分数指数幂练习
高中数学分数指数幂练习题(带答案)
高中数学分数指数幂练习题(带答案)高中数学分数指数幂练习题(带答案)数学必修1(苏教版)2.2 指数函数2.2.1 分数指数幂在初中我们已经知道:若x2=a,则x叫做a的平方根,同理,若x3=a,则x叫做a的立方根.根据平方根、立方根的定义,正实数的平方根有两个,它们互为相反数,如4的平方根为2,负数没有平方根,一个数的立方根只有一个,如-8的立方根为-2;零的平方根、立方根均为零,那么类比平方根、立方根的概念,n次方根的概念是什么呢?基础巩固1.下列各式中,对xR,nN*恒成立的是()A.nxn=xB.n|x|n=xC.(nx)n=x D.2nx2n=|x|解析:nxn=x,n为奇数|x|,n为偶数.答案:D2.设a=424,b=312,c=6,则a,b,c的大小关系是() A.ac B.baC.ba D.ac解析:将根指数化为相同,再比较被开方数.答案:D3.式子3+5+3-5的化简结果为()解析:原式=3+2+3-2=23.答案:239.化简:(-+1)(++1)(x-+1)=________. 解析:原式=[( +1)2-( )2](x-+1)=(x+1+ )(x-+1)=(x+1)2-( )2=x2+x+1.答案:x2+x+110.36a9463a94的结果是________.解析:[ ]4[ ]4==a2+2=a4.答案:a411.用分数指数幂表示4a3aa=________.解析:原式==答案:12.若m=(2+3)-1,n=(2-3)-1,则(m+1)-2+(n+1)-2=________.解析:∵m=2-3,n=2+3,原式=13-32+13+32=112-63+112+63==162+3+2-3=46=23.答案:2313.()(-)6(-)=________.解析:原式=-2-3 = .答案:14.计算: 33yx3x2y(x0).解析:原式=能力提升15.82+122+124+128+1+1=________.解析:(2+1)(22+1)(24+1)(28+1)+1=(2-1)(2+1)(22+1)(24+1)(28+1)+1=(22-1)(22+1)(24+1)(28+1)+1=(24-1)(24+1)(28+1)+1=(28-1)(28+1)+1=216-1+1=216.原式=22=4.答案:416.化简:a3b23ab2a14b1243ba(a,b0)的结果是________.解析:原式====ab.答案:ab17.x12,2,则4x2-4x+1+2x2-4x+4=________.解析:原式=|2x-1|+2|x-2|=2x-1+2(2-x)=2x-1+4-2x=3.答案:318.已知a= (nN*),求(a2+1+a)n的值.解析:∵a=,a2+1=+1a2+1+a=+ .(a2+1+a)n=2019.19.已知a2x=2+1,求a3x+a-3xax+a-x的值.解析:原式==a2x+a-2x-1=2+1+12+1-1=2+2-1=22-1. xKb 1. Com20.设x=3a+a2+b3+3a-a2+b3,求x3+3bx-2a的值.解析:设u=3a+a2+b3,v=3a-a2+b3,则x=u+v,u3+v3=2a,uv=3a2-a2+b3=-b.x3=(u+v)3=u3+u3+3uv(u+v)=2a-3bx,x3+3bx-2a=0.21.化简:- .解析:原式=-=-2 =-23xyxy.22.化简:+- .解析:原式看上去比较复杂,不易发现项与项之间、分子与分母之间的关系,如令b=,式子就变得简单些了.令b=,即a=b3,原式=b3-1b2+b+1+b3+1b+1-b3-bb-1=+-=b-1+b2-b+1-b2-b=-b=- .。
分数指数幂练习题
分数指数幂练习题分数、指数和幂是数学中非常重要的概念,它们在各个领域中都有广泛的应用。
本文将通过一系列练习题来帮助读者巩固和加深对分数、指数和幂的理解。
1. 简化下列分数:(1/2)^3解析:(1/2)^3 = 1/2 * 1/2 * 1/2 = 1/82. 计算下列指数:2^4解析:2^4 = 2 * 2 * 2 * 2 = 163. 计算下列幂:(-3)^2解析:(-3)^2 = (-3) * (-3) = 94. 简化下列分数:(3/4)^2解析:(3/4)^2 = 3/4 * 3/4 = 9/165. 计算下列指数:5^0解析:任何非零数的0次方都等于1,所以5^0 = 16. 计算下列幂:(-2)^3解析:(-2)^3 = (-2) * (-2) * (-2) = -8通过以上的练习题,我们可以看到分数、指数和幂的运算规律。
在分数的指数运算中,分子和分母都会被指数影响,而在指数和幂的运算中,底数会被指数影响。
接下来,我们将继续探索一些更加复杂的练习题。
7. 简化下列分数:(2/3)^-2解析:分母的指数为负数时,可以将其转化为分子的指数为正数,即(2/3)^-2= (3/2)^2 = 9/48. 计算下列指数:(-1/2)^3解析:(-1/2)^3 = -1/2 * -1/2 * -1/2 = -1/89. 计算下列幂:(4/5)^-1解析:分母的指数为负数时,可以将其转化为分子的指数为正数,即(4/5)^-1= (5/4)^1 = 5/410. 简化下列分数:(1/2)^0解析:任何非零数的0次方都等于1,所以(1/2)^0 = 111. 计算下列指数:(-3)^4解析:(-3)^4 = (-3) * (-3) * (-3) * (-3) = 8112. 计算下列幂:(-4/5)^2解析:(-4/5)^2 = (-4/5) * (-4/5) = 16/25通过以上的练习题,我们可以进一步巩固对分数、指数和幂的运算规律的理解。
初中数学分数指数幂练习题(含解析)
分数指数幂1.下列命题中,正确命题的个数是__________. ①n a n =a ②若a ∈R ,则(a 2-a +1)0=1 ③3x 4+y 3=x 43+y ④3-5=6(-5)22.下列根式、分数指数幂的互化中,正确的序号是__________. ①-x =(-x)12(x ≠0) ②x x =x 34 ③x -13=-3x ④3x·4x =x 112⑤(x y )-34=4(y x )3(xy ≠0) ⑥6y 2=y 13(y<0)3.若a =2,b =3,c =-2,则(a c )b =__________.4.根式a a 的分数指数幂形式为__________.5.4(-25)2=__________.6.2-(2k +1)-2-(2k -1)+2-2k 的化简结果是__________.7.(1)设α,β是方程2x 2+3x +1=0的两个根,则(14)α+β=__________.(2)若10x =3,10y =4,则10x -12y =__________.8.(1)求下列各式的值:①2723②(614)12③(49)-32(2)解方程:①x -3=18②x =914.(1)(0.027)23+(12527)13-(279)0.5(2)(13)12+3·(3-2)-1-(11764)14-(333)34-(13)-1.10.已知a 12+a -12=4,求a +a -1的值.(1)5x -23y 12(-14x -1y 12)(-56x 13y -16)(2)m +m -1+2m -12+m 12.12.[(-2)2]-12的值是__________.13.化简(36a 9)4·(63a 9)4的结果是__________.14.以下各式,化简正确的个数是__________.①a 25a -13a -115=1②(a 6b -9)-23=a -4b 6 ③(-x 14y -13)(x -12y 23)(-x 14y 23)=y④-15a 12b 13c -3425a -12b 13c 54=-35ac15.(2010山东德州模拟,4改编)如果a 3=3,a 10=384,则a 3[(a 10a 3)17]n 等于__________.16.化简3(a -b )3+(a -2b )2的结果是__________.17.下列结论中,正确的序号是__________.①当a<0时,(a 2)32=a 3 ②n a n =|a|(n>1且n ∈N *)③函数y =(x -2)12-(3x -7)0的定义域是(2,+∞)④若100a =5,10b =2,则2a +b =118.(1)若a =(2+3)-1,b =(2-3)-1,则(a +1)-2+(b +1)-2的值是__________.(2)若x >0,y >0,且x(x +y)=3y(x +5y),则2x +2xy +3y x -xy +y的值是__________.19.已知a =2 0091n -2 009-1n2(n ∈N *),则(a 2+1+a)n 的值是__________.20.若S =(1+2-132)(1+2-116)(1+2-18)(1+2-14)(1+2-12),那么S 等于__________.21.先化简,再求值: (1)a 2·5a 310a 7·a ,其中a =8-53;(2)a 3x +a -3xa x +a-x ,其中a 2x =5.22.(易错题)计算:(1)(235)0+2-2·(214)-12-(0.01)0.5(2)(279)0.5+0.1-2+(21027)-23-3π0+3748(3)(0.008 1)-14-[3×(78)0]-1×[81-0.25+(338)-13]-12-10×0.02713.23.已知x 12+x-12=3,求x32+x-32+2x2+x-2+3的值.24.化简下列各式:(1)x -2+y -2x -23+y -23-x -2-y -2x -23-y -23(2)a 43-8a 13b a 23+23ab +4b 23÷(1-23b a )×3a.答案与解析基础巩固1.1 ∵n a n =⎩⎪⎨⎪⎧a ,当n 为奇数时,|a|,当n 为偶数时,∴①不正确; ∵a ∈R ,且a 2-a +1=(a -12)2+34≠0,∴②正确; ∵x 4+y 3为多项式,∴③不正确;④中左边为负,右边为正显然不正确.∴只有②正确.2.②⑤ ①-x =-x 12,∴①错; ②x x =(x x)12=(x·x 12)12=(x 32)12=x 34,∴②对; ③x -13=1x 13=13x ,∴③错; ④3x·4x =x 13·x 14=x 13+14=x 712, ∴④错;⑤(x y )-34=(y x )34=4(y x)3, ∴⑤对;⑥6y 2=|y|13=-y 13(y<0),∴⑥错. ∴②⑤正确.3.164 (a c )b =a bc =23×(-2)=2-6=126=164. 4.a 32 a a =a·a 12=a1+12=a 32. 5.54(-25)2=4252=454=5. 6.-2-(2k +1)∵2-(2k +1)-2-(2k -1)+2-2k =2-2k ·2-1-2-2k ·21+2-2k =(12-2+1)·2-2k =-12·2-2k =-2-(2k +1). 7.(1)8 (2)32 (1)由根与系数的关系,得α+β=-32,∴(14)α+β=(14)-32=(2-2)-32=23=8. (2)∵10x =3,10y =4,∴10x -12y =10x ÷1012y =10x ÷(10y )12=3÷412=32. 8.解:(1)①2723=(33)23=33×23=32=9. ②(614)12=(254)12=[(52)2]12=(52)2×12=52. ③(49)-32=(23)2×(-32)=(23)-3=(32)3=278. (2)①∵x -3=18=2-3,∴x =2. ②∵x =914,∴(x)2=(914)2=912.∴x =(32)12=3. 9.解:(1)原式=(0.33)23+(12527)13-(259)12=9100+53-53=9100. (2)原式=3-12+33-2-(8164)14-(3-23)34-31 =33+3(3+2)-[4(34)4]14-3-12-3 =33+3+6-2·34-33-3 =6-342. 10.解:∵a 12+a -12=4.∴两边平方,得a +a -1+2=16.∴a +a -1=14. 11.解:(1)原式=245×5×x -23+1-13×y 12-12+16=24x 0y 16=24y 16; (2)原式=(m 12)2+2m 12·m -12+(m -12)2m -12+m 12=(m 12+m -12)2m 12+m -12=m 12+m -12. 能力提升12.22 原式=2-12=12=22. 13.a 4 原式=(3a 96)4·(6a 93)4=(a 32×13)4·(a3×16)4=(a 12)4·(a 12)4=a 2·a 2=a 4. 14.3 由分数指数幂的运算法则知①②③正确;对④,∵左边=-35a 12+12b 13-13c -34-54=-35a 1b 0c -2=-35ac -2≠右边,∴④错误. 15.3·2n 原式=3·[(3843)17]n =3·[(128)17]n =3·(27×17)n =3·2n . 16.b 或2a -3b 原式=a -b +|a -2b|=⎩⎪⎨⎪⎧ a -b +2b -a ,a <2b a -b +a -2b ,a ≥2b =⎩⎪⎨⎪⎧b ,a <2b ,2a -3b ,a ≥2b.17.④ ①中,当a <0时,(a 2)32=[(a 2)12]3=(|a|)3=(-a)3=-a 3, ∴①不正确;当a <0,n 为奇数时,n a n =a , ∴②不正确;③中,有⎩⎪⎨⎪⎧ x -2≥0,3x -7≠0,即x ≥2且x ≠73,故定义域为[2,73)∪(73,+∞), ∴③不正确;④中,∵100a =5,10b =2,∴102a =5,10b =2,102a ×10b =10.∴2a +b =1.∴④正确.18.(1)23 (2)3 (1)a =12+3=2-3,b =12-3=2+3, ∴(a +1)-2+(b +1)-2=(3-3)-2+(3+3)-2=1(3-3)2+1(3+3)2=(3+3)2+(3-3)2(3-3)2·(3+3)2 =32+2·3·3+3+32-2·3·3+3[(3-3)(3+3)]2=2×9+6(9-3)2=2436=23. (2)由已知条件,可得(x)2-2xy -15(y)2=0,∴x +3y =0或x -5y =0.∵x >0,y >0,∴x =5y ,x =25y.∴原式=50y +225y 2+3y 25y -25y 2+y =50y +10y +3y 25y -5y +y =63y 21y=3. 19.2 009 ∵a =2 0091n -2 009-1n 2,∴a 2+1=1+2 0092n +2 009-2n -24=(2 0091n )2+2+(2 009-1n )24=(2 0091n +2 009-1n 2)2.∴a 2+1+a =2 0091n +2 009-1n 2+2 0091n -2 009-1n 2=2 0091n. ∴(a 2+1+a)n =(2 0091n)n =2 009. 20.12(1-2-132)-1 原式=(1-2-132)(1+2-132)(1+2-116)(1+2-18)(1+2-14)(1+2-12)1-2-132=(1-2-116)(1+2-116)(1+2-18)(1+2-14)(1+2-12)1-2-132=(1-2-18)(1+2-18)(1+2-14)(1+2-12)1-2-132=(1-2-14)(1+2-14)(1+2-12)1-2-132=(1-2-12)(1+2-12)1-2-132=1-2-11-2-132=12(1-2-132)-1. 21.解:(1)原式=a2+35-710-12=a 75=(8-53)75=8-73=(23)-73=2-7=1128. (2)原式=(a x )3+(a -x )3a x +a -x =(a x +a -x )(a 2x -a x ·a -x +a -2x )a x +a -x=a 2x -1+a -2x =5-1+15=415. 22.解:(1)原式=1+14·(49)12-(1100)12=1+14×23-(110)2×12=1+16-110=1115. (2)原式=(259)12+(110)-2+(6427)-23-3×1+3748=53+100+(43)-2-3+3748=53+100+916-3+3748=100. (3)原式=[(0.3)4]-14-3-1×[(34)-14+(278)-13]-12-10×[(0.3)3]13=0.3-1-13[3-1+(32)-1]-12-10×0.3=103-13(13+23)-12-3=103-13-3=0.23.解:∵x 12+x -12=3,∴(x 12+x -12)2=9.∴x +x -1=7. ∴原式=(x 12)3+(x -12)3+2x 2+x -2+3=(x 12+x -12)(x -1+x -1)+2(x +x -1)2-2+3=3×(7-1)+272-2+3=25.- 11 -拓展探究24.解:(1)原式=(x -23)3+(y -23)3x -23+y -23-(x -23)3-(y -23)3x -23-y -23=(x -23)2-x -23·y -23+(y -23)2-(x -23)2-x -23·y -23-(y -23)2=-2(xy)-23. (2)原式=a 13[(a 13)3-(2b 13)3]a 23+2a 13b 13+(2b 13)2÷(1-2b 13a 13)×a 13 =a 13(a 13-2b 13)[a 23+2a 13b 13+(2b 13)2]a 23+2a 13b 13+(2b 13)2÷a 13-2b 13a 13×a 13=a 13(a 13-2b 13)·11×a 13a 13-2b 13×a 13=a 13·a 13·a 13=a.。
(完整版)分数指数幂练习题.docx
分数指数幂1.下列命题中,正确命题的个数是.① n n = a 2 0= 1 a ② 若 a ∈R ,则 (a -a + 1) ③ 3 x + y = x + y ④ 3 - 5=6- 5243432.下列根式、分数指数幂的互化中,正确的序号是.1(x ≠ 0) ②x x = x 3③ x - 1 =- 3341x )- 3 = ① - x = (- x)4 3 x④ x · x = x12 ⑤ ( 42y 4y 3⑥621(xy ≠ 0)y =y (y<0)x3c b3.若 a = 2, b = 3, c =- 2,则 (a ) = __________. 4.根式 aa 的分数指数幂形式为.4 25.- 25 = __________.- (2k +1)-(2k - 1)-2k6. 2- 2 + 2 的化简结果是. 7. (1)设 α, β是方程 2x 21 + +3x + 1= 0 的两个根,则 ( ) α β= __________.4 x y 1 (2)若 10 = 3,10 = 4,则 10x - 2y = __________. 8. (1)求下列各式的值: 2 1 14 3 ① 27 ; ②(6 ) ; ③ ( )- .3 4 29 2 -31 1 (2)解方程: ① x=8;② x = 94.9.求下列各式的值:2125 1 7 0.5(1)(0.027) 3+ ( 27 )3- (29) ;1 117 13- 1 3 3 1 -1 (2)(3)2+3·( 3-2) - (164)4- (3 )4- (3) .11-110.已知 a2+a-2= 4,求 a+ a的值.11.化简下列各式:2 15x-3y2(1)1 -1 1 5 1 1;-4x y2-6 x3y-6m+ m -1+ 2(2)1 1 . m-2+m 2.2112. [(- 2) ] -2的值是.36369494的结果是.13.化简 ( a ) ·( a )14.以下各式,化简正确的个数是.211①a5a-3 a-15= 16- 92-46②(a b)-= a b3111212③(- x4y-3)(x-2 y3)(- x4y3)= y 1 1 3-15a 2b3c-43④1 1 5=-5ac25a - b c2 3 415. (2010 山东德州模拟, 4 改编 )如果 a3= 3, a10=384 ,则 a3[(a101 n.a) ] 等于316.化简3a- b3a- 2b2.+的结果是17.下列结论中,正确的序号是.233①当 a<0 时, (a ) = a2②na n= |a|(n>1 且 n∈ N * )10③函数 y= (x-2)- (3x- 7) 的定义域是 (2,+∞ )2④若 100a= 5,10b= 2,则 2a+ b =118. (1) 若 a= (2+- 1-1- 2+ (b+ 1)- 2.3) , b = (2-3),则 (a+ 1)的值是.(2)若 x> 0, y> 0,且 x(x+y)= 3y( x+ 5y),则2x+ 2xy+ 3y的值是.x- xy+ y112 009 n- 2 009 -n*2+1 +a)n.19.已知 a=(n∈ N ),则 ( a的值是21111120.若 S= (1+2-32 )(1+ 2-16)(1+ 2-8)(1+ 2-4)(1+ 2-2),那么 S 等于.21.先化简,再求值:2535a · a(1),其中 a=8 -3;107a · a3x- 3xa + a2xx- x22.(易错题 )计算:3 0- 2 1 10.5(1)(25) + 2 ·(24)-2- (0.01);7 0.5- 210 2037 (2)(29) + 0.1+ (227)-3- 3π+48;17 0-1[81- 0.253111(3)(0.008 1) --[3× ( ) ]×+ (3 )- ]-- 10×0.027 .4883233311x2+ x-2+ 223.已知 x2+x-2= 3,求x2+x-2+3的值.24.化简下列各式:x- 2- 2- 2- 2+ yx- y(1)22-22;x - 3+ y - 3 x - 3- y - 341(2)a 3-8a 3b3 b3 a.÷(1- 2)× 23 2aa + 2 ab + 4b 33答案与解析基础巩固nna ,当 n 为奇数时, 1. 1 ∵ a =|a|,当 n 为偶数时,∴① 不正确;21 23∵a ∈ R ,且 a - a + 1= (a - ) + ≠0 ,∴② 正确;4 3∵ x + y 为多项式, ∴③ 不正确; ④中左边为负,右边为正显然不正确. ∴只有 ② 正确.12.②⑤ ① - x =- x 2, ∴① 错;1 1 1 3 1 3② x x = (x x) = (x ·x ) = (x ) = x , ∴② 对;2 2 2 2 2 41 1 1 ③ x -3= 1=, ∴③ 错;x 3 3x④ 34 1 1 1 1 7x · x = x ·x 4= x + = x ,3 3412∴④ 错;x3 y 3= 4y 3⑤( )- = ( )x ,y4 x 4∴⑤ 对;⑥ 6211y = |y|3 =- y 3(y<0) , ∴⑥ 错.∴②⑤ 正确.3. 1c bbc3×(- 2)- 61 1(a ) = a=2 = 2 = 6=.642 643 11 34. a 2 a a = a ·a 2= a1+2= a 2.5. 5 - 25 = 4 25 = 45 = 5.4 2 2 46.- 2- (2k + 1)- (2k + 1)- (2k - 1)-2k -2k -1- 2k1-2k1 - 2k1 - 2k∵ 2- 2+2= 2·2 - 2 ·2 + 2 =( - 2 + 1)·2 =-2 ·22=- 2 -(2k + 1).337. (1)8(2)2 (1)由根与系数的关系,得 α+ β=- 2 ,1 +1 3 - 23 3∴( ) α β)- = 2 =8.= ( )- = (244 22xy1x1 xy 11 3(2)∵ 10 = 3,10 = 4, ∴ 10x - 2y = 10 ÷102y =10 ÷(10 )2= 3÷42= 2.2 3 2 2 28.解: (1)① 273= (3 )3= 33×3 = 3 = 9.1 1 25 1② (64 )2 =( 4 )25 2 15 15 = [( 2) ]2 = (2)2× 2= 2.432 3③ (9)- 2= (3)2× (- 2)2 - 33 327 =(3) = (2) = 8 . - 3 1 - 3(2)①∵ x = 8= 2 , ∴x = 2.②∵ x = 9 1 , 4∴( 2 1 21 x) = (9 ) = 9 .42 2 1∴ x =(3 )2= 3.9.解:32 125 125 1 95 5 9(1)原式= (0.3 ) + (27 ) - (9 ) =+ - =.332100331001 381 12 31(2)原式= 3-2 + 3- 2 - (64)4-(3- 3)4- 333 4 1 1= 3 +3( 3+ 2)- [4(4) ]4 -3 -2- 333 3=3 + 3+ 6- 2 ·- - 34 36 32.= -41 110.解: ∵a 2+ a - 2= 4.∴两边平方,得 a + a -1+ 2= 16.∴a + a -1= 14.11.解: (1)原式=24 2 1 1 1 1 01 1 × 5× x -+ 1- × y - + = 24xy = 24y ;53322 666(2)原式1 2111 2m 2 + 2m 2·m - 2+ m - 2=11m - 2+ m 2 11 2m 2+ m - 211=1 1 = m 2+ m - 2. m 2+m - 2能力提升21 1 212. 2原式= 2- 2= 2 = 2 .439 4 69 43 1 41 4 1 4 1 42 2 4原式= ( 13. aa ) ·(a) =(a ×) ·(a3× 6 ) = (a ) ·(a ) =a ·a = a .632 32214. 3 由分数指数幂的运算法则知 ①②③ 正确;对④ , ∵ 左边=-3 1 1 1 13 53 1 0 - 2 3- 25 a + b- c - - =-a b c =- ac ≠ 右边, ∴④ 错误.2 23 344 55n384 1 n 1 n1 nn15. 3·2原式= 3·[( 3 )7] = 3·[(128) 7] =3 ·(27× 7) = 3·2 .16. b 或 2a - 3ba -b + 2b - a , a < 2bb , a <2b ,原式= a - b + |a - 2b| == 2a - 3b , a ≥ 2b.a -b + a - 2b , a ≥ 2b2321 333 317. ④ ①中,当 a < 0 时, (a )2 =[(a )2] =(|a|) = (- a) =- a ,∴① 不正确;当 a < 0, n 为奇数时, nna = a ,∴② 不正确;x - 2≥ 0, ③中,有3x - 7≠ 0,7即 x ≥ 2 且 x ≠ 3,7 7故定义域为 [2, 3)∪ (3 ,+ ∞ ),∴③ 不正确;④中, ∵ 100a = 5,10b =2 ,∴ 102a =5,10 b = 2,102a × 10b = 10.∴ 2a + b =1.∴④ 正确.21118. (1) 3 (2)3(1)a = 2 + 3 =2 - 3, b = 2- 3 = 2+ 3 ,∴(a + 1) -2 + (b + 1) -2 = (3 - 3 ) -2 + (3 + 3 ) -2=1 2 + 1 2 =3 - 3 3+ 33 + 3 2+ 3- 323- 3 22·3+ 3223 + 2·3 · 3+ 3+ 3 - 2·3· 3+ 3= [ 3 - 3 3+ 23 ]2 × 9+ 6 24 2 =9- 3 2=36 = 3.(2)由已知条件,可得( x)2- 2 xy -15(y)2= 0,∴ x + 3 y = 0 或 x -5 y = 0.∵ x >0, y > 0,∴ x = 5 y , x =25y.50y + 2 25y 2+ 3y∴原式=2+ y25y - 25y 50y + 10y + 3y 63y= = = 3.25y - 5y + y 21y1 12 009 n - 2 009- n19. 2 009 ∵ a =2,22∴ a 2+ 1= 1+2 009n +2 009 - n -241 21 22 009n +2+ 2 009 - n=411 2 009n+ 2 009 -n2=() .2∴2a + 1+ a1111 2 009 n+ 2 009-n 2 009 n- 2 009 -n=2+21=2 009 n .2n 1 n∴( a+ 1+ a) = (2 009n) = 2 009.11 -120.2(1- 2-32)原式=111111 1- 2-32 1+ 2-32 1+ 2 -16 1+ 2-81+ 2-41+ 2-211 - 2-32111111- 2-16 1+ 2-16 1+ 2-8 1+ 2-4 1+ 2-2=11- 2-3211111- 2-81+ 2-8 1 +2 -4 1 +2 -2=11- 2-321111- 2-41+ 2-4 1 +2 -2=11 -2 -32111- 2-21+ 2-2=11- 2-32-11 - 21 1 -1=1=2(1- 2-32) .1- 2-323 7121.解: (1)原式= a2 +5-10-27 5 7=a5=(8-3)5737- 71=8 -3= (2 )-3= 2=128.x 3-x 3a + a(2)原式= x - xa + ax - x2x x -x- 2xa + aa - a ·a+a=x- xa + a2x-2x1 1=a - 1+ a = 5- 1 + = 4 .5 51 4 1 -( 1 1 12 1 1 1 1 122.解: (1)原式= 1 + ·( ) 100 ) = 1+ × - ( )2× = 1+ - 10 = 1 .4 9 2 2 4 3 10 2 6 15 25 1 1 - 2 64 2 37(2)原式= ( 9 )2+ (10) +(27)- 3- 3× 1+ 485 4 - 2 37= 3 + 100+ (3 ) - 3+ 4859 37 = 3 + 100+ 16- 3+48= 100.(3)原式= [(0.3)41- 1 41 27 1 1 31]- - 3 × [(3 )- + (8)- ]- - 10× [(0.3) ]44323- 11 - 13 -11=0.3 - 3[3 +(2) ]- 2- 10× 0.310 1 1 2 1 10 1= 3 - 3(3+3 )-2 -3 = 3 - 3- 3= 0.1123.解: ∵x 2 +x - 2= 3, ∴ (x 1+ x - 1)2= 9.22 ∴ x +x -1= 7.1 31 3∴原式= x 2 + x -2 + 22- 2x + x + 31 1 -1 + x - x - 1+ x + 2x 2 2 =- 1 2x + x - 2+ 3 3 × 7- 1 + 2 2 =72- 2+ 3 = 5.拓展探究2 32 32 3 2 3x - 3+ y - 3x - 3 - y - 32 22 2 2 224.解: (1)原式=2 2 -22=(x - 3) - x -3 ·y - 3+ (y - 3) - (x -x -3 + y - 3 x -3 -y - 32 22 22 22 3) - x - 3·y -3- (y - 3) =- 2(xy)-3 .11 3 131a 3[ a 3 - 2b 3 ]b 31(2)原式= 21 11 2÷(1-2 1 )× a 3a 3 +2a 3b 3+ 2b 3 a 31 1 12 1 1a 3 a 3 -2b 3 [a 3+ 2a 3b 3+= 2 1 11 2a 3+ 2a 3b 3+ 2b 31 1 1a 3·a 3 ·a 3= a.1 2 1 1 1 1 1 12b 3 ] a 3- 2b 3 1 a 3 a 3- 2b 3 ·1a 31÷ 1 ×a = 1 × 1× a =313a 3a 3- 2b 3。
分数指数幂练习题
分数指数幂1.下列命题中,正确命题的个数是__________. ①n a n =a ②若a ∈R ,则(a 2-a +1)0=1 ③3x 4+y 3=x 43+y ④3-5=6522.下列根式、分数指数幂的互化中,正确的序号是__________.①-x =(-x)12(x ≠0) ②x x =x 34 ③x -13=-3x ④3x ·4x =x 112 ⑤(x y )-34=4yx3(xy ≠0) ⑥6y 2=y 13(y<0)3.若a =2,b =3,c =-2,则(a c )b=__________. 4.根式a a 的分数指数幂形式为__________. 5.4252=__________.6.2-(2k +1)-2-(2k -1)+2-2k的化简结果是__________.7.(1)设α,β是方程2x 2+3x +1=0的两个根,则(14)α+β=__________.(2)若10x =3,10y=4,则10x -12y =__________.8.(1)求下列各式的值:①2723;②(614)12;③(49)-32.(2)解方程:①x -3=18;②x =914.9.求下列各式的值:(1)(0.027)23+(12527)13-(279)0.5;(2)(13)12+3·(3-2)-1-(11764)14-(333)34-(13)-1.10.已知a 12+a -12=4,求a +a -1的值.11.化简下列各式:(1)5x -23y1214x -1y 1256x 13y -16;(2)m +m -1+2m -12+m 12.12.[(-2)2]-12的值是__________.13.化简(36a 9)4·(63a 9)4的结果是__________.14.以下各式,化简正确的个数是__________. ①a 25a -13a -115=1②(a 6b -9)-23=a -4b 6③(-x 14y -13)(x -12y 23)(-x 14y 23)=y④-15a 12b 13c -3425a -12b 13c54=-35ac15.(2010山东德州模拟,4改编)如果a 3=3,a 10=384,则a 3[(a 10a 3)17]n等于__________.16.化简3a -b3+a -2b2的结果是__________.17.下列结论中,正确的序号是__________.①当a<0时,(a 2)32=a 3②n a n =|a|(n>1且n ∈N *)③函数y =(x -2)12-(3x -7)0的定义域是(2,+∞)④若100a=5,10b=2,则2a +b =118.(1)若a =(2+3)-1,b =(2-3)-1,则(a +1)-2+(b +1)-2的值是__________. (2)若x >0,y >0,且x(x +y)=3y (x +5y),则2x +2xy +3y x -xy +y的值是__________.19.已知a =2 0091n -2 009-1n 2(n ∈N *),则(a 2+1+a)n的值是__________.20.若S =(1+2-132)(1+2-116)(1+2-18)(1+2-14)(1+2-12),那么S 等于__________.21.先化简,再求值:(1)a 2·5a 310a 7·a,其中a =8-53;(2)a 3x+a -3xa x +a -x ,其中a 2x =5.22.(易错题)计算:(1)(235)0+2-2·(214)-12-(0.01)0.5;(2)(279)0.5+0.1-2+(21027)-23-3π0+3748;(3)(0.008 1)-14-[3×(78)0]-1×[81-0.25+(338)-13]-12-10×0.02713.23.已知x 12+x -12=3,求x 32+x -32+2x 2+x -2+3的值.24.化简下列各式:(1)x -2+y -2x -23+y -23-x -2-y -2x -23-y -23;(2)a 43-8a 13b a 23+23ab +4b 23÷(1-23b a )×3a.基础巩固1.1 ∵na n=⎩⎪⎨⎪⎧a ,当n 为奇数时,|a|,当n 为偶数时,∴①不正确;∵a ∈R ,且a 2-a +1=(a -12)2+34≠0,∴②正确;∵x 4+y 3为多项式,∴③不正确;④中左边为负,右边为正显然不正确.∴只有②正确.2.②⑤ ①-x =-x 12,∴①错;②x x =(x x)12=(x ·x 12)12=(x 32)12=x 34,∴②对;③x -13=1x 13=13x ,∴③错;④3x ·4x =x 13·x 14=x 13+14=x 712,∴④错;⑤(x y )-34=(y x )34=4yx3,∴⑤对;⑥6y 2=|y|13=-y 13(y<0),∴⑥错.∴②⑤正确. 3.164 (a c )b =a bc =23×(-2)=2-6=126=164. 4.a 32 a a =a ·a 12=a1+12=a 32.5.5 4-252=4252=454=5.6.-2-(2k +1) ∵2-(2k +1)-2-(2k -1)+2-2k=2-2k·2-1-2-2k·21+2-2k=(12-2+1)·2-2k=-12·2-2k=-2-(2k +1).7.(1)8 (2)32 (1)由根与系数的关系,得α+β=-32,∴(14)α+β=(14)-32=(2-2)-32=23=8. (2)∵10x =3,10y =4,∴10x -12y =10x ÷1012y =10x ÷(10y )12=3÷412=32.8.解:(1)①2723=(33)23=33×23=32=9.②(614)12=(254)12=[(52)2]12=(52)2×12=52.③(49)-32=(23)2×(-32) =(23)-3=(32)3=278. (2)①∵x -3=18=2-3,∴x =2.②∵x =914,∴(x)2=(914)2=912.∴x =(32)12=3.9.解:(1)原式=(0.33)23+(12527)13-(259)12=9100+53-53=9100.(2)原式=3-12+33-2-(8164)14-(3-23)34-31=33+3(3+2)-[4(34)4]14-3-12-3 =33+3+6-2·34-33-3 =6-342.10.解:∵a 12+a -12=4.∴两边平方,得a +a -1+2=16. ∴a +a -1=14.11.解:(1)原式=245×5×x -23+1-13×y 12-12+16=24x 0y 16=24y 16;(2)原式=m 122+2m 12·m -12m -122m -12+m 12=m 12+m -122m 12+m -12=m 12+m -12.能力提升12.22 原式=2-12=12=22. 13.a 4原式=(3a 96)4·(6a 93)4=(a 32×13)4·(a3×16)4=(a 12)4·(a 12)4=a 2·a 2=a 4. 14.3 由分数指数幂的运算法则知①②③正确;对④,∵左边=-35a 12+12b 13-13c -34-54=-35a 1b 0c -2=-35ac -2≠右边,∴④错误.15.3·2n 原式=3·[(3843)17]n =3·[(128)17]n =3·(27×17)n =3·2n.16.b 或2a -3b原式=a -b +|a -2b|=⎩⎪⎨⎪⎧a -b +2b -a ,a <2b a -b +a -2b ,a ≥2b =⎩⎪⎨⎪⎧b ,a <2b ,2a -3b ,a ≥2b.17.④ ①中,当a <0时,(a 2)32=[(a 2)12]3=(|a|)3=(-a)3=-a 3,∴①不正确;当a <0,n 为奇数时,n a n=a , ∴②不正确;③中,有⎩⎪⎨⎪⎧x -2≥0,3x -7≠0,即x ≥2且x ≠73,故定义域为[2,73)∪(73,+∞),∴③不正确; ④中,∵100a =5,10b=2,∴102a =5,10b =2,102a ×10b=10. ∴2a +b =1.∴④正确.18.(1)23 (2)3 (1)a =12+3=2-3,b =12-3=2+3,∴(a +1)-2+(b +1)-2=(3-3)-2+(3+3)-2=13-32+13+32=3+323-323-323+32=32+2·3·3+3+32-2·3·3+3[3-33+3]2=2×9+69-32=2436=23. (2)由已知条件,可得(x)2-2xy -15(y)2=0, ∴x +3y =0或x -5y =0. ∵x >0,y >0, ∴x =5y ,x =25y. ∴原式=50y +225y 2+3y25y -25y 2+y =50y +10y +3y 25y -5y +y =63y21y=3.19.2 009 ∵a =2 0091n -2 009-1n2,∴a 2+1=1+2 0092n +2 009-2n -24=2 0091n2+2 2 009-1n24=(2 0091n +2 009-1n 2)2.∴a 2+1+a=2 0091n +2 009-1n 2+2 0091n -2 009-1n2=2 0091n.∴(a 2+1+a)n=(2 0091n )n =2 009.20.12(1-2-132)-1原式= 1-2-1321+2-1321+2-1161+2-181+2-141+2-121-2-132=1-2-1161+2-1161+2-181+2-141+2-121-2-132=1-2-181+2-181+2-141+2-121-2-132=1-2-141+2-141+2-121-2-132=1-2-121+2-121-2-132=1-2-11-2-132=12(1-2-132)-1. 21.解:(1)原式=a2+35-710-12=a 75=(8-53)75=8-73=(23)-73=2-7=1128.(2)原式=ax 3a-x 3a x+a-x=a x+a-xa 2x-a x·a -x+a-2xa x +a-x=a 2x -1+a-2x=5-1+15=415.22.解:(1)原式=1+14·(49)12-(1100)12=1+14×23-(110)2×12=1+16-110=1115.(2)原式=(259)12+(110)-2+(6427)-23-3×1+3748=53+100+(43)-2-3+3748 =53+100+916-3+3748=100. (3)原式=[(0.3)4]-14-3-1×[(34)-14+(278)-13]-12-10×[(0.3)3]13=0.3-1-13[3-1+(32)-1]-12-10×0.3=103-13(13+23)-12-3=103-13-3=0.23.解:∵x 12+x -12=3,∴(x 12+x -12)2=9.∴x +x -1=7.∴原式=x 123x -123+2x 2+x -2+3=x 12+x -12x -1+x -12x +x -12-2+3=37-1272-2+3=25. 拓展探究24.解:(1)原式=x -233y -233x -23+y -23-x -233y -233x -23-y -23=(x -23)2-x -23·y -23+(y -23)2-(x -23)2-x -23·y -23-(y -23)2=-2(xy)-23.实用文档(2)原式=a 13[a 133-2b 133]a 23+2a 13b 13+2b 132÷(1-2b 13a 13)×a 13 =a 13a 13-2b 13[a 23+2a 13b 13+2b 132]a 23+2a 13b 13+2b 132÷a 13-2b 13a 13×a 13=a 13a 13-2b 13·11×a 13a 13-2b 13×a 13=a 13·a 13·a 13=a.。
(完整版)分数指数幂练习题
分数指数幂1.下列命题中,正确命题的个数是__________.①na n=a ②若a∈R,则(a2-a+1)0=1③3x4+y3=x43+y ④3-5=6(-5)22.下列根式、分数指数幂的互化中,正确的序号是__________.①-x=(-x)12(x≠0) ②x x=x34③x-13=-3x ④3x·4x=x112⑤(xy)-34=4(yx)3(xy≠0) ⑥6y2=y13(y<0)3.若a=2,b=3,c=-2,则(a c)b=__________.4.根式a a的分数指数幂形式为__________.5.4(-25)2=__________.6.2-(2k+1)-2-(2k-1)+2-2k的化简结果是__________.7.(1)设α,β是方程2x2+3x+1=0的两个根,则(14)α+β=__________.(2)若10x=3,10y=4,则10x-12y=__________.8.(1)求下列各式的值:①2723;②(614)12;③(49)-32.(2)解方程:①x-3=18;②x=914.9.求下列各式的值:(1)(0.027)23+(12527)13-(279)0.5;(2)(13)12+3·(3-2)-1-(11764)14-(333)34-(13)-1.10.已知a 12+a -12=4,求a +a -1的值.11.化简下列各式: (1)5x -23y12(-14x -1y 12)(-56x 13y -16);(2)m +m -1+2m -12+m12.12.[(-2)2]-12的值是__________.13.化简(36a 9)4·(63a 9)4的结果是__________.14.以下各式,化简正确的个数是__________. ①a 25a -13a -115=1 ②(a 6b -9)-23=a -4b 6③(-x 14y -13)(x -12y 23)(-x 14y 23)=y④-15a 12b 13c -3425a -12b 13c54=-35ac15.(2010山东德州模拟,4改编)如果a 3=3,a 10=384,则a 3[(a 10a 3)17]n等于__________.16.化简3(a -b )3+(a -2b )2的结果是__________. 17.下列结论中,正确的序号是__________.①当a<0时,(a 2)32=a 3②na n=|a|(n>1且n ∈N *)③函数y =(x -2)12-(3x -7)0的定义域是(2,+∞)④若100a=5,10b=2,则2a +b =118.(1)若a =(2+3)-1,b =(2-3)-1,则(a +1)-2+(b +1)-2的值是__________. (2)若x >0,y >0,且x(x +y)=3y(x +5y),则2x +2xy +3yx -xy +y 的值是__________.19.已知a =2 0091n -2 009-1n 2(n ∈N *),则(a 2+1+a)n的值是__________.20.若S =(1+2-132)(1+2-116)(1+2-18)(1+2-14)(1+2-12),那么S 等于__________.21.先化简,再求值:(1)a 2·5a310a 7·a,其中a =8-53;(2)a 3x+a -3xa x +a -x ,其中a 2x=5.22.(易错题)计算:(1)(235)0+2-2·(214)-12-(0.01)0.5;(2)(279)0.5+0.1-2+(21027)-23-3π0+3748;(3)(0.008 1)-14-[3×(78)0]-1×[81-0.25+(338)-13]-12-10×0.02713.23.已知x 12+x -12=3,求x 32+x -32+2x 2+x -2+3的值.24.化简下列各式:(1)x -2+y -2x -23+y -23-x -2-y -2x -23-y -23;(2)a 43-8a 13b a 23+23ab +4b 23÷(1-23b a )×3a.答案与解析基础巩固1.1 ∵na n=⎩⎨⎧a ,当n 为奇数时,|a|,当n 为偶数时,∴①不正确;∵a ∈R ,且a 2-a +1=(a -12)2+34≠0,∴②正确;∵x 4+y 3为多项式,∴③不正确;④中左边为负,右边为正显然不正确.∴只有②正确.2.②⑤ ①-x =-x 12,∴①错;②x x =(x x)12=(x ·x 12)12=(x 32)12=x 34,∴②对;③x -13=1x 13=13x ,∴③错;④3x ·4x =x 13·x 14=x 13+14=x 712,∴④错;⑤(x y )-34=(y x )34=4(y x )3, ∴⑤对;⑥6y 2=|y|13=-y 13(y<0),∴⑥错.∴②⑤正确.3.164 (a c )b =a bc =23×(-2)=2-6=126=164. 4.a 32 a a =a ·a 12=a1+12=a 32.5.5 4(-25)2=4252=454=5. 6.-2-(2k +1)∵2-(2k +1)-2-(2k -1)+2-2k=2-2k·2-1-2-2k·21+2-2k=(12-2+1)·2-2k=-12·2-2k =-2-(2k +1).7.(1)8 (2)32 (1)由根与系数的关系,得α+β=-32,∴(14)α+β=(14)-32=(2-2)-32=23=8. (2)∵10x =3,10y =4,∴10x -12y =10x ÷1012y =10x ÷(10y )12=3÷412=32.8.解:(1)①2723=(33)23=33×23=32=9.②(614)12=(254)12=[(52)2]12=(52)2×12=52.③(49)-32=(23)2×(-32) =(23)-3=(32)3=278. (2)①∵x -3=18=2-3,∴x =2.②∵x =914,∴(x)2=(914)2=912.∴x =(32)12=3.9.解:(1)原式=(0.33)23+(12527)13-(259)12=9100+53-53=9100.(2)原式=3-12+33-2-(8164)14-(3-23)34-31=33+3(3+2)-[4(34)4]14-3-12-3 =33+3+6-2·34-33-3 =6-342.10.解:∵a 12+a -12=4.∴两边平方,得a +a -1+2=16. ∴a +a -1=14.11.解:(1)原式=245×5×x -23+1-13×y 12-12+16=24x 0y 16=24y 16;(2)原式=(m 12)2+2m 12·m -12+(m -12)2m -12+m12=(m 12+m -12)2m 12+m -12=m 12+m -12.能力提升12.22 原式=2-12=12=22. 13.a 4原式=(3a 96)4·(6a 93)4=(a 32×13)4·(a3×16)4=(a 12)4·(a 12)4=a 2·a 2=a 4. 14.3 由分数指数幂的运算法则知①②③正确; 对④,∵左边=-35a 12+12b 13-13c -34-54=-35a 1b 0c -2=-35ac -2≠右边,∴④错误.15.3·2n 原式=3·[(3843)17]n =3·[(128)17]n =3·(27×17)n=3·2n.16.b 或2a -3b 原式=a -b +|a -2b|=⎩⎨⎧ a -b +2b -a ,a <2b a -b +a -2b ,a ≥2b =⎩⎨⎧b ,a <2b ,2a -3b ,a ≥2b.17.④ ①中,当a <0时,(a 2)32=[(a 2)12]3=(|a|)3=(-a)3=-a 3,∴①不正确;当a <0,n 为奇数时,n a n=a , ∴②不正确;③中,有⎩⎨⎧x -2≥0,3x -7≠0,即x ≥2且x ≠73,故定义域为[2,73)∪(73,+∞),∴③不正确; ④中,∵100a =5,10b=2,∴102a =5,10b =2,102a ×10b=10. ∴2a +b =1.∴④正确.18.(1)23 (2)3 (1)a =12+3=2-3,b =12-3=2+3,∴(a +1)-2+(b +1)-2=(3-3)-2+(3+3)-2=1(3-3)2+1(3+3)2=(3+3)2+(3-3)2(3-3)2·(3+3)2=32+2·3·3+3+32-2·3·3+3[(3-3)(3+3)]2=2×9+6(9-3)2=2436=23. (2)由已知条件,可得 (x)2-2xy -15(y)2=0, ∴x +3y =0或x -5y =0. ∵x >0,y >0, ∴x =5y ,x =25y. ∴原式=50y +225y 2+3y25y -25y 2+y=50y +10y +3y 25y -5y +y =63y21y=3.19.2 009 ∵a =2 0091n -2 009-1n2,∴a 2+1=1+2 0092n +2 009-2n -24=(2 0091n )2+2+(2 009-1n)24=(2 0091n +2 009-1n 2)2.∴a 2+1+a=2 0091n +2 009-1n 2+2 0091n -2 009-1n2=2 0091n.∴(a 2+1+a)n=(2 0091n )n =2 009.20.12(1-2-132)-1原式=(1-2-132)(1+2-132)(1+2-116)(1+2-18)(1+2-14)(1+2-12)1-2-132=(1-2-116)(1+2-116)(1+2-18)(1+2-14)(1+2-12)1-2-132=(1-2-18)(1+2-18)(1+2-14)(1+2-12)1-2-132=(1-2-14)(1+2-14)(1+2-12)1-2-132=(1-2-12)(1+2-12)1-2-132=1-2-11-2-132=12(1-2-132)-1. 21.解:(1)原式=a2+35-710-12=a 75=(8-53)75=8-73=(23)-73=2-7=1128.(2)原式=(a x )3+(a -x )3a x +a -x=(a x+a -x)(a 2x-a x·a -x+a -2x)a x +a -x=a 2x-1+a-2x=5-1+15=415.22.解:(1)原式=1+14·(49)12-(1100)12=1+14×23-(110)2×12=1+16-110=1115.(2)原式=(259)12+(110)-2+(6427)-23-3×1+3748=53+100+(43)-2-3+3748 =53+100+916-3+3748=100. (3)原式=[(0.3)4]-14-3-1×[(34)-14+(278)-13]-12-10×[(0.3)3]13=0.3-1-13[3-1+(32)-1]-12-10×0.3=103-13(13+23)-12-3=103-13-3=0.23.解:∵x 12+x -12=3,∴(x 12+x -12)2=9.∴x +x -1=7.∴原式=(x 12)3+(x -12)3+2x 2+x -2+3.. =(x 12+x -12)(x -1+x -1)+2(x +x -1)2-2+3=3×(7-1)+272-2+3=25. 拓展探究24.解:(1)原式=(x -23)3+(y -23)3x -23+y -23-(x -23)3-(y -23)3x -23-y -23=(x -23)2-x -23·y -23+(y -23)2-(x -23)2-x -23·y -23-(y -23)2=-2(xy)-23. (2)原式=a 13[(a 13)3-(2b 13)3]a 23+2a 13b 13+(2b 13)2÷(1-2b 13a 13)×a 13 =a 13(a 13-2b 13)[a 23+2a 13b 13+(2b 13)2]a 23+2a 13b 13+(2b 13)2÷a 13-2b 13a 13×a 13=a 13(a 13-2b 13)·11×a 13a 13-2b 13×a 13=a 13·a 13·a 13=a.。
分数指数幂练习题
实用文档分数指数幂1.下列命题中,正确命题的个数是.① nn =a 2 0 =1a ②若a ∈R ,则(a -a +1) ③ 3x +y =x +y④3-5=6-5 24 3 4 32.下列根式、分数指数幂的互化中,正确的序号是 .1(x ≠0)② xx =x3③x - 1 =- 3 3 41x )- 3 =①-x =(-x) 4 3x ④ x ·x =x 12 ⑤( 42y4y 3⑥6 2 1(xy ≠0) y =y(y<0)x 3cb3.若a =2,b =3,c =-2,则(a)=__________.4.根式a a 的分数指数幂形式为.425. -25=__________.- (2k +1)-(2k -1)-2k6.2-2 +2 的化简结果是 .7.(1)设α,β是方程2x 2 1 ++3x +1=0 的两个根,则() αβ=__________. 4x y 1 (2)若10=3,10 =4,则10x -2y =__________.8.(1)求下列各式的值: 2 11 4 3 ①27;②(6 );③()-. 3 42 9 2-31 1 (2)解方程:①x=8;②x =94.9.求下列各式的值:2 1251 70.5 (1)(0.027)3+27)3-(29);(实用文档11 171 3-1 331-1 (2)(3)2+3·(3-2)-(164)4-( 3)4-(3).1 1 -110.已知a2+a-2=4,求a+a 的值.11.化简下列各式:2 15x-3y2(1)1-11 51 1;-4xy2-6x3y-6m+m-1+2(2)11.m-2+m22 112.[(-2)]-2的值是.36 6313.化简(9 4 9 4的结果是.a)·( a)实用文档14.以下各式,化简正确的个数是.211①a 5a -3a -15=16 -9 2 =a -46 ②(ab )-b 3 1 1 1 2 1 2 ③(-x 4y -3)(x -2y 3)(-x 4y 3)=y113- 15a 2b 3c -43 ④115=-5ac25a -2b 3c 4a 1n15.(2010山东德州模拟,4改编)如果a =3,a 10)7]等于 . =384,则a[(a3 3 10 3 16.化简3a -b 3 a -2b 2.+ 的结果是 17.下列结论中,正确的序号是 .2 3 3①当a<0时,(a) 2=a② n a n=|a|(n>1且n ∈N *)1 0③函数y =(x -2) -(3x -7)的定义域是(2,+∞) 2④若100a =5,10 b=2,则2a +b =118.(1)若a =(2+ -1 -1 -2 -2的值是.3) ,b =(2-3) ,则(a +1)+(b +1) (2)若x >0,y >0,且 x(x + y)=3 y(x +5 y),则 2x +2 xy +3y的值是. x -xy +y112009n -2009-n * 2 +1+a) n .19.已知a = 2 (n ∈N),则(a 的值是20.若S =(1+2- 1 1 1 1 1. )(1+2- )(1+2-)(1+2-)(1+2-),那么S 等于32 16 8 4 221.先化简,再求值:2 5 35 a ·a (1),其中a =8-3;10 a 7·a 3x -3xa +a2x (2)a +a ,其中a =5.x -x实用文档22.(易错题)计算:30-211 0.5(1)(25)+2·(24)-2-(0.01) ; 70.5 -210 2 0 37 (2)(29)+0.1 +(227)-3 - 3π+ 48;1 70-1 [81 -0.25 3 1 11 (3)(0.0081)- -[3×( )] × +(3 )- ]- -10×0.027.4 8 8 3 2 33 311 x 2+x -2+223.已知x 2 +x -2=3,求x2+x -2+3的值.24.化简下列各式:实用文档x -2 -2 -2 -2 +y x -y(1) 2 2- 2 2;x -3+y -3 x -3-y -34 1a 3-8a 3b3 b3(2) ÷(1-2 a )× a. 2 3 2a +2 ab +4b3 3答案与解析基础巩固1.1∵na = a ,当n 为奇数时,n|a|,当n 为偶数时,∴①不正确;2 12 3∵a ∈R ,且a -a +1=(a -)+≠0,∴②正确;4 3∵x +y 为多项式,∴③不正确;④中左边为负,右边为正显然不正确. ∴只有②正确.12.②⑤①-x =-x 2,∴①错;②xx =(x 1 11 31 3x) =(x ·x)=(x)=x ,∴②对; 2 22 22 411 1 ③x -= = ,∴③错;3 1 3x3 x实用文档④34 1 11 17·x 4=x 3+4=x 12,x ·x =x 3 ∴④错;x 3 y3 = 4 y 3 ,⑤( )-=()xy 4 x4∴⑤对;⑥6 21 1y =|y|3=-y 3(y<0),∴⑥错.∴②⑤正确.1 cbbc 3×(-2) -611 3. (a)=a=2 =2= 6=. 64 2 643 1 1 34.a 2aa =a ·a 2=a1+2=a 2.5.54-252=4252=454=5.-(2k +1) -(2k +1) -(2k -1) -2k -2k -1-2k 1-2k1-2k 1-2k6.-2 ∵ 2 -2+2 =2 ·2 -2 ·2 +2=(2-2+1)·2=-2·2 =-2 -(2k+1).337.(1)8 (2)2 (1)由根与系数的关系,得α+β=-2,1+ 1 3 -2 3 3 ∴( ) αβ=(2 )-=2=8. =()- 2 4 4 2 x y 1 x 1x y11 3(2)∵10=3,10 =4,∴10x -2y =10 ÷102y =10 ÷(10)2=3÷42=2. 2 3 2 2 2 8.解:(1)①273=(3)3=33×3=3=9.11 251②(64)2=(4)2521 5 1 5 =[()]=()2×=.2 2 2 2 2 43 23③(9)-2=(3)2×(-2) 2-333 27 =(3)=(2)=8.-3 1-3(2)①∵x =8=2 ,∴x =2. ②∵ 1, x =94∴(2 12 1 x)=(9 )=9.4 2实用文档2 1∴x =(3)2=3.3 2 1251 251 9 5 5 99.解: (1)原式=(0.3)3+(27)3-(9)2=100+3-3=100.13811231 (2)原式=3-2+ 3-2 -(64)4-(3-3)4-3 334 11=3+ 3(3+2)-[4(4)]4-3-2-33 3 3 -3= 3 +3+6-2·- 3 46 32. = -41110.解:∵a 2+a -2=4.∴两边平方,得a +a -1+2=16.∴a +a -1=14.11.解:(1)原式= 24 2 1 1 1 1 0 1 1 ×5×x - +1- ×y -+=24x y =24y ; 5 3 3 2 2 6 6 6(2)原式12 1 1 12m 2+2m 2·m -2+m -2=1 1m -2+m 211 2m 2+m -2 1 1= 11=m 2+m -2.m +m - 2 2能力提升211212.2原式=2-2= 2 =2.43 946 943 1 41 414 14 2 2 413.a 原式=( a) ·( a) =(a ×)·(a3×) =(a) ·(a) =a ·a =a. 6 3 2 3 6 2 214.3 由分数指数幂的运算法则知 ①②③正确;31 11 1 3 5 310 -2 3 -2≠右边,∴④错误. 对④,∵左边=-5a 2+2b 3-3c -4-4=-5abc =-5acn 3841n 1n 1n n·(27 15.3·2原式=3·[(3)7] =3·[(128)7]=3×7)=3·2.实用文档16.b 或2a -3b 原式=a -b +|a -2b|= a -b +2b -a ,a <2bb ,a <2b ,a -b +a -2b ,a ≥2b =2a -3b ,a ≥2b.2 3 2 13 3 3 317.④ ①中,当a <0时,(a)2=[(a)2]=(|a|)=(-a)=-a , ∴①不正确;n n当a <0,n 为奇数时, a =a , ∴②不正确;x -2≥0,③中,有3x -7≠0,7即 x ≥2且x ≠3,77故定义域为[2,3)∪(3,+∞),∴③不正确;④中,∵100a=5,10b=2, ∴102a =5,10b =2,102a ×10b=10. ∴2a +b =1.∴④正确.21118.(1)3 (2)3(1)a = 2+ 3 =2- 3,b = 2- 3 =2+ 3,∴(a +1)-2+(b +1)-2=(3-3)-2+(3+3)-2= 1 2+ 1 2=3-3 3+33+3 2 2+3-33-3 2·3+3 22 2-2·3·3+33+2·3 ·3+3+3 =2[3-33+3]2×9+6 24 2=9-32=36=3.(2)由已知条件,可得( x)2-2 xy -15( y)2=0, ∴ x +3y =0或x -5y =0.∵x >0,y >0, ∴ x =5y ,x =25y.50y +2 25y 2+3y∴原式=25y-25y2+y实用文档50y+10y+3y 63y=25y-5y+y=21y=3.1 1 19.2009 ∵a=2009n-2009-n2,2 2∴a2+1=1+2009n+2009-n-2412122009n+2+2009-n=41 12009+2009-n n2=(2).∴a2+1+a1 1 1 12009n+2009-n2009n-2009-n=2+21=2009n.∴(a2n1n=2009.+1+a)=(2009n)11-120.2(1-2-32)原式=1 1 1 1 1 11-2-321+2-321+2-161+2-81+2-41+2-21-2-1321 1 1 1 11-2-161+2-161+2-81+2-41+2-2=11-2-321 1 1 11-2-81+2-81+2-41+2-2=11-2-321 1 11-2-41+2-41+2-2=11-2-32实用文档1 11-2-2 1+2-2 =1 1-2-32- 1 1-2 1 1-1 = 1=2(1-2-32).1-2-323 7 121.解:(1)原式=a2+5-10-27 57 =a =(8-)5 3573 7 -71=8-3=(2)-3=2 =128.(2)原式= a x3+a -x 3 x -xa +ax -x 2xx -x -2x a +a a -a ·a +a=x -x a +a2x -2x 11=a -1+a =5-1+5=45.1 41 1 1 12 1 1 1 1 122.解:(1)原式=1+·() -( ) =1+ × -( )2× =1+- 10 =1.4 92 1002 4 3 10 2 6 15 2511 -2 64 2 37 (2)原式=(9)2+(10) +(27)-3-3×1+485 4-2 37=3+100+(3)-3+485937=3+100+16-3+48=100.4 1 -1 41 271 1 31(3)原式=[(0.3)]- -3 ×[(3 )-+( 8 )- ]- -10×[(0.3)] 34 4 3 2-11-1 3 -1 1=0.3-3[3+(2)]-2-10×0.310 11 2 1 10 1= -(+)--3= --3=0. 3 33 3 23 31123.解:∵x 2+x -2=3, ∴(x 1+x -1)2=9.2 2 ∴x +x -1=7.1 3 1 3 x2 +x -2 +2∴原式=x 2+x-2+3实用文档11-1=x2+x-2x-1+x+2-12x+x -2+3=3×7-1+2 2 7-2+3 =5. 2拓展探究2 3 2 3x-3+y-3 24.解:(1)原式=2 2-x-3+y-32 3 2 3x-3-y-32222222 2 =(x-3) -x-3·y-3+(y-3)-(x-x-3-y-322 2 2 22 23)-x-3·y-3-(y-3)=-2(xy)-3.1 1313 1(2)原式=a3[a3-2b3]2÷(1-2b3)×a1 2 1 1 1 13a3+2a3b3+2b3a31 1 12 1 1 12 1 1 1 1 1 1a3a3-2b3[a3+2a3b3+2b3]a3-2b31 a3a3-2b3·1 a31=2 1 1 12 ÷×a =×1×a =1 3 1 1 3a3+2a3b3+2b3a3a3-2b3 1 1 1a3·a3·a3=a.。
分数指数幂练习题
分数指数幂练习题在数学中,分数、指数和幂是常见并重要的概念。
它们在各个数学领域中都有广泛的应用。
本文将为读者提供一系列与分数、指数和幂相关的练习题,以帮助读者巩固和提高相关知识的理解和运用能力。
1. 计算下列分数的值:a) $\frac{1}{2} + \frac{3}{4}$b) $\frac{2}{5} - \frac{1}{3}$c) $\frac{2}{3} \cdot \frac{5}{8}$d) $\frac{3}{4} \div \frac{1}{2}$2. 化简下列指数表达式:a) $2^3 \cdot 2^4$b) $\frac{3^5}{3^2}$c) $(4^2)^3$d) $(5^2)^{-2}$3. 计算下列幂的值:a) $(2^3)^4$b) $(\frac{1}{5^2})^3$c) $3^2 \cdot 3^3$d) $(\frac{1}{2^4})^2$4. 按从小到大的顺序排列下列数:a) $\frac{1}{3}$, $0.4$, $\frac{5}{9}$, $0.45$, $\frac{2}{5}$b) $2^3$, $3^2$, $2^4$, $4^2$5. 计算下列表达式的值:a) $\frac{2}{3} + \frac{1}{2} - \frac{1}{4}$b) $2^3 \cdot 3^2 - 2^2 \cdot 3^3$c) $(\frac{1}{2})^{-2} + (\frac{1}{3})^{-2}$d) $\frac{1}{4}(2^3 \cdot 3^2 - 2^2 \cdot 3^3)$6. 单位换算:将下列数转换为分数的形式:a) $0.25$b) $1.5$c) $2.75$d) $0.125$7. 计算下列分数的约简形式:a) $\frac{12}{16}$b) $\frac{20}{25}$c) $\frac{8}{12}$d) $\frac{27}{81}$8. 计算下列分数的乘积和商:a) $\frac{3}{4} \cdot \frac{5}{6}$b) $\frac{2}{3} \div \frac{4}{5}$c) $\frac{7}{10} \cdot \frac{9}{14}$d) $\frac{1}{2} \div \frac{5}{8}$通过以上练习题的完成,读者可以巩固和提高分数、指数和幂的计算能力,同时加深对其在实际问题中的应用理解。
分数指数幂复习练习题
分数指数幂1.以下命题中,正确命题的个数是.①n n= a20= 1 a②假设 a∈R,那么(a-a+ 1)③3x + y = x + y④3-5=6- 52 43432.以下根式、分数指数幂的互化中,正确的序号是.1(x≠ 0) ②x x= x 3③ x-1=-3341x)-3=① - x= (- x)43x④x· x= x12⑤ (42y4y 3⑥ 621(xy≠ 0)y=y (y<0)x3c b3.假设 a= 2, b= 3, c=- 2,那么 (a ) =__________.4.根式 a a的分数指数幂形式为.425.- 25 = __________.-(2k +1)-(2k-1)-2k6.2-2+ 2的化简结果是.7. (1)设α,β是方程2x 21++3x + 1= 0的两个根,那么 ( )α β= __________.4x y1(2)假设 10 =3,10= 4,那么 10x-2y=__________.8. (1)求以下各式的值:21 143①27 ;②(6);③()-.34 292-311 (2)解方程:① x=8;② x= 94.9.求以下各式的值:2125 17 (1)(0.027) 3+ (27 )3- (29) ;1 117 13- 133 1-1(2)(3)2+ 3·( 3- 2) - (164)4- ( 3 )4- (3) .11- 110. a 2+a - 2= 4,求 a + a的值.11.化简以下各式:2 15x - 3y 2(1)1-11511;- 4x y 2 -6 x 3y - 6 m + m -1+ 2(2) 1 1 . m - 2+m 22112. [(- 2) ]-2的值是.36313.化简 ( 6949 4.a ) ·(a ) 的结果是14.以下各式,化简正确的个数是.211①a5a-3 a-15= 16- 92-46②(a b)-= a b3111212③(- x y- )(x- y )(- x y )= y4323431 13-15a 2b3c-43④ 1 1 5=-5ac25a -2b 3c4a101 n15. (2021 模拟, 4 改编 )若是 a3= 3, a10=384 ,那么a3[( a3)7] 等于.16.化简3a- b3a- 2b2.+的结果是17.以下结论中,正确的序号是.233①当 a<0 时, (a ) = a2②na n= |a|(n>1 且 n∈ N * )10③函数 y= (x-2) - (3x- 7) 的定义域是 (2,+∞ )2④假设 100a=5,10b= 2,那么 2a+ b=1- 1, b = (2--1- 2- 2.18. (1) 假设 a= (2+ 3)3),那么 (a+ 1) + (b+ 1) 的值是(2)假设 x> 0, y> 0,且x( x+ y)= 3y( x+ 5y),那么2x+ 2xy+ 3y.的值是x- xy+ y112 009 n- 2 009 -n*2+1 +a)n.19. a=2(n∈ N ),那么 ( a的值是1111120.假设 S= (1+2-32 )(1+ 2-16)(1+ 2-8)(1+ 2-4)(1+ 2-2),那么 S 等于.21.先化简,再求值:2535a·a(1),其中 a=8 -;1073a · a3x- 3xa + a2x(2) a+a,其中 a = 5.x- x22.(易错题 )计算:3 0- 2 1 1(1)(25) + 2 ·(24)-2- (0.01);7 - 210 2037 (2)(29) ++ (227)-3-3π+48;17 0-1[81-3111(3)(0.008 1) --[3× ( ) ]×+ (3 )- ]-- 10×0.027 .4883233311x2+ x-2+ 223. x2+x-2= 3,求x2+x-2+3的值.24.化简以下各式:x- 2- 2 - 2- 2+ yx - y(1)22-22;x - 3+ y - 3 x - 3- y - 341a 3-8a 3b 3 b3(2)÷(1- 2a )× a.232a + 2 ab + 4b33答案与剖析基础坚固1. 1 ∵na = a ,当 n 为奇数时,n|a|,当 n 为偶数时,∴① 不正确;21 2 3∵a ∈ R ,且 a - a + 1= (a - ) + ≠0 ,∴② 正确;4 3∵ x + y 为多项式, ∴③ 不正确; ④中左边为负,右边为正显然不正确.∴只有 ② 正确.12.②⑤① - x =- x 2, ∴① 错;② x x = (x 1 1 1 3 1 3x) = (x ·x ) = (x ) = x , ∴② 对;2 2 2 2 2 4 1 1 1③x - = = ,∴③ 错;3 1 3x 3 x④34 1 1 1 1 7·x 4= x 3+ 4= x 12,x · x = x 3∴④ 错;x3y 3 = 4 y 3,⑤( )-=()xy 4 x 4 ∴⑤ 对;⑥6211y = |y|3 =- y 3(y<0) , ∴⑥ 错.∴②⑤ 正确.1c bbc3×(-2) - 61 13.(a ) = a =2 = 2 = 6=.6426431134. a 2 a a = a ·a 2= a1+2= a 2.5. 54-25 2= 4252= 454=5.- (2k + 1)- (2k + 1)- (2k - 1)-2k -2k -1- 2k1-2k1 - 2k1 - 2k6.- 2∵ 2- 2 +2= 2 ·2 - 2·2 + 2=(2- 2+ 1)·2 =- 2·2=- 2-(2k + 1).337. (1)8(2)2 (1)由根与系数的关系,得 α+ β=- 2 ,1 +1 3 -23 3∴( ) α β= (2 )- =2 =8.=( )-2442xy1 x1 xy11 3(2)∵ 10 = 3,10 = 4, ∴ 10x - 2y = 10 ÷102y =10 ÷(10 )2= 3÷42= 2.2 3 2 2 2 8.解: (1)① 273= (3 )3= 33×3= 3 = 9.1 1 25 1② (64)2=( 4 )2521 5 1 5 = [()]=()2×=.2 2 2 224 3 2 3③ (9)- 2= (3)2× (- 2)2-333 27= (3) =(2) = 8 .- 31- 3(2)①∵ x = 8= 2 , ∴x = 2.②∵ 1 ,x = 94 ∴( 21 2 1 x) = (9 )=9 .4 221∴x =(3)2= 3.32 125 1 25 1 9 5 5 99.解: (1)原式= (0.3 )3+ ( 27 )3- ( 9 )2=100 + 3- 3= 100 .1 3 81 12 31(2)原式= 3-2 + 3- 2 - (64)4-(3- 3)4- 333 4 1 1= 3 +3( 3+ 2)- [4(4) ]4-3-2- 33 3 3- 3=3+3+ 6- 2·- 3 46 32.= -41 110.解: ∵a 2+ a - 2= 4.∴两边平方,得 a + a -1 + 2= 16. ∴a + a -1 = 14.11.解: (1)原式=24 2 1 1 1 1 01 1 × 5× x - + 1- × y - + = 24xy = 24y ;53322 666(2)原式1 2111 2m 2 + 2m 2·m - 2+ m - 2=11m - 2+ m 2112m 2+ m - 21 1=11 = m 2+ m - 2.m +m -22能力提升21 1 212. 2原式= 2- 2= 2 = 2 .439 46 9 43 14 1 4 1 4 1 4 2 2 413. a 原式= ( a ) ·( a )=(a × ) ·(a3× )= (a ) ·(a )=a ·a = a .6 32362214. 3由分数指数幂的运算法那么知①②③ 正确;3 11 113 53 1 0 - 23- 2≠ 右边, ∴④ 错误.对④ , ∵ 左边=- 5a 2+ 2b 3 -3 c - 4-4 =- 5 a b c =- 5 acn384 1 n1 n1 nn15. 3·2原式= 3·[( 3 )7] = 3·[(128) 7] =3 ·(27× 7)=3·2 .16. b 或 2a - 3b原式= a - b + |a - 2b| =a -b + 2b - a , a < 2b b , a <2b ,a -b + a - 2b , a ≥ 2b=2a - 3b , a ≥ 2b.23 21 33 3 317. ④ ①中,当 a < 0 时, (a )2 =[(a )2] =(|a|) = (- a) =- a , ∴① 不正确;nn当 a < 0, n 为奇数时, a = a ,∴② 不正确;x - 2≥ 0, ③中,有3x - 7≠ 0,7即 x ≥ 2 且 x ≠ 3,77故定义域为 [2, 3)∪ (3,+ ∞ ),∴③ 不正确;④中, ∵ 100a = 5,10b =2 ,∴ 102a =5,10 b = 2,102a × 10b = 10.∴ 2a + b =1.∴④ 正确.21118. (1)3 (2)3 (1)a = 2 + 3 =2 - 3, b = 2- 3 = 2+ 3 ,∴(a + 1) -2 + (b + 1) -2 = (3 - 3 ) -2 + (3 + 3 ) -2 =1 2 + 1 2=3 - 3 3+ 33 + 3 22+3- 33- 32·3+ 3222- 2·3· 3+ 33 +2·3 · 3+3+3= 2[3- 3 3+ 3]2×9+624 2 =9- 3 2=36=3.(2)由条件,可得 ( x)2- 2 xy -15(y)2= 0,∴ x + 3 y = 0 或 x -5 y = 0.∵ x >0, y > 0,∴ x = 5 y , x =25y.50y + 2 25y 2+ 3y∴原式=25y - 25y 2+ y50y + 10y + 3y 63y =25y - 5y + y =21y =3.1 119. 2 009 ∵ a = 2 009 n - 2 009- n2 ,22∴a 2+ 1= 1+ 2 009 n + 2 009 - n - 241 21 22 009n +2+ 2 009 - n=4112 009 +2 009-nn 2=(2) .∴ a 2+ 1+ a11112 009 n + 2 009- n2 009 n - 2 009 - n=2+21=2 009 n .∴( a 2n1 n= 2 009.+ 1+ a) = (2 009 n )11-120. 2(1- 2- 32)原式=11 11 1 11- 2- 32 1+ 2-32 1+ 2-16 1+ 2- 8 1+ 2-4 1+ 2-21-2-132111111-2-16 1+2- 16 1+2-81+2-4 1+2-2=11- 2- 3211111-2-81+2-81+2-4 1+2-2=11- 2- 321111-2-41+2-4 1+2-2 =11-2-32111-2-2 1+2-2=11- 2- 32- 11 - 21 1 - 1=1 = 2(1- 2- 32) .1- 2- 3237 121.解: (1)原式= a2 +5-10 - 27 5 7= a =(8- )5 3 5737- 71 =8-3=(2 )-3=2 =128.(2)原式=a x 3 + a -x3x- xa + ax - x2xx -x- 2xa + aa - a ·a +a=x- xa + a2x-2x1 1= a - 1+ a = 5- 1 +5= 45 .1 4 1 1 1 12 1 1 1 1 122.解: (1)原式= 1 + ·( ) -( ) = 1+ × - ( )2× =1+ - 10 = 1 .4 9 2 100 2 4 3 10 2 6 15 2511 - 2 64 2 37(2)原式= ( 9 )2+ (10) +(27)- 3- 3× 1+ 485 4 - 2 37= 3+100+(3) -3+485937= 3+ 100+ 16- 3+48= 100.41- 14127 1 131(3)原式= [(0.3) ]- - 3× [(3)- +(8)- ]- - 10× [(0.3) ]34432-11-1 3 -11= 0.3 - 3[3 +(2) ]- 2- 10×10 11 21 10 1 =- ( + )- -3=- -3=0.3333 2331123.解: ∵x 2 +x - 2= 3,∴ (x 1+ x - 1)2= 9.2 2∴ x +x -1= 7.1 3 1 3x 2 + x -2 + 2∴原式=x 2+ x -2+ 3分数指数幂复习练习题11-1=x 2+ x - 2 x - 1+ x + 2- 1 2x + x -2+3= 3× 7-1 +2 2 7 -2+3= 5.2拓展研究2 3 2 3 2 3 2 3x - 3 + y - 3 x - 3 - y - 32 2 2 2 2 224.解: (1)原式=22 -22 =(x - 3) - x -3 ·y - 3+ (y - 3) - (x -x -3 + y - 3x -3 -y - 32 2222 22 3) - x - 3·y -3 - (y - 3) =- 2(xy)-3 .11 31 31(2)原式= a 3[ a 3 - 2b 3 ]b 3)× a 121 11 2÷(1-2 1 3a 3 +2a 3b 3+ 2b 3 a 31 1 12 1 1 1 2 1 11 1 11a 3 a 3 -2b 3 [a 3+ 2a 3b 3+ 2b 3 ] a 3- 2b 3 a 3 a 3- 2b 3 ·1 a 3 1=2 1 1 1 2 ÷×a 1= 1 × × a =1 3 1 1 3a 3+ 2a 3b 3+ 2b 3a 3a 3- 2b 311 1a 3·a 3 ·a 3= a.。
分数指数幂练习题
分数指数幂1.下列命题中,正确命题的个数是__________. ①na n =a ②若a ∈R ,则(a 2-a +1)0=1③3x 4+y 3=x 43+y ④3-5=6(-5)22.下列根式、分数指数幂的互化中,正确的序号是__________.①-x =(-x)12(x ≠0) ②x x =x 34 ③x -13=-3x ④3x·4x =x 112 ⑤(x y )-34=4(y x )3(xy ≠0) ⑥6y 2=y 13(y<0) 3.若a =2,b =3,c =-2,则(a c )b =__________. 4.根式a a 的分数指数幂形式为__________. 5.4(-25)2=__________. 6.2-(2k +1)-2-(2k -1)+2-2k的化简结果是__________.7.(1)设α,β是方程2x 2+3x +1=0的两个根,则(14)α+β=__________.(2)若10x =3,10y =4,则10x -12y =__________.8.(1)求下列各式的值:①2723;②(614)12;③(49)-32.(2)解方程:①x -3=18;②x =914.9.求下列各式的值: (1)(0.027)23+(12527)13-(279)0.5;(2)(13)12+3·(3-2)-1-(11764)14-(333)34-(13)-1.10.已知a 12+a -12=4,求a +a -1的值.11.化简下列各式: (1)5x -23y12(-14x -1y 12)(-56x 13y -16);(2)m +m -1+2m -12+m12.12.[(-2)2]-12的值是__________.13.化简(36a 9)4·(63a 9)4的结果是__________.14.以下各式,化简正确的个数是__________. ①a 25a -13a -115=1 ②(a 6b -9)-23=a -4b 6③(-x 14y -13)(x -12y 23)(-x 14y 23)=y④-15a 12b 13c -3425a -12b 13c54=-35ac15.(2010山东德州模拟,4改编)如果a 3=3,a 10=384,则a 3[(a 10a 3)17]n 等于__________.16.化简3(a -b )3+(a -2b )2的结果是__________. 17.下列结论中,正确的序号是__________. ①当a<0时,(a 2)32=a 3②na n =|a|(n>1且n ∈N *)③函数y =(x -2)12-(3x -7)0的定义域是(2,+∞)④若100a =5,10b =2,则2a +b =118.(1)若a =(2+3)-1,b =(2-3)-1,则(a +1)-2+(b +1)-2的值是__________.(2)若x >0,y >0,且x(x +y)=3y(x +5y),则2x +2xy +3yx -xy +y 的值是__________.19.已知a =2 0091n -2 009-1n2(n ∈N *),则(a 2+1+a)n 的值是__________.20.若S =(1+2-132)(1+2-116)(1+2-18)(1+2-14)(1+2-12),那么S 等于__________.21.先化简,再求值:(1)a 2·5a 310a 7·a,其中a =8-53;(2)a 3x +a -3xa x +a -x ,其中a 2x =5.22.(易错题)计算:(1)(235)0+2-2·(214)-12-(0.01)0.5;(2)(279)0.5+0.1-2+(21027)-23-3π0+3748;(3)(0.008 1)-14-[3×(78)0]-1×[81-0.25+(338)-13]-12-10×0.02713.23.已知x 12+x -12=3,求x 32+x -32+2x 2+x -2+3的值.24.化简下列各式:(1)x -2+y -2x -23+y -23-x -2-y -2x -23-y -23;(2)a 43-8a 13b a 23+23ab +4b 23÷(1-23b a )×3a.答案与解析基础巩固1.1 ∵n a n =⎩⎪⎨⎪⎧a ,当n 为奇数时,|a|,当n 为偶数时,∴①不正确;∵a ∈R ,且a 2-a +1=(a -12)2+34≠0,∴②正确;∵x 4+y 3为多项式,∴③不正确;④中左边为负,右边为正显然不正确.∴只有②正确.2.②⑤ ①-x =-x 12,∴①错;②x x =(x x)12=(x·x 12)12=(x 32)12=x 34,∴②对;③x -13=1x 13=13x ,∴③错;④3x·4x =x 13·x 14=x 13+14=x 712,∴④错;⑤(x y )-34=(y x )34=4(y x)3,∴⑤对;⑥6y 2=|y|13=-y 13(y<0),∴⑥错.∴②⑤正确. 3.164 (a c )b =a bc =23×(-2)=2-6=126=164. 4.a 32 a a =a·a 12=a1+12=a 32.5.5 4(-25)2=4252=454=5. 6.-2-(2k +1)∵2-(2k +1)-2-(2k -1)+2-2k=2-2k·2-1-2-2k·21+2-2k=(12-2+1)·2-2k =-12·2-2k=-2-(2k +1).7.(1)8 (2)32 (1)由根与系数的关系,得α+β=-32,∴(14)α+β=(14)-32=(2-2)-32=23=8. (2)∵10x =3,10y =4,∴10x -12y =10x ÷1012y =10x ÷(10y )12=3÷412=32.8.解:(1)①2723=(33)23=33×23=32=9.②(614)12=(254)12=[(52)2]12=(52)2×12=52.③(49)-32=(23)2×(-32) =(23)-3=(32)3=278. (2)①∵x -3=18=2-3,∴x =2.②∵x =914,∴(x)2=(914)2=912.∴x =(32)12=3.9.解:(1)原式=(0.33)23+(12527)13-(259)12=9100+53-53=9100.(2)原式=3-12+33-2-(8164)14-(3-23)34-31=33+3(3+2)-[4(34)4]14-3-12-3=33+3+6-2·34-33-3 =6-342.10.解:∵a 12+a -12=4.∴两边平方,得a +a -1+2=16. ∴a +a -1=14.11.解:(1)原式=245×5×x -23+1-13×y 12-12+16=24x 0y 16=24y 16;(2)原式=(m 12)2+2m 12·m -12+(m -12)2m -12+m12=(m 12+m -12)2m 12+m -12=m 12+m -12.能力提升12.22 原式=2-12=12=22. 13.a 4原式=(3a 96)4·(6a 93)4=(a 32×13)4·(a3×16)4=(a 12)4·(a 12)4=a 2·a 2=a 4. 14.3 由分数指数幂的运算法则知①②③正确;对④,∵左边=-35a 12+12b 13-13c -34-54=-35a 1b 0c -2=-35ac -2≠右边,∴④错误.15.3·2n 原式=3·[(3843)17]n =3·[(128)17]n =3·(27×17)n =3·2n .16.b 或2a -3b 原式=a -b +|a -2b|=⎩⎪⎨⎪⎧ a -b +2b -a ,a <2b a -b +a -2b ,a ≥2b =⎩⎪⎨⎪⎧b ,a <2b ,2a -3b ,a ≥2b.17.④ ①中,当a <0时,(a 2)32=[(a 2)12]3=(|a|)3=(-a)3=-a 3,∴①不正确;当a <0,n 为奇数时,na n =a , ∴②不正确;③中,有⎩⎪⎨⎪⎧x -2≥0,3x -7≠0,即x ≥2且x ≠73,故定义域为[2,73)∪(73,+∞),∴③不正确;④中,∵100a =5,10b =2,∴102a =5,10b =2,102a ×10b =10. ∴2a +b =1.∴④正确.18.(1)23 (2)3 (1)a =12+3=2-3,b =12-3=2+3,∴(a +1)-2+(b +1)-2=(3-3)-2+(3+3)-2=1(3-3)2+1(3+3)2=(3+3)2+(3-3)2(3-3)2·(3+3)2=32+2·3·3+3+32-2·3·3+3[(3-3)(3+3)]2=2×9+6(9-3)2=2436=23.(2)由已知条件,可得(x)2-2xy -15(y)2=0, ∴x +3y =0或x -5y =0. ∵x >0,y >0,∴x =5y ,x =25y.∴原式=50y +225y 2+3y25y -25y 2+y=50y +10y +3y 25y -5y +y =63y21y=3.19.2 009 ∵a =2 0091n -2 009-1n2,∴a 2+1=1+2 0092n +2 009-2n-24=(2 0091n )2+2+(2 009-1n)24=(2 0091n +2 009-1n 2)2.∴a 2+1+a=2 0091n +2 009-1n 2+2 0091n -2 009-1n2=2 0091n.∴(a 2+1+a)n =(2 0091n )n =2 009.20.12(1-2-132)-1 原式=(1-2-132)(1+2-132)(1+2-116)(1+2-18)(1+2-14)(1+2-12)1-2-132=(1-2-116)(1+2-116)(1+2-18)(1+2-14)(1+2-12)1-2-132=(1-2-18)(1+2-18)(1+2-14)(1+2-12)1-2-132=(1-2-14)(1+2-14)(1+2-12)1-2-132=(1-2-12)(1+2-12)1-2-132=1-2-11-2-132=12(1-2-132)-1. 21.解:(1)原式=a2+35-710-12=a 75=(8-53)75=8-73=(23)-73=2-7=1128.(2)原式=(a x )3+(a -x )3a x +a -x=(a x +a -x )(a 2x -a x ·a -x +a -2x)a x +a -x=a 2x -1+a-2x =5-1+15=415.22.解:(1)原式=1+14·(49)12-(1100)12=1+14×23-(110)2×12=1+16-110=1115.(2)原式=(259)12+(110)-2+(6427)-23-3×1+3748=53+100+(43)-2-3+3748 =53+100+916-3+3748=100. (3)原式=[(0.3)4]-14-3-1×[(34)-14+(278)-13]-12-10×[(0.3)3]13=0.3-1-13[3-1+(32)-1]-12-10×0.3=103-13(13+23)-12-3=103-13-3=0.23.解:∵x 12+x -12=3,∴(x 12+x -12)2=9.∴x +x -1=7.∴原式=(x 12)3+(x -12)3+2x 2+x -2+3 =(x 12+x -12)(x -1+x -1)+2(x +x -1)2-2+3 =3×(7-1)+272-2+3=25. 拓展探究24.解:(1)原式=(x -23)3+(y -23)3x -23+y -23-(x -23)3-(y -23)3x -23-y -23=(x -23)2-x -23·y -23+(y -23)2-(x-23)2-x -23·y -23-(y -23)2=-2(xy)-23. (2)原式=a 13[(a 13)3-(2b 13)3]a 23+2a 13b 13+(2b 13)2÷(1-2b 13a 13)×a 13=a 13(a 13-2b 13)[a 23+2a 13b 13+(2b 13)2]a 23+2a 13b 13+(2b 13)2÷a 13-2b 13a 13×a 13=a 13(a 13-2b 13)·11×a 13a 13-2b 13×a 13=a 13·a 13·a13=a.。
分数指数幂练习题
分数指数幂1.以下命题中,正确命题的个数是__________. ①n a n =a ②假设a ∈R ,那么(a 2-a +1)0=1 ③3x 4+y 3=x 43+y ④3-5=6(-5)22.以下根式、分数指数幂的互化中,正确的序号是__________. ①-x =(-x)12(x ≠0) ②x x =x 34 ③x -13=-3x ④3x·4x =x 112⑤(x y )-34=4(y x )3(xy ≠0) ⑥6y 2=y 13(y<0)3.假设a =2,b =3,c =-2,那么(a c )b =__________. 4.根式a a 的分数指数幂形式为__________.5.4(-25)2=__________.6.2-(2k +1)-2-(2k -1)+2-2k 的化简结果是__________.7.(1)设α,β是方程2x 2+3x +1=0的两个根,那么(14)α+β=__________.(2)假设10x =3,10y =4,那么10x -12y =__________.8.(1)求以下各式的值:①2723;②(614)12;③(49)-32.(2)解方程:①x -3=18;②x =914.9.求以下各式的值:(1)(0.027)23+(12527)13-(279)0.5;(2)(13)12+3·(3-2)-1-(11764)14-(333)34-(13)-1.10.a 12+a -12=4,求a +a -1的值.11.化简以下各式:(1)5x -23y 12(-14x -1y 12)(-56x 13y -16); (2)m +m -1+2m -12+m 12.12.[(-2)2]-12的值是__________. 13.化简(36a 9)4·(63a 9)4的结果是__________.14.以下各式,化简正确的个数是__________.①a 25a -13a -115=1 ②(a 6b -9)-23=a -4b 6③(-x 14y -13)(x -12y 23)(-x 14y 23)=y ④-15a 12b 13c -3425a -12b 13c 54=-35ac 15.(2021山东德州模拟,4改编)如果a 3=3,a 10=384,那么a 3[(a 10a 3)17]n 等于__________. 16.化简3(a -b )3+(a -2b )2的结果是__________.17.以下结论中,正确的序号是__________.①当a<0时,(a 2)32=a 3 ②n a n =|a|(n>1且n ∈N *)③函数y =(x -2)12-(3x -7)0的定义域是(2,+∞) ④假设100a =5,10b =2,那么2a +b =118.(1)假设a =(2+3)-1,b =(2-3)-1,那么(a +1)-2+(b +1)-2的值是__________.(2)假设x >0,y >0,且x(x +y)=3y(x +5y),那么2x +2xy +3y x -xy +y的值是__________.19.a =2 0091n -2 009-1n 2(n ∈N *),那么(a 2+1+a)n 的值是__________. 20.假设S =(1+2-132)(1+2-116)(1+2-18)(1+2-14)(1+2-12),那么S 等于__________. 21.先化简,再求值: (1)a 2·5a 310a 7·a,其中a =8-53; (2)a 3x +a -3xa x +a-x ,其中a 2x =5.22.(易错题)计算:(1)(235)0+2-2·(214)-12-(0.01)0.5; (2)(279)0.5+0.1-2+(21027)-23-3π0+3748; (3)(0.008 1)-14-[3×(78)0]-1×[81-0.25+(338)-13]-12-10×0.02713.23.x 12+x -12=3,求x 32+x -32+2x 2+x -2+3的值.24.化简以下各式:(1)x -2+y -2x -23+y -23-x -2-y -2x -23-y -23;(2)a 43-8a 13b a 23+23ab +4b 23÷(1-23b a )×3a.答案与解析根底稳固1.1 ∵n a n =⎩⎪⎨⎪⎧ a ,当n 为奇数时,|a|,当n 为偶数时, ∴①不正确;∵a ∈R ,且a 2-a +1=(a -12)2+34≠0,∴②正确; ∵x 4+y 3为多项式,∴③不正确;④中左边为负,右边为正显然不正确.∴只有②正确.2.②⑤ ①-x =-x 12,∴①错; ②x x =(x x)12=(x·x 12)12=(x 32)12=x 34,∴②对; ③x -13=1x 13=13x ,∴③错; ④3x·4x =x 13·x 14=x 13+14=x 712, ∴④错;⑤(x y )-34=(y x )34=4(y x)3,∴⑤对; ⑥6y 2=|y|13=-y 13(y<0),∴⑥错. ∴②⑤正确.3.164 (a c )b =a bc =23×(-2)=2-6=126=164. 4.a 32 a a =a·a 12=a1+12=a 32. 5.54(-25)2=4252=454=5. 6.-2-(2k +1) ∵2-(2k +1)-2-(2k -1)+2-2k =2-2k ·2-1-2-2k ·21+2-2k =(12-2+1)·2-2k =-12·2-2k =-2-(2k +1).7.(1)8 (2)32 (1)由根与系数的关系,得α+β=-32, ∴(14)α+β=(14)-32=(2-2)-32=23=8. (2)∵10x =3,10y =4,∴10x -12y =10x ÷1012y =10x ÷(10y )12=3÷412=32. 8.解:(1)①2723=(33)23=33×23=32=9. ②(614)12=(254)12=[(52)2]12=(52)2×12=52. ③(49)-32=(23)2×(-32) =(23)-3=(32)3=278. (2)①∵x -3=18=2-3,∴x =2. ②∵x =914, ∴(x)2=(914)2=912. ∴x =(32)12=3. 9.解:(1)原式=(0.33)23+(12527)13-(259)12=9100+53-53=9100. (2)原式=3-12+33-2-(8164)14-(3-23)34-31 =33+3(3+2)-[4(34)4]14-3-12-3=33+3+6-2·34-33-3 =6-342. 10.解:∵a 12+a -12=4. ∴两边平方,得a +a -1+2=16.∴a +a -1=14.11.解:(1)原式=245×5×x -23+1-13×y 12-12+16=24x 0y 16=24y 16; (2)原式 =(m 12)2+2m 12·m -12+(m -12)2m -12+m 12=(m 12+m -12)2m 12+m -12=m 12+m -12. 能力提升 12.22 原式=2-12=12=22. 13.a 4原式=(3a 96)4·(6a 93)4=(a 32×13)4·(a3×16)4=(a 12)4·(a 12)4=a 2·a 2=a 4. 14.3 由分数指数幂的运算法那么知①②③正确;对④,∵左边=-35a 12+12b 13-13c -34-54=-35a 1b 0c -2=-35ac -2≠右边,∴④错误. 15.3·2n 原式=3·[(3843)17]n =3·[(128)17]n =3·(27×17)n =3·2n . 16.b 或2a -3b 原式=a -b +|a -2b|=⎩⎪⎨⎪⎧ a -b +2b -a ,a <2b a -b +a -2b ,a ≥2b =⎩⎪⎨⎪⎧b ,a <2b ,2a -3b ,a ≥2b. 17.④ ①中,当a <0时,(a 2)32=[(a 2)12]3=(|a|)3=(-a)3=-a 3, ∴①不正确; 当a <0,n 为奇数时,n a n =a ,∴②不正确;③中,有⎩⎪⎨⎪⎧x -2≥0,3x -7≠0,即x ≥2且x ≠73, 故定义域为[2,73)∪(73,+∞), ∴③不正确;④中,∵100a =5,10b =2,∴102a =5,10b =2,102a ×10b =10.∴2a +b =1.∴④正确.18.(1)23 (2)3 (1)a =12+3=2-3,b =12-3=2+3, ∴(a +1)-2+(b +1)-2=(3-3)-2+(3+3)-2=1(3-3)2+1(3+3)2=(3+3)2+(3-3)2(3-3)2·(3+3)2 =32+2·3·3+3+32-2·3·3+3[(3-3)(3+3)]2=2×9+6(9-3)2=2436=23. (2)由条件,可得 (x)2-2xy -15(y)2=0, ∴x +3y =0或x -5y =0.∵x >0,y >0,∴x =5y ,x =25y.∴原式=50y +225y 2+3y 25y -25y 2+y=50y +10y +3y 25y -5y +y =63y 21y=3. 19.2 009 ∵a =2 0091n -2 009-1n 2, ∴a 2+1=1+2 0092n +2 009-2n -24=(2 0091n )2+2+(2 009-1n )24=(2 0091n +2 009-1n 2)2. ∴a 2+1+a=2 0091n +2 009-1n 2+2 0091n -2 009-1n 2=2 0091n.∴(a 2+1+a)n =(2 0091n)n =2 009. 20.12(1-2-132)-1 原式=(1-2-132)(1+2-132)(1+2-116)(1+2-18)(1+2-14)(1+2-12)1-2-132=(1-2-116)(1+2-116)(1+2-18)(1+2-14)(1+2-12)1-2-132=(1-2-18)(1+2-18)(1+2-14)(1+2-12)1-2-132=(1-2-14)(1+2-14)(1+2-12)1-2-132=(1-2-12)(1+2-12)1-2-132=1-2-11-2-132=12(1-2-132)-1. 21.解:(1)原式=a2+35-710-12=a 75=(8-53)75=8-73=(23)-73=2-7=1128. (2)原式=(a x )3+(a -x )3a x +a-x =(a x +a -x )(a 2x -a x ·a -x +a -2x )a x +a -x=a 2x -1+a -2x =5-1+15=415. 22.解:(1)原式=1+14·(49)12-(1100)12=1+14×23-(110)2×12=1+16-110=1115. (2)原式=(259)12+(110)-2+(6427)-23-3×1+3748=53+100+(43)-2-3+3748=53+100+916-3+3748=100. (3)原式=[(0.3)4]-14-3-1×[(34)-14+(278)-13]-12-10×[(0.3)3]13=0.3-1-13[3-1+(32)-1]-12-10×0.3 =103-13(13+23)-12-3=103-13-3=0.23.解:∵x 12+x -12=3, ∴(x 12+x -12)2=9. ∴x +x -1=7.∴原式=(x 12)3+(x -12)3+2x 2+x -2+3=(x 12+x -12)(x -1+x -1)+2(x +x -1)2-2+3=3×(7-1)+272-2+3=25. 拓展探究24.解:(1)原式=(x -23)3+(y -23)3x -23+y -23-(x -23)3-(y -23)3x -23-y -23=(x -23)2-x -23·y -23+(y -23)2-(x -23)2-x -23·y -23-(y -23)2=-2(xy)-23. (2)原式=a 13[(a 13)3-(2b 13)3]a 23+2a 13b 13+(2b 13)2÷(1-2b 13a 13)×a 13 =a 13(a 13-2b 13)[a 23+2a 13b 13+(2b 13)2]a 23+2a 13b 13+(2b 13)2÷a 13-2b 13a 13×a 13=a 13(a 13-2b 13)·11×a 13a 13-2b 13×a 13=a 13·a 13·a 13=a.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分数指数幂1.下列命题中,正确命题的个数是__________.①na n=a②若a∈R,则(a2-a+1)0=1③3x4+y3=x43+y④3-5=6-522.下列根式、分数指数幂的互化中,正确的序号是__________.①-x=(-x)12(x≠0)②x x=x34③x-13=-3x④3x·4x=x112⑤(xy)-34=4yx 3(xy≠0)⑥6y2=y13(y<0)3.若a=2,b=3,c=-2,则(a c)b=__________. 4.根式a a的分数指数幂形式为__________.5.4-252=__________.6.2-(2k+1)-2-(2k-1)+2-2k的化简结果是__________.7.(1)设α,β是方程2x2+3x+1=0的两个根,则(14)α+β=__________.(2)若10x=3,10y=4,则10x-12y=__________.8.(1)求下列各式的值:①2723;②(614)12;③(49)-32.(2)解方程:①x-3=18;②x=914.9.求下列各式的值:(1)(0.027)23+(12527)13-(279)0.5;(2)(13)12+3·(3-2)-1-(11764)14-(333)34-(13)-1.10.已知a 12+a -12=4,求a +a -1的值.11.化简下列各式:(1)5x -23y12-14x -1y 12-56x 13y -16;(2)m +m -1+2m -12+m12.12.[(-2)2]-12的值是__________.13.化简(36a 9)4·(63a 9)4的结果是__________.14.以下各式,化简正确的个数是__________.①a 25a -13a -115=1②(a 6b -9)-23=a -4b6③(-x 14y -13)(x -12y 23)(-x 14y 23)=y④-15a 12b 13c -3425a -12b 13c54=-35ac15.(2010山东德州模拟,4改编)如果a 3=3,a 10=384,则a 3[(a 10a 3)17]n等于__________.16.化简3a -b 3+a -2b 2的结果是__________.17.下列结论中,正确的序号是__________.①当a<0时,(a 2)32=a3②na n =|a|(n>1且n ∈N *)③函数y =(x -2)12-(3x -7)0的定义域是(2,+∞)④若100a =5,10b=2,则2a +b =1 18.(1)若a =(2+3)-1,b =(2-3)-1,则(a +1)-2+(b +1)-2的值是__________.(2)若x >0,y >0,且x(x +y)=3y(x +5y),则2x +2xy +3y x -xy +y的值是__________.19.已知a =2 0091n -2 009-1n 2(n ∈N *),则(a 2+1+a)n的值是__________.20.若S =(1+2-132)(1+2-116)(1+2-18)(1+2-14)(1+2-12),那么S 等于__________.21.先化简,再求值:(1)a 2·5a310a 7·a ,其中a =8-53;(2)a 3x+a -3xa x+a-x ,其中a 2x=5. 22.(易错题)计算:(1)(235)0+2-2·(214)-12-(0.01)0.5;(2)(279)0.5+0.1-2+(21027)-23-3π0+3748;(3)(0.008 1)-14-[3×(78)0]-1×[81-0.25+(338)-13]-12-10×0.02713. 23.已知x 12+x -12=3,求x 32+x -32+2x 2+x -2+3的值.24.化简下列各式:(1)x-2+y-2x -23+y -23-x-2-y-2x -23-y -23;(2)a43-8a13ba23+23ab+4b23÷(1-23ba)×3a.答案与解析基础巩固1.1∵na n=a,当n为奇数时,|a|,当n为偶数时,∴①不正确;∵a∈R,且a2-a+1=(a-12)2+34≠0,∴②正确;∵x4+y3为多项式,∴③不正确;④中左边为负,右边为正显然不正确.∴只有②正确.2.②⑤①-x=-x 12,∴①错;②x x=(x x)12=(x·x12)12=(x32)12=x34,∴②对;③x-13=1x13=13x,∴③错;④3x·4x=x13·x14=x13+14=x712,∴④错;⑤(xy)-34=(yx)34=4yx3,∴⑤对;⑥6y 2=|y|13=-y 13(y<0),∴⑥错.∴②⑤正确.3.164(a c )b =a bc =23×(-2)=2-6=126=164.4.a32a a =a ·a 12=a1+12=a 32.5.54-252=4252=454=5.6.-2-(2k +1)∵2-(2k +1)-2-(2k -1)+2-2k=2-2k·2-1-2-2k·21+2-2k=(12-2+1)·2-2k =-12·2-2k=-2-(2k +1).7.(1)8(2)32(1)由根与系数的关系,得α+β=-32,∴(14)α+β=(14)-32=(2-2)-32=23=8.(2)∵10x=3,10y =4,∴10x -12y =10x ÷1012y =10x ÷(10y )12=3÷412=32. 8.解:(1)①2723=(33)23=33×23=32=9. ②(614)12=(254)12=[(52)2]12=(52)2×12=52.③(49)-32=(23)2×(-32)=(23)-3=(32)3=278.(2)①∵x-3=18=2-3,∴x =2. ②∵x =914,∴(x)2=(914)2=912.∴x =(32)12=3.9.解:(1)原式=(0.33)23+(12527)13-(259)12=9100+53-53=9100.(2)原式=3-12+33-2-(8164)14-(3-23)34-31=33+3(3+2)-[4(34)4]14-3-12-3=33+3+6-2·34-33-3 =6-342.10.解:∵a 12+a -12=4.∴两边平方,得a +a -1+2=16.∴a +a -1=14.11.解:(1)原式=245×5×x -23+1-13×y 12-12+16=24x 0y 16=24y 16;(2)原式=m 122+2m 12·m -12+m -122m -12+m 12=m 12+m -122m 12+m -12=m 12+m -12.能力提升12.22原式=2-12=12=22.13.a 4原式=(3a 96)4·(6a 93)4=(a 32×13)4·(a3×16)4=(a 12)4·(a 12)4=a 2·a 2=a 4.14.3由分数指数幂的运算法则知①②③正确;对④,∵左边=-35a 12+12b 13-13c -34-54=-35a 1b 0c -2=-35ac -2≠右边,∴④错误.15.3·2n原式=3·[(3843)17]n =3·[(128)17]n =3·(27×17)n =3·2n . 16.b 或2a -3b 原式=a -b +|a -2b|=a -b +2b -a ,a <2ba -b +a -2b ,a ≥2b=b ,a <2b ,2a -3b ,a ≥2b.17.④①中,当a <0时,(a 2)32=[(a 2)12]3=(|a|)3=(-a)3=-a 3,∴①不正确;当a <0,n 为奇数时,n a n=a ,∴②不正确;③中,有x -2≥0,3x -7≠0,即x≥2且x≠7 3,故定义域为[2,73)∪(73,+∞),∴③不正确;④中,∵100a=5,10b=2,∴102a=5,10b=2,102a×10b=10. ∴2a+b=1.∴④正确.18.(1)23(2)3(1)a=12+3=2-3,b=12-3=2+3,∴(a+1)-2+(b+1)-2=(3-3)-2+(3+3)-2=13-32+13+32=3+32+3-323-32·3+32=32+2·3·3+3+32-2·3·3+3 [3-33+3]2=2×9+69-32=2436=23.(2)由已知条件,可得(x)2-2xy-15(y)2=0,∴x+3y=0或x-5y=0. ∵x>0,y>0,∴x=5y,x=25y.∴原式=50y+225y2+3y 25y-25y2+y=50y+10y+3y25y-5y+y=63y21y=3.19.2 009∵a=2 0091n-2 009-1n2,∴a2+1=1+2 0092n+2 009-2n-24=2 0091n2+2+ 2 009-1n24=(2 0091n+2 009-1n2)2.∴a2+1+a=2 0091n+2 009-1n2+2 0091n-2 009-1n2=2 0091 n .∴(a 2+1+a)n=(2 0091n )n =2 009.20.12(1-2-132)-1原式=1-2-1321+2-1321+2-1161+2-181+2-141+2-121-2-132=1-2-1161+2-1161+2-181+2-141+2-121-2-132=1-2-181+2-181+2-141+2-121-2-132=1-2-141+2-141+2-121-2-132=1-2-121+2-121-2-132=1-2-11-2-132=12(1-2-132)-1. 21.解:(1)原式=a2+35-710-12=a 75=(8-53)75=8-73=(23)-73=2-7=1128.(2)原式=ax 3+a-x3a x+a-x =a x+a-xa 2x-a x·a -x +a-2xax +a -x =a 2x-1+a-2x=5-1+15=415.22.解:(1)原式=1+14·(49)12-(1100)12=1+14×23-(110)2×12=1+16-110=1115.(2)原式=(259)12+(110)-2+(6427)-23-3×1+3748=53+100+(43)-2-3+3748=53+100+916-3+3748=100.(3)原式=[(0.3)4]-14-3-1×[(34)-14+(278)-13]-12-10×[(0.3)3]13=0.3-1-13[3-1+(32)-1]-12-10×0.3=103-13(13+23)-12-3=103-13-3=0.23.解:∵x 12+x-12=3,∴(x 12+x-12)2=9.∴x+x-1=7.∴原式=x123+x-123+2 x2+x-2+3=x12+x-12x-1+x-1+2 x+x-12-2+3=3×7-1+272-2+3=25.拓展探究24.解:(1)原式=x-233+y-233x-23+y-23-x-233-y-233x-23-y-23=(x-23)2-x-23·y-23+(y-23)2-(x-23)2-x-23·y-23-(y-23)2=-2(xy)-23.(2)原式=a13[a133-2b133]a23+2a13b13+2b132÷(1-2b13a13)×a13=a13a13-2b13[a23+2a13b13+2b132]a23+2a13b13+2b132÷a13-2b13a13×a13=a13a13-2b13·11×a13a13-2b13×a13=a13·a13·a13=a.。