△A ′BC 为钝角三角形;(2)当∠BAC =60°时,AB 、AC 与平面α所成的角分别是30°和45°时,求cos ∠BA ′C . 解:(1)证明:∵AB >A ′B ,AC >A ′C , ∴A ′B 2+A ′C 2<AB 2+AC 2=BC 2. ∴cos ∠BA ′C =A ′B 2+A ′C 2-BC 22A ′B ·A ′C <0.∴∠BA ′C 为钝角.∴△A ′BC 为钝角三角形. (2)由题意,∠ABA ′=30°,∠ACA ′=45°.设AA ′=1,则A ′B =3,A ′C =1,AC =2,AB =2, ∴BC = AC 2+AB 2-2AC ·AB ·cos ∠BAC=6-22,cos ∠BA ′C =A ′B 2+A ′C 2-BC 22A ′B ·A ′C=6-33.[例2] 如图,在圆柱O1O 2内嵌入双球,使它们与圆柱面相切,切线分别为⊙O 1和⊙O 2,并且和圆柱的斜截面相切,切点分别为F 1、F 2.求证:斜截面与圆柱面的截线是以F 1、F 2为焦点的椭圆.[思路点拨] 证明曲线的形状是椭圆,利用椭圆的定义(平面上到两个定点的距离之和等于定长的点的轨迹)来证明.[证明] 如图,设点P 为曲线上任一点,连接PF 1、PF 2,则PF 1、PF 2分别是两个球面的切线,切点为F 1、F 2,过P 作母线,与两球面分别相交于K 1、K 2,则PK 1、PK 2分别是两球面的切线,切点为K 1、K 2.根据切线长定理的空间推广 , 知PF 1=PK 1,PF 2=PK 2, 所以PF 1+PF 2=PK 1+PK 2=K 1K 2.由于K 1K 2为定值,故点P 的轨迹是以F 1、F 2为焦点的椭圆.(1)证明平面与圆柱面的截线是椭圆,利用Dandelin 双球确定椭圆的焦点,然后利用椭圆的定义判定曲线的形状.(2)该题使用了切线长定理的空间推广 (从球外一点引球的切线,切线长都相等).4.一平面与圆柱面的母线成45°角,平面与圆柱面的截线椭圆的长轴为6,则圆柱面的半径为________.解析:由2a =6,即a =3,又e =cos 45°=22, 故b =c =ea =22×3=322,即为圆柱面的半径. 答案:3225.已知一平面垂直于圆柱的轴,截圆柱所得为一半径为2的圆,另一平面与圆柱的轴成30°角,求截线的长轴、短轴和离心率.解:由题意可知椭圆的短轴为2b =2×2, ∴短轴长为4.设长轴长为2a ,则有2b 2a =sin 30°=12,∴2a =4b =8.e =c a =32.∴长轴长为8,短轴长为4,离心率为32.[例3][思路点拨] 本题直接证明,难度较大,故可仿照定理1的方法证明,即Dandelin 双球法.[证明] 如图,在圆锥内部嵌入Dandelin 双球,一个位于平面π的上方,一个位于平面π的下方,并且与平面π及圆锥均相切.当β>α时,由上面的讨论可知,平面π与圆锥的交线是一个封闭曲线.设两个球与平面π的切点分别为F 1、F 2,与圆锥相切于圆S 1、S 2.在截面的曲线上任取一点P ,连接PF 1、PF 2.过P 作母线交S 1于Q 1,交S 2于Q 2,于是PF 1和PQ 1是从P 到上方球的两条切线,因此PF 1=PQ 1.同理,PF 2=PQ 2.所以PF 1+PF 2=PQ 1+PQ 2=Q 1Q 2.由正圆锥的对称性,Q 1Q 2的长度等于两圆S 1、S 2所在平行平面间的母线段的长度而与P 的位置无关,由此我们可知在β>α时,平面π与圆锥的交线为一个椭圆.由平面中,直线与等腰三角形两边的位置关系拓展为空间内圆锥与平面的截线之后,较难入手证明其所成曲线的形状,尤其是焦点的确定更加不容易,但可以采用Dandelin 双球法,这时较容易确定椭圆的焦点,学生也容易入手证明,使问题得到解决.6.圆锥的顶角为50°,圆锥的截面与轴线所成的角为30°,则截线是( ) A .圆 B .椭圆 C .双曲线D .抛物线解析:由α=50°2=25°,φ=30°,φ>α,∴截线是椭圆. 答案:B7.如图,已知平面π与圆锥的轴的夹角为β,圆锥母线与轴的夹角为α,α=β,求证:平面π与圆锥的交线为抛物线.证明:当β=α时,平面与圆锥的一部分相交,且曲线不闭合.在圆锥内嵌入一个Dandelin 球与圆锥交线为圆S .记圆S 所在平面为π′,π与π′的交线记为m .球切π于F 1点.在截口上任取一点P ,过P 作P A ⊥m 于A ,过P 作PB ⊥平面π′于B ,过P 作圆锥的母线交平面π′于C ,连接AB ,PF 1,BC .由切线长定理,PF 1=PC .∵PB平行于圆锥的轴,∴∠APB=β,∠BPC=α.,在Rt△ABP中,P A=PBcos β在Rt△BCP中,PC=PBcos α.∵α=β,∴PC=P A.∴PF1=P A,即截口上任一点到定点F和到定直线m的距离相等.∴截口曲线为抛物线.[对应学生用书P39]一、选择题1.一条直线在一个面上的平行投影是()A.一条直线B.一个点C.一条直线或一个点D.不能确定解析:当直线与面垂直时,平行投影可能是点.答案:C2.△ABC的一边在平面α内,一顶点在平面α外,则△ABC在面α内的射影是() A.三角形B.一直线C.三角形或一直线D.以上均不正确解析:当△ABC所在平面平行于投影线时,射影是一线段,不平行时,射影是三角形.答案:D3.下列说法不.正确的是()A.圆柱面的母线与轴线平行B.圆柱面的某一斜截面的轴面总是垂直于直截面C.圆柱面与斜截面截得的椭圆的离心率与圆柱面半径无关,只与母线和斜线面的夹角有关D.平面截圆柱面的截线椭圆中,短轴长即为圆柱面的半径解析:显然A正确,由于任一轴面过轴线,故轴面与圆柱的直截面垂直,B正确,C 显然正确,D中短轴长应为圆柱面的直径长,故不正确.答案:D4.设圆锥的顶角(圆锥轴截面上两条母线的夹角)为120°,当圆锥的截面与轴成45°角时,则截得二次曲线的离心率为()A.22B. 2 C .1D.12解析:由题意知α=60°,β=45°,满足β<α,这时截圆锥得的交线是双曲线,其离心率为e =cos 45°cos 60°= 2.答案:B 二、填空题5.用平面截球面和圆柱面所得到的截线形状分别是________、________.解析:联想立体图形及课本方法,可得结论.要注意平面截圆柱面所得的截线的不同情况.答案:圆 圆或椭圆 6.有下列说法①矩形的平行射影一定是矩形; ②梯形的平行射影一定是梯形; ③平行四边形的平行射影可能是正方形; ④正方形的平行射影一定是菱形;其中正确命题有________.(填上所有正确说法的序号) 解析:利用平行射影的概念和性质进行判断. 答案:③7.在底面半径为6的圆柱内有两个半径也为6的球面,两球的球心距为13.若作一个平面与这两个球面相切,且与圆柱面相交成一椭圆,则椭圆的长轴长为________.解析:如图,为圆柱的轴截面,AB 为与两球O 1和球O 2都相切的平面与轴截面的交线,由对称性知AB 过圆柱的几何中心O .由O 1O ⊥OD ,O 1C ⊥OA ,故∠OO 1C =∠AOD ,且O 1C =OD =6,所以Rt △OO 1C ≌Rt △AOD ,则AO =O 1O . 故AB =2AO =2O 1O =O 1O 2=13. 显然AB 即为椭圆的长轴,所以AB =13. 答案:13 三、解答题8.△ABC 是边长为2的正三角形,BC ∥平面α,A 、B 、C 在α的同侧,它们在α内的射影分别为A′、B′、C′,若△A′B′C′为直角三角形,BC与α间的距离为5,求A到α的距离.解:由条件可知A′B′=A′C′,∴∠B′A′C′=90°.设AA′=x,在直角梯形AA′C′C中,A′C′2=4-(5-x)2,由A′B′2+A′C′2=B′C′2,得2×[4-(x-5)2]=4,x=5±2.即A到α的距离为5±2.9.若圆柱的一正截面的截线为以3为半径的圆,圆柱的斜截面与轴线成60°,求截线椭圆的两个焦点间的距离.解:设椭圆长半轴为a,短半轴为b,半焦距为c,则b=3,a=bcos 60°=3×2=6,∴c2=a2-b2=62-33=27.∴两焦点间距离2c=227=6 3.10.如图所示,圆锥侧面展开图扇形的中心角为2π,AB、CD是圆锥面的正截面上互相垂直的两条直径,过CD和母线VB的中点E作一截面,求截面与圆锥的轴线所夹的角的大小,并说明截线是什么圆锥曲线?解:设⊙O的半径为R,母线VA=l,则侧面展开图的中心角为2πRl=2π,∴圆锥的半顶角α=π4.连接OE,∵O、E分别是AB、VB的中点,∴OE∥VA,∴∠VOE=∠AVO=π4.又∵AB⊥CD,VO⊥CD,∴CD ⊥平面VAB . ∴平面CDE ⊥平面VAB .即平面VAB 为截面CDE 的轴面, ∴∠VOE 为截面与轴线所夹的角,即为π4.又∵圆锥的半顶角与截面与轴线的夹角相等, 故截面CDE 与圆锥的截线为一抛物线.模块综合检测 [对应学生用书P45] (时间:90分钟,满分:120分)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.Rt △ABC 中,CD 是斜边AB 上的高,该图中只有x 个三角形与△ABC 相似,则x 的值为( )A .1B .2C .3D .4解析:由题所给图形为射影定理的基本图形,△ACD 、△BCD 均与△ABC 相似. 答案:B2.已知:如图,▱ABCD 中,EF ∥AC 交AD 、DC 于E 、F ,AD ,BF 的延长线交于M ,则下列等式成立的是( )A .AD 2=AE ·AMB .AD 2=CF ·DC C .AD 2=BC ·AB D .AD 2=AE ·ED 解析:∵在▱ABCD 中, ∴AD ∥BC ,AB ∥DC . ∵DF ∥AB ,∴AD AM =BFBM.∵DM ∥BC ,∴BF BM =CFDC .∵EF ∥AC ,∴AE AD =CFDC .∴AD AM =AEAD ,∴AD 2=AE ·AM . 答案:A3.对于半径为4的圆在平面上的投影的说法错误的是( ) A .射影为线段时,线段的长为8 B .射影为椭圆时,椭圆的短轴可能为8 C .射影为椭圆时,椭圆的长轴可能为8 D .射影为圆时,圆的直径可能为4解析:由平行投影的性质易知射影为圆时,直径为8. 答案:D4.如图,用平面去截圆锥,所得截面的形状是( )解析:用平面去截圆锥,如题图:平面与圆锥的侧面截得一条弧线,与底面截得一条线段,所以截面的形状应该是D.答案:D5.如图,P A ,PB 是⊙O 的切线,AC 是⊙O 的直径,∠P =50°,则∠BOC 的度数为( )A .50°B .25°C .40°D .60°解析:因为P A ,PB 是⊙O 的切线, 所以∠OAP =∠OBP =90°, 而∠P =50°,所以∠AOB =360°-90°-90°-50°=130°, 又因为AC 是⊙O 的直径,所以∠BOC=180°-130°=50°.答案:A6.如图,已知⊙O的直径AB与弦AC的夹角为35°,过C点的切线PC与AB的延长线交于点P,那么∠P等于()A.15°B.20°C.25°D.30°解析:∵OA=OC,∴∠A=∠1,∴∠POC=2∠A=70°.∵OC⊥PC,∴∠P=90°-∠POC=20°.答案:B7.如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D,∠DAB=80°,则∠ACO等于() A.30°B.35°C.40°D.45°解析:∵CD是⊙O的切线,∴OC⊥CD.又∵AD⊥CD,∴OC∥AD,由此得∠ACO=∠CAD.∵OC=OA,∴∠CAO=∠ACO,∴∠CAD=∠CAO.故AC平分∠DAB,∴∠CAO=40°.又∠ACO=∠CAO,∴∠ACO=40°.答案:C8.(天津高考)如图,△ABC是圆的内接三角形,∠BAC的平分线交圆于点D,交BC于点E,过点B的圆的切线与AD的延长线交于点F.在上述条件下,给出下列四个结论:①BD平分∠CBF;②FB2=FD·F A;③AE·CE =BE·DE;④AF·BD=AB·BF.则所有正确结论的序号是()A.①②B.③④C.①②③D.①②④解析:因为∠BAD =∠FBD ,∠DBC =∠DAC , 又AE 平分∠BAC ,即∠BAD =∠DAC , 所以∠FBD =∠DBC ,所以BD 平分∠CBF ,结论①正确; 易证△ABF ∽△BDF ,所以AB AF =BDBF ,所以AB ·BF =AF ·BD ,结论④正确;由切割线定理,得BF 2=AF ·DF ,结论②正确;由相交弦定理,得AE ·DE =BE ·CE ,结论③错误.选D.答案:D9.如图,P 为圆外一点,P A 切圆于点A ,P A =8,直线PCB 交圆于C ,B 两点,且PC =4, AD ⊥BC ,垂足为点D ,∠ABC =α,∠ACB =β,连接AB ,AC ,则sin αsin β等于( )A.14B.12 C .2D .4解析:由P A 2=PC ·PB , 有64=4PB ,∴PB =16.又∠ABC =α,∠ACB =β,AD ⊥BC , ∴AB =AD sin α,AC =ADsin β. 在△P AB 和△PCA 中,∠B =∠P AC ,∠P 为公共角, ∴△P AB ∽△PCA .∴AC AB =APBP ,即ADsin βAD sin α=816.∴sin αsin β=12. 答案:B10.如图,在△ABC 中,AD ⊥BC 于D ,下列条件:①∠B +∠DAC =90°,②∠B =∠DAC ,③CD AD =ACAB ,④AB 2=BD ·BC .其中一定能够判定△ABC 是直角三角形的共有( )A .3个B .2个C .1个D .0个解析:验证法:①不能判定△ABC 为直角三角形,因为∠B +∠DAC =90°,而∠B +∠DAB =90°,则∠BAD =∠DAC ,同理∠B =∠C ,不能判定∠BAD +∠DAC 等于90°;而②中∠B =∠DAC ,∠C 为公共角,则△ABC ∽△DAC ,又△DAC 为直角三角形,所以△ABC 为直角三角形;在③中,由CD AD =ACAB可得△ACD ∽△BAD ,则∠BAD =∠C ,∠B =∠DAC ,所以∠BAD +∠DAC =90°;而④中AB 2=BD ·BC ,即BD AB =ABBC ,∠B 为公共角,则△ABC ∽△DBA ,即△ABC 为直角三角形.所以正确命题有3个.答案:A二、填空题(本大题共4个小题,每小题5分,满分20分.把答案填写在题中的横线上) 11.(广东高考)如图,圆O 的半径为1,A 、B 、C 是圆周上的三点,满足∠ABC =30°,过点A 作圆O 的切线与OC 的延长线交于点P ,则P A =________.解析:如图,连接OA .由∠ABC =30°,得∠AOC =60°,在直角三角形AOP 中,OA =1,于是P A =OA tan 60°= 3.答案: 312.如图,AB 是⊙O 的直径,AD =DE ,AB =10,BD =8,则cos ∠BCE =________.解析:如图,连接AD .则∠ADB =90°,且∠DAC =∠B ,所以cos ∠BCE =cos ∠DAB =DA AB =102-8210=35. 答案:3513.如图,AB 是直径,CD ⊥AB 于D ,CD =43,AD ∶DB =3∶1,则直径的长为________.解析:因为AB 是直径,CD ⊥AB 于D , 所以CD 2=AD ·BD .因为AD ∶DB =3∶1,设DB =x ,则AD =3x . 所以(43)2=3x ·x .所以x =4.所以AB =16. 答案:1614.如图,△ABC 中,AD ∥BC ,连接CD 交AB 于E ,且AE ∶EB =1∶2,过E 作EF ∥BC 交AC 于F ,若S △ADE =1,则S △AEF =________.解析:∵AD ∥BC ,∴△ADE ∽△BCE . ∴BE AE =CE DE =21. ∵EF ∥AD ,∴EF AD =CE DC =23.∵△ADE 与△AFE 的高相同, ∴S △AEF S △ADE =EF AD =23. ∴S △AEF =23.答案:23三、解答题(本大题共4个小题,满分50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)如图,已知在梯形ABCD 中,AD ∥BC ,E 是CD 的中点,EF ∥BC 交AB 于F ,FG ∥BD 交AD 于G .求证:AG =DG .证明:∵AD ∥EF ∥BC ,E 是CD 的中点, ∴F 是AB 的中点.又∵FG ∥BD ,∴G 是AD 的中点. ∴AG =DG .16.(本小题满分12分)如图,AE 是圆O 的切线,A 是切点,AD ⊥OE 于D ,割线EC 交圆O 于B ,C 两点.(1)证明:O ,D ,B ,C 四点共圆;(2)设∠DBC =50°,∠ODC =30°,求∠OEC 的大小. 解:(1)证明连接OA ,OC ,则OA ⊥EA . 由射影定理得EA 2=ED ·EO .由切割线定理得EA 2=EB ·EC , 故ED ·EO =EB ·EC , 即ED EB =ECEO, 又∠DEB =∠OEC ,所以△BDE ∽△OCE ,所以∠EDB =∠OCE , 因此O ,D ,B ,C 四点共圆.(2)连接OB .因为∠OEC +∠OCB +∠COE =180°,结合(1)得∠OEC =180°-∠OCB -∠COE=180°-∠OBC -∠DBE =180°-∠OBC -(180°-∠DBC ) =∠DBC -∠ODC =20°.17.(新课标全国卷Ⅰ)(本小题满分12分)如图,四边形ABCD 是⊙O 的内接四边形,AB 的延长线与DC 的延长线交于点E ,且CB =CE .(1)证明:∠D =∠E;(2)设AD 不是⊙O 的直径,AD 的中点为M ,且MB =MC ,证明:△ADE 为等边三角形. 证明:(1)由题设知A ,B ,C ,D 四点共圆, 所以∠D =∠CBE .由已知CB =CE 得∠CBE =∠E ,故∠D =∠E .(2)设BC 的中点为N ,连接MN ,则由MB =MC 知MN ⊥BC ,故O 在直线MN 上.又AD不是⊙O的直径,M为AD的中点,故OM⊥AD,即MN⊥AD.所以AD∥BC,故∠A=∠CBE.又∠CBE=∠E,故∠A=∠E.由(1)知,∠D=∠E,所以△ADE为等边三角形.18.(本小题满分14分)如图所示,已知P A与⊙O相切,A为切点,PBC为割线,弦CD∥AP,AD、BC相交于E点,F为CE上一点,且DE2=EF·EC.(1)求证:∠P=∠EDF;(2)求证:CE·EB=EF·EP;(3)若CE∶BE=3∶2,DE=6,EF=4,求P A的长.解:(1)证明:∵DE2=EF·EC,∴DE∶CE=EF∶ED.∵∠DEF是公共角,∴△DEF∽△CED.∴∠EDF=∠C.∵CD∥AP,∴∠C=∠P.∴∠P=∠EDF.(2)证明:∵∠P=∠EDF,∠DEF=∠PEA,∴△DEF∽△PEA.∴DE∶PE=EF∶EA.即EF·EP=DE·EA.∵弦AD、BC相交于点E,∴DE·EA=CE·EB.∴CE·EB=EF·EP.(3)∵DE2=EF·EC,DE=6,EF=4,∴EC=9.∵CE∶BE=3∶2,∴BE=6.∵CE ·EB =EF ·EP , ∴9×6=4×EP . 解得:EP =272.∴PB =PE -BE =152,PC =PE +EC =452.由切割线定理得:P A 2=PB ·PC , ∴P A 2=152×452.∴P A =152 3.。

2018-2019学年高中数学人教A版选修4-4创新应用教学案:第二讲第2节第1课时椭圆的参数方程-含答案

2018-2019学年高中数学人教A版选修4-4创新应用教学案:第二讲第2节第1课时椭圆的参数方程-含答案

第1课时 椭圆的参数方程[核心必知]椭圆的参数方程中心在原点,焦点在x 轴上的椭圆x 2a 2+y 2b 2=1的参数方程是⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ是参数),规定参数φ的取值范围是[0,2π).[问题思考]1.中心在原点,焦点在y 轴上的椭圆y 2a 2+x 2b 2=1的参数方程是什么? 提示:由⎩⎨⎧y 2a 2=sin 2φ,x 2b 2=cos 2φ,得⎩⎪⎨⎪⎧x =b cos φ,y =a sin φ. 即参数方程为⎩⎪⎨⎪⎧x =b cos φy =a sin φ(φ为参数). 2.圆的参数方程⎩⎪⎨⎪⎧x =r cos θ,y =r sin θ中参数θ的意义与椭圆的参数方程中参数φ的意义相同吗? 提示:圆的参数方程:⎩⎪⎨⎪⎧x =r cos θ,y =r sin θ(θ为参数)中的参数θ是动点M (x ,y )的旋转角,但在椭圆的参数方程⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数)中的参数φ不是动点M (x ,y )的旋转角,它是点M 所对应的圆的半径OA =a (或OB =b )的旋转角,称为离心角,不是OM 的旋转角.已知椭圆x 2100+y 264=1有一内接矩形ABCD ,求矩形ABCD 的最大面积. [精讲详析] 本题考查椭圆的参数方程的求法及应用.解答此题需要设出A 点的坐标,然后借助椭圆的对称性即可知B 、C 、D 的坐标,从而求出矩形的面积的表达式.∵椭圆方程为x 2100+y 264=1, ∴可设A 点的坐标为(10cos α,8sin α).则|AD |=20|cos α|,|AB |=16|sin α|,∴S 矩形=|AB |·|AD |=20×16|sin α·cos α|=160|sin 2α|.∵|sin 2α|≤1,∴矩形ABCD 的最大面积为160.利用椭圆的参数方程求函数(或代数式)最值的一般步骤为:(1)求出椭圆的参数方程;(2)利用椭圆中的参数表示已知函数(或代数式);(3)借助三角函数的知识求最值.1.已知实数x ,y 满足x 225+y 216=1,求目标函数z =x -2y 的最大值与最小值. 解:椭圆x 225+y 216=1的参数方程为⎩⎪⎨⎪⎧x =5cos φ,y =4sin φ(φ为参数). 代入目标函数得z =5cos φ-8sin φ=52+82cos (φ+φ0) =89cos (φ+φ0)(tan φ0=85). 所以目标函数z min =-89,z max =89.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二平行线分线段成比例定理[对应学生用书P4]1.平行线分线段成比例定理(1)文字语言:三条平行线截两条直线,所得的对应线段成比例. (2)图形语言: 如图l1∥l 2∥l 3, 则有:AB BC =DE EF, AB AC =DE DF , BC AC =EF DF. 变式有:AB DE =BC EF ,AB DE =AC DF ,BC EF =ACDF.[说明] “对应线段”是指一条直线被两条平行线截得的线段与另一条直线被这两条平行线截得的线段成对应线段.如图中AB 和DE ;而“对应线段成比例”是指同一条直线上的两条线段的比等于与它们对应的另一条直线上的两条线段的比.2.平行线分线段成比例定理的推论(1)文字语言:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例.(2)图形语言:如图l 1∥l 2∥l 3,则有:AD AB =AE AC ,AD DB =AE EC ,DB AB =CE AC .3.平行线分线段成比例定理的作用平行线分线段成比例定理及推论是研究下一节相似三角形的理论基础,它可以判定线段成比例.另外,当不能直接证明要证的比例成立时,常用该定理借助“中间比”转化成另两条线段的比,来得出正确结论.合理添加平行线,运用定理及推论列比例式,再经过线段间的转换可以求线段的比值或证明线段间倍数关系.[对应学生用书P5][例1] 已知:如图,AD ∥BE ∥CF ,EG ∥FH .求证:AB AC =EG FH. [思路点拨] 由题目中的两组平行线,利用平行线分线段成比例定理,寻求与AB AC , EGFH均相等的公共比例式.[证明] ∵AD ∥BE ∥CF ,∴AB AC =DEDF .又∵EG ∥FH ,∴EG FH =DEDF .∴AB AC =EG FH.平行线分线段成比例定理的解题思路(1)观察图形和已知条件,找出图中的三条平行线和被平行线所截的两条直线; (2)分析截线上的对应线段,写出相应的比例关系;(3)灵活运用比例性质或“中间比”进行线段比的转化,达到求线段比或证明线段成比例的目的;(4)注意定理基本图形的几种变式情形,在复杂图形中识别能够应用定理的图形.1.如图,AD ∥EF ∥BC ,AE BE =23,DF =4 cm ,则FC =________cm.解析:∵AD ∥EF ∥BC ,∴AE BE =DFFC .又AE BE =23,DF =4 cm , ∴FC =6 cm.答案:62.已知:如图所示,l 1∥l 2∥l 3, AB BC =m n. 求证:DE DF =m m +n .证明:∵l 1∥l 2∥l 3, ∴AB BC =DE EF =m n. ∴EF DE =nm ,则EF +DE DE =n +m m , 即DF DE =m +n m .∴DE DF =m m +n .[例2] AC 于点O ,交AD 于点F .求证:OB 2=OE ·OF .[思路点拨] 利用AB ∥CE ,AF ∥BC 得出所要比例关系. [证明] 因为四边形ABCD 是平行四边形, 所以AB ∥CD ,AD ∥BC . 由AB ∥CE ,得OB OE =OA OC .由AF ∥BC ,得OA OC =OF OB. 所以OF OB =OBOE (等量代换).即OB 2=OE ·OF .运用平行线分线段成比例定理的推论来证明比例式或求线段的长度时,应分清相关三角形中的平行线段及所截边,在解答过程中要灵活应用比例性质.3.已知:如图,D 为BC 的中点,AG ∥BC ,求证:EG ED =AFFC.证明:因为AG ∥BC , 所以EG ED =AG BD ,AF FC =AG DC ,又BD =DC ,所以EG ED =AFFC.4.如图,已知AE ∥CF ∥DG ,AB ∶BC ∶CD =1∶2∶3,CF =12 cm ,求AE ,DG 的长.解:∵AE ∥CF , ∴AE CF =AB BC . ∴AE =AB BC·CF .∵AB ∶BC =1∶2,CF =12 cm , ∴AE =912×12=6 (cm).∵CF ∥DG ,∴BC BD =CFDG .∵BC CD =23,∴BC BD =25. ∴DG =BD BC ·CF =52×12=30(cm).[例3] 如图,在△ABC 中,CD ⊥AB 于D ,E 为BC 中点,延长AC 、DE 相交于点F ,求证:AC BC =AFDF.[思路点拨] 由已知条件,结合图形特点,可添加平行线,构造出能够运用平行线分线段成比例定理或推论的基本图形,再结合直角三角形的性质,找出公共比,得证.[证明] 作EH ∥AB 交AC 于点H , 则AC AH =BC BE ,∴AC BC =AH BE. 同理:AF AH =DF DE ,∴AF DF =AHDE. ∵△BDC 为直角三角形, 且E 为BC 边中点, ∴BE =CE =DE . ∴AH BE =AH DE .∴AC BC =AF DF.证明比例式成立,往往会将比例式中各线段放到一组平行线中进行研究.有时图形中没有平行线,要添加辅助线,构造相关图形,创造可以形成比例式的条件,达到证明的目的.5.如图,梯形ABCD 中,AD ∥BC ,点E ,F 分别在AB ,CD 上,且EF ∥BC ,若AE EB =23,AD =8 cm ,BC =18 cm ,求EF 长.解:作AG ∥DC 分别交BC ,EF 于G ,H , ∴AD =HF =GC =8 cm.BG =18-8=10(cm). ∵AE EB =23,∴AE AB =25. ∴EH BG =AE AB =25. ∴EH =25×BG =25×10=4(cm).∴EF =EH +HF =4+8=12(cm).6.如图所示,已知△ABC 中,AE ∶EB =1∶3,BD ∶DC =2∶1,AD 与CE 相交于F ,求EF FC +AFFD的值.解:过点D 作DG ∥AB 交EC 于G ,则DG BE =CD BC =CG EC =13,而AE BE =13,即AE BE =DGBE,所以AE =DG . 从而有AF =DF ,EF =FG =CG , 故EF FC +AF FD =EF 2EF +AF AF=12+1=32.[对应学生用书P6]一、选择题1.如图,在△ACE 中,B 、D 分别在AC 、AE 上,下列推理不.正确的是( )A .BD ∥CE ⇒AB AC =BD CEB .BD ∥CE ⇒AD AE =BDCEC .BD ∥CE ⇒AB BC =ADDED .BD ∥CE ⇒AB BC =BDCE解析:由平行线分线段成比例定理的推论不难得出A 、B 、C 都是正确的,D 是错误的. 答案:D2.如图,AB ∥EF ∥CD ,已知AB =20,DC =80,那么EF 的值是( )A .10B .12C .16D .18解析:∵AB ∥EF ∥CD ,∴AE EC =AB DC =2080=14,∴EF AB =EC AC =45, ∴EF =45AB =45×20=16.答案:C3.如图,平行四边形ABCD 中,N 是AB 延长线上一点,则BC BM -ABBN的值为()A.12B.23 C .1D.32解析:∵DC ∥BN ,∴BC BM =NDMN .又BM ∥AD ,∴AB BN =DMMN.∴BC BM -AB BN =ND MN -DM MN =ND -DM MN =MN MN =1. 答案:C4.如图,将一块边长为12的正方形纸ABCD 的顶点A ,折叠至DC 边上的点E ,使DE =5,折痕为PQ ,则线段PM 和MQ 的比是( )A .5∶12B .5∶13C .5∶19D .5∶21 解析:如图,作MN ∥AD 交DC 于N , ∴DN NE =AM ME . 又∵AM =ME , ∴DN =NE =12DE =52.∴NC =NE +EC =52+7=192.∵PD ∥MN ∥QC , ∴PM MQ =DN NC =52192=519. 答案:C 二、填空题5.如图所示,已知DE ∥BC ,BF ∶EF =3∶2,则AC ∶AE =________.解析:∵DE ∥BC , ∴AE AC =DE BC =EF BF . ∵BF ∶EF =3∶2, ∴AC ∶AE =3∶2. 答案:3∶26.如图,在△ABC 中,MN ∥DE ∥BC ,若AE ∶EC =7∶3,则DB ∶AB 的值为________.解析:由AE ∶EC =7∶3, 得EC ∶AC =3∶10. 根据MN ∥DE ∥BC ,可得DB ∶AB =EC ∶AC =3∶10. 答案:3∶107.如图,在△ABC 中,点D 是AC 的中点,点E 是BD 的中点,AE 的延长线交BC 于点F ,则BFFC=________.解析:过点D 作DM ∥AF 交BC 于点M .∵点E 是BD 的中点, ∴在△BDM 中,BF =FM , ∵点D 是AC 的中点, ∴在△CAF 中,CM =MF . ∴BF FC =BF FM +MC =12. 答案:128.如图所示,DE ∥BC ,EF ∥DC ,求证:AD 2=AF ·AB .证明:因为DE ∥BC ,所以AD AB =AEAC (平行于三角形一边的直线截其他两边所得的对应线段成比例).因为EF ∥DC , 所以AF AD =AE AC.所以AF AD =ADAB ,即AD 2=AF ·AB .三、解答题9.如图,AD 平分∠BAC ,DE ∥AC ,EF ∥BC ,AB =15 cm ,AF =4 cm ,求BE 和DE 的长.解:∵DE ∥AC ,∴∠3=∠2.又AD 平分∠BAC , ∴∠1=∠2.∴∠1=∠3,即AE =ED . ∵DE ∥AC ,EF ∥BC ,∴四边形EDCF 是平行四边形. ∴ED =FC ,即AE =ED =FC . 设AE =DE =FC =x .由EF ∥BC 得AE BE =AF FC ,即x 15-x =4x ,解之得x 1=6,x 2=-10(舍去). ∴DE =6 cm ,BE =15-6=9 cm.10.如图所示,在梯形ABCD 中,AD ∥BC ,EF 经过梯形对角线的交点O ,且EF ∥AD .(1)求证:EO =OF ; (2)求EO AD +EOBC的值; (3)求证:1AD +1BC =2EF. 解:(1)证明:∵EF ∥AD ,AD ∥BC , ∴EF ∥AD ∥BC .∵EF ∥BC ,∴EO BC =AE AB ,OF BC =DFDC .∵EF ∥AD ∥BC ,∴AE AB =DFDC .∴EO BC =OFBC.∴EO =OF . (2)∵EO ∥AD .∴EO AD =BEBA .由(1)知EO BC =AEAB,∴EO AD +EO BC =BE BA +AE AB =BE +AE AB =1. (3)证明:由(2)知EO AD +EOBC =1,∴2EO AD +2EO BC =2,又EF =2EO , ∴EF AD +EFBC =2. ∴1AD +1BC =2EF .。

相关文档
最新文档