新课标高考《圆锥曲线》大题专题含答案

合集下载

(word完整版)圆锥曲线综合试题(全部大题目)含答案,文档.docx

(word完整版)圆锥曲线综合试题(全部大题目)含答案,文档.docx

1.平面上一点向二次曲线作切线得两切点,连结两切点的线段我们称切点弦.设过抛物线x2 2 py 外一点 P(x0 , y0 ) 的任一直线与抛物线的两个交点为C、 D ,与抛物线切点弦 AB的交点为 Q。

(1)求证:抛物线切点弦的方程为x0 x p( y+ y0 ) ;(2)求证:112.PC| PD || PQ |2. 已知定点F( 1,0 ),动点 P 在 y 轴上运动,过点 P 作 PM 交 x 轴于点 M ,并延长MP 到点 N,且PM PF 0,| PM | | PN |.(1)动点 N 的轨迹方程;(2)线 l 与动点 N 的轨迹交于 A,B 两点,若OA OB4, 且4 6| AB | 4 30 ,求直线 l 的斜率 k 的取值范围 .3. 如图,椭圆C1:x2y21的左右顶点分别为A、B,P 为双曲线C2: x 2y 21右支4343上( x 轴上方)一点,连AP 交 C1于 C,连 PB 并延长交1于 D,且△ ACD与△ PCD的面积C相等,求直线 PD 的斜率及直线CD 的倾斜角 .4. 已知点M ( 2,0), N (2,0),动点P满足条件| PM || PN | 2 2 .记动点 P 的轨迹为W.(Ⅰ)求 W 的方程;uuur uuur(Ⅱ)若 A, B 是W上的不同两点,O 是坐标原点,求OA OB 的最小值.5.已知曲线 C的方程为 : kx2+(4-k)y2=k+1,(k∈ R)(Ⅰ)若曲线 C是椭圆,求 k的取值范围;(Ⅱ)若曲线 C是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程;(Ⅲ)满足(Ⅱ)的双曲线上是否存在两点P,Q关于直线 l: y=x-1对称,若存在,求出过 P,Q的直线方程;若不存在,说明理由。

6. 如图( 21)图,M(-2,0)和 N( 2,0)是平面上的两点,动点P满足:PM PN 6.(1)求点 P 的轨迹方程;2(2)若PM·PN=1 cos MPN,求点 P 的坐标 .x2y21 (a b x 2y217. 已知F为椭圆b20) 的右焦点,直线l过点 F 且与双曲线b2a2a 的两条渐进线 l1, l2分别交于点M , N,与椭圆交于点A, B.(I)若MON,双曲线的焦距为4。

高考分类汇编(圆锥曲线大题含答案)

高考分类汇编(圆锥曲线大题含答案)

1.(2013年上海市春季高考数学试卷).已知椭圆C 的两个焦点分别为1(10)F -,、2(1 0)F ,,短轴的两个端点分别为12 B B 、(1)若112F B B ∆为等边三角形,求椭圆C 的方程;(2)若椭圆C 的短轴长为2,过点2F 的直线l 与椭圆C 相交于 P Q 、两点,且11F P FQ ⊥u u u r u u u r ,求直线l 的方程.2.(2013年高考四川卷(理))已知椭圆C :22221,(0)x y a b a b+=>>的两个焦点分别为12(1,0),(1,0)F F -,且椭圆C 经过点41(,)33P .(Ⅰ)求椭圆C 的离心率;(Ⅱ)设过点(0,2)A 的直线l 与椭圆C 交于M 、N 两点,点Q 是线段MN 上的点,且222211||||||AQ AM AN =+,求点Q 的轨迹方程.3.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))椭圆2222:1x y C a b+=(0)a b >>的左、右焦点分别是12,F F ,离心率为2,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为1. (Ⅰ)求椭圆C 的方程; (Ⅱ)点P 是椭圆C 上除长轴端点外的任一点,连接12,PF PF ,设12F PF ∠的角平分线PM 交C 的长轴于点(,0)M m ,求m 的取值范围;(Ⅲ)在(Ⅱ)的条件下,过P 点作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点,设直线12,PF PF 的斜率分别为12,k k ,若0k ≠,试证明1211kk kk +为定值,并求出这个定值.4.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))如图,点)1,0(-P 是椭圆)0(1:22221>>=+b a by a x C 的一个顶点,1C 的长轴是圆4:222=+y x C 的直径.21,l l 是过点P 且互相垂直的两条直线,其中1l 交圆2C 于两点,2l 交椭圆1C 于另一点D(1)求椭圆1C 的方程; (2)求ABD ∆面积取最大值时直线1l 的方程.5.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))如题(21)图,椭圆的中心为原点O ,长轴在x 轴上,离心率22e =,过左焦点1F 作x 轴的垂线交椭圆于,A A '两点,4AA '=. (1)求该椭圆的标准方程;(2)取垂直于x 轴的直线与椭圆相交于不同的两点,P P ',过,P P '作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外.若PQ P Q '⊥,求圆Q 的标准方程.x OyB l 1l 2 PDA(第21题图)。

高考数学专题综合训练圆锥曲线(分专题,含答案)

高考数学专题综合训练圆锥曲线(分专题,含答案)

20XX 年高考圆锥曲线综合训练题一、求轨迹方程:1、(1)已知双曲线1C 与椭圆2C :2213649x y +=有公共的焦点,并且双曲线的离心率1e 与椭圆的离心率2e 之比为73,求双曲线1C 的方程.(2)以抛物线28y x =上的点M 与定点(6,0)A 为端点的线段MA 的中点为P ,求P 点的轨迹方程.(1)解:1C的焦点坐标为(0,2e =由1273e e =得1e =设双曲线的方程为22221(,0)y x a b a b -=>则2222213139a b a b a ⎧+=⎪⎨+=⎪⎩ 解得229,4a b == 双曲线的方程为22194y x -= (2)解:设点00(,),(,)M x y P x y ,则00622x x y y +⎧=⎪⎪⎨⎪=⎪⎩,∴00262x x y y =-⎧⎨=⎩.代入2008y x =得:2412y x =-.此即为点P 的轨迹方程.2、设M 是椭圆22:1124x y C +=上的一点,P 、Q 、T 分别为M 关于y 轴、原点、x 轴的对称点,N 为椭圆C 上异于M 的另一点,且MN ⊥MQ ,QN 与PT 的交点为E ,当M 沿椭圆C 运动时,求动点E 的轨迹方程.解:设点的坐标112211(,),(,)(0),(,),M x y N x y x y E x y ≠则111111(,),(,),(,),P x y Q x y T x y ----……1分221122221,(1)124 1.(2)124x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩………3分 由(1)-(2)可得1.3M N Q Nk k∙=-…6分又MN ⊥MQ ,111,,MN MQ MN x k k k y ⋅=-=-所以11.3QN y k x =直线QN 的方程为1111()3y y x x y x =+-,又直线PT 的方程为11.x y x y =-从而得1111,.22x x y y ==-所以112,2.x x y y ==-代入(1)可得221(0),3x y xy +=≠此即为所求的轨迹方程. 二、中点弦问题:3、已知椭圆22221(0)y x a b a b+=>>的一个焦点1(0,F -,对应的准线方程为y =.(1)求椭圆的方程;(2)直线l 与椭圆交于不同的两点M 、N ,且线段MN 恰被点13,22P ⎛⎫- ⎪⎝⎭平分,求直线l 的方程.解:(1)由2222.c ac a b c ⎧-=-⎪⎪-=⎨⎪⎪=+⎩3,1a b ==即椭圆的方程为221.9y x +=(2)易知直线l 的斜率一定存在,设l :313,.2222k y k x y kx ⎛⎫-=+=++ ⎪⎝⎭即设M (x 1, y 1),N (x 2, y 2),由223,221.9k y kx y x ⎧=++⎪⎪⎨⎪+=⎪⎩得2222327(9)(3)0.424k k x k k x k +++++-= ∵x 1、x 2为上述方程的两根,则2222327(3)4(9)0424k k k k k ⎛⎫∆=+-+⋅+-> ⎪⎝⎭①∴21223.9k k x x k++=-+ ∵MN 的中点为13,22P ⎛⎫- ⎪⎝⎭,∴1212 1.2x x ⎛⎫+=⨯-=- ⎪⎝⎭∴223 1.9k k k +-=-+∴2239k k k +=+,解得k=3.代入①中,229927184(99)180424⎛⎫∆=-+⋅+-=> ⎪⎝⎭∴直线l :y=3x+3符合要求.4、已知椭圆的一个焦点为)22,0(1-F ,对应的准线为429-=y ,离心率e 满足34,,32e 成等比数列. (Ⅰ)求椭圆的方程;(Ⅱ)是否存在直线l ,使l 与椭圆交于不同的两点B A ,,且线段AB 恰好被直线21-=x 平分?若存在,求出直线l 的倾斜角α的取值范围;若不存在,说明理由.解 : (Ⅰ)由题意知,9834322=⋅=e ,所以322=e .设椭圆上任意一点P 的坐标为),(y x ,则由椭圆的第二定义得, 322429)22(22=+++y y x ,化简得1922=+y x ,故所求椭圆方程为1922=+y x . (Ⅱ)设),(),,(2211y x B y x A ,AB 中点),(00y x M ,依题意有⎪⎪⎩⎪⎪⎨⎧+=-=+=2212210210y y y x x x ,可得⎩⎨⎧=+-=+0212121y y y x x .若直线l 存在,则点M 必在椭圆内,故19)21(202<+-y ,解得0233233000<<-<<y y 或.将),(),,(2211y x B y x A 代入椭圆方程,有⎪⎪⎩⎪⎪⎨⎧=+=+)2(19)1(1922222121y x y x )1()2(-得,09))(())((12121212=+-++-y y y y x x x x , 故0121212122)1(9)(9y y y x x x x y y k AB -⨯-=++-=--=,所以ABk y 290=,则有029233233290<<-<<ABAB k k 或, 解得33-<>AB AB k k 或,故存在直线l 满足条件,其倾斜角)32,2()2,3(ππππα⋃∈. 三、定义与最值:5、已知动点P 与双曲线22x -32y =1的两个焦点F 1、F 2的距离之和为6.(Ⅰ)求动点P 的轨迹C 的方程;(Ⅱ)若1PF •2PF =3,求⊿PF 1F 2的面积; (Ⅲ)若已知D(0,3),M 、N 在轨迹C 上且DMDN ,求实数的取值范围.解:①92x +42y =1;②2;③[51,5]四、弦长及面积:6、已知椭圆1422=+y x 及直线m x y +=. (1)当m 为何值时,直线与椭圆有公共点? (2)若直线被椭圆截得的弦长为5102,求直线的方程. 解:(1)把直线方程m x y +=代入椭圆方程1422=+y x 得 ()1422=++m x x ,即012522=-++m mx x .()()020*********≥+-=-⨯⨯-=∆m m m ,解得2525≤≤-m . (2)设直线与椭圆的两个交点的横坐标为1x ,2x ,由(1)得5221mx x -=+,51221-=m x x .根据弦长公式得 :51025145211222=-⨯-⎪⎭⎫⎝⎛-⋅+m m .解得0=m .方程为x y =. 7、已知ABC △的顶点A B ,在椭圆2234x y +=上,C 在直线2l y x =+:上,且AB l ∥. (Ⅰ)当AB 边通过坐标原点O 时,求AB 的长及ABC △的面积; (Ⅱ)当90ABC ∠=,且斜边AC 的长最大时,求AB 所在直线的方程.解:(Ⅰ)因为AB l ∥,且AB 边通过点(00),,所以AB 所在直线的方程为y x =.设A B ,两点坐标分别为1122()()x y x y ,,,. 由2234x y y x⎧+=⎨=⎩,得1x =±.所以12AB x =-=. 又因为AB 边上的高h 等于原点到直线l的距离.所以h =122ABC S AB h ==△. (Ⅱ)设AB 所在直线的方程为y x m =+,由2234x y y x m⎧+=⎨=+⎩,得2246340x mx m ++-=.因为A B ,在椭圆上,所以212640m ∆=-+>.设A B ,两点坐标分别为1122()()x y x y ,,,,则1232mx x +=-,212344m x x -=,所以122AB x =-=.又因为BC 的长等于点(0)m ,到直线l 的距离,即BC =22222210(1)11AC AB BC m m m =+=--+=-++.所以当1m =-时,AC 边最长,(这时12640∆=-+>) 此时AB 所在直线的方程为1y x =-. 五、范围问题:8、已知椭圆13422=+y x C :,试确定m 的取值范围,使得对于直线m x y l +=4:,椭圆C 上有不同的两点关于该直线对称.分析:若设椭圆上A ,B 两点关于直线l 对称,则已知条件等价于:(1)直线l AB ⊥;(2)弦AB 的中点M 在l 上.利用上述条件建立m 的不等式即可求得m 的取值范围. 解:(法1)设椭圆上),(11y x A ,),(22y x B 两点关于直线l 对称,直线AB 与l 交于),(00y x M 点. ∵l 的斜率4=l k ,∴设直线AB 的方程为n x y +-=41.由方程组⎪⎪⎩⎪⎪⎨⎧=++-=,134,4122yx n x y 消去y 得 0481681322=-+-n nx x ①。

圆锥曲线专题20题练习含答案

圆锥曲线专题20题练习含答案

1.如图,曲线22:1(0,0)x y E m n m n+=>>与正方形L(1)求m n +的值; (2)设直线:l y x b =+交曲线E 于A ,B ,交L 于C ,D ,是否存在这AB 成等差数列?若存在,求出实数b样的曲线E ,使得CA ,的取值范围;若不存在,请说明理由.2.已知点1(0,)2F ,直线l :12y =-,P 为平面上的动点,过点P 作直线l 的垂线,垂足为H ,且满足()0HF PH PF ⋅+=. (1)求动点P 的轨迹C 的方程;(2)过点F 作直线'l 与轨迹C 交于A ,B 两点,M 为直线l 上一点,且满足MA MB ⊥,若MAB ∆的面积为'l 的方程.3.已知圆22:4O x y +=,点(F ,以线段FP 为直径的圆内切于圆O ,记点P 的轨迹为C . (1)求曲线C 的方程;(2)若()11,A x y ,()22,B x y 为曲线C ,且⊥m n ,试问AOB △的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.4.(12分)已知抛物线()2:20C y px p =>的焦点F 与椭圆22:12x T y +=的一个焦点重合,点()0,2M x 在抛物线上,过焦点F 的直线l 交抛物线于A,B 两点.(1)求抛物线C 的标准方程以及MF 的值.(2)记抛物线的准线l x '与轴交于点H ,试问是否存在常数R λ∈,使得AF FB λ= ,且22854HA HB +=都成立.若存在,求出λ的值;若不存在,请说明理由.5.设抛物线)0(42>=m mx y 的准线与x 轴交于1F ,抛物线的焦点2F ,以21,F F 为焦点,离心率21=e 的椭圆与抛物线的一个交点为)362,32(E ;自1F 引直线交抛物线于Q P ,两个不同的点,设F F 11λ=.(1)求抛物线的方程椭圆的方程; (2)若)1,21[∈λ,求||PQ 的取值范围.6. 已知抛物线的焦点为,为轴上的点.2:4E x y =F (),0P a x(1)当时,过点作直线与相切,求切线的方程;(2)存在过点且倾斜角互补的两条直线,,若,与分别交于,和,四点,且与的面积相等,求实数的取值范围.7.设点A 为圆C :224x y +=上的动点,点A 在x 轴上的投影为Q ,动点M 满足2MQ AQ =,动点M 的轨迹为E .(1)求E 的方程;(2)设E 与y 轴正半轴的交点为B ,过点B 的直线l 的斜率为k (0k ≠),l 与E 交于另一点为P ,若以点B 为圆心,以线段BP 长为半径的圆与E 有4个公共点,求k 的取值范围.8.已知椭圆()2222:10x y E a b a b+=>>的左焦点1F 与抛物线24y x =-的焦点重合,椭圆E的离心率为,过点()3,04M m m ⎛⎫> ⎪⎝⎭作斜率不为0的直线,交椭圆E 于,A B 两点,点5,04P ⎛⎫⎪⎝⎭,且PA PB ⋅ 为定值.(1)求椭圆E 的方程; (2)求OAB △面积的最大值.9.已知椭圆1C ,抛物线2C 的焦点均在x 轴上,1C 的中心和2C 的顶点均为原点O ,从1C ,2C 上分别取两个点,将其坐标记录于下表中:12(2)若直线():0l y kx m k =+≠与椭圆1C 交于不同的两点,M N ,且线段MN 的垂直平分线过定点1,08G ⎛⎫⎪⎝⎭,求实数的取值范围. 10.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为分别为椭圆的左、右焦点,点在椭圆上,当时,内切圆的半径为.(1)求椭圆的方程;0a ≠P l E l P 1l 2l 1l 2l E A B C D FAB ∆FCD ∆a(2)已知直线与椭圆相较于两点,且,当直线的斜率之和为2时,问:点到直线的距离是否存在最大值?若存在,求出最大值;若不存在,说明理由.11. 已知抛物线2:C y x =-,点A ,B 在抛物线上,且横坐标分别为12-,32,抛物线C 上的点P 在A ,B 之间(不包括点A ,点B ),过点B 作直线AP 的垂线,垂足为Q . (1)求直线AP 斜率k 的取值范围; (2)求|||PA PQ ⋅的最大值.12. 如图,分别过椭圆()2222:10x y E a b a b+=>>左、右焦点12,F F 的动直线12,l l 相交于P 点,与椭圆E 分别交于,A B 与,C D 不同四点,直线,,,OA OB OC OD 的斜率1234,,,k k k k 满足1234k k k k +=+.已知当1l 与x 轴重合时,AB =CD =(Ⅰ)求椭圆E 的方程;(Ⅱ)是否存在定点,M N ,使得PM PN +为定值?若存在,求出,M N 点坐标并求出此定值;若不存在,说明理由.13.(本小题满分12分)已知椭圆C: 12222=+by a x (a>b>0)的离心率为22,过右焦点F 且与长轴垂直的直线被椭圆截得的线段长为2,0为坐标原点. (1)求椭圆C 的标准方程;(2)设经过点M(0,2)作直线l 交椭圆C 于A 、B 两点,求△AOB 面积的最大值及相应的直线l 的方程.1.【答案】(1)16m n +=;(2【解析】(1,得()28160n m x mx m mn +-+-=,有()()2644160m m n m mn ∆=-+-=,···········2分 化简的()4640mn m n mn +-=.又0m >,0n >,所以0mn >从而有16m n +=;···········4分 (2)由2AB CA BD =+,AB =···········5分 ,得()2220n m x bmx mb mn +++-=, 由2224440nmb n m m n ∆=-++>可得216b m n <+=,且122bmx x n m-+=+,212mb mn x x n m -=+,···········7分···········8分 323=,···········10分符合216b m n <+=,故当实数b 时,存在直线和曲线E ,使得CA ,AB ,BD 成等差数列.···········12分 2.解:(1)设(,)P x y ,则1(,)2H x -,1(,1),(0,),2HF x PH y ∴=-=--1(,)2PF x y =-- ,(,2)PH PF x y +=-- ,()0HF PH PF += ,220x y ∴-=,即轨迹C 的方程为22x y =.(II )法一:显然直线l '的斜率存在,设l '的方程为12y kx =+,由2122y kx x y ⎧=+⎪⎨⎪=⎩,消去y 可得:2210x kx --=, 设1122(,),(,)A x y B x y ,1(,)2M t -,121221x x kx x +=⎧∴⎨⋅=-⎩,112211(,),(,)22MA x t y MB x t y =-+=-+ MA MB ⊥ ,0MA MB ∴= ,即121211()()()()022x t x t y y --+++=2121212()(1)(1)0x x x x t t kx kx ∴-+++++=,22212210kt t k k ∴--+-++=,即2220t kt k -+=∴2()0t k -=,t k ∴=,即1(,)2M k -,∴212|||2(1)AB x x k =-==+,∴1(,)2M k -到直线l '的距离2d ==,3221||(1)2MABS AB d k ∆==+=,解得1k =±, ∴直线l '的方程为102x y +-=或102x y -+=. 法2:(Ⅱ)设1122(,),(,)A x y B x y ,AB 的中点为()00,y x E则211121212120212222()()2()2AB x y y y x x x x y y x k x x x y ⎧=-⎪⇒-+=-⇒==⎨-=⎪⎩ 直线'l 的方程为012y x x =+, 过点A,B 分别作1111B 于,于l BB A l AA ⊥⊥,因为,⊥MA MB E 为AB 的中点,所以在Rt AMB 中,11111||||(||||)(||||)222==+=+EM AB AF BF AA BB 故EM 是直角梯形11A B BA 的中位线,可得⊥EM l ,从而01(,)2M x -点M 到直线'l的距离为:2d ==因为E 点在直线'l 上,所以有20012y x =+,从而21200||1212(1)AB y y y x =++=+=+由2011||2(22MAB S AB d x ==⨯+= 01x =± 所以直线'l 的方程为12y x =+或12y x =-+.3.【答案】(1)2214y x +=;(2)答案见解析.【解析】(1)取(0,F ',连结PF ',设动圆的圆心为M , ∵两圆相内切,∴122OM FP =-,又12OM PF =',∴4PF PF FF +=>='',···········3分∴点P 的轨迹是以F ,F '为焦点的椭圆,其中24a =,2c =,∴2a =,c =,∴2221b a c =-=,∴C 的轨迹方程为2214y x +=.···········5分(2)当AB x ⊥轴时,有12x x =,12y y =-,由⊥m n ,得112y x =,又221114y x +=,∴1x =1y =∴11112122AOB S x y ∆=⨯⨯=⨯=.···········7分 当AB 与轴不垂直时,设直线AB 的方程为y kx m =+,()2224240k x kmx m +++-=, 则12224kmx x k -+=+,212244m x x k -=+,···········9分由0⋅=m n ,得121240y y x x +=,∴()()121240kx m kx m x x +++=, 整理得()()22121240k x x km x x m ++++=,···········10分 ∴2224m k =+,12m21m==,综上所述,AOB △的面积为定值.···········12分5.解:(1)设椭圆的标准方程为)0(12222>>=+b a by ax ,由题意得⎪⎪⎩⎪⎪⎨⎧=-==+211924942222a b a ac b a ,解得⎪⎩⎪⎨⎧==3422b a∴椭圆的方程为13422=+y x ∴点2F 的坐标为)0,1(,∴1=m ,∴抛物线的方程是x y 42=(2)由题意得直线PQ 的斜率存在,设其方程为)0)(1(≠+=k x k y ,由⎩⎨⎧=+=xy x k y 4)1(2消去x 整理得0442=+-k y ky ()∵直线PQ 与抛物线交于两点, ∴016162>-∆k ,设),(),,(2211y x Q y x P ,则421=y y ①,ky y 421=+②, ∵Q F P F 11λ=,)0,1(1-F ∴),1(),1(2211y x y x +=+λ ∴21y y λ=,③由①②③消去21,y y 得22)1(4+=λλk . ∴||PQ 22221221222121616)11(4))[(11())(11(kk ky y y y ky y k-+=-++=-+=441616kk -=,即=2||PQ 441616k k -,将22)1(4+=λλk 代入上式得,=2||PQ 16)21(16)12(16)4(222224-++=-++=-+λλλλλλλ,∵λλλ1)(+=f 在)1,21[∈λ上单调递减,∴)21()()1(f f f ≤<λ,即2512≤+<λλ, ∴<041716)21(2≤-++λλ, ∴217||0≤<PQ ,即||PQ 的取值范围为]217,0(. 6.解:(1)设切点为则. ∴点处的切线方程为. ∵过点,∴,解得或. 当时,切线的方程为或. (2)设直线的方程为,代入得, ①,得, ②由题意得,直线的方程为, 同理可得,即, ③ ②×③得,∴.④设,,则,.∴.点到的距离为,200,3x Q x ⎛⎫⎪⎝⎭002x x l x yk ===Q ()200042x x y x x -=-l P ()200042x x a x -=-02x a =00x =0a ≠l 0y =20ax y a --=1l ()y k x a =-24x y =2440x kx ka -+=216160k ka ∆=->()0k k a ->2l ()y k x a =--()0k k a --->()0k k a +>()2220k k a ->22a k <()11,A x y ()22,B x y 224x x k +=224x x ka=AB =FAB d =∴的面积为同理的面积为由已知得,化简得, ⑤欲使⑤有解:则,∴.又,得,∴. 综上,的取值范围为或或.7.解:(1)设点(,)M x y ,由2MQ AQ =,得(,2)A x y ,由于点A 在圆C :224x y +=上,则2244x y +=,即点M 的轨迹E 的方程为2214x y +=. (2)由(1)知,E的方程为2214x y +=, 因为E 与y 轴的正半轴的交点为B ,所以(0,1)B ,所以故B 且斜率为k 的直线l 的方程为1y kx =+(0k ≠).由221,1,4y kx x y =+⎧⎪⎨+=⎪⎩得22(14)80k x kx ++=, 设11(,)B x y ,22(,)P x y ,因此10x =,22814kx k =-+,12|||BP x x =-=由于圆与椭圆的公共点有4个,由对称性可设在y 轴左侧的椭圆上有两个不同的公共点P ,T ,满足||||BP BP =,此时直线BP 斜率0k >,FAB ∆41S =+FCD ∆41S =-4141+=-()2221a k -=22a <a <22212a k k=-<21k ≠21a ≠a 1a <<-11a -<<1a <<设直线BT 的斜率为1k ,且10k >,1k k ≠,则||BT ==10-=,即221(14(14k k +=+所以222222111()(18)0k k k k k k -++-=, 由于12k k ≠,因此222211180k k k k ++-=,故22122111198188(81)k k k k +==+--. 因为20k >,所以21810k ->,因此22119188(81)8k k =+>-,又因为0k >,所以k >, 又因为1k k ≠,所以2222180k k k k ++-≠,所以428210k k --≠,又因为0k >,解得2k ≠,所以)k ∈+∞ , 综上所述,k的取值范围为(,()-∞+∞ .8.(本小题满分12分)【答案】(1)2212x y +=;(2). 【解析】(1)设1(,0)F c ,∵抛物线24y x =﹣的焦点坐标为(1,0)-,且椭圆E 的左焦点1F 与抛物线24y x =﹣的焦点重合,∴1c =,···········2分 又椭圆Ea =···········3分 于是有2221b ac ==﹣.故椭圆E 的标准方程为:2212x y +=.···········4分 (2)设11,A x y (),22,B x y (),直线的方程为:x ty m =+, 由2222x ty m x y =+⎧⎨+=⎩整理得2222220t y tmy m +++=()﹣ 12222tm y y t -+=+,212222m y y t -=+,···········6分 115(,)4PA x y =- ,225(,)4PB x y =- , 121255()()44PA PB x x y y ⋅=--+ 2212125525(1)()()4216t y y tm t y y m m =++-++-+222225(2)(2)5722216m m t m m m t -+-+-=+--+.···········8分 要使PA PB ⋅ 为定值,则22522212m m m -+--=,解得1m =或23m =(舍), ···········9分当1m =时,2122|)2t AB y y t +==+﹣,···········10分点O 到直线AB的距离d =,···········11分OAB △面积1s ==. ∴当0t =,OAB △··········12分 9.【答案】(1)1C :22143x y +=.22:4C y x =;(2),⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭. 【解析】(1)设抛物线()22:20C y px p =≠,则有()220y p x x =≠,据此验证4个点知(3,-,()4,4-在抛物线上,易求22:4C y x =.·········2分 设()2222:10x y C a b a b +=>>,把点()2,0-,⎭代入得: 222412614⎧=+⎪⎪⎨⎪⎪⎩=a ab ,解得2243==⎧⎨⎩a b ,所以1C 的方程为22143x y +=.·········5分 (2)设()11,M x y ,()22,N x y ,将y kx m =+代入椭圆方程,消去y 得()2223484120k x kmx m +++-=, 所以()()()22284344120km k m ∆=-+->,即2243m k <+.① 由根与系数关系得122834km x x k+=-+,则122634m y y k +=+,·········7分 所以线段MN 的中点P 的坐标为2243,3434km m k k ⎛⎫- ⎪++⎝⎭.·········8分 又线段MN 的垂直平分线的方程为118y x k ⎛⎫=-- ⎪⎝⎭,·········9 由点P 在直线上,得22314134348m km k k k ⎛⎫=--- ⎪++⎝⎭, 即24830k km ++=,所以()21438m k k =-+,·········10分 由①得()2222434364k k k +<+,所以2120k >,即k <或k >,所以实数的取值范围是,⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭.·········12分 10.(1)依题意: PF 1 + PF 2 − F 1F 2 2=r ,则 PF 1 + PF 2 − F 1F 2 =4−2 3,即2a −2c =4−2 3又c a = 32,联立解得:a =2,c = 3,故b =1,所以椭圆的方程为x 24+y 2=1 (2)设, 联立直线和椭圆的方程得:, 当时有: 由得:,即, 整理得:,所以, 化简整理得:,代入得:, 解之得:或, 点到直线的距离, 设,易得或,则, 当时;当时,, 若,则;若,则,当时, 综上所述:,故点到直线的距离没有最大值.11.(1)由题可知11(,)24A --,39(,)24B -,设2(,)p p P x x -,1322p x -<<,所以 21412p p x k x -+=+12p x =-+∈(1,1)-,故直线AP 斜率k 的取值范围是(1,1)-.(2)直线11:24AP y kx k =+-,直线93:042BQ x ky k ++-=,联立直线AP ,BQ 方程可知点Q 的横坐标为223422Q k k x k --=+,||PQ =()Q p x x -22341()222k k k k --=+-+2=1||)2p PA x =+)k =-,所以3||||(1)(1)PA PQ k k ⋅=-+,令3()(1)(1)f x x x =-+,11x -<<,则2'()(1)(24)f x x x =---22(1)(21)x x =--+,当112x -<<-时'()0f x >,当112x -<<时'()0f x <,故()f x 在1(1,)2--上单调递增,在1(,1)2-上单调递减. 故max 127()()216f x f =-=,即||||PA PQ ⋅的最大值为2716. 12.解:(Ⅰ)当1l 与x 轴重合时,1230k k k k +=+=,即34k k =-2l ∴垂直于x轴,得2AB a ==,223b CD a ==得a b =,∴椭圆E 的方程为:22132x y +=. (Ⅱ)焦点12,F F 坐标分别为()()1,0,1,0-当直线1l 或2l 斜率不存在时,P 点坐标为()1,0-或()1,0当直线1l 、2l 斜率存在时,设斜率分别为12,m m ,设()()1122,,,A x y B x y , 由()2211321x y y m x ⎧+=⎪⎨⎪=+⎩得:()2222111236360m x m x m +++-= 由求根公式并化简得:211221623m x x m +=-+或2112213623m x x m -⋅=+ 121212112112121212111422y y x x x x m k k m m x x x x x x m ⎛⎫⎛⎫++++=+=+=+=- ⎪ ⎪-⎝⎭⎝⎭ 同理:2342242m k k m +=--.1234k k k k +=+ ,()()1212212212442022m m m m m m m m -=-⇒⋅+-=--,由题意知:210m m -≠,1220m m ∴⋅+=. 设(),P x y ,则+2=01+1y y x x ⋅-,即()22112y x x +=≠± 当直线1l 或2l 斜率不存在时,P 点坐标为()1,0-或()1,0,也满足此方程,所以点P 在椭圆()22112y x x +=≠±上,存在点()0,1M -和()0,1N ,使得PM PN +为定值,定值为。

高考数学圆锥曲线专题练习及答案解析

高考数学圆锥曲线专题练习及答案解析
2
X = —½距离为6,点P,Q是椭圆上的两个动点©
C
(1)求椭圆C的方程;
(2)若直线AP丄40,求证:直线P0过泄点R,并求出R点的坐标。
【例二・】已知一动圆经过点M(2,0),且在y轴上截得的弦长为4,设该动圆圆心的轨迹为曲 线C。
(1)求曲线C的方程;
(2)过点N(1,O)任意作两条互相垂直的直线∕1,∕2,分别交曲线C于不同的两点A,B和
的焦点,直线4F的斜率为少,O为坐标原点。
3
(1)求E方程;
(2)设过点A的直线/与E相交于PQ两点,当AOP0的面积最大时,求/的方
程。
专题练习
1•在平面直角坐标系XOy中,已知点A(O,—OB点在直线y = -3±, M点满足
MB//QA,莎•亦=屁•鬲M点的轨迹为曲线C。
(1)求C的方程:
(2)P为C上的动点,/为C在P点处的切线,求O点到/距离的最小值。
10.抛汤钱屮阿基来德三角形鲂纟见般质及疝用
11.(S傩曲钱屮的戒切後龜哩
锥曲线中的求轨迹方程问题
解题技巧
求动点的轨迹方程这类问题可难可易是高考中的髙频题型,求轨迹方程的主要方法有直译法、
相关点法、泄义法、参数法等。它们的解题步骤分别如下:
1.直译法求轨迹的步骤:
(1)设求轨迹的点为P(χ,y);
(2)由已知条件建立关于x,y的方程;
D,Q设线段ABQE的中点分别为几。・
①求证:直线P0过左点R,并求出泄点/?的坐标;
②求PGl的最小值。
专题练习
1.设椭圆E:丄y+ =y=l(α> b > 0)的右焦点到直线x-y + 2√z2=0的距离为3,且过点Cr Ir
I

圆锥曲线大题专题训练答案和题目

圆锥曲线大题专题训练答案和题目

41 •如图,曲线G 的方程为y 22x(y > 0) •以原点为圆心•以t(t0)为半径的圆分别点C , D ,求四边形 ABCD 面积的最小值.由题意知,直线 AC 的斜率k 存在,由对称性,不妨设 k2X。

2.解:(I )设切点Q X 0,4X g亍,知抛物线在Q 点处的切线斜率为肓,故所求切线方程为X 0(X X 。

)• 因为点P(0,)在切线上.所以42,X 0 16,•所求切线方程为y 2x 4 •(II )设 A(X 1,屮),C(X 2,y 2)• 与曲线G 和y 轴的正半轴相交于点 A 与点B .直线AB 与x 轴相交于点C •(I)求点 A 的横坐标a 与点C 的横坐标c 的关系式(n)设曲线G 上点D 的横坐标为a 2 ,求证:直线CD 的斜率为定值.1•解:(I) 由题意知,A(a, '2a). 因为|0At ,所以a 2 2a t 2 .由于t 0 ,故有"O 由点B(0,t), C(c,0)的坐标知,直线 BC 的方程为x y 1 c t又因点A 在直线BC 上,故有a ' 2a1,将(1 )代入上式,得ac t* 2a .a(a 2)解得 c a 2,2(a 2) •(n)因为D(a 2,、.2(a 2)),所以直线CD 的斜率为■2(a 2) a 2 c2@—2)v 2(a ,2) a 2 (a 2.、2(a 2))2(a 2)所以直线CD 的斜率为定值. 2 •设F 是抛物线G: X 2 4y 的焦点.(I )过点P(0, 4)作抛物线G 的切线,求切线方程;(II )设A, B 为抛物线G 上异于原点的两点,且满足 0 ,延长AF , BF 分别交抛物线G 于B萌 2a :(15因直线AC 过焦点F(0,,所以直线 AC 的方程为y kx 1.y kx 点A, C 的坐标满足方程组 \' 2 A x 4y , 由根与系数的关系知x 1X 2 4k, 4. X \X 2 AC X 2)2 (y 1 yj 2 心 k 2J(X 1 X 2)2 4X 1X 2 4(1 k 2).1因为AC BD ,所以BD 的斜率为 一,从而BD 的方程为 k 同理可求得 BD 4 24(1 k ) k 21 S ABCD _2 -|AC ||BD8(1 k 2)2 k 2 8(k 2 2 [) >32 . k 2 ABCD 面积的最小值为 32 . 2r ,短半轴长为r , 当k 1时,等号成立•所以,四边形 3 •如图,有一块半椭圆形钢板,其长半轴长为 状,下底AB 是半椭圆的短轴,上底 CD 的端点在椭圆上,记 (I) 求面积S 以x 为自变量的函数式,并写出其定义域;(II) 求面积S 的最大值. 3.解:(I )依题意,以 AB 的中点O 为原点建立直角坐标系O xy (如图),则点C 的横坐标为 2 点C 的纵坐标y 满足方程x 2 r 解得y 2 _r 2 x 2(0 2(x ,其定义域为 x.1(y > 0),x0 xx r) x r ,y4r 2计划将此钢板切割成等腰梯形的形(ll )记 f (x) 4(x r)2(r 2 x 2),0 (x) 8(x r)2(r 2x).(x) rf (x)0 ;当 x r 时,21f (x)0 ,所以f r 是f (x)的最大值.2因此,当时,S 也取得最大值,最大值为即梯形面积S的最大值为•匕3r2.24 •如图,矩形ABCD的两条对角线相交于点M (2,0) , AB 在直线的方程为x 3y 6 0点T( 1,1)在AD边所在直(I)求AD边所在直线的方程;(II)求矩形ABCD外接圆的方程;(III )若动圆P过点N( 2,0),且与矩形ABCD外接圆外动圆P的圆心轨迹方程.4.解:(1)因为AB边所在直线的方程为x 3y 6 0 ,且AD与AB垂直,所以直线AD的斜率为3 •又因为点T( 1,1)在直线AD上,所以AD边所在直线的方程为y 1 3(x 1).即3x y 2 0 .x 3y 6 0,(II)由解得点A的坐标为(0, 2),3x y 2 = 0因为矩形ABCD两条对角线的交点为M (2,0).所以M为矩形ABCD外接圆的圆心.又AM| 7(2 0)2(0 2)22血•故矩形ABCD外接圆方程为(x 2)2 y2 8 .(III )因为动圆P过点N,所以PN是该圆的半径,又因为动圆P与圆M外切,所以|PM| |PN| 2^2,即|PM| |PN| 2迈.故点P的轨迹是以M , N为焦点,实轴长为2. 2的双曲线的左支.因为实半轴长a 迈,半焦距c 2 .所以虚半轴长b . c2a2.2 .2 2从而动圆P的圆心的轨迹方程为X y 1(x < 2).2 25 .已知函数y kx与y x 2(x > 0)的图象相交于A(%, %) , B(X2, y?) , h , L分别是2y x 2(x > 0)的图象在A, B两点的切线,M , N分别是h , J与x轴的交点.(I)求k的取值范围;(II )设t为点M的横坐标,当x1 x2时,写出t以为为自变量的函数式,并求其定义域和值域;(III)试比较OM与ON的大小,并说明理由(O是坐标原点).边所线上.切,求y kx,25•解:(l )由方程2 消y 得x 2 kx 2 0 .①y x 22曰关于k 的减函数,所以x i 的取值范围是(0, . 2).x i 时,有相同的结果|OM | |ON | 0 •所以|OM | |ON | .6 •如图,已知 F(i,0),直线l :x i , P 为平面上的动点,过点 P 作I 的垂线,垂足为点 Q ,且 Q P|Q FF P |F Q .(I)求动点P 的轨迹C 的方程;(n)过点F 的直线交轨迹 C 于A, B 两点,交直线I 于点M .M A i AF , M B 2B F ,求 i 2 的值;M A]M B 的最小值.6•解:(I)设点 P(x , y),则 Q( i , y),由 Q P(Q F FPpQ 得:(x i,0)((2, y) (x i , y)|( 2, y),化简得 C : y 2 4x .(n) (i )设直线 AB 的方程为:x my i(m 0).依题意, 该方程有两个正实根,k 2 X i X 2解得k 2.2 .0,(II )(x)2x ,求得切线l i 的方程为y2x-i (x x 1)y i ,X iy i2 x i并令y 0 ,得tx i i 2 x iX 2是方程①的两实根,且 X i X 2,故X ik k 2 8 2X i 疋 t 是关于x i 的增函数, 定义域为(0,2),所以值域为0),(Ill )当 x i x 2 时,由(II )可知 |OM I|t|X ix i类似可得 ON|寺丄• |OM | |ON |X 2xix2x i x 2由①可知 x-i x 2 2 .从而 OMON当X 2 (i )已知 (2 )求16 •设 A (x i , y i ) , B (X 2, y 2),又 M 1, Q P|Q F FP |F Q 得:F ^|(PQ P F )(P Q P F^(P Q P F ) 0,2 2PQ PFP Q IP F .所以点P 的轨迹C 是抛物线,由题意,轨迹 C 的方程为:(n ) ( 1)由已知 则: M A 1AF , MB 2B F ,得 1 A F| 詁.①.Ai ,B i ,__ 22m y i y j|y 2 Y My 2 4x .解法二:(I )由0, 2 0,1 22(4m ) 12 0 ,I由M AY1m 11联立方程组 y 4x,,消去x 得:y 24 my 42xOy ,已知圆心在第二象限、半径为 2 2的圆C 与直线y x 相切于坐标原点(1)求圆C 的方程;(2)试探究圆C 上是否存在异于原点的点 Q ,使Q 到椭圆右焦点F 请求出点Q 的坐标;若不存在,请说明理由.2 27•解:(1 )圆 C : (x 2) (y 2)8 ;所以存在,Q 的坐标为(纟,12)。

圆锥曲线大题精选(含答案解析)(适合文理科)

圆锥曲线大题精选(含答案解析)(适合文理科)

1.过抛物线外一点M 作抛物线的两条切线,两切点的连线段称为点M 对应的切点弦已知抛物线为24x y =,点P ,Q 在直线l :1y =-上,过P ,Q 两点对应的切点弦分别为AB ,CD()1当点P 在l 上移动时,直线AB 是否经过某一定点,若有,请求出该定点的坐标;如果没有,请说明理由()2当AB CD ⊥时,点P ,Q 在什么位置时,PQ 取得最小值?详解:()1设()11,A x y ,()22,B x y ,()0,1P x -,则2114x y =,2224x y =,抛物线的方程可变形为214y x =,则'2x y =, ∴直线PA 的斜率为01'|2PA x x xk y ===,∴直线PA 的方程()1112xy y x x -=-,化简()112x x y y =+,同理可得直线PB 的方程为()222x x y y =+,由()0,1P x -可得()()011x 2102221x y x x y =-⎧⎪=-⎨⎪⎩,∴直线AB 的方程为()021x x y =-,则{1x y ==是方程的解, ∴直线AB 经过定点()0,1.()2设(),1P P x -,(),1Q Q x -,由()1可知2PAB x k =,2Q CD x k =, AB CD ⊥,14P Q AB CD x x k k ∴⋅==-,即4P Q x x =-,P x ∴,Q x 异号,不妨设0P x >,则0Q x <,且4Q Px x =-, 44P Q P Q P PPQ x x x x x x ∴=-=-=+≥,当且仅当2P x =,2Q x =-时取等号, 即当()2,1P --,()2,1Q --时,PQ 取得最小值42.已知椭圆()2222:10x y C a b a b +=>>A ,下顶点为B ,定点()0,2C ,ABC ∆的面积为3,过点C 作与y 轴不重合的直线l 交椭圆C 于,P Q 两点,直线,BP BQ 分别与x 轴交于,M N 两点.(1)求椭圆C 的方程;(2)试探究,M N 的横坐标的乘积是否为定值,说明理由. 【详解】(1)由已知,,A B 的坐标分别是()(),0,0,A a B b -由于ABC ∆的面积为3,1(2)32b a ∴+=,又由e =2a b =, 解得:=1b ,或=3b -(舍去),2,=1a b ∴=∴椭圆方程为2214x y +=;(2)设直线PQ 的方程为2y kx =+,,P Q 的坐标分别为()()1122,,,P x y Q x y则直线BP 的方程为1111y y x x +=-,令0y =,得点M 的横坐标111M xx y =+ 直线BQ 的方程为2211y y x x +=-,令0y =,得点N 的横坐标221N x x y =+ 1212(1)(1)M N x x x x y y ∴⋅=++1212(3)(3)x x kx kx =++12212123()9x x k x x k x x =+++把直线2y kx =+代入椭圆2214x y +=得22(14)16120k x kx +++=由韦达定理得1221214x x k =+,1221614kx x k +=-+ ∴222221214124891414M N k x x k k k k +==-+++22212412489363k k k =-++,是定值.3.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,,F F M 为椭圆上一动点,当12MF F ∆的面积最大时,其内切圆半径为3b,设过点2F 的直线l 被椭圆C 截得线段RS ,当l x ⊥轴时,3RS =. (1)求椭圆C 的标准方程;(2)若点A 为椭圆C 的左顶点,,P Q 是椭圆上异于左、右顶点的两点,设直线,AP AQ 的斜率分别为12,k k ,若1214k k =-,试问直线PQ 是否过定点?若过定点,求该定点的坐标;若不过定点,请说明理由. 详解:(1)由题意及三角形内切圆的性质可得112(22)223b c b a c ⋅⋅=+⋅,得12c a =①将x c =代入22221x y a b+=,结合222a b c =+②,得2b y a =±,所以223b a =③,由①②③得2,a b ==故椭圆C 的标准方程为22143x y +=(2)设点,P Q 的坐标分别为11,x y (),22,x y (). ①当直线PQ 的斜率不存在时,由题意得331122P Q -(,),(,)或331122P Q -(,),(,),直线PQ 的方程为1x =②当直线PQ 的斜率存在时,设直线PQ 的方程为y kx m =+,联立得22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 得2224384120k x kmx m +++-=(), 由222222644(43)(412)48(43)0k m k m k m ∆=-+-=-+>,得2243k m +>21212228412,.(1)4343km m x x x x k k -+=-=++) 由1212121,(2)(2)4y y k k x x ==-++可得12124(2)(2)0y y x x +++=,得12124()()(2)(2)0kx m kx m x x +++++=,整理得221212(41)(42)()440,(2)k x x km x x m ++++++= 由(1)和(2)得2220m km k --=,解得2m k =或m k =-当2m k =时,直线PQ 的方程为2y kx k =+,过定点(2,0)-,不合题意; 当m k =-时,直线PQ 的方程为y kx k =-,过定点(1,0), 综上直线PQ 过定点,定点坐标为(1,0).4.已知椭圆()2222:10x y C a b a b+=>>的焦距为4,且过点(P .(1)求椭圆C 的标准方程;(2)设()()0000,0Q x y x y ≠为椭圆C 上一点,过点Q 作x 轴的垂线,垂足为E,取点(0,A ,连接AE ,过点A 作AE 的垂线交x 轴于点D ,点G 是点D 关于y 轴的对称点,作直线QG ,问这样作出的直线QG 是否与椭圆C 一定有唯一的公共点?并说明理由. 详解:(1)因为焦距为4,所以224a b -=,又因为椭圆C过点(P ,所以22421a b +=,故28a =,24b =,从而椭圆C 的方程为22184x y +=已知椭圆()2222:10x y C a b a b+=>>的焦距为4,且过点(P .(2)由题意,E 点坐标为()0,0x ,设(),0D D x ,则(0,AE x =-,(,D AD x =-,再由AD AE ⊥知,0AE AD ⋅=,即080D x x +=. 由于000x y ≠,故08D x x =-,因为点G 是点D 关于y 轴的对称点,所以点08,0G x ⎛⎫ ⎪⎝⎭. 故直线QG 的斜率00020088QG y x y k x x x =--=.又因()00,Q x y 在椭圆C 上,所以220028x y +=.①从而002QG x k y =-,故直线QG 的方程为00082x y x y x ⎛⎫=-- ⎪⎝⎭② 将②代入椭圆C 方程,得()222200021664160nxy x x x y +-+-=③再将①代入③,化简得:220020x x x x -+=解得0x x =,0y y =,即直线OG 与椭圆C 一定有唯一的公共点.5.在平面直角坐标系xOy 中,已知过点()4,0D 的直线l 与椭圆22:14x C y +=交于不同的两点()11,A x y ,()22,B x y ,其中120y y ≠.(1)若10x =,求OAB 的面积;(2)在x 轴上是否存在定点T ,使得直线TA 、TB 与y 轴围成的三角形始终为等腰三角形. 【详解】(1)当10x =时,代入椭圆方程可得A 点坐标为()0,1或()0,1- 若A 点坐标为()0,1,此时直线l :440x y +-=联立2244044x y x y +-=⎧⎨+=⎩,消x 整理可得25830y y -+= 解得11y =或235y =,故B 83,55⎛⎫ ⎪⎝⎭ 所以OAB 的面积为1841255⨯⨯= ()0,1A -若点坐标为,由对称性知OAB 的面积也是45,综上可知,当10x =时,OAB 的面积为45. (2)显然直线l 的斜率不为0,设直线l :4x my =+联立22444x my x y =+⎧⎨+=⎩,消去x 整理得()2248120m y my +++= 由()226441240m m =-⨯+>,得212m >则12284m y y m +=-+,122124y y m =+ , 因为直线TA 、TB 与y 轴围成的三角形始终为等腰三角形,所以0TA TB k k += 设(),0T t ,则()()()()()()()()122112121212111224TA TB y x t y x t my y t y y y y k k x t x t x t x t x t x t -+-+-++=+==------,即()()()()1212222848124240444m t m t m my y t y y m m m --+-+=+==+++,解得1t =.故x 轴上存在定点()1,0T ,使得直线TA 、TB 与y 轴围成的三角形始终为等腰三角形.6.已知椭圆2222:1x y C a b +=(0a b >>⎛- ⎝⎭. (1)求椭圆C 的方程; (2)过点)作直线l 与椭圆C 交于不同的两点A ,B ,试问在x 轴上是否存在定点Q使得直线QA 与直线QB 恰关于x 轴对称?若存在,求出点Q 的坐标;若不存在,说明理由. 【详解】 (1)ca =,22131a4b +=,又222a b c -=,解得2a 4=,2b 1=.所以,椭圆C 的方程为22x y 14+=(2)存在定点Q ⎫⎪⎪⎝⎭,满足直线QA 与直线QB 恰关于x 轴对称. 设直线l的方程为x my 0+=,与椭圆C 联立,整理得,()224m y 10+--=.设()22B x ,y ,11x xy y 12+=,定点()Q t,0.(依题意12t x ,t x )≠≠则由韦达定理可得,12y y +=,1221y y 4m -=+.直线QA 与直线QB 恰关于x 轴对称,等价于AQ,BQ 的斜率互为相反数.所以,1212y y0x t x t+=--,即得()()1221y x t y x t 0-+-=.又11x my 0+=,22x my 0+=,所以,))1221y my t y my t 0-+-=,)()1212t y y 2my y 0+-=.从而可得,)21t 2m 04m-⋅=+,即()2m 40=,所以,当t =,即Q ⎫⎪⎪⎝⎭时,直线QA 与直线QB 恰关于x 轴对称成立. 特别地,当直线l 为x轴时,Q ⎫⎪⎪⎝⎭也符合题意. 综上所述,存在x轴上的定点Q ⎫⎪⎪⎝⎭,满足直线QA 与直线QB 恰关于x 轴对称.7.设椭圆22:182x y C +=,过点()2,1A 的直线AP ,AQ 分别交C 于不同的两点P 、Q ,直线PQ 恒过点()4,0B(1)证明:直线AP ,AQ 的斜率之和为定值;(2)直线AP ,AQ 分别与x 轴相交于M ,N 两点,在x 轴上是否存在定点G ,使得GM GN ⋅为定值?若存在,求出点G 的坐标,若不存在,请说明理由.【详解】(1)设()()()()112234,,,,,0,,0P x y Q x y M x N x ,直线PQ AP AQ 、、的斜率分别为12,,k k k ,由()22448y k x x y ⎧=-⎨+=⎩得()222214326480k x k x k +-+-= >0∆,可得:222121222132648,,41414k k k x x x x k k -<+==++,()()()()12121212121212121241412(61)16411222224k x k x kx x k x x k y y k k x x x x x x x x -----++++--+=+=+=-----++2222222222648322(61)16416414814164832164241414k k k k k k k k k k k k k-⋅-+⋅++-++-+===----⋅+++(2)由()112y k x -=-,令0y =,得3112x k =-,即112,0M k ⎛⎫- ⎪⎝⎭ 同理4212x k =-,即212,0N k ⎛⎫- ⎪⎝⎭,设x 轴上存在定点()0,0G x 则 ()()20000121212111112222GM GN x x x x k k k k k k ⎛⎫⎛⎫⎛⎫⋅=--⋅--=-+-⋅++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()212001212122k k x x k k k k ⎛⎫+=-+-⋅+ ⎪⎝⎭()()20012121122x x k k k k ⎛⎫-=-+-⋅+⎪⎝⎭,要使GM GN ⋅为定值,即0021,3x x -==故x 轴上存在定点()3,0G 使GM GN ⋅为定值,该定值为18.如图,已知抛物线E :y 2=4x 与圆M :(x -3)2+y 2=r 2(r>0)相交于A ,B ,C ,D 四个点.(1)求r 的取值范围;(2)设四边形ABCD 的面积为S ,当S 最大时,求直线AD 与直线BC 的交点P 的坐标. 【详解】(1)联立抛物线与圆的方程22224,(3),y x x y r ⎧=⎨-+=⎩消去y ,得x 2-2x+9-r 2=0.由题意可知x 2-2x+9-r 2=0在(0,+∞)上有两个不等的实数根,所以2244(9)0,90,r r ⎧∆=-->⎨->⎩解得3,即r. (2)根据(1)可设方程x 2-2x+9-r 2=0的两个根分别为x 1,x 2(0<x 1<x 2),则A (x 1),B (x 1, -C (x 2, -D (x 2且x 1+x 2=2,x 1x 2=9-r 2, 所以S=12(AB +CD )·(x 2-x 1)=12x 2-x 1) ==令∴(0,1),f (t )=S 2=4(2+2t )(4-4t 2)= -32(t 3+t 2-t -1), f'(t )= -32(3t 2+2t -1)= -32(t+1)(3t -1),可得f (t )在(0,13)上单调递增,在(13,1)上单调递减,即当t=13时,四边形ABCD 的面积取得最大值. 根据抛物线与圆的对称性,可设P 点坐标为(m ,0),由P ,A ,D 三点共线,21=1整理得m=--t=-13, 所以点P 的坐标为(-13,0).9.设椭圆()2222:10,0x y C a b a b +=>>,离心率e =,短轴2b =点,以坐标轴为对称轴,焦点为()0,1, (1)求椭圆和抛物线的方程;(2)设坐标原点为O ,A 为抛物线上第一象限内的点,B 为椭圆是一点,且有OA OB ⊥,当线段AB 的中点在轴上时,求直线AB 的方程. 【详解】 (1)由2e =得a =,又有b =222a b c =+,解得a = 所以椭圆方程为2212010y x +=由抛物线的焦点为()0,1得,抛物线焦点在y 轴,且12p=, 抛物线的方程为:24x y =(2)由题意点A 位于第一象限,可知直线OA 的斜率一定存在且大于0 设直线OA 方程为:y kx =,0k >联立方程24y kx x y=⎧⎨=⎩得:24x kx =,可知点A 的横坐标4A x k =,即()24,4A k k因为OA OB ⊥,可设直线OB 方程为:1y x k=-连立方程22112010y x k y x ⎧=-⎪⎪⎨⎪+=⎪⎩得:2222012k x k =+,从而得x =若线段AB 的中点在y轴上,可知B x =B ⎛ ⎝有4k =0k >,解得k =从而得12A ⎫⎪⎭,()B 直线AB的方程:8180y +-=10.已知中心在原点的椭圆C 1和抛物线C 2有相同的焦点(1,0),椭圆C 1过点31,2G ⎛⎫⎪⎝⎭,抛物线2C 的顶点为原点.(1)求椭圆C 1和抛物线C 2的方程;(2)设点P 为抛物线C 2准线上的任意一点,过点P 作抛物线C 2的两条切线PA ,PB ,其中A 、B 为切点.设直线PA ,PB 的斜率分别为k 1,k 2,求证:k 1k 2为定值;②若直线AB 交椭圆C 1于C ,D 两点,S ∴PAB ,S ∴PCD 分别是∴PAB ,∴PCD 的面积,试问:PAB PCDSS是否有最小值?若有,求出最小值;若没有,请说明理由. 【详解】(1)因为抛物线C 2有相同的焦点(1,0),且顶点为原点,所以12p=,所以2p =, 所以抛物线2C 的标准方程为24y x =,设椭圆方程为22221x ya b +=,则1c =且222211914a b ab ⎧-=⎪⎨+=⎪⎩,解得224,3a b ==, 所以椭圆1C 的方程为:22143x y +=.(2)①证明:设(1,)P t -,过点P 与抛物线24y x =相切的直线为(1)y t k x -=+,由2(1)4y t k x y x -=+⎧⎨=⎩,消去x 得24440t y y k k -++=, 由∴=244()4(4)0tkk--+=,得210k tk +-=, 则121k k =-.②设1122(,),(,)A x y B x y 由①得112,y k =222y k =,则12221211,x x k k ==,所以直线AB 的方程为211121()y y y y x x x x --=--,所以211222122(1)11k k y y x k k --=--,即122(1)y x k k =--+,即直线AB 恒过定点(1,0),设点P 到直线AB 的距离为d ,所以PAB PCDS S1||||21||||2d AB AB CD d CD ⋅==⋅,当直线AB 的斜率存在时,设直线AB 的方程为(1)y k x =-, 设3344(,),(,)C x y D x y ,由24(1)y xy k x ⎧=⎨=-⎩,消去y 得2222(24)0k x k x k -++=, 0k ≠时,∴0>恒成立,||AB == 224(1)k k+=, 由22143(1)x y y k x ⎧+=⎪⎨⎪=-⎩消去y 得2222(34)84120k x k x k +-+-=,∴0>恒成立,则||CD == 2212(1)34k k+=+. 所以22224(1)12(1)34PAB PCD k S k k S k+=++22234144333k k k +==+>, 当直线AB 的斜率不存在时,直线AB 的方程为1x =,此时||4AB =,||3CD =,PAB PCDS S43=, 所以PAB PCDS S的最小值为43.11.已知过圆1C :221x y +=上一点12E ⎛ ⎝⎭的切线,交坐标轴于A 、B 两点,且A 、B 恰好分别为椭圆2C :()222210x y a b a b+=>>的上顶点和右顶点.(1)求椭圆2C 的方程;(2)已知P 为椭圆的左顶点,过点P 作直线PM 、PN 分别交椭圆于M 、N 两点,若直线MN 过定点()1,0Q -,求证:PM PN ⊥. 【详解】(1)直线OE l的方程为y ,则直线AB l的斜率AB k =. 所以AB l:y x =A ⎛ ⎝⎭,()2,0B ,椭圆方程为:221443x y +=; (2)①当MN k 不存在时,()1,1M -,()1,1N --,因为()()1,11,10PM PN ⋅=-⋅--=,所以PM PN ⊥.②当MN k 存在时,设()11,M x y ,()22,N x y ,MN l :()1y k x =+,联立()2211443y k x x y ⎧=+⎪⎪⎨+=⎪⎪⎩得:()2222136340k x k x k +++-=.所以2122613k x x k +=-+,21223413k x x k-=+,又已知左顶点P 为()2,0-, ()()()11221212122,2,24x y x y x x x x y y PM PN +⋅+=+++⋅=+,又()()()212121212111y y k x k x k x x x x =++=+++22313k k-=+, 所以222222341234131313k k k PM PN k k k --⋅=-+++++2222234124123013k k k k k --++-==+,所以PM PN ⊥.综上PM PN ⊥得证.12.已知椭圆C :()222210x y a b a b+=>>的左右顶点分别为(),0A a -,(),0B a ,点P 是椭圆C 上异于A 、B 的任意一点,设直线PA ,PB 的斜率分别为1k 、2k ,且1213k k ⋅=-,椭圆的焦距长为4. (1)求椭圆C 的离心率;(2)过右焦点F 且倾斜角为30的直线l 交椭圆C 于M 、N 两点,分别记ABM ∆,ABN ∆的面积为1S 、2S ,求12S S -的值. 【详解】(1)设点()()000,P x y x a ≠,则2200221x y a b+=,①∵2000122200013y y y k k x a x a x a ⋅=⋅==-+--,②∴联立①②得()()222230b a x a --=,∴()2203a a b x =≠,∴22222212133a b e a a c -===-=,∴e =. (2)由题意知,24c =,即2c =,由(1)知,223a b ,∴22224a b c b =+=+,∴22b =,26a =,∴椭圆C 的方程为:22162x y +=,由已知得l:)2y x =-.联立)2223162y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩,可得2210x x --=.设()11,M x y ,()22,N x y ,根据韦达定理,得122x x +=,于是)12121212S S y x x -=⨯+=+13.(本小题满分12分)记抛物线2::2C y x =-的焦点为F ,点M 在抛物线上,(3,1)N -,斜率为k 的直线l 与抛物线C 交于P Q ,两点.(1)求||||MN MF +的最小值;(2)若(2,2)M -,直线MP MQ ,的斜率都存在,且20MP MQ k k ++=;探究:直线l 是否过定点,若是,求出定点坐标;若不是,请说明理由. 【解析】(1)设抛物线C 的准线为l ',过点M 作1MM l '⊥,垂足为1M ,过点N 作1NN l '⊥,垂足为1N ,如图:则117||||||2MN MF MN MM NN +=+=,即||||MN MF +的最小值为72. (2)设直线l 的方程为()11,,y kx b P x y =+,()22,Q x y ,将直线l 与抛物线C 的方程联立得22y kx b y x=+⎧⎨=-⎩,222(22)0k x kb x b +++=,212122222,kb b x x x x k k --+== ① 又121222222MP MQ y y k k x x --+=+=-++, 即()()()()()()1221122222222kx b x kx b x x x +-+++-+=-++,()()()()12121212121222248248kx x k x x b x x x x bx x x x ++++-++-=--+-,将①代入得,222(1)0b b k b ---+=,即(1)(22)0b b k +--=,得1b =-或22b k =+, 当1b =-时,直线l 为1y kx =-,此时直线恒过(0,1)-;当22b k =+时,直线l 为22(2)2y kx k k x =++=++,此时直线恒过(2,2)M -(舍去). 综上所述,直线l 过定点(0,1)-.14.(本小题满分12分)已知抛物线2(:0)y ax a >Γ=的焦点为F ,若过F 且倾斜角为4π的直线交Γ于M ,N 两点,满足||4MN =. (I )求抛物线Γ的方程;(II )若P 为Γ上动点,B ,C 在y 轴上,圆22(1)1x y -+=内切于PBC ,求PBC 面积的最小值. 【解析】(I )抛物线2(:0)y ax a >Γ=的焦点为,04a F ⎛⎫⎪⎝⎭,则过点F 且斜率为1的直线方程为4ay x =-, 联立抛物线方程2y ax =,消去y 得:2230216a ax x -+=,设()()1122,,,M x y N x y ,则1232a x x +=, 由抛物线的定义可得12||242aMN x x a =++==,解得2a =,∴抛物线的方程为2:2y x Γ=.(II )设()00,P x y ,()0,B b ,()0,C c ,不妨设b c >,00:PB y bl y b x x --=,化简得:()0000y b x x y x b --+=,圆心()1,0到直线PB 的距离为11=,即()()()222220000002y b x y b x b y b x b -+=-+-+,不难发现02x >,上式又可化为()2000220x b y b x -+-=,同理有()2000220x c y c x -+-=,∴,b c 可以看做关于t 的一元二次方程()2000220x t y t x -+-=的两个实数根,0022y b c x -∴+=-,()()220002020042,()22x y x x bc b c x x +--=∴-=--, 由条件:2002y x =()2220042()22x x b c b c x x ∴-=∴-=--,, ()()20000014()248222PBCx S b c x x x x ∆=-==-++≥--,当且仅当04x =时取等号, ∴PBC S △面积的最小值为8.15.(本小题满分12分)已知抛物线C 的顶点为坐标原点O ,焦点F 在y 轴的正半轴上,过点F 的直线l 与抛物线相交于A ,B 两点,且满足3.4OA OB ⋅=- (1)求抛物线C 的方程;(2)若P 是抛物线C 上的动点,点,M N 在x 轴上,圆2211x y +-=()内切于PMN ∆,求PMN ∆面积的最小值. 【解析】(1)由题意,设抛物线C 的方程为22(0)x py p =>,则焦点F 的坐标为02p(,).设直线l 的方程为()()11222py kx A x y B x y =+,,,,, 联立方程得222x py p y kx ⎧=⎪⎨=+⎪⎩,消去y 得2222220,440x pkx p p k p --=∆=+>,∴221212122.4p x x pk x x p y y +==-=,,∵121234OA OB x x y y ⋅=+=-,∴ 1.p =故抛物线的方程为22x y =.(2)设()()()()0000000P x y x y M m N n ≠,,,,,,易知点M N ,的横坐标与P 的横坐标均不相同,不妨设m n >,易得直线PM 的方程为()00y y x m x m=--化简得()0000y x x m y my ---=,又圆心(0,1)到直线PM 的距离为11=,∴()()()222220000002x m y x m my x m m y -+=-+-+,不难发现02y >,故上式可化为()2000220y m x m y -+-=,同理可得()2000220y n x n y -+-=,,m n ∴可以看作是()2000220y t x t y -+-=的两个实数根,则0000222x y m n mn y y --+==--,,∴()()()2222000204484.2x y y m n m n mn y +--=+-=- ∵()00P x y ,是抛物线C 上的点,∴2002x y =,则()()222042y m n y -=-,又02y >,∴02,2y mn y =- 从而()02000000014242222PMNy y S m n y y y y y y ∆=-=⋅==-++---48≥=,当且仅当()2024y-=时取得等号,此时004,y x ==±故△PMN 面积的最小值为8.16.(12分)已知直线与抛物线:交于,两点,且2x p =C ()220y px p =>P Q POQ∆的面积为16(为坐标原点). (1)求的方程;(2)直线经过的焦点且不与轴垂直,与交于,两点,若线段的垂直平分线与轴交于点,证明:为定值.【解析】(1)将代入,得,所以的面积为. 因为,所以,故的方程为.(2)证明:由题意设直线的方程为,由,得.设,,则,所以.因为线段的中点的横坐标为,纵坐标为,所以线段的垂直平分线的方程为,令,得,所以的横坐标为,所以,故为定值.17.(12分)已知椭圆2.(1)求椭圆C 的方程;(2)设直线与椭圆C交于点E ,F ,过点E 作轴于点M ,直线FM 交椭圆C 于另一点N ,证明:. 【解析】(1)由题,,∴,, 故椭圆方程为; O C l C F l x C A B AB x D AB DF2x p =22y px =2y p =±POQ ∆21244162p p p ⨯⨯==0p >2p =C 24y x =l ()()10y k x k =-≠()214y k x y x⎧=-⎨=⎩()2222240k x k x k -++=()11,A x y ()22,B x y 212224k x x k ++=212244k x x p AB k +=++=AB 212222x x k k ++=2kAB 22212k y x k k k ⎛⎫+-=-- ⎪⎝⎭0y =223x k =+D 223k +2222312k D kF =+-=+2AB DF =2222:1(0)x y C a b a b +=>>y kx =EM x ⊥EF EN ⊥2c a =22c =a =1e =1b =2212x y +=(2)设,,,则,与椭圆方程联立得,由得,, ∴,即.18.(12分)如图,设抛物线21C x y =与()22:20C y px p =>的公共点M 的横坐标为()0t t >,过M 且与1C 相切的直线交2C 于另一点A ,过M 且与2C 相切的直线交1C 于另一点B ,记S 为MBA ∆的面积.(∴)求p 的值(用t 表示); (∴)若1,24S ⎡⎤∈⎢⎥⎣⎦,求t 的取值范围.注:若直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行也不重合,则称该直线与抛物线相切. 【解析】00(,)E x y ()00,F x y --00(),M x 000:()2FM y l y x x x =-()22222220002240x y x x y x x y x +-+-=2000220022N F N x y x x x x x y +=-=+230002200322N x y x x x y +=+()0000000000022N N ENN N N y x x y y y y y x k x x x x x x x ---===----00230000022003222y y x y x x x x y =-+-+2200000222220000000222224y y y x y x x x x y x y +=-=⋅+-+2220000000000022222y x y x x x x y x y y +-=-==-00001EN EF x y k k y x ⋅=-⋅=-EF EN⊥(∴)因点M 在抛物线1C :2x y =上,故()()2,0M t tt >,又点M 在抛物线2C :()220y px p =>上,故()222tpt =,则32t p =(∴)设点()11,A x y ,直线MA 的方程为()2y k x t t =-+,联立方程组22(),,y k x t t x y ⎧=-+⎨=⎩消去y ,得220x kx kt t -+-=,则()()222420k kt tk t ∆=--=-=,因此2k t ,即直线MA的方程为22y tx t =-则直线MA 的斜率223112211132y t y t t k t y x t y t t t --====-+-,从而212t y =-,即2,42t t A ⎛⎫- ⎪⎝⎭,同理,直线MB 的方程为222t t y x =+,点2,24t t B ⎛⎫- ⎪⎝⎭,因此2t MB t =-=2,42t t A ⎛⎫- ⎪⎝⎭到直线MB :2022t t x y -+=的距离29t d ==MBA ∆的面积23911272232t t S MB d ===,即32732t S =,因为1,24S ⎡⎤∈⎢⎥⎣⎦,即31272432t ≤≤,解得24,33t ⎡⎤∈⎢⎥⎣⎦.19.已知椭圆2222:1x y C a b+=(0a b >>)C 的短轴为直径的圆与直线:3450l x y +-=相切.(1)求C 的方程;(2)直线y x m =+交椭圆C 于()11,M x y ,()22,N x y 两点,且12x x >.已知l 上存在点P ,使得PMN △是以PMN ∠为顶角的等腰直角三角形.若P 在直线MN 右下方,求m 的值. 【解析】 (1)依题意,1b =,因为离心率c e a ===,=a = 所以椭圆C 的标准方程为2213x y +=.(2)因为直线y x m =+的倾斜角为45︒,且PMN △是以PMN ∠为顶角的等腰直角三角形,P 在直线MN 右下方,所以NP x ∥轴.过M 作NP 的垂线,垂足为Q ,则Q 为线段NP 的中点,所以()12,Q x y ,故()1222,P x x y -, 所以()12232450x x y -+-=, 即()()12232450x x x m -++-=, 整理得126450x x m ++-=.①由2233,x y y x m⎧+=⎨=+⎩得2246330x mx m ++-=. 所以223648480m m ∆=-+>,解得22m -<<, 所以1232x x m +=-,②()212314x x m =-,③ 由①-②得,112mx =-,④ 将④代入②得21x m =--,⑤将④⑤代入③得()()()3111124m m m m ⎛⎫-+=-+ ⎪⎝⎭,解得1m =-.综上,m 的值为1-.20.(12分)已知直线2x p =与抛物线C :()220y px p =>交于P ,Q 两点,且POQ∆的面积为16(O 为坐标原点). (1)求C 的方程.(2)直线l 经过C 的焦点F 且l 不与x 轴垂直,l 与C 交于A ,B 两点,若线段AB 的垂直平分线与x 轴交于点D ,试问在x 轴上是否存在点E ,使AB DE为定值?若存在,求该定值及E 的坐标;若不存在,请说明理由. 【解析】(1)将2x p =代入22y px =,得2y p =±,所以POQ ∆的面积为21244162p p p ⨯⨯==. 因为0p >,所以2p =,故C 的方程为24y x =. (2)由题意设直线l 的方程为()()10y k x k =-≠,由()21,4,y k x y x ⎧=-⎨=⎩得()2222240k x k x k -++=.设()11,A x y ,()22,B x y ,则212224k x x k ++=,所以212244||k AB x x p k+=++=. 因为线段AB 的中点的横坐标为212222x x k k++=,纵坐标为2k , 所以线段AB 的垂直平分线的方程为22212k y x k k k ⎛⎫+-=-- ⎪⎝⎭, 令0y =,得223x k =+,所以D 的横坐标为223k +,设(),0E t ,则()2223223t k DE t k k-+=+-=,()224432AB k DE t k +∴=-+, 所以当且仅当32t -=,即1t =时,AB DE为定值,且定值为2,故存在点E ,且E 的坐标为()1,0.21.已知直线l 与抛物线()2:20C x py p =>相交于,A B 两个不同点,点M 是抛物线C 在点,A B 处的切线的交点。

专题50 圆锥曲线(多选题部分)(解析版)

专题50 圆锥曲线(多选题部分)(解析版)

专题50 圆锥曲线(多选题部分)一、题型选讲题型一 、圆锥曲线定义与性质的考查例1、(202年山东卷)已知曲线22:1C mx ny +=( ) A .若0m =,0n >,则C 是两条直线 B .若0m n =>,则CC .若0m n >>,则C 是椭圆,其焦点在x 轴上D .若0mn <,则C是双曲线,其渐近线方程为y = 【答案】AD【详解】对于A ,若0m =,0n >,则2:1C ny =即y =,为两条直线,故A 正确; 对于B ,若0m n =>,则221:C x y n +=,所以CB 错误; 对于C ,若0m n >>,则110m n<<, 所以22:1C mx ny +=即22:111x y C m n +=为椭圆,且焦点在y 轴上,故C 错误; 对于D ,若0mn <,则22:111x y C m n +=为双曲线,且其渐近线为y ==,故D 正确.例2、已知双曲线C过点(且渐近线方程为3y x =±,则下列结论正确的是( ) A .C 的方程为2213x y -=B .CC .曲线21x y e -=-经过C 的一个焦点 D.直线10x -=与C 有两个公共点【答案】AC【详解】对于A:由双曲线的渐近线方程为3y x =±,可设双曲线方程为223x y λ-=,把点代入,得923λ-=,即1λ=.∴双曲线C 的方程为2213x y -=,故A 正确; 对于B :由23a =,21b =,得2c =,∴双曲线C=,故B 错误; 对于C :取20x +=,得2x =-,0y =,曲线21x y e +=-过定点(2,0)-,故C 正确;对于D :双曲线的渐近线0x ±=,直线10x --=与双曲线的渐近线平行,直线10x -=与C 有1个公共点,故D 不正确.故选:AC .例3、(2020·山东济南外国语学校高三月考)已知双曲线的左、右焦点分别为为双曲线上一点,且,若,则对双曲线中的有关结论正确的是( ) A .B .C .D .【答案】ABCD【解析】由双曲线的定义知:, 由,在中,由余弦定理可得:,22221(0,0)x y a b a b-=>>12,,F F P122PF PF =12sin 4F PF ∠=,,,a b c e e =2e =b =b =12212,4PF PF PF a PF a -==∴=12sin F PF ∠=121cos 4F PF ∠=±12PF F △222416412244a a c a a +-=±⨯⨯解得或,, 或,又, 可得或故选:ABCD例4、已知双曲线,若的离心率最小,则此时( )A.BC .双曲线的一个焦点坐标为D【答案】AB【解析】因为,所以双曲线的焦点在轴上,所以,,所以.又双曲线的离心率,则.因为,所以,当且仅当,即时,等号成立,则双曲线的离心率最小时,,,,则双曲,故A ,B 正确;双曲线的焦点坐标为(,0),故C 错误;焦点,故D 错误.故选:AB .题型二圆锥曲线的综合性问题例5、的椭圆为“黄金椭圆”.如图,已知椭圆C :22221(0)x y a b a b +=>>,12,A A 分别为左、右顶点,1B ,2B 分别为上、下顶点,1F ,2F 分别为左、右焦点,P 为椭圆上一点,则满足下列条件能使椭圆C 为“黄金椭圆”的有( )224c a =226c a=2ce a∴==2c a ∴=c =222c a b =+b =b =()222:104x y C m m m m -=>-+C 2m =0y ±=)0m >C x 2a m =224b m m =-+224c m =+c e a =222244c m e m a m m+===+0m >244e m m =+≥=4m m=2m =C 22a =26b =28c =0y ±=±()0y +=2==A .2112212A F F A F F ⋅= B .11290F B A ∠=︒C .1PF x ⊥轴,且21//PO A BD .四边形221AB A B 的内切圆过焦点1F ,2F【答案】BD【详解】∵椭圆2222:1(0)x y C a b a b+=>>∴121212(,0),,0),(0,),(0,),(,0),(,)(0A a A a B b B b F c F c ---对于A ,若2112212A F F A F F ⋅=,则22()(2)a c c -=,∴2a c c -=,∴13e =,不满足条件,故A 不符合条件;对于B ,11290F B A ︒∠=,∴222211112A F B F B A =+ ∴2222()a c a a b +=++,∴220c ac a +-= ∴210e e +-=,解得e =e =,故B 符合条件; 对于C ,1PF x ⊥轴,且21//PO A B ,∴2,b P c a ⎛⎫- ⎪⎝⎭∵21PO A B k k =∴2b c ab a =--,解得 ∵,∴b c =222a b c =+a =∴,不满足题意,故C不符合条件;对于D,四边形的内切圆过焦点即四边形的内切圆的半径为c,∴∴,∴,解得(舍去)或,∴,故D符合条件.例6、已知椭圆()22:10x yC a ba b+=>>的左、右焦点分别为1F,2F且122F F=,点()1,1P在椭圆内部,点Q在椭圆上,则以下说法正确的是()A.1QF QP+的最小值为1B.椭圆C的短轴长可能为2C.椭圆C的离心率的取值范围为⎛⎝⎭D.若11PF FQ=,则椭圆C【答案】ACD【详解】A.因为12||2F F,所以22(1,0),||1F PF=,所以122||||||||||1QF QP QF QP PF+=+≥=,当2,,Q F P,三点共线时,取等号,故正确;B.若椭圆C的短轴长为2,则1,2b a==,所以椭圆方程为22121x y+=,11121+>,则点P在椭圆外,故错误;C.因为点(1,1)P在椭圆内部,所以111a b+<,又1a b-=,所以1b a=-,所以1111+<-a a,即2310a a-+>,解得236(1244a+++>==,12+>,所以12=<e,所以椭圆C的离心率的取值范围为,故正确;2cea===1221A B A B12,F F1221A B A B ab=422430c a c a-+=42310e e-+=235e+=235e-=51e-=D .若11PF FQ =,则1F 为线段PQ 的中点,所以(3,1)Q --,所以911+=a b,又1a b -=,即21190-+=a a ,解得a ====,所以椭圆C,故正确.例7、(2020·山东高三开学考试)已知双曲线,过其右焦点的直线与双曲线交于两点、,则( )A .若、同在双曲线的右支,则的斜率大于B .若在双曲线的右支,则最短长度为C .的最短长度为D .满足的直线有4条 【答案】BD【解析】易知双曲线的右焦点为,设点、,设直线的方程为, 当时,直线的斜率为, 联立,消去并整理得. 则,解得. 对于A 选项,当时,直线轴,则、两点都在双曲线的右支上,此时直线的斜率不存在,A 选项错误;对于B 选项,,B 选项正确; 对于C 选项,当直线与轴重合时,,C 选项错误; 对于D 选项,当直线与轴重合时,; 当直线与轴不重合时,由韦达定理得,, 22:1916x y C -=F l A B A B l 43A FA 2AB 32311AB =C ()5,0F ()11,A x y ()22,B x y l 5x my =+0m ≠l 1k m=225169144x my x y =+⎧⎨-=⎩x ()221691602560m y my -++=()()222222169016042561699610m m m m ⎧-≠⎪⎨∆=-⨯-=+>⎪⎩34m ≠0m =l x ⊥A B l min 532F c a A =-=-=l x 32263AB a ==<l x 2611AB a ==≠l x 122160169m y y m +=--122256169y y m =-由弦长公式可得,解得或.故满足的直线有条,D 选项正确. 故选:BD.例8、(2020·江苏扬州中学高二月考)已知椭圆的左、右焦点分别为,且,点在椭圆内部,点在椭圆上,则以下说法正确的是( )A .的最小值为B .椭圆的短轴长可能为2C .椭圆的离心率的取值范围为D .若,则椭圆【答案】ACD【解析】A. 因为,所以,所以,当,三点共线时,取等号,故正确;B.若椭圆的短轴长为2,则,所以椭圆方程为,,则点在椭圆外,故错误;C. 因为点在椭圆内部,所以,又,所以,所以,即,解得,所以,所以椭圆的离心率的取值范围为,故正确;()2122961169m AB y y m +=-==-()226161611169m m +==-4m =±m =11AB =4()22:10x y C a b a b+=>>1F 2F 122F F =()1,1P Q 1QF QP +21a -C C ⎛ ⎝⎭11PF FQ =C 122F F =()221,0,1=F PF 1222221+=-+≥-=-QF QP a QF QP a PF a 2,,Q F P C 1,2b a ==22121x y +=11121+>P ()1,1P 111a b+<1a b -=1b a =-1111+<-a a 2310a a -+>(2136244++>==a >12=<e C 10,2⎛⎫⎪ ⎪⎝⎭D. 若,则为线段的中点,所以,所以,又,即,解得,所以椭圆的,故正确.故选:ACD例9、(2020届山东省枣庄、滕州市高三上期末)在平面直角坐标系xOy 中,抛物线2:2C y px =(0)p >的焦点为F ,准线为l.设l 与x 轴的交点为K ,P 为C 上异于O 的任意一点,P 在l 上的射影为E ,EPF ∠的外角平分线交x 轴于点Q ,过Q 作QN PE ⊥交EP 的延长线于N ,作QM PF ⊥交线段PF 于点M ,则( )A .||||PE PF =B .||||PF QF =C .||||PN MF =D .||||PN KF =【答案】ABD 【解析】由抛物线的定义,PE PF =,A 正确;∵//PN QF ,PQ 是FPN ∠的平分线,∴FQP NPQ FPQ ∠=∠=,∴||||PF QF =,B 正确; 若||||PN MF =,由PQ 是外角平分线,QN PE ⊥,QM PF ⊥得QM QN =,从而有PM PN =,于是有PM FM =,这样就有QP QF =,PFQ ∆为等边三角形,60FPQ ∠=︒,也即有60FPE ∠=︒,11PF FQ =1F PQ ()3,1Q --911+=a b1a b -=21190-+=a a 21122244++===a =C这只是在特殊位置才有可能,因此C 错误;连接EF ,由A 、B 知PE QF =,又//PE QF ,EPQF 是平行四边形,∴EF PQ =,显然EK QN =,∴KF PN =,D 正确.二、达标训练1、(2020·山东高三其他模拟)关于双曲线与双曲线,下列说法正确的是( ).A .它们有相同的渐近线B .它们有相同的顶点C .它们的离心率不相等D .它们的焦距相等【答案】CD【解析】双曲线的顶点坐标,渐近线方程:,离心率为:,焦距为10.双曲线,即:,它的顶点坐标,渐近线方程:,离心率为:,焦距为10. 所以它们的离心率不相等,它们的焦距相等. 故选:.2、(2020届山东省滨州市高三上期末)已知双曲线C :22221(0,0)x y a b a b -=>>的左、右焦点分别为1(5,0)F -,2(5,0)F ,则能使双曲线C 的方程为221169x y -=的是( )A .离心率为54B .双曲线过点95,4⎛⎫ ⎪⎝⎭C .渐近线方程为340±=x yD .实轴长为4【答案】ABC【解析】由题意,可得:焦点在x 轴上,且5c =;A 选项,若离心率为54,则4a =,所以2229b c a =-=,此时双曲线的方程为:221169x y -=,故A 正确;221:1916x y C -=222:1916y x C -=-221:1916x y C -=(3,0)430x y ±=53222:1916y x C -=-221169x y -=(4,0)±340±=x y 54CDB 选项,若双曲线过点95,4⎛⎫ ⎪⎝⎭,则22222812516125a b a b c ⎧⎪⎪-=⎨⎪+==⎪⎩,解得:22169a b ⎧=⎨=⎩;此时双曲线的方程为:221169x y -=,故B 正确;C 选项,若双曲线的渐近线方程为340±=x y ,可设双曲线的方程为:22(0)169x y m m -=>,所以216925c m m =+=,解得:1m =,所以此时双曲线的方程为:221169x y -=,故C 正确; D 选项,若实轴长为4,则2a =,所以22221b c a =-=,此时双曲线的方程为:224121x y -=,故D 错误;故选:ABC.3、(2020届山东省德州市高三上期末)已知抛物线2:2C y px =()0p >的焦点为F经过点F ,直线l 与抛物线C 交于点A 、B 两点(点A 在第一象限),与抛物线的准线交于点D ,若8AF =,则以下结论正确的是( ) A .4p = B .DF FA =C .2BD BF =D .4BF =【答案】ABC 【解析】 如下图所示:分别过点A 、B 作抛物线C 的准线m 的垂线,垂足分别为点E 、M .抛物线C 的准线m 交x 轴于点P ,则PF p =,由于直线l 60,//AE x 轴,60EAF ∴∠=,由抛物线的定义可知,AE AF =,则AEF ∆为等边三角形,60EFP AEF ∴∠=∠=,则30PEF ∠=,228AF EF PF p ∴====,得4p =,A 选项正确;2AE EF PF ==,又//PF AE ,F ∴为AD 的中点,则DF FA =,B 选项正确;60DAE ∴∠=,30ADE ∴∠=,22BD BM BF ∴==(抛物线定义),C 选项正确; 2BD BF =,118333BF DF AF ∴===,D 选项错误. 故选:ABC.4、(2020届山东省日照市高三上期末联考)过抛物线24y x =的焦点F 作直线交抛物线于A ,B 两点,M为线段AB 的中点,则( ) A .以线段AB 为直径的圆与直线32x =-相离 B .以线段BM 为直径的圆与y 轴相切 C .当2AF FB =时,92AB = D .AB 的最小值为4【答案】ACD【解析】对于选项A ,点M 到准线1x =-的距离为()1122AF BF AB +=,于是以线段AB 为直径的圆与直线1x =-一定相切,进而与直线32x =-一定相离: 对于选项B ,显然AB 中点的横坐标与12BM 不一定相等,因此命题错误. 对于选项C ,D ,设()11,A x y ,()22,B x y ,直线AB 方程为1x my =+,联立直线与抛物线方程可得2440y my --=,124y y =-,121=x x ,若设()24,4A a a ,则211,4B aa ⎛⎫- ⎪⎝⎭,于是21221424AB x x p a a=++=++,AB 最小值为4;当2AF FB =可得122y y =-, 142a a ⎛⎫=-- ⎪⎝⎭,所212a =,92AB =.故选:ACD.5、(2020届山东省临沂市高三上期末)已知P 是椭圆C :2216x y +=上的动点,Q 是圆D :()22115x y ++=上的动点,则( )A .CB .C 的离心率为6C .圆D 在C 的内部D .PQ 【答案】BC【解析】2216x y += a ∴=,1b =c ∴===C 的焦距为c e a ===.设(), P x y (x ≤≤, 则()()22222256441111665555x x y x x PD ⎛⎫++=++-=++≥> ⎪⎝⎭=,所以圆D 在C 的内部,且PQ =. 故选:BC .6、(2020届山东省烟台市高三上期末)已知抛物线2:4C y x =的焦点为F 、准线为l ,过点F 的直线与抛物线交于两点()11,P x y ,()22,Q x y ,点P 在l 上的射影为1P ,则 ( ) A .若126x x +=,则8PQ =B .以PQ 为直径的圆与准线l 相切C .设()0,1M ,则1PM PP +≥D .过点()0,1M 与抛物线C 有且仅有一个公共点的直线至多有2条 【答案】ABC【解析】对于选项A,因为2p =,所以122x x PQ ++=,则8PQ =,故A 正确;对于选项B,设N 为PQ 中点,设点N 在l 上的射影为1N ,点Q 在l 上的射影为1Q ,则由梯形性质可得111222PP QQ PF QF PQ NN ++===,故B 正确; 对于选项C,因为()1,0F ,所以1PM PP PM PF MF +=+≥=故C 正确; 对于选项D,显然直线0x =,1y =与抛物线只有一个公共点,设过M 的直线为1y kx =+, 联立214y kx y x=+⎧⎨=⎩,可得()222410k x k x +-+=,令0∆=,则1k =,所以直线1y x =+与抛物线也只有一个公共点,此时有三条直线符合题意,故D 错误; 故选:ABC7、(2020·福清西山学校高二期中)在平面直角坐标系中,动点与两个定点和连线的斜率之积等于,记点的轨迹为曲线,直线:与交于,两点,则( ) A .的方程为B .C .的渐近线与圆相切D .满足的直线仅有1条【答案】AC【解析】设点,整理得,所以点的轨迹为曲线的方程为,故A 正确;又离心率,故B 不正确; 圆的圆心到曲线的渐近线为的距离为,又圆的半径为1,故C 正确;直线与曲线的方程联立整理得,设, ,且,xOy P ()1F)2F 13P E l ()2y k x =-E A B E 221(3x y x -=≠E E ()2221x y -+=AB =l (),P xy 13=2213x y -=P E 221(3x y x -=≠e ==()2221x y -+=()20,E y x =1d ==()2221x y -+=l E ()2221(3y k x x y x ⎧=-⎪⎨-=≠⎪⎩()222213+121230k x x k k ---=()()1122,,A B x y x y ,()()()224214441312312+1>0kk kk ∆=----=2130k -≠有,所以, 要满足,则需或或,当,此时,而曲线E 上,所以满足条件的直线有两条,故D 不正确,故选:AC .2122221212123+,1313x xx k x kk k ---==--)221+13k AB k===-AB =)221+13k k=-0k =1k =1k =-0k =)()AB ,x ≠。

全国卷高考圆锥曲线真题答案

全国卷高考圆锥曲线真题答案

全国卷高考圆锥曲线真题参考答案与试题解析一.解答题(共21小题)1.(2015•新课标II)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点(,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.【分析】(1)联立直线方程和椭圆方程,求出对应的直线斜率即可得到结论.(2)四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M,建立方程关系即可得到结论.【解答】解:(1)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),将y=kx+b代入9x2+y2=m2(m>0),得(k2+9)x2+2kbx+b2﹣m2=0,则判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,则x1+x2=,则x M==,y M=kx M+b=,于是直线OM的斜率k OM==,即k OM•k=﹣9,△直线OM的斜率与l的斜率的乘积为定值.(2)四边形OAPB能为平行四边形.△直线l过点(,m),△由判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,即k2m2>9b2﹣9m2,△b=m﹣m,△k2m2>9(m﹣m)2﹣9m2,即k2>k2﹣6k,则k>0,△l不过原点且与C有两个交点的充要条件是k>0,k≠3,由(1)知OM的方程为y=x,设P的横坐标为x P,由得,即x P=,将点(,m)的坐标代入l的方程得b=,即l的方程为y=kx+,将y=x,代入y=kx+,得kx+=x解得x M=,四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M,于是=2×,解得k1=4﹣或k2=4+,△k i>0,k i≠3,i=1,2,△当l的斜率为4﹣或4+时,四边形OAPB能为平行四边形.【点评】本题主要考查直线和圆锥曲线的相交问题,联立方程组转化为一元二次方程,利用根与系数之间的关系是解决本题的关键.综合性较强,难度较大.2.(2015•河北)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(△)当k=0时,分別求C在点M和N处的切线方程.(△)y轴上是否存在点P,使得当k变动时,总有△OPM=△OPN?(说明理由)【分析】(I)联立,可得交点M,N的坐标,由曲线C:y=,利用导数的运算法则可得:y′=,利用导数的几何意义、点斜式即可得出切线方程.(II)存在符合条件的点(0,﹣a),设P(0,b)满足△OPM=△OPN.M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为:k1,k2.直线方程与抛物线方程联立化为x2﹣4kx﹣4a=0,利用根与系数的关系、斜率计算公式可得k1+k2=.k1+k2=0⇔直线PM,PN的倾斜角互补⇔△OPM=△OPN.即可证明.【解答】解:(I)联立,不妨取M,N,由曲线C:y=可得:y′=,△曲线C在M点处的切线斜率为=,其切线方程为:y﹣a=,化为.同理可得曲线C在点N处的切线方程为:.(II)存在符合条件的点(0,﹣a),下面给出证明:设P(0,b)满足△OPM=△OPN.M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为:k1,k2.联立,化为x2﹣4kx﹣4a=0,△x1+x2=4k,x1x2=﹣4a.△k1+k2=+==.当b=﹣a时,k1+k2=0,直线PM,PN的倾斜角互补,△△OPM=△OPN.△点P(0,﹣a)符合条件.【点评】本题考查了导数的运算法则、利用导数的几何意义研究切线方程、直线与抛物线相交问题转化为方程联立可得根与系数的关系、斜率计算公式,考查了推理能力与计算能力,属于中档题.3.(2014•新课标I)已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆的焦点,直线AF的斜率为,O为坐标原点.(△)求E的方程;(△)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.【分析】(△)通过离心率得到a、c关系,通过A求出a,即可求E的方程;(△)设直线l:y=kx﹣2,设P(x1,y1),Q(x2,y2)将y=kx﹣2代入,利用△>0,求出k的范围,利用弦长公式求出|PQ|,然后求出△OPQ的面积表达式,利用换元法以及基本不等式求出最值,然后求解直线方程.【解答】解:(△)设F(c,0),由条件知,得又,所以a=2,b2=a2﹣c2=1,故E的方程.….(6分)(△)依题意当l△x轴不合题意,故设直线l:y=kx﹣2,设P(x1,y1),Q(x2,y2)将y=kx﹣2代入,得(1+4k2)x2﹣16kx+12=0,当△=16(4k2﹣3)>0,即时,从而又点O到直线PQ的距离,所以△OPQ的面积=,设,则t>0,,当且仅当t=2,k=±等号成立,且满足△>0,所以当△OPQ的面积最大时,l的方程为:y=x﹣2或y=﹣x﹣2.…(12分)【点评】本题考查直线与椭圆的位置关系的应用,椭圆的求法,基本不等式的应用,考查转化思想以及计算能力.4.(2014•新课标II)已知函数f(x)=e x﹣e﹣x﹣2x.(△)讨论f(x)的单调性;(△)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(△)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).【分析】对第(△)问,直接求导后,利用基本不等式可达到目的;对第(△)问,先验证g(0)=0,只需说明g(x)在[0+∞)上为增函数即可,从而问题转化为“判断g′(x)>0是否成立”的问题;对第(△)问,根据第(△)问的结论,设法利用的近似值,并寻求ln2,于是在b=2及b >2的情况下分别计算,最后可估计ln2的近似值.【解答】解:(△)由f(x)得f′(x)=e x+e﹣x﹣2,即f′(x)≥0,当且仅当e x=e﹣x即x=0时,f′(x)=0,△函数f(x)在R上为增函数.(△)g(x)=f(2x)﹣4bf(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,则g′(x)=2[e2x+e﹣2x﹣2b(e x+e﹣x)+(4b﹣2)]=2[(e x+e﹣x)2﹣2b(e x+e﹣x)+(4b﹣4)]=2(e x+e﹣x﹣2)(e x+e﹣x+2﹣2b).①△e x+e﹣x>2,e x+e﹣x+2>4,△当2b≤4,即b≤2时,g′(x)≥0,当且仅当x=0时取等号,从而g(x)在R上为增函数,而g(0)=0,△x>0时,g(x)>0,符合题意.②当b>2时,若x满足2<e x+e﹣x<2b﹣2即,得,此时,g′(x)<0,又由g(0)=0知,当时,g(x)<0,不符合题意.综合①、②知,b≤2,得b的最大值为2.(△)△1.4142<<1.4143,根据(△)中g(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,为了凑配ln2,并利用的近似值,故将ln即代入g(x)的解析式中,得.当b=2时,由g(x)>0,得,从而;令,得>2,当时,由g(x)<0,得,得.所以ln2的近似值为0.693.【点评】1.本题三个小题的难度逐步增大,考查了学生对函数单调性深层次的把握能力,对思维的要求较高,属压轴题.2.从求解过程来看,对导函数解析式的合理变形至关重要,因为这直接影响到对导数符号的判断,是解决本题的一个重要突破口.3.本题的难点在于如何寻求ln2,关键是根据第(2)问中g(x)的解析式探究b的值,从而获得不等式,这样自然地将不等式放缩为的范围的端点值,达到了估值的目的.5.(2014•广西)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(△)求C的方程;(△)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.【分析】(△)设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C的方程,求得x0=,根据|QF|=|PQ|求得p的值,可得C的方程.(△)设l的方程为x=my+1 (m≠0),代入抛物线方程化简,利用韦达定理、中点公式、弦长公式求得弦长|AB|.把直线l′的方程代入抛物线方程化简,利用韦达定理、弦长公式求得|MN|.由于MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=|MN|,由此求得m的值,可得直线l的方程.【解答】解:(△)设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C:y2=2px(p>0),可得x0=,△点P(0,4),△|PQ|=.又|QF|=x0+=+,|QF|=|PQ|,△+=×,求得p=2,或p=﹣2(舍去).故C的方程为y2=4x.(△)由题意可得,直线l和坐标轴不垂直,y2=4x的焦点F(1,0),设l的方程为x=my+1(m≠0),代入抛物线方程可得y2﹣4my﹣4=0,显然判别式△=16m2+16>0,y1+y2=4m,y1•y2=﹣4.△AB的中点坐标为D(2m2+1,2m),弦长|AB|=|y1﹣y2|==4(m2+1).又直线l′的斜率为﹣m,△直线l′的方程为x=﹣y+2m2+3.过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,把线l′的方程代入抛物线方程可得y2+y﹣4(2m2+3)=0,△y3+y4=,y3•y4=﹣4(2m2+3).故线段MN的中点E的坐标为(+2m2+3,),△|MN|=|y3﹣y4|=,△MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=|MN|,△+DE2=MN2,△4(m2+1)2 ++=×,化简可得m2﹣1=0,△m=±1,△直线l的方程为x﹣y﹣1=0,或x+y﹣1=0.【点评】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理、弦长公式的应用,体现了转化的数学思想,属于难题.6.(2013•新课标△)平面直角坐标系xOy中,过椭圆M:(a>b>0)右焦点的直线x+y﹣=0交M于A,B两点,P为AB的中点,且OP的斜率为.(△)求M的方程(△)C,D为M上的两点,若四边形ACBD的对角线CD△AB,求四边形ACBD面积的最大值.【分析】(△)把右焦点(c,0)代入直线可解得c.设A(x1,y1),B(x2,y2),线段AB 的中点P(x0,y0),利用“点差法”即可得到a,b的关系式,再与a2=b2+c2联立即可得到a,b,c.(△)由CD△AB,可设直线CD的方程为y=x+t,与椭圆的方程联立得到根与系数的关系,即可得到弦长|CD|.把直线x+y﹣=0与椭圆的方程联立得到根与系数的关系,即可得到弦长|AB|,利用S四边形ACBD=即可得到关于t的表达式,利用二次函数的单调性即可得到其最大值.【解答】解:(△)把右焦点(c,0)代入直线x+y﹣=0得c+0﹣=0,解得c=.设A(x1,y1),B(x2,y2),线段AB的中点P(x0,y0),则,,相减得,△,△,又=,△,即a2=2b2.联立得,解得,△M的方程为.(△)△CD△AB,△可设直线CD的方程为y=x+t,联立,消去y得到3x2+4tx+2t2﹣6=0,△直线CD与椭圆有两个不同的交点,△△=16t2﹣12(2t2﹣6)=72﹣8t2>0,解﹣3<t<3(*).设C(x3,y3),D(x4,y4),△,.△|CD|===.联立得到3x2﹣4x=0,解得x=0或,△交点为A(0,),B,△|AB|==.△S四边形ACBD===,△当且仅当t=0时,四边形ACBD面积的最大值为,满足(*).△四边形ACBD面积的最大值为.【点评】本题综合考查了椭圆的定义、标准方程及其性质、“点差法”、中点坐标公式、直线与椭圆相交问题转化为方程联立得到一元二次方程根与系数的关系、弦长公式、四边形的面积计算、二次函数的单调性等基础知识,考查了推理能力、数形结合的思想方法、计算能力、分析问题和解决问题的能力.7.(2013•新课标△)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(△)求C的方程;(△)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.【分析】(I)设动圆的半径为R,由已知动圆P与圆M外切并与圆N内切,可得|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,求出即可;(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤4﹣2=2,所以R≤2,当且仅当△P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.分①l的倾斜角为90°,此时l与y轴重合,可得|AB|.②若l的倾斜角不为90°,由于△M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,根据,可得Q(﹣4,0),所以可设l:y=k(x+4),与椭圆的方程联立,得到根与系数的关系利用弦长公式即可得出.【解答】解:(I)由圆M:(x+1)2+y2=1,可知圆心M(﹣1,0);圆N:(x﹣1)2+y2=9,圆心N(1,0),半径3.设动圆的半径为R,△动圆P与圆M外切并与圆N内切,△|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,△a=2,c=1,b2=a2﹣c2=3.△曲线C的方程为(x≠﹣2).(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤3﹣1=2,所以R≤2,当且仅当△P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.①l的倾斜角为90°,则l与y轴重合,可得|AB|=.②若l的倾斜角不为90°,由于△M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,则,可得Q(﹣4,0),所以可设l:y=k(x+4),由l于M相切可得:,解得.当时,联立,得到7x2+8x﹣8=0.△,.△|AB|===由于对称性可知:当时,也有|AB|=.综上可知:|AB|=或.【点评】本题综合考查了两圆的相切关系、直线与圆相切问题、椭圆的定义及其性质、直线与椭圆相交问题转化为方程联立得到根与系数的关系、弦长公式等基础知识,需要较强的推理能力和计算能力及其分类讨论的思想方法.8.(2014•沧州校级一模)已知双曲线C:=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为3,直线y=2与C的两个交点间的距离为.(I)求a,b;(II)设过F2的直线l与C的左、右两支分别相交于A、B两点,且|AF1|=|BF1|,证明:|AF2|、|AB|、|BF2|成等比数列.【分析】(I)由题设,可由离心率为3得到参数a,b的关系,将双曲线的方程用参数a表示出来,再由直线建立方程求出参数a即可得到双曲线的方程;(II)由(I)的方程求出两焦点坐标,设出直线l的方程设A(x1,y1),B(x2,y2),将其与双曲线C的方程联立,得出x1+x2=,,再利用|AF1|=|BF1|建立关于A,B坐标的方程,得出两点横坐标的关系,由此方程求出k的值,得出直线的方程,从而可求得:|AF2|、|AB|、|BF2|,再利用等比数列的性质进行判断即可证明出结论.【解答】解:(I)由题设知=3,即=9,故b2=8a2所以C的方程为8x2﹣y2=8a2将y=2代入上式,并求得x=±,由题设知,2=,解得a2=1所以a=1,b=2(II)由(I)知,F1(﹣3,0),F2(3,0),C的方程为8x2﹣y2=8 ①由题意,可设l的方程为y=k(x﹣3),|k|<2代入①并化简得(k2﹣8)x2﹣6k2x+9k2+8=0设A(x1,y1),B(x2,y2),则x1≤﹣1,x2≥1,x1+x2=,,于是|AF1|==﹣(3x1+1),|BF1|==3x2+1,|AF1|=|BF1|得﹣(3x1+1)=3x2+1,即故=,解得,从而=﹣由于|AF2|==1﹣3x1,|BF2|==3x2﹣1,故|AB|=|AF2|﹣|BF2|=2﹣3(x1+x2)=4,|AF2||BF2|=3(x1+x2)﹣9x1x2﹣1=16因而|AF2||BF2|=|AB|2,所以|AF2|、|AB|、|BF2|成等比数列【点评】本题考查直线与圆锥曲线的综合关系,考查了运算能力,题设条件的转化能力,方程的思想运用,此类题综合性强,但解答过程有其固有规律,一般需要把直线与曲线联立利用根系关系,解答中要注意提炼此类题解答过程中的共性,给以后解答此类题提供借鉴.9.(2012•新课标)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若△BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.【分析】(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,由△ABD的面积S△ABD=,知=,由此能求出圆F的方程.(2)由对称性设,则点A,B关于点F对称得:,得:,由此能求出坐标原点到m,n距离的比值.【解答】解:(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,△△ABD的面积S△ABD=,△=,解得p=2,所以F坐标为(0,1),△圆F的方程为x2+(y﹣1)2=8.(2)由题设,则,△A,B,F三点在同一直线m上,又AB为圆F的直径,故A,B关于点F对称.由点A,B关于点F对称得:得:,直线,切点直线坐标原点到m,n距离的比值为.【点评】本题考查抛物线与直线的位置关系的综合应用,具体涉及到抛物线的简单性质、圆的性质、导数的应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.10.已知抛物线C:y=(x+1)2与圆(r>0)有一个公共点A,且在A处两曲线的切线为同一直线l.(△)求r;(△)设m,n是异于l且与C及M都相切的两条直线,m,n的交点为D,求D到l的距离.【分析】(△)设A(x0,(x0+1)2),根据y=(x+1)2,求出l的斜率,圆心M(1,),求得MA的斜率,利用l△MA建立方程,求得A的坐标,即可求得r的值;(△)设(t,(t+1)2)为C上一点,则在该点处的切线方程为y﹣(t+1)2=2(t+1)(x﹣t),即y=2(t+1)x﹣t2+1,若该直线与圆M相切,则圆心M到该切线的距离为,建立方程,求得t的值,求出相应的切线方程,可得D的坐标,从而可求D到l的距离.【解答】解:(△)设A(x0,(x0+1)2),△y=(x+1)2,y′=2(x+1)△l的斜率为k=2(x0+1)当x0=1时,不合题意,所以x0≠1圆心M(1,),MA的斜率.△l△MA,△2(x0+1)×=﹣1△x0=0,△A(0,1),△r=|MA|=;(△)设(t,(t+1)2)为C上一点,则在该点处的切线方程为y﹣(t+1)2=2(t+1)(x﹣t),即y=2(t+1)x﹣t2+1若该直线与圆M相切,则圆心M到该切线的距离为△△t2(t2﹣4t﹣6)=0△t0=0,或t1=2+,t2=2﹣抛物线C在点(t i,(t i+1)2)(i=0,1,2)处的切线分别为l,m,n,其方程分别为y=2x+1①,y=2(t1+1)x﹣②,y=2(t2+1)x﹣③②﹣③:x=代入②可得:y=﹣1△D(2,﹣1),△D到l的距离为【点评】本题考查圆与抛物线的综合,考查抛物线的切线方程,考查导数知识的运用,考查点到直线的距离公式的运用,关键是确定切线方程,求得交点坐标.11.(2011•新课标)在平面直角坐标系xOy中,已知点A(0,﹣1),B点在直线y=﹣3上,M点满足△,=•,M点的轨迹为曲线C.(△)求C的方程;(△)P为C上的动点,l为C在P点处的切线,求O点到l距离的最小值.【分析】(△)设M(x,y),由已知得B(x,﹣3),A(0,﹣1)并代入△,=•,即可求得M点的轨迹C的方程;(△)设P(x0,y0)为C上的点,求导,写出C在P点处的切线方程,利用点到直线的距离公式即可求得O点到l距离,然后利用基本不等式求出其最小值.【解答】解:(△)设M(x,y),由已知得B(x,﹣3),A(0,﹣1).所=(﹣x,﹣1﹣y),=(0,﹣3﹣y),=(x,﹣2).再由题意可知()•=0,即(﹣x,﹣4﹣2y)•(x,﹣2)=0.所以曲线C的方程式为y=﹣2.(△)设P(x0,y0)为曲线C:y=﹣2上一点,因为y′=x,所以l的斜率为x0,因此直线l的方程为y﹣y0=x0(x﹣x0),即x0x﹣2y+2y0﹣x02=0.则o点到l的距离d=.又y0=﹣2,所以d==≥2,所以x02=0时取等号,所以O点到l距离的最小值为2.【点评】此题是个中档题.考查向量与解析几何的交汇点命题及代入法求轨迹方程,以及导数的几何意义和点到直线的距离公式,综合性强,考查了同学们观察、推理以及创造性地分析问题、解决问题的能力.12.(2014•马山县校级模拟)已知O为坐标原点,F为椭圆C:在y轴正半轴上的焦点,过F且斜率为﹣的直线l与C交于A、B两点,点P满足.(△)证明:点P在C上;(△)设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一圆上.【分析】(1)要证明点P在C上,即证明P点的坐标满足椭圆C的方程,根据已知中过F且斜率为﹣的直线l与C交于A、B两点,点P满足,我们求出点P的坐标,代入验证即可.(2)若A、P、B、Q四点在同一圆上,则我们可以先求出任意三点确定的圆的方程,然后将第四点坐标代入验证即可.【解答】证明:(△)设A(x1,y1),B(x2,y2)椭圆C:①,则直线AB的方程为:y=﹣x+1 ②联立方程可得4x2﹣2x﹣1=0,则x1+x2=,x1×x2=﹣则y1+y2=﹣(x1+x2)+2=1设P(p1,p2),则有:=(x1,y1),=(x2,y2),=(p1,p2);△+=(x1+x2,y1+y2)=(,1);=(p1,p2)=﹣(+)=(﹣,﹣1)△p的坐标为(﹣,﹣1)代入①方程成立,所以点P在C上.(△)设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一圆上.设线段AB的中点坐标为(,),即(,),则过线段AB的中点且垂直于AB的直线方程为:y﹣=(x﹣),即y=x+;③△P关于点O的对称点为Q,故0(0.0)为线段PQ的中点,则过线段PQ的中点且垂直于PQ的直线方程为:y=﹣x④;③④联立方程组,解之得:x=﹣,y=③④的交点就是圆心O1(﹣,),r2=|O1P|2=(﹣﹣(﹣))2+(﹣1﹣)2=故过P Q两点圆的方程为:(x+)2+(y﹣)2=…⑤,把y=﹣x+1 …②代入⑤,有x1+x2=,y1+y2=1△A,B也是在圆⑤上的.△A、P、B、Q四点在同一圆上.【点评】本题考查的知识点是直线与圆锥曲线的关系,向量在几何中的应用,其中判断点与曲线关系时,所使用的坐标代入验证法是解答本题的关键.13.(2010•全国卷△)己知斜率为1的直线l与双曲线C:相交于B、D两点,且BD的中点为M(1,3).(△)求C的离心率;(△)设C的右顶点为A,右焦点为F,|DF|•|BF|=17,证明:过A、B、D三点的圆与x轴相切.【分析】(△)由直线过点(1,3)及斜率可得直线方程,直线与双曲线交于BD两点的中点为(1,3),可利用直线与双曲线消元后根据中点坐标公式找出a,b的关系式即求得离心率.(△)利用离心率将条件|FA||FB|=17,用含a的代数式表示,即可求得a,则A点坐标可得(1,0),由于A在x轴上所以,只要证明2AM=BD即证得.【解答】解:(△)由题设知,l的方程为:y=x+2,代入C的方程,并化简,得(b2﹣a2)x2﹣4a2x﹣a2b2﹣4a2=0,设B(x1,y1),D(x2,y2),则,,①由M(1,3)为BD的中点知.故,即b2=3a2,②故,△C的离心率.(△)由①②知,C的方程为:3x2﹣y2=3a2,A(a,0),F(2a,0),.故不妨设x1≤﹣a,x2≥a,,,|BF|•|FD|=(a﹣2x1)(2x2﹣a)=﹣4x1x2+2a(x1+x2)﹣a2=5a2+4a+8.又|BF|•|FD|=17,故5a2+4a+8=17.解得a=1,或(舍去),故=6,连接MA,则由A(1,0),M(1,3)知|MA|=3,从而MA=MB=MD,且MA△x轴,因此以M为圆心,MA为半径的圆经过A、B、D三点,且在点A处与x轴相切,所以过A、B、D三点的圆与x轴相切.【点评】本题考查了圆锥曲线、直线与圆的知识,考查学生运用所学知识解决问题的能力.14.(2010•全国卷△)已知抛物线C:y2=4x的焦点为F,过点K(﹣1,0)的直线l与C相交于A、B两点,点A关于x轴的对称点为D.(△)证明:点F在直线BD上;(△)设,求△BDK的内切圆M的方程.【分析】(△)先根据抛物线方程求得焦点坐标,设出过点K的直线L方程代入抛物线方程消去x,设L与C 的交点A(x1,y1),B(x2,y2),根据韦达定理求得y1+y2和y1y2的表达式,进而根据点A求得点D的坐标,进而表示出直线BD和BF的斜率,进而问题转化两斜率相等,进而转化为4x2=y22,依题意可知等式成立进而推断出k1=k2原式得证.(△)首先表示出结果为求得m,进而求得y2﹣y1的值,推知BD的斜率,则BD 方程可知,设M为(a,0),M到x=y﹣1和到BD的距离相等,进而求得a和圆的半径,则圆的方程可得.【解答】解:(△)抛物线C:y2=4x①的焦点为F(1,0),设过点K(﹣1,0)的直线L:x=my﹣1,代入①,整理得y2﹣4my+4=0,设L与C 的交点A(x1,y1),B(x2,y2),则y1+y2=4m,y1y2=4,点A关于X轴的对称点D为(x1,﹣y1).BD的斜率k1===,BF的斜率k2=.要使点F在直线BD上需k1=k2需4(x2﹣1)=y2(y2﹣y1),需4x2=y22,上式成立,△k1=k2,△点F在直线BD上.(△)=(x1﹣1,y1)(x2﹣1,y2)=(x1﹣1)(x2﹣1)+y1y2=(my1﹣2)(my2﹣2)+y1y2=4(m2+1)﹣8m2+4=8﹣4m2=,△m2=,m=±.y2﹣y1==4=,△k1=,BD:y=(x﹣1).易知圆心M在x轴上,设为(a,0),M到x=y﹣1和到BD的距离相等,即|a+1|×=|((a﹣1)|×,△4|a+1|=5|a﹣1|,﹣1<a<1,解得a=.△半径r=,△△BDK的内切圆M的方程为(x﹣)2+y2=.【点评】本小题为解析几何与平面向量综合的问题,主要考查抛物线的性质、直线与圆的位置关系,直线与抛物线的位置关系、圆的几何性质与圆的方程的求解、平面向量的数量积等知识,考查考生综合运用数学知识进行推理论证的能力、运算能力和解决问题的能力,同时考查了数形结合思想、设而不求思想.15.(2010•宁夏)设F1,F2分别是椭圆的左、右焦点,过F1斜率为1的直线ℓ与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求E的离心率;(2)设点P(0,﹣1)满足|PA|=|PB|,求E的方程.【分析】(I)根据椭圆的定义可知|AF2|+|BF2|+|AB|=4a,进而根据|AF2|,|AB|,|BF2|成等差数表示出|AB|,进而可知直线l的方程,设A(x1,y1),B(x2,y2),代入直线和椭圆方程,联立消去y,根据韦达定理表示出x1+x2和x1x2进而根据,求得a和b的关系,进而求得a和c的关系,离心率可得.(II)设AB的中点为N(x0,y0),根据(1)则可分别表示出x0和y0,根据|PA|=|PB|,推知直线PN的斜率,根据求得c,进而求得a和b,椭圆的方程可得.【解答】解:(I)由椭圆定义知|AF2|+|BF2|+|AB|=4a,又2|AB|=|AF2|+|BF2|,得,l的方程为y=x+c,其中.设A(x1,y1),B(x2,y2),则A、B两点坐标满足方程组化简的(a2+b2)x2+2a2cx+a2(c2﹣b2)=0则因为直线AB斜率为1,|AB|=|x1﹣x2|=,得,故a2=2b2所以E的离心率(II)设AB的中点为N(x0,y0),由(I)知,.由|PA|=|PB|,得k PN=﹣1,即得c=3,从而故椭圆E的方程为.【点评】本题主要考查圆锥曲线中的椭圆性质以及直线与椭圆的位置关系,涉及等差数列知识,考查利用方程思想解决几何问题的能力及运算能力16.(2009•全国卷△)已知椭圆的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为,(△)求a,b的值;(△)C上是否存在点P,使得当l绕F转到某一位置时,有成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.【分析】(I)设F(c,0),则直线l的方程为x﹣y﹣c=0,由坐标原点O到l的距离求得c,进而根据离心率求得a和b.(II)由(I)可得椭圆的方程,设A(x1,y1)、B(x2,y2),l:x=my+1代入椭圆的方程中整理得方程△>0.由韦达定理可求得y1+y2和y1y2的表达式,假设存在点P,使成立,则其充要条件为:点P的坐标为(x1+x2,y1+y2),代入椭圆方程;把A,B两点代入椭圆方程,最后联立方程求得c,进而求得P点坐标,求出m的值得出直线l的方程.【解答】解:(I)设F(c,0),直线l:x﹣y﹣c=0,由坐标原点O到l的距离为则,解得c=1又,△(II)由(I)知椭圆的方程为设A(x1,y1)、B(x2,y2)由题意知l的斜率为一定不为0,故不妨设l:x=my+1代入椭圆的方程中整理得(2m2+3)y2+4my﹣4=0,显然△>0.由韦达定理有:,,①假设存在点P,使成立,则其充要条件为:点P的坐标为(x1+x2,y1+y2),点P在椭圆上,即.整理得2x12+3y12+2x22+3y22+4x1x2+6y1y2=6.又A、B在椭圆上,即2x12+3y12=6,2x22+3y22=6、故2x1x2+3y1y2+3=0②将x1x2=(my1+1)(my2+1)=m2y1y2+m(y1+y2)+1及①代入②解得△,x1+x2=,即当;当【点评】本题主要考查了椭圆的性质.处理解析几何题,学生主要是在“算”上的功夫不够.所谓“算”,主要讲的是算理和算法.算法是解决问题采用的计算的方法,而算理是采用这种算法的依据和原因,一个是表,一个是里,一个是现象,一个是本质.有时候算理和算法并不是截然区分的.例如:三角形的面积是用底乘高的一半还是用两边与夹角的正弦的一半,还是分割成几部分来算?在具体处理的时候,要根据具体问题及题意边做边调整,寻找合适的突破口和切入点.17.(2009•全国卷△)如图,已知抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点.(△)求r的取值范围;(△)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.【分析】(1)先联立抛物线与圆的方程消去y,得到x的二次方程,根据抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点的充要条件是此方程有两个不相等的正根,可求出r的范围.(2)先设出四点A,B,C,D的坐标再由(1)中的x二次方程得到两根之和、两根之积,表示出面积并求出其的平方值,最后根据三次均值不等式确定得到最大值时的点P的坐标.【解答】解:(△)将抛物线E:y2=x代入圆M:(x﹣4)2+y2=r2(r>0)的方程,消去y2,整理得x2﹣7x+16﹣r2=0(1)抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点的充要条件是:方程(1)有两个不相等的正根△即.解这个方程组得,.(II)设四个交点的坐标分别为、、、.则直线AC、BD的方程分别为y﹣=•(x﹣x 1),y+=(x ﹣x1),解得点P的坐标为(,0),则由(I)根据韦达定理有x1+x2=7,x1x2=16﹣r2,则△令,则S2=(7+2t)2(7﹣2t)下面求S2的最大值.由三次均值有:当且仅当7+2t=14﹣4t,即时取最大值.经检验此时满足题意.故所求的点P的坐标为.【点评】本题主要考查抛物线和圆的综合问题.圆锥曲线是高考必考题,要强化复习.18.(2009•宁夏)已知椭圆C的中心为直角坐标系xOy的原点,焦点在x轴上,它的一个顶点到两个焦点的距离分别是7和1.(1)求椭圆C的方程;(2)若P为椭圆C上的动点,M为过P且垂直于x轴的直线上的点,=λ,求点M的轨迹方程,并说明轨迹是什么曲线.【分析】(1)设椭圆长半轴长及半焦距分别为a、c,由椭圆的性质可得从而解决.(2)设M(x,y),其中x∈[﹣4,4].由已知=λ2及点P在椭圆C上,可得=λ2,整理得(16λ2﹣9)x2+16λ2y2=112,其中x∈[﹣4,4].再按照圆、椭圆、双曲线、抛物线的方程讨论.【解答】解:(1)设椭圆长半轴长及半焦距分别为a、c,由已知得,解得a=4,c=3,所以椭圆C的方程为=1.(2)设M(x,y),其中x∈[﹣4,4].由已知=λ2及点P在椭圆C上,可得=λ2,整理得(16λ2﹣9)x2+16λ2y2=112,其中x∈[﹣4,4].①λ=时,化简得9y2=112.所以点M的轨迹方程为y=±(﹣4≤x≤4),轨迹是两条平行于x轴的线段.②λ≠时,方程变形为=1,其中x∈[﹣4,4];当0<λ<时,点M的轨迹为中心在原点、实轴在y轴上的双曲线满足﹣4≤x≤4的部分;当<λ<1时,点M的轨迹为中心在原点、长轴在x轴上的椭圆满足﹣4≤x≤4的部分;当λ≥1时,点M的轨迹为中心在原点、长轴在x轴上的椭圆.【点评】本题主要考查圆锥曲线的定义和性质及其方程.考查分类讨论思想,是中档题.19.(2014•漳州校级模拟)双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.已知||、||、||成等差数列,且与同向.(△)求双曲线的离心率;(△)设AB被双曲线所截得的线段的长为4,求双曲线的方程.【分析】(1)由2个向量同向,得到渐近线的夹角范围,求出离心率的范围,再用勾股定理得出直角三角形的2个直角边的长度比,联想到渐近线的夹角,求出渐近线的斜率,进而求出离心率.(2)利用第(1)的结论,设出双曲线的方程,将AB方程代入,运用根与系数的关系及弦长公式,求出待定系数,可求出双曲线方程.【解答】解:(1)设双曲线方程为由,同向,△渐近线的倾斜角为(0,),△渐近线斜率为:,△△|AB|2=(|OB|﹣|OA|)(|OB|+|OA|)=(|OB|﹣|OA|)2|AB|,△△可得:,而在直角三角形OAB中,注意到三角形OAF也为直角三角形,即tan△AOB=而由对称性可知:OA的斜率为k=tan△,△,△;△,△△(2)由第(1)知,a=2b,可设双曲线方程为﹣=1,c=b,△AB的直线方程为y=﹣2(x﹣b),代入双曲线方程得:15x2﹣32bx+84b2=0,△x1+x2=,x1•x2=,4=,16=﹣,△b2=9,所求双曲线方程为:﹣=1.【点评】做到边做边看,从而发现题中的巧妙,如据,联想到对应的是2渐近线的夹角的正切值.20.(2015•南昌校级二模)设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与AB相交于点D,与椭圆相交于E、F两点.(△)若,求k的值;(△)求四边形AEBF面积的最大值.【分析】(1)依题可得椭圆的方程,设直线AB,EF的方程分别为x+2y=2,y=kx,D(x0,kx0),E(x1,kx1),F(x2,kx2),且x1,x2满足方程(1+4k2)x2=4,进而求得x2的表达式,进而根据求得x0的表达式,由D在AB上知x0+2kx0=2,进而求得x0的另一个表达式,两个表达式相等求得k.(△)由题设可知|BO|和|AO|的值,设y1=kx1,y2=kx2,进而可表示出四边形AEBF的面积进而根据基本不等式的性质求得最大值.【解答】解:(△)依题设得椭圆的方程为,直线AB,EF的方程分别为x+2y=2,y=kx(k>0).如图,设D(x0,kx0),E(x1,kx1),F(x2,kx2),其中x1<x2,且x1,x2满足方程(1+4k2)x2=4,故.①。

圆锥曲线(解析版)--2024年高考真题和模拟题数学好题汇编

圆锥曲线(解析版)--2024年高考真题和模拟题数学好题汇编

圆锥曲线1(新课标全国Ⅱ卷)已知曲线C :x 2+y 2=16(y >0),从C 上任意一点P 向x 轴作垂线段PP ,P 为垂足,则线段PP 的中点M 的轨迹方程为()A.x 216+y 24=1(y >0)B.x 216+y 28=1(y >0)C.y 216+x 24=1(y >0)D.y 216+x 28=1(y >0)【答案】A【分析】设点M (x ,y ),由题意,根据中点的坐标表示可得P (x ,2y ),代入圆的方程即可求解.【详解】设点M (x ,y ),则P (x ,y 0),P (x ,0),因为M 为PP 的中点,所以y 0=2y ,即P (x ,2y ),又P 在圆x 2+y 2=16(y >0)上,所以x 2+4y 2=16(y >0),即x 216+y 24=1(y >0),即点M 的轨迹方程为x 216+y 24=1(y >0).故选:A2(全国甲卷数学(理))已知双曲线C :y 2a 2-x 2b 2=1(a >0,b >0)的上、下焦点分别为F 10,4 ,F 20,-4 ,点P -6,4 在该双曲线上,则该双曲线的离心率为()A.4B.3C.2D.2【答案】C【分析】由焦点坐标可得焦距2c ,结合双曲线定义计算可得2a ,即可得离心率.【详解】由题意,F 10,-4 、F 20,4 、P -6,4 ,则F 1F 2 =2c =8,PF 1 =62+4+4 2=10,PF 2 =62+4-4 2=6,则2a =PF 1 -PF 2 =10-6=4,则e =2c 2a =84=2.故选:C .3(新高考天津卷)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2.P 是双曲线右支上一点,且直线PF 2的斜率为2.△PF 1F 2是面积为8的直角三角形,则双曲线的方程为()A.x 28-y 22=1B.x 28-y 24=1C.x 22-y 28=1D.x 24-y 28=1【答案】C【分析】可利用△PF 1F 2三边斜率问题与正弦定理,转化出三边比例,设PF 2 =m ,由面积公式求出m ,由勾股定理得出c ,结合第一定义再求出a .【详解】如下图:由题可知,点P 必落在第四象限,∠F 1PF 2=90°,设PF 2 =m ,∠PF 2F 1=θ1,∠PF 1F 2=θ2,由k PF 2=tan θ1=2,求得sin θ1=25,因为∠F 1PF 2=90°,所以k PF 1⋅k PF 2=-1,求得k PF 1=-12,即tan θ2=12,sin θ2=15,由正弦定理可得:PF 1 :PF 2 :F 1F 2 =sin θ1:sin θ2:sin90°=2:1:5,则由PF 2 =m 得PF 1 =2m ,F 1F 2 =2c =5m ,由S △PF 1F 2=12PF 1 ⋅PF 2 =12m ⋅2m =8得m =22,则PF 2 =22,PF 1 =42,F 1F 2 =2c =210,c =10,由双曲线第一定义可得:PF 1 -PF 2 =2a =22,a =2,b =c 2-a 2=8,所以双曲线的方程为x 22-y 28=1.故选:C4(新课标全国Ⅰ卷)(多选)造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于-2,到点F (2,0)的距离与到定直线x =a (a <0)的距离之积为4,则()A.a =-2B.点(22,0)在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点x 0,y 0 在C 上时,y 0≤4x 0+2【答案】ABD【分析】根据题设将原点代入曲线方程后可求a,故可判断A的正误,结合曲线方程可判断B的正误,利用特例法可判断C的正误,将曲线方程化简后结合不等式的性质可判断D的正误.【详解】对于A:设曲线上的动点P x,y,则x>-2且x-22+y2×x-a=4,因为曲线过坐标原点,故0-22+02×0-a=4,解得a=-2,故A正确.对于B:又曲线方程为x-22+y2×x+2=4,而x>-2,故x-22+y2×x+2=4.当x=22,y=0时,22-22×22+2=8-4=4,故22,0在曲线上,故B正确.对于C:由曲线的方程可得y2=16x+22-x-22,取x=32,则y2=6449-14,而6449-14-1=6449-54=256-24549×4>0,故此时y2>1,故C在第一象限内点的纵坐标的最大值大于1,故C错误.对于D:当点x0,y0在曲线上时,由C的分析可得y20=16x0+22-x0-22≤16x0+22,故-4x0+2≤y0≤4x0+2,故D正确.故选:ABD.【点睛】思路点睛:根据曲线方程讨论曲线的性质,一般需要将曲线方程变形化简后结合不等式的性质等来处理.5(新课标全国Ⅱ卷)(多选)抛物线C:y2=4x的准线为l,P为C上的动点,过P作⊙A:x2+(y-4)2=1的一条切线,Q为切点,过P作l的垂线,垂足为B,则()A.l与⊙A相切B.当P,A,B三点共线时,|PQ|=15C.当|PB|=2时,PA⊥ABD.满足|PA|=|PB|的点P有且仅有2个【答案】ABD【分析】A选项,抛物线准线为x=-1,根据圆心到准线的距离来判断;B选项,P,A,B三点共线时,先求出P 的坐标,进而得出切线长;C选项,根据PB=2先算出P的坐标,然后验证k PA k AB=-1是否成立;D选项,根据抛物线的定义,PB=PF,于是问题转化成PA=PF的P点的存在性问题,此时考察AF的中垂线和抛物线的交点个数即可,亦可直接设P点坐标进行求解.【详解】A选项,抛物线y2=4x的准线为x=-1,⊙A的圆心(0,4)到直线x=-1的距离显然是1,等于圆的半径,故准线l和⊙A相切,A选项正确;B选项,P,A,B三点共线时,即PA⊥l,则P的纵坐标y P=4,由y2P=4x P,得到x P=4,故P(4,4),此时切线长PQ=PA2-r2=42-12=15,B选项正确;C选项,当PB=2时,xP=1,此时y2P=4x P=4,故P(1,2)或P(1,-2),当P(1,2)时,A(0,4),B(-1,2),k PA=4-20-1=-2,k AB=4-20-(-1)=2,不满足k PA k AB=-1;当P(1,-2)时,A(0,4),B(-1,2),k PA=4-(-2)0-1=-6,k AB=4-(-2)0-(-1)=6,不满足k PA k AB=-1;于是PA⊥AB不成立,C选项错误;D选项,方法一:利用抛物线定义转化根据抛物线的定义,PB=PF,这里F(1,0),于是PA=PB时P点的存在性问题转化成PA=PF时P点的存在性问题,A(0,4),F(1,0),AF中点12,2,AF中垂线的斜率为-1kAF =14,于是AF的中垂线方程为:y=2x+158,与抛物线y2=4x联立可得y2-16y+30=0,Δ=162-4×30=136>0,即AF的中垂线和抛物线有两个交点,即存在两个P点,使得PA=PF,D选项正确.方法二:(设点直接求解)设Pt24,t,由PB⊥l可得B-1,t,又A(0,4),又PA=PB,根据两点间的距离公式,t416+(t-4)2=t24+1,整理得t2-16t+30=0,Δ=162-4×30=136>0,则关于t的方程有两个解,即存在两个这样的P点,D选项正确.故选:ABD6(新课标全国Ⅰ卷)设双曲线C:x2a2-y2b2=1(a>0,b>0)的左右焦点分别为F1、F2,过F2作平行于y轴的直线交C于A,B两点,若|F1A|=13,|AB|=10,则C的离心率为.【答案】3 2【分析】由题意画出双曲线大致图象,求出AF2,结合双曲线第一定义求出AF1,即可得到a,b,c的值,从而求出离心率.【详解】由题可知A ,B ,F 2三点横坐标相等,设A 在第一象限,将x =c 代入x 2a 2-y 2b 2=1得y =±b 2a ,即A c ,b 2a ,B c ,-b 2a ,故AB =2b 2a =10,AF 2 =b 2a=5,又AF 1 -AF 2 =2a ,得AF 1 =AF 2 +2a =2a +5=13,解得a =4,代入b 2a=5得b 2=20,故c 2=a 2+b 2=36,,即c =6,所以e =c a =64=32.故答案为:327(新高考北京卷)已知抛物线y 2=16x ,则焦点坐标为.【答案】4,0【分析】形如y 2=2px ,p ≠0 的抛物线的焦点坐标为p2,0,由此即可得解.【详解】由题意抛物线的标准方程为y 2=16x ,所以其焦点坐标为4,0 .故答案为:4,0 .8(新高考北京卷)已知双曲线x 24-y 2=1,则过3,0 且和双曲线只有一个交点的直线的斜率为.【答案】±12【分析】首先说明直线斜率存在,然后设出方程,联立双曲线方程,根据交点个数与方程根的情况列式即可求解.【详解】联立x =3与x 24-y 2=1,解得y =±52,这表明满足题意的直线斜率一定存在,设所求直线斜率为k ,则过点3,0 且斜率为k 的直线方程为y =k x -3 ,联立x 24-y 2=1y =k x -3 ,化简并整理得:1-4k 2x 2+24k 2x -36k 2-4=0,由题意得1-4k 2=0或Δ=24k 2 2+436k 2+4 1-4k 2 =0,解得k =±12或无解,即k =±12,经检验,符合题意.故答案为:±12.9(新高考天津卷)(x -1)2+y 2=25的圆心与抛物线y 2=2px (p >0)的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为.【答案】45/0.8【分析】先求出圆心坐标,从而可求焦准距,再联立圆和抛物线方程,求A 及AF 的方程,从而可求原点到直线AF 的距离.【详解】圆(x -1)2+y 2=25的圆心为F 1,0 ,故p2=1即p =2,由x -12+y 2=25y 2=4x可得x 2+2x -24=0,故x =4或x =-6(舍),故A 4,±4 ,故直线AF :y =±43x -1 即4x -3y -4=0或4x +3y -4=0,故原点到直线AF 的距离为d =45=45,故答案为:4510(新高考上海卷)已知抛物线y 2=4x 上有一点P 到准线的距离为9,那么点P 到x 轴的距离为.【答案】42【分析】根据抛物线的定义知x P =8,将其再代入抛物线方程即可.【详解】由y 2=4x 知抛物线的准线方程为x =-1,设点P x 0,y 0 ,由题意得x 0+1=9,解得x 0=8,代入抛物线方程y 2=4x ,得y 20=32,解得y 0=±42,则点P 到x 轴的距离为42.故答案为:42.11(新课标全国Ⅰ卷)已知A (0,3)和P 3,32 为椭圆C :x 2a 2+y 2b 2=1(a >b >0)上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且△ABP 的面积为9,求l 的方程.【答案】(1)12(2)直线l 的方程为3x -2y -6=0或x -2y =0.【分析】(1)代入两点得到关于a ,b 的方程,解出即可;(2)方法一:以AP 为底,求出三角形的高,即点B 到直线AP 的距离,再利用平行线距离公式得到平移后的直线方程,联立椭圆方程得到B 点坐标,则得到直线l 的方程;方法二:同法一得到点B 到直线AP 的距离,再设B x 0,y 0 ,根据点到直线距离和点在椭圆上得到方程组,解出即可;法三:同法一得到点B 到直线AP 的距离,利用椭圆的参数方程即可求解;法四:首先验证直线AB 斜率不存在的情况,再设直线y =kx +3,联立椭圆方程,得到点B 坐标,再利用点到直线距离公式即可;法五:首先考虑直线PB 斜率不存在的情况,再设PB :y -32=k (x -3),利用弦长公式和点到直线的距离公式即可得到答案;法六:设线法与法五一致,利用水平宽乘铅锤高乘12表达面积即可.【详解】(1)由题意得b=39a2+94b2=1,解得b2=9a2=12,所以e=1-b2a2=1-912=12.(2)法一:k AP=3-320-3=-12,则直线AP的方程为y=-12x+3,即x+2y-6=0,AP=0-32+3-3 22=352,由(1)知C:x212+y29=1,设点B到直线AP的距离为d,则d=2×9352=1255,则将直线AP沿着与AP垂直的方向平移1255单位即可,此时该平行线与椭圆的交点即为点B,设该平行线的方程为:x+2y+C=0,则C+65=1255,解得C=6或C=-18,当C=6时,联立x212+y29=1x+2y+6=0,解得x=0y=-3或x=-3y=-32,即B0,-3或-3,-3 2,当B0,-3时,此时k l=32,直线l的方程为y=32x-3,即3x-2y-6=0,当B-3,-3 2时,此时k l=12,直线l的方程为y=12x,即x-2y=0,当C=-18时,联立x212+y29=1x+2y-18=0得2y2-27y+117=0,Δ=272-4×2×117=-207<0,此时该直线与椭圆无交点.综上直线l的方程为3x-2y-6=0或x-2y=0.法二:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B x0,y0,则x0+2y0-65=1255x2012+y209=1,解得x0=-3y0=-32或x0=0y0=-3,即B0,-3或-3,-3 2,以下同法一.法三:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B 23cos θ,3sin θ ,其中θ∈0,2π ,则有23cos θ+6sin θ-6 5=1255,联立cos 2θ+sin 2θ=1,解得cos θ=-32sin θ=-12或cos θ=0sin θ=-1,即B 0,-3 或-3,-32,以下同法一;法四:当直线AB 的斜率不存在时,此时B 0,-3 ,S △PAB =12×6×3=9,符合题意,此时k l =32,直线l 的方程为y =32x -3,即3x -2y -6=0,当线AB 的斜率存在时,设直线AB 的方程为y =kx +3,联立椭圆方程有y =kx +3x 212+y 29=1,则4k 2+3 x 2+24kx =0,其中k ≠k AP ,即k ≠-12,解得x =0或x =-24k 4k 2+3,k ≠0,k ≠-12,令x =-24k 4k 2+3,则y =-12k 2+94k 2+3,则B -24k 4k 2+3,-12k 2+94k 2+3同法一得到直线AP 的方程为x +2y -6=0,点B 到直线AP 的距离d =1255,则-24k4k 2+3+2×-12k 2+94k 2+3-65=1255,解得k =32,此时B -3,-32 ,则得到此时k l =12,直线l 的方程为y =12x ,即x -2y =0,综上直线l 的方程为3x -2y -6=0或x -2y =0.法五:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当l 的斜率存在时,设PB :y -32=k (x -3),令P x 1,y 1 ,B x 2,y 2 ,y =k (x -3)+32x 212+y 29=1 ,消y 可得4k 2+3 x 2-24k 2-12k x +36k 2-36k -27=0,Δ=24k 2-12k 2-44k 2+3 36k 2-36k -27 >0,且k ≠k AP ,即k ≠-12,x 1+x 2=24k 2-12k 4k 2+3x 1x 2=36k 2-36k -274k 2+3,PB =k 2+1x 1+x 2 2-4x 1x 2=43k 2+13k 2+9k +2744k 2+3 ,A 到直线PB 距离d =3k +32k 2+1,S △PAB =12⋅43k 2+13k 2+9k +2744k 2+3⋅3k +32 k 2+1=9,∴k =12或32,均满足题意,∴l :y =12x 或y =32x -3,即3x -2y -6=0或x -2y =0.法六:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当直线l 斜率存在时,设l :y =k (x -3)+32,设l 与y 轴的交点为Q ,令x =0,则Q 0,-3k +32,联立y =kx -3k +323x 2+4y 2=36,则有3+4k 2 x 2-8k 3k -32x +36k 2-36k -27=0,3+4k 2x 2-8k 3k -32x +36k 2-36k -27=0,其中Δ=8k 23k -322-43+4k 2 36k 2-36k -27 >0,且k ≠-12,则3x B =36k 2-36k -273+4k 2,x B =12k 2-12k -93+4k 2,则S =12AQ x P -x B =123k +32 12k +183+4k 2=9,解的k =12或k =32,经代入判别式验证均满足题意.则直线l 为y =12x 或y =32x -3,即3x -2y -6=0或x -2y =0.12(新课标全国Ⅱ卷)已知双曲线C :x 2-y 2=m m >0 ,点P 15,4 在C 上,k 为常数,0<k <1.按照如下方式依次构造点P n n =2,3,... ,过P n -1作斜率为k 的直线与C 的左支交于点Q n -1,令P n 为Q n -1关于y 轴的对称点,记P n 的坐标为x n ,y n .(1)若k =12,求x 2,y 2;(2)证明:数列x n -y n 是公比为1+k1-k的等比数列;(3)设S n 为△P n P n +1P n +2的面积,证明:对任意的正整数n ,S n =S n +1.【答案】(1)x 2=3,y 2=0(2)证明见解析(3)证明见解析【分析】(1)直接根据题目中的构造方式计算出P 2的坐标即可;(2)根据等比数列的定义即可验证结论;(3)思路一:使用平面向量数量积和等比数列工具,证明S n 的取值为与n 无关的定值即可.思路二:使用等差数列工具,证明S n 的取值为与n 无关的定值即可.【详解】(1)由已知有m =52-42=9,故C 的方程为x 2-y 2=9.当k =12时,过P 15,4 且斜率为12的直线为y =x +32,与x 2-y 2=9联立得到x 2-x +322=9.解得x =-3或x =5,所以该直线与C 的不同于P 1的交点为Q 1-3,0 ,该点显然在C 的左支上.故P 23,0 ,从而x 2=3,y 2=0.(2)由于过P n x n ,y n 且斜率为k 的直线为y =k x -x n +y n ,与x 2-y 2=9联立,得到方程x 2-k x -x n +y n 2=9.展开即得1-k 2 x 2-2k y n -kx n x -y n -kx n 2-9=0,由于P n x n ,y n 已经是直线y =k x -x n +y n 和x 2-y 2=9的公共点,故方程必有一根x =x n .从而根据韦达定理,另一根x =2k y n -kx n 1-k 2-x n =2ky n -x n -k 2x n1-k 2,相应的y =k x -x n +y n =y n +k 2y n -2kx n1-k 2.所以该直线与C 的不同于P n 的交点为Q n2ky n -x n -k 2x n 1-k 2,y n +k 2y n -2kx n1-k 2,而注意到Q n 的横坐标亦可通过韦达定理表示为-y n -kx n 2-91-k 2x n ,故Q n 一定在C 的左支上.所以P n +1x n +k 2x n -2ky n 1-k 2,y n +k 2y n -2kx n1-k 2.这就得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2.所以x n +1-y n +1=x n +k 2x n -2ky n 1-k 2-y n +k 2y n -2kx n1-k 2=x n +k 2x n +2kx n 1-k 2-y n +k 2y n +2ky n 1-k 2=1+k 2+2k 1-k2x n -y n =1+k 1-k x n -y n .再由x 21-y 21=9,就知道x 1-y 1≠0,所以数列x n -y n 是公比为1+k 1-k 的等比数列.(3)方法一:先证明一个结论:对平面上三个点U ,V ,W ,若UV =a ,b ,UW =c ,d ,则S △UVW =12ad -bc .(若U ,V ,W 在同一条直线上,约定S △UVW =0)证明:S △UVW =12UV ⋅UW sin UV ,UW =12UV ⋅UW 1-cos 2UV ,UW =12UV⋅UW 1-UV ⋅UWUV ⋅UW 2=12UV 2⋅UW 2-UV ⋅UW 2=12a 2+b 2c 2+d 2-ac +bd2=12a 2c 2+a 2d 2+b 2c 2+b 2d 2-a 2c 2-b 2d 2-2abcd =12a 2d 2+b 2c 2-2abcd =12ad -bc2=12ad -bc .证毕,回到原题.由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k 2x n +y n=1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n=921-k 1+k m -1+k 1-k m .而又有P n +1P n =-x n +1-x n ,-y n +1-y n ,P n +1P n +2=x n +2-x n +1,y n +2-y n +1 ,故利用前面已经证明的结论即得S n =S △P n P n +1P n +2=12-x n +1-x n y n +2-y n +1 +y n +1-y n x n +2-x n +1 =12x n +1-x n y n +2-y n +1 -y n +1-y n x n +2-x n +1 =12x n +1y n +2-y n +1x n +2 +x n y n +1-y n x n +1 -x n y n +2-y n x n +2=12921-k 1+k -1+k 1-k +921-k 1+k -1+k 1-k -921-k 1+k 2-1+k 1-k 2.这就表明S n 的取值是与n 无关的定值,所以S n =S n +1.方法二:由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k1+k的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n =921-k 1+k m -1+k 1-k m.这就得到x n +2y n +3-y n +2x n +3=921-k 1+k -1+k1-k=x n y n +1-y n x n +1,以及x n +1y n +3-y n +1x n +3=921-k 1+k 2-1+k 1-k 2=x n y n +2-y n x n +2.两式相减,即得x n +2y n +3-y n +2x n +3 -x n +1y n +3-y n +1x n +3 =x n y n +1-y n x n +1 -x n y n +2-y n x n +2 .移项得到x n +2y n +3-y n x n +2-x n +1y n +3+y n x n +1=y n +2x n +3-x n y n +2-y n +1x n +3+x n y n +1.故y n +3-y n x n +2-x n +1 =y n +2-y n +1 x n +3-x n .而P n P n +3 =x n +3-x n ,y n +3-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 .所以P n P n +3 和P n +1P n +2平行,这就得到S △P n P n +1P n +2=S △P n +1P n +2P n +3,即S n =S n +1.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.13(全国甲卷数学(理)(文))设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,点M 1,32 在C 上,且MF ⊥x 轴.(1)求C 的方程;(2)过点P 4,0 的直线与C 交于A ,B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ ⊥y 轴.【答案】(1)x 24+y 23=1(2)证明见解析【分析】(1)设F c ,0 ,根据M 的坐标及MF ⊥x 轴可求基本量,故可求椭圆方程.(2)设AB :y =k (x -4),A x 1,y 1 ,B x 2,y 2 ,联立直线方程和椭圆方程,用A ,B 的坐标表示y 1-y Q ,结合韦达定理化简前者可得y 1-y Q =0,故可证AQ ⊥y 轴.【详解】(1)设F c ,0 ,由题设有c =1且b 2a =32,故a 2-1a =32,故a =2,故b =3,故椭圆方程为x 24+y 23=1.(2)直线AB 的斜率必定存在,设AB :y =k (x -4),A x 1,y 1 ,B x 2,y 2 ,由3x 2+4y 2=12y =k (x -4) 可得3+4k 2 x 2-32k 2x +64k 2-12=0,故Δ=1024k 4-43+4k 2 64k 2-12 >0,故-12<k <12,又x 1+x 2=32k 23+4k 2,x 1x 2=64k 2-123+4k 2,而N 52,0 ,故直线BN :y =y 2x 2-52x -52 ,故y Q =-32y 2x 2-52=-3y 22x 2-5,所以y 1-y Q =y 1+3y 22x 2-5=y 1×2x 2-5 +3y 22x 2-5=k x 1-4 ×2x 2-5 +3k x 2-42x 2-5=k 2x 1x 2-5x 1+x 2 +82x 2-5=k2×64k 2-123+4k 2-5×32k 23+4k 2+82x 2-5=k128k 2-24-160k 2+24+32k 23+4k 22x 2-5=0,故y 1=y Q ,即AQ ⊥y 轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意Δ的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2、x 1x 2(或y 1+y 2、y 1y 2)的形式;(5)代入韦达定理求解.14(新高考北京卷)已知椭圆方程C :x 2a 2+y 2b 2=1a >b >0 ,焦点和短轴端点构成边长为2的正方形,过0,t t >2 的直线l 与椭圆交于A ,B ,C 0,1 ,连接AC 交椭圆于D .(1)求椭圆方程和离心率;(2)若直线BD 的斜率为0,求t .【答案】(1)x 24+y 22=1,e =22(2)t =2【分析】(1)由题意得b =c =2,进一步得a ,由此即可得解;(2)说明直线AB 斜率存在,设AB :y =kx +t ,t >2 ,A x 1,y 1 ,B x 2,y 2 ,联立椭圆方程,由韦达定理有x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-42k 2+1,而AD :y =y 1-y 2x 1+x 2x -x 1 +y 1,令x =0,即可得解.【详解】(1)由题意b =c =22=2,从而a =b 2+c 2=2,所以椭圆方程为x 24+y 22=1,离心率为e =22;(2)显然直线AB 斜率存在,否则B ,D 重合,直线BD 斜率不存在与题意不符,同样直线AB 斜率不为0,否则直线AB 与椭圆无交点,矛盾,从而设AB :y =kx +t ,t >2 ,A x 1,y 1 ,B x 2,y 2 ,联立x 24+y 22=1y =kx +t ,化简并整理得1+2k 2x 2+4ktx +2t 2-4=0,由题意Δ=16k 2t 2-82k 2+1 t 2-2 =84k 2+2-t 2 >0,即k ,t 应满足4k 2+2-t 2>0,所以x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-42k 2+1,若直线BD 斜率为0,由椭圆的对称性可设D -x 2,y 2 ,所以AD :y =y 1-y 2x 1+x 2x -x 1 +y 1,在直线AD 方程中令x =0,得y C =x 1y 2+x 2y 1x 1+x 2=x 1kx 2+t +x 2kx 1+t x 1+x 2=2kx 1x 2+t x 1+x 2 x 1+x 2=4k t 2-2 -4kt +t =2t =1,所以t =2,此时k 应满足4k 2+2-t 2=4k 2-2>0k ≠0 ,即k 应满足k <-22或k >22,综上所述,t =2满足题意,此时k <-22或k >22.15(新高考天津卷)已知椭圆x 2a 2+y 2b 2=1(a >b >0)椭圆的离心率e =12.左顶点为A ,下顶点为B ,C 是线段OB 的中点,其中S △ABC =332.(1)求椭圆方程.(2)过点0,-32的动直线与椭圆有两个交点P ,Q .在y 轴上是否存在点T 使得TP ⋅TQ ≤0恒成立.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.【答案】(1)x 212+y 29=1(2)存在T 0,t -3≤t ≤32,使得TP ⋅TQ ≤0恒成立.【详解】(1)因为椭圆的离心率为e =12,故a =2c ,b =3c ,其中c 为半焦距,所以A -2c ,0 ,B 0,-3c ,C 0,-3c 2 ,故S △ABC=12×2c ×32c =332,故c =3,所以a =23,b =3,故椭圆方程为:x 212+y 29=1.(2)若过点0,-32 的动直线的斜率存在,则可设该直线方程为:y =kx -32,设P x 1,y 1 ,Q x 2,y 2 ,T 0,t ,由3x 2+4y 2=36y =kx -32可得3+4k 2 x 2-12kx -27=0,故Δ=144k 2+1083+4k 2 =324+576k 2>0且x 1+x 2=12k 3+4k 2,x 1x 2=-273+4k 2,而TP =x 1,y 1-t ,TQ=x 2,y 2-t ,故TP ⋅TQ =x 1x 2+y 1-t y 2-t =x 1x 2+kx 1-32-t kx 2-32-t =1+k 2 x 1x 2-k 32+t x 1+x 2 +32+t 2=1+k 2 ×-273+4k 2-k 32+t ×12k 3+4k 2+32+t 2=-27k 2-27-18k 2-12k 2t +332+t 2+3+2t 2k 23+4k 2=3+2t2-12t -45 k 2+332+t 2-273+4k 2,因为TP ⋅TQ ≤0恒成立,故3+2t 2-12t -45≤0332+t 2-27≤0,解得-3≤t ≤32.若过点0,-32的动直线的斜率不存在,则P 0,3 ,Q 0,-3 或P 0,-3 ,Q 0,3 ,此时需-3≤t ≤3,两者结合可得-3≤t ≤32.综上,存在T 0,t-3≤t ≤32 ,使得TP ⋅TQ ≤0恒成立.【点睛】思路点睛:圆锥曲线中的范围问题,往往需要用合适的参数表示目标代数式,表示过程中需要借助韦达定理,此时注意直线方程的合理假设.16(新高考上海卷)已知双曲线Γ:x 2-y 2b2=1,(b >0),左右顶点分别为A 1,A 2,过点M -2,0 的直线l 交双曲线Γ于P ,Q 两点.(1)若离心率e =2时,求b 的值.(2)若b =263,△MA 2P 为等腰三角形时,且点P 在第一象限,求点P 的坐标.(3)连接OQ 并延长,交双曲线Γ于点R ,若A 1R ⋅A 2P=1,求b 的取值范围.【答案】(1)b =3(2)P 2,22 (3)0,3 ∪3,303【详解】(1)由题意得e =c a =c1=2,则c =2,b =22-1=3.(2)当b =263时,双曲线Γ:x 2-y 283=1,其中M -2,0 ,A 21,0 ,因为△MA 2P 为等腰三角形,则①当以MA 2为底时,显然点P 在直线x =-12上,这与点P 在第一象限矛盾,故舍去;②当以A 2P 为底时,MP =MA 2 =3,设P x ,y ,则 x 2-3y 28=1(x +2)2+y 2=9, 联立解得x =-2311y =-81711 或x =-2311y =81711或x =1y =0 ,因为点P 在第一象限,显然以上均不合题意,舍去;(或者由双曲线性质知MP >MA 2 ,矛盾,舍去);③当以MP 为底时,A 2P =MA 2 =3,设P x 0,y 0 ,其中x 0>0,y 0>0,则有x 0-1 2+y 20=9x 20-y 2083=1,解得x 0=2y 0=22,即P 2,22 .综上所述:P 2,22 .(3)由题知A 1-1,0 ,A 21,0 , 当直线l 的斜率为0时,此时A 1R ⋅A 2P=0,不合题意,则k l ≠0,则设直线l :x =my -2,设点P x 1,y 1 ,Q x 2,y 2 ,根据OQ 延长线交双曲线Γ于点R ,根据双曲线对称性知R -x 2,-y 2 , 联立有x =my -2x 2-y 2b2=1⇒b 2m 2-1 y 2-4b 2my +3b 2=0,显然二次项系数b 2m 2-1≠0,其中Δ=-4mb 2 2-4b 2m 2-1 3b 2=4b 4m 2+12b 2>0,y 1+y 2=4b 2m b 2m 2-1①,y 1y 2=3b 2b 2m 2-1②,A 1R =-x 2+1,-y 2 ,A 2P=x 1-1,y 1 ,则A 1R ⋅A 2P=-x 2+1 x 1-1 -y 1y 2=1,因为P x 1,y 1 ,Q x 2,y 2 在直线l 上,则x 1=my 1-2,x 2=my 2-2,即-my 2-3 my 1-3 -y 1y 2=1,即y 1y 2m 2+1 -y 1+y 2 3m +10=0,将①②代入有m 2+1 ⋅3b 2b 2m 2-1-3m ⋅4b 2m b 2m 2-1+10=0,即3b 2m 2+1 -3m ⋅4b 2m +10b 2m 2-1 =0化简得b 2m 2+3b 2-10=0,所以 m 2=10b 2-3, 代入到 b 2m 2-1≠0, 得 b 2=10-3b 2≠1, 所以 b 2≠3,且m 2=10b 2-3≥0,解得b 2≤103,又因为b >0,则0<b 2≤103,综上知,b 2∈0,3 ∪3,103 ,∴b ∈0,3 ∪3,303.【点睛】关键点点睛:本题第三问的关键是采用设线法,为了方便运算可设l :x =my -2,将其与双曲线方程联立得到韦达定理式,再写出相关向量,代入计算,要注意排除联立后的方程得二次项系数不为0.一、单选题1(2024·福建泉州·二模)若椭圆x 2a 2+y 23=1(a >0)的离心率为22,则该椭圆的焦距为()A.3B.6C.26或3D.23或6【答案】D【分析】分焦点在x 轴或y 轴两种情况,求椭圆的离心率,求解参数a ,再求椭圆的焦距.【详解】若椭圆的焦点在x 轴,则离心率e =a 2-3a =22,得a 2=6,此时焦距2c =26-3=23,若椭圆的焦点在y 轴,则离心率e =3-a 23=22,得a 2=32,此时焦距2c =23-32=6,所以该椭圆的焦距为23或6.故选:D2(2024·河北衡水·三模)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0),圆O 1:(x -2)2+y 2=4与圆O 2:x 2+(y -1)2=1的公共弦所在的直线是C 的一条渐近线,则C 的离心率为()A.3B.2C.5D.6【答案】C【详解】因为O 1:(x -2)2+y 2=4,O 2:x 2+(y -1)2=1,所以两圆方程相减可得y =2x ,由题意知C 的一条渐近线为y =2x ,即ba =2,双曲线C 的离心率e =c a =c 2a 2=a 2+b 2a 2=1+b 2a2=5.故选:C .3(2024·北京·三模)已知双曲线E :3mx 2-my 2=3的一个焦点坐标是0,2 ,则m 的值及E 的离心率分别为()A.-1,233B.-1,2C.1,2D.102,10【答案】A【详解】依题意,双曲线E :3mx 2-my 2=3化为:y 2-3m -x 2-1m=1,则-3m +-1m =22,解得m =-1,双曲线y 23-x 2=1的离心率e =23=233.故选:A4(2024·贵州贵阳·三模)过点A (-3,-4)的直线l 与圆C :(x -3)2+(y -4)2=9相交于不同的两点M ,N ,则线段MN 的中点P 的轨迹是()A.一个半径为10的圆的一部分B.一个焦距为10的椭圆的一部分C.一条过原点的线段D.一个半径为5的圆的一部分【答案】D【详解】设P (x ,y ),根据线段MN 的中点为P ,则CP ⊥MN ,即CP ⊥AP ,所以CP ⋅AP =0,又A (-3,-4),C (3,4),AP =(x +3,y +4),CP =(x -3,y -4),所以(x +3)(x -3)+(y +4)(y -4)=0,即x 2+y 2=25,所以点P 的轨迹是以(0,0)为圆心,半径为5的圆在圆C 内的一部分,故选:D .5(2024·湖南·模拟预测)已知点A 1,0 ,点B -1,0 ,动点M 满足直线AM ,BM 的斜率之积为4,则动点M 的轨迹方程为()A.x 24-y 2=1B.x 24-y 2=1(x ≠±1)C.x 2-y 24=1D.x 2-y 24=1(x ≠±1)【答案】D【详解】设动点M (x ,y )由于A 1,0 ,B -1,0 ,根据直线AM 与BM 的斜率之积为4.整理得y x +1⋅y x -1=4,化简得:x 2-y 24=1(x ≠±1).故选:D6(2024·陕西榆林·三模)在平面直角坐标系xOy 中,把到定点F 1-a ,0 ,F 2a ,0 距离之积等于a 2(a >0)的点的轨迹称为双纽线.若a =2,点P x 0,y 0 为双纽线C 上任意一点,则下列结论正确的个数是()①C 关于x 轴不对称②C 关于y 轴对称③直线y =x 与C 只有一个交点④C 上存在点P ,使得PF 1 =PF 2 A.1个 B.2个C.3个D.4个【答案】C【详解】①设M x ,y 到定点F 1-2,0 ,F 22,0 的距离之积为4,可得(x +2)2+y 2.(x -2)2+y 2=4,整理得x 2+y 2 2=8x 2-y 2 ,即曲线C 的方程为x 2+y 2 2=8x 2-y 2 ,由x 用-x 代换,方程没变,可知曲线C 关于y 轴对称,由y 用-y 代换,方程没变,可知曲线C 关于x 轴对称,由x 用-x 代换,y 用-y 同时代换,方程没变,可知曲线C 关于原点对称,图象如图所示:所以①不正确,②正确;③联立方程组x 2+y 2 2=8x 2-y 2y =x,可得x 4=0,即x =0,所以y =0,所以直线y =x 与曲线C 只有一个交点O (0,0),所以③正确.④原点O 0,0 满足曲线C 的方程,即原点O 在曲线C 上,则OF 1 =OF 2 ,即曲线C 上存在点P 与原点O 重合时,满足PF 1 =PF 2 ,所以④正确.故选:C .7(2024·福建泉州·二模)双曲线C :x 2a 2-y 2b 2=1(a >0,b >0),左、右顶点分别为A ,B ,O 为坐标原点,如图,已知动直线l 与双曲线C 左、右两支分别交于P ,Q 两点,与其两条渐近线分别交于R ,S 两点,则下列命题正确的是()A.存在直线l ,使得BQ ⎳OSB.当且仅当直线l 平行于x 轴时,|PR |=|SQ |C.存在过(0,b )的直线l ,使得S △ORB 取到最大值D.若直线l 的方程为y =-22(x -a ),BR =3BS ,则双曲线C 的离心率为3【答案】D【详解】解:对于A 项:与渐近线平行的直线不可能与双曲线有两个交点,故A 项错误;对于B 项:设直线l :y =kx +t ,与双曲线联立y =kx +tx 2a2-y 2b2=1,得:b 2-a 2k 2 x 2-2a 2ktx -a 2t 2+a 2b 2 =0,其中b 2-a 2k 2≠0,设P x 1,y 1 ,Q x 2,y 2 ,由根与系数关系得:x 1+x 2=2a 2kt b 2-a 2k 2,x 1x 2=-a 2b 2+a 2t 2b 2-a 2k 2,所以线段PQ 中点N x 1+x 22,y 1+y 22 =a 2kt b 2-a 2k 2,a 2k 2tb 2-a 2k2+t,将直线l :y =kx +t ,与渐近线y =b a x 联立得点S 坐标为S at b -ak ,btb -ak,将直线l :y =kx +t 与渐近线y =-b a x 联立得点R 坐标为R -at b +ak ,btb +ak ,所以线段RS 中点M a 2kt b 2-a 2k 2,a 2k 2tb 2-a 2k2+t,所以线段PQ 与线段RS 的中点重合.所以,对任意的直线l ,都有|PR |=|PQ |-|RS |2=|SQ |,故B 项不正确;对于C 项:因为|OB |为定值,当k 越来越接近渐近线y =-b a x 的斜率-ba 时,S △ORB 趋向于无穷,所以S △ORB 会趋向于无穷,不可能有最大值,故C 项错误;对于D 项:联立直线l 与渐近线y =bax ,解得Sa 22b +a ,ab2b +a,联立直线l 与渐近线y =-b a x ,解得R a 2-2b +a ,ab2b -a由题可知,BR =3BS ,3y S =y R +2y B ,3ab2b +a =ab2b -a ,解得b =2a ,所以e =1+b 2a2=1+(2a )2a 2=3,故D 项正确.故选:D .【点睛】方法点睛:求解椭圆或双曲线的离心率的三种方法:①定义法:通过已知条件列出方程组,求得a ,c 得值,根据离心率的定义求解离心率e ;②齐次式法:由已知条件得出关于a ,c 的二元齐次方程,然后转化为关于e 的一元二次方程求解;③特殊值法:通过取特殊值或特殊位置,求出离心率.8(2024·河南·二模)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,O 为坐标原点,焦距为82,点P 在双曲线C 上,OP =OF 2 ,且△POF 2的面积为8,则双曲线的离心率为()A.2B.22C.2D.4【答案】C【详解】因为△POF 2的面积为8,所以△PF 1F 2的面积为16.又OP =OF 2 ,所以OP =OF 2 =OF 1 =12F 1F 2,所以△PF 1F 2为直角三角形,且PF 1⊥PF 2.设PF 1 =m ,PF 2 =n ,所以m -n =2a ,m 2+n 2=4c 2,所以mn =m 2+n 2 -(m -n )22=4c 2-4a 22=2b 2,所以S △PF 1F 2=12mn =b 2=16,又b >0,所以b =4.焦距为2c =82,所以c =42,则a 2=c 2-b 2=(42)2-16=16,所以a =4,则离心率e =424=2.故选:C .9(2024·重庆·三模)已知抛物线y 2=4x 的焦点为F ,过点F 的直线l 交抛物线于A ,B 两点,点A 在第一象限,点O 为坐标原点,且S △AOF =2S △BOF ,则直线l 的斜率为()A.22B.3C.1D.-1【答案】A 【详解】如图:设直线倾斜角为α,抛物线的准线l :x =-1作AM ⊥l 于M ,根据抛物线的定义,AM =AF =DF +AF ⋅cos α=2+AF ⋅cos α,所以|AF |=21-cos α,类似的|BF |=21+cos α.由S △AOF =2S △BOF 知|AF |=2|BF |,得cos α=13,故k =tan α=22.故选:A10(2024·黑龙江齐齐哈尔·三模)设F 为抛物线C :y =ax 2的焦点,若点P (1,2)在C 上,则|PF |=()A.3B.52C.94D.178【答案】D【详解】依题意,2=a ×12,解得a =2,所以C :x 2=y 2的准线为y =-18,所以|PF |=2+18=178,故选:D .11(2024·山东泰安·二模)设抛物线x 2=4y 的焦点为F ,过抛物线上点P 作准线的垂线,设垂足为Q ,若∠PQF =30°,则PQ =()A.43B.433C.3D.233【答案】A【详解】如图所示:设 M 为准线与x 轴的交点,因为∠PQF =30°,且PF =PQ ,所以∠PFQ =30°,∠QPF =120°,因为FM ⎳PQ ,所以∠QFM =30°,而在Rt△QMF中,QF=FMcos30°=232=433,所以PF=PQ=QF2÷cos30°=233÷32=43.故选:A.二、多选题12(2024·江西·模拟预测)已知A-2,0,B2,0,C1,0,动点M满足MA与MB的斜率之积为-3 4,动点M的轨迹记为Γ,过点C的直线交Γ于P,Q两点,且P,Q的中点为R,则()A.M的轨迹方程为x24+y23=1B.MC的最小值为1C.若O为坐标原点,则△OPQ面积的最大值为32D.若线段PQ的垂直平分线交x轴于点D,则R点的横坐标是D点的横坐标的4倍【答案】BCD【详解】对于选项A,设M x,y,因为A-2,0,B2,0,所以k MA⋅k MB=yx+2⋅yx-2=-34,化简得x24+y23=1x≠±2,故A错误;对于选项B,因为x24+y23=1x≠±2,则a=2,b=3,则c=a2-b2=1,所以C1,0为椭圆的右焦点,则MCmin=a-c=2-1=1,故B正确;对于选项C,设PQ的方程 x=my+1,代入椭圆方程,得3m2+4y2+6my-9=0,设P x1,y1,Q x2,y2,则y1+y2=-6m3m2+4,y1y2=-93m2+4,Δ=36m2+363m2+4>0,所以S△OPQ=12OCy1-y2=12y1+y22-4y1y2=12-6m3m2+42+363m2+4=6m2+13m2+4,令m2+1=t≥1,则S△OPQ=6t3t2+1=63t+1t,令g t =3t+1tt≥1,则S△OPQ=6g t,t≥1,g t =3-1t2=3t2-1t2>0,g t 在1,+∞为增函数,g t ≥g1 =4,g t min=4,所以S△OPQmax=64=32,当且仅当t=1时即m=0等号成立,故C正确;对于选项D,因为Rx1+x22,y1+y22,x1+x22=m y1+y22+1=-3m23m2+4+1=43m2+4,y1+y22=-3m3m2+4,所以R43m2+4,-3m3m2+4,则x R=43m2+4,设D x D ,0 ,则k PQ ⋅k RD =1m ⋅3m3m 2+4x D -43m 2+4=-1,则x D =13m 2+4,所以x R x D=43m 2+413m 2+4=4,则R 点的横坐标是D 点的横坐标的4倍,故D 正确.故选:BCD .【点睛】关键点点睛:本题求解的关键有两个:一是利用面积公式得出面积表达式,结合导数得出最值;二是根据垂直平分得出点之间的关系.13(2024·江苏常州·二模)双曲线具有光学性质:从双曲线一个焦点发出的光线经过双曲线镜面反射,其反射光线的反向延长线经过双曲线的另一个焦点.如图,双曲线E :x 24-y 26=1的左、右焦点分别为F 1,F 2,从F 2发出的两条光线经过E 的右支上的A ,B 两点反射后,分别经过点C 和D ,其中AF 2 ,BF 2共线,则()A.若直线AB 的斜率k 存在,则k 的取值范围为-∞,-62 ∪62,+∞ B.当点C 的坐标为210,10 时,光线由F 2经过点A 到达点C 所经过的路程为6C.当AB ⋅AD =AB 2时,△BF 1F 2的面积为12D.当AB ⋅AD =AB 2时,cos ∠F 1F 2A =-1010【答案】ABD【详解】如图所示,过点F 2分别作E 的两条渐近线的平行线l 1,l 2,则l 1,l 2的斜率分别为62和-62,对于A 中,由图可知,当点A ,B 均在E 的右支时,k <-62或k >62,所以A 正确;对于B 中,光线由F 2经过点A 到达点C 所经过的路程为F 2A +AC =F 1A -2a +AC =F 1C -2a =(210+10)2+(10-0)2-4=6,所以B 正确;对于C 中,由AB ⋅AD =AB 2,得AB ⋅AD -AB =0,即AB ⋅BD=0,所以AB ⊥BD ,设BF 1 =n ,则BF 2 =n -2a =n -4,因为∠ABD =π2,所以n 2+(n -4)2=(2c )2=40,整理得n 2-4n -12=0,解得n =6或n =-2(舍去),所以BF 1 =6,BF 2 =2,所以△BF 1F 2的面积S =12BF 1 ⋅BF 2 =6,所以C 错误;对于D 项,在直角△F 1BF 2中,cos ∠F 1F 2B =BF 2 F 1F 2=2210=1010,所以cos ∠F 1F 2A =-cos ∠F 1F 2B =-1010,所以D 正确.故选:ABD .14(2024·重庆·三模)已知双曲线C :x 2a 2-y 216=1(a >0)的左,右焦点分别为F 1,F 2,P 为双曲线C 上点,且△PF 1F 2的内切圆圆心为I (3,1),则下列说法正确的是()A.a =3B.直线PF 1的斜率为14C.△PF 1F z 的周长为643D.△PF 1F 2的外接圆半径为6512【答案】ACD【详解】如图1,由条件,点P 应在双曲线C 的右支上,设圆I 分别与△PF 1F 2的三边切于点M 、N 、A ,则由题A 3,0 ,且PM =PN ,F 1M =F 1A ,F 2N =F 2A ,又∵PF 1 -PF 2 =F 1M -F 2N =AF 1 -F 2A =x A +c -c -x A =2x A =2a ∴a =x A =3,A 选项正确;由选项A 得F 1-5,0 ,F 25,0 ,连接IF 1、IF 2、IA ,则tan ∠IF 1A =IA AF 1=18,所以k PF 1=tan ∠PF 1A =tan2∠IF 1A =2tan ∠IF 1A 1-tan 2∠IF 1A=1663,B 选项错误;同理,tan ∠PF 2A =tan2∠IF 2A =43,∴tan ∠F 1PF 2=-tan ∠PF 1A +∠PF 2A =-125,∴⇒tan∠F 1PF 22=32,所以由焦三角面积公式得S △F 1PF 2=b 2tan∠F 1PF 22=323,又S △F 1PF 2=PF 1+PF 2+F 1F 2 r2,故得PF 1 +PF 2 +F 1F 2 =643,∴△PF 1F 2的周长为643,C 选项正确;由tan ∠F 1PF 2=-125⇒sin ∠F 1PF 2=1213,由正弦定理F 1F 2sin ∠F 1PF 2=2R 得R =6512,D 选项正确.故选:ACD .【点睛】关键点睛:求直线PF 1的斜率、△PF 1F z 的周长、△PF 1F 2的外接圆半径的关键是根据已知条件F 1A 、F 2A 、IA 以及与各个所需量的关系即可求出∠PF 1A =2∠IF 1A 、∠PF 2A =2∠IF 2A 和∠F 2PF 1.15(2024·湖北襄阳·二模)抛物线C :x 2=2py 的焦点为F ,P 为其上一动点,当P 运动到(t ,1)时,|PF |=2,直线l 与抛物线相交于A 、B 两点,下列结论正确的是()A.抛物线的方程为:x 2=8yB.抛物线的准线方程为:y =-1。

精选最新2020高考数学《圆锥曲线方程》专题训练完整考试题(含标准答案)

精选最新2020高考数学《圆锥曲线方程》专题训练完整考试题(含标准答案)

2019年高中数学单元测试卷 圆锥曲线与方程 学校:__________ 姓名:__________ 班级:__________ 考号:__________ 一、选择题 1.(2006)P是双曲线22xy1916-=的右支上一点,M、N分别是圆(x+5)2+y2=4和(x-5)2+y2=1上的点,则|PM|-|PN|的最大值为( ) A. 6 B.7 C.8 D.9

2.(2004全国理7)设双曲线的焦点在x轴上,两条渐近线为xy21,则该双曲线的离心率e( )

A.5 B. 5 C.25 D.45

3.(2005福建理)已知F1、F2是双曲线)0,0(12222babyax的两焦点,以线段F1F2为边作正三角形MF1F2,若边MF1的中点在双曲线上,则双曲线的离心率是( ) A.324 B.13 C.213 D.13 二、填空题 4. O为原点,F为抛物线xy42焦点,A为抛物线上一点,4AFOA,则点A坐标为 . 5.椭圆5x2+ky2=5的一个焦点是(0,2),那么k的值为 6.已知双曲线的两条准线将两焦点间的线段三等分,则双曲线的离心率是__ __.

7.双曲线08222yx的焦点坐标为 .

8.已知椭圆x29+y24=1与双曲线x24—y2=1有共同焦点F1,F2,点P是两曲线的一个交点,则PF1·PF2= ▲ . 9.平面直角坐标系中,已知点(1,2)A,(4,0)B,(,1)Pa,(1,1)Na,当四边形PABN的周长最小时,过点P的抛物线的标准方程是 .

10.在平面直角坐标系xOy中,抛物线y2  4x的焦点到其准线的距离为 . 11.若椭圆)1(12222babyax内有圆122yx,该圆的切线与椭圆交于BA,两点,且满足0OBOA(其中O为坐标原点),则22169ba的最小值是__________

12.过双曲线x2a2-y2b2=1(a>0,b>0)的右焦点F和虚轴端点B作一 条直线,若右顶点A到直线FB的距离等于b7,则双曲线的离心离e=________. 解析:过双曲线x2a2-y2b2=1(a>0,b>0)的右焦点F(c,0)和虚轴端点B(0,b)的直线FB的方

圆锥曲线大题综合(含答案)

圆锥曲线大题综合(含答案)

圆锥曲线大题综合1.(2022秋·广东江门·高二台山市第一中学校考期中)求适合下列条件的圆锥曲线的标准方程:(1)以直线y =为渐近线,焦点是()3,0-,()3,0的双曲线;(2)离心率为45,短轴长为6的椭圆.2.(2022秋·广东江门·高二校考期中)已知抛物线22(0)y px p =>的焦点F 到其准线的距离为4.(1)求p 的值;(2)过焦点F 且斜率为1的直线与抛物线交于A ,B 两点,求||AB .3.(2022秋·广东深圳·高二深圳市南头中学校考期中)椭圆C 的中心在坐标原点O ,焦点在x 轴上,椭圆C经过点()0,1且长轴长为(1)求椭圆C 的标准方程;(2)过点()1,0M 且斜率为1的直线l 与椭圆C 交于A ,B 两点,求弦长AB .4.(2022秋·广东江门·高二校考期中)椭圆C :22221(0)x y a b a b +=>>2.(1)求椭圆C 的标准方程;(2)经过点A (2,3)且倾斜角为π4的直线l 与椭圆交于M ,N 两点,求|MN |.5.(2022秋·广东江门·高二校考期中)已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,2a =.(1)求椭圆C 的标准方程;(2)经过点(2,3)A 且倾斜角为π4的直线l 与椭圆交于M ,N 两点,求线段MN 的长.6.(2022秋·广东梅州·高二校考期中)已知P 为椭圆E :22221x y a b+=(0)a b >>上任意一点,F 1,F 2为左、右焦点,M 为PF 1中点.如图所示:若1122OM PF +=,离心率e =(1)求椭圆E 的标准方程;(2)已知直线l 倾斜角为135°,经过(2,1)-且与椭圆交于A ,B 两点,求弦长|AB|的值.7.(2022秋·广东广州·高二校联考期中)已知椭圆的中心在原点,离心率为12,一个焦点是(,0)F m -(m 是大于0的常数).(1)求椭圆的方程;(2)设Q 是椭圆上的一点,且过点F 、Q 的直线l 与y 轴交于点M .若||2||MQ QF =,求直线l 的斜率.8.(2022秋·广东深圳·高二深圳市南头中学校考期中)已知椭圆C :()222210x y a b a b+=>>过点()2,1P ,且离心率2e =.(1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A ,B 两点,若AB =l 方程.9.(2022秋·广东深圳·高二深圳外国语学校校考期中)已知点()11,0F -,圆()222116F x y -+=:,点Q 在圆2F 上运动,1QF 的垂直平分线交2QF 于点P .(1)求动点P 的轨迹C 的方程;(2)直线l 与曲线C 交于M N 、两点,且MN 中点为()1,1,求直线l 的方程.10.(2022秋·广东广州·高二校联考期中)已知两定点()4,0A -,()1,0B -,动点P 满足2PA PB =,直线:l ()()211530m x m y m +++--=.(1)求动点P 的轨迹方程,并说明轨迹的形状;(2)记动点P 的轨迹为曲线E ,把曲线E 向右平移1个单位长度,向上平移1个单位长度后得到曲线E ',求直线l 被曲线E '截得的最短的弦长;(3)已知点M 的坐标为()5,3,点N 在曲线E '上运动,求线段MN 的中点H 的轨迹方程.11.(2022秋·广东江门·高二台山市第一中学校考期中)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,且经过点31,2P ⎛⎫⎪⎝⎭.(1)求椭圆C 的方程;(2)若直线y kx m =+与椭圆C 交于M N 、两点,O 为坐标原点,直线OM ON 、的斜率之积等于34-,试探求OMN 的面积是否为定值,并说明理由.12.(2022秋·广东江门·高二校考期中)动点N (x ,y )与定点F (1,0)的距离和N 到定直线2x =的距离的比是常数22.(1)求动点N 的轨迹C 的方程;(2)过点F 的直线l 与曲线C 交于A ,B 两点,点(2,0)M ,设直线MA 与直线MB 的斜率分别为1k ,2k .随着直线l 的变化,12k k +是否为定值?请说明理由.13.(2022秋·广东广州·高二校考期中)已知椭圆2222:1(0)x y a b a b Γ+=>>的右顶点坐标为(2,0)A ,左、右焦点分别为12,F F ,且122F F =,(1)求椭圆Γ的方程;(2)若直线L 与椭圆Γ相切,求证:点12,F F 到直线L 的距离之积为定值.14.(2022秋·广东广州·高二校联考期中)如图,已知圆22:430M x x y -++=,点()1,P t -为直线:1l x =-上一动点,过点P 引圆M 的两条切线,切点分别为A ,B(1)求直线AB 的方程,并写出直线AB 所经过的定点的坐标;(2)求线段AB 中点的轨迹方程;15.(2022秋·广东江门·高二校考期中)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,点在椭圆C 上,点F 是椭圆C 的右焦点.(1)求椭圆C 的方程;(2)过点F 的直线l 与椭圆C 交于M ,N 两点,则在x 轴上是否存在一点P ,使得直线l 绕点F 无论怎样转动都有0PM PN k k +=?若存在,求出点P 的坐标;若不存在,请说明理由.16.(2022秋·广东广州·高二南海中学校考期中)在平面直角坐标系xOy 中,已知点()4,0A -,()4,0B ,M 是一个动点,且直线AM ,BM 的斜率之积是34-,记M 的轨迹为E .(1)求E 的方程;(2)若过点()2,0F 且不与x 轴重合的直线l 与E 交于P ,Q 两点,点P 关于x 轴的对称点为1P (1P 与Q 不重合),直线1PQ 与x 轴交于点G ,求点G 的坐标.17.(2022春·广东汕头·高二校考期中)已知椭圆C :()222210x y a b a b +=>>过点()2,1P ,且离心率2e =.(1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A ,B 两点.求PAB 面积的最大值.18.(2022春·广东广州·高二华南师大附中校考期中)如图,已知圆2222:1(0)x y C a b a b+=>>的左顶点(2,0)A -,过右焦点F 的直线l 与椭圆C 相交于M ,N 两点,当直线l x ⊥轴时,||3MN =.(1)求椭圆C 的方程;(2)记,AMF ANF 的面积分别为12,S S ,求12S S 的取值范围.19.(2022春·广东广州·高二二师番禺附中校考期中)已知点A的坐标为()-,点B的坐标为(),且动点M 到点A 的距离是8,线段MB 的垂直平分线交线段MA 于点P .(1)求动点P 的轨迹C 的方程;(2)已知(2,1)D -,过原点且斜率为k (0k >)的直线l 与曲线C 交于E 、F 两点,求DEF 面积的最大值.20.(2022春·广东深圳·高二深圳市龙岗区龙城高级中学校考期中)已知椭圆C :22221(0)x y a b a b+=>>的焦距为2,点31,2P ⎛⎫⎪⎝⎭在椭圆C 上.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两个动点,O 为坐标原点,且直线PM ,PN 的倾斜角互补,求OMN 面积的最大值.21.(2022春·广东深圳·高二校考期中)已知抛物线()2:20C x py p =>的焦点为F ,过F 的直线与抛物线C 交于A ,B 两点,当A ,B 两点的纵坐标相同时,4AB =.(1)求抛物线C 的方程;(2)若P ,Q 为抛物线C 上两个动点,()0PQ m m =>,E 为PQ 的中点,求点E 纵坐标的最小值.22.(2022秋·广东深圳·高二校考期中)已知椭圆C :()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为2,短轴顶点分别为M 、N ,四边形12MF NF 的面积为32.(1)求椭圆C 的标准方程;(2)直线l 交椭圆C 于A ,B 两点,若AB 的中点坐标为()2,1-,求直线l 的方程.23.(2022秋·广东广州·高二校联考期中)已知椭圆221:1164x y E +=,()22222:10,4x y E a b a a b+=>><的离心率相同.点()00,P x y 在椭圆1E 上,()11,A x y 、()22,B x y 在椭圆2E 上.(1)若2OP OQ =,求点Q 的轨迹方程;(2)设1E 的右顶点和上顶点分别为1A 、1B ,直线1AC 、1B D 分别是椭圆2E 的切线,C 、D 为切点,直线1AC 、1B D 的斜率分别是1k 、2k ,求2212k k ⋅的值;(3)设直线PA 、PB 分别与椭圆2E 相交于E 、F 两点,且()AB tEF t =∈R,若M 是AB 中点,求证:P 、O 、M 三点共线(O 为坐标原点).24.(2022秋·广东广州·高二校联考期中)如图,中心在原点O 的椭圆Γ的右焦点为()F ,长轴长为8.椭圆Γ上有两点P 、Q ,连接OP 、OQ ,记它们的斜率为OP k 、OQ k ,且满足14OP OQ k k ⋅=-.(1)求椭圆Γ的标准方程;(2)求证:22OP OQ +为一定值,并求出这个定值;(3)设直线OQ与椭圆Γ的另一个交点为R ,直线RP 和PQ 分别与直线x =M 、N ,若PQR 和PMN 的面积相等,求点P 的横坐标.25.(2022秋·广东·高二校联考期中)设椭圆Γ:()222210x y a b a b +=>>,1F ,2F 是椭圆Γ的左、右焦点,点A ⎛ ⎝⎭在椭圆Γ上,点()4,0P 在椭圆Γ外,且24PF =-(1)求椭圆Γ的方程;(2)若1,B ⎛ ⎝⎭,点C 为椭圆Γ上横坐标大于1的一点,过点C 的直线l 与椭圆有且仅有一个交点,并与直线PA ,PB 交于M ,N 两点,O 为坐标原点,记OMN ,PMN 的面积分别为1S ,2S ,求221122S S S S -+的最小值.26.(2022秋·广东阳江·高二统考期中)已知椭圆()2222:10y x C a b a b+=>>的上、下焦点分别为1F ,2F ,左、右顶点分别为1A ,2A ,且四边形1122A F A F 是面积为8的正方形.(1)求C 的标准方程.(2)M ,N 为C 上且在y 轴右侧的两点,12//MF NF ,2MF 与1NF 的交点为P ,试问12PF PF +是否为定值?若是定值,求出该定值;若不是,请说明理由.27.(2022春·广东广州·高二广东番禺中学校考期中)已知定点)P,圆Q :(2216x y +=,N 为圆Q 上的动点,线段NP 的垂直平分线和半径NQ 相交于点M .(1)求点M 的轨迹Γ的方程;(2)直线l :x ky n =+与曲线Γ相交于A ,B 两点,且以线段AB 为直径的圆经过点C (2,0),求ABC 面积的最大值.28.(2022春·广东广州·高二广州科学城中学校考期中)已知椭圆2222:1(0)x y C a b a b+=>>的焦距为其短轴的两个端点与右焦点的连线构成正三角形.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设过点(0,2)P -的动直线l 与椭圆C 相交于M ,N 两点,当OMN 的面积最大时,求l 的方程.29.(2022秋·广东深圳·高二深圳市高级中学校考期中)曲线Γ上动点M 到A (﹣2,0)和到B (2,0)的斜率之积为﹣14.(1)求曲线Γ的轨迹方程;(2)若点P (x 0,y 0)(y 0≠0)为直线x =4上任意一点,PA ,PB 交椭圆Γ于C ,D 两点,求四边形ACBD 面积的最大值.30.(2022春·广东汕头·高二金山中学校考期中)已知椭圆()2222:10,0x y C a b a b+=>>的焦距为,经过点()2,1P -.(1)求椭圆C 的标准方程;(2)设O 为坐标原点,在椭圆短轴上有两点M ,N 满足OM NO =,直线PM PN ,分别交椭圆于A ,B .PQ AB ⊥,Q 为垂足.是否存在定点R ,使得QR 为定值,说明理由.圆锥曲线大题综合答案1.(2022秋·广东江门·高二台山市第一中学校考期中)求适合下列条件的圆锥曲线的标准方程:(1)以直线y =为渐近线,焦点是()3,0-,()3,0的双曲线;(2)离心率为45,短轴长为6的椭圆.(1)求p 的值;(2)过焦点F 且斜率为1的直线与抛物线交于A ,B 两点,求||AB .则直线AB 的方程为2,y x =-设()()1122,,,A x y B x y ,联立228y x y x=-⎧⎨=⎩,整理可得21240xx -+=,所以1212x x +=,由抛物线的性质可得12||12416AB x x p =++=+=.3.(2022秋·广东深圳·高二深圳市南头中学校考期中)椭圆C 的中心在坐标原点O ,焦点在x 轴上,椭圆C 经过点()0,1且长轴长为(1)求椭圆C 的标准方程;(2)过点()1,0M 且斜率为1的直线l 与椭圆C 交于A ,B 两点,求弦长AB .(1)求椭圆C 的标准方程;(2)经过点A (2,3)且倾斜角为π4的直线l 与椭圆交于M ,N 两点,求|MN |.(1)求椭圆C 的标准方程;(2)经过点(2,3)A 且倾斜角为π4的直线l 与椭圆交于M ,N 两点,求线段MN 的长.6.(2022秋·广东梅州·高二校考期中)已知P 为椭圆E :221x y a b+=(0)a b >>上任意一点,F 1,F 2为左、右焦点,M 为PF 1中点.如图所示:若1122OM PF +=,离心率e =(1)求椭圆E 的标准方程;(2)已知直线l 倾斜角为135°,经过(2,1)-且与椭圆交于A ,B 两点,求弦长|AB|的值.7.(2022秋·广东广州·高二校联考期中)已知椭圆的中心在原点,离心率为12,一个焦点是(,0)F m -(m 是大于0的常数).(1)求椭圆的方程;(2)设Q 是椭圆上的一点,且过点F 、Q 的直线l 与y 轴交于点M .若||2||MQ QF =,求直线l 的斜率.8.(2022秋·广东深圳·高二深圳市南头中学校考期中)已知椭圆C :()222210x y a b a b+=>>过点()2,1P ,且离心率2e =.(1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A ,B两点,若AB =l 方程.9.(2022秋·广东深圳·高二深圳外国语学校校考期中)已知点1,圆2,点在圆2F 上运动,1QF 的垂直平分线交2QF 于点P .(1)求动点P 的轨迹C 的方程;(2)直线l 与曲线C 交于M N 、两点,且MN 中点为()1,1,求直线l 的方程.:l ()()211530m x m y m +++--=.(1)求动点P 的轨迹方程,并说明轨迹的形状;(2)记动点P 的轨迹为曲线E ,把曲线E 向右平移1个单位长度,向上平移1个单位长度后得到曲线E ',求直线l 被曲线E '截得的最短的弦长;(3)已知点M 的坐标为()5,3,点N 在曲线E '上运动,求线段MN 的中点H 的轨迹方程.11.(2022秋·广东江门·高二台山市第一中学校考期中)已知椭圆22:1(0)x y C a b a b+=>>的离心率为12,且经过点31,2P ⎛⎫⎪⎝⎭.(1)求椭圆C 的方程;(2)若直线y kx m =+与椭圆C 交于M N 、两点,O 为坐标原点,直线OM ON 、的斜率之积等于34-,试探求OMN 的面积是否为定值,并说明理由.的比是常数2.(1)求动点N 的轨迹C 的方程;(2)过点F 的直线l 与曲线C 交于A ,B 两点,点(2,0)M ,设直线MA 与直线MB 的斜率分别为1k ,2k .随着直线l的变化,12k k +是否为定值?请说明理由.13.(2022秋·广东广州·高二校考期中)已知椭圆2222:1(0)x y a b a bΓ+=>>的右顶点坐标为(2,0)A ,左、右焦点分别为12,F F ,且122F F =,(1)求椭圆Γ的方程;(2)若直线L 与椭圆Γ相切,求证:点12,F F 到直线L 的距离之积为定值.【详解】(1)因为12||22F F c ==,则c =1,因为2222,3a b a c ==-=,所以椭圆Γ的方程22143x y +=;(2)证明:椭圆Γ的左、右焦点分别为12(1,0),(1,0)F F -,①当直线l 垂直于x 轴时,因为直线l 与椭圆Γ相切,所以直线l 的方程为2x =±,此时点12,F F 到直线l 的距离一个为11d =,另一个为23d =,所以123d d =,②当直线l 不垂直于x 轴时,设直线l 的方程为y =kx +b ,联立2234120y kx b x y =+⎧⎨+-=⎩,消去y ,整理得222(34)84120k x kbx b +++-=,所以,222222644(34)(412)16(9123)k x k b k b ∆=-+-=+-,因为直线l 与椭圆Γ相切,Δ=0,所以,2234b k =+,因为1(1,0)F -到直线l 的距离为12||1-=+k b d k ,2(1,0)F 到直线l 的距离为22||1+=+k b d k ,所以,222221222222|||||||(34)||33|311111k b k b k b k k k d d k k k k k-+--++=⋅====+++++,所以点12,F F 到直线l 的距离之积为定值,且定值为3.14.(2022秋·广东广州·高二校联考期中)如图,已知圆22:430M x x y -++=,点()1,P t -为直线:1l x =-上一动点,过点P 引圆M 的两条切线,切点分别为A ,B(1)求直线AB 的方程,并写出直线AB 所经过的定点的坐标;(2)求线段AB 中点的轨迹方程;【详解】(1)因为PA ,PB 为圆M 的切线,所以90PBM PAM ∠=∠=︒,设PM 的中点为N ,所以点A ,B 在以PM 为直径的圆N 上,又点A ,B 在圆M 上,所以线段AB 为圆N 和圆M 的公共弦,因为圆22:430M x x y -++=①,AB的中点设为F点,由HF始终垂直干当P点在x轴上时,F点与H点的重合,M,得HM的中点坐标为⎛(2,0)⎝圆去掉点M,圆C上,点F是椭圆C的右焦点.(1)求椭圆C的方程;(2)过点F的直线l与椭圆C交于M,N两点,则在x轴上是否存在一点P,使得直线l绕点F无论怎样转k k+=?若存在,求出点P的坐标;若不存在,请说明理由.动都有0PM PN,M 是一个动点,且直线AM ,BM 的斜率之积是34-,记M 的轨迹为E .(1)求E 的方程;(2)若过点()2,0F 且不与x 轴重合的直线l 与E 交于P ,Q 两点,点P 关于x 轴的对称点为1P (1P 与Q 不重合),直线1PQ 与x 轴交于点G ,求点G 的坐标.(1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A ,B 两点.求PAB 面积的最大值.18.(2022春·广东广州·高二华南师大附中校考期中)如图,已知圆22:1(0)x y C a b a b+=>>的左顶点(2,0)A -,过右焦点F 的直线l 与椭圆C 相交于M ,N 两点,当直线l x ⊥轴时,||3MN =.(1)求椭圆C 的方程;(2)记,AMF ANF 的面积分别为12,S S ,求12S S 的取值范围.且动点M 到点A 的距离是8,线段MB 的垂直平分线交线段MA 于点P .(1)求动点P 的轨迹C 的方程;(2)已知(2,1)D -,过原点且斜率为k (0k >)的直线l 与曲线C 交于E 、F 两点,求DEF 面积的最大值.20.(2022春·广东深圳·高二深圳市龙岗区龙城高级中学校考期中)已知椭圆C :221(0)a b a b+=>>的焦距为2,点31,2P ⎛⎫⎪⎝⎭在椭圆C 上.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两个动点,O 为坐标原点,且直线PM ,PN 的倾斜角互补,求OMN 面积的最大值.交于A ,B 两点,当A ,B 两点的纵坐标相同时,4AB =.(1)求抛物线C 的方程;(2)若P ,Q 为抛物线C 上两个动点,()0PQ m m =>,E 为PQ 的中点,求点E 纵坐标的最小值.22.(2022秋·广东深圳·高二校考期中)已知椭圆C :()2210a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为22,短轴顶点分别为M 、N ,四边形12MF NF 的面积为32.(1)求椭圆C 的标准方程;(2)直线l 交椭圆C 于A ,B 两点,若AB 的中点坐标为()2,1-,求直线l 的方程.23.(2022秋·广东广州·高二校联考期中)已知椭圆1:1164x y E +=,()222:10,4E a b a a b +=>><的离心率相同.点()00,P x y 在椭圆1E 上,()11,A x y 、()22,B x y 在椭圆2E 上.(1)若2OP OQ =,求点Q 的轨迹方程;(2)设1E 的右顶点和上顶点分别为1A 、1B ,直线1AC 、1B D 分别是椭圆2E 的切线,C 、D 为切点,直线1AC 、1B D 的斜率分别是1k 、2k ,求2212k k ⋅的值;(3)设直线PA 、PB 分别与椭圆2E 相交于E 、F 两点,且()AB tEF t =∈R,若M 是AB 中点,求证:P 、O 、M 三点共线(O 为坐标原点).8.椭圆Γ上有两点P 、Q ,连接OP 、OQ ,记它们的斜率为OP k 、OQ k ,且满足14OP OQ k k ⋅=-.(1)求椭圆Γ的标准方程;(2)求证:22OP OQ +为一定值,并求出这个定值;(3)设直线OQ 与椭圆Γ的另一个交点为R ,直线RP 和PQ 分别与直线x =M 、N ,若PQR 和PMN 的面积相等,求点P 的横坐标.25.(2022秋·广东·高二校联考期中)设椭圆Γ:()2210a b a b +=>>,1F ,2F 是椭圆Γ的左、右焦点,点A ⎛ ⎝⎭在椭圆Γ上,点()4,0P 在椭圆Γ外,且24PF =-(1)求椭圆Γ的方程;(2)若1,2B ⎛- ⎝⎭,点C 为椭圆Γ上横坐标大于1的一点,过点C 的直线l 与椭圆有且仅有一个交点,并与直线PA ,PB 交于M ,N 两点,O 为坐标原点,记OMN ,PMN 的面积分别为1S ,2S ,求221122S S S S -+的最小值.26.(2022秋·广东阳江·高二统考期中)已知椭圆()22:10y x C a b a b+=>>的上、下焦点分别为1F ,2F ,左、右顶点分别为1A ,2A ,且四边形1122A F A F 是面积为8的正方形.(1)求C 的标准方程.(2)M ,N 为C 上且在y 轴右侧的两点,12//MF NF ,2MF 与1NF 的交点为P ,试问12PF PF +是否为定值?若是定值,求出该定值;若不是,请说明理由.)27.(2022春·广东广州·高二广东番禺中学校考期中)已知定点P ,圆Q :216x y +=,N 为圆Q 上的动点,线段NP 的垂直平分线和半径NQ 相交于点M .(1)求点M 的轨迹Γ的方程;(2)直线l :x ky n =+与曲线Γ相交于A ,B 两点,且以线段AB 为直径的圆经过点C (2,0),求ABC 面积的最大值.(1)因为N 为圆Q 上的动点,线段NP 的垂直平分线和半径NQ 相交于点M ,28.(2022春·广东广州·高二广州科学城中学校考期中)已知椭圆22:1(0)x y C a b a b+=>>的焦距为其短轴的两个端点与右焦点的连线构成正三角形.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设过点(0,2)P -的动直线l 与椭圆C 相交于M ,N 两点,当OMN 的面积最大时,求l 的方程.(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.29.(2022秋·广东深圳·高二深圳市高级中学校考期中)曲线Γ上动点M到A(﹣2,0)和到B(2,0)的斜率之积为﹣1 4.(1)求曲线Γ的轨迹方程;(2)若点P(x0,y0)(y0≠0)为直线x=4上任意一点,PA,PB交椭圆Γ于C,D两点,求四边形ACBD 面积的最大值.【点睛】熟练掌握直线与圆锥曲线位置关系及函数单调性是解题关键30.(2022春·广东汕头·高二金山中学校考期中)已知椭圆()22:10,0x y C a b a b+=>>的焦距为,经过点()2,1P -.(1)求椭圆C 的标准方程;(2)设O 为坐标原点,在椭圆短轴上有两点M ,N 满足OM NO =,直线PM PN ,分别交椭圆于A ,B .PQ AB ⊥,Q 为垂足.是否存在定点R ,使得QR 为定值,说明理由.。

高考分类汇编(圆锥曲线大题含答案)

高考分类汇编(圆锥曲线大题含答案)

7k2 1
2
0,
2k 1
解得 k 2
1 ,即k
7
.
7
7
故直线 l 的方程为 x 7y 1 0 或 x 7 y 1 0 .
学习必备
欢迎下载
12 .( 20XX
年高考四川卷
(理))已知椭圆
C:
x2 a2
y2 b2
1,(a
b
0) 的两个焦点分别为 F1( 1,0), F2(1,0) ,
且椭圆
C
经过点
41 P( , )
kk1 kk2
x2 y2
b2
解:( Ⅰ) 由于 c 2 a 2 b2 , 将 x
c 代入椭圆方程 a 2
b2
1y

a
2
2b 由题意知 a
1 ,即 a
2b 2
ec
3
又 a2
所以 a 2 , b 1
x2 y2 1 所以椭圆方程为 4
( Ⅱ) 由题意可知 :
PF1 PM = PF2 PM
, PF1
PM = PF2
中, 过椭圆
M
x2 : a2
y2 b2 1(a b 0) 的右焦点 F 作直 x y
3 0交 M 于 A, B 两点 , P 为 AB 的中点 ,
且 OP 的斜率为 1 . 2
( Ⅰ) 求 M 的方程 ;( Ⅱ) C, D 为 M 上的两点 , 若四边形 ABCD 的对角线 CD AB, 求四边形 ABCD 面
8.( 20XX 年普通高等学校招生统一考试天津数学(理)试题(含答案)
) 设椭圆
x2
2
a
y2 2 1(a b 0) 的左焦 b
点为 F, 离心率为 3 , 过点 F 且与 x 轴垂直的直线被椭圆截得的线段长为 3

精选最新版2020高考数学《圆锥曲线方程》专题训练考试题(含标准答案)

精选最新版2020高考数学《圆锥曲线方程》专题训练考试题(含标准答案)

2019年高中数学单元测试卷 圆锥曲线与方程 学校:__________ 姓名:__________ 班级:__________ 考号:__________ 一、选择题 1.(2006年高考重庆文)设11229(,),(4,),(,)5AxyBCxy是右焦点为F的椭圆221259xy上三个不同的点,则“,,AFBFCF成等差数列”是 “128xx”的( A ) (A)充要条件 (B)必要不充分条件 (C)充分不必要条件 (D)既非充分也非必要

2.1 .(2012新课标理)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线xy162的准线交于,AB两点,43AB;则C的实轴长为 ( )

A.2 B.22 C. D.

3.(2005重庆理)若动点(yx,)在曲线)0(14222bbyx上变化,则yx22的最大值为 ( )

A.)4(2),40(442bbbb B.)2(2),20(442bbbb

C.442b D.2b 4.(2004湖南理)如果双曲线1121322yx上一点P到右焦点的距离等于13,那么点P到右准线的距离是( ) A.513 B.13 C.5 D.135 二、填空题 5.抛物线22yx的焦点坐标是 ▲ . 6.若已知中心在坐标原点的椭圆过点23(1,)3,且它的一条准线方程为x=3,则该椭圆的方程为 .

7.椭圆122byax与直线xy1交于A、B两点,过原点与线段AB中点的直线的 斜率为ba则,23=________

8.已知两条直线l1:2x-3y+2=0和l2:3x-2y+3=0,有一动圆(圆心和半径都动)与l1、l2都相交,且l1、l2被圆截得的弦长分别是定值26和24,则圆心的轨迹方程是________. 解析:设动圆的圆心为M(x,y),半径为r,点M到直线l1,l2的距离分别为d1和d2. 由弦心距、半径、半弦长间的关系得,

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新课标高考《圆锥曲线》大题专题含答案 全国高考理科数学试题分类汇编9:圆锥曲线 一、选择题 1 .(2013年高考江西卷(理))过点(2,0)引直线l与曲线21yx相交于

A,B两点,O为坐标原点,当AOB的面积取最大值时,直线l的斜率等于 ( ) A.yEBBCCD33 B.33 C.33 D.3

2 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD版))双曲线2214xy的顶点到其渐近线的距离等于 ( ) A.25 B.45 C.255 D.455

3 .(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD版))已知中心在原点的双曲线C的右焦点为3,0F,离心率等于32,在双曲线C的方程是 ( )

A.22145xy B.22145xy C.22125xy

D.22125xy 4 .(2013年高考新课标1(理))已知双曲线C:22221xyab(0,0ab)的离心率为52,则C的渐近线方程为 ( ) A.14yx B.13yx C.12yx

D.yx

5 .(2013年高考湖北卷(理))已知04,则双曲线22122:1cossinxyC与

222222

:1sinsintanyxC的

( ) A.实轴长相等 B.虚轴长相等 C.焦距相等 D.离心率相等

6 .(2013年高考四川卷(理))抛物线24yx的焦点到双曲线2213yx的渐近线的距离是 ( ) A.12 B.32 C.1 D.3 7 .(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD版))如图,21,FF是椭圆14:221yxC与双曲线2C的公共焦点,BA,分别是1C,2C在第二、四象限的公共点.若四边形21BFAF为矩形,则2C的离心率是[来源:12999数学网]

( ) A.2 B.3 C.23 D.26

8 .(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))已知双曲线22221(0,0)xyabab的两条渐近线与抛物线22(0)pxpy的准线分

别交于A, B两点, O为坐标原点. 若双曲线的离心率为2, △AOB的面积为3, 则p = ( ) A.1 B.32 C.2 D.3

9 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD版含答案(已校对))椭圆22:143xyC

的左、右顶点分别为12,AA,点P在C上且直线2PA的斜率的取值范围是2,1,那么直线1PA斜率的取值范围是

O x

y A

B F1

F2

(第9题图) ( ) A.1324, B.3384, C.112, D.314,

10.(2013年普通高等学校招生统一考试大纲版数学(理)WORD版含答案(已校对))已知抛物线2:8Cyx与点2,2M,过C的焦点且斜率为k的直线与C

交于,AB两点,若0MAMB,则k

) A.12 B.22 C.2 D.2

11.(2013年高考北京卷(理))若双曲线22221xyab的离心率为3,则其渐近线方程为 ( ) A.y=±2x B.y=2x C.12yx

D.22yx

12.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))已知抛物线

1C:212yxp(0)p的焦点与双曲线2C:2213xy的右焦点的连线交1C于第一象限的点M.若1C在点M处的切线平行于

2C的一条渐近线,则p

( ) A.316 B.38 C.233 D.433 13.(2013年高考新课标1(理))已知椭圆2222:1(0)xyEabab的右焦点为(3,0)F,过点F的直线交椭圆于,AB两点.若AB的中点坐标为(1,1),则E的方程为 ( ) A.2214536xy B.2213627xy C.2212718xy

D.221189xy

14.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD版含答案))设抛物线2:2(0)Cypxp

的焦点为F,点M在C上,5MF,若以MF为直

径的圆过点)2,0(,则C的方程为 ( ) A.24yx或28yx B.22yx或28yx C.24yx或216yx D.22yx或216yx

15.(2013年上海市春季高考数学试卷(含答案))已知 AB、为平面内两定点,过该平面内动点M作直线AB的垂线,垂足为N.若2MNANNB,其中为常数,则动点M的轨迹不可能是 ( ) A.圆 B.椭圆 C.抛物线 D.双曲线

16.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))已知圆221:231Cxy,圆222:349Cxy

,,MN分别是圆12,CC上

的动点,P为x轴上的动点,则PMPN的最小值为 ( ) A.524 B.171 C.622 D.17

二、填空题 17.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD版含附加题))双曲

线191622yx的两条渐近线的方程为_____________.

18.(2013年高考江西卷(理))抛物线22(0)xpyp的焦点为F,其准线与双曲线22133xy相交于,AB两点,若ABF为等边三角形,则

P_____________ 19.(2013年高考湖南卷(理))设12,FF是双曲线2222:1(0,0)xyCabab的两个焦点,P是C上一点,若216,PFPFa且12PFF的最小内角为30,则C的离心率为___.

20.(2013年高考上海卷(理))设AB是椭圆的长轴,点C在上,且 4CBA,若AB=4,2BC,则的两个焦点之间的距离为________

24.(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD版))椭圆2222:1(0)xyabab的左.右焦点分别为12,FF,焦距为2c,若

直线3()yxc与椭圆的一个交点M满足12212MFFMFF,则该椭圆的离心率等于__________

25.(2013年高考陕西卷(理))双曲线22116xym的离心率为54, 则m等于_______. 26.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD版))已知椭圆2222:1(0)xyCabab的左焦点为,FC与过原点的直线相交于

,AB两点,连接,AFBF,若410,6,cosABF5ABAF,则C的离心率e=______.

27.(2013年上海市春季高考数学试卷(含答案))抛物线28yx的准线方程是_______________

三、解答题 30.(2013年上海市春季高考数学试卷(含答案))本题共有2个小题,第1小题满 分4分,第2小题满分9分. 已知椭圆C的两个焦点分别为1(1 0)F,、2(1 0)F,,短轴的两个端点分别为12 BB、 (1)若112FBB为等边三角形,求椭圆C的方程; (2)若椭圆C的短轴长为2,过点2F的直线l与椭圆C相交于 PQ、两点,且11FPFQ,求直线l的方程.

31.(2013年高考四川卷(理))已知椭圆C:22221,(0)xyabab的两个焦点分别为12(1,0),(1,0)FF,且椭圆C经过点41(,)33P. (Ⅰ)求椭圆C的离心率;

32.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))

椭圆22

22:1xyCab(0)ab

的左、右焦点分别是12,FF,离心率为32,过1F且垂直于x

轴的直线被椭圆C截得的线段长为1. (Ⅰ)求椭圆C的方程; 36.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD版))如图,点)1,0(P是椭圆)0(1:22221babyaxC的一个顶点,1C的长轴是圆

4:222yxC的直径.21,ll是过点P且互相垂直的两条直线,其中1l交圆2C于两点,2l交椭圆1C于另一点D (1)求椭圆1C的方程; (2)求ABD面积取最大值时直线1l的方程.

37.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))如题(21)图,椭圆的中心为原点O,长轴在x轴上,离心率22e,过左焦点

1F作x轴的垂线交椭圆于,AA两点,4AA. (1)求该椭圆的标准方程;

x O y B l1

l2

P

D A (第21题图)

相关文档
最新文档