数学分析第八章 不定积分
数学分析不定积分知识点总结
![数学分析不定积分知识点总结](https://img.taocdn.com/s3/m/27a6616503020740be1e650e52ea551810a6c9b9.png)
数学分析不定积分知识点总结不定积分是数学分析中的一个重要概念,它是微积分学的基础内容之一。
理解和掌握不定积分的相关知识对于进一步学习高等数学以及解决实际问题都具有重要意义。
下面我们将对不定积分的知识点进行详细总结。
一、不定积分的定义如果在区间\(I\)上,\(F'(x) = f(x)\),则称\(F(x)\)是\(f(x)\)在区间\(I\)上的一个原函数。
\(f(x)\)的原函数的全体称为\(f(x)\)在区间\(I\)上的不定积分,记为\(\int f(x)dx\)。
二、基本积分公式1、\(\int kdx = kx + C\)(\(k\)为常数)2、\(\int x^n dx =\frac{1}{n + 1}x^{n + 1} + C\)(\(n \neq -1\))3、\(\int \frac{1}{x}dx =\ln|x| + C\)4、\(\int e^x dx = e^x + C\)5、\(\int a^x dx =\frac{1}{\ln a}a^x + C\)(\(a >0\),\(a \neq 1\))6、\(\int \sin x dx =\cos x + C\)7、\(\int \cos x dx =\sin x + C\)8、\(\int \sec^2 x dx =\tan x + C\)9、\(\int \csc^2 x dx =\cot x + C\)10、\(\int \sec x \tan x dx =\sec x + C\)11、\(\int \csc x \cot x dx =\csc x + C\)这些基本积分公式是进行积分运算的基础,必须牢记。
三、不定积分的性质1、函数的和的不定积分等于各个函数不定积分的和,即\(\int f(x) + g(x)dx =\int f(x)dx +\int g(x)dx\)。
2、常数乘以函数的不定积分等于常数乘以该函数的不定积分,即\(\int kf(x)dx = k\int f(x)dx\)(\(k\)为常数)。
《数学分析》第八章_不定积分
![《数学分析》第八章_不定积分](https://img.taocdn.com/s3/m/f1a0605db9f3f90f77c61b2d.png)
则有换元公式
f(x)dx
f[(t)] (t)dt t(x)
其 中 (x)是 x(t)的 反 函 数 .
证 设 (t)为f[(t) ](t)的原函数,
1six n1si5n xC. 2 10
.
例13 求cscxdx.
解(一)
cscxdx
1 dx sinx
1 2sinxcosx
dx
22
1 tan2xcos2x2
d
2x
1 tanx
2
d
tanx 2
lntanxC lnx (c c x o )s C t c . 2
(使用了三角函数恒等变形)
.
说明 当被积函数是三角函数相乘时,拆开奇 次项去凑微分.
.
例12 求co3sxco2sxd.x
解 cA o cs B o 1 s [cA o B )s c (o A B s)(], 2
co 3xc so 2x s1(cxo cso 5x )s, 2
c3 o x cs2 o xs d 1 2 x (cx o cs 5 o x )d sx
§2 换元积分法和分部积分法
.
一、第一类换元法
问题 cos2xdxsi2n xC ,
解决方法 利用复合函数,设置中间变量.
过程 令 t2xdx 1dt, 2
cos2xdx
12costdt
1sint 2
C1sin2xC. 2
.
在一般情况下:
设 F (u)f(u),则 f(u )d u F (u )C .
.
例3
求
1 dx. x(12lnx)
解 x(112lnx)dx121lnxd(lnx)
1 212 1ln xd(12ln x)
《数学分析1》知识点总结:第八章-不定积分
![《数学分析1》知识点总结:第八章-不定积分](https://img.taocdn.com/s3/m/96399e0bad51f01dc381f137.png)
第八章不定积分一、不定积分概念与基本积分公式1.原函数与不定积分①定义1:设函数f 与F 在区间I 上都有定义,若F’(x)=f(x),x ∈I ,则称F 为f 在区间I 上的一个原函数。
②定理8.1:若函数f 在区间I 上连续,则f 在I 上存在原函数F ,即F’(x)=f(x),x ∈I 。
·不连续的函数也可以有原函数③定理8.2:设F 是f 在区间I 上的一个原函数,则(i)F+C 也是f 在I 上的原函数,其中C 为任意常量函数;(ii)f 在I 上的任意两个原函数之间,只可能相差一个常数。
④定义2:函数f 在区间I 上的全体原函数称为f 在I 上的不定积分,记作∫f(x)dx 。
·[∫f(x)dx]’=[F(x)+C]’=f(x);·d ∫f(x)dx=d[F(x)+C];⑤不定积分的几何意义:积分曲线2.基本积分表①∫0dx=C ;②∫1dx=∫dx=x+C ;③)0,1(11>-≠++=⎰+x C x dx x αααα;④)0(||ln 1≠+=⎰x C x dx x ;⑤∫e x dx=e x +C ;⑥)0,1(ln >≠+=⎰a C aa dx a xx α;⑦)0(sin 1cos ≠+=⎰αC ax a axdx ;⑧)0(cos 1sin ≠+-=⎰αC ax a axdx ;⑨∫sec 2xdx=tanx+C ;⑩∫csc 2xd1=-cotx+C ;⑪∫secx ·tanxdx=secx+C ;⑫∫cscx ·cotxdx=-cscx+C ;⑬12arccos arcsin 1C x C x x dx+-=+=-⎰;⑭12cot arctan 1C x arc C x x dx +-=+=+⎰。
⑮定理8.3:若函数f 与g 在区间I 上都存在原函数,k 1,k 2为两个任意常数,则k 1f+k 2g 在I 上也存在原函数,且当k 1和k 2不同时为零时,有∫[k 1f(x)+k 2g(x)]dx=k 1∫f(x)dx +k 2∫g(x)dx二、换元积分法与分部积分法1.换元积分法①定理8.4(第一换元积分法/凑微分法):设函数f(x)在区间I 上有定义,φ(t)在区间J 上可导,且φ(J)⊆I 。
数学分析第八章 不定积分
![数学分析第八章 不定积分](https://img.taocdn.com/s3/m/76a17d1afab069dc512201aa.png)
或 df (x) f (x) C.
精品文档
3 不定积分的几何意义 函数f(x)的原函数的图形称 为f(x)的积分曲线。 函数f(x)的积分曲线有无限 多条。函数f(x)的不定积分 表示f(x)的一簇积分曲线, 而f(x)正是积分曲线的斜率。
结论: 若函数F为f 在区间I上的一个原函数,则 {F(x) c | c R}为f 在I上的原函数全体.
精品文档
(二) 不定积分
1. 定义2:函数f (x)在区间I上的全体原函数, 称 为f 在I上的不定积分,记作
f (x)dx
(3)
积分号 被积函数 积分变量
注1. 符号 f (x)dx 是一个整体记号.
1 (102x 102x ) 2x c 2 ln 10
精品文档
8) sec2 xdx tanx C
8 (tanx)' sec2 x
9) csc2 xdx cotx C 9 (cotx)' csc2 x
10) dx arcsin x C 10 (arcsin x)' 1
1 x2
1 x2
11)
dx 1 x2
arctanx C
11
(f g) = f g + f g ,
(f [ ]) = f [ ] 这些计算方法加上基本初等函数的导数公式, 我们可以解决初等函数的求导问题,即是,若 f 为 初等函数, f 的表达式能求出.
精品文档
我们现在来研究第五章求导问题的逆问题。
问题:在已知 f 的表达式时,f 的表 达式是什么形式呢?
1 (arctanx)' 1 x2
精品文档
数学分析第八章不定积分
![数学分析第八章不定积分](https://img.taocdn.com/s3/m/e5d9565814791711cd79171f.png)
数 , 则 k1 f + k2 g 在 I 上也存在原函数 , 且
∫ ∫ ∫ [ k1 f ( x ) + k2 g( x) ] d x = k1 f ( x) d x + k2 g( x ) d x .
( 5)
证 这是因为
∫ ∫ ∫ ∫ k1 f ( x )d x + k 2 g( x) d x ′= k1 f ( x )d x ′+ k 2 g( x) d x ′
知函数 .提出这个逆问题 , 首先是因为它出现在许多实际问题之中
.例如 : 已知速
度求路程 ; 已知加速度求速度 ; 已知曲线 上每一 点处 的切线 斜率 ( 或斜率 所满 足
的某一规律 ) , 求曲线方程等等 .本章与 其后两 章 ( 定 积分与 定积 分的 应用 ) 构 成
一元函数积分学 .一 原函数与不定积分源自(2 , 5) .3 . 验证
y=
x
2
sgn
x
是
| x| 在
∫ v( t) = ad t = at + C .
若已知 v( t0 ) = v0 , 代入上式后确定积分常数 C = v0 - at0 , 于是就有
v( t ) = a( t - t0 ) + v 0 . 又因 s′( t) = v( t ) , 所以又有
∫ s( t) = [ a( t - t 0 ) + v 0] d t
2 (-
1 cos 2x
都是 )′=
sin 2 x 在 ( - ∞ , + ∞ ) 上的原函数 ( - 1 cos 2 x + 1)′= sin 2 x .
, 因为
2
2
如果这些简单的例子都可从基本求导公式反推而得的话
高数不定积分
![高数不定积分](https://img.taocdn.com/s3/m/df1d195fcd7931b765ce0508763231126edb77e3.png)
1 2
sin2x
+
C.
利用基本积分表与积分的性质,所能计算的不 定积分是非常有限的;我们可以把复合函数的微分 法反过来用于求不定积分,利用中间变量的代换, 得到复合函数的积分法,称为换元积分法。
x2 1 - x2 dx ? 令 x sint
x2 1 - x2dx (sint)2 1 - sin2 t costdt
2
2
例1140.
1
dx 4
sin2 x cos2 x
1 sin2
x
dx
-4ctg
x+C。
22
)
1 x
dx ln|x|+(C1,1)
1 dx arctgx+C。 1+ x2
例1151.
1 + x + x2 dx x(1 + x 2 )
x + (1 + x 2 ) dx x(1 + x 2 )
函数f(x)的原函数的图 形称为f(x)的积分曲线。
2xdx x 2 + C
y
函数f(x)的积分曲线也 有无限多条。函数f(x)的不 定积分表示f(x)的一簇积分 曲线,而f(x)正是积分曲线 的斜率。
C1 -1 O 1
y=x2+C1 y=x2
y=x2+C2 y=x2+xC3
C2
C3
例4.求过点(1, 3),且其切线斜率为2x的曲线方程。 解:设所求的曲线方程为 yf(x),则 y f (x) 2x, 即f(x)是2x 的一个原函数。
f
(x)dx
f
(x)
4) f ' (x)dx f (x) + C
《数学分析》第八章 不定积分
![《数学分析》第八章 不定积分](https://img.taocdn.com/s3/m/16d57e89312b3169a451a4df.png)
⑶ 0时, f (x)dx f (x)dx. ⑷ ( f (x) g(x))dx f (x)dx g(x)dx.
由⑶、⑷可见, 不定积分是线性运算, 即对 , R , 有
(f (x) g( x))dx f (x)dx g( x)dx.
( 当 0 时,上式右端应理解为任意常数. )
数的不定积分:
x dx ( 1) a x dx a x C
ln a
1 x
dx
ln
x
C
sin xdx cos x C
sec 2 xdx tgx C
csc2 dx ctgx C
sec x tgxdx sec x C
csc x ctgxdx csc x CBiblioteka dx arcsin x C
定义(原函数) 如果在区间 I 上 F ( x) f ( x) ,则称 F( x) 为
f (x) 在区间 I 上的原函数。
例如例 1 中的 A cos t C 是 A sin t 的原函数;
m
m
x 1 C 是 x ( 1) 的原函数,等等 1
因为常数导数为零,所以如果 f (x) 的原函数 F( x) 存在,则对任
上的不定积分。记作 f (x)dx 。 其中 为积分号, f (x) 为积分
函数, x 为积分变量。 不定积分的几何意义
F(x)+C F(x)
一个函数的原函数尽管有无限多个, 但它们的几何图形是一模 一样的, 最多是在坐标系中的高低位置不一样, 相差一个上下平移 关系,
二 基本积分公式
怎样求不定积分呢?我们先按照不定积分的定义给出一些常见函
⑵
22x e3x1dx.
例 11 例 12
《数学分析》第8章 不定积分ppt课件
![《数学分析》第8章 不定积分ppt课件](https://img.taocdn.com/s3/m/840e9a9bf7ec4afe05a1dfa4.png)
证 (i) 由 (F( x) C) F ( x) f ( x), 知 F( x) C 也是 f ( x) 在 I 上的原函数.
(ii) 设 F(x) 和 G(x) 是 f (x) 在 I 上的任意两个原 函数, 则
(F ( x) G( x)) F ( x) G( x) f ( x) f ( x) 0.
又如, 已知曲线在每一点处的切线斜率 k( x), 求 f ( x), 使 y f ( x) 的图象正是该曲线, 即使得
f ( x) k( x).
定义1 设函数 f 与 F 在区间 I 上都有定义,若 F ( x) f ( x), x I ,
则称 f 为 F 在区间 I 上的一个原函数.
例1 (i) 路程函数 s(t) 是速度函数 v(t) 的一个原函
三、不定积分的几何意义
若F (x)是 f (x) 的一个原函数, 则称 y = F (x) 的图
像是 f (x) 的一条积分曲线.
所有的积分曲线都是
y
y F(x)C
由其中一条积分曲线 沿纵轴方向平移而得 到的.
y F(x) ( x0 , y0 )
O
x
满足条件 F ( x0 ) y0 的原函数正是在积分曲线中 通过点( x0 , y0 )的那一条积分曲线. 例如, 质点以匀速 v0 运动时, 其路程函数
§1 不定积分概念与 基本积分公式
不定积分是求导运算的逆运算.
一、原函数 二、不定积分 三、不定积分的几何意义 四、基本积分表
一、原函数
微分运算的逆运算是由已知函数 f (x), 求函数F(x), 使
F ( x) f ( x). 例如 已知速度函数 v(t ), 求路程函数 s(t ). 即求
s(t), 使 s(t) v(t).
数学分析 不定积分概念与基本积分公式
![数学分析 不定积分概念与基本积分公式](https://img.taocdn.com/s3/m/8ddb855990c69ec3d5bb75c7.png)
证 F ( x) G( x) F( x) G( x)
f (x) f (x) 0 F ( x) G( x) C ( C为任意常数)
例1 p(x) a0 x n a1x n1 an1x an , 则
p(x)dx
a0 x n1 n 1
a1 n
xn
an1 2
x2
an x
c
例2
x4
x2
1dx 1
(x2
1
2
x2
)dx 1
x3 x 2 arctan x c 3
到贬谪的除了范仲淹和滕子京之外,还有范仲淹改革的另一位支持者——北宋大文学家、史学家欧阳修。他于庆历五年被贬谪到滁州,也就是今天的安徽省滁州市。也是在此期间,欧阳修在滁州留下了不逊
于《岳阳楼记》的千古名篇——《醉翁亭记》。接下来就让我们一起来学习这篇课文吧!【教学提示】结合前文教学,有利于学生把握本文写作背景,进而加深学生对作品含义的理解。二、教学新课目标导
结论 每一个含有第一类间断点的函数都 没有原函数.
11 醉翁亭记
1.反复朗读并背诵课文,培养文言语感。
2.结合注释疏通文义,了解文本内容,掌握文本写作思路。
3.把握文章的艺术特色,理解虚词在文中的作用。
4.体会作者的思想感情,理解作者的政治理想。一、导入新课范仲淹因参与改革被贬,于庆历六年写下《岳阳楼记》,寄托自己“先天下之忧而忧,后天下之乐而乐”的政治理想。实际上,这次改革,受
5
1
数学分析8.1不定积分概念与基本积分公式
![数学分析8.1不定积分概念与基本积分公式](https://img.taocdn.com/s3/m/2f578b14ed630b1c59eeb5f3.png)
2、f在I上的任意两个原函数之间,只可能相差一个常数.
证:1、依题意F’=f,则当C为常量函数时,(F+C)’=F’=f,得证.
2、设F,G是f在I上的任意两个原函数,则有(F-G)’=F’-G’=f-f=0.
根据拉格朗日中值定理推得:F-G≡C, C为常量函数.
[∫f(x)dx]’=[F(x)+C]’=f(x);d∫f(x)dx=d[F(x)+C]=f(x)dx.
不定积分的几何意义:若F是f的一个原函数,则称y=F(x)的图象为f的一条积分曲线.所以f的不定积分在几何上表示f的某一积分曲线沿纵轴方向任意平移所得一切积分曲线组成的曲线族。显然,在每一条积分曲线上横坐标相同的点处作切线,则这些切线互相平行。
7、∫cosaxdx= sinax+C (a≠0);8、∫sinaxdx=- cosax+C (a≠0);
9、∫sec2xdx=tanx+C;10、∫csc2xdx=-cotx+C;11、∫secx·tanxdx=secx+C;
12、∫cscx·cotxdx=-cscx+C;13、∫ =arcsinx+C=-arccosx+C1;
(2)∫(x- )2dx=∫(x2- + )dx=∫x2dx-∫2x dx+∫ dx= - x +ln|x|+C.
(3)∫ = ∫x- dx= x +C= +C.
(4)∫(2x-3x)2dx=∫(22x-2·6x+32x)dx=∫4xdx-2∫6xdx +∫9xdx= -2· + +C.
(5)∫( +sinx)dx= ∫ dx+∫sinxdx= arcsinx-cosx+C.
数学分析课本(华师大三版)-习题及答案第八章
![数学分析课本(华师大三版)-习题及答案第八章](https://img.taocdn.com/s3/m/8039c4d4f01dc281e43af063.png)
数学分析课本(华师大三版)-习题及答案第八章第八章 不定积分一. 填空题1.若x e f x+='1)(,则=)(x f ___________2.设)(x f 的一个原函数为xxe ,则='⎰dx x f x )(-_____________3.若xe -是)(xf 的一个原函数,则⎰=dx x xf )(________________4.若[]1)(3='x f ,则=)(x f ____________ 5.⎰=dx x x ),max(2___________________6.若)(x f 有原函数xx ln ,则⎰=''dx x f x )(_______________ 7.⎰=dx xx 2sin )ln(sin ________________8.若⎰⎰+++=+xdxB xx A x dx cos 21cos 21sin )cos 21(2,则=A __________,=B __________9.设C x dx x xf +=⎰arcsin )(,则⎰=)(x f dx_________10.⎰=-)4(x x dx_________________ 11.⎰=-dx xx 21ln _________________12.[]=-⎰dx xx x a n )cos(ln )sin(ln ________________13.[]⎰='+dx x f x x f )()(________________14.⎰=+xe dx1_____________15.⎰=+dx x xe x2)1(_____________________16.=++⎰dx xx xx cos 2sin cos 3sin 4______________17.已知xx x f 22tan sin )cos 2(+=+',则=)(x f _______________18.[]⎰=+'dx x f x f 2)(1)(______________19. 若⎰+=C x F dx x f )()(,而),(x u ϕ=则⎰=du u f )(___________. 20设函数)(x f 的二阶导数)(x f ''连续,那么⎰=''__________)(dx x f x .21设)(x f 的原函数是xxsin ,则⎰='__________)(dx x f x . 22已知曲线)(x f y =上任一点的切线斜率为6332--x x,且1-=x 时,211=y 是极大值,则)(x f __________=;)(x f 的极小值是__________.23已知一个函数的导数为211)(xx f -=,并且当1=x 时,这个函数值等于π23,则这个函数为__________)(=x F . 24 设)1(cos )(sin22<='x x x f ,则)(x f __________=.25 若)(x f 为连续函数,且)()(x f x f =',则⎰=__________)(dx x f . 26 若⎰='x dx x f ln ))((,则)(x f __________=.27 已知2xe -是)(x f 的一个原函数,则⎰=__________sec )(tan 2xdx x f . 28 ⎰='__________)2(12dx xf x . 29 设C xx dx x f ++-=⎰11)(,则)(x f __________=. 30 在积分曲线族⎰dxxx 1中,过(1,1)点的积分曲线是__________=y .二、选择填空题 1.设dx e e I xx ⎰+-=11,则=I ( )A.Cex++)1ln( B.Cx ex+-+)1ln(2C.Ce x x++-)1ln(2 D.Cex+-)1ln(2.设)(x f 是连续的偶函数,则期原函数)(x F 一定是( )A.偶函数B.奇函数C.非奇非偶函数D.有一个是奇函数 3.设⎰⎰+=++=)1(,)1(121u u duI dx xe x x I x ,则存在函数)(x u u =,使( ) A.xI I+=21B.xI I-=21C.12I I-=D.12I I =4.当1-≠n 时,⎰=xdx x n ln ( )A.C nx n x n +-)1(ln B.C n x n x n +----)11(ln 11C.C n x x n n ++-++)11(ln 111 D.C x n x n +++ln 117.⎰=+dx xx )2sin 2(cos ( ) A.C x x +-)2cos 2(sin 2 B.C x x +-)2sin 2(cos 2 C.C x x +-2cos 2sin D.C x x +-2sin 2cos 8.⎰=++dx xx x cos 1sin ( ) A.C x x +2cot B.C x x +2tan C.C x x +cot 2 D.C x x +2tan 2 9.若)(x f 的导函数是xe xcos +-,则)(x f 的一个原函数为( ) A.xexcos -- B.xexsin +-- C.xexcos --- D.xexsin +-10.若)(x f 是以l 为周期的连续函数,则其原函数( )。
8、数学分析讲义 - CH08(不定积分)-22页 文字版
![8、数学分析讲义 - CH08(不定积分)-22页 文字版](https://img.taocdn.com/s3/m/d73cf285b7360b4c2f3f6466.png)
设 f (x) C[a,b], f (x) 0 ,由曲线 y f (x), x a, x b, y 0 就围成了一个平面图 形,称为 [a, b] 上曲边梯形。下面求这个曲边梯形的面积。
设 F (x) 是区间[a, x] 上的曲边梯形的面积( x [a,b] , F (a) 0 )
e3 x
2
dx
e3 x d (3
x ) 2 e3 x C
x3
3
【例 7】 sin3 xdx sin2 x sin xdx (cos2 x 1)d cos x 1 cos3 x cos x C 3
【例 8】求 sec xdx.
解法一
sec
xdx
cos x
cos2
dx x
d(sin x) 1 sin2 x
sin
u
C
u
2x
1 sin 2x 2
C
【例 2】
tan
xdx
sin cos
x dx x
d
(cos x) cos x
ln cos x C.
(2)
6 中国矿业大学数学学院胡建华
华师大数学分析(第五版)讲义 第 8 章 不定积分
【例 3】
dx a2 x2
1 a
d
x a
1
x a
2
1 arctan x C.
42
【例 2】
x4 x2
1dx 1
x4 x2
1 1
2dx
(x2
1
2
x2
)dx 1
1 x3 x 2 arctan x C. 3
【例 3】
数学分析第三版8-1不定积分的概念.pps
![数学分析第三版8-1不定积分的概念.pps](https://img.taocdn.com/s3/m/112c2f072a160b4e767f5acfa1c7aa00b52a9def.png)
平面曲线的长度
总结词
不定积分可以用来计算平面曲线的长度。
详细描述
不定积分可以用来计算平面曲线的长度。对于给定的函数y=f(x),其不定积分∫sqrt(1+f'(x)^2)dx可以表 示该曲线的长度。
平面曲线的斜率
总结词
不定积分可以用来计算平面曲线的斜率 。
VS
详细描述
不定积分可以用来计算平面曲线的斜率。 对于给定的函数y=f(x),其不定积分可以表 示该曲线在某一点的切线斜率。
04
不定积分的应用
物理中的不定积分
运动学中的不定积分
在物理中,不定积分常用于解决与运动相关的问题。例如,计 算物体在某个力作用下的速度或加速度,需要用到不定积分来
求解相关的微分方程。
热力学中的不定积分
热力学中,不定积分用于描述热量、压力、体积等状态量 的变化关系,ቤተ መጻሕፍቲ ባይዱ理想气体状态方程。
波动现象中的不定积分
机器学习中,不定积分用于优化 算法的梯度计算,如梯度下降法。
感谢您的观看
THANKS
数学分析第三版8-1不定积 分的概念.pps
目录
• 不定积分的概念 • 不定积分的计算方法 • 不定积分的几何意义 • 不定积分的应用
01
不定积分的概念
原函数的概念
原函数
如果一个函数F(x)的导数F'(x)=f(x), 则称F(x)是f(x)的一个原函数。
举例
f(x)=x^2是一个函数,F(x)=x^3是 f(x)的一个原函数。
不定积分的定义
不定积分
不定积分是微分的逆运算,即求一个函数的原函数的过程。
举例
∫(x^2)dx=(1/3)x^3+C,其中C是积分常数。
数学分析8.3有理函数可化为有理函数的不定积分
![数学分析8.3有理函数可化为有理函数的不定积分](https://img.taocdn.com/s3/m/9257c23079563c1ec4da7123.png)
第八章 不定积分3 有理函数可化为有理函数的不定积分一、有理函数的不定积分有理函数:由两个多项式函数的商所表示的函数,其一般形式为:R(x)=)(Q )P(x x =n1-m 1m 0n1-n 1n 0βx βx βαx αx α+⋯+++⋯++, 其中n,m 为非负整数,α0,α1,…αn 与β0,β1,…βn 都是常数,且α0β0≠0. 若m>n ,则称它为真分式;若m ≤n ,则称它为假分式.注:1、假分式可化为整式与真分式的和;2、真分式可表示为若干个部分分式之和(称为部分分式分解);3、分解部分分式的一般步骤:第一步:对分母Q(x)在实系数内作标准分解:(分解前先化β0=1) Q(x)=(x-a 1)1λ…(x-a s )sλ(x 2+p 1+q 1)1μ…(x 2+p t +q t )tμ,其中λi ,μj (i=1,2,…,s ;j=1,2,…,t)均为自然数,而且∑=s1i iλ+2∑=t1j j μ=m ;p j 2-4q j <0, j=1,2,…,t.第二步:根据分母各因式分别写出与之相应的部分分式。
对于每个形如(x-a)k 的因式,它所对应的部分分式是:a -x A 1+22a)-(x A +…+k k a)-(x A ;对于每个形如(x 2+px+q)k 的因式,它所对应的部分分式是:q px x C x B 211++++2222q)px (x C x B ++++…+k2kk q)px (x C x B +++.第三步:确定待定系数。
将所有部分分式通分相加,所得分式的分母即为原分母Q(x),分子与原分子P(x)恒等。
根据同幂项系数相等,可得一组关于待定系数的线性方程,方程组的解就是需要确定的系数。
例1:对R(x)=8-x 4x 2x 5x x 10-x 9x 4x 2x 2345234+--+++-作部分分式分解.解:Q(x)=x 5+x 4-5x 3-2x 2+4x-8=(x-2)(x+2)2(x 2-x+1), R(x)=2-x A 0+2x A 1++222)(x A ++1x x C Bx 2+-+,两边乘以Q(x)得:2x 4-x 3+4x 2+9x-10 ≡A 0(x+2)2(x 2-x+1)+A 1(x 2-4)(x 2-x+1)+A 2(x-2)(x 2-x+1)+(Bx+C)(x-2)(x+2)2. 根据等式两边同幂项系数相等,得到线性方程组:⎪⎪⎪⎩⎪⎪⎪⎨⎧-10.=8C -2A -4A -4A ,9=4C -8B -3A +4A ,4=2C +4B -3A -3A -A ,-1=C +2B +A +A -3A ,2=B +A +A 2102121021010 解得:A 0=1, A 1=2, A 2=-1, B=-1, C=1. ∴对R(x)作部分分式分解的结果为:R(x)=2-x 1+2x 2+-22)(x 1+-1x x 1-x 2+-.注:对以上待定系数法有时可运用简便方法,如将x=2代入恒等式得: 32-8+16+18-10≡A 0·(2+2)2(4-2+1),∴A 0=1,将x=-2代入恒等式得: 32+8+16-18-10≡A 2(-2-2)(4+2+1),∴A 2=-1,于是化简恒等式得: x 4-3x 3+12+16≡A 1(x 2-4)(x 2-x+1)+(Bx+C)(x-2)(x+2)2,分别令x=0,1,-1可得:⎪⎩⎪⎨⎧+ 8.=C +B -3A 2,=3C 3B +A 4,=2C +A 111 解得:A 1=2, B=-1, C=1.小结:求有理真分式的不定积分可归为以下两种形式的不定积分:(1)∫k a)-(x dx =⎪⎩⎪⎨⎧>+=+ 1.k ;C a)-k)(x -(111,k C ;|a -x |ln 1-k (2)∫k 2q)px (x M Lx +++dx=∫k 22)r (t N Lt ++dt=L ∫k 22)r (t t +dt+N ∫k22)r (t dt+,其中 t=x+2p ,r 2=q-4p 2,N=M-4p L.当k=1时,原式=L ∫22r t t +dt+N ∫22rt dt +=2L ln(t 2+r 2)+ r N arctan r t +C. 当k ≥2时,∫k 22)r (t t +dt =1-k 22)r (t )k 1(21+-+C. I k =∫k 22)r (t dt +=2r 1∫k 22222)r (t t -)r (t ++dt=2r 1I k-1-2r 1∫k 222)r (t t +dt=2r 1I k-1+)1k (2r 12-∫td ⎥⎦⎤⎢⎣⎡+1-k 22)r (t 1=2r 1I k-1+)1k (2r 12-⎥⎦⎤⎢⎣⎡-+1-k 1-k 22I )r (t t=1-k 21-k 222I )1k (2r 3-2k )r (t )1k (2r t -++-.重复计算直至归为计算I 1. 最后换元为x ,就得到最终的结果.例2:求∫2222)2x -(x 1x ++dx. 解:2222)2x -(x 1x ++=2222)2x -(x 1)-x 2(2)x 2(x +++-=22x -x 12++222)2x -(x 1-x 2+∫22x -x dx2+=∫11)-(x 1)-d(x 2+dx=arctan(x-1)+C.∫222)2x -(x 1-x 2+dx=∫2222)2x -(x 2)2x -d(x +++∫221)]1)-[(x 1)-d(x +=-222)2x -(x 1++∫22)1t (dt +. ∫22)1t (dt +=1)2(t t 2++21∫1t dt 2+=1)2(t t 2++21arctant+C=2)2x -2(x 1-x 2++21arctan(x-1)+C. ∴原式= arctan(x-1)-222)2x -(x 1++2)2x -2(x 1-x 2++21arctan(x-1)+C=2)2x -2(x 3-x 2++23arctan(x-1)+C.二、三角函数有理式的不定积分:由u(x),v(x)及常数经过有限次四则运算所得到的函数称为关于u(x),v(x)的有理式,并用R(u(x),v(x))表示.∵sinx=2x tan 12x2tan2+=2t12t +, cosx=2x tan 12xtan -122+=22t 1t -1+, (t=tan 2x ); ∴∫R(sinx,cosx)dx=∫R(2t 12t +,22t 1t -1+)d(2arctant)=∫R(2t 12t +,22t 1t -1+)2t12+d(t). 例3:求∫cosx )sinx (1sinx1++dx.解:∫cosx )sinx (1sinx 1++dx=∫22222t 12)t1t -1(1t 12t t 12t 1+⋅+++++dt =21∫(t+2+t 1)dt=4t 2+t+21ln|t|+C=41tan 22x + tan 2x +21ln|tan 2x|+C.例4:求∫xcos b x sin a dx2222+(ab ≠0).解:∫x cos b x sin a dx 2222+=∫2222b x tan a x sec +dx=∫222b x tan a dtanx +=∫222b t a dt+=ab 1∫1b at bat d 2+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=ab 1arctan b at +C=ab 1arctan batanx +C.三、某些无理根式的不定积分: 1、∫R(x,nd cx b ax ++)dx 型不定积分(ad-bc ≠0),只需令t=n dcx bax ++,化为有理函数的不定积分. 例5:求∫2x 2x x1-+dx. 解:令t=2x 2x -+,则x=1t 22t 22-+,原式=∫22t 1)t(t 22+-d 1t 22t 22-+=∫2222221)2)(t (2t 2)]2t(2t -1)1)[4t(t t(t -++--dt=-2∫1)1)(t (t 2t 222-+dt=-2∫(1t 12++1t 12-)dt=-2arctant-∫(1t 1--1t 1+)dt=ln 1t 1t -+-2arctant +C =ln12x 2x 12x 2x --++-+-2arctan 2x 2x -++C=ln 2x 2x 2x 2x --+-++-2arctan2x 2x -++C =ln 44x 2x 22-+-2arctan 2x 2x -++C=ln|2x+24x 2-|-2arctan 2x 2x -++C.例6:求∫2xx 2x)(1dx-++.解:∫2x x 2x)(1dx-++=∫)x 1)(x 2(x)(1dx+-+=∫x2x1x)(112-++dx. 令t=x 2x 1-+,则x=1t 1-2t 22+,dx=22221)(t 1)-2t(2t -1)4t(t ++dt=221)(t t 6+dt. 1+x=1+1t 1-2t 22+=1t 3t 22+,2x )(11+=422t 91)(t +.原式=∫224221)(t t6t 91)t(t +⋅+dt=32∫t -2dt=-t 32+C=x 1x 232+--+C.2、∫R(x,c bx ax 2++)dx 型不定积分(a>0时b 2-4ac ≠0, a<0时b 2-4ac>0),由于ax 2+bx+c=a[(x+a 2b )2+22a 4b -4ac ],若记u=x+a 2b , k 2=22a4b -4ac ,则此二次三项式必属于以下三种情形之一:|a|(u 2±k 2),|a|(k 2-u 2). 因此上述无理根式的不定积分可化为以下三种类型之一:∫R(u,22k u ±)du ,∫R(u,22u k -)du.分别令u=ktant, u=ksect, u=ksint ,则都化为三角有理式的不定积分.例7:求I=∫3x 2x x dx 2--.解法一:令u=x-1=2sec θ, t=tan 2θ, 则t=1x 3-x +. I=∫41)-(x x 1)-d(x 2-=∫4u )1(u du 2-+=∫1θsec )1(2sec θdsec θ2-+=∫)1θ(2secθtan tan θanθs+d θ=∫12sec θsec θ+d θ=∫cos θ21+d θ=∫222t 1t -12t 12+++dt=2∫3t 12+dt=32∫13t 12+⎪⎪⎭⎫ ⎝⎛d ⎪⎪⎭⎫ ⎝⎛3t=32arctan ⎪⎪⎭⎫⎝⎛3t +C=32arctan ⎪⎪⎭⎫ ⎝⎛+33x 3-x +C. 解法二:令3x 2x 2--=x-t, 则x=)1t (23t 2-+, dx=22)1t (23-t 2t --dt. I=∫⎪⎪⎭⎫ ⎝⎛--+-+--t )1t (23t )1t (23t )1t (23-t 2t 2222dt=-2∫3t 12+dt=-32arctan ⎪⎪⎭⎫ ⎝⎛3t +C =32arctan ⎪⎪⎭⎫⎝⎛---3x 3x 2x 2+C.注:一般地,二次三项式ax 2+bx+c 中若a>0,则可令c bx ax 2++=a x ±t ;若c>0,也可令c bx ax 2++=xt ±a ,这类变换称为欧拉变换.习题求下列不定积分:(1)∫1-x x 3dx ;(2)∫127x -x 2-x 2+dx ;(3)∫3x 1dx +;(4)∫4x1dx+;(5)∫221)1)(x -(x dx +; (6)∫22)1x 2(2x 2-x ++dx ;(7)∫x cos 35dx -;(8)∫xsin 2dx 2+;(9)∫x tan 1dx+; (10)∫22x x 1x -+dx ;(11)∫xx dx 2+;(12)∫x1x-1x 12+dx. 解:(1)∫1-x x 3dx=∫1-x 11x 3+-dx=∫(x 2+x+1)dx+∫1-x 1dx=3x 3+2x 2+x+ln|x-1|+C.(2)127x -x 2-x 2+=4)-3)(x -(x 2-x ≡3-x A +4-x B ;∴x-2≡A(x-4)+B(x-3).当x=3时,解得A=-1;当x=4时,解得B=2.∴原式=∫4-x 2dx-∫3-x 1dx=2ln|x-4|-ln|x-3|+C=ln 3-x 4)-(x 2+C.(3)3x11+=1)x 1)(x (x 12+-+≡1x A ++1x -x C Bx 2++;∴A(x 2-x+1)+(Bx+C)(x+1)≡1. 当x=-1时,解得A=31;由A+B=0,得B=-31;由A+C=1,得C=32. ∴原式=31∫1x 1+dx-31∫1x -x 2-x 2+dx=31ln|x+1|-61∫1x -x 3-1-2x 2+dx=31ln|x+1|-61∫1x -x 1)x -d(x 22+++21∫1x -x 12+dx=61ln 1x -x 1)+(x 22++21∫4321-x 12+⎪⎭⎫ ⎝⎛dx =61ln 1x -x 1)+(x 22++31∫121-x 3221-x 32d 2+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛=61ln 1x -x 1)+(x 22++31arctan 31-x 2+C. (4)∫4x 1dx +=21∫422x 11x -1x +++dx=21∫42x 11x ++dx -21∫42x 11x +-dx=21∫222x 1x x 11++dx-21∫222x 1x x 11+-dx=21∫2x 1x x 1x d 2+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--21∫2x 1x x 1x d 2-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+ =42arctan x 21-x 2-82∫)2x 1(x x 1x d ++⎪⎭⎫ ⎝⎛++82∫)2x 1(x x 1x d -+⎪⎭⎫ ⎝⎛+=42arctan x 21-x 2-82ln 1x 2x 1x 2x 22+-+++C. (5)由221)1)(x -(x 1+≡1-x A +1x C Bx 2+++221)(x EDx ++得:A(x 2+1)2+(Bx+C)(x-1)(x 2+1)+(Dx+E)(x-1)≡1. 当x=1时,解得A=41. ∴41x 4+21x 2+41+Bx 4-Bx 3+Cx 3+Bx 2-Cx 2-Bx+Cx-C+Dx 2-Dx+Ex-E=(41+B)x 4-(B-C)x 3+(21+B-C+D)x 2-(B-C+D-E)x-(C+E-41)≡1. ∴B=-41,C =-41,D=-21,E=-21. 原式=41∫1-x dx -41∫1x 1x 2++dx-21∫221)(x 1x ++dx =41ln|x-1|-81∫1x 1)d(x 22++-41∫1x dx 2+-41∫2221)(x 1)d(x ++-21∫221)(x dx + =81ln 1x 1)(x 22+--41arctanx+)1x (412+-21∫221)(x dx +又∫221)(x dx +=∫221)t (tan dtant +=∫cos 2tdt=21∫(cos2t+1)dt=41∫cos2td2t +21∫dt =41sin2t+21t+C=)1t (tan 2tant 2++21arctanx+C=)1x (2x 2++21arctanx+C.∴原式=81ln 1x 1)(x 22+--41arctanx+)1x (412+-)1x (4x 2+-41arctanx+C=81ln 1x 1)(x 22+--21arctanx+)1x (4x -12++C.(6)∫22)1x 2(2x 2-x ++dx=41∫222)1x 2(2x )1x 2d(2x ++++-25∫22)1x 2(2x dx ++=-)1x 24(2x 12++-5∫22)]11)[(2x 1)d(2x +++=-)1x 24(2x 12++-45[1x 22x 12x 2++++2arctan(2x+1)]+C =-)1x 22(2x 3x 52+++-25arctan(2x+1)+C.(7)∫x cos 35dx -=∫222t 1)t 3(15t 12+--+dt=21∫1t)2(d2t 2+=21arctan2t+C=21arctan(2tan 2x )+C.(8)方法一:∫x sin 2dx 2+=∫22t 1t 22t 12+++dt=∫1t t dt 2++=32∫13132t 3132t d 2+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+ =32arctan ⎪⎭⎫ ⎝⎛+3132t +C=32arctan ⎪⎪⎪⎪⎭⎫ ⎝⎛+3132x 2tan +C. 方法二:∫x sin 2dx 2+=∫x tan x sec 2x dx sec 222+=∫2x tan 3dtanx 2+dt=66∫1x tan 23tanx23d2+=66arctan(tanx 23)+C.(9)∫x tan 1dx +=∫x tanx sec x sec x dx sec 222+=∫1tanx x tan x tan dtanx23+++ =21(∫1tanx dtanx +-∫1x tan tanxdtanx 2++∫1x tan dtanx 2+)=21(ln|tanx+1|-21∫1x tan )1x d(tan 22+++x) =21(ln 1x tan |1tanx |2+++x)+C=21(ln|cosx+sinx|+x)+C. (10)I=∫22xx 1x -+dx=-∫22xx 1x x 1-+-+dx+∫2xx 11)dx (x -++=-∫2x x 1-+dx+∫2xx 11)dx (x -++=-x 2x x 1-+-∫22xx 12x -x 2-+dx+∫2xx 11)dx (x -++=-x 2xx 1-+-I+21∫2xx 1x -+dx+∫2xx 11)dx (x -++=-x 2x x 1-+-I+23∫2xx 132x -++dx. ∴I=-2x x 12x -++43∫2x x 132x -++dx.又∫2x x 132x -++dx=-21∫2x x 1x 21-+-dx+67∫2x x 1dx -+ =-2x x 1-++67∫251-2x 151-2x d ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-2x x 1-++67∫arcsin 51-2x +C. ∴原式=-2x x 12x -+-432x x 1-++87∫arcsin 51-2x +C. (11)令t-x=x x 2+,则x=12t t 2+,dx=d 12t t 2+=21)(2t 1)t(t 2++dt. ∫x x dx 2+=∫12t t t 1)(2t 1)t(t 222+-++dt=∫12t 1)d(2t ++=ln|2t+1|+C=ln|2x x 2++2x+1|+C. (12) ∫x 1x -1x 12+dx=-∫1x11-x 1+d x 1=-∫1t 1-t +dt=-∫1t 1-t 2-dt=-∫1t tdt 2-+∫1t dt 2- =-1t 2-+ln|t+1t 2-|+C=-x x 12-+ln x x 112-++C.。
华东师范大学数学分析第8章习题答案
![华东师范大学数学分析第8章习题答案](https://img.taocdn.com/s3/m/c0ba1199cd22bcd126fff705cc17552707225e37.png)
华东师范⼤学数学分析第8章习题答案第⼋章⼀:不定积分概念与基本积分公式(教材上册P181) 1. 验证下列(1)、(2)等式并与(3)、(4)两试相⽐照: (1)'()()f x dx f x c =+?; (2) ()()df x f x c =+?; (3) [()]'()f x dx f x =?; (4) ()()()d f x d x f x dx =?;解: (1)'0(())''()'()'()()c f x c f x c f x f x dx f x c=∴+=+=∴=+? 与(3)相⽐(1)试求不定积分运算,(2)是求导运算,(1) (3)互为逆运算,不定积分相差⼀个常数但仍为原不定积分,该常数⽤c 表⽰,称为积分常数.(2)()'()()'()()df x f x dxdf x f x dx f x c===+??与(4)相⽐: (2)是先求导再积分,因此包含了⼀个积分常数,(4)是先积分再求导,因此右侧不含积分常数.2. 求⼀曲线y=f (x),使得在曲线上的每⼀点(x,y)处的切线斜率为2x,且通过点(2,5). 解:222dy xdxy dy xdx x c====+??将(x,y)=(2,5)代⼊得: 5=22+cC=1该曲线为21y x =+3. 验证2sgn 2x y x =是|x|在(,)+∞-∞上的⼀个原函数. 解:x>0时,y ’=2()'||2x x x ==x<0时,2'()'||2x y x x =-=-=x=0时,22000sgn 022'lim lim lim 002x x x x x x x y x x ++++→→→-====- 2200sgn 02'lim lim()0||02x x x x x y x x --→→-==-==- 因此'''0||y y y x +-====综上得2'(sgn )'||,(,)2x y x x x ==?∈+∞-∞2sgn 2x y x =是|x|在(,)+∞-∞上的⼀个原函数.4. 据理说明为什么每⼀个含有第⼀类间断点的函数都没有原函数?解: 设0x 是 f (x)的第⼀类间断点,且 f (x)在0()U x 上有原函数 F (x),则0'()(),()F x f x x U x =∈.从⽽由导数极限定理得00lim ()lim '()'()()x x x x f x F x F x f x +++→→=== 同理 000lim ()'()()x x f x F x f x -→==.可见0()f x x 点连续,推出⽭盾.⼆: 换元积分法与部分积分法(教材上册P188) 1. 应⽤换元积分法求下列积分 (1) cos(34)x dx +?; (2) 22xxe dx ?;(3) 21dx x +?; (4) (1)n x dx +?;(5)dx ?; (6) 232x dx +?;(7);(8)(9)2sin x x dx ?; (10) 2sin (2)4dxxx +?;(11) 1cos dx x +?; (12) 1sin dx x+?;(13)csc xdx ?;(14);(15)44xdx x +?; (16)ln dx x x ?;(17) 453(1)x dx x +?; (18) 382x dx x -?;(19)(1)dxx x +?; (20) cot xdx ?; (21) 5cos xdx ?; (22)sin cos dxx x ?;(23)x xdx e e -+?; (24) 22338x dx x x --+?; (25) 252(1)x dx x ++?;(26) (a>0);(27) 223/2(0)()dxa x a >+?;(28) 5;(29)(30).解: (1)34cos(34)cos 3t x t x dx d =++=11sin sin(34)33t c x c =+=++ (2) 22112222()'()22t x x t txe dx e d ==??112211()()()22224t t t t t ed e dt ==?? 221144t x e c e c =+=+ (3)21111ln ||ln |21|21222t x dx t d t c x c x t =+==+=+++??(4)①当1n ≠-时,111(1)(1)11n n t x nnt x x dx t dt c c n n ++=+++== +=+++?? ②当1n =-时,(1)ln |1|n x dx x c +=++?(5)dx =?c =+ (6)232323231212122222ln22ln 22ln2t x x t x x tt dx d c c c ++=++==+=+=+?(7)332222222()(83)3399t t td t dt t c x c -=-=-+=--+?(8)322/31333()(75)551010t t d tdt t c x c t -=-=-+=--+? (9)211112222211sin sin sin sin 22t x x x dx t tdt t t t dt tdt =-===211cos cos 22t c x c =-+=-+ (10)2422111cot cot(2)224sin (2)sin 42t x dxt c x c x t x tdππ=+==-+=-+++?? (11)222(2)12sec tan tan()1cos 1cos 22cos 2t x dx d t x dt tdt t c c x t t =====+=+++ (12) 22 1sin (sec sec tan )tan sec 1sin dx xdx x x x dx x x c x cos x-==-=-++ (13)2111csc sin sin cos tan cos2222xdx dx dx x x x x x ===?α2ln |tan |2tan 2x d x c x ==+? (14)21(1)2x c =--=(15)22242111()arctan()442421()2x x x dx d c x x ==+++??(16)ln 11ln ||ln |ln |ln t x t t dx de dt t c x c x x e t t====+=+ (17)4555253535311111(1)(1)(1)5(1)5(1)10x dx dx d x x c x x x -==--=-++--(18)4344888111|242816112x dx dx d c x x x ===-+----(19)11()ln ||ln |1|ln ||(1)11dx xdx x x c c x x x x x=-=-++=++++?? (20)cos cot ln ||ln |sin |sin xxdx dx t c x c x ==+=+??(21)52224cos (1sin )sin (12sin sin )sin xdx x d x x x d x =-=-+?sin 2sin sin 53x x x c =-++ (22)2cos tan ln |tan |sin cos sin cos tan dx xdx d x x c x x x x x ===+ (23)22arctan 1()1()x xx x x x x dx e de dx e c e e e e -===++++ (24)222223(38)ln(38)3838x d x x dx x x c x x x x --+==-++-+-+?? (25)2221533232(1)223123()(1)t x x t t t dx dt dt dt x t t t t t =++-+-+===-++ 222323 ln ||ln |1|(1)212t t c x x c t x --=+-+=++-+++(26)1()ln |x t ax t c a====+?1ln |ln |x c x c a =+=+(27)令tan x a θ=,sec 22t a tdt ππ-<<223/23322s e c 11c o t s i n ()s e c d xa t d t t d t tx a a t a a ===++??c =+ (28)55sin 42sin sin (cos 2cos 1)cos x d d cos θθθθθθθ===--+??35322121cos cos cos (1)535c xc θθθ=-+-+=--(29)32256642226666111t t t t dt t dt t dt t dt t t t ===-+--- 6 42266661tt t dt t dt t dt dt dt t =---+-?75366126ln ||751t t t t t c t+=----++- 165116661263ln ||751x x x x x c x +=----++- (30)1121t t tdt t -→=+?222(2)44ln |1|1t t dt t t tc t =-+=-++++?14ln |1|x c =+-+ 4ln |1|'x c =-+ 2. 应⽤分部积分法求下列不定积分 (1) arcsin xdx ?; (2) ln xdx ?;(3) 2cos x xdx ?; (4)3ln xdx x ?;(5) 2(ln )x dx ?; (6)tan xarc xdx ?;(7) 1[ln(ln )]ln x dx x+?;(8) 2(arcsin )x dx ? (9)3secxdx ?; (10)(0)a >.解 (1)arcsin arcsin arcsin arcsinxdx x x xd x x x =-=-122arcsin (1)x x x c =+++ (2)1ln ln ln ln ln xdx x x xd x x x xdx x x x c x=-=-=-+(3)222cos sin 2sin sin 2cos x xdx x x x xdx x x xd x =-=+?2sin 2cos 2cos x x x x xdx =+-?2sin 2cos 2sin x x x x x c =+-+(4)2223ln 11ln [ln (ln )]22x dx xdx x x x d x x ---=-=-- 222ln 11(ln 1)244x c x c x x x=--+=-++(5)2221(ln )(ln )2ln (ln )2ln x dx x x x x dx x x xdx x=-=-(参考(2)结果)2(ln )2ln 2x x x x x c =-++(6)2222111tan tan arctan 2221x xarc xdx arc xdx x x dx x ==-+ 221111arctan 2221x x dx dx x =-++?? 2111arctan arctan 222x x x x c =-++(7)11111[ln(ln )]ln(ln )ln(ln )ln ln ln ln x dx x dx dx x x x dx dx x x x x x +=+=-+ ln(ln )x x c =+ (8)12222(arcsin )(arcsin)2arcsin (1)x dx x x x x dx -=--??12222(sin )arcsin (1)(1)x arx x x x d x -=+--?1222(arcsin )2arcsin (1)x x xd x =+-?1222(arcsin )2(1)arcsin 2x x x x dx =+--?1222(arcsin )2(1)arcsin 2x x x x x c =+--+(9) 令3sec I xdx =?s e c t a ns e ct a nt a n s e c I x d x x x x x x d x==-?23sec tan (1cos )sec sec tan sec x x x xdx x x I xdx =--=-+??11sec tan sec 22I x x xdx =+?1(sec tan ln |sec tan |)2x x x x c =+++(10)11222222222(0)()2()I a x x a xdx x a x -=>=±=+-1122222222()()()x x x a I ax x a I a a =±-±=±-±则122222111()()(ln ||)222x I x x a a a x c a =±±=+ 3. 求下列不定积分(1)[()]()'(1)f x f x dx αα≠?; (2)2'()1[()]f x dx f x +?;(3)'()()f x dx f x ?; (4)()'()f x e f x dx ?. 解: (1)11[()]()'[()]()[()]1f x f x dx f x df x f x c αααα+==++?(2)122'()1()arctan[()](arccot[()])1[()]1[()]f x dx df x f x c f x c f x f x ==+=-+++??(3)'()1()ln |()|()()f x dx df x f x c f x f x ==+?? (4)()()()'()()f x f x f x ef x dx e df x e c ==+?三. 有理函数和可化为有理函数的不定积分(教材上册P198) 1. 求下列不定积分(1)31x dx x -?; (2)22712x dx x x --+?;(3)31dx x +?; (4)41dxx +?;(5)22(1)(1)dx x x -+?; (6)222(221)x dx x x -++?;解: (1)3321111111x x x x x x x -+==+++--- 3232111(1)ln |1|1132x dx x x dx x x x x c x x =+++=+++-+--?? (2)2223111712(3)(4)(3)(4)4(3)(4)x x x x x x x x x x x x ---+===+-+-------22211(4)7124712x dx d x dx x x x x x -=-+-+--+211(4)2(27)4(27)d x d x x x =-+---??2ln |4|ln |3|x x c =---+ (3)设321111A Bx Cx x x x +=+++-+ 则21(1)()(1)A x x Bx C x =-++++ 2()()A B x B C A x A C =+++-++, 则⽐较两端系数,得1 21,,333B C A =-== 321121311dx x dx x x x x -??=-++-+221111(1)31311d x d d x =+-+++?221(1)ln 61x c x x +=+-+(4)22422221111()11()21x d x x x x dx dx x x x x x x -+-+===++-+-+11x c -=+2224222211111||1()2x x xdx dx c x x x x x---===++++-则234441111112121x x dx dx dx x x x +-=-+++|c =++ (5)设1122222221(1)(1)11(1)B xC B x C A x x x x x ++=++-+-++ 则22211221(1)()(1)(1)()(1)A x B x C x x B x C x =+++-+++-432111112121212()()(2)()()A B x C B x AC B B x C C B B x A C C=++-+-++++--+-- ⽐较两边系数得到12211111,,,,44422A B C B C ==-=-=-=- 22222111111(1)(1)(1)(1)418141dx d x d x dx x x x x x =--+--+-++ 222221111(1)4(1)2(1) d x dx x x -+-++?? 2222111(1)2(1)21x dx dx x x x =++++?? 222111ln |1|ln(1)arctan (1)(1)482dx x x x x x ∴=--+--+?211(1)4x -++ 211(1)4x x c --++。
数学分析8不定积分总练习题
![数学分析8不定积分总练习题](https://img.taocdn.com/s3/m/d18c8533581b6bd97f19eaa4.png)
第八章 不定积分总练习题求下列不定积分: (1)∫43x1x 2x --dx ;(2)∫xarcsinxdx ;(3)∫x1dx +;(4)∫e sinx sin2xdx ;(5)∫xe dx ;(6)∫1x x dx2-;(7)∫x tan 1x tan 1+-dx ;(8)∫32)2-x (x-x dx ; (9)∫x cos dx 4;(10)∫sin 4xdx ;(11)∫4x 3x 5-x 23+-dx ;(12)∫arctan(1+x )dx ; (13)∫2x x 47+dx ;(14)∫x tan tanx 1tanx 2++dx ;(15)∫1002x)-(1x dx ; (16)∫2x arcsinx dx ;(17)∫xln ⎪⎭⎫ ⎝⎛+x -1x 1dx ;(18)∫xsinx cos dx 7;(19)∫e x 22x 1x -1⎪⎭⎫ ⎝⎛+dx ; (20)I n =∫uv n dx, 其中u=a 1+b 1x ,v=a 2+b 2x ,求递推形式解.解:(1)∫43x 1x 2x --dx=∫41x dx-2∫121x dx-∫41x-dx =5445x -13241213x -34∫43x +C.(2)∫xarcsinxdx=-21∫arcsinxd(1-x 2)=-21(1-x 2)arcsinx+21∫(1-x 2)darcsinx=-21(1-x 2)arcsinx+21∫2x -1dx =-21(1-x 2)arcsinx+21∫t sin -12dsint=-21(1-x 2)arcsinx+21∫cos 2tdt=-21(1-x 2)arcsinx+81∫(1+cos2t)d2t =-21(1-x 2)arcsinx+4t +81sin2t+C=-21(1-x 2)arcsinx+41arcsinx +41sintcost+C =2x 2arcsinx-41arcsinx +2x -14x+C. (3)∫x 1dx+=∫t 1dt 2+=∫t12tdt +=2∫t 1t 1++dt-2∫t 1dt +=2t-2ln|1+t|+C=2x -2ln|1+x |+C.(4)∫e sinx sin2xdx=2∫e sinx sinxcosxdx=2∫sinxde sinx =2e sinx sinx-2∫e sinx dsinx=2e sinx sinx-2e sinx +C.(5)∫x e dx=∫e t dt 2=2∫tde t =2te t -2∫e t dt=2e t (t-1)+C=2x e (x -1)+C.(6)方法一:令t-x=1x 2-,则x=2t 1t 2+,dx=222t1t -dt ;∫1x x dx 2-=∫⎪⎪⎭⎫ ⎝⎛++-2t 1t -t 2t 1t 2t 1t 2222dt=2∫1t dt 2+=2arctant+C=2arctan(1x 2-+x)+C. 方法二:∫1x x dx 2-=-∫2x 11x 1d-=arccos x1+C.(7)方法一:∫x tan 1x tan 1+-dx=∫t 1t 1+-darctant=∫)t t)(11(t 12++-dt=∫t 1dt+-∫2t1t +dt =ln|1+t|-21∫22t 1dt +=ln|1+t|-21ln|1+t 2|+C= ln 2t 1|t 1|+++C= ln ttan 1|tant 1|2+++C. 方法二:∫x tan 1x tan 1+-dx=∫x sin x cos x sin x cos +-dx=∫xsin x cos x)sin x (cos d ++=ln|cosx+sinx|+C.(8)∫32)2-x (x-x dx=∫2-x dx +3∫22)-(x dx +2∫32)-(x dx =ln|x-2|-2-x 3-22)-(x 1+C.(9)∫xcos dx 4=∫sec 2xdtanx=∫(tan 2x+1)dtanx=31tan 3x+tanx+C. (10)∫sin 4xdx=41∫(1-cos2x)2dx=41(∫dx -∫cos2xd2x+∫cos 22xdx)=41x -41sin2x+81∫(cos4x+1)dx=41x -41sin2x+321∫cos4xd4x +81∫dx =41x -41sin2x+321sin4x +81x+C=83x -41sin2x+321sin4x +C. (11)由4x 3x 5-x 23+-=)1x (2)-x (5-x 2+≡2-x A +22)-x (B +1x C+得:x-5≡A(x-2)(x+1)+B(x+1)+C(x-2)2.当x=2时,B=-1;当x=-1时,C=-32;由A+C=0,得A=32.∴∫4x 3x 5-x 23+-dx=32∫2-x dx -∫22)-x (dx -32∫1x dx +=32ln 1x 2-x ++2-x 1+C. (12)令t=1+x ,则x=t 2-2t+1,dx=2t-2. ∫arctan(1+x )dx=xarctan(1+x )-∫xdarctan(1+x )=xarctan(1+x )-∫]1)x 1[(x 2x2++dx=xarctan(1+x )-∫)1t )(1-(t 21)-1)(t 2t -2(t 22++dt =xarctan(1+x )-∫1t 1)2t -(t 22++dt=xarctan(1+x )-∫dt+∫1t dt 22+=xarctan(1+x )-t+ln(t 2+1)+C=xarctan(1+x )-1-x +ln(x+2x +2)+C =xarctan(1+x )-x +ln(x+2x +2)+C 1.(13)∫2x x 47+dx=∫2x x 2x 437++dx-∫2x x 243+dx=∫x 3dx-21∫2x dx 44+=41x 4-21ln(x 4+2)+C.(14)∫x tan tanx 1tanx 2++dx=∫2tt 1t++darctant=∫)t (1)t t (1t 22+++dt =∫2t 1dt +-∫2t t 1dt ++=arctant-32∫131t 32t32d2+⎪⎪⎭⎫⎝⎛+=x-32arctan ⎪⎪⎭⎫ ⎝⎛+31t 32+C =x-32arctan312tanx ++C.(15)方法一:∫1002x)-(1x dx=991∫x 2d 99x )-(11=991[992x)-(1x -∫992x)-(1dx ]=991[992x)-(1x -2∫99x )-(1x dx]=992x)-99(1x -98992⨯∫xd 98x )-(11 =992x)-99(1x -98x )-98(1992x ⨯+98992⨯∫98x )-(11dx =992x)-99(1x -98x )-98(1992x ⨯+9798992⨯⨯∫d 97x )-(11=992x)-99(1x -98x )-98(1992x ⨯+97x )-97(198992⨯⨯+C =992x)-99(1x -98x )-(19499x ⨯+97x )-97(194991⨯⨯+C. 方法二:∫1002x)-(1x dx=∫1002x)-(1x)-(1dx-2∫100x )-(1x )-(1dx+∫100x )-(1dx=∫98x )-(1dx dx-2∫99x )-(1dx +∫100x )-(1dx =97x )-97(11-98x )-49(11+99x )-99(11+C. (16)令arcsinx=t ,则x=sint ,dx=costdt.∫2x arcsinx dx=∫tsin tcost 2dt=-∫td sint 1=-sint t +∫sint 1dt=-sint t +∫2t 2tan2t sec 2dt =-sint t +∫2t tan 2t dtan dt=-sint t +ln|tan 2t |+C =-sint t +ln sint cost -1+C =-xarcsinx+ln x x -1-12+C.(17)∫xln ⎪⎭⎫⎝⎛+x -1x 1dx=21∫ln ⎪⎭⎫ ⎝⎛+x -1x 1dx 2=21x 2ln ⎪⎭⎫ ⎝⎛+x -1x 1-21∫x 2dln ⎪⎭⎫ ⎝⎛+x -1x 1 =21x 2ln ⎪⎭⎫ ⎝⎛+x -1x 1-∫22x -1x dx=21x 2ln ⎪⎭⎫ ⎝⎛+x -1x 1+∫dx-∫2x -1dx=21x 2ln ⎪⎭⎫⎝⎛+x -1x 1+∫dx-21ln ⎪⎭⎫ ⎝⎛+x -1x 1+C=21(x 2-1)ln ⎪⎭⎫⎝⎛+x -1x 1+∫dx+C. (18)∫xsinx cos dx 7=2∫31)x sin2x(cos2d2x +=2∫322221t 1t -1·t 1t 2t 12⎪⎪⎭⎫ ⎝⎛++++dt=∫tt 12+dt=∫t1dt+∫3t dx=2t +525t +C=2tanx +52x tan 5+C.(19)∫e x 22x 1x 1⎪⎭⎫ ⎝⎛+-dx=∫e x 222)x (1x2x 1+-+dx=∫2x x 1e +dx-2∫22x )x (1e +dx=∫2x x 1de ++∫e x d 2x 11+=2x x 1e +-∫e x d 2x 11++∫e x d 2x 11+=2x x 1e ++C. (20)I n =∫u v ndx=1b 1∫uv n du=1b 2∫v n d u =1b 2v n u -1b 2∫u dv n=1b 2v n u -12b 2nb ∫v n-1u dx=1b 2v nu -12b 2nb ∫uuv 1-n dx. 又∫uuv 1-n dx=∫ux )v b +(a 1-n 11dx=21b b ∫ux)v b +(a b b 1-n 1112dx=21b b ∫ux)v b +b b a (1-n 2121dx=21b b ∫uv )a b b a (x)v b +a (1-n 21211-n 22-+dx=21b b I n +)b ba a (2121-I n-1 =2b 1[b 1I n +(a 1b 2-a 2b 1)I n-1]. ∴I n =1b 2v n u -1b 2n [b 1I n +(a 1b 2-a 2b 1)I n-1]=1b 2v n u -2nI n +1b 2n(a 1b 2-a 2b 1)I n-1. 即I n =)1n 2(b 21+v n u +)1n 2(b 2n1+(a 1b 2-a 2b 1)I n-1.。
不定积分
![不定积分](https://img.taocdn.com/s3/m/3ea2730d482fb4daa48d4b22.png)
第八章 不定积分微分学中所研究问题的做法是从已知函数()f x 出发求其导数()f x ',即所谓的微分运算。
微分运算的重要意义已经通过列举许多应用给予说明。
但是我们也应该看到,许多实际问题不是要寻找某一函数的导数,而是恰恰相反,从已知的某一函数的导数()f x '出发求其本身()f x ,这便是所谓的积分运算。
显然,积分运算是微分运算的逆运算。
另外积分运算也为后面定积分的运算奠定了基础。
在这一章里将引入不定积分的概念,讨论换元积分法和分部积分法。
最后研究几类初等函数的积分法。
§8.1 不定积分概念与基本积分公式教学目标:掌握原函数的概念和基本积分公式教学内容:原函数的概念;基本积分公式;不定积分的几何意义. 基本要求:熟练掌握原函数的概念和基本积分公式. 教学建议:(1) 不定积分是以后各种积分计算的基础,要求熟记基本积分公式表. (2) 适当扩充基本积分公式表. 教学过程:一、原函数与不定积分 (一) 原函数定义1 设函数)(x f 与)(x F 在区间I 上有定义。
若)()(x f x F =', I x ∈,则称)(x F 为)(x f 在区间I 上的一个原函数。
如:331x 是2x 在R 上的一个原函数;x 2cos 21-, 12cos 21+x ,x 2sin ,x 2cos -等都有是x 2sin 在R 上的原函数——若函数)(x f 存在原函数,则其原函数不是唯一的。
问题1 )(x f 在什么条件下必存在原函数?若存在,其个数是否唯一;又若不唯一,则有多少个?问题2 若函数)(x f 的原函数存在,如何将它求出?(这是本章的重点内容)。
定理1 若)(x f 在区间I 上连续,则)(x f 在I 上存在原函数)(x F 。
(证明在第九章中进行。
)说明:(1)由于初等函数在其定义域内都是连续的,故初等函数在其定义域内必存在原函数(但其原函数不一定仍是初等函数)。
数学分析第八章不定积分PPT文档共30页
![数学分析第八章不定积分PPT文档共30页](https://img.taocdn.com/s3/m/adcdf7e09a89680203d8ce2f0066f5335a81670a.png)
数分析第八章不定积分
11、不为五斗米折腰。 12、芳菊开林耀,青松冠岩列。怀此 贞秀姿 ,卓为 霜下杰 。
13、归去来兮,田蜀将芜胡不归。 14、酒能祛百虑,菊为制颓龄。 15、春蚕收长丝,秋熟靡王税。
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x4 1
x
1
2
dx
x
4
1
1 x2
2
dx
(x2
1)( x2 1 x2
1)
2
dx
(
x2
1
1
2 x
2
)dx
1 x3 x 2arctanx C 3
例3. 求 (10x 10-x )2 dx
解: (10x 10-x )2 dx (102x 10-2x - 2)dx [(102 )x (10-2)x - 2]dx
2
2
sin 2x在(,)上一个原函数
问题: f在什么条件下存在原函数?存在时其个数? 若f存在原函数,如何求?
2 原函数存在定理
定理8.1若函数f 在区间I上连续,则f 在I上 存在原函数F,即 F '(x) f (x), x I.
•注1:初等函数在其定义域存在原函数. •注2:连续是原函数存在的充分而非必要条件
8) sec2 xdx tanx C
8 (tanx)' sec2 x
9) csc2 xdx cotx C 9 (cotx)' csc2 x
10)
dx arcsin x C 1 x2
10 (arcsin x)'
1 1 x2
11)
dx 1 x2
arctanx C
11
1 (arctanx)' 1 x2
f (x)dx F(x) C
其中C为任意常数
y y = F(x)+C1
y = F(x)+C2
y = F(x)+C3 y = F(x)+C4
0
x0
x
2. 不定积分的性质:
(1) ( f (x)dx)' f (x),先积后导正好还原 或d[ f (x)dx] f (x)dx,
(2) f '(x)dx f (x) C,先导后积需加上一个任常数
或 df (x) f (x) C.
3 不定积分的几何意义
函数f(x)的原函数的图 形称为f(x)的积分曲线。
函数f(x)的积分曲线有 无限多条。函数f(x)的不定 积分表示f(x)的一簇积分曲 线,而f(x)正是积分曲线的 斜率。
2xdx x2 C
y
y=x2+C1 y=x2
C1 -1 O 1
2 线性运算法则
定理8.3 若函数f与g在区间I上存在原函数, k1, k2为 两个任意常数,则k1 f k2g在I上也存在原函数,且
[k1 f (x) k2g(x)]dx k1 f (x)dx k2 g(x)dx (5)
注 线性运算法则的一般形式为
n
n
ki fi (x)dx ki fi (x)dx (6)
3 原函数之间的关系 定理8.2 如果F是 f 在I上的一个原函数 ,则 (1) FC 也是 f 在I上的原函数,其中 C 是任意常数。 (2) f 在I上的任意两个原函数之间,只可能相差一个常数
结论: 若函数F为f 在区间I上的一个原函数,则 {F(x) c | c R}为f 在I上的原函数全体.
y=x2+C2 y=x2+xC3
C2
C3
二. 基本积分公式
1 基本积分表 积分公式
导数公式
1) kdx kx C (k为常数)
1 (kx c)' k
2)
x
dx
1
1
x
1
C
( 1)
2 (x1)' ( 1)x
1
3) xdx ln | x | C
3 (ln x)' 1 x 0 x
(ln(x))' 1 x 0 x
dt
mm
这归结为已知dv 求v, dt
由求导运算
( A cost c)' Asist c m
c由初始时刻是静止的 (v(0) 0)确定
•一 原函数与不定积分 • (一)原函数概念
1 定义1 设函数 f与F在区间 I 上有定义,若
F (x)f(x), x I
1 (102x 102x ) 2x c 2 ln 10
例4. 求
c os2
1 x sin2
x
dx
解:
1 dx cos2 x sin2 x
则称函数 F为函数 f 在区间 I 上的一个原函数。
如: (1 x3)' x2, x (,) 3
F(x) 1 x3是x2在(,)上一个原函数 3
再如 : x (,)时
( 1 cos 2x)' ( 1 cos 2x 1)' (sin 2 x)' sin 2x,
2
2
F (x) 1 cos 2x, 1 cos 2x 1,sin2 x是
数学分析第八章 不定积分
第八章 不定积分
§1不定积分的概念与基本积分公式
在第五章我们研究了已知 f,如何求 f 的导数
f 的表达式,得到了一些计算法则,例如:
(f + g) = f + g ,
(f g) = f g + f g ,
(f []) = f []
这些计算方法加上基本初等函数的导数公式, 我们可以解决初等函数的求导问题,即是,若 f
为初等函数, f 的表达式能求出.
我们现在来研究第五章求导问题的逆问题。
问题:在已知 f 的表达式时,f 的表达式是
什么形式呢?
例1 一静止的物体,其质量为m,在力F Asin t
的作用下沿直线运动, 求物体的运动速度。
解:由牛顿第二定理a F Asin t , mm
即
dv a F Asin t
4) exdx ex C
5)
a
xdx
1 ln a
a
x
C
a 0, a 1
4 (ex )' ex
5 (ax )' ln a ax a 0, a 1
6) cos xdx sin x C
6 (sin x)' cos x
7) sin xdx cos x C 7 (cos x)' sin x
(二) 不定积分
1. 定义2:函数f (x)在区间I上的全体原函数, 称 为f 在I上的不定积分,记作
f (x)dx
(3)
积分号 被积函数 积分变量
注1. 符号 f (x)dx 是一个整体记号.
注2. 不定积分与原函数是总体与个体的关系。
设F(x)是f (x)在区间I上的一个原函数,习惯写成
i 1
i 1
例1. 设p(x) a0xn a1xn1 an1x an ,求 p(x)dx
解: p(x)dx
a0 xndx a1 xn1dx an1 xdx an dx
a0 n 1
x n 1
a1 n
xn
an1 2
x2
an x C
例2. 求
x4 1 1 x2 dx
解: