高等数学(题目及答案)
高等数学试题及答案完整版
高等数学试题一、单项选择题(本大题共5小题,每小题2分,共10分)1.设f(x)=lnx ,且函数ϕ(x)的反函数1ϕ-2(x+1)(x)=x-1,则[]ϕ=f (x)( ) ....A B C D x-2x+22-x x+2 ln ln ln ln x+2x-2x+22-x2.()002lim 1cos tt x x e e dt x -→+-=-⎰( )A .0B .1C .-1D .∞ 3.设00()()y f x x f x ∆=+∆-且函数()f x 在0x x =处可导,则必有( ).lim 0.0.0.x A y B y C dy D y dy ∆→∆=∆==∆= 4.设函数,131,1x x x ⎧≤⎨->⎩22x f(x)=,则f(x)在点x=1处( )A.不连续B.连续但左、右导数不存在C.连续但不可导D. 可导5.设C +⎰2-x xf(x)dx=e ,则f(x)=( )2222-x -x -x -x A.xe B.-xe C.2e D.-2e二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
6.设函数f(x)在区间[0,1]上有定义,则函数f(x+14)+f(x-14)的定义域是__________. 7.()()2lim 1_________n n a aq aq aq q →∞++++<=8.arctan lim _________x x x→∞= 9.已知某产品产量为g 时,总成本是2g C(g)=9+800,则生产100件产品时的边际成本100__g ==MC 10.函数3()2f x x x =+在区间[0,1]上满足拉格朗日中值定理的点ξ是_________.11.函数3229129y x x x =-+-的单调减少区间是___________.12.微分方程3'1xy y x -=+的通解是___________.13.设2ln 2,6a a π==⎰则___________.14.设2cos x z y =则dz= _______. 15.设{}2(,)01,01y D D x y x y xedxdy -=≤≤≤≤=⎰⎰,则_____________.三、计算题(一)(本大题共5小题,每小题5分,共25分)16.设1x y x ⎛⎫= ⎪⎝⎭,求dy.17.求极限0ln cot lim ln x x x+→18.求不定积分.19.计算定积分I=0.⎰ 20.设方程2z x 2e 1y xz -+=确定隐函数z=z(x,y),求','x y z z 。
高等数学练习题(附答案)
《高等数学》专业年级学号姓名一、判断题.将√或×填入相应的括号内.(每题2分,共20分)()1.收敛的数列必有界.()2.无穷大量与有界量之积是无穷大量.()3.闭区间上的间断函数必无界.()4.单调函数的导函数也是单调函数.()5.若f (x )在x 0点可导,则f (x )也在x 0点可导.()6.若连续函数y =f (x )在x 0点不可导,则曲线y =f (x )在(x 0,f (x 0))点没有切线.()7.若f (x )在[a ,b ]上可积,则f (x )在[a ,b ]上连续.()8.若z =f (x ,y )在(x 0,y 0)处的两个一阶偏导数存在,则函数z =f (x ,y )在(x 0,y 0)处可微.()9.微分方程的含有任意常数的解是该微分方程的通解.()10.设偶函数f (x )在区间(-1,1)内具有二阶导数,且f ''(0)=f '(0)+1,则f (0)为f (x )的一个极小值.二、填空题.(每题2分,共20分)1.设f (x -1)=x ,则f (x +1)=.22.若f (x )=2-12+11x1x,则lim +=.x →03.设单调可微函数f (x )的反函数为g (x ),f (1)=3,f '(1)=2,f ''(3)=6则---------------------------------------------------------------------------------------------------------------------------------g '(3)=.4.设u =xy +2x,则du =.y35.曲线x =6y -y 在(-2,2)点切线的斜率为.6.设f (x )为可导函数,f '(1)=1,F (x )=f ()+f (x ),则F '(1)=.7.若1x2⎰f (x )0t 2dt =x 2(1+x ),则f (2)=.8.f (x )=x +2x 在[0,4]上的最大值为.9.广义积分⎰+∞0e -2x dx =.2210.设D 为圆形区域x +y ≤1,⎰⎰y D1+x 5dxdy =.三、计算题(每题5分,共40分)111+Λ+).1.计算lim(2+22n →∞n (n +1)(2n )2.求y =(x +1)(x +2)(x +3)ΛΛ(x +10)在(0,+∞)内的导数.23103.求不定积分⎰1x (1-x )dx .4.计算定积分⎰πsin 3x -sin 5xdx .3225.求函数f (x ,y )=x -4x +2xy -y 的极值.6.设平面区域D 是由y =x ,y =x 围成,计算⎰⎰Dsin ydxdy .y7.计算由曲线xy =1,xy =2,y =x ,y =3x 围成的平面图形在第一象限的面积.---------------------------------------------------------------------------------------------------------------------------------8.求微分方程y '=y -2x的通解.y四、证明题(每题10分,共20分)1.证明:arc tan x=arcsinx 1+x 2(-∞<x <+∞).2.设f (x )在闭区间[a ,b ]上连续,且f (x )>0,F (x )=⎰f (t )dt +⎰x xb1dt f (t )证明:方程F (x )=0在区间(a ,b )内有且仅有一个实根.《高等数学》参考答案一、判断题.将√或×填入相应的括号内(每题2分,共20分)1.√;2.×;3.×;4.×;5.×;6.×;7.×;8.×;9.√;10.√.二、填空题.(每题2分,共20分)21.x +4x +4; 2.1; 3.1/2;4.(y +1/y )dx +(x -x /y )dy ;25.2/3;6. 1;7.336;8.8;9.1/2;10.0.三、计算题(每题5分,共40分)n +1111n +1<++L +<1.解:因为(2n )2n 2(n +1)2(2n )2n 2且lim 由迫敛性定理知:lim(n →∞n +1n +1=0lim ,=0n →∞(2n )2n →∞n 2111++Λ+)=0222n (n +1)(2n )2.解:先求对数ln y =ln(x +1)+2ln(x +2)Λ+10ln(x +10)---------------------------------------------------------------------------------------------------------------------------------∴11210y '=++Λ+y x +1x +2x +10∴y '=(x +1)Λ(x +10)(3.解:原式=21210++Λ+)x +1x +2x +10⎰11-xd x =2⎰11-(x )2d x=2arcsin4.解:原式=x +c⎰πsin 3x cos 2xdxπ32=⎰π2020cos x sin xdx -⎰cos x sin xdx232ππ32=⎰sin xd sin x -⎰ππ2sin xd sin x32222-[sin 2x ]π=[sin 2x ]0π552=4/525.解:f x'=3x -8x -2y =0f y'=2x -2y =05π5故⎨⎧x =0⎧x =2或⎨⎩y =0⎩y =2当⎨⎧x =0''(0,0)=-2,f xy ''(0,0)=2''(0,0)=-8,f yy 时f xx⎩y =0---------------------------------------------------------------------------------------------------------------------------------Θ∆=(-8)⨯(-2)-22>0且A=-8<0∴(0,0)为极大值点且f (0,0)=0当⎨⎧x =2''(2,2)=-2,f xy ''(2,2)=2''(2,2)=4,f yy 时f xxy =2⎩Θ∆=4⨯(-2)-22<0∴无法判断6.解:D=(x ,y )0≤y ≤1,y 2≤x ≤y{}∴⎰⎰D1y sin y 1sin y sin y dxdy =⎰dy ⎰2dx =⎰[x ]y dyy 20y 0y y y =⎰(sin y -y sin y )dy1=[-cos y ]+10⎰1yd cos y 1=1-cos1+[y cos y ]0-⎰cos ydy 01=1-sin17.解:令u =xy ,v =y;则1≤u ≤2,1≤v ≤3x1x uJ =yuxv =2uv y vv-u 2v v =12v u2u v231dv =ln 3∴A =⎰⎰d σ=⎰du ⎰112v D8.解:令y =u ,知(u )'=2u -4x由微分公式知:u =y =e ⎰22dx 2(⎰-4xe ⎰-2dx dx +c )---------------------------------------------------------------------------------------------------------------------------------=e 2x (⎰-4xe -2x dx +c )=e 2x (2xe -2x +e -2x +c )四.证明题(每题10分,共20分)1.解:设f (x )=arctan x -arcsinx 1+x 221Θf '(x )=-21+x 1x 1-1+x 221+x -⋅1+x 2x 21+x 2=0∴f (x )=c-∞<x <+∞令x =0Θf (0)=0-0=0∴c =0即:原式成立。
完整)高等数学考试题库(附答案)
完整)高等数学考试题库(附答案)高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分)。
1.下列各组函数中,是相同的函数的是()。
A)f(x)=ln(x^2)和g(x)=2lnxB)f(x)=|x|和g(x)=x^2C)f(x)=x和g(x)=x^2/xD)f(x)=2|x|和g(x)=1/x答案:A2.函数f(x)=ln(1+x)在x=0处连续,则a=()。
A)1B)0C)-1D)2答案:A3.曲线y=xlnx的平行于直线x-y+1=0的切线方程为()。
A)y=x-1B)y=-(x+1)C)y=(lnx-1)(x-1)D)y=x答案:C4.设函数f(x)=|x|,则函数在点x=0处()。
A)连续且可导B)连续且可微C)连续不可导D)不连续不可微答案:A5.点x=0是函数y=x的()。
A)驻点但非极值点B)拐点C)驻点且是拐点D)驻点且是极值点答案:A6.曲线y=4|x|/x的渐近线情况是()。
A)只有水平渐近线B)只有垂直渐近线C)既有水平渐近线又有垂直渐近线D)既无水平渐近线又无垂直渐近线答案:B7.∫f'(1/x^2)dx的结果是()。
A)f(1/x)+CB)-f(x)+CC)f(-1/x)+CD)-f(-x)+C答案:C8.∫ex+e^(-x)dx的结果是()。
A)arctan(e^x)+CB)arctan(e^(-x))+CC)ex-e^(-x)+CD)ln(ex+e^(-x))+C答案:D9.下列定积分为零的是()。
A)∫π/4^π/2 sinxdxB)∫0^π/2 xarcsinxdxC)∫-2^1 (4x+1)/(x^2+x+1)dxD)∫0^π (x^2+x)/(e^x+e^(-x))dx答案:A10.设f(x)为连续函数,则∫f'(2x)dx等于()。
A)f(1)-f(0)B)f(2)-f(0)C)f(1)-f(2)D)f(2)-f(1)答案:B二.填空题(每题4分,共20分)。
高等数学考试题库(附答案)
《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是(). (A )2ln 2ln f x xg x x和(B )||f x x 和2g x x(C )f xx 和2g xx(D )||x f xx和g x12.函数sin 420ln 10x x f xxax在0x 处连续,则a().(A )0 (B )14(C )1 (D )23.曲线ln y x x 的平行于直线10x y 的切线方程为(). (A )1y x (B )(1)yx (C )ln 11y x x (D )y x4.设函数||f x x ,则函数在点0x处().(A )连续且可导(B )连续且可微(C )连续不可导(D )不连续不可微5.点0x 是函数4yx 的().(A )驻点但非极值点(B )拐点(C )驻点且是拐点(D )驻点且是极值点6.曲线1||yx 的渐近线情况是().(A )只有水平渐近线(B )只有垂直渐近线(C )既有水平渐近线又有垂直渐近线(D )既无水平渐近线又无垂直渐近线7.211fdx x x 的结果是().(A )1f C x(B )1fC x(C )1fC x(D )1fCx8.xxdxe e的结果是().(A )arctan xeC (B )arctan xe C (C )xxeeC (D )ln()xxee C9.下列定积分为零的是().(A )424arctan 1x dx x(B )44arcsin x x dx (C )112xxee dx (D )121sin xx x dx10.设f x 为连续函数,则102f x dx 等于().(A )20f f (B )1112f f (C )1202f f (D )10f f 二.填空题(每题4分,共20分)1.设函数2100xex f xx a x在0x 处连续,则a.2.已知曲线y f x 在2x处的切线的倾斜角为56,则2f .3.21x yx的垂直渐近线有条.4.21ln dx x x.5.422sin cos x x x dx.三.计算(每小题5分,共30分)1.求极限①21limxxx x ②2sin 1limx xx x x e 2.求曲线ln yx y 所确定的隐函数的导数x y .3.求不定积分①13dx x x ②220dx a xa③xxe dx四.应用题(每题10分,共20分)1.作出函数323yxx 的图像.2.求曲线22yx 和直线4y x 所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题1.22.333.24.arctanln x c5.2三.计算题1①2e②162.11xyx y3. ①11ln||23xCx②22ln||x a x C③1xe x C四.应用题1.略2.18S《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分)1.下列各组函数中,是相同函数的是().(A)f x x 和2g x x(B) 211xf xx 和1y x (C)f xx 和22(sin cos )g xx xx (D)2ln f x x 和2ln g x x2.设函数2sin 21112111x x x fxx xx,则1lim x f x ().(A) 0 (B) 1 (C) 2 (D) 不存在3.设函数y f x 在点0x 处可导,且fx >0, 曲线则yf x 在点00,x f x 处的切线的倾斜角为{ }.(A)(B)2(C)锐角(D)钝角4.曲线ln y x 上某点的切线平行于直线23y x ,则该点坐标是().(A)12,ln2(B)12,ln2(C) 1,ln 22(D)1,ln 225.函数2xy x e 及图象在1,2内是().(A)单调减少且是凸的(B)单调增加且是凸的(C)单调减少且是凹的(D)单调增加且是凹的6.以下结论正确的是().(A) 若0x 为函数y f x 的驻点,则0x 必为函数y f x 的极值点. (B) 函数y f x 导数不存在的点,一定不是函数y f x 的极值点.(C) 若函数y f x 在0x 处取得极值,且0f x 存在,则必有0fx =0.(D) 若函数yf x 在0x 处连续,则0fx 一定存在.7.设函数y f x 的一个原函数为12xx e ,则f x =().(A) 121x x e (B)12xx e (C)121xx e (D) 12xxe8.若f x dx F x c ,则sin cos xf x dx ( ).(A)sin F xc(B)sin F xc (C) cos F xc(D)cos F x c9.设F x 为连续函数,则102x fdx =().(A)10f f (B)21f f (C)220f f (D) 1202ff 10.定积分badx a b 在几何上的表示().(A) 线段长b a (B) 线段长a b (C) 矩形面积1a b (D) 矩形面积1b a 二.填空题(每题4分,共20分)1.设2ln 101cos 0xx f xxax, 在0x 连续,则a =________.2.设2sin y x , 则dy _________________sin d x .3.函数211x yx的水平和垂直渐近线共有_______条.4.不定积分ln x xdx ______________________.5. 定积分2121sin 11x x dx x___________.三.计算题(每小题5分,共30分) 1.求下列极限:①10lim 12xx x ②arctan 2lim 1xx x2.求由方程1yyxe 所确定的隐函数的导数x y .3.求下列不定积分:①3tan sec x xdx②220dx a xa③2xx e dx四.应用题(每题10分,共20分) 1.作出函数313yx x 的图象.(要求列出表格)2.计算由两条抛物线:22,yx y x 所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD 二填空题: 1.-22.2sinx3.34.2211ln 24x x x c5.2三.计算题:1. ①2e②12.2yxey y 3.①3sec 3x c②22lnxaxc③222xxx ec四.应用题:1.略2.13S《高数》试卷3(上)一、填空题(每小题3分, 共24分)1.函数219y x的定义域为________________________.2.设函数sin 4,0,0xx f xxa x , 则当a=_________时, f x 在0x 处连续.3. 函数221()32x f x xx的无穷型间断点为________________.4.设()f x 可导, ()xyf e , 则____________.y5. 221lim_________________.25xx xx6.321421sin 1x x dx xx=______________.7.20_______________________.x td e dtdx 8. 30yyy是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1.01limsin xx ex;2. 233lim9x x x; 3.1lim 1.2xxx三、求下列导数或微分(每小题5分, 共15分) 1. 2x yx , 求(0)y . 2. cos xy e, 求dy .3. 设x yxye, 求dy dx.四、求下列积分(每小题5分, 共15分)1.12sin x dx x.2.ln(1)x x dx .3.120xe dx五、(8分)求曲线1cos x t yt在2t处的切线与法线方程.六、(8分)求由曲线21,y x直线0,0y x 和1x 所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积.七、(8分)求微分方程6130y yy的通解.八、(7分)求微分方程xy ye x满足初始条件10y 的特解.《高数》试卷3参考答案一.1.3x2.4a 3.2x 4.'()xxe f e 5.126.07.22x xe8.二阶二.1.原式=0lim1x x x2.311lim 36x x3.原式=112221lim[(1)]2xx e x三.1.221','(0)(2)2y y x2.cos sin xdyxe dx3.两边对x 求写:'(1')x yyxy ey 'x yx yey xy y y xexxy四.1.原式=lim2cos x x C2.原式=2221lim(1)()lim(1)[lim(1)]22x xx d x x d x x =22111lim(1)lim(1)(1)221221x xxx dxx x dxx x=221lim(1)[lim(1)]222xx x x x C3.原式=12212111(2)(1)222xx e d x ee五.sin 1,122dy dy ttt ydxdx且.切线:1,1022y x y x 即法线:1(),1022y x yx 即六.1221013(1)()22Sxdxx x 1122425210(1)(21)228()5315Vx dx x xdxxxx 七.特征方程:231261332(cos2sin 2)xrr riyeC x C x 八.11()dxdxxxx ye e e dxC 1[(1)]xx e C x由10,yxC1xx yex《高数》试卷4(上)一、选择题(每小题3分)1、函数2)1ln(x x y 的定义域是(). A 1,2 B1,2 C 1,2 D1,22、极限xxe lim 的值是().A 、B 、C 、D 、不存在3、211)1sin(limxx x(). A 、1B 、C 、21D 、214、曲线23xxy 在点)0,1(处的切线方程是()A 、)1(2x y B 、)1(4x y C 、14xyD 、)1(3x y 5、下列各微分式正确的是().A 、)(2x d xdx B 、)2(sin 2cos x d xdxC 、)5(x d dx D 、22)()(dx x d 6、设C x dxx f 2cos2)(,则)(x f ().A 、2sin xB 、2sinxC 、Cx2sinD 、2sin2x 7、dx xx ln 2(). A 、C x x 22ln 212B 、Cx 2)ln 2(21C 、Cxln 2ln D 、Cxx 2ln 18、曲线2xy,1x ,0y 所围成的图形绕y 轴旋转所得旋转体体积V().A 、104dx x B 、1ydy C 、10)1(dyy D 、14)1(dxx 9、11dx eexx().A 、21lne B 、22lne C 、31lne D 、221lne 10、微分方程xey yy22的一个特解为().A 、xe y273B 、xey73C 、xxey272D 、xey272二、填空题(每小题4分)1、设函数xxe y ,则y;2、如果322sin 3lim 0xmx x , 则m.3、113cos xdxx ;4、微分方程044yyy 的通解是. 5、函数x x x f 2)(在区间4,0上的最大值是,最小值是;三、计算题(每小题5分)1、求极限xxx x11lim;2、求x xysin ln cot 212的导数;3、求函数1133xx y的微分;4、求不定积分11xdx ;5、求定积分eedx x 1ln ;6、解方程21xy x dxdy ;四、应用题(每小题10分)1、求抛物线2xy与22x y 所围成的平面图形的面积.2、利用导数作出函数323xxy 的图象.参考答案一、1、C ;2、D ;3、C ;4、B ;5、C ;6、B ;7、B ;8、A ;9、A ;10、D ;二、1、xe x )2(;2、94;3、;4、xex C C y221)(;5、8,0三、1、1;2、x 3cot ;3、dxxx 232)1(6;4、C x x )11ln(212;5、)12(2e;6、Cxy2212;四、1、38;2、图略《高数》试卷5(上)一、选择题(每小题3分)1、函数)1lg(12xxy 的定义域是().A 、,01,2B 、),0(0,1C 、),0()0,1(D 、),1(2、下列各式中,极限存在的是().A 、x x c o s lim 0B 、x xarctan lim C 、x xsin lim D 、xx2lim 3、xxxx )1(lim ().A 、eB 、2eC 、1D 、e14、曲线x x y ln 的平行于直线01y x 的切线方程是().A 、xyB 、)1)(1(ln x x yC 、1x yD 、)1(xy 5、已知x x y 3sin ,则dy ().A 、dx x x )3sin 33cos (B 、dx x x x )3cos 33(sinC 、dxx x)3sin 3(cos D 、dxx x x)3cos 3(sin 6、下列等式成立的是().A 、Cxdx x 111B 、Cx a dxa xxln C 、C x xdxsin cos D 、Cxxdx 211tan7、计算xdx x e x cos sin sin 的结果中正确的是(). A 、C e x sin B 、Cx e x cos sin C 、C xe x sin sin D 、C x e x )1(sin sin 8、曲线2x y,1x ,0y 所围成的图形绕x 轴旋转所得旋转体体积V (). A 、104dx x B 、10ydyC 、10)1(dyy D 、104)1(dx x 9、设a ﹥0,则dx x a a022(). A 、2a B 、22a C 、241a 0 D 、241a 10、方程()是一阶线性微分方程. A 、0ln 2x y yx B 、0y e y x C 、0sin )1(2y y y x D 、0)6(2dy x y dxy x 二、填空题(每小题4分)1、设0,0,1)(x b ax x e x f x ,则有)(lim 0x f x ,)(lim 0x f x ;2、设x xe y ,则y;3、函数)1ln()(2x x f 在区间2,1的最大值是,最小值是;4、113cos xdxx ;5、微分方程023y y y 的通解是 .三、计算题(每小题5分)1、求极限)2311(lim 21x x x x ;2、求x x y arccos 12的导数;3、求函数21x xy 的微分;4、求不定积分dx x x ln 21;5、求定积分eedx x 1ln ;6、求方程y xy y x 2满足初始条件4)21(y 的特解.四、应用题(每小题10分)1、求由曲线22x y 和直线0y x 所围成的平面图形的面积.2、利用导数作出函数49623x x x y 的图象.参考答案(B卷)一、1、B ;2、A ;3、D ;4、C ;5、B ;6、C ;7、D ;8、A ;9、D ;10、B. 二、1、2,b ;2、x e x )2(;3、5ln ,0;4、0;5、x x e C e C 221. 三、1、31;2、1arccos 12x x x;3、dxx x 221)1(1;4、C x ln 22;5、)12(2e ;6、x e x y 122;四、1、29;2、图略。
高等数学习题集及答案
D. 无关条件
A. 若 { un} 有界,则 { un} 发散 C. 若 { un} 单调,则 { un} 收敛
B. 若 {un} 有界,则 { un} 收敛 D. 若 { un} 收敛,则 { un} 有界
22. 下面命题错误的是 【 】
A. 若 { un} 收敛,则 { un} 有界
C. 若 { un} 有界,则 { un} 收敛
A. y arcsin x
B. y arccosx
C. y arctan x
D. y arccot x
7. 已知函数 y arcsin( x 1) ,则函数的定义域是 【 】
A. ( , )
B. [ 1,1]
C. ( , )
D. [ 2,0]
8. 已知函数 y arcsin( x 1) ,则函数的定义域是 【 】
A. 连续点
B. 可去间断点
C.跳跃间断点
47. lim xsin 1 的 值为 【
x0
x
A. 1
B.
】 C. 不存在
D. 0
48. 当 x
时下列函数是无穷小量的是 【 】
x cos x
A.
sin x
x2
B.
C.
sin x D. (1 1) x
x
x
x
x
x2 1 x 0
49. 设 f ( x)
, 则下列结论正确的是 【 】
C. e 3
】
D. e3
4
A. e
B. 1
2
C. e
D.
4
e
26. x 1是函数 f ( x)
x x3 的 【 x2 x 2
】
A. 连续点
高等数学考试试卷及答案
1. ( 单选题) 若函数 f(x) 在点 x0 处可导且,则曲线 y=f(x) 在点( x0, f(x0) )处的法线的斜率等于()(本题2.0分)A、B、C、D、学生答案:C标准答案:B解析:得分:02. ( 单选题) 函数f(x)=ln(x-5)的定义域为()。
(本题2.0分)A、x>5B、x<5C、D、学生答案:A标准答案:A解析:得分:23. ( 单选题)极限(本题2.0分)A、-2B、0C、 2D、 1学生答案:A标准答案:A解析:得分:24. ( 单选题) 设则(本题2.0分)A、B、C、D、学生答案:A标准答案:C解析:得分:05. ( 单选题) 设函数f(x)=(x+1)Cosx,则f(0)=( ).(本题2.0分)A、-1B、0C、 1D、无定义学生答案:C标准答案:C解析:得分:26. ( 单选题) (本题2.0分)A、B、C、D、学生答案:A标准答案:A解析:得分:27. ( 单选题) 若,则f(x)=()。
(本题2.0分)A、B、C、D、学生答案:B标准答案:A解析:得分:08. ( 单选题)微分方程是一阶线性齐次方程。
(本题2.0分)A、正确B、错误学生答案:B标准答案:B解析:得分:29. ( 单选题)设函数,其中是常数,则。
(本题2.0分)A、B、C、D、0学生答案:C标准答案:A解析:得分:010. ( 单选题)设函数f(x) 在点x=1 处可导,则()。
(本题2.0分)A、B、C、D、学生答案:D标准答案:D解析:得分:211. ( 单选题) 设函数,其中是常数,则。
(本题2.0分)A、B、C、D、0学生答案:C标准答案:A解析:得分:012. ( 单选题)极限(本题2.0分)A、 1B、-1C、0D、不存在学生答案:B标准答案:A解析:得分:013. ( 单选题) 不定积分(本题2.0分)A、正确B、错误学生答案:A标准答案:B解析:得分:014. ( 单选题) 已知极限,则 k = ()。
高等数学考试题库(附答案)
《高数》试卷1(上)之巴公井开创作一.选择题(将答案代号填入括号内,每题3分,共30分). 1.下列各组函数中,是相同的函数的是( ).(A(B和(C和(D和 2).(A )(D )23). (A(B (C(D4).(A )连续且可导 (B )连续且可微 (C )连续不成导 (D )不连续不成微 5).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 6 ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线(D )既无水平渐近线又无垂直渐近线7).(A(B(C(D8).(A (B (C(D9.下列定积分为零的是( ).(A(B (C(D10).(A(BCD二.填空题(每题4分,共20分) 123.45三.计算(每小题5分,共30分) 1.求极限23.求不定积分四.应用题(每题10分,共20分)1. .2. 《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题123. 25.2三.计算题3.四.应用题1.略 《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).).(A) 0 (B) 1 (C) 2 (D) 不存在{ }.锐角 (D) 钝角则该点坐标是( ).( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A),.(B),.(C),,(D),.,( ).(A)二.填空题(每题4分,共20分)1.设,_______条.5.三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+②arctan 2lim 1x x xπ→+∞-1y y xe =-所确定的隐函数的导数x y '.3.求下列不定积分: ①3tan sec x xdx ⎰②()220dx a x a>+⎰③2x x e dx ⎰ 四.应用题(每题10分,共20分)313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π 三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc +②()22ln x a x c +++③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、填空题(每小题3分, 共24分)1. 函数219y x=-的定义域为________________________.函数()sin 4,0,0xx f x xa x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续. 3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()x y f e =, 则____________.y '=5. 221lim_________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________.7. 20_______________________.x td e dt dx-=⎰8. 30y y y '''+-=是_______阶微分方程. 二、求下列极限(每小题5分, 共15分)三、求下列导数或微分(每小题5分, 共15分)3.四、求下列积分 (每小题5分, 共15分)五、(8分).六、(8分), 以及此图形绕y 轴旋转所得旋转体的体积.七、(8分).八、(7分).《高数》试卷3参考答案一.1x 四.1.原式 2.五六七.特征方程八《高数》试卷4(上)一、选择题(每小题3分)1、函数的定义域是( ).2的值是( ). A 、、、 不存在3 ).A、、4、曲线) A 、C5、下列各微分式正确的是( ).AC6).A 、7A 、C 、8).AC9 ).A10、微分方程的一个特解为( ).A 二、填空题(每小题4分)12则 34、微分方程的通解是.5在区间上的最大值是,最小值是;三、计算题(每小题5分)1、求极限; 2的导数;3、求函数的微分; 4;5、求定积分;6、解方程;四、应用题(每小题10分)1、与.2、的图象.参考答案一、1、C; 2、D; 3、C; 4、B; 5、C; 6、B; 7、B; 8、A; 9、A; 10、D;2; 3; 4; 5、8,0二、1三、1、 1; 2; 3; 4 5;6;四、12、图略《高数》试卷5(上)一、选择题(每小题3分)1的定义域是().A、C2、下列各式中,极限存在的是().A3).A).4A、C、).5AC6、下列等式成立的是().AC7的结果中正确的是().AC8).AC9、设).A10、方程()是一阶线性微分方程.AC二、填空题(每小题4分)12、设,则;3,最小值是;45、微分方程的通解是.三、计算题(每小题5分)1、求极限2、求的导数;34;5、求定积分;6的特解.四、应用题(每小题10分)1、求由曲线和直线所围成的平面图形的面积.2、利用导数作出函数的图象.参考答案(B 卷)一、1、B; 2、A; 3、D; 4、C; 5、B; 6、C; 7、D; 8、A; 9、D; 10、B.; 2; 3、; 4; 5二、1、三、1; 2; 3;4; 5; 6;四、1、; 2、图略。
高等数学试题(含答案)
高等数学试题(含答案)高等数学试题(含答案)一、选择题1.已知函数f(x)=x^2+3x+2,下列哪个选项是f(x)的导数?A. 2x+3B. 2x+2C. x^2+3D. 3x+22.若函数f(x)=e^x,那么f'(x)等于:A. e^-xB. e^xC. ln(x)D. e^x+13.设函数y=f(x)在点x=2处可导,且f'(2)=3,则曲线y=f(x)在点(2,f(2))处的切线斜率为:A. 2B. 3C. 1D. 6二、计算题1.计算极限lim(x→1) [(x-1)/(x^2-1)]答案:1/22.计算积分∫(0 to 1) (2x+1) dx答案:3/23.设曲线C的方程为y=x^3,计算曲线C的弧长。
答案:∫(0 to 1) √(1+9x^4) dx三、证明题证明:若函数f(x)在区间[a,b]上连续,且在(a,b)可导,那么必然存在c∈(a,b),使得 f'(c) = [f(b)-f(a)] / (b-a)。
证明过程:由于f(x)在区间[a,b]上连续,根据连续函数的介值定理,f(x)在[a,b]上会取到最大值M和最小值m。
设在点x=c处取得最大值M(即f(c)=M)。
根据费马定理,如果f(x)在点x=c处可导,并且f'(c)存在,那么f'(c)=0。
由于f(x)在(a,b)可导,故f'(c)存在。
那么,根据导数的定义,f'(c)=[f(c)-f(a)]/(c-a)。
又因为f(c)=M,将其代入上式得到f'(c)=(M-f(a))/(c-a)。
同理,根据费马定理,如果f(x)在点x=d处取得最小值m(即f(d)=m),那么f'(d)也等于0。
将f(d)=m代入上式得到f'(d)=(m-f(a))/(d-a)。
由于f(x)是连续函数,故在区间[a,b]上必然存在一个点c∈(a,b),使得它处于最大值M和最小值m之间,即m<f(c)<M。
高等数学试题及答案解析
高等数学试题及答案解析一、选择题1. 函数f(x) = x^2 - 4x + 3在区间[0, 5]上的最大值是:A. 3B. 5C. 7D. 9答案:D解析:首先求导f'(x) = 2x - 4,令f'(x) = 0得到x = 2,这是函数的极值点。
计算f(2) = 2^2 - 4*2 + 3 = -1。
接下来检查区间端点,f(0) = 3,f(5) = 5^2 - 4*5 + 3 = 9。
因此,最大值为f(5) = 9。
2. 若f(x) = sin(x) + cos(x),则f'(x)等于:A. cos(x) - sin(x)B. cos(x) + sin(x)C. -sin(x) + cos(x)D. -sin(x) - cos(x)答案:A解析:根据导数的基本公式,sin(x)的导数是cos(x),cos(x)的导数是-sin(x)。
因此,f'(x) = cos(x) - sin(x)。
二、填空题1. 求不定积分∫(2x + 1)dx = __________。
答案:x^2 + x + C解析:根据不定积分的基本公式,∫x^n dx = (x^(n+1))/(n+1) + C,其中n ≠ -1。
将n = 1代入公式,得到∫(2x + 1)dx = ∫2x dx + ∫1 dx = x^2 + x + C。
2. 若y = ln(x),则dy/dx = __________。
答案:1/x解析:对自然对数函数求导,根据对数函数的导数公式,ln(x)的导数是1/x。
三、解答题1. 求函数f(x) = x^3 - 6x^2 + 9x - 2的极值点。
答案:极值点为x = 3。
解析:首先求导f'(x) = 3x^2 - 12x + 9。
令f'(x) = 0,解得x = 1 和 x = 3。
计算二阶导数f''(x) = 6x - 12,代入x = 1得到f''(1) = -6 < 0,说明x = 1是极大值点;代入x = 3得到f''(3) = 18 > 0,说明x = 3是极小值点。
《高等数学》练习题及答案解析
《高等数学》练习题及答案解析第一课时一、单选题1、函数4()31f x x =+,则f(1)的值为:(D )A 、0B 、1C 、3D 、4解析:采用代入法,将x=1代入原函数,可得f(1)的值为:/*4*/2、函数y =的定义域为:(D )A 、(-∞,-2]B 、[2,+∞)C 、[-∞,+∞]D 、(-∞,-2]U[2,+∞)解析:根据幂函数性质,要使得该函数有意义,该函数的定义域为:/*(-∞,-2]U[2,+∞)*/。
3、下列函数不是周期函数的是:(c )A 、y=cos(x -2)B 、y=1+sin πxC 、y=xsinxD 、y=2tan3x解析:根据周期函数的定义,可计算得知,/*y=xsinx*/不是周期函数4、指出函数y=lgx 在(0,+∞)的区间内的单调性:(A )A 、单调递增B 、单调递减C 、没有单调性D 、无法确定解析:根据函数单调性的性质,y=lgx 是以10为底的对数函数,在其定义域内是递增的。
因此是/*单调递增*/。
5、设函数f(x)=lnx ,则f(x)-f(y)=(D )A 、f(x+y)B 、f(x -y)C 、f(xy)D 、f(x/y)解析:根据对数函数的运算法则,f(x)-f(y)=lnx -lny=ln(x/y)=f(x/y),因此,f(x)-f(y)的值为:/*f(x/y)*/。
二、判断题1、函数y=sinx 是以2π为周期的函数(A )A 、正确B 、错误解析:函数y=sinx 是周期函数,以2π为周期。
因此该表述是/*正确*/的2、函数y=cosx 是奇函数(B )A 、正确B 、错误解析:函数y=cosx 关于Y 轴对称,因此,函数y=cosx 是偶函数,所以原题的表达是/*错误*/的。
3、函数1()f x x =在开区间(0,1)内无界。
(A )A 、正确B 、错误解析:根据函数的有界性,可知该函数在指定区间内无界。
因此该表述是/*正确*/的三、多选题1、函数的表达法有:(A 、B 、C )A 、解析法B 、列表法C 、图形法D 、反函数法解析:函数的表达法有:/*解析法、列表法、图形法*/等三种。
高等数学试卷(精选多套题 含答案)
高等数学试卷一一、选择题(本题共5小题,每小题3分,共15分) 1、若函数xx x f =)(,则=→)(lim 0x f x ( ).A 、0B 、1-C 、1D 、不存在 2、下列变量中,是无穷小量的为( ). A 、1ln(0)x x +→ B 、ln (1)x x → C 、cos (0)x x → D 、22(2)4x x x -→- 3、满足方程0)(='x f 的x 是函数)(x f y =的( ).A 、极大值点B 、极小值点C 、驻点D 、间断点 4、函数)(x f 在0x x =处连续是)(x f 在0x x =处可导的( ).A 、必要但非充分条件B 、充分但非必要条件C 、充分必要条件D 、既非充分又非必要条件5、下列无穷积分收敛的是( ).A 、⎰+∞sin xdx B 、dx ex⎰+∞-02 C 、dx x ⎰+∞1D 、dx x⎰+∞01二、填空题(本题共5小题,每小题3分,共15分)6、当k= 时,2,0(),xe xf x x k x ⎧≤⎪=⎨+>⎪⎩在0=x 处连续.7、设x x y ln +=,则_______________dxdy=. 8、曲线x e y x-=在点(0,1)处的切线方程是 .9、若⎰+=C x dx x f 2sin )(,C 为常数,则()____________f x =.10、定积分dx x xx ⎰-+554231sin =____________.三、计算题(本题共6小题,每小题6分,共36分) 11、求极限 xx x 2sin 24lim-+→.12、求极限 2cos 12limxt x e dtx -→⎰.13、设)1ln(25x x e y +++=,求dy .14、设函数)(x f y =由参数方程⎩⎨⎧=+=ty t x arctan )1ln(2所确定,求dy dx 和22dx yd .15、求不定积分212sin 3dx x x ⎛⎫+ ⎪⎝⎭⎰. 16、设,0()1,01x e x f x x x⎧<⎪=⎨≥⎪+⎩,求20(1)f x dx -⎰.四、证明题(本题共2小题,每小题8分,共16分) 17、证明:dx x x nm)1(10-⎰=dx x x m n )1(1-⎰ (N n m ∈,).18、利用拉格朗日中值定理证明不等式:当0a b <<时,ln b a b b ab a a--<<. 五、应用题(本题共2小题,第19小题8分,第20小题10分,共18分)19、要造一圆柱形油罐,体积为V ,问底半径r 和高h 各等于多少时,才能使表面积最小? 20、设曲线2x y =与2y x =所围成的平面图形为A ,求 (1)平面图形A 的面积;(2)平面图形A 绕y 轴旋转所产生的旋转体的体积.高等数学试卷二一、 填空题(每小题3分,本题共15分)1、.______)31(lim 2=+→xx x 。
高等数学考试题库(附答案)
.《高数》试卷 1(上)一.选择题(将答案代号填入括号内,每题3 分,共 30 分).1.下列各组函数中,是相同的函数的是() .(A ) f xln x2和 g x2ln x(B ) f x| x | 和 g x x22| x |(C ) f x x 和 g x x( D ) f x和 g x1xsin x 42x 02.函数 fxln 1 x在 x 0 处连续,则 a() .ax 0(A )0(B )1(C )1(D )243.曲线 y x ln x 的平行于直线 x y 1 0 的切线方程为() .(A ) y x 1 (B ) y( x 1) ( C ) yln x 1x 1( D ) y x4.设函数f x | x |,则函数在点 x 0 处() .(A )连续且可导 ( B )连续且可微( C )连续不可导 ( D )不连续不可微5.点 x 0 是函数 y x 4的() .(A )驻点但非极值点( B )拐点( C )驻点且是拐点( D )驻点且是极值点6.曲线 y1) .的渐近线情况是(| x |(A )只有水平渐近线 ( B )只有垂直渐近线 ( C )既有水平渐近线又有垂直渐近线(D )既无水平渐近线又无垂直渐近线7.1 1的结果是() .fxx 2dx(A ) f1 C(B ) f1 C( C ) f1 C(D )f1 Cxxxx8.dx 的结果是() .ex e x(A ) arctan exC ( B ) arctan exC( C ) exexC( D ) ln( exe x)C9.下列定积分为零的是( ) .(A )4arctan x dx ( B ) 4x arcsin x dx (C ) 1exe xdx ( D )1x 2 x sin x dx1x2121 4410 .设f x1) .为连续函数,则 f 2x dx 等于((A )f2 f 0(B)1f 11 f 0(C)1f 2 f 0( D)f 1 f 0 22二.填空题(每题 4 分,共 20 分).f x e 2x 1x0x0 处连续,则 a1x..设函数在a x02.已知曲线 y f x 在 x 2 处的切线的倾斜角为5.,则 f 2x 63. y的垂直渐近线有条.2x14.dx.ln 2 xx 15.2x4 sin x cosx dx.2三.计算(每小题 5 分,共 30分)1.求极限12 xx sin x①limx② limxx2x0x e1x2.求曲线y ln x y 所确定的隐函数的导数y x. 3.求不定积分①xdx②dx a0③ xe x dx 1x 3x2a2四.应用题(每题10 分,共 20 分)1.作出函数y x33x2的图像.2.求曲线y22x 和直线 y x 4 所围图形的面积..《高数》试卷 1 参考答案一.选择题1.B 2.B 3. A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题1.2 2 .33.24.arctanln x c5.23三.计算题1① e2② 12. y xx16y 13. ① 1 ln |x 1| C② ln | x2a2x | C③ exx 1 C2x3四.应用题1.略2. S 18.《高数》试卷 2(上)一. 选择题 (将答案代号填入括号内 ,每题 3 分,共 30 分)1.下列各组函数中 ,是相同函数的是 ().(A)f xx 和 g xx2(B)f xx 21和 y x 1x 1(C)f xx 和 g xx(sin 2 x cos 2x)(D)f xln x 2和 g x2ln xsin 2 x 1x 1x 12.设函数 fx2 x 1,则 limf x() .x2x11 x 1(A) 0(B)1 (C)2(D) 不存在3.设函数 y f x 在点 x 0 处可导,且 fx >0, 曲线则 yf x 在点 x 0 , f x 0处的切线的倾斜角为 {}.(A)0 (B)2(C)锐角(D)钝角4.曲线 y ln x 上某点的切线平行于直线 y2x3 ,则该点坐标是 ().(A)2,ln1(B)2, ln1(C)1,ln 2(D)1 , ln 222225.函数 y x 2e x及图象在 1,2 内是 ().(A) 单调减少且是凸的 (B)单调增加且是凸的(C) 单调减少且是凹的(D) 单调增加且是凹的6.以下结论正确的是 ().(A)若 x0为函数y f x的驻点 ,则x0必为函数y f x的极值点 .(B)函数 y f x导数不存在的点 ,一定不是函数y f x 的极值点.(C)若函数 y f x在 x0处取得极值,且f x0存在 ,则必有f x0=0.(D)若函数 y f x在 x0处连续,则f x一定存在 .17.设函数y f x的一个原函数为x2e x,则f x=()..1111 (A)2x 1 e x(B)2x e x(C)2x 1 e x(D)2xe x8.若(A)f x dx F x c ,则 sin xf cosx dx().F sin x c(B) F sin x c (C) F cosx c (D) F cos x c9.设F1xdx =(). x 为连续函数,则f02(A) f1f0(B)2 f1 f 0(C) 2 f 2f0(D) 2 f1f02 bdx a b 在几何上的表示(10. 定积分).a(A) 线段长b a (B)线段长 a b (C)矩形面积a b1(D) 矩形面积b a1二.填空题 (每题 4分,共 20分)ln1x2x 0, 在x1.设 f x1cos x0 连续,则a=________.a x02.设 y sin 2x ,则 dy_________________ d sin x .3.函数 y x1的水平和垂直渐近线共有 _______条 .21x4.不定积分x ln xdx______________________.5.1x2 sin x1___________.定积分1x 2dx1三.计算题 (每小题 5 分 ,共 30 分)1.求下列极限 :①lim 1 2xx0 1arctanx x② lim2x1x2.求由方程y 1 xe y所确定的隐函数的导数y x.3.求下列不定积分:①tan x sec3xdx②dxa 0③x2e x dx x2a2四.应用题 (每题 10 分,共 20 分)1.作出函数y 1 x3x 的图象.(要求列出表格)32.计算由两条抛物线:y2x, y x2所围成的图形的面积..《高数》试卷 2 参考答案一.选择题: CDCDB CADDD二填空题: 1. -2 2. 2sin x 3.3 4.1x2 ln x 1 x2c 5. 242三. 计算题: 1.2②1 2.y xe y① e y23.① sec3 x c② ln x2a2x c ③x22x 2 e x c3四.应用题: 1.略 2.S 13《高数》试卷3(上)一、填空题 (每小题 3分,共24分)1.函数 y1的定义域为 ________________________. 9x22.设函数 f x sin 4x , x0f x 在 x0处连续 .x, 则当 a=_________时,a,x03. 函数f (x)x21的无穷型间断点为 ________________.23xx24.设 f ( x) 可导,y f ( e x ) ,则 y ____________.5.limx21_________________. 2x2x 5x.6.1 x3sin 2xdx =______________.1x4x217. d x 2e tdt _______________________.dx 08. yyy30 是_______阶微分方程 .二、 求下列极限 (每小题 5 分,共15分)xx1x31 1. lim e;2. lim ;3. lim21.x 0sin xx 3x9x 2x三、求下列导数或微分 (每小题 5 分, 共 15 分)1. yx x, 求 y (0) .2. yecos x, 求 dy .2y ,求 dy .3. 设 xyexdx四、求下列积分 (每小题 5 分, 共15 分)1. 12sin x dx .2.x ln(1x)dx .x3.1e2xdxx t在 t处的切线与法线方程 .五、 (8 分)求曲线1 cost 2y六、 (8 分 )求由曲线 y x 21, 直线 y 0, x 0 和 x 1 所围成的平面图形的面积 , 以及此图形绕 y 轴旋转所得旋转体的体积 .七、 (8 分 )求微分方程 y 6 y13 y0的通解.八、 (7 分 )求微分方程 yy e x满足初始条件 y 10的特解 .x《高数》试卷 3 参考答案一. 1. x 32. a 43. x 24. e x f '(e x )5.16.07. 2 xex 28. 二阶2二 .1.原式 = limx1x 0x112. lim6x 3x33.原式 = lim[(1111)2 x] 2e 2x2x三 .1.2.y' 2 12 , y '(0)2(x2)dysin xecos xdx3.两边对 x 求写: yxy 'e x y(1 y ')e x yyxy yy 'exyxxyx四.1.原式 = lim x2cos x C2.原式 = lim(1x)d (x2x 21) lim(1 x)x 2d[lim(1x)]22 x221( x1)dx= x lim(1 x) 11xdx x lim(1 x)122 x 221 x22= xlim(1 x) 1 [ xx lim(1x)] C22 23.原式 = 11 2x12 x 1122 0 ed (2 x) 2e 02 (e1) 五. dysin t dy t1且 t2, y 1dxdx 2.切线: y1 x,即 y x 1 22法线: y1( x ),即 y x 1 022六. S11)dx ( 1x2x) 103 ( x222V1 (x21)2dx12x21)dx0 ( x4( x52 x 2 x) 10 28 53 15r 2 6r13 0r 3 2i七.特征方程 : ye 3 x (C 1 cos2 x C 2 sin 2 x)1dx1dx八. y e x( e x e x dx C )1 [ (x 1e x)C ]x由 y x1 0, C 0x 1 x ye x《高数》试卷 4(上)一、选择题(每小题 3 分)1、函数 y ln(1 x)x 2 的定义域是( ) .A2,1B2,1C 2,1 D2,12、极限 lim e x的值是() .xA 、B 、C 、D 、不存在3、 limsin(x 1) ( ) .x 11 x 21 1A 、 1B 、 0C 、2 D 、24、曲线 y x3x 2 在点 (1,0) 处的切线方程是()A 、 y2( x 1)B 、 y 4( x 1)C 、 y 4x 1D 、 y 3( x 1)5、下列各微分式正确的是( ) .A 、xdx( x 2 )、 cos2xdx d(sin 2x)dBC 、 dx d (5 x)D 、 d (x 2 ) (dx)26、设f (x)dx2 cosxC ,则f ( x) () .2A 、 sinxB 、27、2 ln xdx() .xsinxC 、sinxCD 、2 sinx22 2A 、2 1 ln 2x C B 、 1(2 ln x)2Cx 222.C 、 ln 2ln x C1 ln xCD 、x28、曲线 yx2, x1 , y0 所围成的图形绕 y 轴旋转所得旋转体体积 V() .1x 4dx1 ydyA 、B 、1(1 y)dy1(1 x4)dxC 、D 、1exdx() .9、e x1A 、 ln1 eB 、 ln2 eC 、 ln1 eD 、 ln1 2e223210 、微分方程 yyy 2e2 x的一个特解为() .A 、 y3 e 2x B 、 y3 e x C 、 y2 xe 2x D 、 y2 e 2 x7777二、填空题(每小题 4 分)1、设函数 yxe x,则 y; 3sin mx2 则 m.2、如果 lim,x 02x313、 x 3cos xdx;14、微分方程 y4 y 4 y 0 的通解是.5、函数 f ( x)x2 x 在区间0,4 上的最大值是,最小值是;三、计算题(每小题5 分)1、求极限 lim1 x1 x ;2 、求 y1cot 2x ln sin x 的导数;x 0x23、求函数x 31 4 、求不定积分dx ;y的微分;xx31115、求定积分e ln x dx ;dyx 6、解方程1;edxy 1 x2四、应用题(每小题 10 分)1、求抛物线y x 2与y 2 x 2所围成的平面图形的面积.2、利用导数作出函数y 3x2x3的图象.参考答案.一、 1、C ;2、D ;3、C ;4、B ;5、 C ;6、 B ;7、B ;8、A ;9、A ; 10、D ;二、 1、 (x2)e x;2 、4;3、0 ;4 、 y(C 1 C 2 x)e 2 x; 5、 8,09三、1、1 ;2、cot 3x ;3、6 x 2dx ;4 、 2 x 1 2 ln(1x 1) C ;5、2(21) ; 6 、 y22 1 x2C ;( x 3 1) 2e四、1、 8;32、图略《高数》试卷 5(上)一、选择题(每小题3 分)1 、函数 y2x1 的定义域是() .lg( x 1)A 、2, 1 0,B 、 1,0(0,)C 、 ( 1,0) (0,)D 、( 1, )2 、下列各式中,极限存在的是( ) .A 、lim c o sxB 、 lim arctanxC 、 lim sin xD 、 lim 2xxxxx3 、 lim (x )x() .x1 xA 、 eB 、 e 2C 、 1D 、1e4、曲线 yx ln x 的平行于直线 x y 1 0 的切线方程是() .A 、 yxB 、C 、yx 1D 、 y (ln x 1)( x 1) y ( x 1)5、已知 yxsin 3x ,则 dy() .A、( cos3x3sin 3x)dxB、C、(cos 3x sin 3x) dx D 、6、下列等式成立的是() .(sin 3x3x cos3x) dx (sin 3x x cos3x)dxA、C、x dx1x 1C B 、a x dx a x ln x C11 cosxdx sin x C D 、tan xdx Cx 21.7、计算e sin x sin xcos xdx 的结果中正确的是() .A、e sin x CB、e sin x cos x CC、e sin x sin x CD、e sin x(sin x 1)C8、曲线y x2, x 1, y0 所围成的图形绕x 轴旋转所得旋转体体积V() .1x 4dx B 、1A、ydy001(1y)dy1(1 x 4 )dxC、 D 、009、设 a ﹥,则a22) .a dx(A、a2 B 、a2C、1a20D、1a2244 10 、方程()是一阶线性微分方程 .A、x2y ln y0B、y e x y 0 xC、(1x2 ) y y sin y0D、xy dx ( y26x)dy 0二、填空题(每小题 4 分)1、设f ( x)e x1, x0, lim f ( x);,则有 lim f (x)ax b, x0x 0x 02、设y xe x,则y;3、函数f ( x)ln(1x2 ) 在区间1,2 的最大值是,最小值是;14、x3cos xdx;15、微分方程y 3 y 2 y 0的通解是.三、计算题(每小题 5 分)1、求极限lim (11 x 23) ;x 1x x2 2、求y 1 x2 arccosx 的导数;3、求函数yx的微分;1x24、求不定积分1;dxx 2ln x.5、求定积分eln x dx ;1e6、求方程x2y xy y 满足初始条件y(1) 4 的特解.2四、应用题(每小题10 分)1、求由曲线y 2 x2和直线x y 0 所围成的平面图形的面积.2、利用导数作出函数y x 36x 29x 4的图象.参考答案( B 卷)一、 1、B;2、A;3、D;4、C;5、 B;6、C;7、 D;8、A;9、D;10 、B.二、 1、 2 , b ; 2 、( x2)e x; 3 、ln 5 , 0 ;4、 0 ;5、C1e x C 2 e2x.三、1、1; 2 、x arccosx 1 ; 3 、1dx ;3 1 x2(1 x2 ) 1 x 24、2 2ln x C ;5、2(21) ; 6 、y 2 e e x四、 1、9 ;2、图略21x;2。
高等数学考试题库(附答案)
.《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分). 1.下列各组函数中,是相同的函数的是().(A )2 fxlnx 和gx2lnx (B )fx|x|和2gxx(C )fxx 和 2 gxx (D ) fx |x | x和gx1sinx42fxln1xx0在x0处连续,则a ().2.函数ax0(A )0(B )14(C )1(D )23.曲线yxlnx 的平行于直线xy10的切线方程为(). (A )yx1(B )y(x1)(C )ylnx1x1(D )yx 4.设函数fx|x|,则函数在点x0处().(A )连续且可导(B )连续且可微(C )连续不可导(D )不连续不可微 5.点x0是函数4 yx 的().(A )驻点但非极值点(B )拐点(C )驻点且是拐点(D )驻点且是极值点 6.曲线 y 1 |x|的渐近线情况是().(A )只有水平渐近线(B )只有垂直渐近线(C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7. 11 fdx2xx 的结果是(). (A ) 1 fC x (B ) 1 fC x (C ) 1 fC x (D ) 1 fC x8. dxxx ee的结果是().(A )arctanx eC (B )arctanx eC (C )xxxxeeC (D )ln(ee)C9.下列定积分为零的是().(A )4 4 a rctan x 1 2 x dx (B )4 4 xarcsinxdx (C ) xx ee 1 dx (D ) 121 12 xxsinxdx 10.设fx 为连续函数,则 1 0f2xdx 等于(). (A )f2f0(B )1 2 f11f0(C ) 1 2f2f0(D )f1f0 二.填空题(每题4分,共20分)21 x efxxx01.设函数在x0处连续,则a.ax0 2.已知曲线yfx 在x2处的切线的倾斜角为5 6,则f2. 3. yx 21 x 的垂直渐近线有条. 4. dx 2 x1lnx.5. 2 4xsinxcosxdx.2.三.计算(每小题5分,共30分)1.求极限①limx 1xx2x②limx0xsinx2xxe12.求曲线ylnxy所确定的隐函数的导数y x. 3.求不定积分①dxx1x3②dx22xaa 0 ③xxedx四.应用题(每题10分,共20分)1.作出函数332yxx的图像.2.求曲线22yx和直线yx4所围图形的面积..《高数》试卷1参考答案一.选择题1.B2.B3.A4.C5.D6.C7.D8.A9.A10.C 二.填空题1.22.333.24.arctanlnxc5.2三.计算题1①2e②162.yx1xy13.①1x1ln||2x3C②22xln|xax|C③ex1C四.应用题1.略2.S18《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分)1.下列各组函数中,是相同函数的是().(A)fxx和 2gxx(B) fx21xx1和yx1(C)fxx和22gxx(sinxcosx)(D)2fxlnx和gx2lnx sin2x1x1x12.设函数fx2x1lim,则x12x1x1f x().(A)0(B)1(C)2(D)不存在3.设函数yfx在点x0处可导,且fx>0,曲线则yfx在点x0,fx0处的切线的倾斜角为{}.(A)0(B)(C)锐角(D)钝角24.曲线ylnx上某点的切线平行于直线y2x3,则该点坐标是().(A)2,ln 12(B) 2,ln12(C)12,ln2 (D)12,ln25.函数2xyxe及图象在1,2内是().(A)单调减少且是凸的(B)单调增加且是凸的(C)单调减少且是凹的(D)单调增加且是凹的6.以下结论正确的是().(A)若x0为函数yfx的驻点,则x0必为函数yfx的极值点.(B)函数yfx导数不存在的点,一定不是函数yfx的极值点.(C)若函数yfx在x0处取得极值,且f x存在,则必有fx0=0.(D)若函数yfx在x0处连续,则f x一定存在...1 4.设函数yfx 的一个原函数为2x xe,则fx=().1111(A) 2x1e x (B)2xe x (C)2x1e x (D)2xe x5.若fxdxFxc,则sinxfcosxdx().(A)Fsinxc(B)Fsinxc(C)Fcosxc(D)Fcosxc6.设Fx 为连续函数,则x 1fdx=(). 02(A)f1f0(B)2f1f0(C)2f2f0(D)1 2ff027.定积分 badxab 在几何上的表示(). (A)线段长ba(B)线段长ab(C)矩形面积ab1(D)矩形面积ba1 二.填空题(每题4分,共20分)2ln1x fxx1cosx07.设,在x0连续,则a=________.ax08.设 2ysinx,则dy_________________dsinx.9.函数 y x 21 x1的水平和垂直渐近线共有_______条.10.不定积分xlnxdx______________________.11.定积分 1 1 2 xsinx1 dx 2 1x ___________.三.计算题(每小题5分,共30分) 1.求下列极限: ①1 lim12x x ② x0lim x2a rctan x 1 xy2.求由方程1yxe 所确定的隐函数的导数y x .3.求下列不定积分:①3 tanxsecxdx ②dx 22 xaa 0③ 2xxedx四.应用题(每题10分,共20分)1.作出函数 1 3yxx 的图象.(要求列出表格)32.计算由两条抛物线:2,2yxyx 所围成的图形的面积...《高数》试卷2参考答案一.选择题:CDCDBCADDD 二填空题:1.-22.2sinx3.34.11 22 xlnxxc5. 242三.计算题:1.①2e ②12.y xye y28.① 3 sec 3 x c ② 22 lnxaxc ③222x xxec四.应用题:1.略2. S13《高数》试卷3(上)一、填空题(每小题3分,共24分) 12.函数 y 9 1 2 x的定义域为________________________.sin4x fxx,x013.设函数,则当a=_________时,fx 在x0处连续.a,x0 14.函数 f(x)2x12 x3x2的无穷型间断点为________________.x15.设f(x )可导,yf(e),则y____________. 16.2x1 lim_________________.2 xxx25 17. 1 1 32 xsinx 42 xx 1dx=______________. 18. d dx 2 x 0t edt _______________________. 19.30yyy 是_______阶微分方程.二、求下列极限(每小题5分,共15分) 2. lim x0 x e si n1 x ;2. li m x3x 2 x 3 9 ;3. x1 lim1. x2x三、求下列导数或微分(每小题5分,共15分)x4.y,求y(0).2.x2cosx ye,求dy.3.设 xy xye,求 d y dx . 四、求下列积分(每小题5分,共15分)1.12sinxdxx .2.xln(1x)dx.3. 1 2x edx 0五、(8分)求曲线x ty1cost在t处的切线与法线方程.2六、(8分)求由曲线21,yx直线y0,x0和x1所围成的平面图形的面积,以及此图形绕y轴旋转所得旋转体的体积. ..七、(8分)求微分方程y6y 13y0的通解. 八、(7分)求微分方程 y ye xx满足初始条件y10的特解. 《高数》试卷3参考答案一.1.x32.a43.x24.'()xxefe9.1220.7. xe8.二阶x2 2x 二.1.原式=lim1 x0 x3. lim xx 311 364.原式=111 222 xlim[(1)]e x2x 三.1. 21 y',y'(0) 2 (x 2)25. cosxdysinxedx6.两边对x 求写:'(1')yxyeyxyy' xyeyxyy xy xexxy 四.1.原式=limx 2cosxC4.原式= 22xx1 2 lim(1x)d()lim(1x)xd[lim(1x)] 2x2 = 22 x1xx11 lim(1x)dxlim(1x)(x 1)dx 221x221x =22 x1x lim(1x)[xlim(1x)]C 2225.原式= 1111 2x2x121111ed(2x)e(e1)0 222dydy 五.sin1,1ttty且dxdx22 切线:1,10yx 即yx22 法线:1(),10yx 即yx22六. 122113 S(x1)dx(xx)22122142V(x1)dx(x 2x1)dx00 5 x22821(xx)5315七.特征方程:2r6r130r32i 3xye(Ccos2xCsin2x)12八. 11 dxdx x yexee xdxC()1 x x[(x1)eC]由yx10,C0x1xyex《高数》试卷4(上)一、选择题(每小题3分)1、函数yln(1x)x2的定义域是()...A2,1B2,1C2,1D2,1 2、极限 x lime 的值是(). x A 、B 、0C 、D 、不存在 3、 sin(x lim xx 11 2 1) (). A 、1B 、0C 、1 2D 、1 2 3x4、曲线2yx 在点(1,0)处的切线方程是() A 、y2(x1)B 、y4(x1) C 、y4x1D 、y3(x1)5、下列各微分式正确的是(). 2A 、()xdxdxB 、cos2xdxd(sin2x) C 、dxd(5x)D 、d(x dx 2)() 2)()2x6、设f(x)dx2cosC ,则f(x )().2A 、sin x 2B 、 si n x 2 xC 、sinCD 、 22 si n x 2 2lnx 7、dxx(). 21122A 、xCB 、(2lnx)C2ln x221lnxC 、ln2lnxCD 、C2 x8、曲线2 yx ,x1,y0所围成的图形绕y 轴旋转所得旋转体体积V (). A 、 1 0 x B 、4dx 4dx 1 0 ydy C 、 1 0 (1y)dyD 、 1 0 (1xdx 4) 4) 9、 1 01 x e xe dx (). A 、ln 1e2e1e1 B 、lnC 、lnD 、ln 2232e 2 10、微分方程y yy 2x 2e 的一个特解为(). A 、 y 3 7 2x e B 、 y 3 7 x e C 、 y 2 7 2 xe x D 、 y 2 7 2x e二、填空题(每小题4分)1、设函数x yxe ,则y ; 2、如果 3sinmx lim x0x22 3,则m. 3、 1 x ;3cosxdx3cosxdx 1 4、微分方程y4y 4y 0的通解是.5、函数f(x )x2x 在区间0,4上的最大值是,最小值是;三、计算题(每小题5分)1、求极限limx01x1xx12;2、求ycotxlnsinx2的导数;..3、求函数3x1y的微分;4、求不定积分3x1dx1x 1;5、求定积分e1lnxdx;6、解方程ed ydx yx21x;四、应用题(每小题10分)1、求抛物线2yx与2y2x所围成的平面图形的面积.2、利用导数作出函数23y3xx的图象.参考答案一、1、C;2、D;3、C;4、B;5、C;6、B;7、B;8、A;9、A;10、D;二、1、x(x2)e;2、49;3、0;4、y2x(C1Cx)e;5、8,0226x三、1、1;2、cot3x;3、dx32(x1)1;4、2x12ln(1x1)C;5、)2(2e2212;;6、yxC8四、1、;32、图略《高数》试卷5(上)一、选择题(每小题3分)1、函数1y2x的定义域是(). lg(x1)A、2,10,B、1,0(0,)C、(1,0)(0,)D、(1,)2、下列各式中,极限存在的是().A、limcosxx0 B、limarctanxC、limsinxD、xxlimx2x3、xx lim()(). x1xA、eB、e2C、1D、 1e4、曲线yxlnx的平行于直线xy10的切线方程是().A、yxB、y(lnx1)(x1)C、yx1D、y(x1)5、已知yxsin3x,则dy().A、(cos3x3sin3x)dxB、(sin3x3xcos3x)dxC、(cos3xsin3x)dxD、(sin3xxcos3x)dx6、下列等式成立的是().11 A、xdxxC1xlnx B、adxaxC..1C、cosxdxsinxCD、tanxdxC21xsin的结果中正确的是().x sincos7、计算exxdxsinxB、e sinx cosxCA、eCC、e sinx sinxCD、e sinx(sinx1)C8、曲线2yx,x1,y0所围成的图形绕x轴旋转所得旋转体体积V().A、1x B、4dx4dx10 ydyC、1(1y)dyD、1(1xdx4)4)a22().9、设a﹥0,则axdxA、 2aB、 2 2aC、142a0D、142a10、方程()是一阶线性微分方程.y2xA、xyln0B、yey0xC、(1x2)y ysiny0D、xydx(y26x)dy0二、填空题(每小题4分)1、设f(x)xeax1,b,xx0 ,则有limf(x)x0 ,limf(x)x0;2、设xyxe,则y;23、函数()ln(1)fxx在区间1,2的最大值是,最小值是;4、1x;3cosxdx 3cosxdx 15、微分方程y3y2y0的通解是.三、计算题(每小题5分)131、求极限lim()2x1x1xx2;22、求y1xarccosx 的导数;3、求函数xy的微分;21x14、求不定积分dxx2lnx;5、求定积分e1lnxdx;e26、求方程xyxyy1满足初始条件y()4的特解.2四、应用题(每小题10分)1、求由曲线 2y2x和直线xy0所围成的平面图形的面积. ..3x2x2、利用导数作出函数694yx的图象.参考答案(B卷)一、1、B;2、A;3、D;4、C;5、B;6、C;7、D;8、A;9、D;10、B.二、1、2,b;2、x(x2)e;3、ln5,0;4、0;5、xCe2x Ce1.2三、1、13x;2、arccosx121x1;3、dx(1xx2)12)12;14、22lnxC;5、)2(2e ;6、y2x2e1x;四、1、92;2、图略单纯的课本内容,并不能满足学生的需要,通过补充,达到内容的完善教育之通病是教用脑的人不用手,不教用手的人用脑,所以一无所能。
高等数学考试题库(附答案)
《高数》试卷1(上)一.选择题(将答案代号填入括号,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 2.函数()()20ln 10x f x x a x -≠⎪=+⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线(D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xe C -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭②()20sin 1lim xx x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dxx x ++⎰②()220a x a >-⎰③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题 1.2- 2. 3. 2 4.arctanln x c + 5.2 三.计算题 1①2e ②162.11xy x y '=+- 3. ①11ln ||23x C x +++②ln |x C +③()1x e x C --++ 四.应用题1.略 2.18S =《高数》试卷2(上)一.选择题(将答案代号填入括号,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A)()f x x =和()g x = (B)()211x f x x -=-和1y x =+(C)()f x x =和()22(sin cos )g x x x x =+ (D)()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }.(A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫⎪⎝⎭(B) 12,ln 2⎛⎫- ⎪⎝⎭ (C)1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2xy x e-=及图象在()1,2是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在.7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ).(A) ()121xx e - (B) 12xx e - (C) ()121x x e + (D) 12xxe 8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C)()()220f f -⎡⎤⎣⎦ (D)()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x . 3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '.3.求下列不定积分: ①3tan sec x xdx ⎰②()220a x a>+⎰③2x x e dx ⎰ 四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc +②)ln x c +③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1.函数y =的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7. 20_______________________.x t d e dt dx -=⎰ 8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1.01lim sin xx e x →-; 2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx.四、求下列积分 (每小题5分, 共15分)1.12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120x e dx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积. 七、(8分)求微分方程6130y y y '''++=的通解. 八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x<2.4a =3.2x =4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==--四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x +-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy tt t y dx dx ππ=====且 切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰七.特征方程:2312613032(cos 2sin 2)xr r r iy e C x C x -++=⇒=-±=+八.11()dxdxxx x y ee edx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0y x C ==⇒=1xx y e x-∴=《高数》试卷4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、21 4、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx =C 、)5(x d dx --=D 、22)()(dx x d =6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ). A 、2sin x B 、 2sin x- C 、 C x +2sin D 、2sin 2x -7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C xx++-2ln 1 8、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e + 10、微分方程 xe y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=*二、填空题(每小题4分) 1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x;4、微分方程 044=+'+''y y y 的通解是.5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是,最小值是;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;5、求定积分⎰eedx x 1ln ; 6、解方程21xy xdx dy -=;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ; 4、C x x +++-+)11ln(212; 5、)12(2e - ; 6、C x y =-+2212 ; 四、1、38; 2、图略《高数》试卷5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→B 、x x arctan lim ∞→C 、x x sin lim ∞→D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ).A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a x x ln C 、⎰+=C x xdx sin cos D 、⎰++=C xxdx 211tan 7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ).A 、C e x+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、设 a ﹥0,则 =-⎰dx x a a22( ).A 、2a B 、22a πC 、241a 0D 、241a π 10、方程( )是一阶线性微分方程. A 、0ln2=+'xyy x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x;5、微分方程 023=+'-''y y y 的通解是.三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分 ⎰eedx x 1ln ;6、求方程y xy y x =+'2满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxeC e C 221+.三、1、31 ; 2、1arccos 12---x xx ; 3、dx x x 221)1(1-- ;4、C x ++ln 22 ;5、)12(2e- ; 6、x e x y 122-= ;四、1、 29; 2、图略。
(完整)高等数学考试题库(附答案)
高等数学考试题库(附答案)1. 解析:求函数 f(x) = x^2 在区间 [0, 2] 上的定积分。
2. 解析:求函数 f(x) = e^x 在区间 [1, 1] 上的定积分。
3. 解析:求函数 f(x) = sin(x) 在区间[0, π] 上的定积分。
4. 解析:求函数 f(x) = cos(x) 在区间[0, π/2] 上的定积分。
5. 解析:求函数 f(x) = ln(x) 在区间 [1, e] 上的定积分。
6. 解析:求函数 f(x) = x^3 在区间 [1, 1] 上的定积分。
7. 解析:求函数f(x) = √x 在区间 [0, 4] 上的定积分。
8. 解析:求函数 f(x) = 1/x 在区间 [1, 2] 上的定积分。
9. 解析:求函数 f(x) = tan(x) 在区间[0, π/4] 上的定积分。
10. 解析:求函数 f(x) = 1/(1 + x^2) 在区间 [0, 1] 上的定积分。
11. 解析:求函数 f(x) = x^2 + 1 在区间 [0, 1] 上的定积分。
12. 解析:求函数 f(x) = e^(x) 在区间 [0, 2] 上的定积分。
13. 解析:求函数 f(x) = sin^2(x) 在区间[0, π] 上的定积分。
14. 解析:求函数 f(x) = cos^2(x) 在区间[0, π/2] 上的定积分。
15. 解析:求函数 f(x) = 1/(1 + x^2) 在区间 [1, 1] 上的定积分。
16. 解析:求函数f(x) = √(1 x^2) 在区间 [1, 1] 上的定积分。
17. 解析:求函数 f(x) = x^3 3x^2 + 2x 在区间 [0, 2] 上的定积分。
18. 解析:求函数 f(x) = e^(2x) 在区间 [1, 1] 上的定积分。
19. 解析:求函数 f(x) = ln(x) 在区间 [1, e^2] 上的定积分。
20. 解析:求函数 f(x) = sin(x)cos(x) 在区间[0, π/2] 上的定积分。
完整版)高等数学测试题及答案
完整版)高等数学测试题及答案高等数学测试试题一、是非题(3’×6=18’)1、$\lim_{x\to 1}(1-x)=e$。
(×)2、函数$f(x)$在点$x=x_0$处连续,则它在该点处必可导。
(×)3、函数的极大值一定是它的最大值。
(×)4、设$G(x)=f(x)$,则$G(x)$为$f(x)$的一个原函数。
(√)5、定积分$\int_{-1}^1 x\cos x dx=0$.(√)6、函数$y=x-2$是微分方程$x\frac{dy}{dx}+2y$的解。
(√)二、选择题(4’×5=20’)7、函数$f(x)=\sin\frac{1}{x}$是定义域内的()A、单调函数B、有界函数C、无界函数D、周期函数答案:C8、设$y=1+2x$,则$dy$=()A、$2xdx$B、$2x\ln2$C、$2x\ln2dx$D、$(1+2x\ln2)dx$答案:A9、设在区间$[a,b]$上$f'(x)>0$,$f''(x)>0$,则曲线$y=f(x)$在该区间上沿着$x$轴正向A、上升且为凹弧B、上升且为凸弧C、下降且为凹弧D、下降且为凸弧答案:B10、下列等式正确的是()A、$\int f'(x)dx=f(x)$B、$\int f(x)dx=f'(x)$C、$\int f'(x)dx=f(x)+C$D、$\int f(x)dx=f'(x)+C$答案:C11、$P=-\int \cos^2 x dx$,$Q=3\int dx$,$R=\int xdx$,则int_0^{\frac{\pi}{2}} \sin x dx < \int_0^1 \sin^2 x dx <\int_0^{\frac{\pi}{2}} \sin 2x dx$A、$P<Q<R$B、$Q<P<R$C、$P<R<Q$D、$R<Q<P$答案:D三、选择题(4’×5=20’)12.函数$f(x)=\frac{x^2}{3x-3}$的间断点为()A、3B、4C、5D、6答案:A13、设函数$f(x)$在点$x=0$处可导,且$\lim_{h\to 0}\frac{f(-h)-f(0)}{h}=\frac{1}{2}$,则$f'(0)$=()A、2B、1C、-1D、-2答案:B14、设函数$f(x)=x^2\ln x$,则$f''(1)$=()A、2B、3C、4D、5答案:B15、$\frac{d}{dx}\int_0^{\ln(1+x)}\ln(1+t)dt=$A、$\ln(1+x)$B、$\ln(1+x^2)$C、$2x\ln(1+x^2)$D、$x^2\ln(1+x^2)$答案:C16、$\int f'(e^x)e^xdx=$A、$f(e^x)$B、$f(e^x)+C$C、$f'(e^x)$D、$f'(e^x)+C$答案:B四、选择题(7’×6=42’)17、$\lim_{x\to 2x-2}\frac{x^2+x-6}{x-2x+2}=$A、5B、6C、7D、8答案:B18、函数$y=x^3-3x$的单调减少区间为()A、$(-\infty,-1)$B、$(-\infty,1)$C、$(-1,+\infty)$D、$[-1,1]$答案:A19、已知曲线方程$y=\ln(2+x)$,则点$M(0,\ln2)$处的切线方程为()A、$y=\frac{x}{2}+\ln2$B、$y=\frac{x}{2}-\ln2$C、$y=2x+\ln2$D、$y=2x-\ln2$答案:AB、y=x+1C、y=x^2+ln2D、y=x+ln2x10、函数f(x)=∫lntdt的极值点与极值分别为:A、x=2,极小值f(2)=1B、x=1,极小值f(1)=1/2(ln2-1)C、x=2,极大值f(2)=1D、x=1,极大值f(1)=1/2(ln2-1)21、曲线y=4-x^2,x∈[0,4]与x轴,y轴以及x=4所围的平面图形的面积值S=A、4B、8C、16D、3222、微分方程dy/dx=ex-2y满足初始条件y(0)=1的特解为:A、lny=ex-1B、e2y=2ex-1C、e2y=ex-1D、e2y=e2x-1。
(完整word版)高等数学试题及答案(word文档良心出品)
《高等数学》一.选择题1. 当0→x 时,)1ln(x y +=与下列那个函数不是等价的 ( )A)、x y = B)、x y sin = C)、x y cos 1-= D)、1-=x e y2. 函数f(x)在点x 0极限存在是函数在该点连续的( )A )、必要条件B )、充分条件C )、充要条件D )、无关条件3. 下列各组函数中,)(x f 和)(x g 不是同一函数的原函数的有( ).A)、()()()2221,21)(x x x x e e x g e e x f ---=-=B)、(())()ln ,ln f x x g x x ==-C)、()()x x g x x f --=-=1arcsin 23,12arcsin )( D)、()2tan,sec csc )(xx g x x x f =+= 4. 下列各式正确的是( )A )、2l n 2x xx dx C =+⎰ B )、s i n c o s t d t t C =-+⎰C )、2a r c t a n 1dxdx x x =+⎰ D )、211()dx C x x-=-+⎰ 5. 下列等式不正确的是( ).A )、()()x f dx x f dx d b a =⎥⎦⎤⎢⎣⎡⎰ B )、()()()[]()x b x b f dt x f dx d x b a '=⎥⎦⎤⎢⎣⎡⎰ C )、()()x f dx x f dx d x a =⎥⎦⎤⎢⎣⎡⎰ D )、()()x F dt t F dx d x a '=⎥⎦⎤⎢⎣⎡'⎰ 6. 0ln(1)limxx t dt x→+=⎰( )A )、0B )、1C )、2D )、47. 设bx x f sin )(=,则=''⎰dx x f x )(( )A )、C bx bx b x +-sin cos B )、C bx bx b x+-cos cos C )、C bx bx bx +-sin cos D )、C bx b bx bx +-cos sin8. 10()()bx xa e f e dx f t dt =⎰⎰,则( )A )、1,0==b aB )、e b a ==,0C )、10,1==b aD )、e b a ==,19. 23(sin )x x dx ππ-=⎰( )A )、0B )、π2C )、1D )、22π10. =++⎰-dx x x x )1(ln 2112( )A )、0B )、π2C )、1D )、22π11. 若1)1(+=x xxf ,则dx x f ⎰10)(为( )A )、0B )、1C )、2ln 1-D )、2ln12. 设)(x f 在区间[]b a ,上连续,⎰≤≤=xa b x a dt t f x F )()()(,则)(x F 是)(x f 的( ).A )、不定积分B )、一个原函数C )、全体原函数D )、在[]b a ,上的定积分13. 设1sin 2y x x =-,则dxdy=( ) A )、11c o s2y - B )、11c o s2x - C )、22c o sy- D )、22c o sx-14. )1ln(1lim 20x e x xx +-+→=( )A 21-B 2C 1D -115. 函数x x y +=在区间]4,0[上的最小值为( )A 4;B 0 ;C 1;D 3二.填空题1. =+++∞→2)12(lim xx x x ______.2. 2-=⎰3. 若⎰+=C e dx e x f xx 11)(,则⎰=dx x f )(4. =+⎰dt t dx d x 26215. 曲线3y x =在 处有拐点 三.判断题 1. xxy +-=11ln是奇函数. ( ) 2. 设()f x 在开区间(),a b 上连续,则()f x 在(),a b 上存在最大值、最小值.( ) 3. 若函数()f x 在0x 处极限存在,则()f x 在0x 处连续. ( ) 4. 0sin 2xdx π=⎰. ( )5. 罗尔中值定理中的条件是充分的,但非必要条件.( )四.解答题1. 求.cos 12tan lim20xxx -→ 2. 求nxmxx sin sin limπ→,其中n m ,为自然数.3. 证明方程01423=+-x x 在(0,1)内至少有一个实根.4. 求cos(23)x dx -⎰.5. 求⎰+dx xx 321.6. 设21sin ,0()1,0x x f x x x x ⎧<⎪=⎨⎪+≥⎩,求()f x '7.求定积分4⎰8. 设)(x f 在[]1,0上具有二阶连续导数,若2)(=πf ,⎰=''+π5sin )]()([xdx x f x f ,求)0(f ..9. 求由直线0,1,0===y x x 和曲线x e y =所围成的平面图形绕x 轴一周旋转而成的旋转体体积《高等数学》答案一.选择题1. C2. A3. D4. B5. A6. A7. C8. D9. A 10. A 11. D 12. B 13. D14. A15. B 二.填空题 1. 21e 2. 2π 3. C x+1 4. 412x x + 5. (0,0) 三.判断题 1. T 2. F 3. F 4. T 5. T 四.解答题 1. 82. 令,π-=x t nmn nt m mt nx mx n m t x -→→-=++=)1()sin()sin(lim sin sin lim 0πππ3. 根据零点存在定理.4.1cos(23)cos(23)(23)31sin(23)3x dx x d x x C-=---=--+⎰⎰5. 令t x =6,则dt t dx t x 566,==原式⎰⎰⎰++-=+=+=dt )t111t (6dt t 1t 6dt t t t 62435 C t 1ln t 2t 62+⎪⎭⎫⎝⎛++-= C x x x +++⋅-⋅=6631ln 6636. 222sin 2cos ,0()1,00x x x x f x x x ⎧-+<⎪⎪⎪'=>⎨⎪=⎪⎪⎩不存在,7. 42ln3-8. 解:⎰⎰⎰''--=-=ππππ0sin )()0()()cos ()(sin )(xdx x f f f x d x f xdx x f所以3)0(=f9. V=())1(2121)2(212102102102210-====⎰⎰⎰e e x d e dx e dx exx xxπππππ 《高等数学》试题2一.选择题1. 当0→x 时,下列函数不是无穷小量的是 ( )A )、x y =B )、0=yC )、)1ln(+=x yD )、x e y =2. 设12)(-=x x f ,则当0→x 时,)(x f 是x 的( )。