浙江省杭州市萧山区坎山镇中学2014届九年级下学期期初测试数学试题人教版

合集下载

2014年杭州市中学考试数学

2014年杭州市中学考试数学

实用文档年浙江省杭州市中考数学试卷2014分)3分,共30一、仔细选一选(本题有10个小题,每小题2)1.3a?(﹣2a)=(3233B.DC..A.6a12a﹣12a ﹣6a)2.已知一个圆锥体的三视图如图所示,则这个圆锥的侧面积为(2222 D .A.C.B.15πcm 30πcm24πcm12πcm),则AC=(°,∠3.在直角三角形ABC中,已知∠C=90A=40°,BC=3 °.D 3tan50 B.3sin50°C.3tan40°3sin40 A.°,则下列说法中,错误的是a的正方形的面积为8杭州)已知边长为4.(3分)(2014?)(2 B.A.a是无理数是方程x8=0﹣的解a C.a是8的算术平方根D.a满足不等式组5.(3分)(2014?杭州)下列命题中,正确的是()A.梯形的对角线相等B.菱形的对角线不相等C.矩形的对角线不能相互垂直D.平行四边形的对角线可以互相垂直6.(3分)(2014?杭州)函数的自变量x满足≤x≤2时,函数值y满足≤y≤1,则这个函数可以是()A.B.C.D.y= y=y= y=杭州)若(2014分)(7.3(?)(w=,则w=1?)+实用文档≠﹣a﹣2()D.﹣aaa(≠2)C.﹣2(a≠2 )(.A a+2a≠﹣2 B.﹣a+2 )2 年杭州市小学学校数量(单位:所)和在20122001年至分)(2014?杭州)已知8.(3 校学生人数(单位:人)的两幅统计图.由图得出如下四个结论:2006年更稳定;2012年比2001~2007①学校数量年~②在校学生人数有两次连续下降,两次连续增长的变化过程;;年的2009大于③10002012~年,相邻两年的学校数量增长和在校学生人数增长最快的都是2011~④20092012 年.)其中,正确的结论是(实用文档杭州)让图中两个转盘分别自由转动一次,当转盘停止转动时,两个?分)(20149.(3的倍数的概率等于3指针分别落在某两个数所表示的区域,则两个数的和是2的倍数或()D..CB..A10.(3分)(2014?杭州)已知AD∥BC,AB⊥AD,点E,点F分别在射线AD,射线BC上.若点E与点B关于AC对称,点E与点F 关于BD对称,AC与BD相交于点G,则()A.2BC=5CF C.∠AEB+22°=∠DEF D.B.4cos ∠AGB= ∠1+tanADB= 二、认真填一填(本题共6个小题,每小题4分,共24分)11.(4分)(2014?杭州)2012年末统计,杭州市常住人口是880.2万人,用科学记数法表示为_________ 人.12.(4分)(2014?杭州)已知直线a∥b,若∠1=40°50′,则∠2= _________ .实用文档.满足方程组,则x+y= _________ 201413.(4分)(?杭州)设实数x、y 14.(4分)(2014?杭州)已知杭州市某天六个整点时的气温绘制成的统计图,则这六个整点时气温的中位数是_________ ℃.2三点,,C,3),0,2)B(40201415.(4分)(?杭州)设抛物线y=ax+bx+c(a≠)过A(,则抛物线的函数解析式1到抛物线的对称轴的距离等于x=2上,且点C其中点C在直线.为_________,垂足为BCAD⊥直线,C都在半径为r的圆上,直线201416.(4分)(?杭州)点A,B所对,则∠ABC.若BH=AC与AC,垂足为E,直线ADBE相交于点H,直线DBE⊥直线._________ (长度单位)的弧长等于分)解答应写出文字说明,证明过程或演算步骤,667小题,共三、全面答一答(本题共如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.2)个球,分别是>12a?6(分)(2014杭州)一个布袋中装有只有颜色不同的a(.17个黄球,从中任意摸出一个球,把摸出白球,黑球,红b6个白球,4个黑球,个红球和.请补全该统计图并求出的值.球的概率绘制成统计图(未绘制完整)18.(8分)(2014?杭州)在△ABC中,AB=AC,点E,F分别在AB,AC上,AE=AF,BF与CE相交于点P.求证:PB=PC,并直接写出图中其他相等的线段.2222)﹣yk,使得代数式(x﹣y)(4x,是否存在实数(19.8分)(2014?杭州)设y=kx4222的值;若不能,请说明理k(4x﹣y)能化简为x?若能,请求出所有满足条件的+3x 由.个单位长度的线段分成三条线段,其中一条线段成分)(2014?杭州)把一条12(20.10 为4个单位长度,另两条线段长都是单位长度的整数倍.)不同分段得到的三条线段能组成多少个不全等的三角形?用直尺和圆规作这些三角(1 ;形(用给定的单位长度,不写作法,保留作图痕迹))中所作三角形外接圆的周长.2)求出(1(xy=y=﹣x,,函数杭州)在直角坐标系中,设分)21.(10(2014?x轴为直线l中的两条相,lllP,圆l的图象分别是直线,lP(以点为圆心,1为半径)与直线,2211切.例如(,1)是其中一个圆的圆心坐标.P 的圆心坐标;P1()写出其余满足条件的圆()在图中标出所有圆心,并用线段依次连接各圆心,求所得几何图形的周长.2实用文档,动,AC=4BD=4BD相交于点O,分)(2014?杭州)菱形ABCD的对角线AC,(22.12对称,四边形关于BD于点F,四边形PFBG上从点B向点D运动,PF⊥AB点P在线段BD,未被这两个四边形盖住部分的面积为SAC对称.设菱形ABCDQEDH与四边形PEBG关于1.S,BP=x被盖住部分的面积为2;S,S(1)用含x的代数式分别表示21的值.,求x(2)若S=S212k+1x﹣)?杭州)复习课中,教师给出关于x的函数y=2kx﹣(4kx+12014(23.12分)(是实数).(k 教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选出以下四条:,①存在函数,其图象经过(10)点;②函数图象与坐标轴总有三个不同的交点;随x的增大而增大就是yx的增大而减小;随时,不是>③当x1y ④若函数有最大值,则最大值比为正数,若函数有最小值,则最小值比为负数.教师:请你分别判断四条结论的真假,并给出理由.最后简单写出解决问题时所用的数学方法.实用文档年浙江省杭州市中考数学试卷2014参考答案与试题解析30分)10个小题,每小题3分,共一、仔细选一选(本题有2)=(?杭州)3a?(﹣2a)1.(3分)(20143332..D.B.C A 6a 12a ﹣12a ﹣6a考单项式乘单项式;幂的乘方与积的乘方.点:分首先利用积的乘方将括号展开,进而利用单项式乘以单项式求出即可.析:322解4a=12a.(﹣2a)=3a×解:3a?答:故选:C.杭州)已知一个圆锥体的三视图如图所示,则这个圆锥的侧面积为2014?.(3分)(2 )2222 DC..B..A ππ12cm cm24πcm 15πcm 30 4,解:∵底面半径为3,高为解,5答:∴圆锥母线长为2.2=15πcm∴侧面积=2πrR÷.故选B,则°,BC=3中,已知∠ABCC=90°,∠A=40(3.3分)(2014?杭州)在直角三角形)AC=(3tan50°°D..3sin50 .3sin40°B.°C 3tan40A=50°°,A=90解解:∠B=90°﹣∠°﹣40答:,又∵tanB= tanB=3tan50AC=BC ∴?°.实用文档D.故选,则下列说法中,错误的是8分)4.(3(2014?杭州)已知边长为a的正方形的面积为)(2.A.a是无理数B 8=0的解a是方程x﹣D.是8的算术平方根C. a a满足不等式组2解的算术平方根8=0的解,是8a是无理数,a是方程x﹣,则a是解:a==2 答:都正确;3,故错误.<4,而解不等式组2<a,得:3<故选D.)杭州)下列命题中,正确的是(?5.(3分)(2014 .菱形的对角线不相等A.梯形的对角线相等B D 矩形的对角线不能相互垂直.平行四边形的对角线可以互相垂直C.解解:A选项错误;A、等腰梯形的对角线相等,所以、菱形的对角线不一定相等,若相等,则菱形变为正方形,所以BB选项错误;答:选项C、矩形的对角线不一定相互垂直,若互相垂直,则矩形变为正方形,所以C 错误;选项正、平行四边形的对角线可以互相垂直,此时平行四边形变为菱形,所以DD 确.故选D.,则≤满足y≤12满足2014(6.3分)(?杭州)函数的自变量x≤x≤时,函数值y )这个函数可以是(..A B .DC.y= y= y= y=解、把Ax=y=,故此选项正确;x=2代入y=代入y=可得可得y=1,把解:答:,故此选项错误;可得y=1y=y=可得y=4,把x=2代入x=B、把代入,故此选项错误;可得代入y=y=,把代入C、把x=y=可得y=x=2y=4可得,故此选项错误;y=x=2y=16y=x=D、把代入可得,把代入A故选:.实用文档()杭州)若((2014?+)?w=1,则w=7.(3分)a+2(a≠﹣2)B.﹣a+2(a≠2)C.a﹣2(≠﹣﹣.D ﹣a2(aaA.≠2)2)解解:根据题意得:W==答:=﹣(a+2)=﹣a﹣2.故选:D.8.(3分)(2014?杭州)已知2001年至2012年杭州市小学学校数量(单位:所)和在校学生人数(单位:人)的两幅统计图.由图得出如下四个结论:①学校数量2007年~2012年比2001~2006年更稳定;②在校学生人数有两次连续下降,两次连续增长的变化过程;③2009年的大于1000;④2009~2012年,相邻两年的学校数量增长和在校学生人数增长最快的都是2011~2012年.其中,正确的结论是()实用文档③④..①②D A.①②③④B.①②③C135年下降幅度较大,最200解:①根据条形统计图可知,学校数200所以下4440所以上200年201年学校数量都是答所,最60所,故结论正确年两年200年200年200②由折线统计图可知,在校学生人数200年两次连续增长的变化过程,故结年201年200年200连续下降200正确41所年的在校学44519人,学校数③由统计图可知2009,故结论正确;=1067>1000年的所以2009=年学校数量增长率为20102009~④∵≈﹣2.16%,年学校数量增长率为2011 2010~≈0.245%,年学校数量增长率为≈2012 2011~1.47%,2.16%,1.47%>0.245%>﹣2012年;年,相邻两年的学校数量增长最快的是2011~2009∴~2012,年在校学生人数增长率为≈1.96%∵2009~2010 2.510%年在校学生人数增长率为,≈20112010~2011~1.574%,≈2012年在校学生人数增长率为,>1.574%1.96%2.510%>2011~年,201020122009∴~年,相邻两年的在校学生人数增长最快的是故结论错误.综上所述,正确的结论是:①②③.实用文档故选B.杭州)让图中两个转盘分别自由转动一次,当转盘停止转动时,两个9.(3?(2014分)的倍数的概率等于32的倍数或指针分别落在某两个数所表示的区域,则两个数的和是)(.B ..A .D C解解:列表如下:答:42 3 1),(41(3,1))1 (1,1 (2,1))4,2,2)((,2)2,2)(32 (1),3)(4,(23)(3,3(3 1,3)4)(4,(3,4)),4 (14)(2,4 种,3的倍数情况有10种,其中两个数的和是所有等可能的情况有162的倍数或.则P==C 故选BC,射线分别在射线AD,点∥ADBC,AB⊥AD,点EF2014(10.3分)(?杭州)已知,则GBD对称,AC与BD相交于点关于对称,点与点上.若点EB关于ACE与点F ()2BC=5CF B.C.∠AEB+22°=∠.A DEF D.∠1+tanAGB=∠ADB=4cos实用文档B相交于解:如图,连C,EAB=A,设答由轴对称性得,则BE== 对称,F关于BD∵点E与点,∴DE=BF=BE=,∴AD=1+ ,,AB=AEBC,AB⊥AD ∵AD∥是正方形,∴四边形ABCE ,∴BC=AB=1A选项结论正确;﹣ADB=1+=1+1=,故1+tan∠1,CF=BF﹣BC=﹣1=2,∴2BC=2×),(﹣15CF=5 B选项结论错误;≠5CF,故∴2BC °,+22°=67∠AEB+22°=45°,==中,在Rt△ABDBD=∠DEF===,sin C选项结论错误;67∴∠DEF≠°,故222)=(由勾股定理得,OE=,)﹣(,∴OE= °,EBG+∠AGB=90∵∠°,∠BEF=90∠EGB+ BEF,∴∠AGB=∠,BEF=∠DEF又∵∠D选项结论错误.AGB=,故==∠∴4cos A.故选实用文档分)6个小题,每小题4分,共24二、认真填一填(本题共万人,用科学记数?杭州)2012年末统计,杭州市常住人口是880.2201411.(4分)(6人.×10 法表示为8.8026解10,解:880.2万=880 2000=8.802×答:6 10故答案为:8.802×.139°10′.2= a.12(4分)(2014?杭州)已知直线∥b,若∠1=40°50′,则∠′,3=∠501=40°解解:∠∵a∥b,答:∴∠2=180°﹣∠3=180°﹣40°50′=139°10′.故答案为:139°10′.13.(4分)(2014?杭州)设实数x、y满足方程组,则x+y= 8 .解答:解:,①+②得:x=6,即x=9;①﹣②得:﹣2y=2,即y=﹣1,实用文档∴方程组的解为,﹣则.x+y=91=88故答案为:杭州)已知杭州市某天六个整点时的气温绘制成的统计图,则这六个?分)(201414.(4 15.6 整点时气温的中位数是℃.,4.5,10.5,15.3,15.9,19.620.1,解解:把这些数从小到大排列为:答:最中间的两个数的平均数是(15.3+15.9)÷2=15.6(℃),则这六个整点时气温的中位数是15.6℃;.故答案为:15.62三点,C),4(+bx+c(a≠0)过A0,2),B(,3y=ax(.15(4分)2014?杭州)设抛物线,则抛物线的函数解析式到抛物线的对称轴的距离等于1C其中点在直线x=2上,且点C22 +x+2 .﹣﹣y=xx+2或y=x为上,且到抛物线的对称轴的距离等于C在直线x=21,解:∵点解,x=1或x=3答:∴抛物线的对称轴为直线2 1y=a当对称轴为直线x=1时,设抛物线解析式为(x﹣)+k,则,,解得22 x=﹣,x+2)﹣(所以,y=x1+2 y=ax=3当对称轴为直线时,设抛物线解析式为(,+k3﹣x)则,实用文档,解得22 x+2所以,xy=)﹣(x﹣3+,=+﹣22 y=﹣x+x+2.﹣综上所述,抛物线的函数解析式为y=xx+2或22 +x+2.故答案为:y=x﹣x+2或y=﹣x,垂足为BCAD杭州)点A,B,C都在半径为r的圆上,直线⊥直线.16(4分)(2014?所对H与BE相交于点.若BH=AC,则∠ABCACD,直线BE⊥直线,垂足为E,直线AD的弧长等于πr或r (长度单位).BC,BE⊥AC,⊥解解:如图1,∵AD DBH=90°,∴∠H+∠答:°,C+∠DBH=90∠∠H=C,∴∠∠ADC=90°,又∵∠BDH= BHD,∴△ACD∽△,∴=BH=∵AC,=∴,∴∠ABC=30°,°,30所对的弧长所对的圆心角为°×2=60∴∠ABCr.=∴∠ABC所对的弧长=π,∠如图2ABC所对的弧长所对的圆心角为300°,π=r所对的弧长∴∠ABC=.r故答案为:πr或.实用文档分)解答应写出文字说明,证明过程或演算步骤,小题,共三、全面答一答(本题共667如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.2)个球,分别是(a>126.(分)(2014?杭州)一个布袋中装有只有颜色不同的a17个黄球,从中任意摸出一个球,把摸出白球,黑球,红6个黑球,个红球和b个白球,4球的概率绘制成统计图(未绘制完整).请补全该统计图并求出的值.,解:球的总数:4÷0.2=20(个)解答:2+4+6+b=20,解得:b=8,,2摸出白球频率:÷20=0.1 ÷20=0.3,6摸出红球的概率:===0.4.实用文档18.(8分)(2014?杭州)在△ABC中,AB=AC,点E,F分别在AB,AC上,AE=AF,BF与CE相交于点P.求证:PB=PC,并直接写出图中其他相等的线段.ACE中,解:在△ABF和△解答:,,(ACESAS)∴△ABF≌△,∠ACE(全等三角形的对应角相等)∴∠ABF= ,∴BF=CE(全等三角形的对应边相等),AB=AC,AE=AF ∵,∴BE=BF 中,BEP和△CFP在△,,AAS)∴△BEP≌△CFP(,∴PB=PC ,∵BF=CE ,∴PE=PF .,BE=CF∴图中相等的线段为PE=PF2222)y),使得代数式(x﹣y(4x﹣杭州)设19.(8分)(2014?y=kx,是否存在实数k4222的值;若不能,请说明理x4x﹣y)能化简为?若能,请求出所有满足条件的k+3x(由.解解:能.2222222答:y)﹣()4x﹣y)+3x(4x(x﹣y22222 x)(﹣y+3x)﹣=(4xy222,y)﹣=(4x4222222 4=x﹣(,原式当y=kx=4xk)(﹣xk),实用文档22,),解得=1k=令(±4或±﹣k4.即当k=±或±时,原代数式可化简为x个单位长度的线段分成三条线段,其中一条线段成12分)(2014?杭州)把一条20.(10 为4个单位长度,另两条线段长都是单位长度的整数倍.)不同分段得到的三条线段能组成多少个不全等的三角形?用直尺和圆规作这些三角(1 形(用给定的单位长度,不写作法,保留作图痕迹);(2)求出(1)中所作三角形外接圆的周长.)由题意得:三角形的三边长分别为解个不全等的三角形,如图所示答即不同分段得到的三条线段能组)如图所示,可知三角形为直角三角形,此时外接圆的半当三边的单位长度分别2.;.三角形为等边三角形,此时外接圆的半径为当三边的单位长度分别为4,4,4,π×2.5=5π;4∴当三条线段分别为3,,5时其外接圆周长为:2π.2当三条线段分别为4,4,4时其外接圆周长为:π×=x,y=,函数x轴为直线ly=﹣x杭州)在直角坐标系中,设分)21.(10(2014?中的两条相l,llP,圆l的图象分别是直线,lP(以点为圆心,1为半径)与直线,2112P切.例如(,1)是其中一个圆的圆心坐标.的圆心坐标;P1()写出其余满足条件的圆(2)在图中标出所有圆心,并用线段依次连接各圆心,求所得几何图形的周长.实用文档解)①若与直都相切答当在第四象限时过P轴,垂足,连O,如所示设y=x的图象与x轴的夹角为α.当x=1时,y=.∴tanα=.∴α=60°.∴由切线长定理得:∠POH=(180°﹣60°)=60°.∵PH=1,∴tan∠POH===.OH=.∴∴点P.,﹣1)的坐标为(同理可得:当点P在第二象限时,点P的坐标为(﹣,1);当点P在第三象限时,点P的坐标为(﹣,﹣1);②若圆P与直线l和l都相切,如图2所示.1同理可得:当点P在第一象限时,点P的坐标为(,1);P的坐标为(﹣;,1)P当点在第二象限时,点当点P在第三象限时,点P)1;,﹣的坐标为(﹣当点P在第四象限时,点P的坐标为(,﹣1).③若圆P与直线l和l都相切,如图3所示.21同理可得:实用文档;,P的坐标为(0)当点轴的正半轴上时,点P在x的坐标为(﹣在x轴的负半轴上时,点P;,0)P当点;,2)P在y轴的正半轴上时,点P的坐标为(0当点2).y在轴的负半轴上时,点P的坐标为(0,﹣当点P 综上所述:其余满足条件的圆P的圆心坐标有:、(﹣,﹣1),1,﹣(1)、(﹣)、1)、(1,﹣),1、(﹣)、,1)(﹣、(,﹣.,﹣(2)0、0,)(﹣2、,0)(0,)、(4所示.2()用线段依次连接各圆心,所得几何图形,如图由图可知:该几何图形既轴对称图形,又是中心对称图形,由对称性可得:该几何图形的所有的边都相等.=8﹣=12∴该图形的周长×().实用文档,动,,AC=4BD=4相交于点的对角线201412分)(?杭州)菱形ABCDAC,BDO(22.对称,四边形PFBGFABPFDBBDP点在线段上从点向点运动,⊥于点,四边形关于BD实用文档,未S对称.设菱形ABCD被这两个四边形盖住部分的面积为QEDH与四边形PEBG关于AC1.S,BP=x被盖住部分的面积为2;,SS(1)用含x的代数式分别表示21的值.,求x(2)若S=S21解:(1)①当点P在BO上时,如图解1所示.答:∵四边形ABCD是菱形,AC=4,BD=4,∴AC⊥BD,BO=BD=2,AO=AC=2,?AC=8.且S=BD ABCD菱形=∴tan∠ABO=.∴∠ABO=60°.在Rt△BFP中,∵∠BFP=90°,∠FBP=60°,BP=x,∴sin∠FBP===sin60°=.∴FP=x.∴BF=.∵四边形PFBG关于BD对称,四边形QEDH与四边形PEBG关于AC对称,∴S=S=S=S.DHQ△DEQ△BGP△BFP△∴S=4S BFP1△实用文档?×x×=4.=.=8﹣∴S2 2所示.P在OD上时,如图②当点BF=,∵AB=4,﹣.AF=AB﹣BF=4∴AFM中,在Rt△﹣.FAM=30°,AF=4∵∠AFM=90°,∠.=tan30°=tan∴∠FAM=.4﹣)(∴FM=FM ?S=AF∴AFM△)4﹣((4﹣)?=2.﹣)=(4 对称,关于BD∵四边形PFBG 对称,关于AC四边形QEDH与四边形PEBG =S.=S∴S=S CGN△△△AFMCHN△AEM S=4S∴AFM2△2)(4﹣×=42 8).(x=﹣2=8S﹣8).∴=8﹣S﹣(x12综上所述:﹣;,上时,S=S=8当点P在BO2122=S8).SP当点在OD上时,=8,(x ﹣﹣)(x﹣821.≤<x2上时,)①当点(2P在BO0,+S,∵S=SS=82121=4S∴.1实用文档∴=4S.=1.x=﹣2,解得:x=221,2<02∵>2,﹣=S上时,S的情况不存在.∴当点P在BO21≤4.在OD上时,2<x②当点P=8,S=S,S+S∵2112.=4∴S22)=4.x∴S=(﹣822.﹣解得:x=8+2,x=821,2<4﹣,∵8+2>42<82.﹣∴x=828x,则=S综上所述:若S的值为﹣.21实用文档2k+1x﹣x的函数y=2kx﹣(4kx+1)201423.(12分)(?杭州)复习课中,教师给出关于是实数).(k 教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选出以下四条:)点;①存在函数,其图象经过(1,0 ②函数图象与坐标轴总有三个不同的交点;y随x的增大而减小;>③当x1时,不是y随x的增大而增大就是④若函数有最大值,则最大值比为正数,若函数有最小值,则最小值比为负数.教师:请你分别判断四条结论的真假,并给出理由.最后简单写出解决问题时所用的数学方法.﹣(4k+1)﹣k+1=0,2k1解解:①真,将(,0)代入可得:.解得:k=0 答:运用方程思想;时,只有两个交点.运用举反例的方法;②假,反例:k=0时,先减后增;运用举反例的方法;1x=k=1③假,如,﹣,当>④真,当k=0时,函数无最大、最小值;实用文档=﹣,k=≠0时,y最时,有最小值,最小值为负;>∴当k0 0时,有最大值,最大值为正.运用分类讨论思想.<当k。

杭州市2014年中考数学试题及答案(word解析版)

杭州市2014年中考数学试题及答案(word解析版)

浙江省杭州市2014年中考数学试卷一、仔细选一选(本题有10个小题,每小题3分,共30分)1.(3分)(2014•杭州)3a•(﹣2a)2=()A.﹣12a3B.﹣6a2C.12a3D.6a3考点:单项式乘单项式;幂的乘方与积的乘方.分析:首先利用积的乘方将括号展开,进而利用单项式乘以单项式求出即可.解答:解:3a•(﹣2a)2=3a×4a2=12a3.故选:C.点评:此题主要考查了单项式乘以单项式以及积的乘方运算等知识,熟练掌握单项式乘以单项式运算是解题关键.2.(3分)(2014•杭州)已知一个圆锥体的三视图如图所示,则这个圆锥的侧面积为()A.12πcm2B.15πcm2C.24πcm2D.30πcm2考点:圆锥的计算专题:计算题.分析:俯视图为圆的只有圆锥,圆柱,球,根据主视图和左视图都是三角形可得到此几何体为圆锥,那么侧面积=底面周长×母线长÷2.解答:解:∵底面半径为3,高为4,∴圆锥母线长为5,∴侧面积=2πrR÷2=15πcm2.故选B.点评:由该三视图中的数据确定圆锥的底面直径和高是解本题的关键;本题体现了数形结合的数学思想,注意圆锥的高,母线长,底面半径组成直角三角形.3.(3分)(2014•杭州)在直角三角形ABC中,已知∠C=90°,∠A=40°,BC=3,则AC=()A.3sin40°B.3sin50°C.3tan40°D.3tan50°考点:解直角三角形分析:利用直角三角形两锐角互余求得∠B的度数,然后根据正切函数的定义即可求解.解答:解:∠B=90°﹣∠A=90°﹣40°=50°,又∵tanB=,∴AC=BC•tanB=3tan50°.故选D.点评:本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.4.(3分)(2014•杭州)已知边长为a的正方形的面积为8,则下列说法中,错误的是()A.a是无理数B.a是方程x2﹣8=0的解C.a是8的算术平方根D.a满足不等式组考点:算术平方根;无理数;解一元二次方程-直接开平方法;解一元一次不等式组.分析:首先根据正方形的面积公式求得a的值,然后根据算术平方根以及方程的解的定义即可作出判断.解答:解:a==2,则a是a是无理数,a是方程x2﹣8=0的解,是8的算术平方根都正确;解不等式组,得:3<a<4,而2<3,故错误.故选D.点评:此题主要考查了算术平方根的定义,方程的解的定义,以及无理数估计大小的方法.5.(3分)(2014•杭州)下列命题中,正确的是()A.梯形的对角线相等B.菱形的对角线不相等C.矩形的对角线不能相互垂直D.平行四边形的对角线可以互相垂直考点:命题与定理.专题:常规题型.分析:根据等腰梯形的判定与性质对A进行判断;根据菱形的性质对B进行判断;根据矩形的性质对C进行判断;根据平行四边形的性质对D进行判断.解答:解:A、等腰梯形的对角线相等,所以A选项错误;B、菱形的对角线不一定相等,若相等,则菱形变为正方形,所以B选项错误;C、矩形的对角线不一定相互垂直,若互相垂直,则矩形变为正方形,所以C选项错误;D、平行四边形的对角线可以互相垂直,此时平行四边形变为菱形,所以D选项正确.故选D.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.(3分)(2014•杭州)函数的自变量x满足≤x≤2时,函数值y满足≤y≤1,则这个函数可以是()A.y=B.y=C.y=D.y=考点:反比例函数的性质.分析:把x=代入四个选项中的解析式可得y的值,再把x=2代入解析式可得y的值,然后可得答案.解答:解:A、把x=代入y=可得y=1,把x=2代入y=可得y=,故此选项正确;B、把x=代入y=可得y=4,把x=2代入y=可得y=1,故此选项错误;C、把x=代入y=可得y=,把x=2代入y=可得y=,故此选项错误;D、把x=代入y=可得y=16,把x=2代入y=可得y=4,故此选项错误;故选:A.点评:此题主要考查了反比例函数图象的性质,关键是正确理解题意,根据自变量的值求出对应的函数值.7.(3分)(2014•杭州)若(+)•w=1,则w=()A.a+2(a≠﹣2)B.﹣a+2(a≠2)C.a﹣2(a≠2)D.﹣a﹣2(a≠﹣2)考点:分式的混合运算专题:计算题.分析:原式变形后,计算即可确定出W.解答:解:根据题意得:W===﹣(a+2)=﹣a﹣2.故选:D.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.8.(3分)(2014•杭州)已知2001年至2012年杭州市小学学校数量(单位:所)和在校学生人数(单位:人)的两幅统计图.由图得出如下四个结论:①学校数量2007年~2012年比2001~2006年更稳定;②在校学生人数有两次连续下降,两次连续增长的变化过程;③2009年的大于1000;④2009~2012年,相邻两年的学校数量增长和在校学生人数增长最快的都是2011~2012年.其中,正确的结论是()A.①②③④B.①②③C.①②D.③④考点:折线统计图;条形统计图.分析:①根据条形统计图可知,学校数量2001~2006年下降幅度较大,最多1354所,最少605所,而2007年~2012年学校数量都是在400所以上,440所以下,由此判断即可;②由折线统计图可知,在校学生人数有2001年~2003年、2006年~2009年两次连续下降,2004年~2006年、2009年~2012年两次连续增长的变化过程,由此判断即可;③由统计图可知,2009年的在校学生445192人,学校数量417所,再进行计算即可判断;④分别计算2009~2010年,2010~2011年,2011~2012年相邻两年的学校数量的增长率和在校学生人数的增长率,再比较即可.解答:解:①根据条形统计图可知,学校数量2001~2006年下降幅度较大,最多1354所,最少605所,而2007年~2012年学校数量都是在400所以上,440所以下,故结论正确;②由折线统计图可知,在校学生人数有2001年~2003年、2006年~2009年两次连续下降,2004年~2006年、2009年~2012年两次连续增长的变化过程,故结论正确;③由统计图可知,2009年的在校学生445192人,学校数量417所,所以2009年的==1067>1000,故结论正确;④∵2009~2010年学校数量增长率为≈﹣2.16%,2010~2011年学校数量增长率为≈0.245%,2011~2012年学校数量增长率为≈1.47%,1.47%>0.245%>﹣2.16%,∴2009~2012年,相邻两年的学校数量增长最快的是2011~2012年;∵2009~2010年在校学生人数增长率为≈1.96%,2010~2011年在校学生人数增长率为≈2.510%,2011~2012年在校学生人数增长率为≈1.574%,2.510%>1.96%>1.574%,∴2009~2012年,相邻两年的在校学生人数增长最快的是2010~2011年,故结论错误.综上所述,正确的结论是:①②③.故选B.点评:本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,折线统计图表示的是事物的变化情况.9.(3分)(2014•杭州)让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于()A.B.C.D.考点:列表法与树状图法.专题:计算题.分析:列表得出所有等可能的情况数,找出两个数的和是2的倍数或3的倍数情况,即可求出所求概率.解答:解:列表如下:1 2 3 41 (1,1)(2,1)(3,1)(4,1)2 (1,2)(2,2)(3,2)(4,2)3 (1,3)(2,3)(3,3)(4,3)4 (1,4)(2,4)(3,4)(4,4)所有等可能的情况有16种,其中两个数的和是2的倍数或3的倍数情况有10种,则P==.故选C点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.10.(3分)(2014•杭州)已知AD∥BC,AB⊥AD,点E,点F分别在射线AD,射线BC 上.若点E与点B关于AC对称,点E与点F关于BD对称,AC与BD相交于点G,则()A.1+tan∠ADB=B.2BC=5CF C.∠AEB+22°=∠DEF D.4cos∠AGB=考点:轴对称的性质;解直角三角形.分析:连接CE,设EF与BD相交于点O,根据轴对称性可得AB=AE,并设为1,利用勾股定理列式求出BE,再根据翻折的性质可得DE=BF=BE,再求出BC=1,然后对各选项分析判断利用排除法求解.解答:解:如图,连接CE,设EF与BD相交于点O,由轴对称性得,AB=AE,设为1,则BE==,∵点E与点F关于BD对称,∴DE=BF=BE=,∴AD=1+,∵AD∥BC,AB⊥AD,AB=AE,∴四边形ABCE是正方形,∴BC=AB=1,1+tan∠ADB=1+=1+﹣1=,故A选项结论正确;CF=BF﹣BC=﹣1,∴2BC=2×1=2,5CF=5(﹣1),∴2BC≠5CF,故B选项结论错误;∠AEB+22°=45°+22°=67°,在Rt△ABD中,BD===,sin∠DEF===,∴∠DEF≠67°,故C选项结论错误;由勾股定理得,OE2=()2﹣()2=,∴OE=,∵∠EBG+∠AGB=90°,∠EGB+∠BEF=90°,∴∠AGB=∠BEF,又∵∠BEF=∠DEF,∴4cos∠AGB===,故D选项结论错误.故选A.点评:本题考查了轴对称的性质,解直角三角形,等腰直角三角形的判定与性质,正方形的判定与性质,熟记性质是解题的关键,设出边长为1可使求解过程更容易理解.二、认真填一填(本题共6个小题,每小题4分,共24分)11.(4分)(2014•杭州)2012年末统计,杭州市常住人口是880.2万人,用科学记数法表示为8.802×106人.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:880.2万=880 2000=8.802×106,故答案为:8.802×106.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(4分)(2014•杭州)已知直线a∥b,若∠1=40°50′,则∠2=139°10′.考点:平行线的性质;度分秒的换算.分析:根据对顶角相等可得∠3=∠1,再根据两直线平行,同旁内角互补列式计算即可得解.解答:解:∠3=∠1=40°50′,∵a∥b,∴∠2=180°﹣∠3=180°﹣40°50′=139°10′.故答案为:139°10′.点评:本题考查了平行线的性质,对顶角相等的性质,度分秒的换算,要注意度、分、秒是60进制.13.(4分)(2014•杭州)设实数x、y满足方程组,则x+y=8.考点:解二元一次方程组.专题:计算题.分析:方程组利用加减消元法求出解得到x与y的值,即可确定出x+y的值.解答:解:,①+②得:x=6,即x=9;①﹣②得:﹣2y=2,即y=﹣1,∴方程组的解为,则x+y=9﹣1=8.故答案为:8点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.14.(4分)(2014•杭州)已知杭州市某天六个整点时的气温绘制成的统计图,则这六个整点时气温的中位数是15.6℃.考点:折线统计图;中位数.分析:根据中位数的定义解答.将这组数据从小到大重新排列,求出最中间两个数的平均数即可.解答:解:把这些数从小到大排列为:4.5,10.5,15.3,15.9,19.6,20.1,最中间的两个数的平均数是(15.3+15.9)÷2=15.6(℃),则这六个整点时气温的中位数是15.6℃;故答案为:15.6.点评:此题考查了折线统计图和中位数,掌握中位数的定义是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.15.(4分)(2014•杭州)设抛物线y=ax2+bx+c(a≠0)过A(0,2),B(4,3),C三点,其中点C在直线x=2上,且点C到抛物线的对称轴的距离等于1,则抛物线的函数解析式为y=x2﹣x+2或y=﹣x2+x+2.考点:二次函数图象上点的坐标特征;待定系数法求二次函数解析式.分析:根据点C的位置分情况确定出对称轴解析式,然后设出抛物线解析式,再把点A、B 的坐标代入求解即可.解答:解:∵点C在直线x=2上,且到抛物线的对称轴的距离等于1,∴抛物线的对称轴为直线x=1或x=3,当对称轴为直线x=1时,设抛物线解析式为y=a(x﹣1)2+k,则,解得,所以,y=(x﹣1)2+=x2﹣x+2,当对称轴为直线x=3时,设抛物线解析式为y=a(x﹣3)2+k,则,解得,所以,y=﹣(x﹣3)2+=﹣x2+x+2,综上所述,抛物线的函数解析式为y=x2﹣x+2或y=﹣x2+x+2.故答案为:y=x2﹣x+2或y=﹣x2+x+2.点评:本题考查了二次函数图象上点的坐标特征,待定系数法求二次函数解析式,难点在于分情况确定出对称轴解析式并讨论求解.16.(4分)(2014•杭州)点A,B,C都在半径为r的圆上,直线AD⊥直线BC,垂足为D,直线BE⊥直线AC,垂足为E,直线AD与BE相交于点H.若BH=AC,则∠ABC所对的弧长等于πr或r(长度单位).考点:弧长的计算;圆周角定理;相似三角形的判定与性质;特殊角的三角函数值.专题:分类讨论.分析:作出图形,根据同角的余角相等求出∠H=∠C,再根据两角对应相等,两三角形相似求出△ACD和△BHD相似,根据相似三角形对应边成比例列式求出,再利用锐角三角函数求出∠ABC,然后根据在同圆或等圆中,同弧所对的圆心角等于圆周角的2倍求出∠ABC所对的弧长所对的圆心角,然后利用弧长公式列式计算即可得解.解答:解:如图1,∵AD⊥BC,BE⊥AC,∴∠H+∠DBH=90°,∠C+∠DBH=90°,∴∠H=∠C,又∵∠BDH=∠ADC=90°,∴△ACD∽△BHD,∴=,∵BH=AC,∴=,∴∠ABC=30°,∴∠ABC所对的弧长所对的圆心角为30°×2=60°,∴∠ABC所对的弧长==πr.如图2,∠ABC所对的弧长所对的圆心角为300°,∴∠ABC所对的弧长==πr.故答案为:πr或r.点评:本题考查了弧长的计算,圆周角定理,相似三角形的判定与性质,特殊角的三角函数值,判断出相似三角形是解题的关键,作出图形更形象直观.三、全面答一答(本题共7小题,共66分)解答应写出文字说明,证明过程或演算步骤,如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(6分)(2014•杭州)一个布袋中装有只有颜色不同的a(a>12)个球,分别是2个白球,4个黑球,6个红球和b个黄球,从中任意摸出一个球,把摸出白球,黑球,红球的概率绘制成统计图(未绘制完整).请补全该统计图并求出的值.考点:条形统计图;概率公式.分析:首先根据黑球数÷总数=摸出黑球的频率,再计算出摸出白球,黑球,红球的概率可得答案.解答:解:球的总数:4÷0.2=20(个),2+4+6+b=20,解得:b=8,摸出白球频率:2÷20=0.1,摸出红球的概率:6÷20=0.3,===0.4.点评:此题主要考查了概率和条形统计图,关键是掌握概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.18.(8分)(2014•杭州)在△ABC中,AB=AC,点E,F分别在AB,AC上,AE=AF,BF与CE相交于点P.求证:PB=PC,并直接写出图中其他相等的线段.考点:全等三角形的判定与性质;等腰三角形的性质.分析:可证明△ABF≌△ACE,则BF=CE,再证明△BEP≌△CFP,则PB=PC,从而可得出PE=PF,BE=CF.解答:解:在△ABF和△ACE中,,∴△ABF≌△ACE(SAS),∴∠ABF=∠ACE(全等三角形的对应角相等),∴BF=CE(全等三角形的对应边相等),∵AB=AC,AE=AF,∴BE=BF,在△BEP和△CFP中,,∴△BEP≌△CFP(AAS),∴PB=PC,∵BF=CE,∴PE=PF,∴图中相等的线段为PE=PF,BE=CF.点评:本题考查了全等三角形的判定和性质以及等腰三角形的性质,是基础题,难度不大.19.(8分)(2014•杭州)设y=kx,是否存在实数k,使得代数式(x2﹣y2)(4x2﹣y2)+3x2(4x2﹣y2)能化简为x4?若能,请求出所有满足条件的k的值;若不能,请说明理由.考点:因式分解的应用.专题:计算题.分析:先利用因式分解得到原式=(4x2﹣y2)(x2﹣y2+3x2)=(4x2﹣y2)2,再把当y=kx代入得到原式=(4x2﹣k2x2)2=(4﹣k2)x4,所以当4﹣k2=1满足条件,然后解关于k 的方程即可.解答:解:能.(x2﹣y2)(4x2﹣y2)+3x2(4x2﹣y2)=(4x2﹣y2)(x2﹣y2+3x2)=(4x2﹣y2)2,当y=kx,原式=(4x2﹣k2x2)2=(4﹣k2)2x4,令(4﹣k2)2=1,解得k=±或±,即当k=±或±时,原代数式可化简为x4.点评:本题考查了因式分解的运用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.20.(10分)(2014•杭州)把一条12个单位长度的线段分成三条线段,其中一条线段成为4个单位长度,另两条线段长都是单位长度的整数倍.(1)不同分段得到的三条线段能组成多少个不全等的三角形?用直尺和圆规作这些三角形(用给定的单位长度,不写作法,保留作图痕迹);(2)求出(1)中所作三角形外接圆的周长.考点:作图—应用与设计作图.分析:(1)利用三角形三边关系进而得出符合题意的图形即可;(2)利用三角形外接圆作法,首先作出任意两边的垂直平分线,即可得出圆心位置,进而得出其外接圆.解答:解:(1)由题意得:三角形的三边长分别为:4,4,4;3,4,5;即不同分段得到的三条线段能组成2个不全等的三角形,如图所示:(2)如图所示:当三边的单位长度分别为3,4,5,可知三角形为直角三角形,此时外接圆的半径为2.5;当三边的单位长度分别为4,4,4.三角形为等边三角形,此时外接圆的半径为,∴当三条线段分别为3,4,5时其外接圆周长为:2π×2.5=5π;当三条线段分别为4,4,4时其外接圆周长为:2π×=π.点评:此题主要考查了三角形外接圆的作法和三角形三边关系等知识,得出符合题意的三角形是解题关键.21.(10分)(2014•杭州)在直角坐标系中,设x轴为直线l,函数y=﹣x,y=x的图象分别是直线l1,l2,圆P(以点P为圆心,1为半径)与直线l,l1,l2中的两条相切.例如(,1)是其中一个圆P的圆心坐标.(1)写出其余满足条件的圆P的圆心坐标;(2)在图中标出所有圆心,并用线段依次连接各圆心,求所得几何图形的周长.考点:圆的综合题;切线长定理;轴对称图形;特殊角的三角函数值.专题:计算题;作图题.分析:(1)对圆P与直线l和l2都相切、圆P与直线l和l1都相切、圆P与直线l1和l2都相切三种情况分别考虑,利用切线长定理和特殊角的三角函数值即可求出点P的坐标.(2)由图可知:该几何图形既轴对称图形,又是中心对称图形,它的所有的边都相等.只需求出其中的一条边就可以求出它的周长.解答:解:(1)①若圆P与直线l和l2都相切,当点P在第四象限时,过点P作PH⊥x轴,垂足为H,连接OP,如图1所示.设y=x的图象与x轴的夹角为α.当x=1时,y=.∴tanα=.∴α=60°.∴由切线长定理得:∠POH=(180°﹣60°)=60°.∵PH=1,∴tan∠POH===.∴OH=.∴点P的坐标为(,﹣1).同理可得:当点P在第二象限时,点P的坐标为(﹣,1);当点P在第三象限时,点P的坐标为(﹣,﹣1);②若圆P与直线l和l1都相切,如图2所示.同理可得:当点P在第一象限时,点P的坐标为(,1);当点P在第二象限时,点P的坐标为(﹣,1);当点P在第三象限时,点P的坐标为(﹣,﹣1);当点P在第四象限时,点P的坐标为(,﹣1).③若圆P与直线l1和l2都相切,如图3所示.同理可得:当点P在x轴的正半轴上时,点P的坐标为(,0);当点P在x轴的负半轴上时,点P的坐标为(﹣,0);当点P在y轴的正半轴上时,点P的坐标为(0,2);当点P在y轴的负半轴上时,点P的坐标为(0,﹣2).综上所述:其余满足条件的圆P的圆心坐标有:(,﹣1)、(﹣,1)、(﹣,﹣1)、(,1)、(﹣,1)、(﹣,﹣1)、(,﹣1)、(,0)、(﹣,0)、(0,2)、(0,﹣2).(2)用线段依次连接各圆心,所得几何图形,如图4所示.由图可知:该几何图形既轴对称图形,又是中心对称图形,由对称性可得:该几何图形的所有的边都相等.∴该图形的周长=12×(﹣)=8.点评:本题考查了切线长定理、特殊角的三角函数值、对称性等知识,考查了作图的能力,培养了学生的审美意识,是一道好题.22.(12分)(2014•杭州)菱形ABCD的对角线AC,BD相交于点O,AC=4,BD=4,动点P在线段BD上从点B向点D运动,PF⊥AB于点F,四边形PFBG关于BD对称,四边形QEDH与四边形PEBG关于AC对称.设菱形ABCD被这两个四边形盖住部分的面积为S1,未被盖住部分的面积为S2,BP=x.(1)用含x的代数式分别表示S1,S2;(2)若S1=S2,求x的值.考点:四边形综合题;菱形的性质;轴对称的性质;轴对称图形;特殊角的三角函数值.专题:综合题;动点型;分类讨论.分析:(1)根据对称性确定E、F、G、H都在菱形的边上,由于点P在BO上与点P在OD 上求S1和S2的方法不同,因此需分情况讨论.(2)由S1=S2和S1+S2=8可以求出S1=S2=4.然后在两种情况下分别建立关于x的方程,解方程,结合不同情况下x的范围确定x的值.解答:解:(1)①当点P在BO上时,如图1所示.∵四边形ABCD是菱形,AC=4,BD=4,∴AC⊥BD,BO=BD=2,AO=AC=2,且S菱形ABCD=BD•AC=8.∴tan∠ABO==.∴∠ABO=60°.在Rt△BFP中,∵∠BFP=90°,∠FBP=60°,BP=x,∴sin∠FBP===sin60°=.∴FP=x.∴BF=.∵四边形PFBG关于BD对称,四边形QEDH与四边形PEBG关于AC对称,∴S△BFP=S△BGP=S△DEQ=S△DHQ.∴S1=4S△BFP=4××x•=.∴S2=8﹣.②当点P在OD上时,如图2所示.∵AB=4,BF=,∴AF=AB﹣BF=4﹣.在Rt△AFM中,∵∠AFM=90°,∠FAM=30°,AF=4﹣.∴tan∠FAM==tan30°=.∴FM=(4﹣).∴S△AFM=AF•FM=(4﹣)•(4﹣)=(4﹣)2.∵四边形PFBG关于BD对称,四边形QEDH与四边形PEBG关于AC对称,∴S△AFM=S△AEM=S△CHN=S△CGN.∴S2=4S△AFM=4×(4﹣)2=(x﹣8)2.∴S1=8﹣S2=8﹣(x﹣8)2.综上所述:当点P在BO上时,S1=,S2=8﹣;当点P在OD上时,S1=8﹣(x﹣8)2,S2=(x﹣8)2.(2)①当点P在BO上时,0<x≤2.∵S1=S2,S1+S2=8,∴S1=4.∴S1==4.解得:x1=2,x2=﹣2.∵2>2,﹣2<0,∴当点P在BO上时,S1=S2的情况不存在.②当点P在OD上时,2<x≤4.∵S1=S2,S1+S2=8,∴S2=4.∴S2=(x﹣8)2=4.解得:x1=8+2,x2=8﹣2.∵8+2>4,2<8﹣2<4,∴x=8﹣2.综上所述:若S1=S2,则x的值为8﹣2.点评:本题考查了以菱形为背景的轴对称及轴对称图形的相关知识,考查了菱形的性质、特殊角的三角函数值等知识,还考查了分类讨论的思想.23.(12分)(2014•杭州)复习课中,教师给出关于x的函数y=2kx2﹣(4kx+1)x﹣k+1(k 是实数).教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选出以下四条:①存在函数,其图象经过(1,0)点;②函数图象与坐标轴总有三个不同的交点;③当x>1时,不是y随x的增大而增大就是y随x的增大而减小;④若函数有最大值,则最大值比为正数,若函数有最小值,则最小值比为负数.教师:请你分别判断四条结论的真假,并给出理由.最后简单写出解决问题时所用的数学方法.考点:二次函数综合题.分析:①将(1,0)点代入函数,解出k的值即可作出判断;②首先考虑,函数为一次函数的情况,从而可判断为假;③根据二次函数的增减性,即可作出判断;④当k=0时,函数为一次函数,无最大之和最小值,当k≠0时,函数为抛物线,求出顶点的纵坐标表达式,即可作出判断.解答:解:①真,将(1,0)代入可得:2k﹣(4k+1)﹣k+1=0,解得:k=0.运用方程思想;②假,反例:k=0时,只有两个交点.运用举反例的方法;③假,如k=1,﹣=,当x>1时,先减后增;运用举反例的方法;④真,当k=0时,函数无最大、最小值;k≠0时,y最==﹣,∴当k>0时,有最小值,最小值为负;当k<0时,有最大值,最大值为正.运用分类讨论思想.点评:本题考查了二次函数的综合,立意新颖,结合考察了数学解题过程中经常用到的几种解题方法,同学们注意思考、理解,难度一般.。

浙江省杭州市萧山区坎山镇中学九年级数学下学期期初测

浙江省杭州市萧山区坎山镇中学九年级数学下学期期初测

浙江省杭州市萧山区坎山镇中学2014届九年级数学下学期期初测试试题4、抛物线241y x x =++可以通过平移得到2y x =,则下列平移过程正确的是( ▲ )A 、先向左平移2个单位,再向上平移3个单位;B 、先向左平移2个单位,再向下平移3个单位;C 、先向右平移2个单位,再向下平移3个单位;D 、先向右平移2个单位,再向上平移3个单位.5、“已知二次函数2y ax bx c =++的图像如图所示,试判断a b c ++与0的大小.”一同学是这样回答的:“由图像可知:当1x =时0y <,所以0a b c ++<.”他这种说明问题的方式体现的数学思想方法叫做( ▲ )A 、换元法B 、配方法C 、数形结合法D 、分类讨论法6、如图,半圆O 是一个量角器,AOB ∆为一纸片,AB 交半圆于点D ,OB 交半圆于点C ,若点C 、D 、A 在量角器上对应读数分别为︒︒︒160,70,45, B ∠的度数为( ▲ )A 、20°B 、30°C 、45°D 、60° 7、二次函数2y ax bx c =++的图像如图所示,反比列函数ay x=与正比列函数y bx =在同一 坐标系内的大致图像是( ▲ )8、如图所示,长为8cm ,宽为6cm 的矩形中,截去一个矩形(图中阴影部分),如果剩下矩形与原矩形相似,那么剩下矩形的面积是 ( ▲ )A 、28cm 2B 、27cm 2C 、21cm 2D 、20cmDC BAO第5题 第6题O xy O y x A O y x B O y x DO y x C9、如图,已知矩形OABC 的面积为25,它的对角线OB 与双曲线xky =(k >0)相交于点G ,且 OG :GB=3:2,则k 的值为( ▲ ) A 、9 B 、29 C 、4185 D 、15 10、如图,在正方形ABCD 中,对角线AC ,BD 交于点O ,折叠正方形ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合,展平后,折痕DE 分别交AB ,AC 于点E ,G ,连接GF ,下列结论:①AE=AG ;②tan ∠AGE=2;③EFOGDOG S S 四边形=∆;④四边形ABFG 为等腰梯形;⑤BE=2OG ,则其中正确的结论个数为( ▲ )A 、2个B 、3个C 、4个D 、5个二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案。

浙江省杭州市萧山区虎山路初中2014届九年级下学期2月月考数学试卷

浙江省杭州市萧山区虎山路初中2014届九年级下学期2月月考数学试卷

浙江省杭州市萧山区虎山路初中2014届九年级下学期2月月考数学试卷考生须知:1.本卷满分120分;考试时间100分钟.一、选择题(本题有10小题,每题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的。

注意可以用多种不同的方法来选取正确答案。

1. 2014年国家财政支出将大幅向民生倾斜,民生领域里流量最大的开销是教育,预算支出达到23 000多亿元.将23 000用科学记数法表示应为( )A .2.3×104B .0.23×106C .2.3×105D .23×1042. 下列选项中,从左边到右边的变形正确的是( )A .B .C .D .3.在⊙O 中,半径为6,圆心O 在坐标原点上,点P 的坐标为(4,5),则点P 与⊙O 的位置关系( )A .点P 在⊙O 外B .点P 在⊙O 上C .点P 在⊙O 内D .不能确定4. 下列说法:①要了解一批灯泡的使用寿命,应采用普查的方式; ②若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖; ③甲、乙两组数据的样本容量与平均数分别相同,若方差,则甲组数据比乙组数据稳定; ④“掷一枚硬币,正面朝上”是必然事件.正确说法的序号是( )A .4个B .3个C . 2个D .1个5. 如右图,以∠AOB 的顶点O 为圆心,适当长为半径画弧,交OA 于点C , 交OB 于点D .再分别以点C 、D 为圆心,大于12CD 的长为半径画弧, 两 弧在∠AOB 内部交于点E ,过点E 作射线OE ,连接CD.则下列说法 不正确的是( )A .射线OE 是∠AOB 的平分线 B .△COD 是等腰三角形C .C 、D 两点关于OE 所在直线对称 D .O 、E 两点关于CD 所在直线对称 6. 一个圆锥的侧面展开图形是半径为8cm ,圆心角为120°的扇形,则此圆锥的底面半径为( )A .38cmB .316cm C .3cm D .34cm 7. 如图,点D 在△ABC 的边AC 上,要判断△ADB 与△ABC 相似,添加一个条件,不正确的是( )A .∠ABD=∠C B.∠ADB=∠ABC C.AB CB BD CD = D .AD ABAB AC=8. 四个全等的直角三角形围成一个大正方形,中间空出的部分是一个小正方形,这样就组成了一个“赵爽弦图”(如图).如果小正方形面积为4,大正方形面积为74,直角三角形中较小的锐角为θ,那么tan θ的值是( )A .27B .57 C.37D9. 如图1,在直角梯形ABCD 中,动点P 从点B 出发,沿BC →CD 运动至点D 停止.设点P运动的路程为x ,△APB 的面积为y ,如果y 关于x 的函数图象如图2所示,则△BCD 的面积是( )A .16B .15C .11D .510、一块边缘呈抛物线型的铁片如图放置,测得AB=20cm ,抛物线的顶点到AB 边的距离为25cm 。

浙江省杭州市萧山区坎山镇中学2014届九年级下学期期初测试英语试题

浙江省杭州市萧山区坎山镇中学2014届九年级下学期期初测试英语试题

3. What is the girl going to buy for her mom?A. A catB. A bagC. A hat4. How much did the girl pay for the shoes?A. 200 dollarsB. 300 dollarsC. 150 dollars5. Why was Fred late?A. He got up lateB. He was scared by an accidentC. He had an accident二、听较长对话,回答问题(共6小题,计12分)听下面一段对话,回答第6-8三个小题。

现在,你有15秒钟的时间阅读这三小题。

对话读两遍。

6. Where’ll the meeting be held?A. In the classroomB. In the reading roomC. In the lab7. When will the meeting be held?A. At 2:00 pm tomorrowB. At 3:00 pm tomorrowC. At 8:00 pm tomorrow8. What is the meeting about?A. HealthB. EducationC. Western cultures听下面一段较长对话,回答第9-11三个小题。

现在你有15秒钟的时间阅读这三题。

对话读两遍。

9. What did Jenny like to collect?A. BottlesB. CoinsC. Stamps10. Why are some coins used less?A. Because their costs are highB. Because they are smallC. Because they are too heavy11. When will Canada stop using some kinds of coins?A. On January 4B. On February 14C. On February 4三、听独白,回答问题(共4小题,计8分)听下面一段独白,回答第12至第15四个小题。

浙江省杭州市萧山区党湾镇初级中学2014届九年级12月质量检测数学(附答案)$440742

浙江省杭州市萧山区党湾镇初级中学2014届九年级12月质量检测数学(附答案)$440742

党湾镇初级中学2014届九年级12月质量检测数学试题一、 仔细选一选(本题有10个小题,每小题3分,共30分)1、.△ABC ∽△A ′B ′C ′,如果∠A =55°,∠B =100°,则∠C ′的度数等于( )A.55°B.100°C.25°D.30°2、已知反比例函数的图象经过点(a ,b ),则它的图象也一定经过( ) A 、(-a ,-b ) B 、(a ,-b ) C 、(-a ,b ) D 、(0,0)3、一条弦把半径为8的圆分成1∶2的两条弧,则弦长为( ) A 、34 B 、38 C 、8 D 、164、若直线y=ax +b (a ≠0)在第二、四象限都无图像,则抛物线y=ax 2+bx+c ( ) A.开口向上,对称轴是y 轴 B.开口向下,对称轴平行于y 轴C.开口向上,对称轴平行于y 轴D.开口向下,对称轴是y 轴 5、下列图形中一定相似的是( )A.有一个角相等的两个平行四边形B.有一个角相等的两个等腰梯形C.有一个角相等的两个菱形D.有一组邻边对应成比例的两平行四边形 6、抛掷一个均匀的正方体骰子两次,设第一次朝上的数字为x 、第二次朝上的数字为y ,并以此确定点P (x ,y ),那么点P 落在抛物线y=﹣x 2+3x 上的概率为( ) .B .C .0.5 D . 0.257、下列图形中,阴影部分的面积最大的是( ) A .B .C .D .8、如图,点A ,B ,C ,D 为⊙O 上的四个点,AC 平分∠BAD ,AC 交BD 于点E ,CE=2,CD=3,则AE 的长为( )A .2 B .2.5 C .3 D .3.59、若二次函数y=ax+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M (x0,y0)在x轴下方,则下列判断中正确的是().A.a>0 B.b2-4ac≥0 C.a(x0-x1)( x0-x2)<0 D.x1<x0<x210、如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD 相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤当△PMN∽△AMP时,点P是AB的中点.其中正确的结论有()A.2个B.3个C.4个D.5个二、认真填一填(本题有6个小题,每小题4分,共24分)11、若反比例函数y=的图象过点(﹣2,1),则一次函数y=kx﹣k的图象不过第象限。

浙江省杭州市萧山区坎山镇中学2013-2014学年七年级下学期期初测试数学试题人教版

浙江省杭州市萧山区坎山镇中学2013-2014学年七年级下学期期初测试数学试题人教版

试题卷一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)1.今年大年初一,杭州的最高温度达到了25℃,创历史同期最高,而当日哈尔滨的最高温度为零下15℃,则哈尔滨比杭州的气温要低A .10℃B .40℃C .-10℃D . -40℃ 2.一个正方形的面积是9平方单位,则这个正方形的边长是( )长度单位A .3B 3.如图,数轴上的点P 表示的数是-1,将点P 向右移动3个单位长度后,再向左移动2个单位长度得到点P′,则点P′表示的数是( )A .3B .2C .1D .0 4.下列说法中不正确的是 ( )A .-1的倒数是-1B .-1的立方根是-1C .-π<-3.14D .用四舍五入法将16.47取近似值精确到个位是17 5.实数错误!未找到引用源。

在数轴上的对应点如图所示,化简错误!未找到引用源。

的值是( ) A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

6.若| m -1 |+| n -3 |=0,则(m -n )3的值为( ) A .6 B .-6 C .8 D .-87.某种商品的进价为800元,出售标价为1200元,后来由于该商品积压,商店准备打折销售,如果要使得利润率为5%,那么销售时应该打( )A .6折B .7折C .8折D .9折 8.如果点C 在线段AB 上,下列表达式:①AC =21AB; ②AB =2BC; ③AC =BC; ④AC +BC =AB 中, 能表示点C 是线段AB 中点的有( )A .1个B .2个C .3个D .4个 9.对于任意正整数n ,当1-=x 时,代数式n n n x x x2221243-+++的值为A . 8-B . 6-C . 6D .2-10. 电子跳蚤游戏盘(如图)为△ABC ,AB =8,AC =9,BC =10,如果电子跳蚤开始时在BC 边的P 0点,BP 0=4,第一步跳蚤从P 0跳到AC 边上P 1点,且CP 1=CP 0;第二步跳蚤从P 1跳到AB 边上P 2 点,且AP 1=AP 2 ;第三步跳蚤 从P 2跳回到BC 边上P 3点,且BP 3=BP 2;……跳蚤按上 述规则跳下去,第n 次落点为P n ,则P 4与P 2014 之间的距离为A .0B .1C .4D .5二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)11. 计算:36. 35°= ▲ (用度分秒表示);45°19′12″= ▲ 度. 12.一个两位数的个位数为2-a ,十位数比个位数的两倍多3.则这个两位数为 ▲ (用a 的代数式表示).13.如图,,,C D E 是线段AB 上的三个点,下面关于线段CE 的表示: ①CE CD DE =+; ②CE BC EB =-;③CE CD BD AC =+-; ④CE AE BC AB =+-。

2014年杭州市中学考试数学

2014年杭州市中学考试数学

2014年省市中考数学试卷一、仔细选一选(本题有10个小题,每小题3分,共30分)1.3a•(﹣2a)2=()A.﹣12a3B.﹣6a2C.12a3D.6a32.已知一个圆锥体的三视图如图所示,则这个圆锥的侧面积为()A.12πcm2B.15πcm2C.24πcm2D.30πcm23.在直角三角形ABC中,已知∠C=90°,∠A=40°,BC=3,则AC=()A.3sin40°B.3sin50°C.3tan40°D.3tan50°4.(3分)(2014•)已知边长为a的正方形的面积为8,则下列说法中,错误的是()A.a是无理数B.a是方程x2﹣8=0的解C.a是8的算术平方根D.a满足不等式组5.(3分)(2014•)下列命题中,正确的是()A.梯形的对角线相等B.菱形的对角线不相等C.矩形的对角线不能相互垂直D.平行四边形的对角线可以互相垂直6.(3分)(2014•)函数的自变量x满足≤x≤2时,函数值y满足≤y≤1,则这个函数可以是()A.y=B.y=C.y=D.y=7.(3分)(2014•)若(+)•w=1,则w=()A.a+2(a≠﹣2)B.﹣a+2(a≠2)C.a﹣2(a≠2)D.﹣a﹣2(a≠﹣2)8.(3分)(2014•)已知2001年至2012年市小学学校数量(单位:所)和在校学生人数(单位:人)的两幅统计图.由图得出如下四个结论:①学校数量2007年~2012年比2001~2006年更稳定;②在校学生人数有两次连续下降,两次连续增长的变化过程;③2009年的大于1000;④2009~2012年,相邻两年的学校数量增长和在校学生人数增长最快的都是2011~2012年.其中,正确的结论是()A.①②③④B.①②③C.①②D.③④9.(3分)(2014•)让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于()A.B.C.D.10.(3分)(2014•)已知AD∥BC,AB⊥AD,点E,点F分别在射线AD,射线BC上.若点E与点B关于AC对称,点E与点F关于BD对称,AC与BD相交于点G,则()A.1+tan∠ADB=B.2BC=5CF C.∠AEB+22°=∠DEF D.4cos∠AGB=二、认真填一填(本题共6个小题,每小题4分,共24分)11.(4分)(2014•)2012年末统计,市常住人口是880.2万人,用科学记数法表示为_________ 人.12.(4分)(2014•)已知直线a∥b,若∠1=40°50′,则∠2= _________ .13.(4分)(2014•)设实数x、y满足方程组,则x+y= _________ .14.(4分)(2014•)已知市某天六个整点时的气温绘制成的统计图,则这六个整点时气温的中位数是_________ ℃.15.(4分)(2014•)设抛物线y=ax2+bx+c(a≠0)过A(0,2),B(4,3),C三点,其中点C在直线x=2上,且点C到抛物线的对称轴的距离等于1,则抛物线的函数解析式为_________ .16.(4分)(2014•)点A,B,C都在半径为r的圆上,直线AD⊥直线BC,垂足为D,直线BE⊥直线AC,垂足为E,直线AD与BE相交于点H.若BH=AC,则∠ABC所对的弧长等于_________ (长度单位).三、全面答一答(本题共7小题,共66分)解答应写出文字说明,证明过程或演算步骤,如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(6分)(2014•)一个布袋中装有只有颜色不同的a(a>12)个球,分别是2个白球,4个黑球,6个红球和b个黄球,从中任意摸出一个球,把摸出白球,黑球,红球的概率绘制成统计图(未绘制完整).请补全该统计图并求出的值.18.(8分)(2014•)在△ABC中,AB=AC,点E,F分别在AB,AC上,AE=AF,BF与CE相交于点P.求证:PB=PC,并直接写出图中其他相等的线段.19.(8分)(2014•)设y=kx,是否存在实数k,使得代数式(x2﹣y2)(4x2﹣y2)+3x2(4x2﹣y2)能化简为x4?若能,请求出所有满足条件的k的值;若不能,请说明理由.20.(10分)(2014•)把一条12个单位长度的线段分成三条线段,其中一条线段成为4个单位长度,另两条线段长都是单位长度的整数倍.(1)不同分段得到的三条线段能组成多少个不全等的三角形?用直尺和圆规作这些三角形(用给定的单位长度,不写作法,保留作图痕迹);(2)求出(1)中所作三角形外接圆的周长.21.(10分)(2014•)在直角坐标系中,设x轴为直线l,函数y=﹣x,y=x的图象分别是直线l1,l2,圆P(以点P为圆心,1为半径)与直线l,l1,l2中的两条相切.例如(,1)是其中一个圆P的圆心坐标.(1)写出其余满足条件的圆P的圆心坐标;(2)在图中标出所有圆心,并用线段依次连接各圆心,求所得几何图形的周长.22.(12分)(2014•)菱形ABCD的对角线AC,BD相交于点O,AC=4,BD=4,动点P 在线段BD上从点B向点D运动,PF⊥AB于点F,四边形PFBG关于BD对称,四边形QEDH与四边形PEBG关于AC对称.设菱形ABCD被这两个四边形盖住部分的面积为S1,未被盖住部分的面积为S2,BP=x.(1)用含x的代数式分别表示S1,S2;(2)若S1=S2,求x的值.23.(12分)(2014•)复习课中,教师给出关于x的函数y=2kx2﹣(4kx+1)x﹣k+1(k 是实数).教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选出以下四条:①存在函数,其图象经过(1,0)点;②函数图象与坐标轴总有三个不同的交点;③当x>1时,不是y随x的增大而增大就是y随x的增大而减小;④若函数有最大值,则最大值比为正数,若函数有最小值,则最小值比为负数.教师:请你分别判断四条结论的真假,并给出理由.最后简单写出解决问题时所用的数学方法.2014年省市中考数学试卷参考答案与试题解析一、仔细选一选(本题有10个小题,每小题3分,共30分)1.(3分)(2014•)3a•(﹣2a)2=()A.﹣12a3B.﹣6a2C.12a3D.6a3考点:单项式乘单项式;幂的乘方与积的乘方.分析:首先利用积的乘方将括号展开,进而利用单项式乘以单项式求出即可.解答:解:3a•(﹣2a)2=3a×4a2=12a3.故选:C.2.(3分)(2014•)已知一个圆锥体的三视图如图所示,则这个圆锥的侧面积为()A.12πcm2B.15πcm2C.24πcm2D.30πcm2解答:解:∵底面半径为3,高为4,∴圆锥母线长为5,∴侧面积=2πrR÷2=15πcm2.故选B.3.(3分)(2014•)在直角三角形ABC中,已知∠C=90°,∠A=40°,BC=3,则AC=()A.3sin40°B.3sin50°C.3tan40°D.3tan50°解答:解:∠B=90°﹣∠A=90°﹣40°=50°,又∵tanB=,∴AC=BC•tanB=3tan50°.故选D.4.(3分)(2014•)已知边长为a的正方形的面积为8,则下列说法中,错误的是()A.a是无理数B.a是方程x2﹣8=0的解C.a是8的算术平方根D.a满足不等式组解答:解:a==2,则a是a是无理数,a是方程x2﹣8=0的解,是8的算术平方根都正确;解不等式组,得:3<a<4,而2<3,故错误.故选D.5.(3分)(2014•)下列命题中,正确的是()A.梯形的对角线相等B.菱形的对角线不相等C.矩形的对角线不能相互垂直D.平行四边形的对角线可以互相垂直解答:解:A、等腰梯形的对角线相等,所以A选项错误;B、菱形的对角线不一定相等,若相等,则菱形变为正方形,所以B选项错误;C、矩形的对角线不一定相互垂直,若互相垂直,则矩形变为正方形,所以C选项错误;D、平行四边形的对角线可以互相垂直,此时平行四边形变为菱形,所以D选项正确.故选D.6.(3分)(2014•)函数的自变量x满足≤x≤2时,函数值y满足≤y≤1,则这个函数可以是()A.y=B.y=C.y=D.y=解答:解:A、把x=代入y=可得y=1,把x=2代入y=可得y=,故此选项正确;B、把x=代入y=可得y=4,把x=2代入y=可得y=1,故此选项错误;C、把x=代入y=可得y=,把x=2代入y=可得y=,故此选项错误;D、把x=代入y=可得y=16,把x=2代入y=可得y=4,故此选项错误;故选:A.7.(3分)(2014•)若(+)•w=1,则w=()A.a+2(a≠﹣2)B.﹣a+2(a≠2)C.a﹣2(a≠2)D.﹣a﹣2(a≠﹣2)解解:根据题意得:W==答:=﹣(a+2)=﹣a﹣2.故选:D.8.(3分)(2014•)已知2001年至2012年市小学学校数量(单位:所)和在校学生人数(单位:人)的两幅统计图.由图得出如下四个结论:①学校数量2007年~2012年比2001~2006年更稳定;②在校学生人数有两次连续下降,两次连续增长的变化过程;③2009年的大于1000;④2009~2012年,相邻两年的学校数量增长和在校学生人数增长最快的都是2011~2012年.其中,正确的结论是()A.①②③④B.①②③C.①②D.③④解答:解:①根据条形统计图可知,学校数量2001~2006年下降幅度较大,最多1354所,最少605所,而2007年~2012年学校数量都是在400所以上,440所以下,故结论正确;②由折线统计图可知,在校学生人数有2001年~2003年、2006年~2009年两次连续下降,2004年~2006年、2009年~2012年两次连续增长的变化过程,故结论正确;③由统计图可知,2009年的在校学生445192人,学校数量417所,所以2009年的==1067>1000,故结论正确;④∵2009~2010年学校数量增长率为≈﹣2.16%,2010~2011年学校数量增长率为≈0.245%,2011~2012年学校数量增长率为≈1.47%,1.47%>0.245%>﹣2.16%,∴2009~2012年,相邻两年的学校数量增长最快的是2011~2012年;∵2009~2010年在校学生人数增长率为≈1.96%,2010~2011年在校学生人数增长率为≈2.510%,2011~2012年在校学生人数增长率为≈1.574%,2.510%>1.96%>1.574%,∴2009~2012年,相邻两年的在校学生人数增长最快的是2010~2011年,故结论错误.综上所述,正确的结论是:①②③.故选B.9.(3分)(2014•)让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于()A.B.C.D.解答:解:列表如下:1 2 3 41 (1,1)(2,1)(3,1)(4,1)2 (1,2)(2,2)(3,2)(4,2)3 (1,3)(2,3)(3,3)(4,3)4 (1,4)(2,4)(3,4)(4,4)所有等可能的情况有16种,其中两个数的和是2的倍数或3的倍数情况有10种,则P==.故选C10.(3分)(2014•)已知AD∥BC,AB⊥AD,点E,点F分别在射线AD,射线BC上.若点E与点B关于AC对称,点E与点F关于BD对称,AC与BD相交于点G,则()A.1+tan∠ADB=B.2BC=5CF C.∠AEB+22°=∠DEF D.4cos∠AGB=解答:解:如图,连接CE,设EF与BD相交于点O,由轴对称性得,AB=AE,设为1,则BE==,∵点E与点F关于BD对称,∴DE=BF=BE=,∴AD=1+,∵AD∥BC,AB⊥AD,AB=AE,∴四边形ABCE是正方形,∴BC=AB=1,1+tan∠ADB=1+=1+﹣1=,故A选项结论正确;CF=BF﹣BC=﹣1,∴2BC=2×1=2,5CF=5(﹣1),∴2BC≠5CF,故B选项结论错误;∠AEB+22°=45°+22°=67°,在Rt△ABD中,BD===,sin∠DEF===,∴∠DEF≠67°,故C选项结论错误;由勾股定理得,OE2=()2﹣()2=,∴OE=,∵∠EBG+∠AGB=90°,∠EGB+∠BEF=90°,∴∠AGB=∠BEF,又∵∠BEF=∠DEF,∴4cos∠AGB===,故D选项结论错误.故选A.二、认真填一填(本题共6个小题,每小题4分,共24分)11.(4分)(2014•)2012年末统计,市常住人口是880.2万人,用科学记数法表示为8.802×106人.解答:解:880.2万=880 2000=8.802×106,故答案为:8.802×106.12.(4分)(2014•)已知直线a∥b,若∠1=40°50′,则∠2= 139°10′.解答:解:∠3=∠1=40°50′,∵a∥b,∴∠2=180°﹣∠3=180°﹣40°50′=139°10′.故答案为:139°10′.13.(4分)(2014•)设实数x、y满足方程组,则x+y= 8 .解答:解:,①+②得:x=6,即x=9;①﹣②得:﹣2y=2,即y=﹣1,∴方程组的解为,则x+y=9﹣1=8.故答案为:814.(4分)(2014•)已知市某天六个整点时的气温绘制成的统计图,则这六个整点时气温的中位数是15.6 ℃.解答:解:把这些数从小到大排列为:4.5,10.5,15.3,15.9,19.6,20.1,最中间的两个数的平均数是(15.3+15.9)÷2=15.6(℃),则这六个整点时气温的中位数是15.6℃;故答案为:15.6.15.(4分)(2014•)设抛物线y=ax2+bx+c(a≠0)过A(0,2),B(4,3),C三点,其中点C在直线x=2上,且点C到抛物线的对称轴的距离等于1,则抛物线的函数解析式为y=x2﹣x+2或y=﹣x2+x+2 .解答:解:∵点C在直线x=2上,且到抛物线的对称轴的距离等于1,∴抛物线的对称轴为直线x=1或x=3,当对称轴为直线x=1时,设抛物线解析式为y=a(x﹣1)2+k,则,解得,所以,y=(x﹣1)2+=x2﹣x+2,当对称轴为直线x=3时,设抛物线解析式为y=a(x﹣3)2+k,则,解得,所以,y=﹣(x﹣3)2+=﹣x2+x+2,综上所述,抛物线的函数解析式为y=x2﹣x+2或y=﹣x2+x+2.故答案为:y=x2﹣x+2或y=﹣x2+x+2.16.(4分)(2014•)点A,B,C都在半径为r的圆上,直线AD⊥直线BC,垂足为D,直线BE⊥直线AC,垂足为E,直线AD与BE相交于点H.若BH=AC,则∠ABC所对的弧长等于πr或r (长度单位).解答:解:如图1,∵AD⊥BC,BE⊥AC,∴∠H+∠DBH=90°,∠C+∠DBH=90°,∴∠H=∠C,又∵∠BDH=∠ADC=90°,∴△ACD∽△BHD,∴=,∵BH=AC,∴=,∴∠ABC=30°,∴∠ABC所对的弧长所对的圆心角为30°×2=60°,∴∠ABC所对的弧长==πr.如图2,∠ABC所对的弧长所对的圆心角为300°,∴∠ABC所对的弧长==πr.故答案为:πr或r.三、全面答一答(本题共7小题,共66分)解答应写出文字说明,证明过程或演算步骤,如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(6分)(2014•)一个布袋中装有只有颜色不同的a(a>12)个球,分别是2个白球,4个黑球,6个红球和b个黄球,从中任意摸出一个球,把摸出白球,黑球,红球的概率绘制成统计图(未绘制完整).请补全该统计图并求出的值.解答:解:球的总数:4÷0.2=20(个),2+4+6+b=20,解得:b=8,摸出白球频率:2÷20=0.1,摸出红球的概率:6÷20=0.3,===0.4.18.(8分)(2014•)在△ABC中,AB=AC,点E,F分别在AB,AC上,AE=AF,BF与CE相交于点P.求证:PB=PC,并直接写出图中其他相等的线段.解答:解:在△ABF和△ACE中,,∴△ABF≌△ACE(SAS),∴∠ABF=∠ACE(全等三角形的对应角相等),∴BF=CE(全等三角形的对应边相等),∵AB=AC,AE=AF,∴BE=BF,在△BEP和△CFP中,,∴△BEP≌△CFP(AAS),∴PB=PC,∵BF=CE,∴PE=PF,∴图中相等的线段为PE=PF,BE=CF.19.(8分)(2014•)设y=kx,是否存在实数k,使得代数式(x2﹣y2)(4x2﹣y2)+3x2(4x2﹣y2)能化简为x4?若能,请求出所有满足条件的k的值;若不能,请说明理由.解答:解:能.(x2﹣y2)(4x2﹣y2)+3x2(4x2﹣y2)=(4x2﹣y2)(x2﹣y2+3x2)=(4x2﹣y2)2,当y=kx,原式=(4x2﹣k2x2)2=(4﹣k2)2x4,令(4﹣k2)2=1,解得k=±或±,即当k=±或±时,原代数式可化简为x4.20.(10分)(2014•)把一条12个单位长度的线段分成三条线段,其中一条线段成为4个单位长度,另两条线段长都是单位长度的整数倍.(1)不同分段得到的三条线段能组成多少个不全等的三角形?用直尺和圆规作这些三角形(用给定的单位长度,不写作法,保留作图痕迹);(2)求出(1)中所作三角形外接圆的周长.解答:解:(1)由题意得:三角形的三边长分别为:4,4,4;3,4,5;即不同分段得到的三条线段能组成2个不全等的三角形,如图所示:(2)如图所示:当三边的单位长度分别为3,4,5,可知三角形为直角三角形,此时外接圆的半径为2.5;当三边的单位长度分别为4,4,4.三角形为等边三角形,此时外接圆的半径为,∴当三条线段分别为3,4,5时其外接圆周长为:2π×2.5=5π;当三条线段分别为4,4,4时其外接圆周长为:2π×=π.21.(10分)(2014•)在直角坐标系中,设x轴为直线l,函数y=﹣x,y=x的图象分别是直线l1,l2,圆P(以点P为圆心,1为半径)与直线l,l1,l2中的两条相切.例如(,1)是其中一个圆P的圆心坐标.(1)写出其余满足条件的圆P的圆心坐标;(2)在图中标出所有圆心,并用线段依次连接各圆心,求所得几何图形的周长.解答:解:(1)①若圆P与直线l和l2都相切,当点P在第四象限时,过点P作PH⊥x轴,垂足为H,连接OP,如图1所示.设y=x的图象与x轴的夹角为α.当x=1时,y=.∴tanα=.∴α=60°.∴由切线长定理得:∠POH=(180°﹣60°)=60°.∵PH=1,∴tan∠POH===.∴OH=.∴点P的坐标为(,﹣1).同理可得:当点P在第二象限时,点P的坐标为(﹣,1);当点P在第三象限时,点P的坐标为(﹣,﹣1);②若圆P与直线l和l1都相切,如图2所示.同理可得:当点P在第一象限时,点P的坐标为(,1);当点P在第二象限时,点P的坐标为(﹣,1);当点P在第三象限时,点P的坐标为(﹣,﹣1);当点P在第四象限时,点P的坐标为(,﹣1).③若圆P与直线l1和l2都相切,如图3所示.同理可得:当点P在x轴的正半轴上时,点P的坐标为(,0);当点P在x轴的负半轴上时,点P的坐标为(﹣,0);当点P在y轴的正半轴上时,点P的坐标为(0,2);当点P在y轴的负半轴上时,点P的坐标为(0,﹣2).综上所述:其余满足条件的圆P的圆心坐标有:(,﹣1)、(﹣,1)、(﹣,﹣1)、(,1)、(﹣,1)、(﹣,﹣1)、(,﹣1)、(,0)、(﹣,0)、(0,2)、(0,﹣2).(2)用线段依次连接各圆心,所得几何图形,如图4所示.由图可知:该几何图形既轴对称图形,又是中心对称图形,由对称性可得:该几何图形的所有的边都相等.∴该图形的周长=12×(﹣)=8.22.(12分)(2014•)菱形ABCD的对角线AC,BD相交于点O,AC=4,BD=4,动点P 在线段BD上从点B向点D运动,PF⊥AB于点F,四边形PFBG关于BD对称,四边形QEDH与四边形PEBG关于AC对称.设菱形ABCD被这两个四边形盖住部分的面积为S1,未被盖住部分的面积为S2,BP=x.(1)用含x的代数式分别表示S1,S2;(2)若S1=S2,求x的值.解答:解:(1)①当点P在BO上时,如图1所示.∵四边形ABCD是菱形,AC=4,BD=4,∴AC⊥BD,BO=BD=2,AO=AC=2,且S菱形ABCD=BD•AC=8.∴tan∠ABO==.∴∠ABO=60°.在Rt△BFP中,∵∠BFP=90°,∠FBP=60°,BP=x,∴sin∠FBP===sin60°=.∴FP=x.∴BF=.∵四边形PFBG关于BD对称,四边形QEDH与四边形PEBG关于AC对称,∴S△BFP=S△BGP=S△DEQ=S△DHQ.∴S1=4S△BFP=4××x•=.∴S2=8﹣.②当点P在OD上时,如图2所示.∵AB=4,BF=,∴AF=AB﹣BF=4﹣.在Rt△AFM中,∵∠AFM=90°,∠FAM=30°,AF=4﹣.∴tan∠FAM==tan30°=.∴FM=(4﹣).∴S△AFM=AF•FM=(4﹣)•(4﹣)=(4﹣)2.∵四边形PFBG关于BD对称,四边形QEDH与四边形PEBG关于AC对称,∴S△AFM=S△AEM=S△CHN=S△CGN.∴S2=4S△AFM=4×(4﹣)2=(x﹣8)2.∴S1=8﹣S2=8﹣(x﹣8)2.综上所述:当点P在BO上时,S1=,S2=8﹣;当点P在OD上时,S1=8﹣(x﹣8)2,S2=(x﹣8)2.(2)①当点P在BO上时,0<x≤2.∵S1=S2,S1+S2=8,∴S1=4.∴S1==4.解得:x1=2,x2=﹣2.∵2>2,﹣2<0,∴当点P在BO上时,S1=S2的情况不存在.②当点P在OD上时,2<x≤4.∵S1=S2,S1+S2=8,∴S2=4.∴S2=(x﹣8)2=4.解得:x1=8+2,x2=8﹣2.∵8+2>4,2<8﹣2<4,∴x=8﹣2.综上所述:若S1=S2,则x的值为8﹣2.23.(12分)(2014•)复习课中,教师给出关于x的函数y=2kx2﹣(4kx+1)x﹣k+1(k 是实数).教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选出以下四条:①存在函数,其图象经过(1,0)点;②函数图象与坐标轴总有三个不同的交点;③当x>1时,不是y随x的增大而增大就是y随x的增大而减小;④若函数有最大值,则最大值比为正数,若函数有最小值,则最小值比为负数.教师:请你分别判断四条结论的真假,并给出理由.最后简单写出解决问题时所用的数学方法.解答:解:①真,将(1,0)代入可得:2k﹣(4k+1)﹣k+1=0,解得:k=0.运用方程思想;②假,反例:k=0时,只有两个交点.运用举反例的方法;③假,如k=1,﹣=,当x>1时,先减后增;运用举反例的方法;④真,当k=0时,函数无最大、最小值;k≠0时,y最==﹣,∴当k>0时,有最小值,最小值为负;当k<0时,有最大值,最大值为正.运用分类讨论思想.。

浙江省杭州市萧山区坎山镇中学2014届九年级3月月考数学试题

浙江省杭州市萧山区坎山镇中学2014届九年级3月月考数学试题

九年级数学质量检测卷(2014.03.26)1.本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟 .2.答题时,应该在答题卷指定位置内写明班级,姓名和座位号 .3.所有答案都必须做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应 .4.考试结束后,上交试题卷和答题卷一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个正确. 注意可以用多种不同方法来选取正确答案.1.下列计算正确的是:( ) (A)422a a a =+ (B)()a a a a a a +=÷++223 (C) ()633a a= (D)1046a a a =⋅2. 一运动员某次跳水的最高点离跳台2m ,记作+2m ,则水面离跳台10m 可以记作( ) A .-10m B .-12m C .+10m D .+12m3. 如图,已知四条直线a ,b ,c ,d ,其中a ∥b ,c ⊥b ,且∠1=50°.则∠2=( ) A .60° B .50° C .40° D .30°4.如图,是某人骑自行车的行驶路程S (千米)与行驶时间t (时)的函数图象, 下列说法错误的是( )A. 从11时到14时共行驶了30千米 B .从12时到13时匀速前进C. 从12时到13时原地休息D .从13时到14时的行驶速度与11时到12时的行驶速度相同5. 将一个半径为R ,圆心角为90°的扇形围成一个圆锥的侧面(无重叠),设圆锥底面半径为r ,则R 与r 的关系正确的是( )A .R =8rB .R =6rC .R =4rD .R =2r6. 某校在七年级设立了六个课外兴趣小组,每个参加者只能参加一个兴趣小组,下面是六个兴趣小组不完整的频数分布直方图和扇形统计图. 根据图中信息,可得下列结论不正确...的是( )A .七年级共有320人参加了兴趣小组;B .体育兴趣小组对应扇形圆心角的度数为96°;C .美术兴趣小组对应扇形圆心角的度数为72°;D .各小组人数组成的数据中位数是56.第6题图 第7题图 7. 如图是某几何体的三视图,则该几何体的体积是( )A .318B .354C . 3216D .3108128. 如图,过x 轴正半轴上的任意一点P ,作y 轴的平行线,分别与反比例函数xy 6-=和xy 4=的图象交于A 、B 两点.若点C 是y 轴上任意一点,连接AC 、BC ,则△ABC 的面积为( )A .3B .4C .5D .10 9. 如图,点D 在△ABC 边BC 上,且BAC ADC ∠=∠,若AC =x ,CD=x-2, BD=2x-2,则x的值是( )A .53-B .1或4C . 4D .53-或53+第8题图 第9题图10. 关于x 的二次函数+,其中a 为锐角,则:①当a 等于30°时,函数有最小值﹣;②当a 不等于30°时,函数图象与坐标轴一定有三个交点;③当a <60°时,函数在x >1时,y 随x 的增大而增大; ④无论锐角a 怎么变化,函数图象必过定点.要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案. 11. 化简▲ .16的平方根为 ▲ 。

2014年浙江杭州初中数学中考试卷(带解析)

2014年浙江杭州初中数学中考试卷(带解析)

2014年初中毕业升学考试(浙江杭州卷)数学(带解析)考试范围:xxx ;考试时间:100分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项:1. 答题前填写好自己的姓名、班级、考号等信息2. 请将答案正确填写在答题卡上分卷I分卷I 注释一、单选题(注释)1、( )A .B .C .D .2、已知某几何体的三视图(单位:cm )则该几何体的侧面积等于( )cm 2.A .B .C .D .3、在直角三角形ABC 中,已知∠C=90°,∠A=40°,BC=3,则AC=( )A .B .C .D .4、已知边长为a 的正方形面积为8,则下列关于a 的说法中,错误的是( )A .a 是无理数B .a 是方程的解C .a 是8的算术平方根D .a 满足不等式组5、下列命题中,正确的是()A.梯形的对角线相等B.菱形的对角线不相等C.矩形的对角线不能互相垂直D.平行四边形的对角线可以互相垂直6、函数的自变量x满足时,函数值y满足,则这个函数可以是()A.B.C.D.7、若,则w=()A.B.C.D.8、已知2001年至2012年杭州市小学学校数量(单位:所)和在校学生人数(单位:人)的两幅统计图,由图得出如下四个结论:①学校数量2007至2012年比2001至2006年更稳定;②在校学生人数有两次连续下降,两次连续增长的变化过程;③2009年的大于1000;④2009~2012年,各相邻两年的学校数量增长和在校学生人数增长最快的都是2011~2012年.其中,正确的结论是()A.①②③④B.①②③C.①②D.③④9、让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则这两个数的和是2的倍数或是3的倍数的概率等于()A .B .C .D .10、已知AD//BC,AB⊥AD,点E点F分别在射线AD,射线BC上,若点E与点B关于AC对称,点E点F关于BD对称,AC与BD相交于点G,则()A .B .C .D .中考试卷/eplist_1_0_0_1_1.html初中试卷/分卷II分卷II 注释(注释)11、2012年末统计,杭州市常住人口是880.2万人,用科学记数法表示为.12、已知直线,若∠1=40°50′,则∠2=.13、设实数x,y满足方程组,则.14、已知杭州市某天六个整点时的气温绘制成的统计图,则这六个整点时气温的中位数是.15、设抛物线过A(0,2),B(4,3),C 三点,其中点C 在直线上,且点C 到抛物线对称轴的距离等于1,则抛物线的函数解析式为 . 16、点A,B,C 都在半径为r 的圆上,直线AD⊥直线BC ,垂足为D ,直线BE⊥直线AC ,垂足为E ,直线AD 与BE 相交于点H ,若,则∠ABC 所对的弧长等于 (长度单位).(注释) 17、一个布袋中装有只有颜色不同的个球,分别是2个白球,4个黑球,6个红球和b 个黄球,从中任意摸出一个球,把摸出白球,黑球,红球的概率绘制成统计图(未绘制完整),请补全该统计图并求出的值.18、在△ABC 中,AB=AC ,点E,F 分别在AB,AC 上,AE=AF ,BF 与CE 相交于点P ,求证:PB=PC ,并请直接写出图中其他相等的线段.19、设,是否存在实数,使得代数式能化简为?若能,请求出所有满足条件的值,若不能,请说明理由.20、把一条12个单位长度的线段分成三条线段,其中一条线段长为4个单位长度,另两条线段长都是单位长度的整数倍.(1)不同分法得到的三条线段能组成多少个不全等的三角形?用尺规作出这些三角形(用给定的单位长度,不写作法,保留作图痕迹);(2)求出(1)中所作三角形外接圆的周长.21、在直角坐标系中,设x轴为直线l,函数的图像分别是,半径为1的与直线中的两条相切,例如是其中一个的圆心坐标.(1)写出其余满足条件的的圆心坐标;(2)在图中标出所有圆心,并用线段依次连接各圆心,求所得几何图形的周长.22、菱形ABCD的对角线AC,BD相交于点O,.动点P在线段BD上从点B向点D运动,PF⊥AB于点F,四边形PFBG关于BD对称,四边形QEDH与四边形PFBG关于AC对称.设菱形ABCD被这两个四边形盖住部分的面积为,未盖住部分的面积为,.(1)用含x代数式分别表示,;(2)若,求x.23、复习课中,教师给出关于x的函数(k是实数).教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选择如下四条:①存在函数,其图像经过(1,0)点;②函数图像与坐标轴总有三个不同的交点;③当时,不是y随x的增大而增大就是y随x的增大而减小;④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数;教师:请你分别判断四条结论的真假,并给出理由,最后简单写出解决问题时所用的数学方法.试卷答案1,C. 2,B. 3,D. 4,D. 5,D. 6,A. 7,D. 8,B. 9,C. 10,A.11,8.802×106.12,139°10′.13,8.14,15.615,或.16,或.17,补全该统计图见解析;0.4.18,证明见解析;BF=CE,PF=PE,BE=CF.19,能,或.20,(1)能组成2个不全等的三角形,作图见解析;(2)和.21,(1);(2).22,(1)当时,,当时,,;(2).23,①真,②假,③假,④真,理由和所用的数学方法见解析.。

数学(2014

数学(2014

(A) ①
(B) ②
(C) ③
(D) ④
12. 如图,已知点 A(1,0),B(0,2),以 AB 为边在第一象限内作正方形 ABCD,直线 CD 与 y
轴交于点 G,再以 DG 为边在第一象限内作正方形 DEFG,若反比例函数 y k 的图像 x
经过点 E,则 k 的值是 ( ▲ )
(A)33
(B)34
A
O
B
A.1.35,1.40
B.1.40,1.35 C.1.40,1.40 D.3,5
7. 如图,AB 和 CD 都是⊙O 的直径,∠AOC=50°,则∠C 的度数是( ▲ )
D
7题
A.50°
B.30°
C.25°
D.20°
8. 一个扇形的半径为 6,圆心角为 120 度用它做成一个圆锥的侧面(无重复),
20.(本题 8 分) 如图,在△ABC 与△DCB 中,AC 与 BD 交于点 E,且∠A=∠D,AB=DC. (1)求证:△ABE≌△DCE; (2)当∠AEB=50°时,求∠EBC 的度数.
21(本题 8 分)为提高初中生的身体素质,教育行政部门规定:初中生每天参加户外活动的 平均时间应不少于 1 小时.为了解学生参加户外活动的情况,某区教育行政部门对部分 学生参加户外活动的时间进行了抽样调查,并将调查结果绘制成下列两幅不完整的统计 图,请你根据图中提供的信息解答以下问题: (1)这次抽样共调查了 ▲ 名学生,并补全条形统计图;
(2)计算扇形统计图中表示户外活动时间 0.5 小时的扇形圆心角度数; (3)本次调查学生参加户外活动的平均时间是否符合要求?(写出判断过程)
部分学生每天户外活动时间条形统计图
人数
200

浙江省杭州市萧山区坎山镇中学2014届九年级科学下学期期初测试试题

浙江省杭州市萧山区坎山镇中学2014届九年级科学下学期期初测试试题

某某省某某市萧山区坎山镇中学2014届九年级科学下学期期初测试试题请同学们注意:1、考试卷分试题卷和答题卷两部分。

满分180分,考试时间为110分钟。

2、所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应。

3、考试结束后,只需上交答题卷。

4、本卷可能用到的相对原子质量:H :1 O :16 C :12 N :14 S :32 Ag :108Zn :65 K :39 Cu :64 Fe :56 Na:23 Mg :24 Mn :55一、选择题(每小题4分,共24分,每小题只有一个选项符合题意)1、下列四幅图片中,属于利用做功的途径改变物体内能的是( ▲ )2、画流程图有利于我们对所学知识进行整理和归纳。

以下几幅流程图中正确的是 ( ▲ )A .体循环:右心室→主动脉→各级动脉→毛细血管→各级静脉→上下腔静脉→左心房B .神经冲动的传递:外界刺激→感受器→传入神经→神经中枢→传出神经→效应器C .尿液的形成:血液→肾小管→肾小囊→肾小球→输尿管D .食物通过消化道的次序:食物→口腔→咽→食道→小肠→胃→大肠→肛门3、下列有关新陈代谢的叙述中不正确的是(▲ )A .新陈代谢是生物与非生物的根本区别B .糖类在生物体内完全氧化和体外充分燃烧都生成CO 2和H 2O ,释放的能量也相等C .消化属异化作用,是一种不消耗能量的过程D .同化作用和异化作用既相互矛盾又相互联系4、春节期间某人因感染禽流感H7N9病毒而发烧,住院隔离治疗。

医务人员为其测量体温,发现该病人在24小时内的体温均在39℃左右波动。

则该病人在这24小时内产热和散热的关系( ▲ )A .产热等于散热B .产热小于散热C .产热大于散热D .产热与散热没有关系5、我国婚姻法规定,直系血亲和三代之内的旁系血亲禁止结婚。

正月里小科一家聚餐,请问以下是直系血亲的是( ▲ )A .小科与亲姐小雪B .小科与表弟小明C .小科与堂弟小亮D 、小科与外婆6、推理是化学学习中常用的思维方法。

浙教版数学九年级2014届中考复习月考试卷附答题纸参考答案

浙教版数学九年级2014届中考复习月考试卷附答题纸参考答案

2014届九年级月考(一)数学试卷一、选择题(共12小题,每小题4分,共48分,请选出一个符合题意的正确选项) 1.下列计算正确的是( ) A . 22-=B .-2-1=2C .200=D .4=±22. 下列各点中在反比例函数2y x=-的图像上的点是( ) A. (-1,-2)B. (1,2)C. (1,-2)D.(2,1)3.下列函数的图象,一定经过原点..的是( ) A. y=x 2+3 B. y=x 2-2x C.y=5x+1 D. y=x 24.⊙O 的半径为4cm ,点A 到圆心O 的距离为3cm ,那么点A 与⊙O 的位置关系是( ) A .点A 在圆内 B .点A 在圆上C .点A 在圆外D . 不能确定5.如图,坐标网格中一段圆弧经过点A 、B 、C ,其中点B 的坐标为 (4,3),点C 坐标为(6,1),则该圆弧所在圆的圆心坐标为( ) A .(0,0) B .(2,-1) C .(0,1)D .(2,1)6.抛物线y=3(x-2)2+1先向上平移2个单位,再向左平移2个单位所得的解析式为( )A .y =3x 2+3B .y =3x 2.y =3(x-4)2+3 D . y =3(x-4)2-17.正比例函数y kx =k 是常数且k ≠0)在同一平面直角坐标系中的图象可能是( )A .B .C .D .8.已知三点111222333()()()P x y P x y P x y ,,,,,都在反比例函数2y x=-的图象上,且1230x x x <<<,则下列式子正确的是( )A .123y y y >>B .132y y y >>C .231y y y >>D .321y y y >>A .没有交点B .一个交点C .两个交点D .不能确定(第5题)(第11题)10.已知二次函数2y ax bx c=++中,函数y与自变量x之间的部分对应值如下表:x…-2 -1 0 1 2 …y (16)2--4122--2122-…则当3x=时,函数值y是()A.-2 B.122- C.-4 D.162-11.如图,在边长为4的正方形ABCD中,动点P从A点出发,以每秒1个单位长度的速度沿AB向B点运动,同时动点Q从B点出发,以每秒2个单位长度的速度沿BC→CD方向运动,当P运动到B点时,P、Q两点同时停止运动.设P点运动的时间为t,△APQ的面积为S,则S与t的函数关系的图象是()A. B.C. D.12.如图,在平面直角坐标系中,正方形OABC的顶点O与原点重合,顶点A,C分别在x轴、y轴上,反比例函数)0,0(>≠=xkxky的图象与正方形的两边AB、BC分别交于点M、N,ND⊥x轴,垂足为D,连接OM、ON、MN. 下列结论:①△OCN≌△OAM;②ON=MN;③四边形DAMN与△MON面积相等;④若∠MON=45°,MN=2,则点C的坐标为(0,12+).其中正确结论的个数是( )A.1B.2C.3D.4二、填空题(每题4分,共24分)13x的取值范围是.14.反比例函数kyx=图象经过点(-3,-2),则该图象的两个分支在第象限.15.如图,CD是⊙O的直径,∠DOE=78°,AE交⊙O于B,AB=OC,则∠A= .16.请选择一组你喜欢的cba、、的值,使二次函数)0(2≠++=acbxaxy同时满足下列条件:①开口向下;②当2x≤时,y随x的增大而增大;③ac=-1,这样的二次函数的解析式(第12题)C(第22题)第20题可以是 .17.如图,一段抛物线:y =-x(x -3)(0≤x ≤3),记为C 1,它与x 轴交于点O ,A 1; 将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A 2旋转180°得C 3,交x 轴于点A 3;……如此进行下去,直至得C 14,若P (41,m )在这列抛物线上,则m =_________.18.在直角坐标系x Oy 中,点O 为坐标原点,等腰直角△OAB 的顶点A 、B 在某反比例函数的图象上,点A 的横坐标为4,则△OAB 的面积是 .三、解答题(共8小题,第19题6分,第20、21题各8分,第22~24题各10分,第25题12分,第26题14分,共78分,请将答案写在答题纸上,务必写出解答过程) 19. 先化简,再求值:2(21)(23)(23)a a a --+-,其中a = 2. 20.如图,△ABC 是直角三角形,∠ACB=90°.(1)作△ABC 的外接圆⊙O ;(说明:要求保留作图痕迹,不要求写作法) 21.对于抛物线2y ax bx c =++,已知当x=3时,y 有最小值-4,且经过点(2,-3). (1)求这条抛物线的解析式; (2)抛物线与坐标轴的交点.22.一条排水管的截面如图所示,已知水面宽AB=10cm ,截面圆⊙O 的半径OC ⊥AB 于D ,且OD :DC=3:2,求⊙O 的直径.23.已知平面直角坐标系x O y (如图),直线y x b =+ 经过第一、三、四象限,与y 轴交于点B ,点A (2,t )在这条直线上,连接AO ,△AOB 的面积等于1,反比例函数ky x= (k 是常数,k ≠0)的图像经过点A .(1)求这两个函数的解析式,并求出这两个函数图象的 另一个交点C 的坐标;(2)根据图象回答,当x 在什么范围内时,一次函数的值 大于反比例函数的值?Oyx(第23题)(第17题)第15题D24.如图,正方形111B P OA 和正方形2221B P A A 的顶点1P ,2P 都在函数y 4=(0>x )的图1212,()x x x x < 分别是方程230x x +-=的两根,OA=OC ,抛物线经过A 、B 、C 三点,记抛物线顶点为点E .(1)求抛物线的解析式; (2)若点P 为线段AC 上的一个动点(不与A 、C 重合),直线PB 与抛物线交于点D ,连接DA,DC . ①计算△ACE 的面积; ②是否存在点D ,使得S ⊿ADC =12S ⊿ACE ?若存在,求出点D 的坐标;若不存在,请说明理由; (3)在(2)的条件下,当△PBC 为等腰三角形时,直接写出点P 的坐标.二、填空题(每小题4分,共24分)13. 14. 15. 16. 17. 18.三、解答题(共8小题,第19题6分,第20、21题各8分,第22~24题各10分,第25题12分,第26题14分,共78分) 19.20.(1)(2)21.(1)(2)22.第20题 C(第22题)23.(1)( 2 ) 24.(1)(2)(3) 25.(1)Oyx (第23题)(第24题)x(2)(3) 26.(1)(2)① ②(3)第20题2014届九年级月考(一)数学参考答案一、选择题(每小题4分,共48分)二、填空题(每小题4分,共24分)13. 1x ≥- 14.一、三 15. 26016. 241y x x =-++(其他符合题意均可17. -2 18. 20±±三、解答题(共8小题,第19题6分,第20、21题各825题12分,第26题14分,共78分) 19.解:原式=2244149a a a -+-+=-4a+10 ……………………………4分 把a=2代入,原式=2 ……………………………6分20.解:(1)图略. (结论1分) …………………5分 (2)OSπ= ……………………………8分21.解:(1)∵x=3时,y 有最小值-4∴2(3)4y a x =-- ………………………2分 ∵点(2,-3)在抛物线上∴34,1a a -=+= ………………………3分 ∴265y x x =-+ … ……………………4分 (2)与x 轴交点:∵2120,650,1,5y x x x x =-+===则 ………5分 ∴与x 轴交点为(1,0),(5,0), ……………………7分 ∴与y 轴交点为(0,5) …………………8分2分5分10分C(第22题)23.(1)解:∵y x b=+∴B(0,b)∵△AOB的面积等于1∴21,12bb⨯==±……………2分∵直线y x b=+经过第一、三、四象限∴b=-1,1y x∴=-∵点A(2,t)在直线y x b=+上∴t=1, 点A(2,1)∴2yx=由21yxy x⎧=⎪⎨⎪=-⎩,得121221,12x xy y==-⎧⎧⎨⎨==-⎩⎩∴C(-1,-2) ……………8分( 2 )2-1<x<0x>或……………10分24.(1)解:设正方形111BPOA边长为a,P1(a,a)2124,2,2()a a a===-舍去, P1(2,2) ……………2分设正方形2221BPAA边长为b,1(2,)P b b+12(2)4,11)b b b b+==-=-舍去 ,2(11P-……5分(2)∵抛物线以1P为顶点,2(2)2y a x∴=-+∵抛物线且经过原点1042,2a a∴=+=-……………7分∴2122y x x=-+……………8分(3) 将1x=代入22112(12(1122y x x=-+=-++⨯=∴点2P在所求得的抛物线上. ……………10分(第24题)25.(1)解:400(60)10101000y x y x =--⨯=-+ …………………3分(2)2(50)(101000)10150050000P x x P x x =--+=-+- …………………6分自变量x 的取值范围:5070x ≤≤ …………………7分 (3)221015005000010(75)6250P x x xP x =-+-=--+ …………………9分∵5070x ≤≤在对称轴直线75x =的左边∴y 随着x 的增大而增大 …………………11分 当x=70,y 有最大值6000. ………………12分 26.(1)由 2230x x +-=,得123,1x x =-= ,即A(-3,0),B(1,0)∵OA=OC ∴C(0,-3),(3)(1)y a x x =+- ,a=1∴223y x x =+- ……………4分 (2) ①2223,(1)4,(1,4)y x x y x E =+-=+---得顶点将x=-1代入3AC y x =--,y=-2,∴12332ACES=⨯⨯= …………………6分 ②过点D 作DF ⊥x 轴,交AC 于点F,2(,23)D x x x +-, ∵点F 在直线AC 上,∴F (x,-x-3)211113(3)22221322ADCADFFCDACES SSDF AM DF OM DF AO x x S =+=⨯⨯+⨯⨯=⨯⨯=⨯⨯--==212310,x x x x ++===…………………9分123535((2222D D -+---- …………………11分(3)当△P BC 为等腰三角形时,P 1(51,22--),P 2(-2,-1),3(3P -…… 14分(每个坐标1分)x。

浙江省杭州市萧山区九年级数学下学期期初考试试题(无

浙江省杭州市萧山区九年级数学下学期期初考试试题(无

浙江省杭州市萧山区党湾镇初级中学2013届九年级下学期期初考试数学试题(无答案) 新人教版注意事项:1.答卷前,考生务必将自己的班级、姓名、学号等按规定分别填写在答题卷上. 2.每小题选出答案后,把答案正确地填在答题卷的相应位置上,如需改动,用橡皮擦干净后,再选填其他答案,不能答在试题卷上.温馨提示:请仔细审题,细心答题,相信你一定会有出色的表现!一、仔细选一选(本题有10小题,每题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答卷中相应的格子内。

1、平面直角坐标系中的下列四个点,在反比例函数6y x=图象上的是( ▲ ) A .(1,6-) B .(2,4) C .(6-,1-) D .(3,2-) 2、下列各组中四条线段成比例的是( ▲ ) A. 4cm 、2cm 、1cm 、3cmB. 1cm 、2cm 、3cm 、4cmC. 25cm 、35cm 、45cm 、55cmD. 1cm 、2cm 、20cm 、40cm3、抛物线y =23x 先向左平移1个单位,再向上平移2个单位,所得的解析式为( ▲ ) A.y=()2132+-x B. y=()2132--x C. y=()2132++x D.y=()2132-+x4、当1<a <2时,代数式︱a -2︱+︱1-a ︱的值是( ▲ ) A .-1 B .1 C .3 D .-35、点(﹣1,y 1),(2,y 2),(3,y 3)均在函数6y=x的图象上,则y 1,y 2,y 3的大小关系是( ▲ )A .y 3<y 2<y 1B .y 2<y 3<y 1C . y 1<y 2<y 3D .y 1<y 3<y 26、二次函数)0(2≠++=a c bx ax y 的图象如图所示则下列说法 不正确的是( ▲ )A .0a >B .0c >C .02ba-<D .b 2-4a c >07、在半径为R 的圆内有长为R 的弦,则此弦所对的圆周角是( ▲ ) A .30° B .60° C .30°或150° D .60°或120° 8、若将直尺的0cm 刻度线与半径为5cm 的量角器的0º线对齐,并让量角器沿直尺的边缘无滑动地滚动(如图),则直尺上的10cm(第6题图)刻度线对应量角器上的度数约为( ▲ ) A .115ºB .90ºC .125ºD .180º9、正方形网格中,∠AOB 如图放置,则cos∠AOB 的值为( ▲ )A .12B .22C .32D .3310、如图所示,已知A 11(,y )2,B 2(2,y )为反比例函数1y x=图像上的两点,动点P (x,0)在x 正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是( ▲ ) A. 1(,0)2 B. (1,0) C. 3(,0)2 D. 5(,0)2二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案。

【新人教版九年级数学下册名校期中期末试卷及答案25份】杭州市萧山城区-第二学期期中考试七年级数学试卷

【新人教版九年级数学下册名校期中期末试卷及答案25份】杭州市萧山城区-第二学期期中考试七年级数学试卷

七年级数学试卷请同学们注意:1、考试卷分试题卷和答题卷两部分。

满分120分,考试时间为90分钟。

2、所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应。

3、考试结束后,只需上交答题卷。

祝同学们取得成功! 《卷一》(满分100分)一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,注意可以用多种不同的方法来选取正确答案。

1、下列计算正确的是( )A 、223a a a += B 、235a a a ⋅= C 、33a a ÷= D 、33()a a -= 2、如图,下列说法错误的是( ) A 、∠C 与∠1与是内错角 B 、∠A 与∠B 是同旁内角 C 、∠2与∠3是内错角 D 、∠A 与∠3是同位角 3、已知2x 3y 6+=用y 的代数式表示x 得( )A 、3x 3y 2=-B 、2y 2x 3=- C 、x 33y =- D 、y 22x =-4、如图,有一块含有45°角的直角三角板的两个顶点放在直尺的对边上,如果∠1=20°,那么∠2的度数是( ) A 、30° B 、25° C 、20° D 、15°5、下列计算正确的是( )A 、()()2a 2a 2a 2+-=-B 、()222x y x y -=-C 、()()2x 1x 2x x 2+-=--D 、1111a 1b 1ab 339⎛⎫⎛⎫+-=-⎪⎪⎝⎭⎝⎭6、关于x 、y 的方程组3x y m x my n -⎧⎨+⎩==的解是11⎧⎨⎩x y ==,则|m -n|的值是( )A 、5B 、3C 、2D 、17、如图,将周长为8的△ABC 沿BC 方向平移1个单位得△DEF ,则四边形ABFD 的周长为( )A 、6B 、8C 、10D 、128、若02(3)2(36)x x ----有意义,那么x 的取值范围是( ) A 、3x > B 、2x < C 、32x x ≠≠或 D 、32x x ≠≠且9、《九章算术》是我国东汉初年编订的一部数学经典著作。

浙江省杭州市萧山区靖江初中2014届九年级数学下学期起初测试试题

浙江省杭州市萧山区靖江初中2014届九年级数学下学期起初测试试题

某某省某某市萧山区靖江初中2014届九年级数学下学期起初测试试题4.如果△ABC 中,sinA=cosB=22,则下列对△ABC 形状描述准确的是( ) A. △ABC 是直角三角形 B. △ABC 是等腰三角形C. △ABC 是等腰直角三角形D. △ABC 是锐角三角形5.若函数ky x =的图象过点(3,-7),那么它不.经过..的点是( ) A .(-3,7) B .(-7,3) C .(7,-3) D .(3,7)6. 如图,抛物线c bx x y ++=2的对称轴为2=x ,点A ,B 均在抛物线上,且AB 与x 轴平行,其中点A 的坐标为(0,3),则点B 的坐标为 ( )A .(2,3)B .(3,2)C .(3,3)D .(4,3)7.已知AB 是⊙O 的直径,弧AC 的度数是30°.如果⊙O 的直径为4,那么2AC 等于( )A .23-B .436-C .843-D .2 8. 如图,在矩形ABCD 中,AB=9,BC=12,点E 是BC 中点,点F 是边CD 上的任意一点,当△AEF 的周长最小时,则DF 的长为( ) A .4B .6C .8 D .99.如图,在Rt△ABC 中,∠ACB=90°,AC=BC=2,将Rt△ABC 绕A 点按逆时针方向旋转30°后得到R t△ADE,点B 经过的路径为弧BD ,则图中阴影部分的面积是( )A .6πB .3πC .1+6πD . 110.如图所示,P 是菱形ABCD 的对角线AC 上一动点,过P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点,OxyA6题x = 2B设AC=2,BD=1,AP=x ,则△AMN 的面积为y ,则y 关于x 的函数图象的大致形状是( )二.填空题:(每题4分,共24分)11.若反比例函数2m y x +=的图象在第一、三象限,则m 的取值X 围是________.12. 设a>b>0,a 2+ b 2- 8ab=0,则ba ab +- 的值等于_____________. 13. 由山脚下的一点A 测得山顶D 的仰角是45°,从A 沿倾斜角为30°的山坡前进1500米到B ,再次测得山顶D 的仰角为60°,则山高CD=________米.14. 如图1是个八角星形纸板,图中有八个直角,八个相等的钝角,每条边都相等,如图2将纸板沿虚线切割,无缝隙无重叠的拼成图3所示的大正方形,其面积为8+4,则图3中线段AB 的长为_________.15.如图,△ABC 的内心在y 轴上,点C 的坐标为(2,0),点B 的坐标是(0,2),直线AC 的解析式为,则tanA 的值是_________.16如图,在△ABC 中,AB=BC=10,AC=12,BO ⊥AC ,垂足为点O ,过点A 作射线AE ∥BC ,点P 是边BC 上任意一点,连接PO 并延长与射线AE 相交于点Q ,设B ,P 两点之间的距离为x ,过点Q 作直线BC 的垂线,垂足为R .岑岑同学思考后给出了下面五条结论, ①△AOB ≌△COB ; ②当0<x <10时,△AOQ ≌△COP ; ③当x=5时,四边形ABPQ 是平行四边形; ④当x=0或x=10时,都有△PQR ∽△CBO ; ⑤当时,△PQR 与△CBO 一定相似.正确的共有O17.(本题6分) (1)计算:2860sin 2)02014(31)21(002++------(2)先化简:,再任选一个你喜欢的数代入求值18.(本题8分)定义{},,a b c 为函数2y ax bx c =++的“特征数”.如:函数223y x x =-+的“特征数”是{}1,2,3-,函数23y x =+的“特征数”是{}0,2,3.(1)将“特征数”是{}1,4,1-的函数的图象向下平移2个单位,得到一个新函数图象,求这个新函数图象的解析式;(2)“特征数”是30,,33⎫⎧⎪⎪-⎨⎬⎪⎪⎩⎭的函数图象与x 、y 轴分别交点C 、D, “特征数”是{}0,3,3-的函数图象与x 轴交于点E, 点O 是原点, 判断△ODC 与△OED 是否相似,请说明理由.19.(本题8分)如图,小叶与小高欲测量公园内一棵树DE 的高度.他们在这棵树正前方一座楼亭前的台阶上A 处测得树顶端D 仰角为30°,朝着这棵树的方向走到台阶下的点C 处,测得树顶端D 的仰角为60°.已知A 点的高度AB 为3米,台阶AC 的坡度为1:3 (即AB ︰BC=1:3),且B 、C 、E 三点在同一条直线上.请根据以上条件求出树DE 的高度.20(本题10分)(第18题)(第20题)F EDCBA(1)求证:△ABC ∽△BCD ;(2)已知tan∠ABC =2,求DFCE的值.21.(10分)如图,AB 是⊙O 的直径,AM ,BN 分别切⊙O 于点A ,B ,CD 交AM ,BN 于点C ,DO 平分∠ADC . (1)求证:CD 是⊙O 的切线; (2)若AD =4,BC =9,求⊙O 的半径R .22.(本题12分)如图,在Rt△ABC 中,∠C =Rt∠,∠B =30°.(1)把△ABC 绕点A 按顺时针方向旋转,得△''AB C ,''B C 交AB 于点D .①若BC =3,旋转角为30°,求'C D 的长;②若点B 经过的路径与AB ,'AB 所围图形的面积与△ABC 面积的比值是33π,求∠'BDB 的度数;(2)点P 在边AC 上,CP:PA =3:2.把△ABC 绕着点P 逆时针旋转n (0<n <180)度后,如果点A 恰好落在初始Rt△ABC 的边上,求n 的值.23.(本题12分) 如图,二次函数的图象与x 轴相交于点A 、B (点A 在点B 的左侧),与y 轴相交于点C ,顶点D 在第一象限,过点D 作x 轴的垂线,垂足为H .(1)当3m 2=时,求t an∠ADH 的值; (第22题)CBA21212+++-=m mx x y(3)设△BCD 和△ABC 的面积分别为S1、S2,且满足S1=S2, 求点D 到直线BC 的距离.靖江初中2013学年第二学期开学检测九年级数学答题卷 一、选择题(每小题3分,共30分) 1 2345678910二、填空题(每小题4分,共24分)三、解答题(共66分)17、(本题6分)(1)计算:2860sin 2)02014(31)21(002++------(2)先化简:,再任选一个你喜欢的数代入求值11、____________________ 12、;13、 ______________ ; 14、 ____ ; 15、 ____ ; 16、 ___.(第20题)F EDCBA18、(本题8分) (1) (2)19.(8分)20、(本题10分)(1) (2)21. (本题10分)(1)(2)22.(本题12分)(1)①②(2)(第22题)CB A23.(12分)(1)(2)(3)友情提示:请在答题方框内答题,否则答题无效!靖江初中2013学年第二学期开学检测九年级数学答案一、选择题(每小题3分,共30分)二、填空题(每小题4分,共24分)三、解答题(共66分)顶点D (825,23),与x 轴的交点A (-1 ,0),B (4,0), ∴DH = 825,AH = ().25123=--………………2分∴tan∠ADH= .5482525==DH AH …3分(2)()(),21212121222++--=+++-=m m x m mx x y ……4分 ∴顶点D(()21,2+m m ),与x 轴的交点A (-1,0),B (2m+1,0),…5分∴()(),11,212+=--=+=m m AH m DH∴tan∠ADH ().122112+=++=m m m …6分 当60°≤∠ADB≤90°时,由对称性得30°≤∠ADH≤45°,当∠ADH = 30°时,,3312=+m ∴.132-=m …7分 当∠ADH =45°时,,112=+m ∴.1=m ∴1≤m≤132-. …………8分 (3)设DH 与BC 交于点M ,则点M 的横坐标为m ,设过点B (2m+1,0),C (0,m+21)的直线的解析式为:,b kx y +=则()⎪⎩⎪⎨⎧+==++.21,012m b b k m 所以⎪⎩⎪⎨⎧+=-=.21,21m b k即.2121++-=m x y ……………………9分当m x =时,,212121+=++-=m m x y ∴M(21,+m m )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A、换元法B、配方法C、数形结合法D、分类讨论法
6、如图,半圆O是一个量角器, 为一纸片,AB交半圆于点D,OB交半圆于点C,若点
C、D、A在量角器上对应读数分别为 , 的度数为(▲)
A、20°B、30°C、45°D、60°
7、二次函数 的图像如图所示,反比列函数 与正比列函数 在同一
坐标系内的大致图像是(▲)
∴当m取不小于5的任意实数时,y1、y2、y3一定能作为同一个三角形三边的长.
…………………………………………………………………………………3分
22、(本题满分12分)
解:(1)已知 ,则当 时,函数 取到最小值,
最小值为 ;………………(4分)
(2)设这个矩形的长为x米,则宽为 米,所用的篱笆总长为y米,
A、9 B、 C、 D、15
10、如图,在正方形ABCD中,对角线AC,BD交于点 ,折叠正方形ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展平后,折痕DE分别交AB,AC于点E,G,连接GF,下列结论:①AE=AG;②tan∠AGE=2;③ ;④四边形ABFG为等腰梯形;⑤BE=2OG,则其中正确的结论个数为(▲)
19、(本题满分8分)
如图,AB∥CD,∠ACB=∠BDC=Rt∠,
CE⊥AB于点E,DF⊥CB于点F。
(1)求证:△ABC∽△BCD;
(2)已知tan∠ABC=2,求 的值。
20、(本题10分)
如图,BC是⊙O的弦,OD⊥BC于E,交于D,
点A是优弧BmC上的动点(不与B、C重合),BC= ,ED=2.
∵点D在抛物线y=x2-3x上.
∴可设D(x,x2-3x).
又点D在直线y=x-m上,
∴x2-3x=x-m,即x2-4x+m=0.
∵抛物线与直线只有一个公共点,
∴△=16-4m=0,解得:m=4.-----------3分
此时x1=x2=2,y=x2-3x=-2,
∴D点坐标为(2,-2).-----------2分
A、2个B、3个C、4个D、5个
二、认真填一填(本题有6个小题,每小题4分,共24分)
要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案。
11、已知 ,且tan = ,则∠ =▲。
12、如图,如果从半径为9cm的圆形纸片中剪去 圆周的一个扇形,将留下的扇形围成一个圆
锥(接缝处不重叠),那么这个圆锥的高为▲。
∵△ABC∽△BCD,CE⊥AB于点E,DF⊥CB于点F
∴ ………………………2分
20、(本题满分10分)
(1)解:连结OB.
∵OD⊥BC∴
设⊙ 的半径为r,则OE=r-2,
∵ ∴
∴ ∴⊙ 的半径为4.………3分
在 △ 中,
∵ ∴

∴ ………3分
(3)连结BD,过O作MN⊥BD,垂足为N,交优弧BmC于点M,
13、将一副三角尺按照图所示的方式叠放在一起(∠B=45°,∠D=30°),点E是BC与AD的交点,则 的值为▲。
14、把二次函数 的图象绕原点旋转180°后得的图象的解析式为▲。
15、如图,AB是半圆直径,半径OC⊥AB于点O,AD平分∠CAB交弧BC于点D,连结CD、OD,给出以下四个结论:①AC∥OD;② ;③△ODE∽△ADO;④ .其中正确结论的序号是▲。
23、(本题满分12分)
如图①,已知抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4)两点。
(1)求抛物线的解析式;
(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;
(3)如图②,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB的点P的坐标(点P、O、D分别与点N、O、B对应)。
根据题意得:y=2x+
由上述性质知: x > 0, 2x ≥40
此时,2x= x=10
答:当这个矩形的长、宽各为10米时,所用的篱笆最短,
最短的篱笆是40米;………………(4分)
(3)令 = = x -2
x > 0, =x ≥6-2
当x=3时,y最大=1/4………………(4分)
23、(本题满分12分)
4、抛物线 可以通过平移得到 ,则下列平移过程正确的是(▲)
A、先向左平移2个单位,再向上平移3个单位;
B、先向左平移2个单位,再向下平移3个单位;
C、先向右平移2个单位,再向下平移3个单位;
D、先向右平移2个单位,再向上平移3个单位.
5、“已知二次函数 的图像如图所示,试判断 与0的大小.”一同学是这样回答的:“由图像可知:当 时 ,所以 .”他这种说明问题的方式体现的数学思想方法叫做(▲)
8、如图所示,长为8cm,宽为6cm的矩形中,截去一个矩形(图中阴影部分),如果剩下矩形与原矩形相似,那么剩下矩形的面积是(▲)
A、28cm2B、27cm2C、21cm2D、20cm
9、如图,已知矩形OABC的面积为25,它的对角线OB与双曲线 (k>0)相交于点G,且
OG:GB=3:2,则k的值为(▲)
m≥5;①比较y1与y4的大小,说明理由;
②y1,y2,y3能否作为同一个三角形的三边的长?为什么?
22、(本题满分12分)阅读以下的材料:如果两个正数 ,即 ,有下面的不等式:
当且仅当 时取到等号我们把 叫做正数 的算术平均数,把 叫做正数 的几何平均数,于是上述不等式可表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数.它在数学中有广泛的应用,是解决最值问题的有力工具。下面举一例子:
∴n+3=n2-3n,
解得:n1=-,n2=4(不合题意,会去),
∴点N的坐标为(-,).-----------2分
方法一:如图1,将△NOB沿x轴翻折,得到△N1OB1,
则N1(-,-),B1(4,-4),
∴O、D、B1都在直线y=-x上.
∵△P1OD∽△NOB,
∴△P1OD∽△N1OB1,
∴==,
16、如图,已知直线 分别与x、y轴交于点C、D,与反比例函数 的图象在第一象限内交于 两点,AE⊥X轴于E,BF⊥Y轴于F,EF= ,点P是x轴正半轴上一点,使△APB为直角三角形,则 点的坐标为▲。
三、全面答一答(本题有7小题,共66分)
解答应写出文字说明,证明过程或推演步骤。如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以。
∴点P1的坐标为(-,-).
19、(本题满分8分)
解:(1)∵AB∥CD,∠ABC=∠BCD…………………………………2分
∵∠ACB=∠BDC=Rt∠,∴△ABC∽△BCD……………………………1分
(2)∵tan∠ABC=2,可设AC=2k,BC=k……………………………1分
∵∠ACB=Rt∠,∴ ,………………………2分
∴AB= (直接给出此结果给1分)
例:已知 ,求函数 的最小值。
解:令 ,则有 ,得 ,当且仅当 时,即 时,函数有最小值,最小值为4。
根据上面回答下列问题:
1已知 ,则当 时,函数 取到最小值,最小值为;
2用篱笆围一个面积为 的矩形花园,问这个矩形的长、宽各为多少时,所
用的篱笆最短,最短的篱笆周长是多少;
③.已知 ,则自变量 取何值时,函数 取到最大值,最大值为多少?
连结MB、MD.当点A运动到点M时,阴影部分的面积最大.………1分

∴ 是等边三角形

又∵ON⊥BD

∵ ………1分
………1分
∴ .………1分
21、(本题满分10分).
解:(1)把点P(-2,5)代入二次函数解析式,得5=(-2)2-2b-3,
解得b=-2.……………………………………………………………2分
∴ ,对称轴为直线x=1,
∴当x≥1时,y随x的增大而增大.………………………………………2分
(2)①P4(-2,y4)关于对称轴的对称点为(4,y4),
因为当x≥1时y随x的增大而增大,m≥5>4,∴y1>y4.………………3分
② 1<5≤m<m+1<m+2,∴y1<y2<y3。
y1=m2-2m-3,y2=m2-4 y3=m2+2m-3,y1+ y2-y3=m2-2m-3+m2-4—(m2+2m-3)= m2-4m-4 m≥5,∴m2-4m-4>0,∴y1+y2>y3.
17、(本题满分6分)A( ,1)、B(1, )两点.
(1)求函数 的表达式;
(2)观察图象,比较当 时, 与 的大小。
18、(本题满分8分)
如图,某超市从底楼到二楼有一自动扶梯,右图是侧面示意图。已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,求二楼的层高BC(精确到0.1米)。(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)
解:(1)∵抛物线y=ax2+bx(a≠0)经过点A(3,0)、B(4,4).
∴,解得:.
∴抛物线的解析式是y=x2-3x.------------3分
(2)设直线OB的解析式为y=k1x,由点B(4,4),
得:4=4k1,解得k1=1.
∴直线OB的解析式为y=x.
∴直线OB向下平移m个单位长度后的解析式为:y=x-m.
18、(本题满分8分)
解:延长CB交PQ于点D.……1分
∵MN∥PQ,BC⊥MN,∴BC⊥PQ.…1分
∵自动扶梯AB的坡度为1:2.4,
∴ .1分
设 米, 米,则 米.
∵AB=13米,∴ ,∴ 米, 米.……2分
在 中, , ,
∴ 米,………2分
相关文档
最新文档