高考数学专题,函数,大题,,前题

合集下载

高考数学最新真题专题解析—函数的图象及性质

高考数学最新真题专题解析—函数的图象及性质

高考数学最新真题专题解析—函数的图象及性质考向一 由函数图像求解析式【母题来源】2022年高考全国乙卷(文科)【母题题文】如图是下列四个函数中的某个函数在区间[3,3]-的大致图像,则该函数是( )A. 3231x x y x -+=+B. 321x x y x -=+C. 22cos 1x x y x =+D.22sin 1x y x =+ 【答案】A【试题解析】设()321x x f x x -=+,则()10f =,故排除B; 设()22cos 1x x h x x =+,当π0,2x ⎛⎫∈ ⎪⎝⎭时,0cos 1x <<,所以()222cos 2111x x x h x x x =<≤++,故排除C;设()22sin 1x g x x =+,则()2sin 33010g =>,故排除D.故选:A. 【命题意图】本类题主要考查函数的定义域、值域、奇偶性、单调性、对称性、周期性等规律性质,属于中档题目.【命题方向】这类试题命题形式主要有由函数的性质及解析式选图,试题难度不大,多为中低档题,函数图像是历年高考的热点,其重点是基本初等函数的图像以及函数的性质在图像上的直观体现.常见的命题角度有:(1)由函数的图像来研究函数的性质;(2)由函数图像求解析式;(3)由解析式判断大致图像.【得分要点】函数图象的识辨可从以下方面入手:(1) 从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2) 从函数的单调性,判断图象的变化趋势.(3) 从函数的奇偶性,判断图象的对称性.(4) 从函数的周期性,判断图像的循环往复.(5) 从函数的特征点,排除不合要求的图象.考向二 由解析式判断图像【母题来源】2022年高考全国乙卷(文科)【母题题文】函数()33cos x x y x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为( ) A. B. C. D.【答案】A【试题解析】令()()33cos ,,22x x f x x x ππ-⎡⎤=-∈-⎢⎥⎣⎦, 则()()()()()33cos 33cos x x x x f x x x f x ---=--=--=-,所以()f x 为奇函数,排除BD ;又当0,2x π⎛⎫∈ ⎪⎝⎭时,330,cos 0x x x -->>,所以()0f x >,排除C.故选:A. 【命题意图】本类题主要考查函数的定义域、值域、奇偶性、单调性、对称性、周期性等规律性质,属于中档题目.【命题方向】这类试题命题形式主要有由函数的性质及解析式选图,试题难度不大,多为中低档题,函数图像是历年高考的热点,其重点是基本初等函数的图像以及函数的性质在图像上的直观体现.常见的命题角度有:(1)由函数的图像来研究函数的性质;(2)由函数图像求解析式;(3)由解析式判断大致图像.【得分要点】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的周期性,判断图像的循环往复.(5)从函数的特征点,排除不合要求的图象.真题汇总及解析1.函数()22cos6x x y x -=-的图像大致是( )A .B .C .D .【答案】C【解析】【分析】利用排除法求解,先判断函数的奇偶性,再利用函数的变化情况判断即可【详解】定义域为R ,因为()()()22cos(6)22cos6()x x x x f x x x f x ---=--=--=-,所以函数为奇函数,所以排除AB , 当012x π<<时,062x π<<,则cos60x >,因为当012x π<<时,220x x -->,所以当012x π<<时,()22cos60x x y x -=->,所以排除D ,故选:C 2.从函数y x =,2y x ,2x y -=,sin y x =,cos y x =中任选两个函数,记为()f x 和()g x ,若()()()h x f x g x =+或()()()h x f x g x =-的图象如图所示,则()h x =( )A .2sin x x -B .cos x x +C .2sin x x -+D .cos x x -【答案】C【解析】【分析】 根据图象可知函数()h x 过定点(0,1),当0x <时()1h x >,为减函数;当0x >时()0h x >或()0h x <交替出现,结合排除法和选项中函数的图象与性质,即可得出结果.【详解】由图象可知,函数()h x 过定点(0,1),当0x <时,()1h x >,为减函数;当0x >时,()0h x >或()0h x <交替出现.若2()sin h x x x =-,则()00h =,不符合题意,故A 错误;若()cos h x x x =+,则(0)1h =,即函数()h x 过定点(0,1),又1cos 1x -≤≤,当1x <-时,()cos 0h x x x =+<,不符合题意,故B 错误;若()cos h x x x =-,则(0)1h =-,不符合题意,故D 错误.故选:C3.函数()2cos sin ln 2cos x f x x x-=⋅+的部分图象大致为( ) A .B .C .D .【答案】C【解析】【分析】先判断函数的奇偶性得函数为奇函数,进而排除AB 选项,再根据0,4x π⎛⎫∈ ⎪⎝⎭时的函数符号排除D 选项得答案.【详解】解:由题意可知,函数()f x 的定义域为R ,因为2cos()2cos ()sin()ln sin ln ()2cos()2cos x x f x x x f x x x----=-=-⋅=-+-+, 所以()f x 为奇函数,图象关于原点对称,排除选项A ,B ;当0,4x π⎛⎫∈ ⎪⎝⎭时,sin 0,2cos 2cos 0x x x >+>->,所以2cos 012cos x x -<<+, 所以2cos ()sin ln02cos x f x x x-=⋅<+,排除D. 故选:C.4.已知R α∈,则函数()e x x f x α=的图象不可能是( ) A . B .C .D .【答案】C【分析】 令12α=、2α=、1α=-,结合导数研究()f x 的单调性及值域判断可能的图象,即可得答案.【详解】 当12α=时,()e x x f x =且0x ≥,则12()e x x f x x-'=, 所以1(0,)2上 ()0f x '>,()f x 递增;1(,)2+∞上 ()0f x '<,()f x 递减,且(0)0f =, 所以A 图象可能;当2α=时,2()0ex x f x =≥且R x ∈,则(2)()e x x x f x '-=, 所以(,0)-∞上()0f x '<,()f x 递减,(0,2)上 ()0f x '>,()f x 递增,(2,)+∞上 ()0f x '<,()f x 递减,所以B 图象可能;当1α=-时,1()e xf x x =且0x ≠,则21()e x x f x x +'=-, 所以(,1)-∞-上()0f x '>,()f x 递增,(1,0)-上 ()0f x '<,()f x 递减,(0,)+∞上 ()0f x '>,()f x 递增,又0x <时()0f x <,而0x >时()0f x >,所以D 图象可能;综上,排除A 、B 、D.故选:C5.函数()2222x xx x f x -+=+的部分图象大致是( ) A . B . C . D .【答案】B【分析】先判断()f x 的奇偶性,可排除A ,再由单调性、特值点排除选项C 、D ,即可得出答案.【详解】函数的定义域为R ,因为()()2222x x x x f x f x -+-==+,所以()f x 是偶函数,排除选项A ;当x →+∞时,考虑到22y x x =+和22x x y -=+的变化速度,知x →+∞时,()0f x →,故排除选项C ,D .故选:B .6.函数()22x f x x -=⋅在区间[]22-,上的图象可能是( ) A . B .C .D .【答案】C【解析】【分析】首先判断函数的奇偶性,再根据特殊值判断即可;【详解】解:∵()()22x f x x f x --=⋅=,∴()f x 是偶函数,函数图象关于y 轴对称,排除A ,B 选项;∵()()122f f ==,∴()f x 在[0,2]上不单调,排除D 选项.故选:C7.下图中的函数图象所对应的解析式可能是( )A .112x y -=-B .112xy =-- C .12x y -=-D .21x y =--【答案】A【解析】【分析】 根据函数图象的对称性、奇偶性、单调性以及特殊点,利用排除法即可求解.【详解】解:根据图象可知,函数关于1x =对称,且当1x =时,1y =-,故排除B 、D 两项; 当1x >时,函数图象单调递增,无限接近于0,对于C 项,当1x >时,12x y -=-单调递减,故排除C 项.故选:A.8.函数()x b f x a -=的图像如图所示,其中a ,b 为常数,则下列结论正确的是( )A .1a >,0b <B .1a >,0b >C .01a <<,0b >D .01a <<,0b <【答案】D【解析】【分析】 由函数的单调性得到a 的范围,再根据函数图像平移关系分析得到b 的范围.【详解】由函数()x b f x a -=的图像可知,函数()x b f x a -=在定义域上单调递减,01a ∴<<,排除AB 选项;分析可知:函数()x b f x a -=图像是由x y a =向左平移所得,0b ∴->,0b ∴<.故D 选项正确. 故选:D9.已知函数()f x ax b =+的图象如图所示,则函数()x g x a b =+的图象可能是( )A .B .C .D .【答案】B【解析】【分析】由函数()f x ax b =+的图象可得1a >,1b <-,从而可得()x g x a b =+的大致图象.【详解】由()f x ax b =+的图象可得(0)1f b =<-,(1)0f a b =+>,所以1a >,1b <-,故函数()x g x a b =+为增函数,相对x y a =向下平移大于1个单位故选:B10.设函数f (x )=2x ,则如图所示的函数图象对应的函数解析式是( )A .y =f (|x )B .y =-|f (x )| )C .y =-f (-|x )D .y =f (-|x )【答案】C【解析】 由题意结合指数函数的图象及函数图象的变换可得函数图象对应的函数解析式,即可得解.【详解】由图象可知函数图象对应的函数解析式是||2x y -=-,所以函数图象对应的函数解析式是y =-f (-|x |).故选:C .【点睛】本题考查了指数函数的图象及函数图象变换的应用,属于基础题.11.函数()cos f x x x =的图像大致是( )A .B .C .D .【答案】A【解析】【分析】先根据函数奇偶性的概念可知()()f x f x -=-,即函数()f x 为奇函数,排除选项D ;再利用三角函数的性质排除BC 即得.【详解】()cos()cos ()f x x x x x f x -=--=-=-,∴函数()f x 为奇函数,排除选项D ; 当(0,)2x π∈时,0x >,0cos 1x <<, 0()f x x ∴<<,排除选项BC . 故选:A .12.下列各个函数图像所对应的函数解析式序号为( )①||()e sin x f x x = ②()ln ||=-g x x x ③2()sin =t x x x ④2e ()xh x x =A .④②①③B .②④①③C .②④③①D .④②③①【答案】A【解析】【分析】先通过函数定义域和奇偶性进行判断,再利用导数对①求导,求其在()0,π上的最大值.【详解】()f x ,()t x 的定义域为R ,()g x ,()h x 的定义域为{}|0x x ≠2e ()0xh x x =>在定义域内恒成立,则前两个对应函数分别为④②当()0,πx ∈时,则()e sin x f x x =()π()e sin cos 2e sin 4x x f x x x x ⎛⎫'=+=+ ⎪⎝⎭,令()0f x '>,则30π4x <<()f x 在30,π4⎛⎫ ⎪⎝⎭上单调递增,在3π,π4⎛⎫ ⎪⎝⎭上单调递减,则3π432()(π)e 542f x f ≤=>①对应的为第三个函数故选:A .。

高考数学专题《函数的图象》习题含答案解析

高考数学专题《函数的图象》习题含答案解析

专题3.7 函数的图象1.(2021·全国高三专题练习(文))已知图①中的图象是函数()y f x=的图象,则图②中的图象对应的函数可能是()A.(||)y f x=B.|()|y f x=C.(||)y f x=-D.(||)y f x=--【答案】C【解析】根据函数图象的翻折变换,结合题中条件,即可直接得出结果.【详解】图②中的图象是在图①的基础上,去掉函数()y f x=的图象在y轴右侧的部分,然后将y轴左侧图象翻折到y轴右侧,y轴左侧图象不变得来的,∴图②中的图象对应的函数可能是(||)y f x=-.故选:C.2.(2021·浙江高三专题练习)函数()lg1y x=-的图象是()A.B.C.练基础D .【答案】C【解析】将函数lg y x =的图象进行变换可得出函数()lg 1y x =-的图象,由此可得出合适的选项.【详解】将函数lg y x =的图象先向右平移1个单位长度,可得到函数()lg 1y x =-的图象,再将所得函数图象位于x 轴下方的图象关于x 轴翻折,位于x 轴上方图象不变,可得到函数()lg 1y x =-的图象.故合乎条件的图象为选项C 中的图象.故选:C.3.(2021·全国高三专题练习(理))我国著名数学家华罗庚先生曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔离分家万事休.”在数学的学习和研究中,经常用函数的图象来研究函数的性质,也经常用函数的解析式来研究函数图象的特征.若函数()y fx =在区间[],a b 上的图象如图,则函数()y f x =在区间[],a b 上的图象可能是( )A .B .C .D .【答案】D【解析】先判断出函数是偶函数,根据偶函数的图像特征可得选项.【详解】 函数()y f x =是偶函数,所以它的图象是由()y f x =把0x ≥的图象保留,再关于y 轴对称得到的.结合选项可知选项D 正确,故选:D .4.(2021·全国高三专题练习(文))函数()5xf x x x e =-⋅的图象大致是( ). A . B .C .D .【答案】B【解析】由()20f >和()20f -<可排除ACD ,从而得到选项.【详解】由()()2223222160f e e =-=->,可排除AD ;由()()2223222160f e e ---=-+=-<,可排除C ;故选:B.5.(2021·陕西高三三模(理))函数x y b a =⋅与()log a y bx =的图像在同一坐标系中可能是()A .B .C .D .【答案】C【解析】根据指数函数和对数函数的单调性,以及特殊点函数值的范围逐一判断可得选项.【详解】令x f x b a ,()()log a g x bx =,对于A 选项:由x f xb a 得>1a ,且()00>1f b a b ==⋅,所以log >0a b ,而()1log 0a g b =<,所以矛盾,故A 不正确;对于B 选项:由x f xb a 得>1a ,且()001f b a b ⋅=<=,所以log 0a b <,而()1log >0a g b =,所以矛盾,故B 不正确;对于C 选项:由x f xb a 得>1a ,且()001f b a b ⋅=<=,所以log 0a b <,又()1log 0a g b =<,故C 正确;对于D 选项:由x f xb a 得>1a ,且()00>1f b a b ==⋅,而()()log a g x bx =中01a <<,所以矛盾,故D 不正确;故选:C . 6.(2021·宁夏吴忠市·高三其他模拟(文))已知函数()()()ln 2ln 4f x x x =-+-,则( ). A .()f x 的图象关于直线3x =对称B .()f x 的图象关于点()3,0对称C .()f x 在()2,4上单调递增D .()f x 在()2,4上单调递减【答案】A【解析】先求出函数的定义域.A :根据函数图象关于直线对称的性质进行判断即可;B :根据函数图象关于点对称的性质进行判断即可;C :根据对数的运算性质,结合对数型函数的单调性进行判断即可;D :结合C 的分析进行判断即可.【详解】 ()f x 的定义域为()2,4x ∈,A :因为()()()()3ln 1ln 13f x x x f x +=++-=-,所以函数()f x 的图象关于3x =对称,因此本选项正确;B :由A 知()()33f x f x +≠--,所以()f x 的图象不关于点()3,0对称,因此本选项不正确;C :()()()2ln 2ln 4ln(68)x x x f x x =-+-=-+- 函数2268(3)1y x x x =-+-=--+在()2,3x ∈时,单调递增, 在()3,4x ∈时,单调递减,因此函数()f x 在()2,3x ∈时单调递增,在()3,4x ∈时单调递减,故本选项不正确;D :由C 的分析可知本选项不正确,故选:A7.(2021·安徽高三二模(理))函数()n xf x x a =,其中1a >,1n >,n 为奇数,其图象大致为( ) A . B .C .D .【答案】B【解析】分析()f x 在()0,∞+、(),0-∞上的函数值符号,及该函数在()0,∞+上的单调性,结合排除法可得出合适的选项.【详解】对任意x ∈R ,0x a >,由于1n >,n 为奇数,当0x <时,0n x <,此时()0f x <,当0x >时,0n x >,此时()0f x >,排除AC 选项;当0x >时,任取1x 、()20,x ∈+∞且12x x >,则120x x a a >>,120n n x x >>,所以()()12f x f x >,所以,函数()f x 在()0,∞+上为增函数,排除D 选项.故选:B.8.(2021·浙江高三专题练习)已知函数f (x )=1331,,log 1x x x x ⎧≤⎪⎨>⎪⎩则函数y =f (1-x )的大致图象是( ) A . B .C .D .【答案】D【解析】由()f x 得到()1f x -的解析式,根据函数的特殊点和正负判断即可.【详解】因为函数()f x 133,1log ,1x x x x ⎧≤⎪=⎨>⎪⎩, 所以函数()1f x -()1133,0log 1,0x x x x -⎧≥⎪=⎨-<⎪⎩, 当x =0时,y =f (1)=3,即y =f (1-x )的图象过点(0,3),排除A ;当x =-2时,y =f (3)=-1,即y =f (1-x )的图象过点(-2,-1),排除B ;当0x <时,()1311,(1)log 10x f x x ->-=-<,排除C ,故选:D .9.【多选题】(2021·浙江高一期末)如图,某池塘里浮萍的面积y (单位:2m )与时间t (单位:月)的关系为t y a =.关于下列法正确的是( )A .浮萍每月的增长率为2B .浮萍每月增加的面积都相等C .第4个月时,浮萍面积不超过280mD .若浮萍蔓延到22m 、24m 、28m 所经过的时间分别是1t 、2t 、3t ,则2132t t t =+【答案】AD【解析】根据图象过点求出函数解析式,根据四个选项利用解析式进行计算可得答案.【详解】由图象可知,函数图象过点(1,3),所以3a =,所以函数解析式为3ty =, 所以浮萍每月的增长率为13323233t t tt t +-⨯==,故选项A 正确; 浮萍第一个月增加的面积为10332-=平方米,第二个月增加的面积为21336-=平方米,故选项B 不正确;第四个月时,浮萍面积为438180=>平方米,故C 不正确;由题意得132t =,234t =,338t =,所以13log 2t =,23log 4t =,33log 8t =,所以2133333332log 2log 8log (28)log 16log 42log 42t t t +=+=⨯====,故D 正确.故选:AD10.(2020·全国高一单元测试)函数()2x f x =和()3g x x =的图象如图所示,设两函数的图象交于点11(,)A x y ,22(,)B x y ,且12x x <.(1)请指出图中曲线1C ,2C 分别对应的函数;(2)结合函数图象,比较(3)f ,(3)g ,(2020)f ,(2020)g 的大小.【答案】(1)1C 对应的函数为()3g x x =,2C 对应的函数为()2x f x =;(2)(2020)(2020)(3)(3)f g g f >>>.【解析】(1)根据指数函数和一次函数的函数性质解题;(2)结合函数的单调性及增长快慢进行比较.【详解】(1)1C 对应的函数为()3g x x =,2C 对应的函数为()2x f x =.(2)(0)1f =,(0)0g =,(0)(0)f g ∴>,又(1)2f =,(1)3g =,(1)(1)f g ∴<,()10,1x ∴∈;(3)8f =,(3)9g =,(3)(3)f g ∴<,又(4)16f =,(4)12g =,(4)(4)f g ∴>,()23,4x ∴∈.当2x x >时,()()f x g x >,(2020)(2020)f g ∴>.(2020)(2020)(3)(3)f g g f ∴>>>.1.(2021·湖南株洲市·高三二模)若函数()2()mx f x e n =-的大致图象如图所示,则( )A .0,01m n ><<B .0,1m n >>C .0,01m n <<<D .0,1m n <>【答案】B【解析】令()0f x =得到1ln x n m =,再根据函数图象与x 轴的交点和函数的单调性判断.【详解】令()0f x =得mx e n =,即ln mx n =,解得1ln x n m =,由图象知1l 0n x m n =>,当0m >时,1n >,当0m <时,01n <<,故排除AD ,当0m <时,易知mx y e =是减函数,当x →+∞时,0y →,()2f x n →,故排除C故选:B2.(2021·甘肃高三二模(理))关于函数()ln |1|ln |1|f x x x =++-有下列结论,正确的是( ) A .函数()f x 的图象关于原点对称 B .函数()f x 的图象关于直线1x =对称 练提升C .函数()f x 的最小值为0D .函数()f x 的增区间为(1,0)-,(1,)+∞【答案】D 【解析】A.由函数的奇偶性判断;B.利用特殊值判断;C.利用对数函数的值域求解判断;D.利用复合函数的单调性判断. 【详解】2()ln |1|ln |1|ln |1|f x x x x =++-=-,由1010x x ⎧+>⎪⎨->⎪⎩,解得1x ≠±,所以函数的定义域为{}|1x x ≠±, 因为()ln |1|ln |1|ln |1|ln |1|()f x x x x x f x -=-++--=++-=,所以函数为偶函数,故A 错误. 因为(0)ln |1|0,(3)ln8f f =-==,所以(0)(3)f f ≠,故B 错误;因为 ()2|1|0,x -∈+∞,所以()f x ∈R ,故C 错误;令2|1|t x =-,如图所示:,t 在(),1,[0,1)-∞-上递减,在()(1,0],1,-+∞上递增,又ln y t =在()0,∞+递增,所以函数()f x 的增区间为(1,0)-,(1,)+∞,故D 正确; 故选:D3.(2021·吉林长春市·东北师大附中高三其他模拟(理))函数ln xy x=的图象大致为( )A .B .C .D .【答案】C 【解析】 求出函数ln xy x=的定义域,利用导数分析函数的单调性,结合排除法可得出合适的选项. 【详解】 对于函数ln xy x =,则有0ln 0x x >⎧⎨≠⎩,解得0x >且1x ≠, 所以,函数ln xy x=的定义域为()()0,11,+∞,排除AB 选项;对函数ln x y x =求导得()2ln 1ln x y x -'=.当01x <<或1x e <<时,0y '<;当x e >时,0y '>. 所以,函数ln xy x=的单调递减区间为()0,1、()1,e ,单调递增区间为(),e +∞, 当01x <<时,0ln xy x =<,当1x >时,0ln x y x=>,排除D 选项. 故选:C.4.(2021·海原县第一中学高三二模(文))函数2xx xy e+=的大致图象是( )A .B .C .D .【答案】D 【解析】利用导数可求得2xx xy e+=的单调性,由此排除AB ;根据0x >时,0y >可排除C ,由此得到结果. 【详解】 由题意得:()()222211x xxxx e x x e x x y e e +-+-++'==,令0y '=,解得:1x =,2x =,∴当11,,22x ∞∞⎛⎛⎫+∈-⋃+ ⎪ ⎪⎝⎭⎝⎭时,0y '<;当11,22x ⎛+∈ ⎝⎭时,0y '>;2x x x y e +∴=在1,2⎛--∞ ⎝⎭,1,2⎛⎫++∞ ⎪ ⎪⎝⎭上单调递减,在1122⎛⎫-+ ⎪ ⎪⎝⎭上单调递增,可排除AB ; 当0x >时,0y >恒成立,可排除C. 故选:D.5.(2021·天津高三三模)意大利画家列奥纳多·达·芬奇的画作《抱银鼠的女子》(如图所示)中,女士颈部的黑色珍珠项链与她怀中的白貂形成对比.光线和阴影衬托出人物的优雅和柔美.达·芬奇提出:固定项链的两端,使其在重力的作用下自然下垂,形成的曲线是什么?这就是著名的“悬链线问题”.后人研究得出,悬链线并不是抛物线,而是与解析式为2x x e e y -+=的“双曲余弦函数”相关.下列选项为“双曲余弦函数”图象的是( )A .B .C .D .【答案】C 【解析】分析函数2x xe e y -+=的奇偶性与最小值,由此可得出合适的选项.【详解】令()e e 2x x f x -+=,则该函数的定义域为R ,()()2x xe ef x f x -+-==,所以,函数()e e 2x xf x -+=为偶函数,排除B 选项.由基本不等式可得()112f x ≥⨯=,当且仅当0x =时,等号成立,所以,函数()f x 的最小值为()()min 01f x f ==,排除AD 选项. 故选:C.6.(2021·浙江高三月考)函数()3log 01a y x ax a =-<<的图象可能是( )A .B .C .D .【答案】B 【解析】先求出函数的定义域,判断函数的奇偶性,构造函数,求函数的导数,利用是的导数和极值符号进行判断即可. 【详解】根据题意,()3log a f x x ax =-,必有30x ax -≠,则0x ≠且x ≠即函数的定义域为{|0x x ≠且x ≠,()()()()33log log a a x a x x f f x ax x ---=--==,则函数3log a y x ax =-为偶函数,排除D ,设()3g x x ax =-,其导数()23g x x a '=-,由()0g x '=得x =±,当3x >时,()0g x '>,()g x 为增函数,而()f x 为减函数,排除C ,在区间,33⎛⎫- ⎪ ⎪⎝⎭上,()0g x '<,则()g x 在区间,33⎛⎫- ⎪ ⎪⎝⎭上为减函数,在区间3⎛⎫+∞ ⎪ ⎪⎝⎭上,()0g x '>,则()g x 在区间3⎛⎫+∞ ⎪ ⎪⎝⎭上为增函数,0g=,则()g x 存在极小值33339g a ⎛⎛⎫=-⨯=- ⎪ ⎪⎝⎭⎝⎭,此时()g x ()0,1,此时()0f x >,排除A , 故选:B.7.(2019·北京高三高考模拟(文))当x∈[0,1]时,下列关于函数y=2(1)mx -的图象与y =的图象交点个数说法正确的是( ) A .当[]m 0,1∈时,有两个交点 B .当(]m 1,2∈时,没有交点 C .当(]m 2,3∈时,有且只有一个交点 D .当()m 3,∞∈+时,有两个交点【答案】B 【解析】设f (x )=2(1)mx -,g (x ) ,其中x∈[0,1]A .若m=0,则()1f x =与()g x =[0,1]上只有一个交点(1,1),故A 错误.B .当m∈(1,2)时,111()(0)1,()(0)1()()2f x f g x g f x g x m<<∴≤=≥=>∴<即当m∈(1,2]时,函数y=2(1)mx -的图象与y =x∈[0,1]无交点,故B 正确,C .当m∈(2,3]时,2111()(1)(1),()(1)32f x f mg x g m <<∴≤=-≤=2(1)m >-时()()f x g x <,此时无交点,即C 不一定正确.D .当m∈(3,+∞)时,g (0)1,此时f (1)>g (1),此时两个函数图象只有一个交点,故D 错误,故选:B.8.(2021·浙江高三专题练习)若关于x的不等式34log2xax-≤在10,2x⎛⎤∈ ⎥⎝⎦恒成立,则实数a的取值范围是()A.1,14⎡⎫⎪⎢⎣⎭B.10,4⎛⎤⎥⎝⎦C.3,14⎡⎫⎪⎢⎣⎭D.30,4⎛⎤⎥⎝⎦【答案】A 【解析】转化为当10,2x⎛⎤∈ ⎥⎝⎦时,函数342xy=-的图象不在log ay x=的图象的上方,根据图象列式可解得结果.【详解】由题意知关于x的不等式34log2xax-≤在10,2x⎛⎤∈ ⎥⎝⎦恒成立,所以当10,2x⎛⎤∈ ⎥⎝⎦时,函数342xy=-的图象不在log ay x=的图象的上方,由图可知0111log 22a a <<⎧⎪⎨≥⎪⎩,解得114a ≤<. 故选:A9.对a 、b ∈R ,记{},max ,,a a b a b b a b⎧=⎨<⎩≥,函数{}2()max ||,24()f x x x x x =--+∈R .(1)求(0)f ,(4)f -.(2)写出函数()f x 的解析式,并作出图像.(3)若关于x 的方程()f x m =有且仅有3个不等的解,求实数m 的取值范围.(只需写出结论) 【答案】见解析.【解析】解:(1)∵{},max ,,a a b a b b a b⎧=⎨<⎩≥,函数{}2()max ||,24f x x x x =--+,∴{}(0)max 0,44f ==,{}(4)max 4,44f -=-=.(2)(3)5m =或m 10.(2021·全国高一课时练习)函数()2xf x =和()()30g x xx =≥的图象,如图所示.设两函数的图象交于点()11A x y ,,()22B x y ,,且12x x <.(1)请指出示意图中曲线1C ,2C 分别对应哪一个函数;(2)结合函数图象,比较()8f ,()8g ,()2015f ,()2015g 的大小. 【答案】(1)1C 对应的函数为()()30g x xx =≥,2C 对应的函数为()2x f x =;(2)()()()()2015201588f g g f >>>.【解析】(1)根据图象可得结果;(2)通过计算可知1282015x x <<<,再结合题中的图象和()g x 在()0+∞,上的单调性,可比较()8f ,()8g ,()2015f ,()2015g 的大小.【详解】(1)由图可知,1C 的图象过原点,所以1C 对应的函数为()()30g x xx =≥,2C 对应的函数为()2x f x =.(2)因为11g =(),12f =(),28g =(),24f =(),()9729g =,()9512f =,()101000g =,()101024f =,所以11f g >()(),22f g <()(),()()99f g <,()()1010f g >.所以112x <<,2910x <<.所以1282015x x <<<.从题中图象上知,当12x x x <<时,()()f x g x <;当2x x >时,()()f x g x >,且()g x 在()0+∞,上是增函数,所以()()()()2015201588f g g f >>>.1. (2020·天津高考真题)函数241xy x =+的图象大致为( ) 练真题A .B .C .D .【答案】A 【解析】由函数的解析式可得:()()241xf x f x x --==-+,则函数()f x 为奇函数,其图象关于坐标原点对称,选项CD 错误; 当1x =时,42011y ==>+,选项B 错误. 故选:A.2.(2019年高考全国Ⅲ卷理)函数3222x xx y -=+在[]6,6-的图像大致为( ) A . B .C .D .【答案】B【解析】设32()22x xx y f x -==+,则332()2()()2222x x x x x x f x f x ----==-=-++,所以()f x 是奇函数,图象关于原点成中心对称,排除选项C .又34424(4)0,22f -⨯=>+排除选项D ; 36626(6)722f -⨯=≈+,排除选项A , 故选B .3.(2020·天津高考真题)已知函数3,0,(),0.x x f x x x ⎧=⎨-<⎩若函数2()()2()g x f x kx xk =--∈R 恰有4个零点,则k 的取值范围是( ) A .1,(22,)2⎛⎫-∞-+∞ ⎪⎝⎭B .1,(0,22)2⎛⎫-∞- ⎪⎝⎭C .(,0)(0,22)-∞D .(,0)(22,)-∞+∞【答案】D 【解析】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根 即可, 令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点. 因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩, 当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有2个不同交点,不满足题意; 当k 0<时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意; 当0k >时,如图3,当2y kx =-与2yx 相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得k =,所以k >综上,k 的取值范围为(,0)(22,)-∞+∞.故选:D.4.(2019年高考全国Ⅱ卷理)设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦【答案】B【解析】∵(1) 2 ()f x f x +=,()2(1)f x f x ∴=-. ∵(0,1]x ∈时,1()(1)[,0]4f x x x =-∈-;∴(1,2]x ∈时,1(0,1]x -∈,1()2(1)2(1)(2),02f x f x x x ⎡⎤=-=--∈-⎢⎥⎣⎦; ∴(2,3]x ∈时,1(1,2]x -∈,()2(1)4(2)(3)[1,0]f x f x x x =-=--∈-,如图:当(2,3]x ∈时,由84(2)(3)9x x --=-解得173x =,283x =,若对任意(,]x m ∈-∞,都有8()9f x ≥-,则73m ≤.则m 的取值范围是7,3⎛⎤-∞ ⎥⎝⎦.故选B.5.(2017·天津高考真题(文))已知函数f(x)={|x|+2,x <1x +2x ,x ≥1.设a ∈R ,若关于x 的不等式f(x)≥|x 2+a|在R 上恒成立,则a 的取值范围是 A .[−2,2] B .[−2√3,2] C .[−2,2√3] D .[−2√3,2√3] 【答案】A【解析】满足题意时f (x )的图象恒不在函数y =|x2+a|下方,当a =2√3时,函数图象如图所示,排除C,D 选项;当a =−2√3时,函数图象如图所示,排除B 选项,本题选择A 选项.6.(2018·全国高考真题(文))设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,【答案】D 【解析】分析:首先根据题中所给的函数解析式,将函数图像画出来,从图中可以发现若有()()12f x f x +<成立,一定会有2021x x x <⎧⎨<+⎩,从而求得结果.详解:将函数()f x 的图像画出来,观察图像可知会有2021x x x <⎧⎨<+⎩,解得0x <,所以满足()()12f x f x +<的x 的取值范围是()0-∞,,故选D .。

2024年新高考版数学专题1_3.5 函数与方程及函数的综合应用(分层集训)

2024年新高考版数学专题1_3.5 函数与方程及函数的综合应用(分层集训)
A.2
B.3
答案 B
C.4
D.5
)
3.(2022南京师范大学附中期中,7)用二分法研究函数f(x)=x3+2x-1的零点
时,第一次计算,得f(0)<0,f(0.5)>0,第二次应计算f(x1),则x1等于 (
A.1
B.-1
答案 C
C.0.25
D.0.75
)
4.(多选)(2022湖南师大附中三模,11)已知函数f(x)的定义域为R,且f(x)=f(x
1.(2023届长春六中月考,7)若函数f(x)=ln x+x2+a-1在区间(1,e)内有零点,则
实数a的取值范围是 (
A.(-e2,0)
C.(1,e)
答案 A
B.(-e2,1)
D.(1,e2)
)
2.(2017课标Ⅲ,文12,理11,5分)已知函数f(x)=x2-2x+a(ex-1+e-x+1)有唯一零点,
A型
0.4
3
B型
0.3
4
C型
0.5
3
D型
0.4
4
则保温效果最好的双层玻璃的型号是 (
A.A型
答案 D
B.B型
C.C型
D.D型
)
3.(2020课标Ⅲ理,4,5分)Logistic模型是常用数学模型之一,可应用于流行
病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数
I(t)(t的单位:天)的Logistic模型:I(t)=
1 e
K
0.23( t 53)
,其中K为最大确诊病例数.
当I(t*)=0.95K时,标志着已初步遏制疫情,则t*约为(ln 19≈3) (

(完整)2019-2020年高考数学大题专题练习——三角函数(一)(含解析).doc

(完整)2019-2020年高考数学大题专题练习——三角函数(一)(含解析).doc

2019-2020 年高考数学大题专题练习 —— 三角函数(一)1. 【山东肥城】 已知函数 f ( x) 2sin 2 x 2sin 2 ( x) , x R .( 1)求函数 yf ( x) 的对称中心;6( 2)已知在 △ABC 中,角 A 、B 、C 所对的边分别为 a , b , c ,且f (B6 ) b c, ABC 的外接圆半径为 3 ,求 △ABC 周长的最大值 . 22a【解析】f ( x) 1 cos2 x1 cos2( x) cos(2 x) cos2 x6313 sin 2x cos 2xcos2x223sin 2x1cos2x sin(2 x 6 ) . 22(1)令 2xk ( k Z ),则 xk( kZ ),6212所以函数 yf ( x) 的对称中心为 (k,0) k Z ;212(2)由 f (B)b c,得 sin( B ) bc ,即 3 sin B 1cos B b c ,262a6 2a 2 2 2a整理得 3a sin B a cos B b c ,由正弦定理得:3 sin A sin B sin A cos B sin B sin C ,化简得 3 sin A sin B sin B cos Asin B ,又因为 sin B0 ,所以 3 sin A cos A1,即sin( A1 ,6 )2由 0A,得A5 ,6 66所以 A,即 A3 ,6 6又 ABC 的外接圆的半径为3 ,所以 a 2 3 sin A 3 ,由余弦定理得222222232(b c) 2abc2bc cos A bcbc (b c)3bc (b c)(b c)44,即 ,当且仅当 bc 时取等号,所以周长的最大值为 9.2.【河北衡水】 已知函数 f x2a sin x cosx2b cos 2 x c a 0,b 0 ,满足 f 0 ,且当 x0,时, f x 在 x 取得最大值为 5.26 2( 1)求函数 f x 在 x0, 的单调递增区间;( 2)在锐角 △ABC 的三个角 A ,B ,C 所对的边分别为 a ,b ,c ,且2 22 f C3,求a2b 2c 2 的取值范围 .2ab c【解析】(1)易得 f x5sin 2x 5,整体法求出单调递增区间为0, , 2 ,;3 666 3 (2)易得 C,则由余弦定理可得 a2b 2c 2 2a 2 2b 2 ab2 b a 1,3a 2b 2c 2aba bbsin 2 A3 1 1由正弦定理可得sin B 3,所以asin Asin A2tan A2 ,22a 2b 2c 23,4 .a2b2c2rcos x, 1 r( 3 sin x,cos 2x) , xR ,设函数3.【山东青岛】 已知向量 a, b 2r rf ( x) a b .( 1)求 f(x)的最小正周期;( 2)求函数 f(x)的单调递减区间;( 3)求 f(x)在 0,上的最大值和最小值 . 2【解析】f (x) cos x, 1( 3 sin x,cos 2x) 23 cos x sin x 1cos2x 23sin 2 x 1cos 2x2 2cos sin 2x sin cos 2x6 6sin 2x.6(1)f ( x)的最小正周期为T 2 2,即函数f ( x) 的最小正周期为.2(2)函数y sin(2 x ) 单调递减区间:62k 2x 32k , k Z ,2 6 2得:k x 5 k , k Z ,63∴所以单调递减区间是3 k ,5k , k Z .6(3)∵0 x ,2∴2x 5.6 6 6 由正弦函数的性质,当 2x6 2 ,即 x 时, f (x) 取得最大值1.3当x x 0 f (0) 1,即时,,6 6 2当 2x6 5 ,即 x2时, f21 ,6 2∴ f (x) 的最小值为1. 2因此, f (x) 在 0, 上的最大值是1,最小值是1 .2 224.【浙江余姚】已知函数 f ( x) sin x sin x cos( x ) .( 1)求函数 f(x)的最小正周期;( 2)求 f(x)在 0,上的最大值和最小值.2【解析】( 1) 由题意得 f ( x) sin 2 x sin x cos x6sin 2 xsin x( 3 cos x 1sin x)2 23sin 2x3sin x cos x223(1 cos 2x)3sin 2x443 ( 1sin 2x3cos2x)3 2 2243sin( 2x) 32 34f (x) 的最小正周期为( 2) x0, ,22x23 3 3当 2x,即 x0时, f ( x) min0 ;33当 2x5 时, f ( x) max2 3 33,即 x4212综上,得 x0时, f ( x) 取得最小值,为 0;当 x5 2 3 3时, f ( x) 取得最大值,为4125.【山东青岛】 △ABC 的内角 A ,B ,C 的对边分别为a ,b ,c ,已知 b cos A 3a c .3( 1)求 cosB ;( 2)如图, D 为 △ABC 外一点,若在平面四边形ABCD中, D 2 B ,且 AD 1, CD3 , BC 6 ,求 AB 的长.【解析 】解:( 1)在ABC 中,由正弦定理得 sin B cos A3sin Asin C ,3又 C( A B) ,所以 sin B cos A3sin Asin( A B) ,3故 sin B cos A3sin Acos B cos Asin B ,sin A3所以 sin Acos B3sin A ,3又 A(0, ) ,所以 sin A30 ,故 cos B3(2) QD 2 B , cos D2cos 2 B 113又在ACD 中, AD 1, CD 3∴由余弦定理可得 AC2AD2CD22AD CD cosD 19 2 3 ( 1) 12 ,3∴ AC2 3 ,在 ABC 中, BC6 , AC 2 3 , cosB3,3∴由余弦定理可得 AC2AB 2 BC 2 2 AB BCcosB ,即 12 AB 2 6 2 AB63 ,化简得 AB 2 2 2 AB 6 0 ,解得 AB 3 2 .3故 AB 的长为 32 .6. 【江苏泰州】如图,在△ABC 中,ABC,2ACB, BC 1.P 是△ ABC 内一点,且BPC.3 2(1)若ABP,求线段AP的长度;6(2)若APB 2,求△ ABP 的面积 .3【解析】(1)因为PBC ,所以在 Rt PBC 中,6BPC , BC 1,PBC3 ,所以 PB 1 ,2 2在 APB 中,ABP , BP 13 ,所以, AB6 2AP2 AB 2 BP2 2AB BP cos PBA3 1 2 13 37,所以 AP 7 ;4 2 2 4 2(2)设PBA ,则PCB ,在 Rt PBC 中,BPC , BC 1,2PCB ,所以 PB sin ,在 APB 中,ABP , BP sin , AB 3 ,APB 2,3由正弦定理得:sin 3 1sin3cos1sinsin sin 2 2 2 23 3sin 3 cos ,又 sin 2 cos2 1 sin2 32 7SABP 1AB BP sin ABP 1 3 sin 2 3 3 .2 2 148.【辽宁抚顺】已知向量m sin x,1 , n cos x,3, f x m n4 4( 1)求出 f(x)的解析式,并写出f(x)的最小正周期,对称轴,对称中心;( 2)令 h xf x6,求 h(x)的单调递减区间;( 3)若 m // n ,求 f(x)的值.【解析】(1) f xm nsin x4cos x341sin 2 x4 3 1sin 2x231cos2x 3222所以 f x 的最小正周期 T ,对称轴为 xk , kZ2对称中心为k ,3 , kZ42(2) h xf x1 cos2 x 32 36令2k2x32k , kZ 得k x6k ,k Z3所以 h x 的单调减区间为3k ,k ,k Z6(3)若 m // n ,则 3sinxcos x即 tan x13444tan x 2f x1cos2x 3 1sin 2 x231 sin2 x cos 2 xcos x2 sin 2 xcos 2 322 x1 tan2 x 1 332 tan 2 x 31109.【辽宁抚顺】已知函数 f x 2 3 sin x cos x 2cos 2 x 1 , x R .( 1)求函数 f x 的最小正周期及在区间0,2 上的最大值和最小值;( 2)若 f x 06,x 0, 2 ,求 cos 2x 0 的值.54【解析】( 1) 由 f(x)= 2 3 sin xcos x + 2cos 2x - 1,得 f(x)= 3 (2sin xcos x)+(2cos2x-1)= 3 sin 2x+cos 2x=2sin 2x ,6所以函数 f(x)的最小正周期为π0 x , 2 x6 7 , 1 sin 2 x 12 6 6 2 6所以函数 f(x)在区间 0, 上的最大值为2,最小值为- 12( 2)由(1)可知f(x0)=2sin 2 x6又因为 f(x0 )=6,所以 sin 2 x6=3 .5 5由 x0∈, ,得 2x0+∈ 2,74 2 6 3 6从而 cos 2 x0 = 1 sin 2 2 x06 =-46 5所以 cos 2x0= cos 2 x06 6 = cos 2x0 cos + sin 2x06sin6 6 6=3 4 31010.【广西桂林】已知f x 4sin 24 x sin x cosx sin x cosx sin x 1 . 2( 1)求函数 f x 的最小正周期;( 2)常数0 ,若函数 y f x 在区间, 2上是增函数,求的取值2 3范围;( 3)若函数 g x 1 f 2 x af x af x a 1在,的最大值为2 2 4 22,求实数的值 .【解析】(1)f x 2 1 cos x sin x cos2 x sin 2 x 1 22 2sin x sin x 1 2sin 2 x 1 2sin x .∴ T 2 .(2) f x 2sinx .由 2kx 2k2kx2k2 得, k Z ,222 ∴ fx 的递增区间为2k2, 2k, k Z2∵ fx 在,2上是增函数,23∴当 k0 时,有2, 22,.320,∴, 解得 03242 22 ,3∴ 的取值范围是0,3.4(3) gx sin 2x a sin xa cos x 1 a 1.2 令 sin xcos x t ,则 sin 2x1 t2 .112a21 2att2aa∴ y 1 ta 1at2 t4a .222∵ t sin x cos x2 sin x,由x 得x,4 42244∴ 2 t 1 .①当a2 ,即 a2 2 时,在 t2 处 y max2 1 a 2 .22由21 a2 2 ,解得 a8 8 2 2 12 2 (舍去 ).22 2 1 7②当2 a 1,即2 2 a2 时, y maxa 21 a ,由 a 21a 22424 2得 a 2 2a 8 0 解得 a2 或 a 4 (舍去) .③当a1,即a 2 时,在 t 1处y max a 1 ,由a1 2 得a 6.2 2 2综上, a 2 或 a 6 为所求.11.【江苏无锡】如图所示,△ ABC 是临江公园内一个等腰三角形形状的小湖.....(假设湖岸是笔直的),其中两腰CA CB 60 米,cos CAB 2.为了给市民3营造良好的休闲环境,公园管理处决定在湖岸AC,AB 上分别取点E,F(异于线段端点),在湖上修建一条笔直的水上观光通道EF(宽度不计),使得三角形AEF 和四边形 BCEF 的周长相等 .(1)若水上观光通道的端点 E 为线段 AC 的三等分点(靠近点 C),求此时水上观光通道 EF 的长度;(2)当 AE 为多长时,观光通道 EF 的长度最短?并求出其最短长度 .【解析】(1)在等腰ABC 中,过点 C 作 CH AB 于 H ,在 Rt ACH 中,由 cosAH AH 240 , AB 80 ,CAB ,即,∴ AHAC 60 3∴三角形 AEF 和四边形 BCEF 的周长相等.∴ AE AF EF CE BC BF EF ,即 AE AF 60 AE 60 80 AF ,∴AE AF 100.∵ E 为线段 AC 的三等分点(靠近点 C ),∴ AE 40, AF 60,在AEF 中,EF 2 AE 2 AF 2 2 AE AF cos CAB 402 602 2 40 60 2 200 ,3∴ EF 2000 20 5 米.即水上观光通道EF 的长度为20 5米.(2)由( 1)知,AE AF 100 ,设 AE x ,AF y ,在AEF 中,由余弦定理,得EF 2 x2 y2 2x y cos CAB x2 y 24xy x y10xy .23 3∵ xy x y 2 1002 10 502 2 502 .502,∴EF22 3 350 6∴EF,当且仅当x y取得等号,3所以,当 AE 50 米时,水上观光通道EF 的长度取得最小值,最小值为50 6米.312.【江苏苏州】如图,长方形材料ABCD 中,已知AB 2 3 , AD4 .点P为材料ABCD 内部一点,PE AB 于 E , PF AD 于 F ,且 PE1 ,PF 3 .现要在长方形材料ABCD中裁剪出四边形材料AMPN,满足MPN 150 ,点M、N分别在边AB,AD上.( 1)设FPN,试将四边形材料AMPN 的面积表示为的函数,并指明的取值范围;(2)试确定点 N 在 AD 上的位置,使得四边形材料 AMPN 的面积 S 最小,并求出其最小值 .【解析】(1)在直角NFP 中,因为 PF 3 ,FPN ,所以 NF 3 tan ,所以 S NAP 1NA PF 1 1 3 tan 3 ,2 2在直角 MEP 中,因为 PE 1,EPM3,所以MEtan,3所以 S AMP1AM PE 1 3 tan31,2 2所以 SSNAPSAMP3tan1tan33 ,0, .2 23(2)因为S 3 1 tan33 tan3,tan2 33tan2 13 tan22令 t 13 tan,由0, ,得 t1,4,3所以S3 3t24t 4 3 t 43 3 t4 3 23 ,2 3t 2 3t 323t33当且仅当t2 3233 时,即 tan时等号成立,3此时,AN 2 3233,Smin3 ,答:当AN 2 3AMPN 的面积 S 最小,最小值为 233 时,四边形材料.313.【江苏苏州】 如图,在平面四边形ABCD 中, ABC3AD ,, AB4AB=1.uuur uuur3 ,求 △的面积;( 1)若 AB BCABCg( 2)若 BC 2 2 , AD 5 ,求 CD 的长度 .【解析】uuur uuur3 ,所以 uuur uuur,(1)因为 AB BCBAgBC 3guuur uuurABC3 ,即 BA BC cosABC 3 , AB 1 ,所以 1 uuur3 uuur3 2 ,又因为BC cos 3,则 BC44 1 uuur uuur ABC 3所以 S ABC AB BC sin .2 2(2)在 ABC 中,由余弦定理得:AC 2AB 2 BC 2 2 AB BC cos31 8 21 2 22 13 ,42解得: AC 13 ,在ABC 中,由正弦定理得:ACBC2 13sin ABC sin,即sin BAC,BAC13所以 cos CADcosBACsin BAC2 13 ,213在ACD 中,由余弦定理得:CD 2AD 2 AC 2 2AD AC cos CAD ,即 CD3 2 .14.【山东栖霞】 已知函数 f xA sin xA 0,0,的部分图象222如图所示, B , C 分别是图象的最低点和最高点,BC4 .4(1)求函数 f(x)的解析式; (2)将函数y f x 的图象向左平移个单位长度,再把所得图象上各点横坐标伸长到3原来的 2 倍(纵坐标不变)得到函数 yg x 的图象,求函数 yg 2 x 的单调递增区间 .13【解析】(1)由图象可得:3 T 5 ( ) ,所以 f (x) 的周期 T .4 12 3于是2,得2 ,C 524 A 22又 B, A , , A ∴ BC 4 ∴ A 1,12 1224又将 C (5,1) 代入 f (x)sin(2 x) 得, sin(2 5) 1,1212所以 25=2k,即=2k( k R ) ,1223由2 得, ,23∴ f (x)sin(2 x) .3(2)将函数 yf (x) 的图象沿 x 轴方向向左平移个单位长度,3得到的图象对应的解析式为:y sin(2 x) ,3再把所得图象上各点横坐标伸长到原来的 2 倍(纵坐标不变),得到的图象对应的解析式为 g( x)sin( x3 ) ,cos(2x2 )22(x13y g ( x) sin 3 )22由 2k22k, kZ 得, kx k , k Z ,2x336∴函数 yg 2 ( x) 的单调递增区间为 k,k (kZ ) .3615.【山东滕州】 已知函数 f ( x)Asin( x ) ( A 0, 0,) 的部分图象如 2图所示 .( 1)求函数 f (x) 的解析式;( 2)把函数 y f ( x) 图象上点的横坐标扩大到原来的 2 倍(纵坐标不变),再向左平移个单位,得到函数y g (x) 的图象,求611关于 x 的方程 g ( x) m(0 m 2) 在 x [,] 时3 3所有的实数根之和 .【解析】2(1)由图象知,函数 f ( x) 的周期T,故 2 .T点 (, A) 在函数图象上,6∴ Asin(26) A,∴ sin(3) 1,解得:3 2k2, k Z ,即2k6, k Z ,又2 ,从而.6点 (0,1) 在函数图象上,可得:Asin(2 0 ) 1 ,6∴ A 2 .故函数 f (x) 的解析式为: f ( x) 2sin(2 x ) .6 (2)依题意,得g (x) 2sin( x ) .3∵ g( x) 2sin( x ) 的周期T ,3∴ g( x) 2sin( x ) 在 x [11] 内有2个周期. ,3 3 3令x3 k , k Z ,2解得 x k , k Z ,6即函数 g (x) 2sin( x ) 的对称轴为 x k , k Z .3 6又 x [3 ,11 ] ,则 x3[0,4 ] ,3所以 g(x) m(0 m 2) 在 x [ , 11 ] 内有4个实根,3 3不妨从小到大依次设为x i (i 1,2,3, 4) .则x1x2 , x3 x4 13 ,2 6 2 6故 g( x) m(0 m 2) 在x [3 ,11 ] 时所有的实数根之和为:3x1 x2 x3 x4 14. 3。

高考数学专题《函数的概念及其表示》习题含答案解析

高考数学专题《函数的概念及其表示》习题含答案解析

专题3.1 函数的概念及其表示1.(2021·四川达州市·高三二模(文))已知定义在R 上的函数()f x 满足,2(1)2()1f x f x x -+=+,则(1)f =( )A .1-B .1C .13-D .13【答案】B 【解析】当0x =时,f (1)2(0)1f +=①;当1x =时,(0)2f f +(1)2=②,由此进行计算能求出f (1)的值.【详解】定义在R 上的函数()f x 满足,2(1)2()1f x f x x -+=+,∴当0x =时,f (1)2(0)1f +=,①当1x =时,(0)2f f +(1)2=,②②2⨯-①,得3f (1)3=,解得f (1)1=.故选:B2.(2021·浙江高一期末)已知231,1,()3,1,x x f x x x +⎧=⎨+>⎩…则(3)f =( )A .7B .2C .10D .12【答案】D 【解析】根据分段函数的定义计算.【详解】由题意2(3)3312f =+=.故选:D .3.(2021·全国高一课时练习)设3,10()(5),10x x f x f x x +>⎧=⎨+≤⎩,则(5)f 的值为( )A .16B .18C .21D .24练基础【解析】根据分段函数解析式直接求解.【详解】因为3,10()(5),10x x f x f x x +>⎧=⎨+≤⎩,所以(5)(10)(15)15318f f f ===+=.故选:B.4.(2021·浙江湖州市·湖州中学高一开学考试)若函数213()22f x x x =-+的定义域和值域都是[1,]b ,则b =( )A .1B .3C .3-D .1或3【答案】B 【解析】根据函数213()22f x x x =-+在[1,]b 上为增函数,求出其值域,结合已知值域可求出结果.【详解】因为函数213()22f x x x =-+21(1)12x =-+在[1,]b 上为增函数,且定义域和值域都是[1,]b ,所以min ()(1)f x f =1=,2max 13()()22f x f b b b b ==-+=,解得3b =或1b =(舍),故选:B5.(上海高考真题)若是的最小值,则的取值范围为( ).A .[-1,2]B .[-1,0]C .[1,2]D .[0,2]【答案】D 【详解】由于当0x >时,1()f x x a x=++在1x =时取得最小值2a +,由题意当0x ≤时,2()()f x x a =-应该是递减的,则0a ≥,此时最小值为2(0)f a =,因此22a a ≤+,解得02a ≤≤,选D .6.(广东高考真题)函数()f x =的定义域是______.【答案】[)()1,00,∞-⋃+由根式内部的代数式大于等于0且分式的分母不等于0联立不等式组求解x 的取值集合得答案.【详解】由{100x x +≥≠,得1x ≥-且0x ≠.∴函数()f x =的定义域为:[)()1,00,-⋃+∞;故答案为[)()1,00,-⋃+∞.7.(2021·青海西宁市·高三一模(理))函数()f x 的定义域为[]1,1-,图象如图1所示,函数()g x 的定义域为[]1,2-,图象如图2所示.若集合()(){}0A x f g x ==,()(){}0B x g f x ==,则A B 中有___________个元素.【答案】3【解析】利用数形结合分别求出集合A 与集合B ,再利用交集运算法则即可求出结果.【详解】若()()0f g x =,则()0g x =或1-或1,∴{}1,0,1,2A =-,若()()0g f x =,则()0f x =或2,∴{}1,0,1B =-,∴{}1,0,1=- A B .故答案为:3.8.(2021·湖北襄阳市·襄阳五中高三二模)已知函数22211x x y f x x ⎛⎫+-= ⎪+-⎝⎭的定义域是[)1,+∞,则函数()y f x =的定义域是_______.【答案】(]1,2【解析】令()()222111x x g x x x x +-=≥+-,根据函数值域的求解方法可求得()g x 的值域即为所求的()f x 的定义域.【详解】令()()222111x x g x x x x +-=≥+-,则()()222111111111x x x x g x x x x x x x x+-+==+=+≥+-+--+,1y x x =- 在[)1,+∞上单调递增,10x x∴-≥,10111x x∴<≤-+,()12g x ∴<≤,()f x ∴的定义域为(]1,2.故答案为:(]1,2.9.(2021·黑龙江哈尔滨市第六中学校高三二模(文))已知函数()221,01,0x x f x x x⎧+≥⎪=⎨<⎪⎩,若()2f a =,则实数a =___________.【答案】1或【解析】分别令212a +=,212a=,解方程,求出方程的根即a 的值即可.【详解】当0a ≥,令212a +=,解得:1a =,当0a <,令212a =,解得:a =故1a =或,故答案为:1或.10.(2021·云南高三二模(理))已知函数231,1()1,1x x f x x x +≤⎧=⎨->⎩,若n m >,且()()f n f m =,设t n m =-,则t 的取值范围为________.【答案】171,12⎤-⎥⎦【解析】用n 表示出m ,结合二次函数的性质求得t n m =-的取值范围.【详解】画出()f x 图象如下图所示,3114⨯+=,令()2140x x -=>,解得x =由()(),n m f n f m >=得2311m n +=-,223n m -=,且1n <≤所以(222121333n t n m n n n n -=-=-=-++<≤,结合二次函数的性质可知,当131223n =-=⎛⎫⨯- ⎪⎝⎭时,t 取得最大值为2133217322312⎛⎫-⨯++= ⎪⎝⎭,当n =时,t取得最小值为212133-⨯=-.所以t的取值范围是171,12⎤⎥⎦.故答案为:171,12⎤⎥⎦1.(2021·云南高三二模(文))已知函数231,1()1,1x x f x x x +≤⎧=⎨->⎩,若n m >,且()()f n f m =,设t n m =-,则( )A .t 没有最小值B .t1-C .t 的最小值为43D .t 的最小值为1712【答案】B 【解析】先作出分段函数图象,再结合图象由()()f n f m =,得到m 与n 的关系,消元得关于n 的函数,最后求最值.【详解】如图,作出函数()f x 的图象,()()f n f m = 且n m >,则1m £,且1n >,练提升2311m n ∴+=-,即223n m -=.由21014n n >⎧⎨<-≤⎩,解得1n <≤.222211317(32)(333212n n m n n n n -⎡⎤∴-=-=---=--+⎢⎥⎣⎦,又1n <≤ ∴当n =时,()min 1n m -=-.故选:B.2.(2020·全国高一单元测试)已知函数21,0,()2,0,x x f x x x ⎧+≤=⎨->⎩,若()05f x =,则0x 的取值集合是( )A .{2}-B .5,22⎧⎫-⎨⎬⎩⎭C .{2,2}-D .52,2,2⎧⎫--⎨⎬⎩⎭【答案】A 【解析】根据分段函数值的求解方法,对00x ≤与00x >两种情况求解,可得答案.【详解】若00x ≤,可得2015x +=,解得02x =-,(02x =舍去);若00x >,可得02x -=5,可得052x =-,与00x >相矛盾,故舍去,综上可得:02x =-.故选:A.3.【多选题】(2021·全国高一课时练习)(多选题)下列函数中,定义域是其值域子集的有( )A .865y x =+B .225y x x =--+C .y =D .11y x=-【答案】AC 【解析】分别求得函数的定义域和值域,利用子集的定义判断.【详解】A 函数的定义域和值域都是R ,符合题意;B.定义域为R ,因为2225(1)66y x x x =--+=-++≤,所以函数值域为(,6]-∞,值域是定义域的真子集不符合题意;C.易得定义域为[1,)+∞,值域为[0,)+∞,定义域是值域的真子集;D.定义域为{|0}x x ≠,值域为{|1}x x ≠-,两个集合只有交集;故选:AC4.【多选题】(2021·全国高一课时练习)已知f (x )=2211x x+-,则f (x )满足的关系有( )A .()()f x f x -=-B .1f x ⎛⎫⎪⎝⎭= ()f x -C .1f x ⎛⎫⎪⎝⎭=f (x )D .1(()f f x x-=-【答案】BD 【解析】根据函数()f x 的解析式,对四个选项逐个分析可得答案.【详解】因为f (x )= 2211x x+-,所以()f x -=221()1()x x +---=2211x x+-()f x =,即不满足A 选项;1f x ⎛⎫ ⎪⎝⎭=221111x x ⎛⎫+ ⎪⎝⎭⎛⎫- ⎪⎝⎭=2211x x +-,1f x ⎛⎫⎪⎝⎭=()f x -,即满足B 选项,不满足C 选项,1(f x -=221111x x ⎛⎫+- ⎪⎝⎭⎛⎫-- ⎪⎝⎭=2211x x +-,1()()f f x x -=-,即满足D 选项.故选:BD5.【多选题】(2021·全国高三其他模拟)已知函数21,0,()2,0,x x f x x x x +<⎧=⎨-+≥⎩令()()()g x f f x =,则下列说法正确的是( )A .()10g -=B .方程()2g x =有3个根C .方程()2g x =-的所有根之和为-1D .当0x <时,()()f xg x ≤【答案】ACD 【解析】由题意知()10f -=可得()10g -=;令()f x u =,因为方程()2f u =没有实根,即()2g x =没有实根;令()u f x =,则方程()2g x =-,即()2f u =-,通过化简与计算即可判断C ;当0x <时,()(1)g x f x =+,则将函数()f x 在(,1)-∞的图象向左平移1个单位长度可得函数()g x 的图象,即可判断D .【详解】对于A 选项,由题意知()10f -=,则()()()()1100g f f f -=-==,所以A 选项正确;对于B 选项,令()f x u =,则求()()()2g x f f x ==的根,即求()2f u =的根,因为方程()2f u =没有实根,所以()2g x =没有实根,所以选项B 错误;对于C 选项,令()u f x =,则方程()2g x =-,即()2f u =-,得112,03u u u +=-<⇒=-,2222,01u u u u -+=-≥⇒=+,由方程1()f x u =得13(0)x x +=-<或223(0)x x x -+=-≥,解得4x =-或3x =,易知方程2()f x u =,没有实数根,所以方程()2g x =-的所有根之和为-1,选项C 正确;对于D 选项,当0x <时,()(1)g x f x =+,则将函数()f x 在(,1)-∞的图象向左平移1个单位长度可得函数()g x 的图象,当0x <时,函数()g x 的图象不在()f x 的图象的下方,所以D 选项正确,故选:ACD .6.【多选题】(2021·全国高三专题练习)已知函数()f x ,(,0)(0,)x ∈-∞⋃+∞,对于任意的,(,0)(0,)x y ∈-∞+∞ ,()()()f xy f x f y =+,则( )A .()f x 的图象过点()1,0和()1,0-B .()f x 在定义域上为奇函数C .若当1x >时,有()0f x >,则当10x -<<时,()0f x <D .若当01x <<时,有()0f x <,则()0f x >的解集为()1,+∞【答案】AC 【解析】根据抽象函数的性质,利用特殊值法一一判断即可;【详解】解:因为函数()f x ,(,0)(0,)x ∈-∞⋃+∞,对于任意的,(,0)(0,)x y ∈-∞+∞ ,()()()f xy f x f y =+,令1x y ==,则()()()111f f f =+,则()10f =,令1x y ==-,则()()()111f f f =-+-,则()10f -=,所以()f x 过点()1,0和()1,0-,故A 正确;令1y =-,则()()()1f x f x f -=+-,即()()f x f x -=,所以()f x 为偶函数,故B 错误;令1y x =-,则()()110f f x f x ⎛⎫-=+-= ⎪⎝⎭,则()1f f x x ⎛⎫-=- ⎪⎝⎭当1x >时,所以()11,0x -∈-,又()0f x >,则10f x ⎛⎫-< ⎪⎝⎭,即当10x -<<时,()0f x <,故C 正确;令1y x =,则()()110f f x f x ⎛⎫=+= ⎪⎝⎭,则()1f f x x ⎛⎫=- ⎪⎝⎭,当01x <<时,所以()11,x ∈+∞,又()0f x <,则10f x ⎛⎫>⎪⎝⎭,即当1x >时,()0f x >,因为()f x 是偶函数,所以1x <-时,()0f x >,所以()0f x >的解集为()(),11,-∞-+∞U ,故D 错误;故选:AC7.【多选题】(2021·全国高三专题练习)已知函数()22,023,0x x x f x x x ⎧-<=⎨-+≥⎩,则( )A .()13f f -⎡⎤⎣=-⎦B .若()1f a =-,则2a =C .()f x 在R 上是减函数D .若关于x 的方程()f x a =有两解,则(]0,3a ∈【答案】ABD 【解析】根据函数解析式,代入数据可判断A 、B 的正误,做出()f x 的图象,可判断C 、D 的正误,即可得答案.【详解】对于A :由题意得:2(1)(1)2(1)3f -=--⨯-=,所以()(3)23331f f f -==-⨯+=-⎡⎤⎣⎦,故A 正确;对于B :当0a <时,2()21f a a a =-=-,解得a =1,不符合题意,舍去当0a ≥时,()231f a a =-+=-,解得2a =,符合题意,故B 正确;对于C :做出()f x 的图象,如下图所示:所以()f x 在R 上不是减函数,故C 错误;对于D :方程()f x a =有两解,则()y f x =图象与y a =图象有两个公共点,如下图所示所以(]0,3a ∈,故D 正确.故选:ABD8.(2021·浙江高三月考)已知0a >,设函数2(22),(02)(),(2)x a x x a f x ax x a ⎧-++<<+=⎨≥+⎩,存在0x 满足()()00f f x x =,且()00f x x ≠,则a 的取值范围是______.1a ≤<【解析】求得()2x ax a y =≥+关于y x =对称所得函数的解析式,通过构造函数,结合零点存在性列不等式,由此求得a 的取值范围.【详解】由于()f x 存在0x 满足()()0f f x x=,且()00f x x ≠,所以()f x 图象上存在关于y x =对称的两个不同的点.对于()()2,2y ax x a y a a =≥+≥+,交换,x y 得x ay =,即()()12,2y x x a a y a a=≥+≥+,构造函数()()22111222222g x x a x x x a x x x a a a a ⎛⎫⎛⎫=-++-=-++-=-++- ⎪ ⎪⎝⎭⎝⎭(()22a a x a +≤<+),所以()g x 的零点122a a +-满足()12222a a a a a+≤+-<+,由1222a a a +-<+得()()21111001a a a a a a a a+---==<⇒<<,由()1222a a a a+≤+-得3210a a -+≤,即()()()()31111a a a a a a a --+=+---()()()21110a a a a a a ⎛=+--=--≤ ⎝,由于01a <<1a ≤<.1a ≤<9. (2021·浙江高一期末)已知函数()1f x x =-+,()()21g x x =-,x ∈R .(1)在图1中画出函数()f x ,()g x 的图象;(2)定义:x R ∀∈,用()m x 表示()f x ,()g x 中的较小者,记为()()(){}min ,m x f x g x =,请分别用图象法和解析式法表示函数()m x .(注:图象法请在图2中表示,本题中的单位长度请自己定义且标明)【答案】(1)图象见解析;(2)()(][)()()21,,01,1,0,1x x m x x x ⎧-+∈-∞⋃+∞⎪=⎨-∈⎪⎩;图象见解析.【解析】(1)由一次函数和二次函数图象特征可得结果;(2)根据()m x 定义可分段讨论得到解析式;由解析式可得图象.【详解】(1)()f x ,()g x 的图象如下图所示:(2)当0x ≤时,()211x x -≥-+,则()()1m x f x x ==-+;当01x <<时,()211x x -<-+,则()()()21m x g x x ==-;当1≥x 时,()211x x -≥-+,则()()1m x f x x ==-+;综上所述:()(][)()()21,,01,1,0,1x x m x x x ⎧-+∈-∞⋃+∞⎪=⎨-∈⎪⎩.()m x图象如下图所示:10. (2021·全国高一课时练习)已知函数()12f x x x =++-,()3g x x =-.(1)在平面直角坐标系里作出()f x 、()g x 的图象.(2)x R ∀∈,用()min x 表示()f x 、()g x 中的较小者,记作()()(){}min ,x f x g x =,请用图象法和解析法表示()min x ;(3)求满足()()f x g x >的x 的取值范围.【答案】(1)答案见解析;(2)答案见解析;(3)()(),20,-∞-+∞ .【解析】(1)化简函数()f x 、()g x 的解析式,由此可作出这两个函数的图象;(2)根据函数()min x 的意义可作出该函数的图象,并结合图象可求出函数()min x 的解析式;(3)根据图象可得出不等式()()f x g x >的解集.【详解】(1)()21,2123,1212,1x x f x x x x x x -≥⎧⎪=++-=-<<⎨⎪-≤-⎩,()3,333,3x x g x x x x -≥⎧=-=⎨-<⎩.则对应的图象如图:(2)函数()min x的图象如图:解析式为()3,20312,21min 3,103,3x x x x x x x x x -<-≤<⎧⎪--≤≤-⎪=⎨-<<⎪⎪-≥⎩或;(3)若()()f x g x >,则由图象知在A 点左侧,B 点右侧满足条件,此时对应的x 满足0x >或2x <-,即不等式()()f x g x >的解集为()(),20,-∞-+∞ .1.(山东高考真题)设f (x )=<x <1―1),x ≥1,若f (a )=f (a +1),则=( )A .2B .4C .6D .8【答案】C【解析】由x ≥1时f (x )=2(x ―1)是增函数可知,若a ≥1,则f (a )≠f (a +1),所以0<a <1,由f (a )=f (a+1)得a =2(a +1―1),解得a =14,则=f (4)=2(4―1)=6,故选C.2.(2018上海卷)设D 是含数1的有限实数集,f (x )是定义在D 上的函数,若f (x )的图象绕原点逆时针旋转π6后与原图象重合,则在以下各项中,f (1)的可能取值只能是( )A .3B .32 C .33 D .0【答案】B 【解析】由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转π6个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f (1)=3,33,0时,此时得到的圆心角为π3,π6,0,然而此时x=0或者x=1时,都有2个y 与之对应,而我们知道函数的定义就是要求一个x 只能对应一个y ,因此只有当练真题x=32,此时旋转π6,此时满足一个x 只会对应一个y ,故选:B .3. (2018年新课标I 卷文)设函数f (x )=2―x , x ≤01 , x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A. (―∞ , ―1]B. (0 , +∞)C. (―1 , 0)D. (―∞ , 0)【答案】D【解析】将函数f (x )的图象画出来,观察图象可知会有2x <02x <x +1,解得x <0,所以满足f (x +1)<f (2x )的x 的取值范围是(―∞ , 0),故选D.4.(浙江高考真题(文))已知函数()2,1{66,1x x f x x x x≤=+->,则()2f f ⎡⎤-=⎣⎦,()f x 的最小值是.【答案】162-【解析】如图根据所给函数解析式结合其单调性作出其图像如图所示,易知()()min 12,62f f f x f ⎡⎤-=-==⎣⎦.5. (2018·天津高考真题(文))已知a R ∈,函数()22220220x x a x f x x x a x ⎧++-≤=⎨-+->⎩,,,.若对任意x ∈[–3,+∞),f (x )≤x 恒成立,则a 的取值范围是__________.【答案】1,28⎡⎤⎢⎥⎣⎦【解析】由题意分类讨论0x >和0x ≤两种情况,结合恒成立的条件整理计算即可求得最终结果.【详解】分类讨论:①当0x >时,()f x x ≤即:222x x a x -+-≤,整理可得:21122a x x ≥-+,由恒成立的条件可知:()2max 11022a x x x ⎛⎫≥-+> ⎪⎝⎭,结合二次函数的性质可知:当12x =时,2max 1111122848x x ⎛⎫-+=-+= ⎪⎝⎭,则18a ≥;②当30x -≤≤时,()f x x ≤即:222x x a x ++-≤-,整理可得:232a x x ≤--+,由恒成立的条件可知:()()2min3230a x x x ≤--+-≤≤,结合二次函数的性质可知:当3x =-或0x =时,()2min322x x --+=,则2a ≤;综合①②可得a 的取值范围是1,28⎡⎤⎢⎥⎣⎦,故答案为1,28⎡⎤⎢⎥⎣⎦.6.(2018·浙江高考真题)已知λ∈R,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.【答案】(1,4) (1,3](4,)⋃+∞ 【解析】分析:根据分段函数,转化为两个不等式组,分别求解,最后求并集.先讨论一次函数零点的取法,再对应确定二次函数零点的取法,即得参数λ的取值范围.详解:由题意得240x x ≥⎧⎨-<⎩或22430x x x <⎧⎨-+<⎩,所以24x ≤<或12x <<,即14x <<,不等式f (x )<0的解集是(1,4),当4λ>时,()40f x x =->,此时2()430,1,3f x x x x =-+==,即在(,)λ-∞上有两个零点;当4λ≤时,()40,4f x x x =-==,由2()43f x x x =-+在(,)λ-∞上只能有一个零点得13λ<≤.综上,λ的取值范围为(1,3](4,)⋃+∞.。

2024年高考数学真题分类汇编(三角函数篇,解析版)

2024年高考数学真题分类汇编(三角函数篇,解析版)

专题三角函数1(新课标全国Ⅰ卷)已知cos (α+β)=m ,tan αtan β=2,则cos (α-β)=()A.-3mB.-m3C.m 3D.3m【答案】A【分析】根据两角和的余弦可求cos αcos β,sin αsin β的关系,结合tan αtan β的值可求前者,故可求cos α-β 的值.【详解】因为cos α+β =m ,所以cos αcos β-sin αsin β=m ,而tan αtan β=2,所以=12×2b ×kb ×sin A 2+12×kb ×b ×sin A2,故cos αcos β-2cos αcos β=m 即cos αcos β=-m ,从而sin αsin β=-2m ,故cos α-β =-3m ,故选:A .2(新课标全国Ⅰ卷)当x ∈[0,2π]时,曲线y =sin x 与y =2sin 3x -π6 的交点个数为()A.3B.4C.6D.8【答案】C【分析】画出两函数在0,2π 上的图象,根据图象即可求解【详解】因为函数y =sin x 的的最小正周期为T =2π,函数y =2sin 3x -π6 的最小正周期为T =2π3,所以在x ∈0,2π 上函数y =2sin 3x -π6有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C3(新课标全国Ⅱ卷)设函数f (x )=a (x +1)2-1,g (x )=cos x +2ax ,当x ∈(-1,1)时,曲线y =f (x )与y =g (x )恰有一个交点,则a =()A.-1B.12C.1D.22024年高考数学真题分类汇编——三角函数篇【分析】解法一:令F x =ax 2+a -1,G x =cos x ,分析可知曲线y =F (x )与y =G (x )恰有一个交点,结合偶函数的对称性可知该交点只能在y 轴上,即可得a =2,并代入检验即可;解法二:令h x =f (x )-g x ,x ∈-1,1 ,可知h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即可得a =2,并代入检验即可.【详解】解法一:令f (x )=g x ,即a (x +1)2-1=cos x +2ax ,可得ax 2+a -1=cos x ,令F x =ax 2+a -1,G x =cos x ,原题意等价于当x ∈(-1,1)时,曲线y =F (x )与y =G (x )恰有一个交点,注意到F x ,G x 均为偶函数,可知该交点只能在y 轴上,可得F 0 =G 0 ,即a -1=1,解得a =2,若a =2,令F x =G x ,可得2x 2+1-cos x =0因为x ∈-1,1 ,则2x 2≥0,1-cos x ≥0,当且仅当x =0时,等号成立,可得2x 2+1-cos x ≥0,当且仅当x =0时,等号成立,则方程2x 2+1-cos x =0有且仅有一个实根0,即曲线y =F (x )与y =G (x )恰有一个交点,所以a =2符合题意;综上所述:a =2.解法二:令h x =f (x )-g x =ax 2+a -1-cos x ,x ∈-1,1 ,原题意等价于h x 有且仅有一个零点,因为h -x =a -x 2+a -1-cos -x =ax 2+a -1-cos x =h x ,则h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即h 0 =a -2=0,解得a =2,若a =2,则h x =2x 2+1-cos x ,x ∈-1,1 ,又因为2x 2≥0,1-cos x ≥0当且仅当x =0时,等号成立,可得h x ≥0,当且仅当x =0时,等号成立,即h x 有且仅有一个零点0,所以a =2符合题意;故选:D .4(全国甲卷数学(理)(文))已知cos αcos α-sin α=3,则tan α+π4=()A.23+1 B.23-1C.32D.1-3【答案】B【分析】先将cos αcos α-sin α弦化切求得tan α,再根据两角和的正切公式即可求解.【详解】因为cos αcos α-sin α=3,所以11-tan α=3,⇒tan α=1-33,所以tan α+π4 =tan α+11-tan α=23-1,故选:B .5(新高考北京卷)已知f x =sin ωx ω>0 ,f x 1 =-1,f x 2 =1,|x 1-x 2|min =π2,则ω=()A.1B.2C.3D.4【分析】根据三角函数最值分析周期性,结合三角函数最小正周期公式运算求解.【详解】由题意可知:x 1为f x 的最小值点,x 2为f x 的最大值点,则x 1-x 2 min =T 2=π2,即T =π,且ω>0,所以ω=2πT=2.故选:B .6(新高考天津卷)已知函数f x =sin3ωx +π3ω>0 的最小正周期为π.则函数在-π12,π6 的最小值是()A.-32B.-32C.0D.32【答案】A【分析】先由诱导公式化简,结合周期公式求出ω,得f x =-sin2x ,再整体求出x ∈-π12,π6时,2x 的范围,结合正弦三角函数图象特征即可求解.【详解】f x =sin3ωx +π3 =sin 3ωx +π =-sin3ωx ,由T =2π3ω=π得ω=23,即f x =-sin2x ,当x ∈-π12,π6 时,2x ∈-π6,π3,画出f x =-sin2x 图象,如下图,由图可知,f x =-sin2x 在-π12,π6上递减,所以,当x =π6时,f x min =-sin π3=-32故选:A7(新高考上海卷)下列函数f x 的最小正周期是2π的是()A.sin x +cos xB.sin x cos xC.sin 2x +cos 2xD.sin 2x -cos 2x【答案】A【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可 .【详解】对A ,sin x +cos x =2sin x +π4,周期T =2π,故A 正确;对B ,sin x cos x =12sin2x ,周期T =2π2=π,故B 错误;对于选项C ,sin 2x +cos 2x =1,是常值函数,不存在最小正周期,故C 错误;对于选项D ,sin 2x -cos 2x =-cos2x ,周期T =2π2=π,故D 错误,故选:A .8(新课标全国Ⅱ卷)对于函数f(x)=sin2x和g(x)=sin2x-π4,下列说法正确的有() A.f(x)与g(x)有相同的零点 B.f(x)与g(x)有相同的最大值C.f(x)与g(x)有相同的最小正周期D.f(x)与g(x)的图像有相同的对称轴【答案】BC【分析】根据正弦函数的零点,最值,周期公式,对称轴方程逐一分析每个选项即可.【详解】A选项,令f(x)=sin2x=0,解得x=kπ2,k∈Z,即为f(x)零点,令g(x)=sin2x-π4=0,解得x=kπ2+π8,k∈Z,即为g(x)零点,显然f(x),g(x)零点不同,A选项错误;B选项,显然f(x)max=g(x)max=1,B选项正确;C选项,根据周期公式,f(x),g(x)的周期均为2π2=π,C选项正确;D选项,根据正弦函数的性质f(x)的对称轴满足2x=kπ+π2⇔x=kπ2+π4,k∈Z,g(x)的对称轴满足2x-π4=kπ+π2⇔x=kπ2+3π8,k∈Z,显然f(x),g(x)图像的对称轴不同,D选项错误.故选:BC9(新课标全国Ⅱ卷)已知α为第一象限角,β为第三象限角,tanα+tanβ=4,tanαtanβ=2+1,则sin(α+β)=.【答案】-22 3【分析】法一:根据两角和与差的正切公式得tanα+β=-22,再缩小α+β的范围,最后结合同角的平方和关系即可得到答案;法二:利用弦化切的方法即可得到答案.【详解】法一:由题意得tanα+β=tanα+tanβ1-tanαtanβ=41-2+1=-22,因为α∈2kπ,2kπ+π2,β∈2mπ+π,2mπ+3π2,k,m∈Z,则α+β∈2m+2kπ+π,2m+2kπ+2π,k,m∈Z,又因为tanα+β=-22<0,则α+β∈2m+2kπ+3π2,2m+2kπ+2π,k,m∈Z,则sinα+β<0,则sinα+βcosα+β=-22,联立sin2α+β+cos2α+β=1,解得sinα+β=-223.法二:因为α为第一象限角,β为第三象限角,则cosα>0,cosβ<0,cosα=cosαsin2α+cos2α=11+tan2α,cosβ=cosβsin2β+cos2β=-11+tan2β,则sin(α+β)=sinαcosβ+cosαsinβ=cosαcosβ(tanα+tanβ)=4cosαcosβ=-41+tan2α1+tan2β=-4(tanα+tanβ)2+(tanαtanβ-1)2=-442+2=-223故答案为:-22 3.10(全国甲卷数学(文))函数f x =sin x-3cos x在0,π上的最大值是.【答案】2【分析】结合辅助角公式化简成正弦型函数,再求给定区间最值即可.【详解】f x =sin x -3cos x =2sin x -π3 ,当x ∈0,π 时,x -π3∈-π3,2π3,当x -π3=π2时,即x =5π6时,f x max =2.故答案为:2一、单选题1(2024·宁夏石嘴山·三模)在平面直角坐标系中,角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边经过点P 1,2 ,则7cos 2θ-2sin2θ=()A.-15B.15C.-2D.2【答案】A【分析】由题意可知:tan θ=2,根据倍角公式结合齐次化问题分析求解.【详解】由题意可知:tan θ=2,所以7cos 2θ-2sin2θ=7cos 2θ-4sin θcos θsin 2θ+cos 2θ=7-4tan θtan 2θ+1=7-4×222+1=-15.故选:A .2(2024·广东茂名·一模)已知cos α+π =-2sin α,则sin 2α-3cos α+π2cos αcos2α+1=()A.-1B.-25C.45D.78【答案】D【分析】根据给定条件,求出tan α,再结合诱导公式及二倍角的余弦公式,利用正余弦齐次式法计算得解.【详解】由cos α+π =-2sin α,得cos α=2sin α,则tan α=12,所以sin 2α-3cos α+π2 cos αcos2α+1=sin 2α+3sin αcos α2cos 2α=12tan 2α+32tan α=18+34=78.故选:D3(2024·河北保定·二模)函数f (x )=1-e x1+e xcos2x 的部分图象大致为()A. B.C. D.【答案】A【分析】根据函数的奇偶性判断即可.【详解】设g x =1-e x1+e x,则g-x=1-e-x1+e-x=e x-11+e x=-g x ,所以g x 为奇函数,设h x =cos2x,可知h x 为偶函数,所以f x =1-e x1+e xcos2x为奇函数,则B,C错误,易知f0 =0,所以A正确,D错误.故选:A.4(2024·山东济宁·三模)已知函数f(x)=(3sin x+cos x)cos x-12,若f(x)在区间-π4,m上的值域为-3 2,1,则实数m的取值范围是()A.π6,π2B.π6,π2C.π6,7π12D.π6,7π12【答案】D【分析】利用二倍角公式、辅助角公式化简函数f(x),再借助正弦函数的图象与性质求解即得.【详解】依题意,函数f(x)=3sin x cos x+cos2x-12=32sin2x+12cos2x=sin2x+π6,当x∈-π4,m时,2x+π6∈-π3,2m+π6,显然sin-π3=sin4π3=-32,sinπ2=1,且正弦函数y=sin x在π2,4π3上单调递减,由f(x)在区间-π4,m上的值域为-32,1,得π2≤2m+π6≤4π3,解得π6≤m≤7π12,所以实数m的取值范围是π6,7π12.故选:D5(2024·江西景德镇·三模)函数f x =cosωx x∈R在0,π内恰有两个对称中心,fπ=1,将函数f x 的图象向右平移π3个单位得到函数g x 的图象.若fα +gα =35,则cos4α+π3=()A.725B.1625C.-925D.-1925【答案】A【分析】根据y轴右边第二个对称中心在0,π内,第三个对称中心不在0,π内可求得32≤ω<52,结合fπ=1可得ω=2,再利用平移变换求出g x ,根据三角变换化简fα +gα =35可得sin2α+π6=35,然后由二倍角公式可解.【详解】由x∈0,π得ωx∈0,ωπ,因为函数f x 在0,π内恰有两个对称中心,所以3π2≤ωπ5π2>ωπ,解得32≤ω<52,又fπ=cosωπ=1,所以ωπ=kπ,k∈Z,即ω=k,k∈Z,所以ω=2,将函数f x 的图象向右平移π3个单位得到函数y=cos2x-π3=cos2x-2π3,即g x =cos2x-2π3,因为fα +gα =cos2α+cos2α-2π3=32sin2α+12cos2α=sin2α+π6=35,所以cos4α+π3=1-2sin22α+π6=1-2×35 2=725.故选:A6(2024·安徽马鞍山·三模)已知函数f(x)=sin2ωx+cos2ωx(ω>1)的一个零点是π2,且f(x)在-π6,π16上单调,则ω=()A.54B.74C.94D.114【答案】B【分析】整理可得f(x)=2sin2ωx+π4,以2ωx+π4为整体,根据单调性分析可得1<ω≤2,再结合零点分析求解.【详解】因为f(x)=sin2ωx+cos2ωx=2sin2ωx+π4,x∈-π6,π16,且ω>1时,可得2ωx+π4∈-π3ω+π4,π8ω+π4,且-π3ω+π4<0<π8ω+π4,若f(x)在-π6,π16上单调,则-π3ω+π4≥-π2π8ω+π4≤π2,解得1<ω≤2,又因为f(x)的一个零点是π2,则πω+π4=kπ,k∈Z,解得ω=k-14,k∈Z,所以k=2,ω=7 4 .故选:B.7(2024·山东临沂·二模)已知函数f x =sin2x+φϕ <π2图象的一个对称中心为π6,0,则()A.f x 在区间-π8,π3上单调递增B.x=5π6是f x 图象的一条对称轴C.f x 在-π6,π4上的值域为-1,32D.将f x 图象上的所有点向左平移5π12个长度单位后,得到的函数图象关于y轴对称【答案】D【分析】借助整体代入法结合正弦函数的性质可得A、B;结合正弦函数最值可得C;得到平移后的函数解析式后借助诱导公式即可得D.【详解】由题意可得2×π6+φ=kπk∈Z,解得φ=-π3+kπk∈Z,又ϕ <π2,故φ=-π3,即f x =sin2x-π3;对A :当x ∈-π8,π3 时,2x -π3∈-7π12,π3,由函数y =sin x 在-7π12,π3上不为单调递增,故f x 在区间-π8,π3上不为单调递增,故A 错误;对B :当x =5π6时,2x -π3=4π3,由x =4π3不是函数y =sin x 的对称轴,故x =5π6不是f x 图象的对称轴,故B 错误;对C :当x ∈-π6,π4 时,2x -π3∈-2π3,π6,则f x ∈-1,12,故C 错误;对D :将f x 图象上的所有点向左平移5π12个长度单位后,可得y =sin 2x +2×5π12-π3 =sin 2x +π2=cos2x ,该函数关于y 轴对称,故D 正确.故选:D .8(2024·广东广州·二模)已知函数f (x )=2sin (ωx +φ)ω>0,|φ|<π2的部分图象如图所示,若将函数f (x )的图象向右平移θ(θ>0)个单位后所得曲线关于y 轴对称,则θ的最小值为()A.π8B.π4C.3π8D.π2【答案】A【分析】根据给定的图象特征,结合五点法作图列式求出ω和φ,再根据图象的平移变换,以及图象的对称性即可得解.【详解】由f π4=1,得sin π4ω+φ =22,又点π4,1 及附近点从左到右是上升的,则π4ω+φ=π4+2k π,k ∈Z ,由f 5π8 =0,点5π8,0 及附近点从左到右是下降的,且上升、下降的两段图象相邻,得5π8ω+φ=π+2k π,k ∈Z ,联立解得ω=2,φ=-π4+2k π,k ∈Z ,而|φ|<π2,于是φ=-π4,f (x )=2sin 2x -π4,若将函数f (x )的图像向右平移θ(θ>0)个单位后,得到y =sin 2x -2θ-π4,则-2θ-π4=π2-k π,k ∈Z ,而θ>0,因此θ=-3π8+k π2,k ∈N ,所以当k =1时,θ取得最小值为π8.故选:A9(2024·四川雅安·三模)已知函数f x =sin ωx +3cos ωx (ω>0),则下列说法中正确的个数是()①当ω=2时,函数y =f x -2log πx 有且只有一个零点;②当ω=2时,函数y =f x +φ 为奇函数,则正数φ的最小值为π3;③若函数y =f x 在0,π3 上单调递增,则ω的最小值为12;④若函数y =f x 在0,π 上恰有两个极值点,则ω的取值范围为136,256.A.1 B.2C.3D.4【答案】B【分析】利用辅助角公式化简函数,由图象分析判断①;由正弦函数的性质判断②③;由极大值的意义结合正弦函数的性质判断④.【详解】依题意,ω>0,函数f (x )=212sin ωx +32cos ωx =2sin ωx +π3,对于①:f (x )=2sin 2x +π3,令y =f x -2log πx =0,即f x =2log πx ,作出函数y =f (x )和函数y =2log πx 的图象,如图,观察图象知,两个函数在0,7π12 上只有一个零点,f 13π12 =2sin 5π2=2,当x =13π12时,y =2log π13π12=2log π1312+2log ππ=2+2log π1312>2,当x >13π12时,2log πx >2≥f (x ),因此函数y =f x 与函数y =2log πx 的图象有且只有一个交点,①正确;对于②:f (x +φ)=2sin 2x +2φ+π3 为奇函数,则2φ+π3=k π,k ∈Z ,φ=-π6+k π2,k ∈Z ,即正数φ的最小值为π3,②正确;对于③:当x ∈0,π3 时,ωx +π3∈π3,π(ω+1)3,由y =f x 在0,π3 上单调递增,得π(ω+1)3≤π2ω>0,解得0<ω≤12,正数ω有最大值12,③错误;对于④:当x ∈(0,π)时,ωx +π3∈π3,ωπ+π3,而y =f x 在(0,π)上恰有两个极值点,由正弦函数的性质得3π2<ωπ+π3≤5π2,解得76<ω≤136,因此ω的取值范围是76,136,④错误.综上,共2个正确,故选:B .10(2024·河北保定·二模)已知tan α=3cos αsin α+11,则cos2α=()A.-78B.78C.79D.-79【答案】B【分析】利用切化弦和同角三角函数的关系,解出sin α,再结合二倍角公式即可求解.【详解】因为sin αcos α=3cos αsin α+11,所以4sin 2α+11sin α-3=0,解得sin α=14或sin α=-3(舍去),所以cos2α=1-2sin 2α=78.故选:B .11(2024·河北衡水·三模)已知sin (3α-β)=m sin (α-β),tan (2α-β)=n tan α,则m ,n 的关系为()A.m =2nB.n =m +1mC.n =m m -1D.n =m +1m -1【答案】D【分析】利用和差角的正弦公式化简,结合已知列出方程即可求解.【详解】依题意,sin (3α-β)=sin [(2α-β)+α]=sin (2α-β)cos α+cos (2α-β)sin α,sin (α-β)=sin [(2α-β)-α]=sin (2α-β)cos α-cos (2α-β)sin α,则sin (2α-β)cos α+cos (2α-β)sin α=m sin (2α-β)cos α-m cos (2α-β)sin α,即sin (2α-β)cos αcos (2α-β)sin α=m +1m -1,即tan (2α-β)tan α=m +1m -1=n .故选:D12(2024·辽宁沈阳·三模)已知tan α2=2,则sin 2α2+sin α的值是()A.25B.45C.65D.85【答案】D【分析】利用二倍角公式和同角之间的转化,进行求解判断选项【详解】当tan α2=2,则sin 2α2+sin α=sin 2α2+2sin α2cos α2sin 2α2+cos 2α2=tan 2α2+2tan α2tan 2α2+1=22+2×222+1=85故选:D13(2024·贵州黔东南·二模)已知0<α<β<π,且sin α+β =2cos α+β ,sin αsin β-3cos αcos β=0,则tan α-β =()A.-1 B.-32C.-12D.12【答案】C【分析】找出tan α和tan β的关系,求出tan α和tan β即可求解.【详解】∵sin αsin β-3cos αcos β=0,∴sin αsin β=3cos αcos β,∴tan αtan β=3①,∵sin α+β =2cos α+β ,∴tan α+β =2⇒tan α+tan β1-tan αtan β=2⇒tan α+tan β1-3=2,∴tan α+tan β=-4②,由①②解得tan α=-1tan β=-3或tan α=-3tan β=-1 ,∵0<α<β<π,∴tan α<tan β,∴tan α=-3tan β=-1 ,∴tan α-β =tan α-tan β1+tan αtan β=-12.故选:C .二、多选题14(2024·河北张家口·三模)已知函数f (x )=23cos 2x +2sin x cos x ,则下列说法正确的是()A.函数f (x )的一个周期为2πB.函数f (x )的图象关于点π3,0 对称C.将函数f (x )的图象向右平移φ(φ>0)个单位长度,得到函数g (x )的图象,若函数g (x )为偶函数,则φ的最小值为5π12D.若f 12α-5π24 -3=12,其中α为锐角,则sin α-cos α的值为6-308【答案】ACD【分析】利用三角恒等变换公式化简,由周期公式可判断A ;代入验证可判断B ;根据平移变化求g (x ),由奇偶性可求出φ,可判断C ;根据已知化简可得sin α-π12 =14,将目标式化为2sin α-π12 -π6 ,由和差角公式求解可判断D .【详解】对于A ,因为f (x )=31+cos2x +sin2x =2sin 2x +π3+3,所以f (x )的最小值周期T =2π2=π,所以2π是函数f (x )的一个周期,A 正确;对于B ,因为f π3 =2sin 2×π3+π3 +3=3,所以,点π3,0 不是函数f (x )的对称中心,B 错误;对于C ,由题知,g x =f (x -φ)=2sin 2(x -φ)+π3 +3=2sin 2x +π3-2φ +3,若函数g (x )为偶函数,则π3-2φ=π2+k π,k ∈Z ,得φ=-π12-k π2,k ∈Z ,因为φ>0,所以φ的最小值为5π12,C 正确;对于D ,若f 12α-5π24-3=2sin 212α-5π24 +π3 =2sin α-π12 =12,则sin α-π12 =14,因为α为锐角,-π12<α-π12<5π12,所以cos α-π12 =154,所以sin α-cos α=2sin α-π4 =2sin α-π12 -π6=232sin α-π12 -12cos α-π12=232×14-12×154=6-308,D 正确.故选:ACD 15(2024·辽宁鞍山·模拟预测)已知函数f x =sin x ⋅cos x ,则()A.f x 是奇函数B.f x 的最小正周期为2πC.f x 的最小值为-12D.f x 在0,π2上单调递增【答案】AC【分析】首先化简函数f x =12sin2x ,再根据函数的性质判断各选项.【详解】f x =sin x ⋅cos x =12sin2x ,函数的定义域为R ,对A ,f -x =-12sin2x =-f x ,所以函数f x 是奇函数,故A 正确;对B ,函数f x 的最小正周期为2π2=π,故B 错误;对C ,函数f x 的最小值为-12,故C 正确;对D ,x ∈0,π2 ,2x ∈0,π ,函数f x 不单调,f x 在0,π4 上单调递增,在π4,π2上单调递减,故D 错误.故选:AC16(2024·安徽·三模)已知函数f x =sin x -3cos x ,则()A.f x 是偶函数B.f x 的最小正周期是πC.f x 的值域为-3,2D.f x 在-π,-π2上单调递增【答案】AC【分析】对于A ,直接用偶函数的定义即可验证;对于B ,直接说明f 0 ≠f π 即可否定;对于C ,先证明-3≤f x ≤2,再说明对-3≤u ≤2总有f x =u 有解即可验证;对于D ,直接说明f -5π6>f -2π3 即可否定.【详解】对于A ,由于f x 的定义域为R ,且f -x =sin -x -3cos -x =-sin x -3cos x =sin x -3cos x =f x ,故f x 是偶函数,A 正确;对于B ,由于f 0 =sin0 -3cos0=-3,f π =sinπ -3cosπ=3,故f 0 ≠f π ,这说明π不是f x 的周期,B 错误;对于C ,由于f x =sin x -3cos x ≤sin x +3cos x =sin x +3cos x 2≤sin x +3cos x 2+3sin x -cos x 2=sin 2x +3cos 2x +23sin x cos x +3sin 2x +cos 2x -23sin x cos x =4sin 2x +4cos 2x =4=2,且f x =sin x -3cos x ≥-3cos x ≥-3,故-3≤f x ≤2.而对-3≤u ≤2,有f 0 =-3≤u ,f 5π6 =2≥u ,故由零点存在定理知一定存在x ∈0,5π6使得f x =u .所以f x 的值域为-3,2 ,C 正确;对于D ,由于-π<-5π6<-2π3<-π2,f -5π6 =2>3=f -2π3 ,故f x 在-π,-π2上并不是单调递增的,D 错误.故选:AC .17(2024·山西太原·模拟预测)已知函数f x =sin 2x +φ 0<φ<π2 的图象关于直线x =π12对称,且h x =sin2x -f x ,则()A.φ=π12B.h x 的图象关于点π6,0中心对称C.f x 与h x 的图象关于直线x =π4对称 D.h x 在区间π6,5π12内单调递增【答案】BCD【分析】根据正弦函数的对称性求解φ判断A ,先求出h x =sin 2x -π3,然后利用正弦函数的对称性求解判断B ,根据对称函数的性质判断C ,结合正弦函数的单调性代入验证判断D .【详解】由题意得2×π12+φ=π2+k π,k ∈Z ,解得φ=π3+k π,k ∈Z ,又因为0<φ<π2,所以φ=π3,A 错误;由φ=π3可知f x =sin 2x +π3,则h x =sin2x -sin 2x +π3 =12sin2x -32cos2x =sin 2x -π3,令2x -π3=k π,k ∈Z ,解得x =π6+k π2,k ∈Z ,令k =0,得x =π6,所以点π6,0 是曲线y =h x 的对称中心,B 正确;因为f π2-x =sin 2π2-x +π3 =sin 4π3-2x =sin 2x -π3=h x ,所以f x 与h x 的图象关于直线x =π4对称,C 正确;当x ∈π6,5π12 时,2x -π3∈0,π2 ,故h x 在区间π6,5π12内单调递增,D 正确.故选:BCD 18(2024·浙江金华·三模)已知函数f x =sin2ωx cos φ+cos2ωx sin φω>0,0<φ<π2的部分图象如图所示,则()A.φ=π6B.ω=2C.f x +π6为偶函数 D.f x 在区间0,π2的最小值为-12【答案】ACD【分析】先由正弦展开式,五点法结合图象求出f x =sin 2x +π6,可得A 正确,B 错误;由诱导公式可得C 正确;整体代入由正弦函数的值域可得D 正确.【详解】由题意得f x =sin 2ω+φ ,由图象可得f 0 =12⇒sin φ=12,又0<φ<π2,所以φ=π6,由五点法可得ω×4π3+π6=3π2⇒ω=1,所以f x =sin 2x +π6 .A :由以上解析可得φ=π6,故A 正确;B :由以上解析可得ω=1,故B 错误;C :f x +π6 =sin 2x +π6 +π6=cos2x ,故C 正确;D :当x ∈0,π2 ⇒2x +π6∈π6,7π6 时,sin 2x +π6 ∈-12,1,所以最小值为-12,故D 正确;故选:ACD .19(2024·浙江温州·二模)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,P -3,4 为其终边上一点,若角β的终边与角2α的终边关于直线y =-x 对称,则()A.cos π+α =35B.β=2k π+π2+2αk ∈Z C.tan β=724D.角β的终边在第一象限【答案】ACD【分析】根据三角函数的定义,可求角α的三角函数,结合诱导公式判断A 的真假;利用二倍角公式,求出2α的三角函数值,结合三角函数的概念指出角2α的终边与单位圆的交点,由对称性确定角β终边与单位圆交点,从而判断BCD 的真假.【详解】因为角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边经过点P -3,4 ,所以:OP =5,所以sin α=45,cos α=-35,所以cos π+α =-cos α=35,故A 对;又sin2α=2sin α⋅cos α=2×45×-35 =-2425,cos2α=cos 2α-sin 2α=-35 2-45 2=-725,所以2α的终边与单位圆的交点坐标为:-725,-2425 ,因为角β的终边与角2α的终边关于直线y =-x 对称,所以角β的终边与单位圆的交点为2425,725,所以tan β=724,且β的终边在第一象限,故CD 正确;又因为终边在直线y =-x 的角为:k π-π4,k ∈Z ,角2α的终边与角β的终边关于y =-x 对称,所以2α+β2=k π-π4⇒β=2k π-π2-2αk ∈Z ,故B 错误.故选:ACD20(2024·广东佛山·二模)已知函数f x =sin x +cos2x 与g x =sin2x +cos x ,记h x =λf x +μg x ,其中λ,μ∈R 且λ2+μ2≠0.下列说法正确的是()A.h x 一定为周期函数B.若λ⋅μ>0,则h x 在0,π2上总有零点C.h x 可能为偶函数 D.h x 在区间0,2π 上的图象过3个定点【答案】ABD【分析】对于A :计算h x +2π ,化简即可;对于B :求出h x ,然后计算h 0 h π2的正负即可;对于C :计算h x ,h -x 是否恒相等即可;对于D :令f x =0g x =0,求解x 即可.【详解】对于A ,∀x ∈R ,h x +2π =λf x +2π +μg x +2π =λf x +μg x =h x ,A 正确;对于B ,h x =λcos x -2sin2x +μ2cos2x -sin x ,则h 0 =λ+2μ,h π2=-3μ,因为λμ>0,即λ,μ同号,所以h 0 h π2<0,由零点存在定理知h x 在0,π2上总有零点,故B 正确;对于C ,h x =λsin x +λcos2x +μsin2x +μcos x ,h -x =-λsin x +λcos2x -μsin2x +μcos x ,由h x =h -x 得2λsin x +2μsin2x =2λsin x +2μ⋅2sin x cos x =2sin x λ+2μcos x =0对x ∈R 恒成立,则λ=μ=0与题意不符,故C 错误;对于D ,令f x =0g x =0 ,则sin x +cos2x =1-2sin 2x +sin x =-sin x -1 2sin x +1 =0sin2x +cos x =cos x 2sin x +1 =0 ⇒sin x =1或sin x =-12cos x =0或sin x =-12,即x ∈-π6+2k π,π2+2k π,7π6+2k π ,k ∈Z ,故所有定点坐标为-π6+2k π,0 ,π2+2k π,0 ,7π6+2k π,0 ,k ∈Z ,又因为x ∈0,2π ,所以函数h x 的图象过定点π2,0 ,7π6,0 ,11π6,0 ,故D 正确;故选:ABD .21(2024·湖南·二模)已知函数f x =12cos 2x -π3 ,把y =f x 的图象向右平移π3个单位长度,得到函数y =g x 的图象,以下说法正确的是()A.x =π6是y =f x 图象的一条对称轴B.f x 的单调递减区间为k π+π6,k π+2π3k ∈Z C.y =g x 的图象关于原点对称D.f x +g x 的最大值为12【答案】ABD【分析】根据题意,求得g x =-12cos2x 的图象,结合三角函数的图象与性质,以及两角差的正弦公式,逐项判定,即可求解.【详解】将函数f x =12cos 2x -π3 的图象向右平移π3个单位长度,得到函数y =g x =12cos 2x -π =-12cos2x 的图象,对于A 中,令x =π6,求得f x =12,即为函数y =f x 最大值,所以直线x =π6是函数f x 图象的一条对称轴,所以A 正确;对于B 中,令2k π≤2x -π3≤2k π+π,k ∈Z ,解得k π+π6≤x ≤k π+2π3,k ∈Z ,可得f x 的单调减区间为k π+π6,k π+2π3,k ∈Z ,所以B 正确.对于C 中,由于g x =-12cos2x 是偶函数,可得函数g x 的图象关于y 轴对称,所以C 错误.对于D 中,由f x +g x =12cos 2x -π3 +-12cos2x =1212cos2x +32sin2x -12cos2x =34sin2x -14cos2x =12sin 2x -π6 ≤12,即f x +g x 的最大值为12,所以D 正确.故选:ABD .22(2024·广东江门·一模)已知函数f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3(ω>0),则下列结论正确的是()A.若f x 相邻两条对称轴的距离为π2,则ω=2B.当ω=1,x ∈0,π2时,f x 的值域为-3,2 C.当ω=1时,f x 的图象向左平移π6个单位长度得到函数解析式为y =2cos 2x +π6D.若f x 在区间0,π6上有且仅有两个零点,则5≤ω<8【答案】BCD【分析】根据三角恒等变换化简f x =2sin 2ωx +π3,进而根据周期可判断A ,根据整体法求解函数的值域判断B ,根据函数图象的平移可判断C ,根据零点个数确定不等式满足的条件可判断D .【详解】f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3=sin2ωx cos π3+cos2ωx sin π3+sin2ωx cos π3-cos2ωx sin π3+3cos2ωx=sin2ωx +3cos2ωx =2sin 2ωx +π3,对于A ,若f x 相邻两条对称轴的距离为π2,则T =2×π2=π=2π2ω,故ω=1,A 错误,对于B ,当ω=1,f x =2sin 2x +π3 ,当x ∈0,π2 时,2x +π3∈π3,4π3,则f x 的值域为-3,2 ,B 正确,对于C ,当ω=1,f x =2sin 2x +π3,f x 的图象向左平移π6个单位长度得到函数解析式为f x +π6 =2sin 2x +π6 +π3 =2sin 2x +2π3 =2cos 2x +π6,C 正确,对于D ,当x ∈0,π6 时,2ωx +π3∈π3,2ωπ6+π3,若f x 在区间0,π6 上有且仅有两个零点,则2π≤2ωπ6+π3<3π,解得5≤ω<8,故D 正确,故选:BCD 三、填空题23(2024·北京·三模)已知函数f (x )=sin x cos ωx ,x ∈R .①若ω=1,则f (x )的最小正周期是;,②若ω=2,则f (x )的值域是.【答案】π[-1,1]【分析】把ω=1代入,t 明智二倍角的正弦,结合正弦函数的周期求出f (x )的最小正周期;把ω=2代入,利用二倍角的余弦公式,借助换元法,利用导数求出f (x )的值域.【详解】当ω=1时,f (x )=sin x cos x =12sin2x ,函数f (x )的最小正周期为2π2=π;当ω=2时,f (x )=sin x cos2x =sin x (1-2sin 2x ),令sin x =t ∈[-1,1],g (t )=t (1-2t 2)=-2t 3+t ,求导得g (t )=-6t 2+1,当-1≤t <-66或66<t ≤1时,g (t )<0,当-66<t <66时,g (t )>0,函数g (t )在-1,-66 ,66,1 上单调递减,在-66,66上单调递增,g (-1)=1,g 66 =69,g (1)=-1,g -66 =-69,所以g (t )min =-1,g (t )max =1,f (x )的值域是[-1,1].故答案为:π;[-1,1]24(2024·北京·模拟预测)已知函数f (x )=sin ωx -2cos ωx (ω>0),且f α+x =f α-x .若两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,则sin4α=.【答案】-45/-0.8【分析】利用辅助角公式化简f (x )的解析式,再由题意可得函数关于x =α对称,且最小正周期T =π,即可求出ω的值,从而得到2α=φ+π2+k π,k ∈Z ,再由二倍角公式及同角三角函数的基本关系计算可得.【详解】因为f (x )=sin ωx -2cos ωx =5sin ωx -φ ,其中tan φ=2,由f α+x =f α-x ,可得f x 关于x =α对称,又两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,所以f x 的最小正周期T =π,又ω>0,所以2πω=π,解得ω=2,所以f x =5sin 2x -φ ,所以2α-φ=π2+k π,k ∈Z ,则2α=φ+π2+k π,k ∈Z ,所以sin4α=sin2φ+π2+k π =sin 2φ+π+2k π =-sin2φ=-2sin φcos φsin 2φ+cos 2φ=-2tan φtan 2φ+1=-2×222+1=-45.故答案为:-4525(2024·湖北荆州·三模)设0<α<β<π2,tan α=m tan β,cos α-β =35,若满足条件的α与β存在且唯一,则m =,tan αtan β=.【答案】191【分析】由tan α=m tan β得到sin αcos β=m cos αsin β,再结合cos α-β =35,利用sin α-β =-45,得到cos αsin β=-45m -1 ,sin αcos β=-4m5m -1 ,从而sin α+β =-4m +1 5m -1,再由满足条件的α与β存在且唯一,得到α+β唯一,从而sin α+β =-4m +15m -1=1,求得m 即可.【详解】解:由tan α=m tan β,得sin αcos α=m sin βcos β,即sin αcos β=m cos αsin β,因为0<α<β<π2,tan α=m tan β,所以-π2<α-β<0,0<m <1,又cos α-β =35,所以sin α-β <0,从而sin α-β =sin αcos β-cos αsin β=m -1 cos αsin β=-45,所以cos αsin β=-45m -1,所以sin αcos β=m cos αsin β=-4m5m -1,所以sin α+β =sin αcos β+cos αsin β=-4m +15m -1,因为α,β∈0,π2,所以α+β∈0,π ,因为满足条件的α与β存在且唯一,所以α+β唯一,所以sin α+β =-4m +1 5m -1=1,所以m =19,经检验符合题意,所以tan α=19tan β,则tan α-β =-43=tan α-tan β1+tan αtan β=tan α-9tan α1+9tan 2α,解得tan α=13,所以tan αtan β=9tan 2α=1.故答案为:19,1【点睛】关键点点睛:关键是结合已知得出sin α+β =-4m +15m -1 =1,求出m ,由此即可顺利得解.。

2023届高考数学专项(分段函数)题型归纳与练习(附答案)

2023届高考数学专项(分段函数)题型归纳与练习(附答案)

2023届高考数学专项(分段函数)题型归纳与练习【题型归纳】题型一 、分段函数的求值问题由于分段函数的答案解析式与对应的定义域有关,因此求值时要代入对应的答案解析式。

含有抽象函数的分段函数,在处理里首先要明确目标,即让自变量向有具体答案解析式的部分靠拢,其次要理解抽象函数的含义和作用(或者对函数图象的影响)例1、(2021∙江西南昌市∙高三期末(理))已知定义在R 上的奇函数满足,且当时,,其中a 为常数,则的值为( ) A .2B .C .D . 变式1、(辽宁省沈阳市2020‐2021学年高三联考)函数21,13()(4),3x x f x f x x --≤<⎧=⎨-≥⎩,则(9)f = ______. 变式2、(2021∙山东临沂市∙高三二模)已知奇函数,则( )A .B .C .7D .11变式3、(2020届浙江省杭州市建人高复高三4月模拟)对于给定正数k ,定义(),()(),()k f x f x kf x k f x k ≤⎧=⎨>⎩,设22()252f x ax ax a a =--++,对任意x ∈R 和任意(,0)a ∈-∞恒有()()k f x f x =,则( ) A .k 的最大值为2 B .k 的最小值为2C .k 的最大值为1D .k 的最小值为1题型二、与分段函数有关的方程或不等式含分段函数的不等式在处理上通常是两种方法:一种是利用代数手段,通过对x 进行分类讨论将不等式转变为具体的不等式求解。

另一种是通过作出分段函数的图象,数形结合,利用图像的特点解不等式例2、【2018年高考浙江】已知λ∈R ,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.变式1、(2021∙浙江高三期末)已知,则______;若,则______.变式2、(2021∙山东烟台市∙高三二模)已知函数是定义在区间上的偶函数,且当()f x ()(6)f x f x =-03x ≤<21),01()2(2),13a x x f x x x ++≤≤⎧⎪=⎨-<<⎪⎩(2019)(2020)(2021)f f f ++2-1212-()()31,0,0x x f x g x x ⎧-<⎪=⎨>⎪⎩()()12f g -+=11-7-(),201,0x x f x x x ⎧≥=⎨-+<⎩()2f =()2f α=α=()f x ()(),00,-∞+∞时,,则方程根的个数为( )A .3B .4C .5D .6变式3、(2021∙山东高三其他模拟)已知,,则方程的解的个数是( ) A .B .C .D .题型三、分段函数的单调性分段函数单调性的判断:先判断每段的单调性,如果单调性相同,则需判断函数是连续的还是断开的,如果函数连续,则单调区间可以合在一起,如果函数不连续,则要根据函数在两段分界点出的函数值(和临界值)的大小确定能否将单调区间并在一起。

高考数学复习基础知识专题讲解与练习04 函数的性质综合应用(解析版)

高考数学复习基础知识专题讲解与练习04 函数的性质综合应用(解析版)

高考数学复习基础知识专题讲解与练习专题04函数的性质综合应用一、单选题1.(2021·黑龙江·牡丹江市第三高级中学高三月考(文))已知函数(1)f x +的定义域为(-2,0),则(21)f x -的定义域为() A .(-1,0) B .(-2,0) C .(0,1)D .1,02⎛⎫- ⎪⎝⎭【答案】C 【分析】由题设函数的定义域,应用换元法求出()f t 的定义域,进而求(21)f x -的定义域即可. 【详解】由题设,若1t x =+,则(1,1)t ∈-,∴对于(21)f x -有21(1,1)x -∈-,故其定义域为(0,1). 故选:C.2.(2021·湖南·高三月考)已知函数()f x 满足22()()326f x f x x x +-=++,则() A .()f x 的最小值为2B .x R ∃∈,22432()x x f x ++>C .()f x 的最大值为2D .x R ∀∈,22452()x x f x ++>【答案】D 【分析】先求得()f x ,然后结合二次函数的性质确定正确选项.【详解】因为22()()326f x f x x x +-=++(i ),所以用x -代换x 得22()()326f x f x x x -+=-+(ii ). (i )×2-(ii )得23()366f x x x =++, 即22()22(1)1f x x x x =++=++,从而()f x 只有最小值,没有最大值,且最小值为1.()2222222221243243122()222222x x x x x x f x x x x x x x ++-++++===-<++++++, ()2222222221245245122()222222x x x x x x f x x x x x x x +++++++===+>++++++. 故选:D.3.(2021·河南·孟津县第一高级中学高三月考(理))若函数()2021x x f x x ππ-=-+,则不等式(1)(24)0f x f x ++-≥的解集为() A .[1,)+∞ B .(,1]-∞ C .(0,1] D .[1,1]-【答案】A 【分析】判断出函数的奇偶性和单调性,再利用其性质解不等式即可 【详解】()f x 的定义域为R ,因为()2021(2021)()x x x x f x x x f x ππππ---=-=--+=--, 所以()f x 是奇函数,所以不等式(1)(24)0f x f x ++-≥可化为(1)(42)f x f x +≥-, 因为,,2021x x y y y x ππ-==-=在R 上均为增函数, 所以()f x 在R 上为增函数, 所以142x x +≥-,解得1x ≥, 故选:A.4.(2022·全国·高三专题练习)已知函数f (x 2+1)=x 4,则函数y =f (x )的解析式是( )A .()()21,0f x x x =-≥B .()()21,1f x x x =-≥C .()()21,0f x x x =+≥D .()()21,1f x x x =+≥【答案】B 【分析】利用凑配法求得()f x 解析式. 【详解】()()()2242211211f x x x x +==+-++,且211x +≥,所以()()22211,1f x x x x x =-+=-≥. 故选:B.5.(2021·湖南省邵东市第一中学高三月考)已知函数()f x 满足()()()222f a b f a f b +=+对,a b ∈R 恒成立,且(1)0f ≠,则(2021)f =() A .1010 B .20212C .1011D .20232【答案】B 【分析】利用赋值法找出规律,从而得出正确答案. 【详解】令0a b ==,则()()()()20020,00f f f f =+=,令0,1a b ==,则()()()()()221021,121f f f f f =+=,由于()10f ≠,所以()112f =.令1a b ==,则()()()221211f f f =+=, 令2,1a b ==,则()()()2133221122f f f =+=+=,令3,1a b ==,则()()()23144321222f f f =+=+=,以此类推,可得()202120212f =.故选:B.6.(2021·安徽·六安二中高三月考)设()f x 为奇函数,且当0x ≥时,()21x f x =-,则当0x <时,()f x =() A .21x -- B .21x -+C .21x ---D .21x --+【答案】D 【分析】根据题意,设0x <,则0x ->,由函数的解析式可得()21x f x --=-,结合函数的奇偶性分析可得答案. 【详解】根据题意,设0x <,则0x ->, 则()21x f x --=-,又由()f x 为奇函数,则()()21x f x f x ---=-+=,故选:D.7.(2021·河南·高三月考(理))||||2()x x x e f x e-=的最大值与最小值之差为()A .4-B .4eC .44e-D .0【答案】B 【分析】利用函数为奇函数,且其图像的对称性,利用导数可得函数的单调性和最值. 【详解】22()1xx xx e x f x ee-==-,设2()xx g x e=,则()()1g x f x =+则()g x 为奇函数,图像关于原点对称,其最大值与最小值是互为相反数,max max ()()1g x f x =+min ()()1min g x f x =+ max min ()()0g x g x +=max min max min max min max ()()(()1)(()1)()()2()f x f x g x g x g x g x g x ∴-=---=-=即()f x 的最大值与最小值之差为max 2()g x , 当0x >时2()xxg x e =,222(1)()x x x x g x e e --'==, 故2()xxg x e =的单调递增区间为(0,1),单调递减区间为(1,)+∞, 所以max 2()(1)g x g e==,所以()f x 的最大值与最小值之差为4e故选:B.8.(2021·黑龙江·牡丹江市第三高级中学高三月考(理))已知减函数()332f x x x =--,若()()320f m f m -+-<,则实数m 的取值范围为() A .(),3-∞ B .()3,+∞ C .(),3-∞- D .()3,-+∞【答案】C 【分析】根据函数奇偶性和单调性,列出不等式即可求出范围. 【详解】易知()f x 为R 上的奇函数,且在R 上单调递减, 由()()320f m f m -+-<,得()()()322f m f m f m -<--=, 于是得32m m ->,解得3m <-. 故选:C.9.(2021·陕西·西安中学高三期中)已知函数()(1ln 31xx a x f x x a +=++++-(0a >,1a ≠),且()5f π=,则()f π-=() A .5- B .2 C .1D .1-【答案】C 【分析】令()()3g x f x =-,由()()0g x g x -+=,可得()g x 为奇函数,利用奇函数的性质即可求解. 【详解】解:令()()(1ln 13x x a x g x f x x a +++=--+=,因为()()((11ln ln 011xxx x a a g x x x x x x aa g --++-++-++++=---+=,所以()g x 为奇函数,所以()()0g g ππ-+=,即()()330f f ππ--+-=, 又()5f π=, 所以()1f π-=, 故选:C.10.(2021·北京通州·高三期中)已知函数()f x 的定义域为R ,()54f =,()3f x +是偶函数,[)12,3,x x ∀∈+∞,有()()12120f x f x x x ->-,则()A .()04f <B .()14f =C .()24f >D .()30f <【答案】B 【分析】根据条件可得()f x 关于直线3x =对称,()f x 在[)3,+∞上单调递增,结合()54f =可判断出答案. 【详解】由()3f x +是偶函数可得()f x 关于直线3x =对称 因为[)12,3,x x ∀∈+∞,有()()12120f x f x x x ->-,所以()f x 在[)3,+∞上单调递增因为()54f =,所以()()064f f =>,()()154f f ==,()()244f f =< 无法比较()3f 与0的大小 故选:B.11.(2021·北京朝阳·高三期中)若函数()()221x f x a a R =-∈+为奇函数,则实数a =().A .2-B .1-C .0D .1【答案】D【分析】由奇函数的性质()00f =求解即可 【详解】因为函数()()221x f x a a R =-∈+为奇函数,定义域为R ,所以()00f =,即02021a -=+,解得1a =,经检验符合题意,故选:D.12.(2022·上海·高三专题练习)函数()2020sin 2f x x x =+,若满足()2(1)0f x x f t ++-≥恒成立,则实数t 的取值范围为() A .[2,)+∞ B .[1,)+∞C .3,4⎛⎤-∞ ⎥⎝⎦D .(,1]-∞【答案】C 【详解】∵()2020sin 2()f x x x f x -=--=-,且()20202cos20f x x '=+>, ∴函数()f x 为单调递增的奇函数.于是,()2(1)0f x x f t ++-≥可以变为()2(1)(1)f x x f t f t +--=-,即21x x t +≥-,∴21t x x ≤++,而221331244x x x ⎛⎫++=++≥ ⎪⎝⎭,可知实数34t ≤, 故实数t 的取值范围为3,4⎛⎤-∞ ⎥⎝⎦.故选:C.13.(2021·江苏·海安高级中学高三月考)已知定义在R 上的可导函数()f x ,对任意的实数x ,都有()()4f x f x x --=,且当()0,x ∈+∞时,()2f x '>恒成立,若不等式()()()1221f a f a a --≥-恒成立,则实数a 的取值范围是() A .1,02⎛⎫- ⎪⎝⎭ B .10,2⎡⎤⎢⎥⎣⎦C .1,2⎛⎫-∞ ⎪⎝⎭D .1,2⎡⎫+∞⎪⎢⎣⎭ 【答案】D 【分析】由题意可得()()()f x x f x x -=---,令()()2F x f x x =-,根据奇偶性的定义,可得()F x 为偶函数,利用导数可得()F x 的单调性,将题干条件化简可得()2(1)2(1)f a a f a a -≥---,即()(1)F a F a ≥-,根据()F x 的单调性和奇偶性,计算求解,即可得答案.【详解】由()()4f x f x x --=,得()2()2()f x x f x x -=---, 记()()2F x f x x =-,则有()()F x F x =-,即()F x 为偶函数, 又当(0,)x ∈+∞时,()()20F x f x ''=->恒成立, 所以()F x 在(0,)+∞上单调递增,所以由()()()1221f a f a a --≥-,得()2(1)2(1)f a a f a a -≥---, 即()(1)F a F a ≥-(||)(|1|)F a F a ⇔-,所以|||1|a a -,即2212a a a ≥+-,解得12a ,故选:D.14.(2021·黑龙江·哈尔滨三中高三期中(文))设函数222,0()lg ,0x x x f x x x ⎧--≤⎪=⎨>⎪⎩,则函数()1y f x =-的零点个数为() A .1个 B .2个C .3个D .0个【答案】B【分析】由已知函数()f x 的解析式作出图象,把函数()1y f x =-的零点转化为函数()f x 与1y =的交点得答案. 【详解】由函数解析式222,0()lg ,0x x x f x x x ⎧--≤⎪=⎨>⎪⎩由图可知,函数()1y f x =-的零点的个数为2个. 故选:B .15.(2020·广东·梅州市梅江区嘉应中学高三月考)已知函数()f x 是定义在R 上的奇函数,满足1(2)()f x f x +=,且当3,02x ⎛⎫∈- ⎪⎝⎭时,()2log (31)f x x =-+,则()2021f 等于() A .4 B .2C .2-D .2log 7【答案】C 【分析】求得()f x 是周期为4的周期函数,从而求得()2021f . 【详解】因为函数()f x 是定义在R 上的奇函数,()11(4)(2)2()1(2)()f x f x f x f x f x +=++===+, 其最小正周期为4,所以()()2021450511)()1(f f f f ⨯+===--.因为31,02⎛⎫-∈- ⎪⎝⎭,且当3,02x ⎛⎫∈- ⎪⎝⎭时,()2log (31)f x x =-+, 所以()2()log 13)1(12f -=--+=⨯,所以()202112()f f =--=-. 故选:C.16.(2021·江西·九江市柴桑区第一中学高三月考(文))已知函数()f x 是定义在[3,2]a --上的奇函数,且在[3,0]-上单调递增,则满足()()0f m f m a +->的m 的取值范围是()A .5,82⎛⎤ ⎥⎝⎦B .5,32⎛⎤⎥⎝⎦C .[]2,3D .[]3,3-【答案】B 【分析】根据奇函数的定义可知定义域关于原点对称可得320a -+-=,即可解出a ,由奇函数的性质可得函数()f x 在[]3,3-上递增,再将()()0f m f m a +->等价变形为()()f m f a m >-,然后根据单调性即可解出. 【详解】依题意可得320a -+-=,解得5a =,而函数f x ()在[3,0]-上单调递增,所以函数()f x 在[0,3]上单调递增,又函数()f x 连续,故函数()f x 在[]3,3-上递增,不等式()()0f m f m a +->即为()()5f m f m >-,所以333535m m m m-≤≤⎧⎪-≤-≤⎨⎪>-⎩,解得532m <≤.故选:B .17.(2021·浙江·高三期中)已知0a >,0b >,则“2ln 39b a a b>-”是“a b >”成立的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件 【答案】B 【分析】构造函数,利用函数的单调性,结合充分性、必要性的定义进行判断即可. 【详解】解:由()22ln ln 2ln 33b a a a b b=->-,得()2ln 23ln 3a b a b +>+,令()ln 3x f x x =+,()f x 在()0,∞+上单调递增,又()()2f a f b >,则2a b >.即当0a >,0b >时,2ln 392b a a a b b>-⇔>.显然,2a b a b >⇒>,但由2a b >不能得到a b >. 故选:B .18.(2021·重庆市实验中学高三月考)已知函数()()2312,1,1x x a x x f x a x ⎧-++<⎪=⎨≥⎪⎩,若函数()f x 在R 上为减函数,则实数a 的取值范围为()A .1,13⎡⎫⎪⎢⎣⎭B .11,32⎡⎤⎢⎥⎣⎦C .10,3⎛⎤⎥⎝⎦D .1,12⎡⎫⎪⎢⎣⎭【答案】B 【分析】利用二次函数、指数函数的单调性以及函数单调性的定义,建立关于a 的不等式组,解不等式组即可得答案. 【详解】解:因为函数()()2312,1,1x x a x x f x a x ⎧-++<⎪=⎨≥⎪⎩在R 上为减函数,所以()213112011312a a a a +⎧≥⎪⎪<<⎨⎪-++≥⎪⎩,解得1132a ≤≤,所以实数a 的取值范围为11,32⎡⎤⎢⎥⎣⎦, 故选:B.19.(2021·全国·高三期中)已知()2f x +是偶函数,当122x x <<时,()()()21210f x f x x x -->⎡⎤⎣⎦恒成立,设12a f ⎛⎫= ⎪⎝⎭,()3b f =,()4c f =,则a 、b 、c 的大小关系为() A .b a c << B .c b a << C .b c a << D .a b c <<【答案】A 【分析】分析可知函数()f x 在()2,+∞为增函数,由已知条件可得1722a f f ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,结合函数()f x 的单调性可得出a 、b 、c 的大小关系. 【详解】当122x x <<时,()()()21210f x f x x x -->⎡⎤⎣⎦恒成立,则()()12f x f x <, 所以()f x 在()2,+∞为增函数.又因为()2f x +是偶函数,所以,()()22f x f x -+=+,即1722a f f ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,所以()()7342f f f ⎛⎫<< ⎪⎝⎭,即b a c <<.故选:A.20.(2021·宁夏·海原县第一中学高三月考(文))已知()f x 是定义域为()-∞+∞,的奇函数,满足()()11f x f x -=+,若()13f =,则()()()()1232022f f f f ++++=()A .2022B .0C .3D .2022-【答案】C 【分析】由条件可得()f x 是周期为4的周期函数,然后利用()()()()()()()()()()1232022505123412f f f f f f f f f f ++++=+++++⎡⎤⎣⎦算出答案即可.【详解】因为()f x 是定义域为()-∞+∞,的奇函数,所以()()f x f x -=-,()00f = 因为()()11f x f x -=+,所以()()()2f x f x f x -=+=-所以()()()42f x f x f x +=-+=,所以()f x 是周期为4的周期函数 因为()13f =,()()200f f ==,()()()3113f f f =-=-=-,()()400f f == 所以()()()()()()()()()()12320225051234123f f f f f f f f f f ++++=+++++=⎡⎤⎣⎦故选:C.21.(2021·河北·高三月考)已知函数()3()21sin f x x x x =+++,则()(32)4f x f x -+-<的解集为() A .(,1)-∞ B .(1,)+∞C .(,2)-∞D .(2,)+∞【答案】A 【分析】设3()()222sin g x f x x x x =-=++,然后可得函数()g x 为奇函数,函数()g x 在R 上单调递增,然后不等式()(32)4f x f x -+-<可化为()(32)g x g x -<-+,然后可解出答案. 【详解】设3()()222sin g x f x x x x =-=++,可得函数()g x 为奇函数,2()62cos 0g x x x '=++>,所以函数()g x 在R 上单调递增,()(32)4()2(32)2()f x f x f x f x g x -+-<⇒--<--+⇒-(32)()(32)g x g x g x <--⇒-<-+,所以321x x x -<-+⇒<. 故选:A.22.(2021·河南·高三月考(文))已知函数()()12x x f x e e -=+,记12a fπ⎛⎫⎪ ⎪⎝⎭=,1log 2b f π⎛⎫ ⎪⎝⎭=,()c f π=,则a ,b ,c 的大小关系为()A .a <b <cB .c <b <aC .b <a <cD .b <c <a【答案】C 【分析】先判断函数的奇偶性,然后根据导函数的符号求出函数的单调区间,利用函数的单调性即可得出答案. 【详解】解:因为()()()12x x f x e e f x --=+=,所以函数()f x 为偶函数,()()12x xf x e e -'=-, 当0x >时,()0f x '>,所以函数()f x 在()0,∞+上递增,则()1log log 22b f f ππ⎛⎫== ⎪⎝⎭,所以10log 212πππ<<<<, 所以b a c <<. 故选:C .23.(2021·安徽·高三月考(文))已知定义在R 上的函数()f x 满足:(1)f x -关于(1,0)中心对称,(1)f x +是偶函数,且312f ⎛⎫-= ⎪⎝⎭,则92f ⎛⎫ ⎪⎝⎭的值为() A .0 B .-1 C .1 D .无法确定【答案】B 【分析】由于(1)f x -关于(1,0)中心对称,又将函数(1)f x -向左平移1个单位后为()f x ,所以()f x 关于(0,0)中心对称,即()f x 是奇函数;又(1)f x +是偶函数,又将函数(1)f x +向右平移1个单位后为()f x ,所以()f x 关于直线1x =对称,可得函数()f x 的周期4T =, 由此即可求出结果. 【详解】由于(1)f x -关于(1,0)中心对称,又将函数(1)f x -向左平移1个单位后为()f x ,所以()f x 关于(0,0)中心对称,即()f x 是奇函数;又(1)f x +是偶函数,又将函数(1)f x +向右平移1个单位后为()f x ,所以()f x 关于直线1x =对称,即()(2)f x f x =-; 所以()(2)f x f x =--,所以(+2)()f x f x =-,所以(4)(2)()f x f x f x +=-+=, 所以函数()f x 的周期4T =,911334211222222f f f f f f⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+==-==--=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.故选:B.24.(2021·江西·赣州市赣县第三中学高三期中(理))函数()y f x =对任意x ∈R 都有(2)()f x f x +=-成立,且函数(1)y f x =-的图象关于点()1,0对称,(1)4f =,则(2020)(2021)(2022)f f f ++=()A .1B .2C .3D .4【答案】D 【分析】根据函数(1)y f x =-的图象关于点()1,0对称,得到函数是奇函数,然后结合(2)()f x f x +=-,得到函数的周期为4T =求解. 【详解】因为函数(1)y f x =-的图象关于点()1,0对称, 所以函数()y f x =的图象关于点()0,0对称, 即()()f x f x -=-, 又因为(2)()f x f x +=-,所以(2)()f x f x +=-,即(4)()f x f x +=, 所以函数的周期为4T =, 又(1)4f =,所以(2020)(2021)(2022)(0)(1)(0)4f f f f f f ++=++=. 故选:D.25.(2021·江西·高三月考(文))若定义在R 上的奇函数()f x 在区间(0,)+∞上单调递增,且()30f =,则满足0()2f x x -≤的x 的取值范围为()A .(][),15,-∞-+∞B .[][]3,05,-+∞C .[][]1,02,5-D .(][),10,5-∞-【答案】C 【分析】根据函数的单调性、奇偶性、函数图象变换,结合图象求得正确答案. 【详解】依题意()f x 是R 上的奇函数,且在(0,)+∞递增,且()30f =,所以()f x 在(),0-∞递增,且()30f -=.()2f x -的图象是由()f x 的图象向右平移2个单位得到,画出()2f x -的大致图象如下图所示,由图可知,满足0()2f x x -≤的x 的取值范围为[][]1,02,5-.故选:C.26.(2022·全国·高三专题练习)定义在R 上的奇函数f (x )满足f (x +2)=-f (x ),且在[0,1]上是减函数,则有() A .f 3()2<f 1()4-<f 1()4B .f 1()4<f 1()4-<f 3()2C .f 3()2<f 1()4<f 1()4-D .f 1()4-<f 3()2-<f 1()4【答案】C 【分析】首先判断函数的周期,以及对称性,画出函数的草图,即可判断选项. 【详解】因为f (x +2)=-f (x ),所以f (x +2+2)=-f (x +2)=f (x ),所以函数的周期为4,并且()()()2f x f x f x +=-=-,所以函数()f x 关于1x =对称,作出f (x )的草图(如图),由图可知3()2f <1()4f <1()4f -,故选:C.27.(2022·全国·高三专题练习)函数()342221x x f x x x⎧-≤⎪=⎨->⎪-⎩,,则不等式()1f x ≥的解集是( )A .()513⎡⎫-∞⋃+∞⎪⎢⎣⎭,,B .(]5133⎡⎤-∞⋃⎢⎥⎣⎦,,C .513⎡⎤⎢⎥⎣⎦,D .533⎡⎤⎢⎥⎣⎦,【答案】B【分析】将()f x 表示为分段函数的形式,由此求得不等式()1f x ≥的解集. 【详解】()342221x x f x x x ⎧-≤⎪=⎨->⎪-⎩,,443,3434,232,21x x x x x x ⎧-<⎪⎪⎪=-≤≤⎨⎪⎪>⎪-⎩, 当43x <时,431,11x x x -≥≤⇒≤,当423x ≤≤时,55341,233x x x -≥≥⇒≤≤,当2x >时,10x ->,则21,21,3231x x x x ≥≥-≤⇒<≤-,综上所述,不等式()1f x ≥的解集为(]5,1,33⎡⎤-∞⋃⎢⎥⎣⎦.故选:B.28.(2021·安徽省亳州市第一中学高三月考(文))函数()f x 满足()()4f x f x =-+,若()23f =,则()2022f =()A .3B .-3C .6D .2022【答案】B 【分析】根据函数()f x 满足()()4f x f x =-+,变形得到函数()f x 是周期函数求解. 【详解】因为函数()f x 满足()()4f x f x =-+,即()()4f x f x +=-, 则()()()84f x f x f x +=-+=,所以函数()f x 是周期函数,周期为8,所以()()()()202225286623f f f f =⨯+==-=-.故选:B .29.(2021·贵州·贵阳一中高三月考(理))函数2()ln(231)f x x x =-+的单调递减区间为()A .3,4⎛⎫-∞ ⎪⎝⎭B .1,2⎛⎫-∞ ⎪⎝⎭C .3,4⎛⎫+∞ ⎪⎝⎭D .(1,)+∞【答案】B【分析】先求出函数()f x 的定义域,再求出函数2231u x x =-+在所求定义域上的单调区间并结合复合函数单调性即可作答.【详解】在函数2()ln(231)f x x x =-+中,由22310x x -+>得12x <或1x >,则()f x 的定义域为1(,)(1,)2-∞+∞, 函数2231u x x =-+在1(,)2-∞上单调递减,在(1,)+∞上单调递增,又ln y u =在(0,)u ∈+∞上单调递增,于是得()f x 在1(,)2-∞上单调递减,在(1,)+∞上单调递增, 所以函数()f x 的单调递减区间为1(,)2-∞. 故选:B.30.(2021·广东·高三月考)已知定义域为R 的函数()y f x =在[0,10]上有1和3两个零点,且(2)y f x =+与(7)y f x =+都是偶函数,则函数()y f x =在[0,2013]上的零点个数为()A .404B .804C .806D .402【答案】A【分析】 根据两个偶函数得()f x 的对称轴,由此得函数的周期,10是其一个周期,由周期性可得零点个数.【详解】因为(2)y f x =+与(7)y f x =+都为偶函数,所以(2)(2)f x f x +=-+,(7)(7)f x f x +=-+,所以()f x 图象关于2x =,7x =轴对称,所以()f x 为周期函数,且2(72)10T =⋅-=,所以将[0,2013]划分为[0,10)[10,20)[2000,2010][2010,2013]⋅⋅⋅.而[0,10)[10,20)[2000,2010]⋅⋅⋅共201组,所以2012402N =⨯=,在[2010,2013]中,含有零点(2011)(1)0f f ==,(2013)(3)0f f ==共2个,所以一共有404个零点.故选:A.31.(2021·安徽·池州市江南中学高三月考(理))已知定义域为R 的函数f (x )满足f (-x )=-f (x +4),且函数f (x )在区间(2,+∞)上单调递增,如果x 1<2<x 2,且x 1+x 2>4,则f (x 1)+f (x 2)的值()A .可正可负B .恒大于0C .可能为0D .恒小于0【答案】B【分析】首先根据条件()(4)f x f x -=-+转化为(4)()f x f x -=-,再根据函数()f x 在区间(2,)+∞上单调递增,将1x 转换为14x -,从而14x -,2x 都在(2,)+∞的单调区间内,由单调性得到它们的函数值的大小,再由条件即可判断12()()f x f x +的值的符号.【详解】解:定义域为R 的函数()f x 满足()(4)f x f x -=-+,将x 换为x -,有(4)()f x f x -=-,122x x <<,且124x x +>,2142x x ∴>->,函数()f x 在区间(2,)+∞上单调递增,21()(4)f x f x ∴>-,(4)()f x f x -=-,11(4)()f x f x ∴-=-,即21()()f x f x >-,12()()0f x f x ∴+>,故选:B .32.(2021·河南·模拟预测(文))已知非常数函数()f x 满足()()1f x f x -=()x R ∈,则下列函数中,不是奇函数的为()A .()()11f x f x -+ B .()()11f x f x +- C .()()1f x f x - D .()()1f x f x + 【答案】D【分析】根据奇函数的定义判断.【详解】因为()()1f x f x -=()x R ∈,所以()1()()1f x g x f x -=+,则11()11()()()()1()11()1()f x f x f xg x g x f x f x f x -----====--+++,()g x 是奇函数, 同理()()1()1f x h x f x +=-也是奇函数,1()()()()()p x f x f x f x f x =-=--,则()()()()p x f x f x p x -=--=-,是奇函数, 1()()()()()q x f x f x f x f x =+=+-,()()()()q x f x f x q x -=-+=为偶函数, 故选:D .33.(2021·四川郫都·高三月考(文))已知奇函数()f x 定义域为R ,()()1f x f x -=,当10,2x ⎛⎤∈ ⎥⎝⎦时,()21log 2f x x ⎛⎫=+ ⎪⎝⎭,则52f ⎛⎫= ⎪⎝⎭() A .2log 3B .1C .1-D .0【答案】D【分析】 根据函数的奇偶性和(1)()f x f x -=可得函数的周期是2,利用周期性进行转化求解即可.【详解】 解:奇函数满足(1)()f x f x -=,()(1)(1)f x f x f x ∴=-=--,即(1)()f x f x +=-,则(2)(1)()f x f x f x +=-+=,所以()f x 是以2为周期的周期函数, 所以225111()()log ()log 102222f f ==+==. 故选:D.34.(2022·全国·高三专题练习)已知函数()f x 的定义域为R ,且满足()()()()2f x y f x y f x f y ++-=,且12f ⎛⎫= ⎪⎝⎭,()00f ≠,则()2021f =().A .2021B .1C .0D .1-【答案】C【分析】 分别令0x y ==,令12x y ==得到()()110f x f x ++-=,进而推得函数()f x 是周期函数求解. 【详解】令0x y ==,则()()()()00200f f f f +=,故()()()20010f f -=,故()01f =,(()00f =舍) 令12x y ==,则()()1110222f f f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭, 故()10f =.∴()()()()11210f x f x f x f ++-==,即()()()()()()1124f x f x f x f x f x f x +=--⇒+=-⇒+=,故()f x 的周期为4,即()f x 是周期函数.∴()()202110f f ==.故选:C .二、多选题35.(2021·全国·高三月考)()f x 是定义在R 上的偶函数,对x R ∀∈,均有()()2f x f x +=-,当[]0,1x ∈时,()()2log 2f x x =-,则下列结论正确的是()A .函数()f x 的一个周期为4B .()20221f =C .当[]2,3x ∈时,()()2log 4f x x =--D .函数()f x 在[]0,2021内有1010个零点【答案】AC【分析】 由()()2 x f f x +=-可判断A ,()()()2022450()5220f f f f =⨯+==-,可判断B ,当[]2,3x ∈时,[]20,1x -∈,结合条件可判断C ,易知()()()()()1 35201920210f f f f f ===⋯===,可判断D.【详解】()f x 是定义在R 上的偶函数,对x R ∀∈,均有()()2 x f f x +=-,()()4 (2,f x f x f x ∴+=-+=)故函数的周期为4,故选项A 正确;()()()2022452(05201)f f f f =⨯+==-=-,故选项B 错误;当[]2,3x ∈时,[]20,1x -∈,则()()()()222log 2 2log 4f x f x x x ⎡=--=---=-⎤⎦-⎣,故选项C 正确;易知()()()()()1 35201920210f f f f f ===⋯===,于是函数()f x 在[]0,2021内有1011个零点,故选项D 错误,故选:AC .36.(2021·重庆市第十一中学校高三月考)关于函数()321x f x x +=-,正确的说法是() A .()f x 有且仅有一个零点B .()f x 在定义域内单调递减C .()f x 的定义域为{}1x x ≠D .()f x 的图象关于点()1,3对称【答案】ACD【分析】将函数()f x 分离系数可得5()31f x x =+-,数形结合,逐一分析即可; 【详解】 解:323(1)55()3111x x f x x x x +-+===+---,作出函数()f x 图象如图:由图象可知,函数只有一个零点,定义域为{}|1x x ≠,在(),1-∞和()1,+∞上单调递减,图象关于()1,3对称,故B 错误,故选:ACD .37.(2021·福建·三明一中高三月考)下列命题中,错误的命题有()A .函数()f x x =与()2g x =是同一个函数B .命题“[]00,1x ∃∈,2001x x +≥”的否定为“[]0,1x ∀∈,21x x +<”C .函数4sin 0sin 2y x x x π⎛⎫=+<< ⎪⎝⎭的最小值为4 D .设函数22,0()2,0x x x f x x +<⎧⎪=⎨≥⎪⎩,则()f x 在R 上单调递增 【答案】ACD【分析】 求出两函数的定义域,即可判断A ;命题的否定形式判断B ;函数的最值判断C ;分段函数的性质以及单调性判断D ;【详解】解:函数()f x x =定义域为R ,函数2()g x =的定义域为[)0,+∞,所以两个函数的定义域不相同,所以两个函数不是相同函数;所以A 不正确;命题“0[0x ∃∈,1],2001x x +”的否定为“[0x ∀=,1],21x x +<”,满足命题的否定形式,所以B 正确; 函数4sin sin y x x =+(0)2x π<<,因为02x π<<,所以0sin 1x <<,可知4sin 4sin y x x =+>,所以函数没有最小值,所以C 不正确; 设函数22,0,()2,0,x x x f x x +<⎧⎪=⎨⎪⎩两段函数都是增函数,并且0x <时,0x →,()2f x →,0x 时,函数的最小值为1,两段函数在R 上不是单调递增,所以D 不正确;故选:ACD .38.(2021·福建·高三月考)已知()f x 是定义域为R 的函数,满足()()13f x f x +=-,()()13f x f x +=-,当02x ≤≤时,()2f x x x =-,则下列说法正确的是()A .()f x 的最小正周期为4B .()f x 的图象关于直线2x =对称C .当04x ≤≤时,函数()f x 的最大值为2D .当68x ≤≤时,函数()f x 的最小值为12- 【答案】ABC【分析】根据抽象函数关系式,可推导得到周期性和对称性,知AB 正确;根据()f x 在[]0,2上的最大值和最小值,结合对称性和周期性可知C 正确,D 错误.【详解】对于A ,()()13f x f x +=-,()()4f x f x ∴+=,()f x ∴的最小正周期为4,A 正确; 对于B ,()()13f x f x +=-,()()22f x f x ∴+=-,()f x ∴的图象关于直线2x =对称,B 正确;对于C ,当02x ≤≤时,()()max 22f x f ==,()f x 图象关于2x =对称,∴当24x ≤≤时,()()max 22f x f ==; 综上所述:当04x ≤≤时,()()max 22f x f ==,C 正确;对于D ,()f x 的最小正周期为4,()f x ∴在[]6,8上的最小值,即为()f x 在[]2,4上的最小值,当02x ≤≤时,()min 1124f x f ⎛⎫==- ⎪⎝⎭,又()f x 图象关于2x =对称, ∴当24x ≤≤时,()min 711224f x f f ⎛⎫⎛⎫===- ⎪ ⎪⎝⎭⎝⎭,()f x ∴在[]6,8上的最小值为14-,D 错误. 故选:ABC.39.(2022·全国·高三专题练习)设f (x )的定义域为R ,给出下列四个命题其中正确的是()A .若y =f (x )为偶函数,则y =f (x +2)的图象关于y 轴对称;B .若y =f (x +2)为偶函数,则y =f (x )的图象关于直线x =2对称;C .若f (2+x )=f (2-x ),则y =f (x )的图象关于直线x =2对称;D .若f (2-x )=f (x ),则y =f (x )的图象关于直线x =2对称.【答案】BC【分析】根据偶函数的对称性,结合函数图象变换性质、函数图象关于直线对称的性质进行逐一判断即可.【详解】A :中由y =f (x )关于y 轴对称,得y =f (x +2)的图象关于直线x =-2对称,所以结论错误;B :因为y =f (x +2)为偶函数,所以函数y =f (x +2)的图象关于y 轴对称,因此y =f (x )的图象关于直线x =2对称,所以结论正确;C :因为f (2+x )=f (2-x ),所以y =f (x )的图象关于直线x =2对称,因此结论正确;D :由f (2-x )=f (x ),得f (1+x )=f (1-x ),所以y =f (x )关于直线x =1对称,因此结论错误,故选:BC.40.(2021·广东·湛江二十一中高三月考)已知函数sin ()()x f x e x R =∈,则下列论述正确的是()A .()f x 的最大值为e ,最小值为0B .()f x 是偶函数C .()f x 是周期函数,且最小正周期为2πD .不等式()f x ≥5,66xk x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭【答案】BD【分析】由|sin |[0,1]x ∈,得到函数的值域,可判定A 错误;由函数奇偶性的定义,可判定B 正确; 由函数周期的定义,可得判定C 错误;由()f x ≥,得到1|sin |2x ≥,结合三角函数的性质,可判定D 正确.【详解】由|sin |[0,1]x ∈,可得的sin [1,]x e e ∈,故A 错误; 由sin()|sin |()()x x f x e e f x --===,所以()f x 是偶函数,故B 正确;由|sin()||sin ||sin |(=e )()x x x f x e e f x ππ+-+===,所以π是()f x 的周期,故C 错误; 由()f x ≥,即1sin 2x e e ≥,可得1|sin |2x ≥, 解得x 的取值范围是5,66xk x k k ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭Z ,故D 正确. 故选:BD. 41.(2021·全国·模拟预测)已知函数()21x f x x =-,则下列结论正确的是() A .函数()f x 在(),1-∞上是增函数B .函数()f x 的图象关于点()1,2中心对称C .函数()f x 的图象上存在两点A ,B ,使得直线//AB x 轴D .函数()f x 的图象关于直线1x =对称【答案】AC【分析】()2,112,11x x x f x x x x ⎧-<⎪⎪-=⎨⎪>⎪-⎩,然后画出其图象可得答案. 【详解】()2,112,11x x x f x x x x ⎧-<⎪⎪-=⎨⎪>⎪-⎩,其大致图象如下,结合函数图象可得AC 正确,BD 错误.故选:AC.42.(2022·全国·高三专题练习)对于定义在R 上的函数()f x ,下列说法正确的是()A .若()f x 是奇函数,则()1f x -的图像关于点()1,0对称B .若对x ∈R ,有()()11f x f x =+-,则()f x 的图像关于直线1x =对称C .若函数()1f x +的图像关于直线1x =-对称,则()f x 为偶函数D .若()()112f x f x ++-=,则()f x 的图像关于点()1,1对称【答案】ACD【分析】四个选项都是对函数性质的应用,在给出的四个选项中灵活的把变量x 加以代换,再结合函数的对称性、周期性和奇偶性就可以得到正确答案.【详解】对A ,()f x 是奇函数,故图象关于原点对称,将()f x 的图象向右平移1个单位得()1f x -的图象,故()1f x -的图象关于点(1,0)对称,正确;对B ,若对x ∈R ,有()()11f x f x =+-,得()()2f x f x +=,所以()f x 是一个周期为2的周期函数,不能说明其图象关于直线1x =对称,错误.;对C ,若函数()1f x +的图象关于直线1x =-对称,则()f x 的图象关于y 轴对称,故为偶函数,正确;对D ,由()()112f x f x ++-=得()()()()112,202f f f f +=+=,()()()()312,422,f f f f +-=+-=,()f x 的图象关于(1,1)对称,正确.故选:ACD.第II 卷(非选择题)三、填空题43.(2021·广东·高三月考)请写出一个函数()f x =__________,使之同时具有如下性质:①图象关于直线2x =对称;②x R ∀∈,(4)()f x f x +=. 【答案】()cos 2f x x π=(答案不唯一). 【分析】根据性质①②可知()f x 是以4为周期且图象关于2x =对称点的函数,即可求解.【详解】解:由题可知,由性质①可知函数()f x 图象关于直线2x =对称;由性质②x R ∀∈,(4)()f x f x +=,可知函数()f x 以4为周期, 写出一个即可,例如:()cos 2f x x π=, 故答案为:()cos 2f x x π=(答案不唯一). 44.(2021·湖南·高三月考)已知偶函数()f x 满足()()416f x f x +-=,且当(]0,1x ∈时,()[]222()f x f x =,则()3f -=___________.【答案】12【分析】利用函数的奇偶性及赋值法,可以解决问题.【详解】由()()416f x f x +-=,令2x =,可得()28f =.因为[]22(2)(1)16f f ==,212(1)02f f ⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦≥,所以()10f ≥,所以()14f =,由()()416f x f x +-=,令1x =,可得()312f =.因为()f x 是偶函数,所以()()3312f f -==.故答案为:12.45.(2021·北京·中国人民大学附属中学丰台学校高三月考)定义在R 上的函数f (x )满足()()22f x f x -=+,且x ∈(0,1)时,1()24x f x =+,则23(log 8)2f +=___. 【答案】74【分析】 由条件可得2233(log 8)(log )22f f +=,然后可算出答案. 【详解】因为()()22f x f x -=+,且x ∈(0,1)时,1()24x f x =+, 所以23log 222331317(log 8)(log )2224244f f +==+=+= 故答案为:74. 46.(2021·上海奉贤区致远高级中学高三月考)定义在R 上的函数()f x 满足(6)()f x f x +=,2(2),[3,1)(),[1,3)x x f x x x ⎧-+∈--⎪=⎨∈-⎪⎩,数列{}n a 满足(),n a f n n N =∈*,{}n a 的前n 项和为n S ,则2021S =_________.【答案】337【分析】先判断出周期为6,再求出126a a a ++⋅⋅⋅+的值,最后求出2021S 的值【详解】因为函数()f x 满足(6)()f x f x +=,所以函数()f x 是周期为6的周期函数,()()()()12311,22,331a f a f a f f ======-=-,()()()()()456420,511,00a f f a f f a f ==-===-=-==,()()7711a f f ===,1261210101a a a ++⋅⋅⋅+=+-+-+=,因为202163365=⨯+,所以()2021126125336336112101337S a a a a a a =+⋅⋅⋅+++⋅⋅⋅+=⨯++-+-=故答案为:337.47.(2021·辽宁沈阳·高三月考)若函数()3121x f x m x ⎛⎫=-⋅⎪-⎝⎭为偶函数,则m 的值为________. 【答案】12- 【分析】先根据()()11f f =-求出m 的值,再根据奇偶性的定义证明即可.【详解】解:由已知210x -≠,即0x ≠,故函数定义域为()(),00,-∞⋃+∞,因为函数()3121x f x m x ⎛⎫=-⋅⎪-⎝⎭为偶函数, 则()()11f f =- 即1112121m m -⎛⎫-=-- ⎪--⎝⎭, 解得12m =-, 当12m =-时, ()()()()333331111212221211221x x x x x f x f x x x x x x -⎛⎫⎛⎫--=+⋅--+⋅=⋅--- ⎪ ⎪----⎝⎭⎝⎭3332102121x x x x x x =⋅--=--. 故12m =-时,函数()3121x f x m x ⎛⎫=-⋅ ⎪-⎝⎭为偶函数 故答案为:12-. 48.(2021·全国·高三月考(理))已知函数2()sin f x x x x =-,则不等式(21)(1)f x f x -<+的解集为______.【答案】(0,2)【分析】利用导数可判断函数在(0,)+∞为增函数,再利用函数奇偶性的定义可判断函数为偶函数,从而将(21)(1)f x f x -<+转化为|21||1|x x -<+,进而可求出不等式的解集【详解】定义域为R ,由题意,()2sin cos (2cos )sin f x x x x x x x x '=--=--,当0x >时,()1sin 0f x x x '≥⋅->,故()f x 在(0,)+∞为增函数.因为22()()()sin()sin ()f x x x x x x x f x -=----=-=,所以()f x 为偶函数,故(21)(1)f x f x -<+即(|21|)(|1|)f x f x -<+,则|21||1|x x -<+,故22(21)(1)x x -<+,解得02x <<,故原不等式的解集为(0,2).故答案为:(0,2).49.(2022·全国·高三专题练习)函数2π()2sin sin()2f x x x x =+-的零点个数为________. 【答案】2【分析】先利用诱导公式、二倍角公式化简,再将函数零点个数问题转化为两个函数图象的交点个数问题,进而画出图象进行判定.【详解】2π()2sin sin()2f x x x x =+- 222sin cos sin 2x x x x x =-=-,函数f (x )的零点个数可转化为函数1sin 2y x =与22y x =图象的交点个数,在同一坐标系中画出函数1sin 2y x =与22y x =图象的(如图所示):由图可知两函数图象有2个交点,即f (x )的零点个数为2.故答案为:2.50.(2021·河南·高三月考(文))已知偶函数()f x 和奇函数()g x 均定义在R 上,且满足()()224359x f x g x x x +=-++,则()()13f g -+=______.【答案】223【分析】先用列方程组法求出()f x 和()g x 的解析式,代入即可求解.【详解】因为()()224359x f x g x x x +=-++……① 所以()()224359x f x g x x x -+-=+++ 因为()f x 为偶函数,()g x 为奇函数,所以()()224359x f x g x x x -=+++……② ①②联立解得:()235f x x =+,()249x g x x =-+, 所以()()()22431331532392f g ⨯-+=-+-=+. 故答案为:223.。

高中数学三角函数专题复习(内附类型题以及历年高考真题,含答案)

高中数学三角函数专题复习(内附类型题以及历年高考真题,含答案)

1.tan x =2,求sin x ,cos x 的值. 解:因为2cos sin tan ==xxx ,又sin 2x +cos 2x =1, 联立得⎩⎨⎧=+=,1cos sin cos 2sin 22x x xx 解这个方程组得.55cos 552sin ,55cos 552sin ⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==x x x x2.求)330cos()150sin()690tan()480sin()210cos()120tan(----的值.解:原式)30360cos()150sin()30720tan()120360sin()30180cos()180120tan(o--+---++-= .3330cos )150sin (30tan )120sin )(30cos (60tan -=---=3.假设,2cos sin cos sin =+-xx xx ,求sin x cos x 的值.解:法一:因为,2cos sin cos sin =+-xx xx所以sin x -cos x =2(sin x +cos x ),得到sin x =-3cos x ,又sin 2x +cos 2x =1,联立方程组,解得,,⎪⎪⎩⎪⎪⎨⎧=-=⎪⎪⎩⎪⎪⎨⎧-==1010cos 10103sin 1010cos 10103sin x x x x 所以⋅-=103cos sin x x 法二:因为,2cos sin cos sin =+-xx xx所以sin x -cos x =2(sin x +cos x ), 所以(sin x -cos x )2=4(sin x +cos x )2, 所以1-2sin x cos x =4+8sin x cos x , 所以有⋅-=103cos sin x x 4.求证:tan 2x ·sin 2x =tan 2x -sin 2x .证明:法一:右边=tan 2x -sin 2x =tan 2x -(tan 2x ·cos 2x )=tan 2x (1-cos 2x )=tan 2x ·sin 2x ,问题得证. 法二:左边=tan 2x ·sin 2x =tan 2x (1-cos 2x )=tan 2x -tan 2x ·cos 2x =tan 2x -sin 2x ,问题得证.5.求函数)6π2sin(2+=x y 在区间[0,2π ]上的值域. 解:因为0≤x ≤2π,所以,6π76π26π,π20≤+≤≤≤x x 由正弦函数的图象, 得到],1,21[)6π2sin(-∈+x所以y ∈[-1,2]. 6.求以下函数的值域.(1)y =sin 2x -cos x +2; (2)y =2sin x cos x -(sin x +cos x ). 解:(1)y =sin 2x -cos x +2=1-cos 2x -cos x +2=-(cos 2x +cos x )+3,令t =cos x ,那么,413)21(413)21(3)(],1,1[222++-=++-=++-=-∈t t t t y t利用二次函数的图象得到].413,1[∈y (2)y =2sin x cos x -(sin x +cos x )=(sin x +cos x )2-1-(sin x +cos x ),令t =sin x +cos x 2=,)4πsin(+x ,那么]2,2[-∈t 那么,,12--=t t y 利用二次函数的图象得到].21,45[+-∈y 7.假设函数y =A sin(ωx +φ)(ω>0,φ>0)的图象的一个最高点为)2,2(,它到其相邻的最低点之间的图象与x 轴交于(6,0),求这个函数的一个解析式.解:由最高点为)2,2(,得到2=A ,最高点和最低点间隔是半个周期,从而与x 轴交点的间隔是41个周期,这样求得44=T ,T =16,所以⋅=8πω又由)28πsin(22ϕ+⨯=,得到可以取).4π8πsin(2.4π+=∴=x y ϕ8.函数f (x )=cos 4x -2sin x cos x -sin 4x .(Ⅰ)求f (x )的最小正周期; (Ⅱ)假设],2π,0[∈x 求f (x )的最大值、最小值. 数xxy cos 3sin 1--=的值域.解:(Ⅰ)因为f (x )=cos 4x -2sin x cos x -sin4x =(cos 2x -sin 2x )(cos 2x +sin 2x )-sin2x )4π2sin(2)24πsin(22sin 2cos 2sin )sin (cos 22--=-=-=--=x x x x x x x所以最小正周期为π.(Ⅱ)假设]2π,0[∈x ,那么]4π3,4π[)4π2(-∈-x ,所以当x =0时,f (x )取最大值为;1)4πsin(2=--当8π3=x 时,f (x )取最小值为.2-1. 2tan =θ,求〔1〕θθθθsin cos sin cos -+;〔2〕θθθθ22cos 2cos .sin sin +-的值.解:〔1〕2232121tan 1tan 1cos sin 1cos sin 1sin cos sin cos --=-+=-+=-+=++θθθθθθθθθθ; (2) θ+θθ+θθ-θ=θ+θθ-θ222222cos sin cos 2cos sin sin cos 2cos sin sin324122221cos sin 2cos sin cos sin 2222-=++-=+θθ+θθ-θθ=.说明:利用齐次式的结构特点〔如果不具备,通过构造的方法得到〕,进行弦、切互化,就会使解题过程简化。

高考数学大题专题练习 (1)

高考数学大题专题练习 (1)

10 10

5 5
3 ×
1010=
2 10 .
第8页
3.(2019·东北三省三校第一次联考)设函数 f(x)=sin2x-π6+ 2cos2x.
(1)当 x∈0,π2时,求函数 f(x)的值域; (2)△ ABC 的内角 A,B,C 所对的边分别为 a,b,c,且 f(A) =32, 2a= 3b,c=1+ 3,求△ ABC 的面积.
1--
11002=3
10 10 .
在△ ABC 中,由正弦定理得sinaA=sibnB,
即 3
310=sin2B,
10
第7页
∴sinB= 55.又 A∈π2,π,故 B∈0,π2,
∴cosB= 1-sin2B=
1-
552=2
5
5 .
∴cos(B - A) = cosBcosA + sinBsinA = 255 ×-
∵ 2a= 3b,∴由正弦定理可得 2sinA= 3sinB,
∴sinB=
2 2.
第11页
∵0<B<23π,∴B=π4.
∴sinC=sin(π-A-B)=sin(A+B)=
6+ 4
2 .
∵由正弦定理可得sincC= 42=sibnB,
∴b=2.
∴S△ ABC=12bcsinA=3+2
3 .
第12页
4.(2019·广东省六校第二次联考)已知△ ABC 的三个内角 A, B,C 所对的边分别为 a,b,c,且 asinAsinB+bcos2A=53a.
(1)求ba; (2)若 c2=a2+85b2,求角 C 的大小.
第13页
解析 (1)由正弦定理及已知条件得 sin2AsinB+sinBcos2A= 53sinA,即 sinB(sin2A+cos2A)=53sinA,

2023届全国高考数学复习:专题(函数的极值)重点讲解与练习(附答案)

2023届全国高考数学复习:专题(函数的极值)重点讲解与练习(附答案)

2023届全国高考数学复习:专题(函数的极值)重点讲解与练习 1.函数的极小值:函数y=f(x)在点x=x0的函数值f(x0)比它在点x=x0附近其他点的函数值都小,f′(x0)=0;而且在点x=x0附近的左侧f′(x)<0,右侧f′(x)>0.则x0叫做函数y=f(x)的极小值点,f(x0)叫做函数y=f(x)的极小值.如图1.图1图22.函数的极大值:函数y=f(x)在点x=x0的函数值f(x0)比它在点x=x0附近其他点的函数值都大,f′(x0)=0;而且在点x=x0附近的左侧f′(x)>0,右侧f′(x)<0.则x0叫做函数y=f(x)的极大值点,f(x0)叫做函数y=f(x)的极大值.如图2.3.极小值点、极大值点统称为极值点,极小值和极大值统称为极值.对极值的深层理解:(1)极值点不是点;(2)极值是函数的局部性质;(2)按定义,极值点x i是区间[a,b]内部的点(如图),不会是端点a,b;(3)若f(x)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在区间上单调的函数没有极值.(4)根据函数的极值可知函数的极大值f(x0)比在点x0附近的点的函数值都大,在函数的图象上表现为极大值对应的点是局部的“高峰”;函数的极小值f(x0)比在点x0附近的点的函数值都小,在函数的图象上表现为极小值对应的点是局部的“低谷”.一个函数在其定义域内可以有许多极小值和极大值,在某一点处的极小值也可能大于另一个点处的极大值,极大值与极小值没有必然的联系,即极小值不一定比极大值小,极大值不一定比极小值大;(5)使f′(x)=0的点称为函数f(x)的驻点,可导函数的极值点一定是它的驻点.驻点可能是极值点,也可能不是极值点.例如f(x)=x3的导数f′(x)=3x2在点x=0处有f′(0)=0,即x=0是f(x)=x3的驻点,但从f(x)在(-∞,+∞)上为增函数可知,x=0不是f(x)的极值点.因此若f′(x0)=0,则x0不一定是极值点,即f′(x0)=0是f(x)在x=x0处取到极值的必要不充分条件,函数y=f′(x)的变号零点,才是函数的极值点;(6)函数f(x)在[a,b]上有极值,极值也不一定不唯一.它的极值点的分布是有规律的,如上图,相邻两个极大值点之间必有一个极小值点,同样相邻两个极小值点之间必有一个极大值点.一般地,当函数f(x)在[a,b]上连续且有有限个极值点时,函数f(x)在[a,b]内的极大值点、极小值点是交替出现的.考点一 根据函数图象判断极值【方法总结】(4)已知e 为自然对数的底数,设函数f (x )=(e x -1)ꞏ(x -1)k (k =1,2),则( )A .当k =1时,f (x )在x =1处取到极小值B .当k =1时,f (x )在x =1处取到极大值C .当k =2时,f (x )在x =1处取到极小值D .当k =2时,f (x )在x =1处取到极大值(5)若x =-2是函数f (x )=(x 2+ax -1)e x-1的极值点,则f (x )的极小值为( ) A .-1 B .-2e -3 C .5e -3 D .1(6)设f ′(x )为函数f (x )的导函数,已知x 2f ′(x )+xf (x )=ln x ,f (1)=12,则下列结论不正确的是( )A .xf (x )在(0,+∞)上单调递增B .xf (x )在(0,+∞)上单调递减C .xf (x )在(0,+∞)上有极大值12D .xf (x )在(0,+∞)上有极小值12[例2] 给出定义:设f ′(x )是函数y =f (x )的导函数,f ″(x )是函数f ′(x )的导函数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的拐点.已知f (x )=ax +3sin x -cos x .(1)求证:函数y =f (x )的拐点M (x 0,f (x 0))在直线y =ax 上;(2)x ∈(0,2π)时,讨论f (x )的极值点的个数.[例3] (2021ꞏ天津高考节选)已知a >0,函数f (x )=ax -x ꞏe x .(1)求函数y =f (x )在点(0,f (0))处的切点的方程;(2)证明f (x )存在唯一极值点.【对点训练】1.函数f (x )=2x -x ln x 的极值是( )A .1eB .2eC .eD .e 22.函数f (x )=(x 2-1)2+2的极值点是( )A .x =1B .x =-1C .x =1或-1或0D .x =03.函数f (x )=12x 2+ln x -2x 的极值点的个数是( )A .0B .1C .2D .无数4.函数f (x )=(x 2-x -1)e x (其e =2.718…是自然对数的底数)的极值点是 ;极大值为 .5.已知函数f (x )=ax 3-bx +2的极大值和极小值分别为M ,m ,则M +m =( )A .0B .1C .2D .46.若x =-2是函数f (x )=13x 3-ax 2-2x +1的一个极值点,则函数f (x )的极小值为( )A .-113B .-16C .16D .1737.已知函数f (x )=2ln x +ax 2-3x 在x =2处取得极小值,则f (x )的极大值为( )A .2B .-52C .3+ln 2D .-2+2ln 28.已知函数f (x )=x ln x ,则( )A .f (x )的单调递增区间为(e ,+∞)B .f (x )在⎝⎛⎭⎫0,1e 上是减函数 C .当x ∈(0,1]时,f (x )有最小值-1e D .f (x )在定义域内无极值9.(多选)已知函数f (x )=x 2+x -1e x ,则下列结论正确的是( )A .函数f (x )存在两个不同的零点B .函数f (x )既存在极大值又存在极小值C .当-e<k ≤0时,方程f (x )=k 有且只有两个实根D .若x ∈[t ,+∞)时,f (x )max =5e 2,则t 的最小值为210.若函数f (x )=(1-x )(x 2+ax +b )的图象关于点(-2,0)对称,x 1,x 2分别是f (x )的极大值点与极小值点,则x 2-x 1=________.11.已知函数f (x )=e x (x -1)-12e a x 2,a <0.(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)求函数f (x )的极小值.12.已知函数f (x )=e x +2x .(1)求函数f (x )的图象在(1,f (1))处的切线方程;(2)证明:函数f (x )仅有唯一的极小值点.考点三 已知函数的极值(点)求参数的值(范围)【方法总结】由函数极值求参数的值或范围讨论极值点有无(个数)问题,转化为讨论f ′(x )=0根的有无(个数).然后由已知条件列出方程或不等式求出参数的值或范围,特别注意:极值点处的导数为0,而导数为0的点不一定是极值点,要检验导数为0的点两侧导数是否异号.【例题选讲】[例1](1)若函数f (x )=x (x -m )2在x =1处取得极小值,则m =________.(2)已知f (x )=x 3+3ax 2+bx +a 2在x =-1处有极值0,则a +b =________.(3)若函数f (x )的导数f ′(x )=⎝⎛⎭⎫x -52(x -k )k (k ≥1,k ∈Z ),已知x =k 是函数f (x )的极大值点,则k = . (4)设函数f (x )=ln x -12ax 2-bx ,若x =1是f (x )的极大值点,则a 的取值范围为________.(5)若函数f (x )=ax 22-(1+2a )x +2ln x (a >0)在区间⎝⎛⎭⎫12,1内有极大值,则a 的取值范围是( ) A .⎝⎛⎭⎫1e ,+∞ B .(1,+∞) C .(1,2) D .(2,+∞)(6)若函数f (x )=x 2-x +a ln x 在[1,+∞)上有极值点,则实数a 的取值范围为 ;(7)已知函数f (x )=x (ln x -ax )有两个极值点,则实数a 的取值范围是________.(8) (2021ꞏ全国乙)设a ≠0,若x =a 为函数f (x )=a (x -a )2(x -b )的极大值点,则( )A .a <bB .a >bC .ab <a 2D .ab >a 2[例2] 已知曲线f (x )=x e x -23ax 3-ax 2,a ∈R .(1)当a =0时,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)若函数y =f (x )有三个极值点,求实数a 的取值范围.【对点训练】1.若函数f (x )=(x +a )e x 的极值点为1,则a =( )A .-2B .-1C .0D .12.已知函数f (x )=x (x -c )2在x =2处有极小值,则实数c 的值为( )A .6B .2C .2或6D .03.已知函数f (x )=ax 3+bx 2+cx -17(a ,b ,c ∈R )的导函数为f ′(x ),f ′(x )≤0的解集为{x |-2≤x ≤3},若f (x )的极小值等于-98,则a 的值是( )A .-8122B .13C .2D .54.若函数f (x )=x 3-2cx 2+x 有极值点,则实数c 的取值范围为 .5.设a ∈R ,若函数y =e x +ax ,x ∈R 有大于零的极值点,则实数a 的取值范围是________.6.若函数f (x )=(2-a )⎣⎡⎦⎤(x -2)e x -12ax 2+ax 在⎝⎛⎭⎫12,1上有极大值,则实数a 的取值范围为( )A .(e ,e)B .(e ,2)C .(2,e)D .(e ,+∞)7.已知函数f (x )=x ln x -ax 在(1,+∞)上有极值,则实数a 的取值范围为( )A .⎝⎛⎦⎤-∞,14B .⎝⎛⎭⎫-∞,14C .⎝⎛⎦⎤0,14 D .0,14 8.若函数f (x )=x 2-x +a ln x 有极值,则实数a 的取值范围是________.9.若函数f (x )=12x 2+(a -1)x -a ln x 存在唯一的极值,且此极值不小于1,则实数a 的取值范围为________.10.已知函数f (x )=x ln x +m e x (e 为自然对数的底数)有两个极值点,则实数m 的取值范围是__________.11.已知函数f (x )=x ln x -12ax 2-2x 有两个极值点,则实数a 的取值范围是________.12.已知函数f (x )=x e x -a .若f (x )有两个零点,则实数a 的取值范围是( )A .[0,1)B .(0,1)C .⎝⎛⎭⎫0,1eD .⎣⎡⎭⎫0,1e[例1](1)函数f (x )=x 2e -x 的极大值为__________,极小值为________. 答案 4e -2 0 解析 f (x )的定义域为(-∞,+∞),f ′(x )=-e -x x (x -2).当x ∈(-∞,0)或x ∈(2,+∞)时,f ′(x )<0;当x ∈(0,2)时,f ′(x )>0.所以f (x )在(-∞,0),(2,+∞)上单调递减,在(0,2)上单调递增.故当x =0时,f (x )取得极小值,极小值为f (0)=0;当x =2时,f (x )取得极大值,极大值为f (2)=4e -2. (2)设函数f (x )=2x +ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点答案 D 解析 f ′(x )=-2x 2+1x =x -2x 2(x >0),当0<x <2时,f ′(x )<0,当x >2时,f ′(x )>0,所以x =2为f (x )的极小值点.(3)已知函数f (x )=2e f ′(e)ln x -x e ,则f (x )的极大值点为( )A .1eB .1C .eD .2e答案 D 解析 f ′(x )=2e f ′(e)x -1e ,故f ′(e)=1e ,故f (x )=2ln x -x e ,令f ′(x )=2x -1e >0,解得0<x <2e ,令f ′(x )<0,解得x >2e ,故f (x )在(0,2e)上递增,在(2e ,+∞)上递减,∴x =2e 时,f (x )取得极大值2ln 2,则f (x )的极大值点为2e .(4)已知e 为自然对数的底数,设函数f (x )=(e x -1)ꞏ(x -1)k (k =1,2),则( )A .当k =1时,f (x )在x =1处取到极小值B .当k =1时,f (x )在x =1处取到极大值C .当k =2时,f (x )在x =1处取到极小值D .当k =2时,f (x )在x =1处取到极大值答案 C 解析 因为f ′(x )=(x -1)k -1[e x (x -1+k )-k ],当k =1时,f ′(1)>0,故1不是函数f (x )的极值点.当k =2时,当x 0<x <1(x 0为f (x )的极大值点)时,f ′(x )<0,函数f (x )单调递减;当x >1时,f ′(x )>0,函数f (x )单调递增.故f (x )在x =1处取到极小值.故选C .(5)若x =-2是函数f (x )=(x 2+ax -1)e x-1的极值点,则f (x )的极小值为( ) A .-1 B .-2e -3 C .5e -3 D .1答案 A 解析 f ′(x )=(2x +a )e x -1+(x 2+ax -1)e x -1=[x 2+(a +2)x +a -1]e x -1.∵x =-2是f (x )的极值点,∴f ′(-2)=0,即(4-2a -4+a -1)e -3=0,得a =-1.∴f (x )=(x 2-x -1)e x -1,f ′(x )=(x 2+x -2)e x -1.由f ′(x )>0,得x <-2或x >1;由f ′(x )<0,得-2<x <1.∴f (x )在(-∞,-2)上单调递增,在(-2,1)上单调递减,在(1,+∞)上单调递增,∴f (x )的极小值点为1,∴f (x )的极小值为f (1)=-1.(6)设f ′(x )为函数f (x )的导函数,已知x 2f ′(x )+xf (x )=ln x ,f (1)=12,则下列结论不正确的是( )A .xf (x )在(0,+∞)上单调递增B .xf (x )在(0,+∞)上单调递减C .xf (x )在(0,+∞)上有极大值12D .xf (x )在(0,+∞)上有极小值126.若x =-2是函数f (x )=13x 3-ax 2-2x +1的一个极值点,则函数f (x )的极小值为( )A .-113B .-16C .16D .1736.答案 B 解析 由题意,得f ′(x )=x 2-2ax -2.又x =-2是函数f (x )的一个极值点,所以f ′(-2)=2+4a =0,解得a =-12.所以f (x )=13x 3+12x 2-2x +1,所以f ′(x )=x 2+x -2=(x +2)(x -1).当x <-2或x>1时,f ′(x )>0;当-2<x <1时,f ′(x )<0.所以函数y =f (x )的单调递增区间为(-∞,-2),(1,+∞),单调递减区间为(-2,1).当x =1时,函数y =f (x )取得极小值,为f (1)=13+12-2+1=-16.故选B .7.已知函数f (x )=2ln x +ax 2-3x 在x =2处取得极小值,则f (x )的极大值为( )A .2B .-52C .3+ln 2D .-2+2ln 27.答案 B 解析 由题意得,f ′(x )=2x 2ax -3,∵f (x )在x =2处取得极小值,∴f ′(2)=4a -2=0,解得a =12,∴f (x )=2ln x +12x 2-3x ,f ′(x )=2x +x -3=(x -1)(x -2)x,∴f (x )在(0,1),(2,+∞)上单调递增,在(1,2)上单调递减,∴f (x )的极大值为f (1)=12-3=-52.8.已知函数f (x )=x ln x ,则( )A .f (x )的单调递增区间为(e ,+∞)B .f (x )在⎝⎛⎭⎫0,1e 上是减函数 C .当x ∈(0,1]时,f (x )有最小值-1e D .f (x )在定义域内无极值8.答案 BC 解析 因为f ′(x )=ln x +1(x >0),令f ′(x )=0,所以x =1e ,当x ∈⎝⎛⎭⎫0,1e 时,f ′(x )<0,当x ∈⎝⎛⎭⎫1e ,+∞时,f ′(x )>0,所以f (x )在⎝⎛⎭⎫0,1e 上单调递减,在⎝⎛⎭⎫1e ,+∞上单调递增,x =1e 是极小值点,所以A 错误,B 正确;当x ∈(0,1]时,根据单调性可知,f (x )min =f ⎝⎛⎭⎫1e =-1e ,故C 正确;显然f (x )有极小值f ⎝⎛⎭⎫1e ,故D 错误.故选BC .9.(多选)已知函数f (x )=x 2+x -1e x ,则下列结论正确的是( )A .函数f (x )存在两个不同的零点B .函数f (x )既存在极大值又存在极小值C .当-e<k ≤0时,方程f (x )=k 有且只有两个实根D .若x ∈[t ,+∞)时,f (x )max =5e 2,则t 的最小值为29.答案 ABC 解析 由f (x )=0,得x 2+x -1=0,∴x =-1±52,故A 正确.f ′(x )=-x 2-x -2e x =(2)证明:令h (x )=e x (x -1)-2,则h ′(x )=e x ꞏx ,所以x ∈(-∞,0)时,h ′(x )<0,x ∈(0,+∞)时,h ′(x )>0.当x ∈(-∞,0)时,易知h (x )<0,所以f ′(x )<0,f (x )在(-∞,0)上没有极值点.当x ∈(0,+∞)时,因为h (1)=-2<0,h (2)=e 2-2>0,所以f ′(1)<0,f ′(2)>0,f (x )在(1,2)上有极小值点.又因为h (x )在(0,+∞)上单调递增,所以函数f (x )仅有唯一的极小值点.考点三 已知函数的极值(点)求参数的值(范围)【方法总结】由函数极值求参数的值或范围讨论极值点有无(个数)问题,转化为讨论f ′(x )=0根的有无(个数).然后由已知条件列出方程或不等式求出参数的值或范围,特别注意:极值点处的导数为0,而导数为0的点不一定是极值点,要检验导数为0的点两侧导数是否异号.【例题选讲】[例1](1)若函数f (x )=x (x -m )2在x =1处取得极小值,则m =________.答案 1 解析 由f ′(1)=0可得m =1或m =3.当m =3时,f ′(x )=3(x -1)(x -3),当1<x <3时,f ′(x )<0;当x <1或x >3时,f ′(x )>0,此时f (x )在x =1处取得极大值,不合题意,当m =1时,f ′(x )=(x -1)(3x-1).当13<x <1时,f ′(x )<0;当x <13x >1时,f ′(x )>0,此时f (x )在x =1处取得极小值,符合题意,所以m=1.(2)已知f (x )=x 3+3ax 2+bx +a 2在x =-1处有极值0,则a +b =________.答案 11 解析 f ′(x )=3x 2+6ax +b ,由题意得⎩⎪⎨⎪⎧ f ′(-1)=0,f (-1)=0,解得⎩⎪⎨⎪⎧ a =1,b =3或⎩⎪⎨⎪⎧a =2,b =9,当a =1,b =3时,f ′(x )=3x 2+6x +3=3(x +1)2≥0,∴f (x )在R 上单调递增,∴f (x )无极值,所以a =1,b =3不符合题意,当a =2,b =9时,经检验满足题意.∴a +b =11.(3)若函数f (x )的导数f ′(x )=⎝⎛⎭⎫x -52(x -k )k (k ≥1,k ∈Z ),已知x =k 是函数f (x )的极大值点,则k = . 答案 1 解析 因为函数的导数为f ′(x )=⎝⎛⎭⎫x -52(x -k )k ,k ≥1,k ∈Z ,所以若k 是偶数,则x =k ,不是极值点,则k 是奇数,若k <52,由f ′(x )>0,解得x >52或x <k ;由f ′(x )<0,解得k <x <52,即当x =k 时,函数f (x )取得极大值.因为k ∈Z ,所以k =1.若k >52,由f ′(x )>0,解得x >k 或x <52;由f ′(x )<0,解得52<x <k ,即当x=k 时,函数f (x )取得极小值,不满足条件.(4)设函数f (x )=ln x -12ax 2-bx ,若x =1是f (x )的极大值点,则a 的取值范围为________.答案 a >-1 解析 f (x )的定义域为(0,+∞),f ′(x )=1x -ax -b ,由f ′(1)=0,得b =1-a ,所以f ′(x )=1x-ax +a -1=-ax 2+1+ax -x x =-(ax +1)(x -1)x.①若a ≥0,当0<x <1时,f ′(x )>0,f (x )单调递增;当x >1时,f ′(x )<0,f (x )单调递减,所以x =1是f (x )的极大值点.②若a <0,由f ′(x )=0,得x =1或x =-1a .因为x =1是f (x )的极大值点,所以-1a >1,解得-1<a <0.综合①②得a 的取值范围是a >-1.(5)若函数f (x )=ax 22-(1+2a )x +2ln x (a >0)在区间⎝⎛⎭⎫12,1内有极大值,则a 的取值范围是( )A .⎝⎛⎭⎫1e ,+∞ B .(1,+∞) C .(1,2) D .(2,+∞) 答案 C 解析 f ′(x )=ax -(1+2a )+2x =ax 2-(2a +1)x +2x (a >0,x >0),若f (x )在区间⎝⎛⎭⎫12,1内有极大值,即f ′(x )=0在⎝⎛⎭⎫12,1内有解,且f ′(x )在区间⎝⎛⎭⎫12,1内先大于0,后小于0,则⎩⎪⎨⎪⎧f ′⎝⎛⎭⎫12>0,f ′(1)<0,即⎩⎪⎨⎪⎧14a -12(2a +1)+212>0,a -(2a +1)+2<0,解得1<a <2,故选C .(6)若函数f (x )=x 2-x +a ln x 在[1,+∞)上有极值点,则实数a 的取值范围为 ;答案 (-∞,-1] 解析 函数f (x )的定义域为(0,+∞),f ′(x )=2x -1+a x =2x 2-x +a x,由题意知2x 2-x +a =0在R 上有两个不同的实数解,且在[1,+∞)上有解,所以Δ=1-8a >0,且2×12-1+a ≤0,所以a ∈(-∞,-1].(7)已知函数f (x )=x (ln x -ax )有两个极值点,则实数a 的取值范围是________.答案 ⎝⎛⎭⎫0,12 解析 f (x )=x (ln x -ax ),定义域为(0,+∞),f ′(x )=1+ln x -2ax .由题意知,当x >0时,1+ln x -2ax =0有两个不相等的实数根,即2a =1+ln x x有两个不相等的实数根,令φ(x )=1+ln x x (x >0),∴φ′(x )=-ln x x 2.当0<x <1时,φ′(x )>0;当x >1时,φ′(x )<0,∴φ(x )在(0,1)上单调递增,在(1,+∞)上单调递减,且φ(1)=1,当x →0时,φ(x )→-∞,当x →+∞时,φ(x )→0,则0<2a <1,即0<a <12.(8) (2021ꞏ全国乙)设a ≠0,若x =a 为函数f (x )=a (x -a )2(x -b )的极大值点,则( )A .a <bB .a >bC .ab <a 2D .ab >a 2答案 D 解析 法一 (特殊值法)当a =1,b =2时,函数f (x )=(x -1)2(x -2),画出该函数的图象如图1所示,可知x =1为函数f (x )的极大值点,满足题意.从而,根据a =1,b =2可判断选项B ,C 错误;当a =-1,b =-2时,函数f (x )=-(x +1)2(x +2),画出该函数的图象如图2所示,可知x =-1为函数f (x )的极大值点,满足题意.从而,根据a =-1,b =-2可判断选项A 错误.所以当a >e 2时,在x ∈(-∞,-1)时,f ′(x )<0,f (x )单调递减,在x ∈(-1,x 1)时,f ′(x )>0,f (x )单调递增,在x ∈(x 1,x 2)时,f ′(x )<0,f (x )单调递减,在x ∈(x 2,+∞)时,f ′(x )>0,f (x )单调递增.故实数a 的取值范围是⎝⎛⎭⎫e 2,+∞. 【对点训练】1.若函数f (x )=(x +a )e x 的极值点为1,则a =( )A .-2B .-1C .0D .11.答案 A 解析 f ′(x )=e x +(x +a )e x =(x +a +1)e x .由题意知f ′(1)=e(2+a )=0,∴a =-2.故选A .2.已知函数f (x )=x (x -c )2在x =2处有极小值,则实数c 的值为( )A .6B .2C .2或6D .02.答案 B 解析 由f ′(2)=0可得c =2或6.当c =2时,结合图象(图略)可知函数先增后减再增,在x=2处取得极小值;当c =6时,结合图象(图略)可知,函数在x =2处取得极大值.故选B .3.已知函数f (x )=ax 3+bx 2+cx -17(a ,b ,c ∈R )的导函数为f ′(x ),f ′(x )≤0的解集为{x |-2≤x ≤3},若f (x )的极小值等于-98,则a 的值是( )A .-8122B .13C .2D .53.答案 C 解析 由题意,f ′(x )=3ax 2+2bx +c ,因为f ′(x )≤0的解集为{x |-2≤x ≤3},所以a >0,且-2+3=-2b 3a ,-2×3=c 3a ,则3a =-2b ,c =-18a ,f (x )的极小值为f (3)=27a +9b +3c -17=-98,解得a =2,b =-3,c =-36,故选C .4.若函数f (x )=x 3-2cx 2+x 有极值点,则实数c 的取值范围为 .4.答案 ⎝⎛⎭⎫-∞,-32∪⎝⎛⎭⎫32,+∞ 解析 若函数f (x )=x 3-2cx 2+x 有极值点,则f ′(x )=3x 2-4cx +1 =0有两个不等实根,故Δ=(-4c )2-12>0,解得c >32或c <-32c 的取值范围为⎝⎛⎭⎫-∞,-32∪⎝⎛⎭⎫32,+∞. 5.设a ∈R ,若函数y =e x +ax ,x ∈R 有大于零的极值点,则实数a 的取值范围是________.5.答案 (-∞,-1) 解析 由y ′=e x +a =0得x =ln (-a )(a <0),显然x =ln (-a )为函数的极小值点,又ln (-a )>0,∴-a >1,即a <-1.6.若函数f (x )=(2-a )⎣⎡⎦⎤(x -2)e x -12ax 2+ax 在⎝⎛⎭⎫12,1上有极大值,则实数a 的取值范围为( ) A .(e ,e) B .(e ,2) C .(2,e) D .(e ,+∞)6.答案 B 解析 令f ′(x )=(2-a )(x -1)(e x -a )=0,得x =ln a ∈⎝⎛⎭⎫12,1,解得a ∈(e ,e),由题意知,当x ∈⎝⎛⎭⎫12,ln a 时,f ′(x )>0,当x ∈(ln a ,1)时,f ′(x )<0,所以2-a >0,得a <2.综上,a ∈(e ,2).故选11.已知函数f (x )=x ln x -12ax 2-2x 有两个极值点,则实数a 的取值范围是________.11.答案 ⎝⎛⎭⎫0,1e 2 解析 f (x )的定义域为(0,+∞),且f ′(x )=ln x -ax -1.根据题意可得f ′(x )在(0,+∞) 上有两个不同的零点,则ln x -ax -1=0有两个不同的正根,从而转化为a =ln x -1x 有两个不同的正根,所以y =a 与y =ln x -1x的图象有两个不同的交点,令h (x )=ln x -1x ,则h ′(x )=2-ln x x 2,令h ′(x )>0得0<x <e 2,令h ′(x )<0得x >e 2,所以函数h (x )在(0,e 2)为增函数,在(e 2,+∞)为减函数,又h (e 2)=1e 2,x →0时,h (x )→-∞,x →+∞时,h (x )→0,所以0<a <1e 2.12.已知函数f (x )=x e x -a .若f (x )有两个零点,则实数a 的取值范围是( )A .[0,1)B .(0,1)C .⎝⎛⎭⎫0,1eD .⎣⎡⎭⎫0,1e 12.答案 C 解析 f ′(x )=1-x e x ,所以f ′(x ),f (x )的变化如下表: x(-∞,1) 1 (1,+∞) f ′(x )+ 0 - f (x ) 极大值 若a =0,x >0时,f (x )>0,f (x )最多只有一个零点,所以a ≠0.若f (x )有两个零点,则1e -a >0,即a <1e ,结合a =0时f (x )的符号知0<a <1e C .。

高考数学 专题2.1 函数的概念以及表示试题 文-人教版高三全册数学试题

高考数学 专题2.1 函数的概念以及表示试题 文-人教版高三全册数学试题

专题2.1 函数的概念及其表示【三年高考】1. 【2017某某,5】若函数f (x )=x 2+ ax +b 在区间上的最大值是M ,最小值是m ,则M – m A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关【答案】B 【解析】因为最值在2(0),(1)1,()24a a fb f a b f b ==++-=-中取,所以最值之差一定与无关,选B .2.【2017某某,文9】设()()121,1x f x x x <<=-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫= ⎪⎝⎭A. 2B. 4C. 6D. 8【答案】C【解析】由1x ≥时()()21f x x =-是增函数可知,若1a ≥,则()()1f a f a ≠+,所以01a <<,由()(+1)f a f a =2(11)a =+-,解得14a =,则1(4)2(41)6f f a ⎛⎫==-= ⎪⎝⎭,故选C. 3.【2017某某,文8】已知函数||2,1,()2, 1.x x f x x x x +<⎧⎪=⎨+≥⎪⎩设a ∈R ,若关于的不等式()||2x f x a ≥+在R 上恒成立,则的取值X 围是(A )[2,2]-(B)[2]-(C)[2,-(D)[-【答案】A4.【2017课标3,文16】设函数10()20x x x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值X 围是__________. 【答案】1(,)4-+∞ 【解析】由题意得: 当12x >时12221x x -+>恒成立,即12x >;当102x <≤时12112x x +-+>恒成立,即102x <≤;当0x ≤时1111124x x x ++-+>⇒>-,即104x -<≤;综上x 的取值X 围是1(,)4-+∞. 5.【2016高考新课标2文数】下列函数中,其定义域和值域分别与函数y=10lg x 的定义域和值域相同的是( )(A )y =x (B )y =lg x (C )y =2x (D )y x= 【答案】D【解析】lg 10x y x ==,定义域与值域均为()0,+∞,只有D 满足,故选D .6.【2016高考某某文数】已知函数f (x )=x 2+bx ,则“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 7.【2016高考文数】已知(2,5)A ,(4,1)B ,若点(,)P x y 在线段AB 上,则2x y -的最大值为( )A.−1B.3C.7D.8【答案】C【解析】由题意得,AB :511(4)2924y x y x --=-⇒=-+-, ∴22(29)494497x y x x x -=--+=-≤⋅-=,当4x =时等号成立,即2x y -的最大值为7,故选C.8.【2016高考某某文数】设函数f (x )=x 3+3x 2+1.已知a≠0,且f (x )–f (a )=(x –b )(x –a )2,x ∈R ,则实数a =_____,b =______.【答案】-2;1.【解析】32323232()()313133f x f a x x a a x x a a -=++---=+--,23222()()(2)(2)x b x a x a b x a ab x a b --=-+++-,所以223223203a b a ab a b a a --=⎧⎪+=⎨⎪-=--⎩,解得21a b =-⎧⎨=⎩.9. 【2015高考某某,文6】函数256()4||lg 3x x f x x x -+=--的定义域为( ) A .(2,3) B .(2,4]C .(2,3)(3,4]D .(1,3)(3,6]-【答案】C .【解析】由函数()y f x =的表达式可知,函数()f x 的定义域应满足条件:2564||0,03x x x x -+-≥>-,解之得22,2,3x x x -≤≤>≠,即函数()f x 的定义域为(2,3)(3,4],故应选C .10. 【2015高考新课标1,文10】已知函数1222,1()log (1),1x x f x x x -⎧-≤=⎨-+>⎩ ,且()3f a =-,则(6)f a -=( )(A )74- (B )54- (C )34- (D )14- 【答案】A【解析】∵()3f a =-,∴当1a ≤时,1()223a f a -=-=-,则121a -=-,此等式显然不成立, 当1a >时,2log (1)3a -+=-,解得7a =,∴(6)f a -=(1)f -=117224---=-,故选A. 11. 【2015高考某某,文8】某食品的保鲜时间y (单位:小时)与储藏温度 (单位:℃)满足函数关系kx b y e +=( 2.718...e =为自然对数的底数,,k b 为常数).若该食品在℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是( )(A )16小时 (B )20小时 (C )24小时 (D )21小时【答案】C【解析】由题意,2219248bk b e e +⎧=⎪⎨=⎪⎩得1119212b k e e ⎧=⎪⎨=⎪⎩,于是当x =33时,y =e 33k +b =(e 11k )3·e b =31()2×192=24(小时)【2017考试大纲】(1)了解构成函数的要素,会求一些简单函数的定义域和值域; 了解映射的概念.(2)在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.(3)了解简单的分段函数,并能简单应用.【三年高考命题回顾】纵观前三年各地高考试题, 此部分知识在高考命题中多以选择题和填空题的形式出现,或与导数结合出一个解答题,主要考查函数的定义域和值域,以及求函数解析式,求函数值与最值,分段函数求值等,试题难度中等,常和其它知识结合出题.【2018年高考复习建议与高考命题预测】由前三年的高考命题形式, 函数作为基础知识,单独命题不多,常以求函数解析式来考查立体几何,解析几何,数列,向量,三角函数等内容的最值等问题.具体对函数概念的考查,一般不会以具体形式出现,而是考查通过映射理解函数的本质,体会蕴含在其中的函数思想.对函数定义域的考察,据其内容的特点,在高考中应一般在选择题、填空题中出现,而且一般是一个具体的函数,故难度较低.对函数值域的考察,多以基本初等函数为背景,若在选择题、填空题中出现,则难度较低;若出现在解答题中,则会利用导数工具求解,难度较大.对函数表示的考查,通过具体问题(几何问题和实际应用)为背景,寻求变量间的函数关系,再求函数的定义域和值域,进而研究函数的性质,寻求问题的结果.对分段函数的考察是重点和热点,往往会以工具的形式和其他知识点结合起来考,以新颖的题型考察函数知识,难度会大点.在2018年的高考备考中同学们只需要稳扎稳打,加强常规题型的练习.由于本单元知识点的高考题,难度不大.所以在复习中不宜做过多过高的要求,只要灵活掌握小型综合题型.由于2016,2017年高考全国卷中对函数概念考查较少,预测2018年高考可能会有以分段函数的形式考查函数概念和函数性质的题目出现.【2018年高考考点定位】高考对函数概念及其表示的考查有三种主要形式:一是考察函数的概念;二是简单函数的定义域和值域;三是函数的解析表示法;其中经常以分段函数为载体考察函数、方程、不等式等知识的相联系. 【考点1】函数的概念与映射的概念【备考知识梳理】A、是两个非空的数集,如果按照某种对应法则f,对于集合A中的每一个数,1.近代定义:设B在集合B中都有唯一确定的数和它对应,那么这样的对应叫做从A到B的一个函数,通常记为=),(y∈xAxf2.传统定义:设在一个变化过程中有两个变量x,y,,若对于每一个确定的x的值,都有唯一确定的值y与之对应,则x是自变量,y是x的函数.→表示集合A到集合B的一个映射,它有以下特点:3.符号:f A B(1)对应法则有方向性, :f A B →与:f B A →不同;(2)集合A 中任何一个元素,在f 下在集合B 中都有唯一的元素与对应;(3)象不一定有原象,象集C 与B 间关系是C B ⊆.【规律方法技巧】1. 判定一条曲线是函数图象的方法:作与x 轴垂直的直线,若直线与曲线最多有一个交点,则该曲线是函数()y f x =的图象.2. 分段函数求值:给定自变量求函数值时,要确定自变量所属区间,从而代入相应的函数解析式;分段函数知道函数值或函数值X 围求自变量或自变量取值X 围时,要分类讨论并和相应的自变量区间求交集,进而得结果.3.判断一个对应是否为映射,关键看是否满足“集合A 中元素的任意性,集合B 中元素的唯一性”. 【考点针对训练】1.给出四个命题:①函数是其定义域到值域的映射;②()32f x x x =-+-是函数;③函数2(N)y x x ∈=的图象是一条直线;④2()x f x x=与()g x x =是同一个函数.其中正确的有( ) A .1个 B .2个 C .3个 D .4个【答案】A2. 设集合B A ,是两个集合,①{}x y x f y y B R A =→>==:,0,;②{}{}x y x f R y y B x x A ±=→∈=>=:,,0;③{}{}23:,41,21-=→≤≤=≤≤=x y x f y y B x x A .则上述对应法则f 中,能构成A 到B 的映射的个数是( )A .B .C .D .【答案】C【考点2】函数的表示【备考知识梳理】1.表示函数的方法有列表法、图象法、解析式法,最常用的方法是解析式法,尤其在实际问题中需要建立函数式,首先要选定变量,然后寻找等量关系,求得函数的解析式,还要注意定义域.2. 若函数在定义域的不同子集上的对应法则不同,可用分段函数来表示.【规律方法技巧】求函数的解析式的常用方法:1.代入法:如已知2()1,f x x =-求2()f x x +时,有222()()1f x x x x +=+-.2.待定系数法:已知()f x 的函数类型,要求()f x 的解析式时,可根据类型设其解析式,确定其系数即可.3.拼凑法:已知[()]f g x 的解析式,要求()f x 的解析式时,可从[()]f g x 的解析式中拼凑出“()g x ”,即用()g x 来表示,,再将解析式的两边的()g x 用代替即可.4.换元法:令()t g x =,在求出()f t 的解析式,然后用代替()f t 解析式中所有的即可.5.方程组法:已知()f x 与[()]f g x 满足的关系式,要求()f x 时,可用()g x 代替两边的所有的,得到关于[()]f g x 的方程组,解之即可得出()f x .6.赋值法:给自变量赋予特殊值,观察规律,从而求出函数的解析式.7.若()f x 与1()f x或()f x -满足某个等式,可构造另一个等式,通过解方程组求解.8.应用题求解析式可用待定系数法求解.注意:求函数解析式一定要注意函数的定义域,否则极易出错.【考点针对训练】1.设x R ∈,定义符号函数()1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩,则下列正确的是( )A .()sin sgn sin x x x ⋅=B .()sin sgn sin x x x ⋅=C .()sin sgn sin x x x ⋅=D .()sin sgn sin x x x ⋅=【答案】A【解析】0x >时,sin sgn()sin x x x ⋅=,0x <时,sin sgn()sin sin()x x x x ⋅=-=-,所以sin sgn()x x ⋅=sin x ,A 正确.故选A .2.定义在(1,1)-内的函数()f x 满足2()()lg(1)f x f x x --=+,求()f x 【答案】21()lg(1)lg(1)33f x x x =++-,x ∈(1,1)- 【解析】(消去法)当x ∈(1,1)-时,有2()()lg(1)f x f x x --=+,①以x -代替得2()()lg(1)f x f x x --=-+,②由①②消去()f x -得,21()lg(1)lg(1)33f x x x =++-,x ∈(1,1)-. 【考点3】分段函数及其应用【备考知识梳理】1.分段函数是一个函数,而不是几个函数;2.分段函数的定义域是各段“定义域”的并集,其值域是各段“值域”的并集;【规律方法技巧】1.因为分段函数在其定义域内的不同子集上其对应法则不同,而分别用不同的式子来表示,因此在求函数值时,一定要注意自变量的值所在子集,再代入相应的解析式求值.2.“分段求解”是处理分段函数问题解的基本原则.【考点针对训练】 1. 【某某省孝义市2017届高三高考考前质量检测三】则()4f -=( ). A. 116 B. 18 C. 14 D. 12【答案】A【解析】()()()()()41142024216f f f f f ⎛⎫-=-===== ⎪⎝⎭,故选A. 2. 【某某省某某中学2017届高三第二次摸底】设函数()4,1{2,1x x a x f x x +<=≥,若243f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则实数a =( )A. 23-B. 43-C. 43-或 23-D. 2-或 23- 【答案】A【考点4】定义域和值域【备考知识梳理】在实际问题中,通过选择变量,写出函数解析式,进而确定定义域和值域,再研究函数的性质是函数思想解决实际问题的体现,定义域就是使得实际问题或者具体问题有意义的自变量的取值X 围,值域就是与定义域相应的函数值的取值X 围.1. 函数的定义域是指使函数有意义的自变量的取值X 围.2.求函数定义域的步骤:①写出使函数有意义的不等式(组);②解不等式(组);③写出函数的定义域(注意用区间或集合的形式写出)3.在函数)(x f y =中与自变量相对应的y 的值叫做函数值,函数值的集合叫做函数的值域..函数的值域与最值均在定义域上研究.函数值域的几何意义是对应函数图像上纵坐标的变化X 围.4.函数的最值与函数的值域是关联的,求出了函数的值域也就能确定函数的最值情况,但只确定了函数的最大(小)值,未必能求出函数的值域.在函数概念的三要素中,值域是由定义域和对应关系所确定的,因此,在研究函数值域时,既要重视对应关系的作用,又要特别注意定义域对值域的制约作用.【规律方法技巧】1.求函数的定义域一般有三类问题:一是给出解析式,应抓住使整个解式有意义的自变量的集合;二是未给出解析式,就应抓住内函数的值域就是外函数的定义域;三是实际问题,此时函数的定义域除使解析式有意义外,还应使实际问题或几何问题有意义.2.求函数的值域没有通用方法和固定模式,除了掌握常用方法(如直接法、单调性法、有界性法、配方法、换元法、判别式法、不等式法、图象法)外,应根据问题的不同特点,综合而灵活地选择方法.3.求函数定义域的主要依据是:①分式的分母不能为零;②偶次方根的被开方式其值非负;③对数式中真数大于零,底数大于零且不等于1.4.对于复合函数求定义域问题,若已知()f x 的定义域[,]a b ,则复合函数(())f g x 的定义域由不等式()a g x b ≤≤得到.5.对于分段函数知道自变量求函数值或者知道函数值求自变量的问题,应依据已知条件准确找出利用哪一段求解.6.与定义域有关的几类问题第一类是给出函数的解析式,这时函数的定义域是使解析式有意义的自变量的取值X 围;第二类是实际问题或几何问题,此时除要考虑解析式有意义外,还应考虑使实际问题或几何问题有意义;第三类是不给出函数的解析式,而由()f x 的定义域确定函数)]([x g f 的定义域或由)]([x g f 的定义域确定函数()f x 的定义域.第四类是已知函数的定义域,求参数X 围问题,常转化为恒成立问题来解决.7.函数值域的求法:利用函数的单调性:若)(x f 是],[b a 上的单调增(减)函数,则)(a f ,)(b f 分别是)(x f 在区间],[b a 上取得最小(大)值,最大(小)值.利用配方法:形如2(0)y ax bx c a =++≠型,用此种方法,注意自变量x 的X 围.利用三角函数的有界性,如sin [1,1],x ∈-cos [1,1]x ∈-.利用“分离常数”法:形如y=ax b cx d ++ 或2ax bx e y cx d++=+ (c a ,至少有一个不为零)的函数,求其值域可用此法.利用换元法:形如y ax b =+,可用此法求其值域. 利用基本不等式法:导数法:利用导数与函数的连续性求图复杂函数的极值和最值,然后求出值域8.分段函数的函数值时,应根据所给自变量值的大小选择相应的解析式求解,有时每段交替使用求值.若给出函数值或函数值的X 围求自变量值或自变量的取值X 围,应根据每一段的解析式分别求解,但要注意检验所求自变量值域X 围是否符合相应段的自变量的取值X 围.9.由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部 分剔除. 【考点针对训练】1. 【某某省某某市第一中学2017届高三最后一卷】已知函数()f x 的定义域为()0,+∞,则函数__________.【答案】(-1,1) 【解析】由题意210{340x x x +>--+>,解得11x -<<,即定义域为()1,1-.2. 【某某省揭阳市2017届高三第二次模拟】已知函数,若对任意的1x 、2x R ∈,都有()()12f x gx ≤,则实数A 的取值X 围为【答案】C【解析】也即是()()max min f x g x ≤.()g x 的最小值为,画出()f x 图像如下图所示,由图可知,当1x =时,函数取得最大值为3. 【某某省某某第一中学2017届高三全真模拟】已知函数()2,1{43,1x x f x x x x≤=+->,则()f x 的值域是A. [)1,+∞B. [)0,+∞C. ()1,+∞D. [)()0,11,⋃+∞ 【答案】B【解析】当x ≤1时,f (x )∈[)0,+∞,当x>1时,f (x )=x+4x -3≥1,当且仅当x=4x,即x=2时,f (x )取最小值1;所以f (x )的值域为[)0,+∞.选B.4.【某某省某某市2017届高三四月调研】已知函数()2xxf x e a e-=+⋅+(a R ∈,为自然对数的底数),若()g f x =与()()y f f x =的值域相同,则的取值X 围是( )A. 0a <B. 1a ≤-C. 04a <≤D. 0a <或04a <≤ 【答案】A【应试技巧点拨】1. 在判断两个函数是否为同一函数时,要紧扣两点:一是定义域是否相同;二是对应关系是否相同. 2. 定义域优先原则:函数定义域是研究函数的基础依据,对函数性质的讨论,必须在定义域上进行.3. 求函数解析式的几种常用方法:待定系数法、换元法、配凑法、消去法. 4.分段函数体现了数学的分类讨论思想,求解分段函数求值问题时应注意的问题:(1)应用分段函数时,首先要确定自变量的值属于哪个区间,其次选定相应关系代入计算求解,特别要注意分段区间端点的取舍,当自变量的值不确定时,要分类讨论.(2)若给出函数值或函数值的X 围求自变量值或自变量的取值X 围时,应根据每一段的解析式分别求解,但要注意检验所求自变量值是否符合相应段的自变量的取值X 围.1.【2017()()33f f +-=( )A. 1-B.C.D. 【答案】D()()332f f +-=,故选D.2.【某某省某某市崇安区江南中学2017届高三考前模拟】设函数()323614f x x x x =+++且()()1,19f a f b ==。

(完整版)高考数学函数专题习题及详细答案

(完整版)高考数学函数专题习题及详细答案

函数专题练习1。

函数1()x y e x R +=∈的反函数是( )A .1ln (0)y x x =+>B .1ln (0)y x x =->C .1ln (0)y x x =-->D .1ln (0)y x x =-+>2。

已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是(A )(0,1) (B )1(0,)3 (C )11[,)73(D )1[,1)73。

在下列四个函数中,满足性质:“对于区间(1,2)上的任意1212,()x x x x ≠,1221|()()|||f x f x x x -<-恒成立”的只有 (A )1()f x x=(B )()||f x x = (C )()2x f x =(D )2()f x x =4。

已知()f x 是周期为2的奇函数,当01x <<时,()lg .f x x =设63(),(),52a f b f ==5(),2c f =则(A )a b c << (B )b a c << (C )c b a << (D )c a b <<5.函数2()lg(31)f x x =++的定义域是 A .1(,)3-+∞ B . 1(,1)3- C 。

11(,)33- D . 1(,)3-∞-6、下列函数中,在其定义域内既是奇函数又是减函数的是A .3 ,y x x R =-∈B . sin ,y x x R =∈C 。

,y x x R =∈R7、函数()y f x =的反函数1()y f x -=的图像与y 轴交于点(0,2)P (如右图所示),则方程()0f x =在[1,4]上的根是x =A 。

4B .3C . 2D .18、设()f x 是R 上的任意函数,则下列叙述正确的是(A )()()f x f x -是奇函数 (B )()()f x f x -是奇函数(C ) ()()f x f x --是偶函数 (D ) ()()f x f x +-是偶函数9、已知函数x y e =的图象与函数()y f x =的图象关于直线y x =对称,则A .()22()x f x e x R =∈B .()2ln 2ln (0)f x x x =>C .()22()x f x e x R =∈D .()2ln ln 2(0)f x x x =+>)10、设1232,2()((2))log (1) 2.x e x f x f f x x -⎧⎪=⎨-≥⎪⎩<,则的值为, (A )0 (B )1 (C )2 (D )311、对a ,b ∈R ,记max {a ,b }=⎩⎨⎧≥b a b ba a <,,,函数f (x )=max {|x +1|,|x -2|}(x ∈R )的最小值是(A )0 (B )12 (C ) 32(D )3 12、关于x 的方程222(1)10x x k ---+=,给出下列四个命题: ①存在实数k ,使得方程恰有2个不同的实根;②存在实数k ,使得方程恰有4个不同的实根; ③存在实数k ,使得方程恰有5个不同的实根; ④存在实数k ,使得方程恰有8个不同的实根; 其中假.命题的个数是 A .0 B .1 C .2 D .3(一) 填空题(4个)1.函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =_______________。

高考数学专题《函数的单调性与最值》习题含答案解析

高考数学专题《函数的单调性与最值》习题含答案解析

专题3.2 函数的单调性与最值1.(2021·全国高一课时练习)函数f(x)=1,01,0x xx x+≥⎧⎨-<⎩在R上()A.是减函数B.是增函数C.先减后增D.先增后减【答案】B【解析】画出函数图像即可得解.【详解】选B.画出该分段函数的图象,由图象知,该函数在R上是增函数.故选:B.2.(2021·全国高一课时练习)若定义在R上的函数f(x)对任意两个不相等的实数a,b,总有()-()-f a f ba b>0成立,则必有()A.f(x)在R上是增函数B.f(x)在R上是减函数C.函数f(x)先增后减D.函数f(x)先减后增【答案】A【解析】根据条件可得当a<b时,f(a)<f(b),或当a>b时,f(a)>f(b),从而可判断.【详解】练基础由()-()-f a f b a b>0知f (a )-f (b )与a -b 同号,即当a <b 时,f (a )<f (b ),或当a >b 时,f (a )>f (b ),所以f (x )在R 上是增函数. 故选:A.3.(2021·全国高一课时练习)设函数f (x )是(-∞,+∞)上的减函数,则 ( ) A .f (a )>f (2a ) B .f (a 2)<f (a ) C .f (a 2+a )<f (a ) D .f (a 2+1)<f (a )【答案】D 【解析】利用0a =排除ABC ,作差可知21a a +>,根据单调性可知D 正确. 【详解】当0a =时,选项A 、B 、C 都不正确; 因为22131()024a a a +-=-+>,所以21a a +>, 因为()f x 在(,)-∞+∞上为减函数,所以2(1)()f a f a +<,故D 正确.故选:D4.(2021·西藏高三二模(理))已知函数()332f x x x =--,若()()320f m f m -+-<,则实数m 的取值范围为( ) A .(),3-∞ B .()3,+∞C .(),3-∞-D .()3,-+∞【答案】C 【解析】根据函数为奇函数且在R 上单调递减可得()()32f m f m -<求解. 【详解】易知()f x 为R 上的奇函数,且在R 上单调递减, 由()()320f m f m -+-<, 得()()()322f m f m f m -<--=, 于是得32m m ->,解得3m <-. 故选:C .5.(2021·广西来宾市·高三其他模拟(理))已知定义在R 上的偶函数()f x 满足在[0,)+∞上单调递增,(3)0f =,则关于x 的不等式(2)(2)0f x f x x++-->的解集为( )A .(5,2)(0,)--+∞ B .(,5)(0,1)-∞- C .(3,0)(3,)-⋃+∞ D .(5,0)(1,)-+∞【答案】D 【解析】根据题意作出函数()f x 的草图,将(2)(2)0f x f x x++-->,转化为2(2)0f x x +>,利用数形结合法求解. 【详解】因为定义在R 上的偶函数()f x 满足在(0,)+∞内单调递增, 所以()f x 满足在(,0)-∞内单调递减,又(3)0f =, 所以(3)(3)0f f -==. 作出函数()f x 的草图如下:由(2)(2)0f x f x x ++-->,得(2)[(2)]0f x f x x++-+>,得2(2)0f x x+>, 所以0,(2)0,x f x >⎧⎨+>⎩或0,(2)0,x f x <⎧⎨+<⎩所以0,23,x x >⎧⎨+>⎩或0,323,x x <⎧⎨-<+<⎩ 解得1x >或5x 0-<<, 即不等式(2)(2)0f x f x x++-->的解集为(5,0)(1,)-+∞.故选:D6.(2021·黑龙江哈尔滨市·哈师大附中高三三模(文))已知函数()22f x x x -=-( )A .是奇函数,0,单调递增B .是奇函数,0,单调递减C .是偶函数,0,单调递减D .是偶函数,0,单调递增【答案】D 【解析】利用奇偶性和单调性的定义判断即可 【详解】解:定义域为{}0x x ≠, 因为2222()()()()f x x x x x f x ---=---=-=,所以()f x 为偶函数,任取12,(0,)x x ∈+∞,且12x x <,则2222212211()()f x f x x x x x ---=--+212122121()()(1)x x x x x x =-++, 因为12x x <,12,(0,)x x ∈+∞,所以212122121()()(1)0x x x x x x -++>,所以21()()f x f x >,所以()f x 在0,单调递增,故选:D7.(2021·全国高三月考(理))若()f x 是奇函数,且在(,0)-∞上是减函数,又(4)0f -=,则(2)(2)0f x f x x+--->的解集是( )A .(4,0)(4,)-⋃+∞B .(6,2)(0,2)--⋃C .(6,2)(2,)--⋃+∞D .(,4)(0,4)-∞-⋃【答案】B 【解析】根据函数()f x 为奇函数,(4)0f -=得到(4)0f =,再由函数在(,0)-∞上是减函数,作出函数()f x 的图象,再由(2)(2)0f x f x x +--->,等价于2(2)0f x x+>,利用数形结合法求解.【详解】因为函数()f x 为奇函数, 所以(4)(4)0f f -=-=, 所以(4)0f =,因为函数()f x 在(,0)-∞上是减函数, 所以函数()f x 在(0,) +∞上是减函数. 作出函数()f x 的大致图象如图所示,而(2)(2)0f x f x x +--->,等价于(2)[(2)]0f x f x x +--+>,即2(2)0f x x+>,则0(2)0x f x <⎧⎨+<⎩或0(2)0x f x >⎧⎨+>⎩,所以0420x x <⎧⎨-<+<⎩或0024x x >⎧⎨<+<⎩,解得62x -<<-或02x <<. 综上,(2)(2)0f x f x x+--->的解集是(6,2)(0,2)--⋃.故选:B8.(2021·全国高三专题练习(文))已知函数()||2f x x x x =⋅-,则下列结论正确的是( )A .()f x 是偶函数,递增区间是()0-∞,B .()f x 是偶函数,递减区间是()1-∞,C .()f x 是奇函数,递减区间是(11)-, D .()f x 是奇函数,递增区间是(0)+∞,【答案】C 【解析】将函数解析式化为分段函数型,画出函数图象,数形结合即可判断; 【详解】解:将函数()||2f x x x x =⋅-去掉绝对值得2220()20x x x f x x x x ⎧-≥=⎨--<⎩,,,画出函数()f x 的图象,如图,观察图象可知,函数()f x 的图象关于原点对称,故函数()f x 为奇函数,且在(11)-,上单调递减, 故选:C9.(2021·宁夏银川市·高三二模(文))设函数()21f x x x=-,则()f x ( )A .是偶函数,且在(),0-∞单调递增B .是偶函数,且在(),0-∞单调递减C .是奇函数,且在(),0-∞单调递增D .是奇函数,且在(),0-∞单调递减【答案】B 【解析】利用定义可判断函数()f x 的奇偶性,化简函数()f x 在(),0-∞上的解析式,利用函数单调性的性质可判断函数()f x 在(),0-∞上的单调性. 【详解】函数()21f x x x =-的定义域为{}0x x ≠,()()()2211f x x x f x x x-=--=-=-, 所以,函数()f x 为偶函数, 当0x <时,()21f x x x=+,由于函数2y x 、1y x=在(),0-∞上均为减函数,所以,函数()f x 在(),0-∞上单调递减, 故选:B.10.(2021·全国高一课时练习)已知y =f (x )是定义在区间(-2,2)上单调递减的函数,若f (m -1)>f (1-2m ),则m 的取值范围是_______. 【答案】1223⎛⎫- ⎪⎝⎭, 【解析】结合函数定义域和函数的单调性列不等式求解即可. 【详解】由题意得:-2-12-21-22-11-2m m m m <<⎧⎪<<⎨⎪<⎩,,,解得12-<m <23.故答案为:1223⎛⎫- ⎪⎝⎭,1.(2021·黑龙江大庆市·大庆实验中学高二月考(文))定义在*N 上的函数()22,3,3x ax a x f x ax x ⎧-+<=⎨≥⎩为递增函数,则头数a 的取值范围是( ) A .()1,2 B .33,42⎛⎫⎪⎝⎭C .3,14⎡⎫⎪⎢⎣⎭D .()1,3【答案】D 【解析】练提升根据定义域和单调性可知()()12f f <,再根据3x ≥时()f x 的单调性判断出()()32f f >,由此求解出a 的取值范围..【详解】因为*x ∈N ,所以3x <时,即{}1,2x ∈,由单调性可知()()21f f >,所以22142a a a a -+<-+,解得3a <;当3x ≥时,y ax =为增函数,若()f x 单调递增,则只需()()32f f >,所以2342a a a >-+,解得14a <<,综上可知a 的取值范围是:()1,3, 故选:D.2.(2021·上海高三二模)已知函数()(),y f x y g x ==满足:对任意12,x x R ∈,都有()()()()1212f x f x g x g x -≥-.命题p :若()y f x =是增函数,则()()y f x g x =-不是减函数;命题q :若()y f x =有最大值和最小值,则()y g x =也有最大值和最小值. 则下列判断正确的是( ) A .p 和q 都是真命题 B .p 和q 都是假命题 C .p 是真命题,q 是假命题 D .p 是假命题,q 是真命题【答案】A 【解析】利用函数单调性定义结合已知判断命题p 的真假,再利用函数最大、最小值的意义借助不等式性质判断命题q 的真假而得解. 【详解】对于命题p :设12x x <,因为()y f x =是R 上的增函数,所以()()12f x f x <, 所以()()()()1221f x f x f x f x -=-, 因为()()()()1212f x f x g x g x -≥-,所以()()()()211221()()f x f x g x g x f x f x -+≤-≤-所以()()1122()()f x g x f x g x -≤- 故函数()()y f x g x =-不是减函数, 故命题p 为真命题;对于命题():q y f x =在R 上有最大值M ,此时x a =,有最小值m ,此时x b =, 因为()()()()()()()()f x f a g x g a f x M g x g a M f x -≥-⇔-≤-≤-,()()()()()()()()f x f b g x g b m f x g x g b f x m -≥-⇔-≤-≤-所以()()()()2()()()()22m M g a g b M m g a g b m M g x g a g b M m g x -++-++-≤--≤-⇔≤≤,所以()y g x =也有最大值和最小值,故命题q 为真命题. 故选:A3.(2021·全国高三二模(理))已知实数a ,b ,c ,d 满足a b c >>,且0a b c ++=,220ad bd b +-=,则d 的取值范围是( ) A .(][),10,-∞-+∞B .()1,1-C .(D .(11--+【答案】D 【解析】先求解出方程的解1,2d ,然后利用换元法(bt a=)将d 表示为关于t 的函数,根据条件分析t 的取值范围,然后分析出d 关于t 的函数的单调性,由此求解出d 的取值范围. 【详解】因为220ad bd b +-=,所以1,2b b d a a -==-±2440b ab ∆=+≥,令bt a=,则1,2d t =-±20t t +≥,所以(][),10,t ∈-∞-+∞,又因为0a b c ++=且a b c >>,所以0a >且c a b b a =--<<, 所以2,a b b a -<<,所以112bt a-<=<,所以[)0,1t ∈,当[)0,1t ∈时,())10,1d t t =-==∈, 因为1y t=在()0,1上单调递减,所以y t =-()0,1上单调递增, 当0t =时,10d =,当1t =时,11d =,所以)11d ⎡∈⎣; 当[)0,1t ∈时,2d t =-,因为y t =、2y t t =+在[)0,1上单调递增,所以y t =-[)0,1上单调递减, 当0t =时,20d =,当1t =时,21d =-(21d ⎤∈-⎦,综上可知:(11d ∈---, 故选:D.4.【多选题】(2021·湖南高三三模)关于函数()111f x x x =++的结论正确的是( ) A .()f x 在定义域内单调递减 B .()f x 的值域为R C .()f x 在定义城内有两个零点 D .12y f x ⎛⎫=-⎪⎝⎭是奇函数 【答案】BD 【解析】根据所给函数结合函数性质,对各项逐个分析判断, 即可得解. 【详解】()111f x x x =++的定义域为(,1)(1,0)(0,)-∞--+∞, 而1x和11x +在各段定义域内均为减函数, 故()f x 在各段上为减函数,但不能说在定义域内单调递减,故A 错误; 当(1,0)x ∈- ,1x →-时,有()111f x x x =+→+∞+, 当0x →时,有()111f x x x =+→-∞+,所以()f x 的值域为R ,故B 正确; 令()2112101x f x x x x x+=+==++,可得12x =-,所以()f x 在定义城内有一个零点,故C 错误;2211128111241224x x y f x x x x x ⎛⎫=-=+== ⎪-⎝⎭-+-, 令28()41x g x x =-,易知12x ≠±,此时定义域关于原点对称,且28()()41xg x g x x --==--,故()g x 为奇函数, 所以12y f x ⎛⎫=- ⎪⎝⎭是奇函数,故D 正确, 故选:BD.5.【多选题】(2021·全国高三专题练习)(多选题)已知函数f (x )的定义域为R ,对任意实数x ,y 满足f (x +y )=f (x )+f (y )+12,且f 1()2=0,当x >12时,f (x )>0,则以下结论正确的是( ) A .f (0)=-12,f (-1)=-32B .f (x )为R 上的减函数C .f (x )+12为奇函数 D .f (x )+1为偶函数 【答案】AC 【解析】取0x y ==,11,22x y ==-,12x y ==-得出(0)f ,12f ⎛⎫- ⎪⎝⎭,(1)f -的值进而判断A ;由(1)(0)f f -<判断B ;令y x =-结合奇偶性的定义判断C ;令1()()2=+g x f x ,结合g (x )为奇函数,得出()1()f x f x -+=-,从而判断D.【详解】由已知,令0x y ==,得1(0)(0)(0)2f f f =++,1(0)2f ∴=-,令11,22x y ==-,得1111122222f f f ⎛⎫⎛⎫⎛⎫-=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,112f ⎛⎫∴-=- ⎪⎝⎭,再令12x y ==-,得1111122222f f f ⎛⎫⎛⎫⎛⎫--=-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,3(1)2f ∴-=-,A 正确;(1)(0)f f -<,()f x ∴不是R 上的减函数,B 错误;令y x =-,得1()()()2f x x f x f x -=+-+,11()()022f x f x ⎡⎤⎡⎤∴++-+=⎢⎥⎢⎥⎣⎦⎣⎦,故C正确;令1()()2=+g x f x ,由C 可知g (x )为奇函数,11()()22g x g x ∴-+=-+,即1111()()2222f x f x ⎡⎤⎡⎤-++=-++⎢⎥⎢⎥⎣⎦⎣⎦,()1()f x f x ∴-+=-,故D 错误. 故选:AC6.【多选题】(2021·全国高一单元测试)如果函数()f x 在[,]a b 上是增函数,对于任意的1212,[,]()x x a b x x ∈≠,则下列结论中正确的是( )A .1212()()0f x f x x x ->-B .1212()[()()]0x x f x f x -->C .12()()()()f a f x f x f b ≤<≤D .12()()f x f x >E.1212()()0f x f x x x -<-【答案】AB 【解析】利用函数单调性的定义:12x x -与12()()f x f x -同号,判断A 、B 、E 的正误;而对于C 、D 选项,由于12,x x 的大小不定,1()f x 与2()f x 的大小关系不能确定. 【详解】由函数单调性的定义知,若函数()y f x =在给定的区间上是增函数,则12x x -与12()()f x f x -同号,由此可知,选项A ,B 正确,E 错误;对于选项C 、D ,因为12,x x 的大小关系无法判断,则1()f x 与2()f x 的大小关系确定也无法判断,故C ,D 不正确.故选:AB.7.【多选题】(2021·全国高一课时练习)(多选题)已知函数()f x 的定义域为D ,若存在区间[,]m n D ⊆使得()f x :(1)()f x 在[,]m n 上是单调函数; (2)()f x 在[,]m n 上的值域是[2,2]m n , 则称区间[,]m n 为函数()f x 的“倍值区间”. 下列函数中存在“倍值区间”的有( ) A .2()f x x =; B .1()f x x=; C .1()f x x x=+; D .23()1x f x x =+.【答案】ABD 【解析】函数中存在“倍值区间”,则()f x 在[],m n 内是单调函数,()()22f m m f n n ⎧=⎪⎨=⎪⎩或()()22f m nf n m ⎧=⎪⎨=⎪⎩,对四个函数的单调性分别研究,从而确定是否存在“倍值区间”. 【详解】函数中存在“倍值区间”,则(1)()f x 在[,]m n 内是单调函数,(2)()2()2f m m f n n =⎧⎨=⎩或()2()2f m nf n m=⎧⎨=⎩,对于A ,2()f x x =,若存在“倍值区间”[,]m n ,则()2()2f m m f n n =⎧⎨=⎩⇒2222m m n n⎧=⎨=⎩⇒02m n =⎧⎨=⎩,2()f x x ∴=,存在“倍值区间”[0,2];对于B ,1()()f x x R x =∈,若存在“倍值区间”[,]m n ,当0x >时,1212n m mn⎧=⎪⎪⎨⎪=⎪⎩⇒12mn =,故只需12mn =即可,故存在; 对于C ,1()f x x x=+;当0x >时,在区间[0,1]上单调递减,在区间[1,)+∞上单调递增, 若存在“倍值区间”1[],1][0,2n m n m m ⊆⇒+=,212210n m m mn n+=⇒-+=,222210n mn m n -+=⇒=不符题意;若存在“倍值区间”1[,][1,)2m n m m m ⊆+∞⇒+=,22121n n m n n+=⇒==不符题意,故此函数不存在“倍值区间“; 对于D ,233()11x f x x x x==++,所以()f x 在区间[0,1]上单调递增,在区间[1,)+∞上单调递减,若存在“倍值区间”[,][0,1]m n ⊆,2321m m m =+,2321n n n =+,0m ∴=,2n =, 即存在“倍值区间”[0,2; 故选:ABD .8.(2021·全国高三专题练习(理))已知1a >,b R ∈,当0x >时,[]24(1)102x a x b x ⎛⎫---⋅-≥ ⎪⎝⎭恒成立,则3b a +的最小值是_____.3 【解析】根据题中条件,先讨论10,1x a ⎛⎤∈ ⎥-⎝⎦,根据不等式恒成立求出114(1)21b a a ⎡⎤≥--⎢⎥-⎣⎦;再讨论1,1x a ⎡⎫∈+∞⎪⎢-⎣⎭,求出114(1)21b a a ⎡⎤≤--⎢⎥-⎣⎦得到b ,再由基本不等式即可求出结果.【详解】当10,1x a ⎛⎤∈ ⎥-⎝⎦时,(1)10a x --<,即2402x b x--≤恒成立, 24222x x y x x-==-是10,1x a ⎛⎤∈ ⎥-⎝⎦上的增函数, ∴114(1)21b a a ⎡⎤≥--⎢⎥-⎣⎦, 当1,1x a ⎡⎫∈+∞⎪⎢-⎣⎭时,(1)10a x -->,即2402x b x--≥恒成立,24222x x y x x-==-是1,1x a ⎡⎫∈+∞⎪⎢-⎣⎭上的增函数, ∴114(1)21b a a ⎡⎤≤--⎢⎥-⎣⎦, ∴114(1)21b a a ⎡⎤=--⎢⎥-⎣⎦,∴13(1)332(1)b a a a +=+-+≥-,当12a =+时等号成立.3.9.(2021·全国高三专题练习)对于满足2p ≤的所有实数p ,则使不等式212x px p x ++>+恒成立的x的取值范围为______.【答案】()()13+-∞-⋃∞,,. 【解析】将不等式转化为在[-2,2]内关于p 的一次函数函数值大于0恒成立求参变量x 的范围的问题. 【详解】解:原不等式可化为2(1)210x p x x -+-+>,令2()(1)21f p x p x x =-+-+,则原问题等价于()0f p >在[2,2]p ∈-上恒成立,则(2)0(2)0f f ->⎧⎨>⎩,即2243010x x x ⎧-+>⎨->⎩解得:1311x x x x ⎧⎪⎨-⎪⎩或或∴1x <-或3x >. 即x 的取值范围为()()13+-∞-⋃∞,,. 故答案为:()()13+-∞-⋃∞,,. 10.(2021·上海高三二模)已知a R ∈,函数()22,011,02x a x x f x x ax a x ⎧++-≥⎪=⎨-++<⎪⎩的最小值为2a ,则由满足条件的a 的值组成的集合是_______________.【答案】{3- 【解析】讨论a -与0、2的大小关系,判断函数()f x 在[)0,+∞、(),0-∞上的单调性与最小值,根据函数()f x 的最小值列方程解出实数a 的值.【详解】分以下三种情况讨论:①若0a -≤时,即当0a ≥时,()222,22,0211,02x a x f x a x x ax a x ⎧⎪+->⎪=+≤≤⎨⎪⎪-++<⎩,所以,函数()f x 在(),0-∞上单调递减,且()112f x a >+, 当0x ≥时,()min 1212f x a a =+>+, 此时,函数()f x 无最小值;②若02a <-≤时,即当20a -≤<时,()222,22,222,011,02x a x a a x f x x a x a x ax a x +->⎧⎪+-≤≤⎪⎪=⎨--+≤<-⎪⎪-++<⎪⎩,当0x <时,()211242a a f x f a ⎛⎫≥=-++ ⎪⎝⎭, 当0x ≥时,()2f x a ≥+.22a a +>,所以,21242a aa -++=,整理可得2640a a +-=,20a -≤<,解得3a =-±; ③当2a ->时,即当2a <-时,()222,2,222,0211,02x a x a a x a f x x a x x ax a x +->-⎧⎪--≤≤-⎪⎪=⎨--+≤<⎪⎪-++<⎪⎩,当0x <时,()211242a a f x f a ⎛⎫≥=-++ ⎪⎝⎭, 当0x ≥时,()2f x a ≥--.因为202a a -->>,所以,21242a aa -++=,整理可得2640a a +-=,2a <-,解得3a =-3a =-+.综上所述,实数a的取值集合为{3-.故答案为:{3-.1.(2020·全国高考真题(文))设函数331()f x x x =-,则()f x ( ) A .是奇函数,且在(0,+∞)单调递增 B .是奇函数,且在(0,+∞)单调递减 C .是偶函数,且在(0,+∞)单调递增 D .是偶函数,且在(0,+∞)单调递减【答案】A 【解析】根据函数的解析式可知函数的定义域为{}0x x ≠,利用定义可得出函数()f x 为奇函数, 再根据函数的单调性法则,即可解出. 【详解】因为函数()331f x x x =-定义域为{}0x x ≠,其关于原点对称,而()()f x f x -=-, 所以函数()f x 为奇函数.又因为函数3y x =在0,上单调递增,在,0上单调递增, 而331y x x-==在0,上单调递减,在,0上单调递减,所以函数()331f x x x=-在0,上单调递增,在,0上单调递增.故选:A .2.(2019·北京高考真题(文))下列函数中,在区间(0,+∞)上单调递增的是( ) A .12y x = B .y =2x -C .12log y x =D .1y x=【答案】A 【解析】函数122,log xy y x -==, 练真题1y x=在区间(0,)+∞ 上单调递减, 函数12y x = 在区间(0,)+∞上单调递增,故选A .3.(2018·全国高考真题(文))设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,【答案】D 【解析】分析:首先根据题中所给的函数解析式,将函数图像画出来,从图中可以发现若有()()12f x f x +<成立,一定会有2021x x x <⎧⎨<+⎩,从而求得结果.详解:将函数()f x 的图像画出来,观察图像可知会有2021x x x <⎧⎨<+⎩,解得0x <,所以满足()()12f x f x +<的x 的取值范围是()0-∞,,故选D .4.(2017课标II)函数2()ln(28)f x x x =-- 的单调递增区间是( ) A.(,2)-∞- B. (,1)-∞- C. (1,)+∞ D. (4,)+∞ 【答案】D【解析】函数有意义,则:2280x x --> ,解得:2x <- 或4x > ,结合二次函数的单调性、对数函数的单调性和复合函数同增异减的原则可得函数的单调增区间为()4,+∞ . 故选D.5.(2017天津)已知奇函数()f x 在R 上是增函数.若0.8221(log ),(log 4.1),(2)5a fb fc f =-==,则,,a b c 的大小关系为( )(A )a b c <<(B )b a c <<(C )c b a <<(D )c a b << 【答案】C【解析】由题意:()221log log 55a f f ⎛⎫=-= ⎪⎝⎭,且:0.822log 5log 4.12,122>><<, 据此:0.822log 5log 4.12>>,结合函数的单调性有:()()()0.822log 5log 4.12f f f >>, 即,a b c c b a >><<,本题选择C 选项.6.(2020·北京高考真题)为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改,设企业的污水排放量W 与时间t 的关系为()W f t =,用()()f b f a b a---的大小评价在[,]a b 这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论: ①在[]12,t t 这段时间内,甲企业的污水治理能力比乙企业强;②在2t 时刻,甲企业的污水治理能力比乙企业强; ③在3t 时刻,甲、乙两企业的污水排放都已达标;④甲企业在[][][]112230,,,,,t t t t t 这三段时间中,在[]10,t 的污水治理能力最强. 其中所有正确结论的序号是____________________. 【答案】①②③ 【解析】根据定义逐一判断,即可得到结果 【详解】()()f b f a b a---表示区间端点连线斜率的负数,在[]12,t t 这段时间内,甲的斜率比乙的小,所以甲的斜率的相反数比乙的大,因此甲企业的污水治理能力比乙企业强;①正确;甲企业在[][][]112230,,,,,t t t t t 这三段时间中,甲企业在[]12,t t 这段时间内,甲的斜率最小,其相反数最大,即在[]12,t t 的污水治理能力最强.④错误;在2t 时刻,甲切线的斜率比乙的小,所以甲切线的斜率的相反数比乙的大,甲企业的污水治理能力比乙企业强;②正确;在3t 时刻,甲、乙两企业的污水排放量都在污水打标排放量以下,所以都已达标;③正确; 故答案为:①②③。

高考数学专题《三角函数的图象与性质》习题含答案解析

高考数学专题《三角函数的图象与性质》习题含答案解析

专题5.3 三角函数的图象与性质1.(2021·北京市大兴区精华培训学校高三三模)下列函数中,既是奇函数又以π为最小正周期的函数是()A .cos 2y x =B .sin2y x=C .sin cos y x x=+D .tan 2y x=【答案】B 【解析】由三角函数的奇偶性和周期性判断即可得出答案.【详解】解:A 选项:cos 2y x =是周期为π的偶函数,故A 不正确;B 选项:sin2y x =是周期为π的奇函数,故B 正确;C选项:sin cos 4y x x x π⎛⎫=+=+ ⎪⎝⎭,周期为2π且非奇非偶函数,故C 不正确;D 选项:tan 2y x =是周期为2π的奇函数,故D 不正确.故选:B.2.(2021·海南高三其他模拟)下列函数中,既是偶函数又存在零点的是( )A .ln y x =B .21y x =+C .sin y x=D .cos y x=【答案】D 【解析】根据题意,依次分析选项中函数的奇偶性以及是否存在零点,综合即可得答案.【详解】解:根据题意,依次分析选项:对于A ,y lnx =,为对数函数,不是奇函数,不符合题意,对于B ,21y x =+,为二次函数,是偶函数,但不存在零点,不符合题意,对于C ,sin y x =,为正弦函数,是奇函数,不符合题意,对于D ,cos y x =,为余弦函数,既是偶函数又存在零点,符合题意,故选:D .练基础3.(2021·浙江高三其他模拟)函数y =sin tan x e xx在[-2,2]上的图像可能是( )A .B .C .D .【答案】B 【解析】利用同角三角函数的商数关系并注意利用正切函数的性质求得函数的定义域,可以化简得到()cos ,2x k f x e x x k Z π⎛⎫=≠∈ ⎪⎝⎭,考察当x 趋近于0时,函数的变化趋势,可以排除A,考察端点值的正负可以评出CD.【详解】()sin cos ,tan 2x x e x k f x e x x k Z x π⎛⎫==≠∈ ⎪⎝⎭,当x 趋近于0时,函数值趋近于0cos 01e =,故排除A;()22cos 20f e =<,故排除CD,故选:B4.(2021·全国高三其他模拟(理))函数y =tan(3x +6π)的一个对称中心是( )A .(0,0)B .(6π,0)C .(49π,0)D .以上选项都不对【答案】C 【解析】根据正切函数y =tan x 图象的对称中心是(2k π,0)求出函数y =tan(3x +6π)图象的对称中心,即可得到选项.【详解】解:因为正切函数y =tan x 图象的对称中心是(2k π,0),k ∈Z ;令3x +6π=2k π,解得618k x ππ=-,k ∈Z ;所以函数y =tan(3x +6π)的图象的对称中心为(618k ππ-,0),k ∈Z ;当k =3时,C 正确,故选:C.5.(2019年高考全国Ⅱ卷文)若x 1=,x 2=是函数f (x )=(>0)两个相邻的极值点,则=( )A .2B .C .1D .【答案】A【解析】由题意知,的周期,解得.故选A .6.(2021·临川一中实验学校高三其他模拟(文))若函数cos (0)y x ωω=>的图象在区间,24ππ⎛⎫- ⎪⎝⎭上只有一个对称中心,则ω的取范围为( )A .12ω<≤B .ω1≤<2C .13ω<≤D .13ω≤<【答案】A 【解析】根据题意可得422πππω≤<,即可求出.【详解】4π43πsin x ωωω3212()sin f x x ω=232()44T ωπππ==-=π2ω=由题可知,cos (0)y x ωω=>在,42ππ⎡⎫⎪⎢⎣⎭上只有一个零点,又2x πω=,2x πω=,所以422πππω≤<,即12ω<≤.故选:A.7.(2019年高考北京卷文)设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】时,,为偶函数;为偶函数时,对任意的恒成立,即,,得对任意的恒成立,从而.从而“”是“为偶函数”的充分必要条件,故选C.8.(2021·青海西宁市·高三二模(文))函数()cos 218f x x π⎛⎫=-- ⎪⎝⎭图象的一个对称中心为( )A .,14π⎛⎫-- ⎪⎝⎭B .,14π⎛⎫-⎪⎝⎭C .,116π⎛⎫-- ⎪⎝⎭D .3,116π⎛⎫-- ⎪⎝⎭【答案】D 【解析】根据余弦函数的对称中心整体代换求解即可.【详解】令2()82x k k πππ-=+∈Z ,可得5()216k x k ππ=+∈Z .所以当1k =-时,316x π=-,故3,116π⎛⎫-- ⎪⎝⎭满足条件,当0k =时,516x π=,故5,116π⎛⎫-⎪⎝⎭满足条件;故选:D0b =()cos sin cos f x x b x x =+=()f x ()f x ()=()f x f x -x ()cos()sin()cos sin f x x b x x b x -=-+-=-cos sin cos sin x b x x b x +=-sin 0b x =x 0b =0b =()f x9.(2021·全国高一专题练习)设函数()cos 3f x x π⎛⎫=+ ⎪⎝⎭,则下列结论错误的是( )A .()f x 的最小正周期为2πB .()f x 的图象关于直线23x π=对称C .()f x 在,2ππ⎛⎫⎪⎝⎭单调递减D .()f x 的一个零点为6x π=【答案】C 【解析】根据解析式结合余弦函数的性质依次判断每个选项的正误即可.【详解】函数()cos 3f x x π⎛⎫=+ ⎪⎝⎭,()f x ∴的最小正周期为2π,故A 正确;22(cos 1333f πππ⎛⎫=+=- ⎪⎝⎭,∴()f x 的图象关于直线23x π=对称,故B 正确;当x ∈,2ππ⎛⎫⎪⎝⎭时,54,363πππx ⎛⎫+∈ ⎪⎝⎭,()f x 没有单调性,故C 错误;()cos 0663f πππ⎛⎫=+= ⎪⎝⎭,∴()f x 的一个零点为6x π=,故D 正确.综上,错误的选项为C.故选:C.10.(2017·全国高考真题(理))函数f (x )=s in 2x +3cosx ―34(x ∈0,__________.【答案】1【解析】化简三角函数的解析式,则f (x )=1―cos 2x+3cos x ―34=―cos 2x +3cos x +14= ―(cos x ―32)2+1,由x ∈[0,π2]可得cos x ∈[0,1],当cos x =32时,函数f (x )取得最大值1.练提升1.(2021·河南高二月考(文))已知函数()()sin 0,02f x x πωϕωϕ⎛⎫=+ ⎪⎝⎭><<的相邻的两个零点之间的距离是6π,且直线18x π=是()f x 图象的一条对称轴,则12f π⎛⎫=⎪⎝⎭( )A.B .12-C .12D【答案】D 【解析】由相邻两个零点的距离确定周期求出6ω=,再由对称轴确定6π=ϕ,代入12x π=可求出结果.【详解】解:因为相邻的两个零点之间的距离是6π,所以26T π=,23T ππω==,所以6ω=,又sin 6sin 118183f πππϕϕ⎛⎫⎛⎫⎛⎫=⨯+=+=±⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,且02πϕ<<,则6π=ϕ,所以()sin 66f x x π⎛⎫=+ ⎪⎝⎭,则sin 612126f πππ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭.故选:D.2.(2020·山东潍坊�高一期末)若函数的最小正周期为,则( )A .B .C .D .【答案】C 【解析】由题意,函数的最小正周期为,可得,解得,即,()tan (0)4f x x πωω⎛⎫=+> ⎪⎝⎭π(2)(0)5f f f π⎛⎫>>-⎪⎝⎭(0)(2)5f f f π⎛⎫>>-⎪⎝⎭(0)(2)5f f f π⎛⎫>-> ⎪⎝⎭(0)(2)5f f f π⎛⎫->> ⎪⎝⎭()tan (0)4f x x πωω⎛⎫=+> ⎪⎝⎭πwππ=1w =()tan()4f x x π=+令,即,当时,,即函数在上单调递增,又由,又由,所以.故选:C.3.(2021·广东佛山市·高三二模)设()0,θπ∈,则“6πθ<”是“1sin 2θ<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】由条件即06πθ<<,由06πθ<<,得1sin 2θ<;反之不成立,可举反例.再由充分必要条件的判定得答案.【详解】由()0,θπ∈,则6πθ<,即06πθ<<所以当06πθ<<时,由正弦函数sin y x =的单调性可得1sin sin62πθ<=,即由6πθ<可以得到1sin 2θ<.反之不成立,例如当56πθπ<<时,也有1sin 2θ<成立,但6πθ<不成立.故“6πθ<”是“1sin 2θ<”的充分不必要条件故选:A4.(2021·四川省华蓥中学高三其他模拟(理))已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭的最,242k x k k Z πππππ-+<+<+∈3,44k x k k Z ππππ-+<<+∈1k =544x ππ<<()f x 5(,)44ππ4(0)(),()()()555f f f f f πππππ=-=-+=425ππ>>(0)(2)5f f f π⎛⎫>-> ⎪⎝⎭大值为2,其图象相邻两条对称轴之间的距离为2π且()f x 的图象关于点,06π⎛⎫-⎪⎝⎭对称,则下列判断不正确的是()A .要得到函数()f x 的图象,只需将2cos 2y x =的图象向右平移12π个单位B .函数()f x 的图象关于直线712x π=对称C .,126x ππ⎡⎤∈-⎢⎥⎣⎦时,函数()f x D .函数()f x 在5,612ππ⎡⎤⎢⎥⎣⎦上单调递减【答案】C 【解析】根据最大值为2,可得A ,根据正弦型函数的周期性,可求得ω,根据对称性,可求得ϕ,即可得()f x 解析式,根据正弦型函数的单调性、值域的求法,逐一分析选项,即可得答案.【详解】由题意得A =2,因为其图象相邻两条对称轴之间的距离为2π,所以22Tπ=,可得2T ππω==,所以2ω=,所以()2sin(2)f x x ϕ=+,因为,06π⎛⎫-⎪⎝⎭为对称中心,所以2,6k k Z πϕπ⎛⎫⨯-+=∈ ⎪⎝⎭,因为||2ϕπ<,令k =0,可得3πϕ=,所以2n 2)3(si f x x π⎛⎫=+⎪⎝⎭.对于A :将2cos 2y x =的图象向右平移12π个单位,可得2cos 22cos 22cos 22sin 22sin 21266263y x x x x x ππππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-=-=-=--=+ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,故A 正确;对于B :令2,32x k k Z πππ+=+∈,解得,212k x k Z ππ=+∈,令k =1,可得712x π=,所以函数()f x 的图象关于直线712x π=对称,故B 正确;对于C :因为,126x ππ⎡⎤∈-⎢⎥⎣⎦,所以22,363x πππ⎡⎤+∈⎢⎥⎣⎦,所以当236x ππ+=时,min ()2sin16f x π==,故C 错误;对于D :令3222,232k x k k Z πππππ+≤+≤+∈,解得7,1212k x k k Z ππππ+≤≤+∈,令k =0,可得一个单调减区间为7,1212ππ⎡⎤⎢⎥⎣⎦,因为57,,6121212ππππ⎡⎤⎡⎤⊂⎢⎥⎢⎥⎣⎦⎣⎦,所以函数()f x 在5,612ππ⎡⎤⎢⎥⎣⎦上单调递减,故D 正确.故选:C5.(2021·玉林市第十一中学高三其他模拟(文))已知函数()sin (0)f x x ωω=>的图象向右平移4π个单位长度得y =g (x )的图象,若函数g (x )的图象与直线y =在,22ππ⎡⎤-⎢⎥⎣⎦上恰有两个交点,则a 的取值范围是( )A .[416,)39B .1620,[)99C .[208,93D .[8,4)3【答案】B 【解析】由函数的平移可得()sin 4g x x πωω⎛⎫=- ⎪⎝⎭,结合三角函数的图象与性质可得ω满足的不等式,即可得解.【详解】由题意,()sin sin 44g x x x ππωωω⎡⎤⎛⎫⎛⎫=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,当,22x ππ⎡⎤∈-⎢⎥⎣⎦时,3,444x πωπωπωω⎡⎤-∈-⎢⎥⎣⎦,因为函数g (x )的图象与直线y =在,22ππ⎡⎤-⎢⎥⎣⎦上恰有两个交点,则3542,2433122,2433k k k k πωπππππωππππ⎧⎛⎤-∈-+-+ ⎪⎥⎪⎝⎦⎨⎡⎫⎪∈++⎪⎢⎪⎣⎭⎩或3412,2433272,2433k k k k πωπππππωππππ⎧⎛⎤-∈-++ ⎪⎥⎪⎝⎦⎨⎡⎫⎪∈++⎪⎢⎪⎣⎭⎩,k Z ∈,又0>ω,所以1620,99ω⎡∈⎫⎪⎢⎣⎭.故选:B.6.(2020·北京四中高三其他模拟)函数tan 42y x ππ⎛⎫=- ⎪⎝⎭ 的部分图象如图所示,则 ()OA OB AB +⋅=( )A .6B .5C .4D .3【答案】A 【解析】根据正切函数的图象求出A 、B 两点的坐标,再求出向量的坐标,根据向量数量积的坐标运算求出结果.【详解】由图象得,令tan 42y x ππ⎛⎫=- ⎪⎝⎭=0,即42x ππ-=kπ,k Z∈k =0时解得x =2,令tan 42y x ππ⎛⎫=-⎪⎝⎭=1,即424x πππ-=,解得x =3,∴A (2,0),B (3,1),∴()()()2,0,3,1,1,1OA OB AB ===,∴()()()5,11,1516OA OB AB +⋅=⋅=+=.故选:A .7.(2020·全国高三其他模拟(文))若函数()(0)xf x n nπ=>图象上的相邻一个最高点和一个最低点恰好都在圆222:O x y n +=上,则()1f =( )A B .C .-D .【答案】A 【解析】首先由题意判断该正弦型函数的大概图象及相邻最高点和最低点与圆的交点情况.从而解得n 的取值,再代入1x =求解.【详解】解:设两交点坐标分别为()11,x y ,()22,x y ,则1y =,2y =-又函数()(0)xf x n nπ=>为奇函数,∴12x x =-,当22xnx n ππ=⇒=时,函数取得最大值,∴12n x =-,22nx =,由题,函数()(0)xf x n nπ=>图象上的相邻一个最高点和一个最低点恰好都在圆22: O x y n +=上,∴22242n n n ⎛⎫+=⇒= ⎪⎝⎭,则(1)4f π==.故选:A.8.【多选题】(2021·全国高三其他模拟)已知函数()2sin(),(0,0)f x x ωϕωϕπ=+><<图象的一条对称轴为23x π=,4⎛⎫= ⎪⎝⎭f π,且()f x 在2,43ππ⎛⎫ ⎪⎝⎭内单调递减,则以下说法正确的是( )A .7,012π⎛⎫-⎪⎝⎭是其中一个对称中心B .145ω=C .()f x 在5,012π⎛⎫- ⎪⎝⎭单増D .16f π⎛⎫-=- ⎪⎝⎭【答案】AD 【解析】先根据条件求解函数的解析式,然后根据选项验证可得答案.【详解】∵f (x )关23x π=对称,4⎛⎫= ⎪⎝⎭f π,f (x )在2,43ππ⎛⎫ ⎪⎝⎭单调递减,232232,22643k k ωπωϕπππππϕωϕπ⎧=+=+⎧⎪⎪⎪∴∴⎨⎨=⎪⎪+=+⎩⎪⎩,B 错误;()2sin 2,6f x x π⎛⎫=+ ⎪⎝⎭令2,6x k k ππ+=∈Z ,可得,,122k x k ππ=-+∈Z 当1k =-时,7,12x π=-即()f x 关于7,012π⎛⎫- ⎪⎝⎭对称,A 正确;令222,262k x k πππππ-+<+<+得,312k x k ππππ-+<<+∴()f x 在,312ππ⎡⎤-⎢⎥⎣⎦单调递増,即C 错误;2sin 2sin 16366f ππππ⎛⎫⎛⎫⎛⎫-=-+=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,D 正确,故选:AD.9.【多选题】(2021·重庆市蜀都中学校高三月考)已知函数()f x 满足x R ∀∈,有()(6)f x f x =-,且(2)(2)f x f x +=-,当[1,1]x ∈-时,)()lnf x x =-,则下列说法正确的是( )A .(2021)0f =B .(2020,2022)x ∈时,()f x 单调递增C .()f x 关于点(1010,0)对称D .(1,11)x ∈-时,方程()sin 2f x x π⎛⎫=⎪⎝⎭的所有根的和为30【答案】CD 【解析】利用已知条件可知()f x 在[1,1]x ∈-上为奇函数且单调递减,关于21x k =+、(2,0)k ,k Z ∈对称,且周期为4,即可判断各选项的正误.【详解】由题设知:()))()f x x x f x -===-=-,故()f x 在[1,1]x ∈-上为奇函数且单调递减,又(2)(4)(2)f x f x f x +=-=-,即关于21x k =+、(2,0)k ,k Z ∈对称,且最小周期为4,A :(2021)(50541)(1)1)0f f f =⨯+==-≠,错误;B :(2020,2022)x ∈等价于(0,2)x ∈,由上易知:(0,1)上递减,(1,2)上递增,故()f x 不单调,错误;C :由上知:()f x 关于(2,0)k 对称且k Z ∈,所以()f x 关于(1010,0)对称,正确;D :由题意,只需确定()f x 与sin 2xy π=在(1,11)x ∈-的交点,判断交点横坐标的对称情况即可求和,如下图示,∴共有6个交点且关于5x =对称,则16253410x x x x x x +=+=+=,∴所有根的和为30,正确.故选:CD10.(2021·浙江杭州市·杭州高级中学高三其他模拟)设函数sin 3xy π=在[,1]t t +上的最大值为()M t ,最小值为()N t ,则()()M t N t -在3722t ≤≤上最大值为________.【答案】1【解析】依题意可得函数在39,22⎡⎤⎢⎥⎣⎦上单调递减,则39[,1],22t t ⎡⎤+⊆⎢⎥⎣⎦,所以()()cos 36t M t N t ππ⎛⎫-=-+⎪⎝⎭,即可求出函数的最大值;【详解】解:函数sin3xy π=的周期为6,函数sin3xy π=在39,22⎡⎤⎢⎥⎣⎦上单调递减,当3722t ≤≤时,39[,1],22t t ⎡⎤+⊆⎢⎥⎣⎦(1)()()sinsin2cos sin cos 3336636tt t t M t N t πππππππ+⎛⎫⎛⎫⎛⎫-=-=+-=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因为3722t ≤≤,所以243363t ππππ≤+≤,所以11cos 362t ππ⎛⎫-≤+≤-⎪⎝⎭所以1()()12M t N t ≤-≤当52t =时取最大值1故答案为:11.(2021·全国高考真题(理))已知命题:,sin 1p x x ∃∈<R ﹔命题:q x ∀∈R ﹐||e 1x ≥,则下列命题中为真命题的是( )A .p q ∧B .p q⌝∧C .p q∧⌝D .()p q ⌝∨【答案】A 【解析】由正弦函数的有界性确定命题p 的真假性,由指数函数的知识确定命题q 的真假性,由此确定正确选项.【详解】由于1sin 1x -≤≤,所以命题p 为真命题;由于0x ≥,所以||e 1x ≥,所以命题q 为真命题;所以p q ∧为真命题,p q ⌝∧、p q ∧⌝、()p q ⌝∨为假命题.故选:A .2.(2021·全国高考真题)下列区间中,函数()7sin 6f x x π⎛⎫=-⎪⎝⎭单调递增的区间是( )练真题A .0,2π⎛⎫⎪⎝⎭B .,2ππ⎛⎫⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫ ⎪⎝⎭【答案】A 【解析】解不等式()22262k x k k Z πππππ-<-<+∈,利用赋值法可得出结论.【详解】因为函数sin y x =的单调递增区间为()22,22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭,对于函数()7sin 6f x x π⎛⎫=- ⎪⎝⎭,由()22262k x k k Z πππππ-<-<+∈,解得()22233k x k k Z ππππ-<<+∈,取0k =,可得函数()f x 的一个单调递增区间为2,33ππ⎛⎫-⎪⎝⎭,则20,,233πππ⎛⎫⎛⎫⊆- ⎪ ⎪⎝⎭⎝⎭,2,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪⎝⎭⎝⎭,A 选项满足条件,B 不满足条件;取1k =,可得函数()f x 的一个单调递增区间为58,33ππ⎛⎫⎪⎝⎭,32,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪⎝⎭⎝⎭且358,,233ππππ⎛⎫⎛⎫⊄ ⎪ ⎪⎝⎭⎝⎭,358,2,233ππππ⎛⎫⎛⎫⊄ ⎪⎪⎝⎭⎝⎭,CD 选项均不满足条件.故选:A.3.(2019年高考全国Ⅰ卷文)函数f (x )=在的图象大致为( )A .B .C .D .【答案】D2sin cos ++x xx x[,]-ππ【解析】由,得是奇函数,其图象关于原点对称,排除A .又,排除B ,C ,故选D .4.(2020·全国高考真题(理))设函数()cos π(6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为( )A .10π9B .7π6C .4π3D .3π2【答案】C 【解析】由图可得:函数图象过点4,09π⎛⎫-⎪⎝⎭,将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭又4,09π⎛⎫-⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点,所以4962πππω-⋅+=-,解得:32ω=所以函数()f x 的最小正周期为224332T πππω===故选:C22sin()()sin ()()cos()()cos x x x xf x f x x x x x -+----===--+-+()f x 22π1π42π2(1,π2π()2f ++==>2π(π)01πf =>-+5.(2020·全国高考真题(理))关于函数f (x )=1sin sin x x+有如下四个命题:①f (x )的图像关于y 轴对称.②f (x )的图像关于原点对称.③f (x )的图像关于直线x =2π对称.④f (x )的最小值为2.其中所有真命题的序号是__________.【答案】②③【解析】对于命题①,152622f π⎛⎫=+=⎪⎝⎭,152622f π⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭ ,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<,命题④错误.故答案为:②③.6.(2018·北京高考真题(理))设函数f (x )=cos(ωx ―π6)(ω>0),若f (x )≤f (π4)对任意的实数x 都成立,则ω的最小值为__________.【答案】23【解析】因为f (x )≤f (π4)对任意的实数x 都成立,所以f (π4)取最大值,所以π4ω―π6=2k π(k ∈Z ),∴ω=8k +23(k∈Z ),因为ω>0,所以当k =0时,ω取最小值为23.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档