北师大版初中七年级数学上册第5章第4节应用一元一次方程——打折销售教案
最新北师大版七年级数学上册《应用一元一次方程-打折销售》教学设计

数学初一北师大版必修,第5章第4节《应用一元一次方程—打折销售》一、课题:应用一元一次方程—打折销售二、教材分析:本节课是北师大版初一数学第五章第4节,是本章的重点和难点之一,共一课时。
本节课以“打折销售问题”为例展开探索,关键在于搞清成本、售价、标价、利润、利润率等术语的含义,分析“打折销售问题”中的数量关系,建立数学模型,用方程最终解决实际问题,使学生进一步领悟到方程解实际问题的关键是找到“等量关系”。
由于打折销售问题是学生日常生活中常见的问题,可以在课前安排学生进行一次社会调查,让学生深入商店,感受有关打折销售的现实情景,了解成本、售价、标价、利润、利润率等之间的关系,同时由于此类问题所涉及的数量关系及数据较复杂,在讨论数量关系的过程中,学生可能会遇到困难,教师可以出示常用公式:利润=售价-成本,利润率=利润÷本金等,帮助学生分析和找到等量关系,然后引导学生列出方程。
同时,要求学生在解决问题的过程中体验数学与周围世界的联系,以及数学在社会生活中的作用和意义,逐步领会学习数学与个人成长之间的关系,感受成功,增强自信。
三、学情分析:有关打折销售的实际应用问题学生在生活中接触过,在小学的学习中也有初步认识,只是在解法上仅限制用算术方法解,对于运用方程解这类问题还是第一次。
同时,因为打折销售是新教材在一元一次方程的应用中新增加的内容,是发生在学生身边的事情,学生对此的兴趣是很高的,但亲自经历打折销售的往往是少数学生,因此,本节采用小组自主探究课堂教学体系进行教学设计,通过提前让学生进行调查,然后给他们一定的时间和空间进行讨论、交流、质疑,从而达到教学任务、形成能力的目的。
四、教学目标:知识与能力:能力目标: 1、灵活应用一元一次方程解决实际问题的一般步骤。
2、能列出一元一次方程解决打折销售问题。
知识目标:了解销售问题,掌握利润、成本、售价之间的数量关系并识记这些公式。
公式:①商品打x 折出售:是按标价的10x出售。
七年级数学上册第五章一元一次方程4应用一元一次方程__打折销售教案新版北师大版

4 应用一元一次方程——打折销售1.理解成本、售价、利润、利润率之间的关系.2.会列一元一次方程解决有关商品打折销售的问题.重点理解售价、成本、利润、利润率之间的关系.难点列一元一次方程解决有关商品打折销售的问题.一、复习导入教师:列方程解决实际问题的关键是什么呢?学生回答,教师点评.教师:今天,我们学习一元一次方程的一个应用——打折销售.二、探究新知课件出示问题:商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%;另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?教师提示:如果进价大于售价就亏损,反之就盈利.要求学生列出方程,写出解题过程.教师点评,并讲解:本题中,设盈利25%的那件衣服的进价是x元,它的利润就是0.25x元,根据进价+利润=售价,列出方程x+0.25x=60.由此得x=48.类似地,可以设另一件衣服的进价为y元,它的利润是-0.25y元,列出方程y-0.25y =60.由此得y=80.两件衣服的进价是x+y=128元,而两件衣服的售价是60+60=120元,进价大于售价,由此可知卖这两件衣服总共亏损8元.课件出示练习:在商品市场经常可以听到小贩的叫卖声和顾客的讨价还价声:“10元一个的玩具赛车打八折,快来买啊!”“能不能再便宜2元?”如果小贩真的让利2元卖了,他还能获利20%,求一个玩具赛车的进价是多少元?要求学生独立思考后列出方程汇报答案,教师点评.教师:在打折销售问题中的利润、利润率、成本、售价之间有怎样的关系?引导学生得出等量关系:①利润=售价-成本;②利润率=利润成本×100%.教师:通过上面的讲解和练习,你能总结出列一元一次方程解决实际问题的步骤吗?引导学生总结:①分析问题,找出等量关系式;②列出方程,求出方程的解;③验证方程的解是否合理.三、举例分析例(课件出示教材第146页例题)要求学生独立完成后汇报答案,教师点评.四、练习巩固1.教材第146页“随堂练习”.2.某服装店以135元的价格卖出两件衣服,按成本计算,第一件盈利25%,第二件亏损25%,则该商店卖这两件衣服总体上是赚了,还是亏了?这两件衣服的成本价会一样吗?算一算.五、小结1.通过本节课的学习,你有什么收获?2.成本、售价、利润、利润率之间有怎样的关系?3.列一元一次方程解实际问题的步骤有哪些?六、课外作业教材第146页习题5.7第1~4题.本节课是对前面所学的一元一次方程的一个应用——打折销售.对于打折问题,学生在小学阶段已有所接触和认识,本节课是进一步地延伸此知识.在教学过程中,通过由具体实例的分析、思考与合作学习的过程培养学生理论联系实际的辩证唯物主义思想以及善于分析问题、利用知识解决实际问题的良好学习习惯.根据具体问题中的数量关系,形成方程的模型,初步培养学生利用方程的观点认识现实世界的意识和能力.通过分组合作学习的活动,让学生学会在活动中与他人合作,并能与他人交流思维的过程与结果.调动学生学习的积极性和主动性,充分体现“自主、合作、交流、探究”的新课程理念.。
2024秋七年级数学上册第5章一元一次方程5.4应用一元一次方程——打折销售教案(新版)北师大版

1. 拓展阅读材料:
- 《数学与生活》:介绍数学在日常生活中的应用,包括购物打折、银行利息等实际问题。
- 《趣味数学》:通过有趣的故事和实例,引导学生了解一元一次方程在其他方法》:讲解一元一次方程的起源、发展及其在数学体系中的地位,培养学生对数学学科的兴趣。
- 引导学生探索一元二次方程、多元一次方程组等更高级的数学问题。
(3)数学思维方法的拓展:
- 培养学生运用分类讨论、归纳总结等数学思维方法解决问题。
- 引导学生学会用数学建模的方法,将实际问题抽象为数学模型,并运用一元一次方程进行求解。
板书设计
①条理清楚、重点突出、简洁明了:
1. 重点知识点:一元一次方程的定义、性质、求解方法。
2. 自主设计问题批改:评估学生是否能将所学知识应用到实际问题中,问题设计是否合理,解答过程是否清晰。
3. 调查报告批改:检查学生是否能正确收集和分析数据,报告撰写是否规范,分析是否深入。
4. 针对作业中出现的问题,及时给予反馈,指出学生存在的问题,并提供改进建议。
5. 鼓励学生在作业中展现自己的思考和创造力,对优秀作业进行表扬和展示,激发学生的学习积极性。
(4)项目导向学习:设置与打折销售相关的项目任务,引导学生自主探究,培养学生的自主学习能力和实践能力。
2. 教学活动设计:
(1)角色扮演:让学生扮演商家和消费者,模拟真实的购物场景,运用一元一次方程解决打折销售问题。
(2)实验:设计数学实验,让学生通过实际操作,感受一元一次方程在解决实际问题中的应用。
2. 课后自主学习和探究:
- 让学生尝试寻找生活中的其他一元一次方程问题,如票价计算、电话费结算等,并运用所学知识进行求解。
- 鼓励学生利用网络资源、图书馆书籍等途径,了解一元一次方程在其他学科领域的应用,如物理、化学、经济学等。
北师版七年级上册数学教案 应用一元一次方程——打折销售

5.4 应用一元一次方程——打折销售【教学目标】1.使学生经历探索打折销售中的已知量和末知量之间的相等关系,列出一元一次方程解简单的应用题;体验数学知识在现实生活中的应用. 2.使学生进一步了解列出一元一次方程解应用题这种代数方法及其步骤;培养学生的分析问题和解决问题的能力.【重难点预见】重点:用列方程的方法解决打折销售问题。
难点:用列方程的方法解决打折销售问题。
【教学流程】一、知识链接。
1.引例一件衣服标价是200元,现打7折销售。
问:买这件衣服需要多少钱?若已知这件衣服的成本(进价)是115元,那么商家卖出这件衣赚了多少钱?2.议一议:(1)、把下面的“折扣数”化成百分数“六折”“七五折”“八八折”(2)、你是怎样理解某种商品打“六折”出售的?想一想:假如你是商店老板你追求的是什么?公式:利润=卖出价-成本价(或者:利润=销售价-成本价)利润率 = 利润成本×100% 3.算一算:(1)、原价100元的商品打8折后价格为 元;(2)、原价100元的商品提价40%后的价格为 元;(3)、进价100元的商品以150元卖出,利润是 元,利润率是 ;(4)、原价X 元的商品打8折后价格为 元;二、自主教学。
看课本p141—142内容,解决提出的问题。
例1 一家商店将服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?想一想:15元利润是怎样产生的?解:设每件服装的成本价为X 元,(用含X 的代数式表示)那么 每件服装的标价为: ;每件服装的实际售价为: ;每件服装的利润为: ; 由此,列出方程: ; 解方程,得:X= .因此,每件服装的成本价是 元.例 2 某商场将某种商品按原价的8折出售,此时商品的利润率是10%,已知这种商品的进价为1800元,那么这种商品的原价是多少元?解:设商品原价为X元,根据题意,得方程:;解方程,得:X= .因此,这种商品的原价是元.总结:用一元一次方程解决实际问题的一般步骤是什么:(2).设未知数X,并用X表示其它相关的量,根据等量关系列出方程.(3).解方程并验证结果的合理性。
七年级数学上册第5章一元一次方程5.4应用一元一次方程—打折销售教案1(新版)北师大版

5.4 应用一元一次方程——打折销售1.能列出一元一次方程解决打折销售问题.2.了解用一元一次方程解决实际问题的一般步骤.3.进一步建立运用方程解决实际问题的过程,培养逻辑思维能力.一、情境导入1.展示日常生活中的销售实例,学生回忆知识.打折后的商品售价=商品的原标价×折扣数.2.展示常用数量关系:①利润=售价-进价;②利润率=利润/进价×100%;③利润=进价×利润率;④售价=进价+利润=进价+进价×利润率.二、合作探究探究点一:求成本价一件夹克按成本价提高50%后标价,后因季节关系按标价的8折出售,每件以60元卖出,这批夹克每件的成本价是多少元?解析:先用成本价表示出标价,然后根据等量关系:标价×80%=60,列出方程即可.解:设这批夹克每件的成本价为x元,则标价为(1+50%)x元.根据题意,得(1+50%)x·80%=60.解得x=50.答:这批夹克每件的成本价是50元.方法总结:按标价8折出售即按标价的80%出售.探究点二:求折扣书店里每本定价10元的书,成本是8元.为了促销,书店决定让利10%给读者,问该书应打多少折?解析:本题中的利润为10-8=2(元),因为让利10%给读者,所以书店的利润为(1-10%)×2(元),此时的售价为(10×折扣)元.根据商品利润=商品售价-商品进价,就能建立起方程.解:设该书应打x折,根据题意,得10×x10-8=(10-8)×(1-10%). 解得x=9.8.答:该书应打九八折.方法总结:让利10%,即利润为原来的90%.探究点三:求原价某商场节日酬宾:全场8折.一种电器在这次酬宾活动中的利润率为10%,它的进价为2000元,那么它的原价为多少元?解析:本题中的利润为(2000×10%)元,销售价为(原价×80%)元,根据公式建立起方程即可.解:设原价为x元,根据题意,得80%x-2000=2000×10%.解得x=2750.答:它的原价为2750元.方法总结:典例关系:售价=进价+利润,售价=原价×打折数×0.1,售价=进价×(1+利润率).三、板书设计本节课从和我们的生活息息相关的利润问题入手,让学生在具体情境中感受到数学在生活实际中的应用,从而激发他们学习数学的兴趣.根据“实际售价=进价+利润”等数量关系列一元一次方程解决与打折销售有关的实际问题.审清题意,找出等量关系是解决问题的关键.另外,商品经济问题的题型很多,让学生触类旁通,达到举一反三,灵活的运用有关的公式解决实际问题,提高学生的数学能力.。
北师大版七年级数学上册第五章4 应用一元一次方程——打折销售教案

4 应用一元一次方程——打折销售这节课是北师版七年级上第五章第四节的内容,前面已经完成了一元一次方程定义和解法的初步学习,同学们会解方程,能对简单的实际问题建立方程模型,上节课在等积变换问题上应用了列表的方法分析等量关系,学生已经积累了部分活动经验,这节课的学习进一步强化学生的建模意识,能从实际问题中理清数量关系,能把具体情景中等量关系找出来,教学的重点就是列方程,感受方程在解决实际问题中的有效模型作用,难点就是理清销售问题中数量关系,突破难点的手段就是运用合适的方法辅助分析数量关系,让学生感悟各个量之间的关联,同时进一步积累活动经验,提升解决实际问题的能力。
让学生了解商品标价、进价、售价等概念,掌握他们之间的关系,通过商场体验、情景模拟等方式方法感悟概念的内涵,体验商品交易过程中的数学背景,探究商品交易过程中的数学原理,感悟方程建模在实际生活中的有效模型作用,通过合作交流互助,积累活动经验,提升概括销售问题数量关系的能力,进一步建立合作的能力和意识。
学生积累的经验还是很少的,很多概念很生疏,比如标价和售价,利润和利润率等等,概念比较多,开始几个可能还比较容易理解,一旦混在一块,估计很多孩子就会理不清楚,第二就是具体到列方程的过程,如何找关键语句,如何将关键语句数学化数量化,如何清晰的表述他们之间的关系,这些都是教学中会遇到的问题,可以借助上节课的列表分析,课本是用填空的形式把数量一一拽出来,化繁为简,一步一理,分解难点,第一个例题我也想这样,搞清楚了数量关系,其他就好办了,通过两个变式进行强化,最后进行方法的提炼,化解难点,肯定还有生活经验不足的孩子理解有困难,我想课后再组织一次我做推销员的活动课,让孩子进入商场,亲身感受一下。
这节课的重点是建立方程模型,我想视频展示、图片展示,实物展示都需要计算机辅助,另外,设计了两个情景模拟,准备一点道具。
首先是兴趣激发,通过视频和图片展示,让孩子平时常见的打折促销的情景再现在学生脑海,激发学生的探究欲望,这里面有什么样的数学知识呢,整个教学过程的线索就是了解生活的促销方法-----体验商品的促销过程-------认识商品销售中的相关概念----------分析商品交易过程中的数量关系--------建立方程解决销售问题(列方程)---------体验方程的有效模型作用(变式训练+编一道应用题)------方法归纳--------方法应用(练习+小测)1、展示拍摄的视频和图片。
北师大版数学七年级上册5.4《应用一元一次方程——打折销售》名师教案

示范教案教学重点与难点教学重点:学会用一元一次方程解简单的打折销售问题,经历用方程解决实际问题的过程.教学难点:正确分析打折销售问题的数量关系列出方程.学情分析认知基础:通过上节课的学习,学生已经历运用方程解决实际问题的过程,知道寻找等量关系是解决问题的关键.《打折销售》是学生学习了代数式、简易方程及一元一次方程的解法后一个理论联系实际的最好教材,也是前一部分知识的应用与巩固.打折销售是生活中常见的但不是很熟悉的一个问题,学生缺少丰富的生活体验,因此布置学生进行课前调查很有必要.学生根据切身体会和实践经验体会应用一元一次方程解决实际问题的过程,更为深刻.活动经验基础:学生具备良好的合作交流意识,能在学习过程中积极思考、大胆实践、勇于探索、敢于创新,并在解决问题的过程中积累了一定的方法技巧和数学活动经验.教学目标1.使学生经历探索打折销售中的已知量和未知量之间的相等关系,列出一元一次方程解简单的应用题;体验数学知识在现实生活中的应用.2.使学生进一步了解列出一元一次方程解应用题这种代数方法;培养学生的分析问题和解决问题的能力.教学方法由于“打折销售”是学生日常生活中常见的问题,尤其是生活在城市的学生,所以如果有条件的话,可以在课前安排学生进行一次社会调查,让学生深入商店,感受打折销售的现实情境.通过情景剧引入新课,学生在研讨分析中明白折扣的含义,进一步了解利润、售价、成本价的关系,同时也调动了学生的学习热情和求知欲.基础演练——实践应用——巩固提高的层层递进的学习过程,学生可以在教师指导下结合具体情境发现和解决数学问题,体验数学与日常生活的密切联系.教学过程一、课前调查设计说明亲身体验,感受数学与社会生活的联系,了解打折销售的基本概念,为上课作知识铺垫和感性经验,为课后练习打下坚实的基础,同时培养学生走向社会、适应社会的能力.活动目的:了解有关打折销售的知识以及广大消费者对打折销售是否能得到实惠的看法.活动地点:各商店或各大商场.活动方式:以学习小组为单位分工协作:一部分学生运用摄像、拍照等手段对商场的广告牌、标语等进行记录;一部分学生采用口头交流等方式对消费者、营业员进行随访调查;组长组织组员对数字信息进行归纳总结,并准备素材汇报调查结果.教学说明由于“打折销售”是学生日常生活中常见的问题,在课前安排学生进行一次社会调查,让学生深入商店、商场,感受打折销售的现实情境,对商场出现的折扣进行了解,明白折扣的含义,进一步了解利润、售价、成本价的关系,同时要求学生在感受体验的过程中能提出数学问题.二、情境引入设计说明教师从学生课前调查的兴趣点出发,安排几名学生进行类似商业活动的表演,激发学生强烈的好奇心和求知欲,让抽象的数学概念具体化,让学生通过观看形象直观的表演来感受和体会.教师直入主题:这节课我们学习“打折销售”,通过课前调查,同学们对本节课产生了浓厚的兴趣,非常想弄清楚打折销售到底给消费者带来了多少实惠,商家到底还有多少利可赚.要想弄清楚这些问题,就要弄明白打折销售的一些相关概念,以及它们之间的内在联系.情景剧:教师(批发商)桌前摆出一盒铅笔,旁边立一小牌:只批发,不零售,每捆10支,一捆1.6元.学生甲(小商贩)肩背一尼龙编织袋上场批发铅笔:“我批发10捆,共16元.”(他背回批发的商品,将铅笔包装拆开散放到一个纸盒中,把写有“每只0.25元”字样的纸牌贴于纸盒前,在教室里来回走动,进行零售叫卖.学生乙(消费者)走向前看了看价格说:“铅笔价格贵点了,便宜点吧?”学生甲回答:“小本买卖没几分利,你多买点,我给你八折优惠,0.20元一支.”学生乙掏出一元钱买走了5支铅笔.学生丙提出问题:在刚才的表演中,铅笔的成本价、标价、实际售价、利润分别是多少?它们之间有什么等量关系?你是怎么理解商品“八折优惠”的?小商贩在这笔买卖中获得利润率是多少?教学说明教师了解各小组课前调查情况,整体把握学生对成本价、现价、几折优惠、利润等基本概念的认识程度,组织编排情景剧,为学生更好的掌握这些基本概念以及它们之间的内在联系提供直观的感性素材.三、研讨分析设计说明通过小组内讨论交流,明确情境剧中涉及各量的含义,理顺各量之间的关系,为解决实际问题作好铺垫.学生通过分组讨论,加上课前调查积累的经验很容易得出“0.16元是成本价、0.25元是标价、0.20元为打折后的实际售价、一支铅笔所获利润为0.20-0.16=0.04元.根据学生对这些概念的理解,教师可作适当补充: 成本价又称进价或本金,是指商家为销售而购进货物时的价钱;标价是指商家出售商品时所标明的价格,不一定是实际卖出的价格,有时称作原价;售价是指商品成交时的实际价格;利润是指商品售价与进价之间的差额,即利润=售价-进价,一般情况下,商家不做无利的买卖;打折即买卖货物时,降低商品的定价,打几折就是按原标价的十分之几售出商品. 它们之间的关系有:成本价0.16元+提高的价钱=标价0.25元;标价0.25元×打折数810=折后售价0.20元; 实际售价0.20元-成本价0.16元=利润0.04元;利润0.04元成本0.16元×100%=利润率25%.(因此,利润=成本×利润率) 在刚才的表演中,商贩进行的“八折优惠”的意思是按标价0.25元的0.8倍出售,即每支铅笔的售价为0.25×0.8=0.20元.小商贩在这笔买卖中获得的利润率为每支铅笔获得利润0.04元每支铅笔的成本0.16元×100%=25%. 教学说明教师参与学生交流,根据学生生活经验和课前调查的感性积累,学生不难理解打折销售的基本概念,而对于它们之间的内在联系的建立,学生存在个体差异,教师对部分学生可单独进行指导,为应用题解题确定已知量和未知量的等量关系排忧解难.四、典例解析设计说明进一步体验“打折销售”问题的分析与解决过程,规范列一元一次方程解应用题的格式与步骤.例 某商场将某种商品按原价的8折出售,此时商品的利润率是10%.已知这种商品的进价为1 800元,那么这种商品的原价是多少?分析:利润率=利润成本=售价-成本成本,在解决这类问题的过程中,要抓住这个等量关系.由于本例中只提到售价、进价和利润率,因此我们可以用“进价”代替“成本”.解:设商品原价是x 元,根据题意,得80%x -1 8001 800=10%. 解这个方程,得x =2 475.因此,这种商品的原价为2 475元.教学说明教师组织学生积极讨论、交流与展示,从多角度领会利润率的计算方法,掌握“打折销售”问题的常见类型,不断提升分析问题与解决问题的能力,养成良好的解题习惯. 五、基础演练设计说明利用填空题进行基本概念的练习,熟练应用基本等量关系解题.1.一件商品的进价为45元,利润为10元,则售价应为__________元.2.一件衣服的售价为130元,进价为80元,则利润为__________元.3.一件商品的标价为50元,现以八折销售,售价为__________元;如果进价为32元,则它的利润为__________元,利润率是__________. 4.一块手表的成本价是70元,利润率是30%,则这块手表的利润是__________元,售价应是__________元.5.一部小灵通的利润为150元,售价为600元,则这部小灵通的成本价是__________元,利润率为__________.6.一款诺基亚手机原价1 080元,现在打折促销,售价为810元,则商家打______折销售.答案:1.55 2.50 3.40 8 25% 4.21 91 5.450 33.33% 6.7.5教学说明教学时使用课件展示,增大课堂容量和密度.鼓励学生独立思考解题,先找出问题中的等量关系,再列式解答,学生讲解反馈.这些问题的顺利解答,强化了打折销售问题中基本概念和基本关系的理解应用,学生解决应用问题便水到渠成了.第6题在解答中易出现下面错误:设商家打x 折销售,则1 080x =810,x =0.75.教师要注意及时设疑、纠错,注意打折数的含义的强化及在计算中的正确表达.六、总结反思本节课你有什么感受和收获?1.知道了打折、利润的含义,了解了利润、售价、成本价之间的关系,学会了利润率的计算方法.2.对于一些实际问题,可以选设未知数,并表示其他未知量,利用一般等量关系(如公式等)构建一元一次方程求解.3.用方程模型可以帮助我们解决商品营销中的打折问题,数学来源于生活,服务于生活.评价与反思这堂课在学生进行商场调查,有一定感性认识的基础上,从最简单的问题着手,让学生理解打折销售中常见的名称及相互关系,为后续的学习打下坚实的基础.通过适当改变实际背景让学生从多方面体会打折销售中的各种数量关系,逐步领悟运用一元一次方程解决实际问题的一般步骤,教学效果较好.教学过程中学生通过体验商业活动、提出数学问题、解决实际问题,感受到数学来源于生活、数学服务于生活,数学与社会生活的密切联系.教学过程各环节环环相扣、层层递进,每一个教学环节都是下一个环节的有力铺垫.。
七年级数学上册 第五章 一元一次方程 5-4 应用一元一次方程—打折销售学案北师大版

七年级数学上册第五章一元一次方程 5-4 应用一元一次方程—打折销售学案北师大版教师寄语:成功的人是跟别人学习经验,失败的人只跟自己学习经验一、学习目标——目标明确、行动有效1. 通过分析打折销售中的数量关系,经历应用方程解决实际问题的过程;2. 了解商品销售中相关概念的含义,通过分析打折销售中的数量关系,利用成本、售价、标价、利润、利润率之间的关系,列方程解决实际问题.课标要求:能够根据具体问题中的数量关系,列出方程,体会方程是刻画现实世界的一个有效的数学模型.二、温馨提示——方法得当,事半功倍学习重点:运用方程解决实际问题,了解用一元一次方程解决实际问题的一般步骤.学习难点:对商品销售价、成本价、利润之间关系的理解.三、课前热身——温故而知新解下列方程:⑴⑵()()x x+⨯-=+150%80%100300+⨯-=()x120%120%96四、课堂探究——质疑解疑、合作探究探究点1:商品的成本例题:一家商店将某种服装按成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少?(1)商品的利润= 元,利润率=___________.(2)设每件服装的成本价为X元,根据题意得:每件服装的标价为___________.每件服装的实际售价为___________元.每件服装的利润为___________元.由利润是15元,可得方程为___________ ,解得X=___________.练习:1.一件商品按成本价提高40%后标价,再打8折(标价的80%)销售,销售价为240元,设这件商品成本价为元,根据题意,下列所列的方程正确的是()xA.40%×80%=240 B.240×40%×80%= x xC.80%×(1+40%)=240 D.40%=240×80%x x 2.一件衣服标价132元,若以9折降价出售,仍可获利10%,•则这件衣服的进价是()A.106元 B.105元C.118元 D.108元探究点2:商品的利润例题:一件商品的成本是200元,提高30%后标价,然后打9折销售,则这件商品的利润为_______元.练习:一件商品按成本提高50%后标价,再打8折销售,售价为600元,则这件商品的利润为_______元.探究点3:求商品的利润率例题:某超市将每台空调先按进价提高40%标出售价,然后再以售价的八折优惠出售,结果每台空调赚了300元,求该超市出售空调的利润率是多少?练习:甲商品的进价是1 400元,按标价1700元的9折出售;乙商品的进价是400元,•按标价560元的8折出售,两种商品_______利润率较高些?探究点4:商品的打折数例题:一件商品,如果它的标价为1000元,进价600元,为了保证利润不低于10%,最低可打几折销售?练习:某商品进价为2000元,标价为3000元,商店要求以利润率不低于5%的售价打折出售,售货员最低可以打_____折出售此商品?探究点5:商品的标价(原价)例题:商店对某商品进行调价,按原价的8折出售,仍可获利10%,此商品的进价为160元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.4应用一元一次方程——打折销售
1.能列出一元一次方程解决打折销售问题.
2.了解用一元一次方程解决实际问题的一般步骤.
3.进一步建立运用方程解决实际问题的过程,培养逻辑思维能力.
一、情境导入
1.展示日常生活中的销售实例,学生回忆知识.打折后的商品售价=商品的原标价×折扣数.
2.展示常用数量关系:①利润=售价-进价;②利润率=利润/进价×100%;③利润=进价×利润率;④售价=进价+利润=进价+进价×利润率.
二、合作探究
探究点一:求成本价
一件夹克按成本价提高50%后标价,后因季节关系按标价的8折出售,每件以60
元卖出,这批夹克每件的成本价是多少元?
解析:先用成本价表示出标价,然后根据等量关系:标价×80%=60,列出方程即可.
解:设这批夹克每件的成本价为x元,则标价为(1+50%)x元.
根据题意,得(1+50%)x·80%=60.
解得x=50.
答:这批夹克每件的成本价是50元.
方法总结:按标价8折出售即按标价的80%出售.
探究点二:求折扣
书店里每本定价10元的书,成本是8元.为了促销,书店决定让利10%给读者,问该书应打多少折?
解析:本题中的利润为10-8=2(元),因为让利10%给读者,所以书店的利润为(1-10%)×2(元),此时的售价为(10×折扣)元.根据商品利润=商品售价-商品进价,
就能建立起方程.
解:设该书应打x折,根据题意,得
10×x
10-8=(10-8)×(1-10%).
解得x=9.8.
答:该书应打九八折.
方法总结:让利10%,即利润为原来的90%.
探究点三:求原价
某商场节日酬宾:全场8折.一种电器在这次酬宾活动中的利润率为10%,它的进
价为2000元,那么它的原价为多少元?
解析:本题中的利润为(2000×10%)元,销售价为(原价×80%)元,根据公式建立起方程即可.
解:设原价为x元,根据题意,得
80%x-2000=2000×10%.
解得x=2750.
答:它的原价为2750元.
方法总结:典例关系:售价=进价+利润,售价=原价×打折数×0.1,售价=进价×(1+利润率).
三、板书设计
本节课从和我们的生活息息相关的利润问题入手,让学生在具体情境中感受到数学在生活实际中的应用,从而激发他们学习数学的兴趣.根据“实际售价=进价+利润”等数量关系列一元一次方程解决与打折销售有关的实际问题.审清题意,找出等量关系是解决问题的关键.另外,商品经济问题的题型很多,让学生触类旁通,达到举一反三,灵活的运用有关的公式解决实际问题,提高学生的数学能力.。