空间几何体的结构的教学设计

合集下载

空间几何体的结构教案

空间几何体的结构教案

空间几何体的结构教案第一章:绪论1.1 空间几何体的概念学习目标:了解空间几何体的定义和分类,能够识别常见的空间几何体。

教学内容:介绍空间几何体的概念,解释点、线、面、体之间的关系。

教学活动:通过实物展示和图形演示,让学生直观地理解空间几何体的概念。

1.2 空间几何体的分类学习目标:掌握空间几何体的分类,能够区分各种几何体的特点。

教学内容:介绍空间几何体的分类,包括立体几何体的分类和旋转体几何体的分类。

教学活动:通过图形展示和分类讨论,让学生掌握空间几何体的分类。

第二章:立体几何体的结构特征2.1 立方体学习目标:了解立方体的结构特征,能够计算立方体的表面积和体积。

教学内容:介绍立方体的定义、性质和结构特征,讲解立方体的表面积和体积的计算方法。

教学活动:通过实物观察和几何模型操作,让学生了解立方体的结构特征。

2.2 球体学习目标:掌握球体的结构特征,能够计算球体的表面积和体积。

教学内容:介绍球体的定义、性质和结构特征,讲解球体的表面积和体积的计算方法。

教学活动:通过实物观察和几何模型操作,让学生掌握球体的结构特征。

第三章:旋转体几何体的结构特征3.1 圆柱体学习目标:了解圆柱体的结构特征,能够计算圆柱体的表面积和体积。

教学内容:介绍圆柱体的定义、性质和结构特征,讲解圆柱体的表面积和体积的计算方法。

教学活动:通过实物观察和几何模型操作,让学生了解圆柱体的结构特征。

3.2 圆锥体学习目标:掌握圆锥体的结构特征,能够计算圆锥体的表面积和体积。

教学内容:介绍圆锥体的定义、性质和结构特征,讲解圆锥体的表面积和体积的计算方法。

教学活动:通过实物观察和几何模型操作,让学生掌握圆锥体的结构特征。

第四章:空间几何体的相互转化4.1 立方体与球体的转化学习目标:了解立方体与球体的相互转化方法,能够进行相关的计算。

教学内容:介绍立方体与球体的相互转化方法,讲解转化的条件和转化的过程。

教学活动:通过几何模型操作和数学证明,让学生了解立方体与球体的相互转化。

空间几何体的结构教案

空间几何体的结构教案

1.1.1柱、锥、台、球的结构特征(一) 几何体1. 多面体:若干个平面多边形围成的几何体。

(1) 面----围成多面体的各个多边形。

棱----相邻两个面的公共边。

顶点-----棱与棱的公共点。

(2) 棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

底面:棱柱中,两个互相平行的面,叫做棱柱的底面,简称底。

侧面:棱柱中除底面的各个面。

侧棱:相邻侧面的公共边叫做棱柱的侧棱。

顶点:侧面与底面的公共顶点叫做棱柱的顶点。

底面是三角形、四边形、五边形……的棱柱分别叫三棱柱、四棱柱、五棱柱…… 斜棱柱:侧棱与底面不垂直的棱柱 直棱柱:侧棱与底面垂直的棱柱 正棱柱:底面是正多边形的直棱柱 平行六面体:底面是平行四边形的棱柱 直平行六面体:侧棱与底面垂直的平行六面体棱柱斜棱柱直正棱柱;四棱柱平行六面体直平行六面体 长方体正四棱柱正方体。

(3) 棱锥:如果一个多面体一个面是多边形,其他各面的交于一个顶点的三角形. 底面:棱锥中的多边形叫做棱锥的底面或底。

侧面:有公共顶点的各个三角形叫做棱锥的侧面 侧棱:相邻侧面的公共边叫做棱锥的侧棱。

顶点:各个侧面的公共顶点叫做棱锥的顶点。

棱锥的高: 顶点到底面的距离.底面是三角形、四边形、五边形……的棱锥分别叫三棱锥,四棱锥,五棱锥…… 正棱锥:如果棱锥的底面是正多边形,且他的顶点在过底面中心且与底面垂直的直线上. 棱锥的斜高:正棱锥侧面上的高(4) 棱台:棱锥被平行于底面的平面所截,截面和底面间的部分 下底面和上底面:原棱锥的底面和截面侧面:原棱锥的侧面也叫做棱台的侧面(截后剩余部分)。

侧棱:原棱锥的侧棱也叫棱台的侧棱(截后剩余部分)。

顶点:上底面和侧面,下底面和侧面的公共点叫做棱台的顶点。

棱台的高:两地面之间的距离 正棱台:正棱锥截得棱台 棱台的斜高:正棱台侧面上的高底面是三角形、四边形、五边形……的棱台分别叫三棱台、四棱台、五棱台……棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是正多边形侧棱垂直于底面侧棱不垂直于底面(5)正多面体:②欧拉公式:(为简单多面体的顶点数,为面数,为棱数) (6)正四面体:对于棱长为a 正四面体的问题可将它补成一个边长为a 22的正方体问题。

空间几何体的结构[(教案

空间几何体的结构[(教案

空间几何体的结构一、教学目标:1. 让学生了解并掌握空间几何体的基本概念和性质。

2. 培养学生空间想象能力和思维能力。

3. 使学生能够运用空间几何体的知识解决实际问题。

二、教学内容:1. 空间几何体的定义及分类。

2. 空间几何体的基本性质。

3. 空间几何体的直观图和三视图。

4. 空间几何体的度量关系。

5. 空间几何体的位置关系。

三、教学重点与难点:1. 教学重点:空间几何体的定义、性质、直观图和三视图、度量关系、位置关系。

2. 教学难点:空间几何体的直观图和三视图的绘制,空间几何体的度量关系和位置关系的应用。

四、教学方法:1. 采用讲授法,讲解空间几何体的基本概念、性质、度量关系和位置关系。

2. 利用多媒体展示空间几何体的直观图和三视图,帮助学生建立空间想象能力。

3. 结合实际例子,让学生运用空间几何体的知识解决实际问题。

4. 开展小组讨论,培养学生合作学习和思考能力。

五、教学过程:1. 导入新课:通过生活中的实例,引出空间几何体的概念,激发学生兴趣。

2. 讲解空间几何体的定义、性质、度量关系和位置关系,结合多媒体展示直观图和三视图,帮助学生理解并掌握。

3. 课堂练习:让学生绘制空间几何体的直观图和三视图,巩固所学知识。

4. 实例分析:结合实际例子,让学生运用空间几何体的知识解决实际问题。

6. 课后作业:布置有关空间几何体的练习题,巩固所学知识。

7. 课后反思:教师对本节课的教学情况进行反思,为下一步教学做好准备。

六、教学评价:1. 评价学生对空间几何体的定义、性质、度量关系和位置关系的掌握程度。

2. 评价学生空间想象能力和思维能力的提高情况。

3. 评价学生运用空间几何体的知识解决实际问题的能力。

七、教学拓展:1. 探讨空间几何体在现实生活中的应用。

2. 介绍空间几何体在其他学科领域中的应用。

3. 探索空间几何体的新性质和新方法。

八、教学资源:1. 多媒体课件:用于展示空间几何体的直观图和三视图。

人教必修“空间几何体的结构”的教学设计

人教必修“空间几何体的结构”的教学设计

人教必修“空间几何体的结构”的教学设计教学设计:空间几何体的结构一、教学目标1.知识与能力目标:了解空间几何体的结构特点及相关概念;掌握判断空间几何体结构的方法;运用空间几何体的结构特点解决相关问题。

2.过程与方法目标:通过讨论与实验等活动,激发学生的学习兴趣;培养学生的观察能力、分析能力和解决问题的能力;通过分组合作,培养学生的团队协作能力。

二、教学重点和难点1.教学重点:空间几何体的结构特点及相关概念;判断空间几何体结构的方法。

2.教学难点:运用空间几何体的结构特点解决相关问题。

三、教学准备教师准备教材、投影仪、实验器材等;学生准备笔记本、书本和几何工具。

四、教学过程1.导入(5分钟)通过投影仪播放一段关于建筑设计的视频,引发学生对于空间几何体的兴趣,并向学生呈现几个建筑物的照片,让学生讨论建筑物的特点和结构。

2.知识讲解(15分钟)(1)温习长方体、正方体和三棱柱的结构特点;(2)引出新的概念:四棱锥、四面体等空间几何体的结构特点;(3)讲解判断空间几何体结构的方法,如通过观察棱、面、顶点的形状和相互关系来判断。

3.实验活动(20分钟)(1)分组进行实验活动,每组1-2名学生;(2)提供一些实验器材,如积木和棱镜等;(3)让学生通过实验,观察不同空间几何体的结构特点,并判断其结构类型。

4.讨论与总结(15分钟)(1)学生展示实验结果,让其他组进行讨论和点评;(2)教师带领学生总结判断空间几何体结构的方法;(3)教师与学生共同梳理所学内容,确保学生对空间几何体的结构特点和判断方法有清晰的理解。

5.锻炼与应用(20分钟)(1)教师设计一些相关问题,让学生通过运用所学知识解答;(2)学生可以个别或分组完成,在发现问题、分析问题、解决问题的过程中培养逻辑思维和动手能力;(3)学生展示并讲解自己的解题思路。

6.归纳与反思(10分钟)(1)教师与学生共同归纳整理所学内容,对于空间几何体的结构特点和判断方法进行总结;(2)学生分享个人的收获和困惑,教师进行答疑解惑;(3)教师对这节课的教学进行反思,并给予学生一些建议。

《空间几何体的结构》教案

《空间几何体的结构》教案

)/空间几何体的结构第一章:空间几何体第一课时§.柱、锥、台、球的结构特征一、教学目标1.知识与技能(1)通过实物操作,课件展示,增强学生的直观感知.(2)能根据几何结构特征对空间物体进行分类.(3)会用语言概述棱柱、棱锥、棱台、(圆柱、圆锥、圆台、球)的结构特征.(4)会表示有关于几何体以及柱、锥、台的分类.}2.过程与方法(1)让学生通过直观感受空间物体,从实物中概括出棱柱、棱锥、棱台、的几何结构特征.(2)让学生观察、讨论、归纳、概括所学的知识.3.情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力.(2)培养学生的空间想象能力和抽象括能力.二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

]难点:柱、锥、台、球的结构特征的概括.三、教学用具(1)学法:观察、思考、交流、讨论、概括.(2)课件 四、教学过程(一)课题导入1.展示世界经典建筑,教师提出问题:经典的建筑给人以美的享受,你知道其中的奥秘吗引出几何学,空间几何体的概念.-2.所举的建筑物由哪些几何体组合而成(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察,根据某种标准对这些空间物体进行分类吗这是我们所要学习的内容. (二)新知探研(1)多面体、旋转体:1.引导学生总结多面体及多面体的面、棱、顶点的定义;旋转体及旋转体的轴的定义. 给出实物图片让学生按多面体、旋转体给几何体分类,老师评价. (2)棱柱 :概念:2. 观察课件展示出的棱柱的图片,回答以下问题: C A B·A 'B '一、(1)中面ABC 与面A 'B 'C '的位置关系如何在(2)和(3)中能找到具有同样位置关系的两个面吗找出它们.C '{ABC EE ′D ′C ′B ′ )A ′二、(1)中其余各面是几边形(2)和(3)中其余各面是几边形三、(1)中其余各面的公共边位置关系如何(2)、(3)中也有同样的特征吗3.由学生自由讨论,选出一名同学发表意见,根据情况可选1-2名学生补充.在此基础上得出棱柱的主要结构特征:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱.}棱柱的有关概念:(出示下图模型,边对照模型边介绍)棱柱中,两个互相平行的面叫做棱柱的底面(简称底),其余各面叫做棱柱的侧面,相邻侧面的公共边叫做棱柱的侧棱,侧面与底面的公共顶点叫做棱柱的顶点.分类及表示:4.如果按底面多边形边数给棱柱分类,下面三个棱柱应该分别叫做什么.答:三棱柱、四棱柱、五棱柱.表示:用底面各顶点的字母表示,如课本上图所示的六棱柱表示为:棱柱ABCDEF-A'B'C'D'E'F'对定义的理解:引导启发,让学生完成以下三个练习,加深对棱柱概念的理解:、①棱柱两个互相平行的面以外的面都是平行四边形吗②长方体按如图截去一角后所得的两部分还是棱柱吗#③下面的几何体中,哪些是棱柱$(3)棱锥:让学生观察拿破仑广场的玻璃金字塔、埃及金字塔的图片,指出它们结构上的共同点.仿照棱柱的定义给出棱锥的定义&.1)定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥.2)棱锥的有关概念:(出示下图模型,边对照模型边介绍)棱锥中,这多边形面叫做棱锥的底面或底,有公共顶点的各个三角形面叫做棱锥的侧面,各侧面的公共顶点叫做棱锥的顶点,相邻侧面的公共边棱锥的侧棱.3)棱锥的分类:按底面的多边形的边数分,有三棱锥、四棱锥、五棱锥等.三棱锥又叫四面体图中所示四棱锥表示为:棱锥S-ABCD(4)棱台:观察两个具有棱台结构的实物,并对比以下两个多面体,思考:II中多面体与I中四棱锥有何关系$I II(1) 棱台的概念:棱锥被平行于棱锥底面的平面所截后,截面和底面之间的部分叫做棱台.(2) 棱台的有关概念:(出示模型,边对照模型边介绍)棱台的上底面、下底面、侧面、棱、侧棱、顶点;(3) 棱台的分类:三棱台、四棱台、五棱台、六棱台;(4) 棱台的表示方法:棱台ABCD-A'B'C'D'(5 ) 棱台的特点:两个底面是相似多边形,侧面都是梯形;侧棱延长后交于一点.引导学生完成课堂练习.(5).圆柱的结构特征:《出示圆柱的几何体,和学生一起,观察总结出圆柱的定义及其相关概念.(1) 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转形成的面所围成的旋转体叫圆柱.(2)圆柱的有关概念:在圆柱中,旋转的轴叫做圆柱的轴,垂直于轴的边旋转而成的圆面叫做圆柱的底面,平行于轴的边旋转而成的曲面叫做圆柱的侧面,无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线.(3) 圆柱的表示方法:圆柱用表示它的轴的字母表示,例如P5 图中的圆柱表示为圆柱OO',圆柱和棱柱统称为柱体.(6)圆锥的结构特征:出示圆锥的几何体,和学生一起,观察总结出圆锥的定义及其相关概念(1) 定义:以直角三角形的一条直角边所在的直线为轴旋转,其余两边旋转形成的面所围成的旋转体叫圆锥.](2) 圆柱的有关概念:在圆锥中,旋转的轴叫做圆锥的轴,垂直于轴的边旋转而成的圆面叫做圆锥的底面,斜边旋转而成的曲面叫做圆锥的侧面,无论旋转到什么位置,不垂直于轴的边都叫做圆锥的母线.(3) 圆锥的表示方法:圆锥用表示它的轴的字母表示,例如P5 图中的圆锥表示为圆锥SO.(7)圆台的结构特征:出示圆台的几何体,和学生一起,观察总结出圆台的定义及其相关概念(1) 定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分叫做圆台.想一想:圆台能否用旋转的方法得到若能,请指出用什么图形怎样旋转(2) 圆台的有关概念:结合图形认识圆台的上、下底面、侧面、母线、轴.要求在课本P5图中标出它们.!(3) 圆台的表示方法:圆台用表示它的轴的字母表示,例如P5 图中的圆台表示为圆台OO',圆台和棱台统称为台体.7.球的结构特征:(1)定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体,叫球体,简称球.列举生活中的实例,并找出图中哪些物体是球体(2)结合课本图认识:球心、半径、直径.在球中,半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径.探究:棱柱、棱锥、棱台之间有什么关系当底面发生变化时它们能否互相转化圆柱、圆锥、圆台之间呢>让学生观察课件上的柱、锥、台的图像,引导他们从动态的角度寻求柱、锥、台的关系,老师评价总结.(3)球的表示:球常用表示球心的字母表示,例如图中的球表示为球O.(4)讨论:球与圆柱、圆锥、圆台有何关系(旋转体)棱台与棱柱、棱锥有什么共性(多面体)(三)小结:(四)作业: 1.1A1(2)(3)5习题组谢谢指导!。

空间几何体的结构(教学设计)

空间几何体的结构(教学设计)

图1.1-71.1(2)空间几何体的结构(教学设计)一、教学目标1.知识与技能(1)通过图片观察和实物操作,增强学生的直观感知。

(2)能根据几何结构特征对空间物体进行分类。

(3)会用语言概述圆柱、圆锥、圆台、球的结构特征。

(4)会表示有关于几何体以及柱、锥、台的分类。

2.过程与方法(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

(2)让学生观察、讨论、归纳、概括所学的知识。

3.情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

(2)培养学生的空间想象能力和抽象括能力。

二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

难点:柱、锥、台、球的结构特征的概括。

三、教学过程(一)复习回顾:1、棱柱、棱锥、棱台的结构特征面、顶点、棱等。

(二)创设情境,新课引入:上节课我们学习了两类几何体:多面体、旋转体.也研究了几种具体的多面体的结构特征,本节课我们再来研究几种旋转体的结构特征.(三)师生互动,讲解新课:1.圆柱的结构特征如书上图1-1的(1),让学生思考它是由什么旋转而得到的。

它的平面图如下(图1),我们可以发现这个旋转体是以矩形的一边所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体,而此类旋转体我们称它为圆柱。

圆柱的轴:旋转轴;圆柱的面:垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面;圆柱侧面的母线:无论旋转到什么位置,不垂直于轴的边都叫做母线。

圆柱的表示方法:圆柱用表示它的轴的字母表示,如图1可表示为圆柱O O /。

(让学生据一些生活中的实例,帮助理解)注:圆柱和棱柱统称为柱体。

2.圆锥和圆台的结构特征观察书上图1-1的(6),思考它应该是由什么旋转而成的,那(10)又是由什么旋转而成的呢?它们之间有什么关系呢?(让学生借助上节课学习的棱柱和棱台的方法来学习圆锥和圆台,学生说,老师纠正)圆锥:以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转形成的面所围成旋转体;如图2。

《空间几何体的结构》教学设计

《空间几何体的结构》教学设计

高三第一轮复习课《空间几何体的结构》的教学设计【复习目标】1.构建《空间几何体》这章的知识结构网络,学会观察、分析空间图形,培养学生的空间想象能力,提升直观想象与逻辑推理学科核心素养;2.通过对空间几何体的判定,进一步理解柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构,提高建立立体几何模型的能力;3.通过多面体和旋转体接切的截面问题以及圆锥,圆柱的轴截面问题,理解空间立体图形与平面图形之间的关系.【复习过程】一、课程内容整合回顾1.本章知识网络图及认识空间几何体的思想方法;2.棱柱、棱锥、棱台的结构特征比较;3.斜棱柱、直棱柱、正棱柱的结构特征比较,常见的几种四棱柱之间的转化关系;4.棱锥、正棱锥的结构特征比较;5.圆柱、圆锥、圆台的结构特征比较.二、考点突破类型一: 空间几何体的判定1.如图,长方体ABCD -A ′B ′C ′D ′被截去一部分,其中EH ∥A ′D ′, 则剩下的几何体是________,截去的几何体是______.答案:五棱柱A ABFE D DCGH ''-三棱柱EFB HCC ''-2.已知如图1所示,梯形ABCD 中,AD ∥BC ,且AD <BC ,当梯形ABCD 绕BC 所在 直线l 旋转一周时,其他各边旋转围成的一个几何体,试描述该几何体的结构特征.图1 图2变式训练:当点,B C 重合,DA 不平行于直线l ,此时ABD ∆绕直线l 旋转一周,ABD ∆旋转围成的一个几何体,试描述该几何体的结构特征.活动:让学生思考AB 、AD 、DC 与旋转轴BC 是否垂直,以此确定所得几何体的结构特征. 答案:如图2所示,旋转所得的几何体是两个圆锥和一个圆柱拼接成的组合体. 设计意图:本题主要考查空间想象能力以及多面体、旋转体、简单组合体的判定. 类型二: 空间几何体的结构特征3.下列给出的几个命题中正确的命题是 .①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;l②底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱;③棱台的上、下底面可以不相似,但侧棱长一定相等.④棱柱的侧棱都相等,侧面都是全等的平行四边形;⑤若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;⑥存在每个面都是直角三角形的四面体;⑦有两个面平行,其余各面都是平行四边形的几何体叫棱柱.答案:②⑤⑥设计意图:熟悉空间几何体的结构特征,让学生体会紧扣结构特征是判断的关键,依据条件构建几何模型;通过反例对结构特征进行辨析.类型三: 空间几何体的截面4.图中的几何体由一个圆柱挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得.现用一个垂直底面的平面去截这个几何体,则截面图形可能是()A.(1)(2)B.(1)(3)C.(1)(4)D.(1)(5)解析:当截面不过旋转轴时,截面图形是(5),故选D.答案:D5.一个正方体内接于一个球,过球心作一截面,如图所示,则截面可能是.活动:让学生思考、探究、操作确认.解析:考虑过球心的正方体截面位置的可能情形.当截面平行于正方体的一个侧面时得③,当截面过正方体的体对角线时得②,当截面不平行于任何侧面,也不过对角线时得①,但无论如何都不能截出④.答案:①②③6.下列命题中错误的是()A.圆柱的轴截面是过母线的截面中面积最大的一个.B.圆锥的轴截面是所有过顶点的截面中面积最大的一个.C.圆台的所有平行于底面的截面都是圆.D.圆锥的所有轴截面都是全等的等腰三角形.答案:B.设计意图:利用找多面体和旋转体中接切的截面问题,以及旋转体圆锥,圆柱的轴截面面积最大值的探究,培养和发展学生的几何直观能力,认识空间立体图形与平面图形的关系,体会立体图形转化为平面图形的思想,几何中的分类讨论思想.三课堂小结:四课后作业:1.用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是( ) A.圆柱B.圆锥C.球体D.圆柱、圆锥、球体的组合体答案:选C2.下列说法正确的是()A.棱柱的两个底面是全等的正多边形B.平行于棱柱侧棱的截面是矩形C.{直棱柱}⊆{正棱柱} D.{正四面体}⊆{正三棱锥}答案:选D3.设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体;②底面是矩形的平行六面体是长方体;③直四棱柱是直平行六面体;④棱台的相对侧棱延长后必交于一点.其中真命题的序号是________.答案:①④4.下列三种叙述,正确的有()①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个底面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.A.0个B.1个C.2个D.3个答案:A5.一个圆台上、下底面的半径分别为3 cm和8 cm,若两底面圆心的连线长为12 cm,则这个圆台的母线长为________cm.答案:136.已知正四棱锥V-ABCD中,底面面积为16,一条侧棱的长为211,则该棱锥的高为______.答案:67.如图1所示,已知梯形ABCD中,AD∥BC,且AD<BC,当梯形ABCD绕AD所在直线旋转一周时,其他各边旋转围成的一个几何体,试描述该几何体的结构特征.图1 图2答案:如图2所示,旋转所得的几何体是一个圆柱挖去两个圆锥后剩余部分而成的组合体.8.探究正方体的截面可能是什么形状的图形?答案:截面可以是三角形,四边形,五边形,六边形.截面图形如图中各图所示:。

高一数学第一单元教案:空间几何体的结构

高一数学第一单元教案:空间几何体的结构

高一数学第一单元教案:空间几何体的结构【】鉴于大家对查字典数学网十分关注,小编在此为大家整理了此文高一数学第一单元教案:空间几何体的结构,供大家参考!本文题目:高一数学第一单元教案:空间几何体的结构第八编立体几何8.1 空间几何体的结构及其三视图和直观图1.下列不正确的命题的序号是.①有两个面平行,其余各面都是四边形的几何体叫棱柱②有两个面平行,其余各面都是平行四边形的几何体叫棱柱③有一个面是多边形,其余各面都是三角形的几何体叫棱锥④有一个面是多边形,其余各面都是有一个公共顶点的三角形的几何体叫棱锥答案①②③2.如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是.答案603.如果一个几何体的三视图如图所示(单位长度:cm),则此几何体的表面积是cm2.答案(20+4 )4.(2019宁夏文,14)一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的高为,底面周长为3,那么这个球的体积为.答案5.已知正三角形ABC的边长为a,那么△ABC的直观图△ABC的面积为.答案a2例1 下列结论不正确的是(填序号).①各个面都是三角形的几何体是三棱锥②以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥③棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥④圆锥的顶点与底面圆周上的任意一点的连线都是母线答案①②③解析①错误.如图所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不一定是棱锥.②错误.如下图,若△ABC不是直角三角形或是直角三角形,但旋转轴不是直角边,所得的几何体都不是圆锥.③错误.若六棱锥的所有棱长都相等,则底面多边形是正六边形.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长.④正确.例2 (14分)已知△ABC的直观图ABC是边长为a的正三角形,求原三角形ABC的面积.解建立如图所示的xOy坐标系,△ABC的顶点C在y轴上,AB边在x轴上,OC为△ABC的高. 3分把y轴绕原点顺时针旋转45得y轴,则点C变为点C,且OC=2OC,A、B点即为A、B点,AB=AB. 6分已知AB=AC=a,在△OAC中,由正弦定理得= ,9分所以OC= = ,所以原三角形ABC的高OC= a,12分所以S△ABC= a a= 2. 14分例3 一个正三棱柱的三视图如图所示,求这个三棱柱的表面积和体积.解由三视图易知,该正三棱柱的形状如图所示:且AA=BB=CC=4cm,正三角形ABC和正三角形ABC的高为2 cm.正三角形ABC的边长为|AB|= =4.该三棱柱的表面积为S=344+2 42sin60=48+8 (cm2).体积为V=S底|AA|= 42sin604=16 (cm3).故这个三棱柱的表面积为(48+8 )cm2,体积为16 cm3.例4 棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如图所示,求图中三角形(正四面体的截面)的面积.解如图所示,△ABE为题中的三角形,由已知得AB=2,BE=2 = ,BF= BE= ,AF= = = ,△ABE的面积为S= BEAF= = .所求的三角形的面积为.1.如果四棱锥的四条侧棱都相等,就称它为等腰四棱锥,四条侧棱称为它的腰,以下四个命题中为真命题的是(填序号).①等腰四棱锥的腰与底面所成的角都相等②等腰四棱锥的侧面与底面所成的二面角都相等或互补③等腰四棱锥的底面四边形必存在外接圆④等腰四棱锥的各顶点必在同一球面上答案①③④2.一个平面四边形的斜二测画法的直观图是一个边长为a的正方形,则原平面四边形的面积等于.答案2 a23.已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,左视图(或称侧视图)是一个底边长为6、高为4的等腰三角形.(1)求该几何体的体积V;(2)求该几何体的侧面积S.解(1)由该几何体的俯视图、正视图、左视图可知,该几何体是四棱锥,且四棱锥的底面ABCD是边长为6和8的矩形,高VO=4,O点是AC与BD的交点.该几何体的体积V= 864=64.(2)如图所示,侧面V AB中,VEAB,则VE= = =5S△V AB= ABVE= 85=20侧面VBC中,VFBC,则VF= = =4 .S△VBC= BCVF= 64 =12该几何体的侧面积S=2(S△V AB+S△VBC)=40+24 .“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。

人教版高中必修21.1空间几何体的结构课程设计

人教版高中必修21.1空间几何体的结构课程设计

人教版高中必修21.1空间几何体的结构课程设计一、前言本课程设计是为了教授高中必修课程《数学21》中的21.1节——空间几何体的结构。

该课程内容涵盖了立体的基本结构、几何体的性质和计算等方面。

通过本课程的学习,学生将会深入掌握空间几何体基本概念及其相关性质,提高数学解决问题的能力。

二、课程设计1.基本信息•课程名称:空间几何体的结构•适用年级:高中必修课程•课时数:共计12课时•教学目标:让学生掌握空间几何体基本概念及其相关性质,提高他们的数学解决问题的能力和创新思维能力。

2.教材本教材采用人教版《数学21》。

3.教学内容章节主要内容课时数第一章空间坐标系 2第二章点、直线、平面 2章节主要内容课时数第三章空间几何体的结构 4第四章空间几何体的计算 44.教学方法本课程的教学采用常规的结合理论及实际,以“达标就座,互动讨论”为主要教学方式。

注重教师讲解,学生合作探讨等多种方式,以此深入掌握空间几何体基本概念及其相关性质。

5.教学过程第一章空间坐标系•学生通过老师的讲述和讲义的学习,了解空间直角坐标系。

•利用相关练习,进行全新知识的归纳总结和认识巩固。

第二章点、直线、平面•老师讲解空间几何体的基本概念以及其所满足的性质,学生听取老师讲解后,并思考问题,进行相关总结。

•相关练习,加深学习。

第三章空间几何体的结构•通过教材的学习,学生了解了空间几何体的基本属性,以及有关其周面积和体积的求算方法。

•然后由老师引导,分组完成勾股直角三角形椎体的体积设计任务。

第四章空间几何体的计算•学生在教师指导下学习了空间几何体的计算方法,能够成功求算题目的体积等相关问题。

•通过类似问题的可操作性加强注意力,巩固知识。

6.教学效果评估•定期进行测试,学生通过考试来检测教学效果的实际效果。

•反馈调查,通过写卡片等方式向老师反馈学生具体的学习体会,思想感悟等信息。

•每周小结作业,学生根据自己的知识掌握程度,思考此部分内容的实际应用,巩固知识,以达到最好的教学效果评估。

空间几何体的结构教案

空间几何体的结构教案

空间几何体的结构教案一、教学目标1.了解空间几何体的基本概念和特征;2.掌握空间几何体的结构和性质;3.能够运用所学知识解决相关问题。

二、教学内容1. 空间几何体的基本概念空间几何体是指由平面图形或曲面图形围成的空间图形,包括点、线、面、体等。

其中,点和线是零维和一维的几何体,面和体是二维和三维的几何体。

2. 空间几何体的特征空间几何体的特征包括以下几个方面:1.点的特征:点是空间中没有大小和形状的基本元素,用字母表示,如A、B、C等。

2.线的特征:线是由无数个点组成的,没有宽度和厚度,用字母表示,如AB、CD、EF等。

3.面的特征:面是由无数个线组成的,有宽度和厚度,用字母表示,如ABC、DEF、GHI等。

4.体的特征:体是由无数个面组成的,有宽度、厚度和高度,用字母表示,如立方体ABCDEF、球体O等。

3. 空间几何体的结构和性质3.1 点的结构和性质点没有大小和形状,只有位置,因此点的结构非常简单。

点的性质包括:1.点与点之间的距离为0;2.点可以用坐标表示;3.点可以用向量表示。

3.2 线的结构和性质线是由无数个点组成的,因此线的结构比点复杂。

线的性质包括:1.线的长度可以用两点之间的距离表示;2.线可以用向量表示;3.线可以分为有向线段和无向线段。

3.3 面的结构和性质面是由无数个线组成的,因此面的结构比线复杂。

面的性质包括:1.面的面积可以用向量积表示;2.面可以用向量表示;3.面可以分为有向面和无向面。

3.4 体的结构和性质体是由无数个面组成的,因此体的结构比面复杂。

体的性质包括:1.体的体积可以用向量积表示;2.体可以用向量表示;3.体可以分为有向体和无向体。

4. 运用所学知识解决相关问题通过对空间几何体的结构和性质的学习,可以运用所学知识解决相关问题,如:1.如何求两点之间的距离;2.如何求线的长度;3.如何求面的面积;4.如何求体的体积。

三、教学方法本课程采用讲授、演示和练习相结合的教学方法。

空间几何体的结构教案设计

空间几何体的结构教案设计

1.1空间几何体的结构一.教学内容分析:1.本节在教材中的地位与作用:几何学是研究现实世界中物质的形状、大小与位置关系的数学学科。

空间几何体是几何学的重要组成部分。

本章侧重从空间几何体的整体观察入手,重点研究空间几何体的结构特征,三视图和直观图,了解一些几何体的表面积与体积的计算方法.本课是“空间几何体的结构”的第1课时,是立体几何的起始课,也是义务阶段“空间与图形”课程的延续与提高。

主要内容为空间几何体、多面体、旋转体的概念和棱柱、棱锥、棱台的结构特征。

由于立体几何初步的体系是从对空间几何体的整体感受入手,再研究组成空间几何体的点、直线和平面,故本节课的学习不能建立在严格的逻辑推理的基础上,要充分利用实物模型、图片向学生展示具有典型几何结构特征的空间物体,增强直观感知,操作确认、思辨论证。

本节课的核心思想是类比思想。

2.教学目标与目标解析:(1)借助实物、模型及丰富多彩的图片,抽象出空间几何体的定义,能在感知多面体和旋转体形成过程的基础上理解其定义及组成要素. (2)通过对长方体包装盒及螺丝帽等模型的观察、分析、比较、抽象、概括出棱柱、棱柱、棱锥、棱台的结构特征。

(3)由棱柱的结构特征类比棱锥、棱台的结构特征,能判断一个几何体是否为棱锥、棱台,理解棱柱、棱锥、棱台的结构的联系与区别。

(4)通过直观感知的方式认识我们所处的现实空间,认识数学与生活的密切联系,体验数学活动充满着探索与创造。

在直观感受空间几何体结构特征的同时,学会类比,学会说理与推理。

(5)通过旋转动画认识旋转体的形成过程,并和多面体进行对比。

3.教学问题诊断与学情分析(1)面对众多的几何体,找到合理的标准进行分类,是学生学习时可能遇到的第一个学习障碍。

这个问题可在教师指引下完成,分类时要考虑物体的内部结构和外部特征,从而确定分类的标准。

(2)借助初中所学知识,学生能够通过观察事物抽象出空间图形,但要上升到用数学语言定义空间图形比较困难,这是第二个学习障碍,也是教学难点之一。

必修2空间几何体的结构教案

必修2空间几何体的结构教案

1.1 空间几何体的结构教案教学目标:1.知识目标: 能根据几何结构特征对空间物体进行分类;掌握棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征;2.能力目标:会表示有关几何体;能判断组合体是由哪些简单几何体构成的。

3.情感目标:通过对生活中事物联系课本知识,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。

教学重点:七种空间几何体的结构特征。

教学难点:七种空间几何体的分类及简单组合体的判断。

教学方式:多媒体教学过程:一、引入在我们周围存在着各种各样的物体,它们都占据着一定的空间,将这些物体抽象出来的空间图形就叫做空间几何体。

下面我们来认识几种最基本的空间几何体。

二、几种基本空间几何体的结构特征1、棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行。

棱柱中,两个互相平行的面叫做棱柱的底面;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点。

底面是三角形、四边形、五边形……的棱柱分别叫做三棱柱、四棱柱、五棱柱……用各顶点字母表示棱柱,如棱柱ABCDEF-A’B’C’D’E’F’。

2、棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形,底面是三角形、四边形、五边形……的棱锥分别叫做三棱锥、四棱锥、五棱锥……其中三棱锥又叫四面体。

棱锥也用顶点和底面各顶点字母表示,如棱锥S-ABCD。

3、棱台:用一个平行于棱锥底面的平面区截棱锥,底面于截面之间的部分叫做棱台。

原棱锥的底面和截面分别叫做棱台的下底面和上底面,棱台也有侧面、侧棱、顶点。

由三棱锥、四棱锥、五棱锥……截得的棱台分别叫做三棱台、四棱台、五棱台……4、圆柱:以矩形的一边所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体。

旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。

《空间几何体的结构》教案4新人教A版

《空间几何体的结构》教案4新人教A版

《空间几何体的结构》教案4(新人教A版必修2)第一课时 1.1.1柱、锥、台、球的结构特征(一)一、教学目标1.知识与技能(1)通过实物操作,增强学生的直观感知。

(2)能根据几何结构特征对空间物体进行分类。

(3)会用语言概述棱柱、棱锥的结构特征。

(4)会表示有关于几何体以及柱、锥的分类。

2.过程与方法(1)让学生通过直观感受空间物体,从实物中概括出柱、锥的几何结构特征。

(2)让学生观察、讨论、归纳、概括所学的知识。

3.情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,提高学生的观察能力。

(2)培养学生的空间想象能力和抽象括能力。

二、教学重点、难点重点:让学生感受大量空间实物及模型,概括出柱体、锥体的结构特征.难点:柱、锥的结构特征的概括。

三、教学用具(1)学法:观察、思考、交流、讨论、概括。

(2)实物模型、投影仪教学过程:一、新课导入:1. 讨论:经典的建筑给人以美的享受,其中奥秘为何?世间万物,为何千姿百态?2. 提问:小学与初中在平面上研究过哪些几何图形?在空间范围上研究过哪些?3. 导入:进入高中,在必修②的第一、二章中,将继续深入研究一些空间几何图形,即学习立体几何,注意学习方法:直观感知、操作确认、思维辩证、度量计算.二、讲授新课:1. 教学棱柱、棱锥的结构特征:① 提问:举例生活中有哪些实例给我们以两个面平行的形象?② 讨论:给一个长方体模型,经过上、下两个底面用刀垂直切,得到的几何体有哪些公共特征?把这些几何体用水平力推斜后,仍然有哪些公共特征?③ 定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫棱柱.→ 列举生活中的棱柱实例(三棱镜、方砖、六角螺帽).结合图形认识:底面、侧面、侧棱、顶点、高、对角面、对角线.④ 分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等.表示:棱柱ABCDE-A'B'C'D'E'⑤ 讨论:埃及金字塔具有什么几何特征?⑥ 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥.结合图形认识:底面、侧面、侧棱、顶点、高. → 讨论:棱锥如何分类及表示?⑦ 讨论:棱柱、棱锥分别具有一些什么几何性质?有什么共同的性质?棱柱:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形棱锥:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.2. 教学圆柱、圆锥的结构特征:① 讨论:圆柱、圆锥如何形成?② 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫圆柱;以直角三角形的一条直角边为旋转轴,其余两边旋转所成的曲面所围成的几何体叫圆锥.→ 列举生活中的棱柱实例→结合图形认识:底面、轴、侧面、母线、高. → 表示方法③ 讨论:棱柱与圆柱、棱柱与棱锥的共同特征?→ 柱体、锥体.④ 观察书P2若干图形,找出相应几何体;举例:生活中的柱体、锥体.3. 小结:几何图形;相关概念;相关性质;生活实例三、巩固练习:1. 练习:教材P7 1、2题.2. 已知圆锥的轴截面等腰三角形的腰长为 5cm,,面积为12 cm2,求圆锥的底面半径.3.已知圆柱的底面半径为3cm,,轴截面面积为24 cm2,求圆柱的母线长.4.正四棱锥的底面积为46 cm2,侧面等腰三角形面积为6 cm2,求正四棱锥侧棱.5.有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)6.棱柱的何两个平面都可以作为棱柱的底面吗?四.作业《习案》第一课时。

高一数学第一单元教案: 空间几何体的结构

高一数学第一单元教案: 空间几何体的结构

高一数学第一单元教案:空间几何体的结构【】鉴于大家对查字典数学网十分关注,小编在此为大家整理了此文高一数学第一单元教案:空间几何体的结构,供大家参考!本文题目:高一数学第一单元教案:空间几何体的结构大连二十四中课时1课型新授教学目标知识与技能:从运动的观点来认识点、线、面、体之间的生成关系,以长方体为载体,学习点、线、面之间的位置关系,重点掌握几何体基本元素的位置关系以及异面直线的概念;本节采用直观感知认识空间图形,培养和发展学生的空间想象能力以及几何直观能力。

过程方法与能力:通过观察我们生活的空间,直观感知认识空间图形,然后以长方体为载体,通过直观认识、操作确认去初步的认识空间点、线、面之间的位置关系。

情感态度与价值观:通过实物展示,体现一种几何体的数学直观美,在数学与实际问题的密切联系中,激发学生的学习欲望和探究精神。

在课堂学习中,学生既有独立思考,又有合作讨论,有意识、有目的的培养学生自主学习的良好习惯以及协作共进的团队精神。

重点分析从运动的观点来初步认识点、线、面、体之间的生成关系和位置关系。

难点分析通过几何体的直观图观察其基本元素间的关系以及异面直线的概念。

学法教具图片、多媒体板书计课题一、长方体的面、棱、顶点是如何定义的? 练习:二、点、线、面、体的生成关系。

三、空间线、面的分类和表示如何?四、空间直线、平面之间的位置关系。

教学过程与内容师生活动一、引入:1、生活中实例:汽车、飞机、床、桌子、房屋2、小学和初中学过的几何体。

几何体:一个物体占有空间部分的形状和大小,而不考虑其他因素,则这个空间部分叫做几何体。

二、新授:(一)长方体的面、棱、顶点是如何定义的?1、围成长方体的各个矩形,叫做长方体的面。

2、相邻两个面的公共边,叫做长方体的棱。

3、棱和棱的公共点,叫做长方体的顶点。

(二) 点、线、面、体的生成关系。

(三)空间线、面的分类和表示如何?1、分类:ABD2、平面无限延展,通常表示为平行四边形(也可表示为三角形、矩形、圆等平面图形)ABCD记做:希腊字母:平面ABCD;平面AC注:如何检查物体的表面是不是平的。

空间几何结构教学设计模板

空间几何结构教学设计模板

空间几何结构教学设计模板一、教学背景分析空间几何结构是数学中重要的概念之一,是学生学习数学的基础和重要组成部分。

在初中数学中,空间几何结构的学习是为了培养学生的几何直观和空间想象能力。

通过学习空间几何结构,学生可以掌握常见几何体的性质、判定方法和计算公式,同时也可以提高学生的空间思维能力和解决问题的能力。

因此,设计一套有效的空间几何结构教学模板对于教师的教学效果提升具有重要意义。

二、教学目标设定1.知识目标:通过学习,使学生掌握常见几何体的定义、性质、表达和计算方法,如立方体、球体、圆柱体等;了解几何体的名称、图形、面数、棱数和顶点数的关系;掌握几何体的表面积和体积的计算方法;能够正确使用几何体的相关概念和知识进行问题求解。

2.能力目标:培养学生的空间几何直观能力和思维能力;培养学生的观察、分析、判断、推理和解决问题的能力;提高学生的数理思维和综合运算能力。

三、教学内容安排1.引入通过展示几何体的模型或图片,引导学生了解几何体的概念和形状,并通过提问的方式引发学生对几何体的兴趣和探索欲望。

2.导入通过示意图展示不同几何体的名称、图形、面数、棱数和顶点数的关系,让学生认识到几何体的特点和结构。

3.学习依次教授立方体、球体、圆柱体等常见几何体的定义、性质和计算方法,引导学生通过观察和分析来总结几何体的特点和公式。

4.巩固通过练习题、讨论和小组合作等形式,进行巩固练习,检查学生对几何体的理解和应用能力。

5.拓展引导学生运用几何体的相关知识,解决实际生活中的问题,如物体的包装、容器的设计等,培养学生的创新思维和实际应用能力。

6.归纳总结对本节课所学内容进行归纳总结,让学生对几何体的性质和计算方法有一个系统的概括和理解。

四、教学方法选择1.讲授法:通过教师讲解和示范,介绍几何体的概念、性质和计算方法,帮助学生建立几何体的概念框架。

2.探究法:通过让学生观察和分析几何体的特点和规律,引导学生探索几何体的性质和求解方法,培养学生的自主学习和解决问题的能力。

人教版高中必修21.1空间几何体的结构课程设计 (2)

人教版高中必修21.1空间几何体的结构课程设计 (2)

人教版高中必修21.1空间几何体的结构课程设计一、引言空间几何体的结构是高中数学必修21中的重要内容,它是将几何知识与数学建模相结合的实践。

随着人工智能和大数据时代的到来,科学家和工程师对于空间几何体的结构和性质的应用需求越来越多,因此高中阶段对于空间几何体的结构和性质的深入理解具备重要的现实意义。

本文档旨在设计一份适用于高中必修21.1空间几何体的结构课程,希望通过本课程的学习,学生能够深入理解空间几何体的结构和性质,为以后的学术和职业生涯打下坚实的数学基础。

二、课程目标1.理解空间几何体的基本概念和定义。

2.掌握不同类型的空间几何体的结构和特点。

3.能够运用空间几何体的知识解决实际问题。

4.意识到空间几何体在科学和工程领域的应用。

三、课程内容3.1 基本概念1.三元组和坐标系。

2.平面与直线的交点、垂线、平行关系。

3.平面与平面的交线、垂线、平行关系。

4.空间几何体的基本概念和定义。

3.2 空间几何体的结构与特点1.球体、圆柱体、圆锥体、棱柱、棱锥的结构和性质。

2.空间几何体的相似关系和比例关系。

3.空间几何体的表面积和体积的计算。

3.3 解决实际问题1.判断物体是否能够放入一定大小的容器中。

2.求解空间几何体的体积和表面积。

3.运用空间几何体的知识解决实际问题。

四、教学方法1.理论讲授:通过PPT和板书对空间几何体的基本概念和定义进行讲解。

2.实例分析:通过实例来展示不同类型的空间几何体的结构和特点,同时引导学生进行思考和讨论。

3.课堂练习:在课堂上提供一定数量的习题,让学生独立完成习题,以检验学生的掌握程度。

4.课后作业:在课后布置一定数量的作业,以加强学生的巩固能力。

五、评价标准1.理解空间几何体的基本概念和定义。

2.掌握不同类型的空间几何体的结构和特点。

3.能够解决一定难度的空间几何体的题目,并且正确无误。

4.对于空间几何体在科学和工程领域的应用有一定的了解和认识。

六、总结本文档在设计高中必修21.1的空间几何体的结构课程时,为教师们提供了可供借鉴的思路和框架。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版必修2“空间几何体的结构(一)”的教学设计台州市路桥中学陈伟丽邮编318050一、设计思想立体几何初步是几何学的重要组成部分,也是新课程改动较大的内容之一.《空间几何体的结构》是新课程立体几何部分的起始课程,是立体几何课程的重要内容,根据新课程的要求,这一部分的教学,就是加强几何直观的教学,适当进行思辨论证,引入合情推理.基于这样的要求,《空间几何体的结构》一课的设计,笔者以培养学生的几何直观能力,抽象概括,合情推理能力,空间想象能力为指导思想,运用建构主义教学原理,用观察实物抽象出空间图形----用文字描述空间图形-----用数学语言定义空间图形这三部曲来构建课堂主框架.每一个概念的得出都与实物相结合,让学生经历观察、归纳、分类、抽象、概括这一过程.整个设计从增强学生参与数学学习的意愿入手,在学生明确学习任务的基础上,在有序列地解决问题中展开学习,运用激活、展示、应用、和整合策略,以师、生、文本三者间的多维对话为手段,最终达到提高学生参与数学学习能力的目标,取得教学的实效性.过程中让学生体验有关的数学思想,提高学生自主学习、分析问题和解决问题的能力,培养学生合作学习的意识.二、教材分析空间几何体是新课程立体几何部分的起始课程,它在土木建筑、机械设计、航海测绘等大量实际问题中都有广泛的应用.与传统的立体几何体系相比,人教A版对立体几何的体系结构作了重大改革.以往立体几何先研究点、直线、平面,再研究由它们构成的几何体,新课程则从对空间几何体的整体观察入手,再研究组成空间几何体的点、直线和平面.这种安排降低了立体几何学习入门难的门槛,强调几何直观,淡化几何论证,可以激发学生学习立体几何的兴趣.本节课《空间几何体的结构》选自普通高中课程标准实验教科书《数学》人教A版必修2第一章的第一节,课标对空间几何体的结构的教学要求为:认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构,发展几何直观能力.教材首先让学生观察现实世界中实物的图片,引导学生将观察到的实物进行归纳、分类、抽象、概括,得出柱体、锥体、台体的结构特征,在此基础上给出由它们组合而成的简单几何体的结构特征.《省学科教学指导意见》将这一节内容安排为两课时,笔者的设计的是第一课时,本节内容在义务教育数学课程“空间与图形”已有所涉及,但要求不同,素材更为丰富,即区别在于学习的深度和概括程度.笔者认为教学时,不能认为这部分的要求是降低了,讲课时一带而过,要领会新课标的意图,加强几何直观的训练,在引导学生直观感受空间几何体结构特征的同时,学会类比,学会推理,学会说理.三、学情分析学生在义务教育阶段学习“空间与图形”时,已经认识了一些具体的棱柱(如正方体、长方体等),对圆柱、圆锥和球的认识也比较具体,能从具体的物体抽象出相应的几何体模型,但没有学习柱体、锥体的定义,只停留在“看”的层面.本节课对它们的研究的更为深入,给出了它们的结构特征.同时,还学习了棱台的有关知识,比义务教育阶段数学课程“空间与图形”部分呈现的组合体多,复杂程度也加大.学生在学习本课时,通过观察实物抽象出空间图形是容易的,但要上升到用数学语言定义空间图形就比较困难.所以笔者让学生在课前先做一些柱体、锥体、台体的模型,教学过程中,每一个空间图形的定义,都通过学生观察他们自己所做的模型,结合教师、教材提供的图片,再讨论得出.四、教学目标⒈知识目标:由学生对棱柱、棱锥、棱台的图片及实物进行观察、,比较、分析,使学生理解并能归纳出棱柱、棱锥、棱台的结构特征.2.能力目标:在棱柱、棱锥、棱台的概念形成的过程中,培养学生的观察、分析、抽象概括能力,几何直观能力,合情推理能力,及类比的思想方法,逐步培养探索问题的精神,善于思考的习惯.3.情感目标:通过创造情境激发学生学习数学的兴趣和热情,鼓励合作交流、互助交流,培养创新意识.五、重点难点1.教学重点:感受大量空间实物及模型,概括出棱柱、棱锥、棱台的结构特征.2.教学难点:如何让学生概括棱柱、棱锥、棱台结构特征.六、教学方法与手段1.教学方法:启发式教学法、对话式教学法.2.教学手段:多媒体,实物模型.七、课前准备1.学生的学习准备:课前学生预习过本节课的内容,自制柱、锥、台的几何模型教具.2.教师的教学准备:较多的物体模型,本节课的教学课件.八、教学过程1.创设情境,激趣入题(1)利用多媒体出示大量的世界经典建筑物的图片(包括章头图),引导学生领悟章头图和章引言的重要性,并明确几何学研究的内容,几何学在数学研究和数学应用中的地位和作用,本章要学习的内容,及如何去学习本章的内容.(2)给出大量的生活中常见的物体的图片,结合这种张幻灯片给出空间几何体的概念:如果我们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.并指出:本节课主要从结构特征方面认识一些最基本的空间几何体.【设计意图】作为一章的起始课,重视编者精心打造的章头图和章引言,充分发挥它的价值,荷兰数学教育家弗莱登塔尔曾经说过;“数学是现实的,学生应从现实生活中学数学,再把学到的数学用到现实中去”.希望通过这一环节的设计,让学生有一种放眼世界A B B’ C’C D D’ A’ A’ C’ CD E H F D’的胸怀,体会到数学与生活是密不可分的,并能激起学习的兴趣和热情.2.提出问题,探索新知问题1:同学们能否将右图中16个物体进行分类?(要求从物体的结构特征方面分成两类)考虑到学生对结构和特征的概念比较模糊,教师给出汉语词典中结构与特征的描述,并结合图片中图1和图2进行解释,学生在经过提示后,较快、较好地解决了问题.在此基础上引领学生概括出共性的结论,从而得出多面体和旋转体的定义,并一起得出相关的概念.其中对于旋转体的分析,借助于多媒体,进行动画演示,以使学生对概念理解得更透彻.【设计意图】借助具体的实物图及实物,引导学生主动地对图形及实物进行观察、分析、比较,并由图形的特点进行分类,根据不同类别图形的特点,抽象概括出多面体和旋转体的定义,培养学生的观察、分类、概括的能力.教师:刚才我们将这张图片中的物体形状较粗地进行了分类,我们知道分类越细,事物就具有更明显一致的共性,几何的研究这样,整个数学的研究也如此,接下来我们再对刚才图片中总结出的多面体进行研究,探索,分类.问题2:请同学们观察右图四个多面体,再结合你们自制的模型,发现它们有何特征呢?经过学生的观察、讨论,得出它们具有三个特征:①有两个面互相平行,②其余各面都是四边形,③每相邻两个四边形的公共边都互相平行,教师指出具有这三个特征的多面体叫做棱柱.得出定义后,师生共同研究棱柱的相关定义:棱柱的底面、侧面、侧棱、顶点,棱柱的表示,棱柱的分类.(教师板演这块内容)【设计意图】通过对实物的观察、比较、分析,进一步感知多面体的定义,通过对棱柱定义的抽象概括,结构特征的分析,掌握分类的原则,从中培养几何直观能力,分析、解决问题的能力.3.设计问题,深化概念问题1:如图,一个长方体,你能说出它的底面吗?教师:同一个几何体由于所选平行平面的不同,得出的结论也不同.定义中有两个面平行中“有”的含义:存在,不一定唯一.问题2:如图,长方体ABCD-A ’B ’C ’D ’中被截去一部分,其中FG ∥A ’D ’,剩下的几何体是什么?截去的几何体是什么?你能说出它们的名称吗?一部分学生回答不是棱柱,但在另一部分学生的提示下,得出了正确答案:分别是五棱柱和三棱柱教师:判定一个几何体是否为棱柱的思路:选定一组平行平面后,按定义考查其他条件.若条件满足,可下肯定结论;若不满足,不要急于否定结论,可再选另一组平行平面,按定义再次验证. 总之,观察问题一定要周到、仔细、全面.问题3:有两个面互相平行,其余各面都是平行四边形的几何体是棱柱吗?此题较难,学生不易想到,在他们思索一会儿,举不出反例的情况下,教师给出右图的反例,让学生讨论.【设计意图】考虑到学生的基础较好,设计了三个问题让学生深入理解棱柱的概念,在培养合情推理能力的同时,适当进行思辨论证.4.类比学法,合作交流在对棱柱的定义有了较为深刻的认识后,教师提供图片和实物,将棱锥、棱台的结构特征这部分的内容放手给学生自行完成,让学生类比棱柱结构特征的研究,通过合作学习,自主探索出棱锥和棱台的结构名称、分类标准、及表示方法,培养学学生自主学习、合作交流的能力.经过一定时间的观察、分析、讨论、交流,学生作探讨后的汇报,教师及时点评,得出棱锥和棱台的结构名称、分类标准、及表示方法,并将内容进行板演. 之后教师给出以下两名人对类比的描述,强调类比思想的重要性.开普勒说:“我珍视类比胜过任何别的东西,它是我最可信赖的老师,它能揭示自然界的秘密.”波利亚曾指出:“类比是一个伟人的引路人,求解立体几何问题往往有赖于平面几何中的类比问题.”【设计意图】通过学生对图片和实物的观察、分析、比较,类比棱柱的联系与区别,得出棱锥和棱台的结构特征,培养学生自主学习能力,独立思考的习惯,通过比较学习,便于知识的建构.借助名人名言,适当渗透人文主义精神。

5.应用整合,强化新知例1 下面图形中,为棱锥的是 教师:判断的标准是定义.(1) (2) (3)例2.判断下列几何体是不是棱台,并说明为什么.教师:由棱台的定义我们可以得到:①棱台的下底面 上底面;②棱台的所有侧棱延长后交于一点.③树立“还台为锥”的意识.【设计意图】深化棱锥、棱台的概念6.设置探究、感悟哲学探究:棱台与棱柱、棱锥都是多面体,它们在结构上有哪些相同点和不同点?三者的关系如何?当底面发生变化时,它们能否互相转化?经过学生的讨论,得结论:棱柱、棱锥、棱台都是多面体,从相互联系的观点看:棱台的上底面扩大,使上下底面全等,就得到棱柱;棱台的上底面缩小为一个点,就得到棱锥教师在学生分析过程中,借助几何画板动画演示,并指出:这三者之间的关系,也渗透了的哲学思想:量变到质变.棱锥的上底面的慢慢变大,量慢慢在增加,增到一定程度,变成台,柱,质也发生了变化,而我们人的学习就是一个量变到质变的过程,从幼儿园,小学,初中,高中,我们的人生观,我们个人的素质随着不断学习在发生变化,数学的学习又何尝不是如此,现在有的同学觉得自己学数学没信心,要树立信心,要努力学习,不断思考,增加自己数学学习的经验,慢慢的你的成绩会上来,最关键的是你的数学素养会提升,你的思维能力会提高.【设计意图】一是引导学生用运动、变化、联系的观点看待我们所研究的柱体、锥体和台体,二是通过在直观感知方式的基础上,适当进行一些合情推理、思辨论证,通过对空间图形的认识,培养和发展学生的空间想象能力,三是渗透人文主义精神.7.谈谈感受,归纳整理让学生充分讨论并发表自己的意见,师生共同交流、总结.1.知识方面:①多面体和旋转体的定义②棱柱、棱锥、棱台的结构特征③棱柱、棱锥、棱台三者的联系:2.能力方面:几何直观能力的培养,口头表达能力的培养,合情推理能力的培养,思辨论证能力的培养.3.思维:我们从图形的逐次分类中,感受了怎么去处理事物,更清晰地形成处理事物的方法,怎么去分类,明确了事物分得越细,它们所具有的共性更一致,而且在这过程中,我们的思维经历了几个层次的变化:从整体到局部,从具体到抽象,从形象思维到逻辑思维,教师:数学家迪摩根说过:“数学发明创造的动力不是推理,而是想象力的发挥.”而想象力在几何上的一个表现就是直观能力,是归纳、类比的合情推理能力.这节课我们一直在沉静在这些能力培养的氛围中,希望同学们在今后的学习中注重这些能力的培养.【设计意图】通过对本节课的小结,让学生构建自己的知识结构.九、板书设计十、作业设计:(1)教科书第9页,习题1.1A组第1、2题(2)预习下节课内容十一、教后反思:1.设计的优点:(1)问题情景体现人文底蕴众多建筑图片的展示是对世界文化遗产的关注,也是对科学精神的弘扬,众多生活中物体图片的展示,让学生感受到数学就在我们的身边,感受到数学与生活的密不可分,教学中穿插的德育教育,哲学思想的渗透,无不体现人文主义.(2)多媒体的合理使用信息技术在立体几何教学中主要有以下几方面的作用:(1)通过现代信息技术,如计算机、网络等展示丰富的图片,让学生感受大量的实物,抽象出空间几何体及其结构特征.(2)运用现代信息技术和有关软件,制作一些课件,如动态演示空间点、直线、平面之间的位置关系,以及空间中的平行与垂直关系等等.以往的立体几何的教学,是通过教师的讲解和学生的空间想象认识几何体和理解知识,造成了学生学习立体几何难.信息技术与立体几何的整合使教师通过课件带给了学生看得见的几何图,知识的理解和接受不再是空洞无味,而是形象直观,同时也让学生走进立体几何.本节课借助于多媒体,使得学生学习空间几何体更加形象具体,学习积极性很高.(3)突出以几何直观能力为主的各方面能力的培养课前笔者要求学生自己制作出柱体、锥体、台体的模型,在制作过程中学生建立了较强的空间感,在知识的学习过程中学生体会到几何体的构造及生成过程,这些过程如同让学生真正地进入了立体空间,学生可以从不同的角度观察所作的几何体,在所制做出来的立体图形中穿行,这增加了学生学习立体几何的兴趣,学生自己制做立体图形,也能激发他们的成就感.教学中,笔者对于柱、锥、台的结构特征的获得一直引导学生要观察手中的模型,通过模型与图片的观察得出定义,让学生在发现中获取,在创造中学习,在成功中升华.(4)给学生充分探索和交流的机会,促进自主、合作式学习方式的形成,.保罗•弗莱雷(P.Freire)指出:“没有了对话,就没有了交流;没有了交流,也就没有真正的教育”.在新课程背景下的课堂教学本身就是一种对话的过程,就是引导学生与客观世界对话;与他人对话;与自我对话并且通过这种对话,形成一种活动性的、合作性的、反思性的学习.本设计在具体的实践过程中,一直灌输这一思想,每一个定义的得出,每一个问题解决,都经过生生,师生的对话.在这过程中,强化了学生在数学学习过程中的主体地位,突出自主、合作式学习方式,如棱锥、棱台结构特征的学习,给学生留有充分的思考与交流的时间和空间,让学生经历观察、实验、猜测、验证、推理、交流、反思等活动,为改进数学学习方式提供必要的保证.2.一点建议教材所有图片中出现的棱柱图片都是直棱柱,这使学生对棱柱的概念的理解,容易造成误解,建议人教社放些斜棱柱的图片,以使学生对棱柱的理解更到位.参考文献1 张顺燕:数学的思想、方法和应用,北京大学出版社2003版.2 王尚志:《数学教学研究与案例》,.高等教育出版社2006年版.3 谢尚志:《用二分法求方程的近似解的教学设计》《中学数学研究》2007年第2期.。

相关文档
最新文档