初三九年级上册数学压轴题测试与练习(word解析版)
部编数学九年级上册专题24.5圆(压轴题综合测试卷)(人教版)(解析版)含答案
专题24.5 圆(满分100)学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(本大题共10小题,每小题3分,满分30分)1.(2022·重庆忠县·九年级期中)如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是( )A.50°B.60°C.80°D.100°【思路点拨】首先圆上取一点A,连接AB,AD,根据圆的内接四边形的性质,即可得∠BAD+∠BCD=180°,即可求得∠BAD 的度数,再根据圆周角的性质,即可求得答案.【解题过程】解:在圆上取一点A,连接AB,AD,∵点A、B,C,D在⊙O上,∠BCD=130°,∴∠BAD=50°,∴∠BOD=100°.故选D.2.(2022·江苏·九年级专题练习)如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是( )A.点(0,3)B.点(2,3)C.点(5,1)D.点(6,1)【思路点拨】根据垂径定理的性质得出圆心所在位置,再根据切线的性质得出,∠OBD+∠EBF=90°时F点的位置即可。
【解题过程】解:∵过格点A,B,C作一圆弧,∴三点组成的圆的圆心为:O(2,0),∵只有∠OBD+∠EBF=90°时,BF与圆相切,∴当△BOD≌△FBE时,EF=BD=2,F点的坐标为:(5,1),∴点B与下列格点的连线中,能够与该圆弧相切的是:(5,1).故选C.3.(2022·全国·九年级课时练习)如图,在⊙О中,点C在弦AB上移动,连接OC,过点C作CD⊥OC交⊙О于点D.若AB=2,则CD的最大值是()A.4B.2C D.1【思路点拨】连接OD,如图,利用勾股定理得CD,利用垂线段最短得到当OC⊥AB时,OC最小,再求出CD即可.【解题过程】4.(2022·浙江丽水·模拟预测)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC的长为( )A.B.cm C.或D.或【思路点拨】先根据题意画出图形,由于点C的位置不能确定,故应分两种情况进行讨论.【解题过程】解:连接AC,AO,∵O的直径CD=10cm,AB⊥CD,AB=8cm,5.(2022·江苏·九年级)如图,AB是⊙O的直径,点C为圆上一点,AC=3,∠ABC的平分线交AC于点D,CD=1,则⊙O的直径为()A B.C.1D.2【思路点拨】【解题过程】解:如图:过D作DE⊥AB,垂足为E∵AB是直径∴∠ACB=90°∵∠ABC的角平分线BD∴DE=DC=1在Rt△DEB和Rt△DCB中6.(2022·全国·九年级课时练习)如图,在Rt△ABC中,∠ACB=90°,以该三角形的三条边为边向形外作正方形,正方形的顶点E,F,G,H,M,N都在同一个圆上.记该圆面积为S1,△ABC面积为S2,则S1的值是()S2A.5π2B.3πC.5πD.11π2【思路点拨】【解题过程】7.(2022·全国·九年级专题练习)如图,等边△ABC中,AB=3,点D,点E分别是边BC,CA上的动点,且BD=CE,连接AD、BE交于点F,当点D从点B运动到点C时,则点F的运动路径的长度为()A B C D.【思路点拨】如图,作过A、B、F作⊙O,AFB为点F的轨迹,然后计算出AFB的长度即可.【解题过程】解:如图:作过A、B、F作⊙O,过O作OG⊥AB∵等边ΔABC∴AB=BC,∠ABC=∠C=60°∵BD=CE∴△BCE≌△ABC∴∠BAD=∠CBE∵∠ABC=∠ABE+∠EBC=60°∴∠ABE+∠BAD=60°∴∠AFB=120°∵∠AFB是弦AB同侧的圆周角∴∠AOB=120°8.(2022·全国·九年级课时练习)如图,在⊙O中,点C在优弧AB上,将弧BC沿BC折叠后刚好经过AB的中点D.若⊙O AB=4,则BC的长是( )A.B.C D【思路点拨】【解题过程】解:连接OD、AC、DC、OB、OC,作CE⊥AB于E,OF⊥CE于F,如图,∵D为AB的中点,9.(2022·全国·九年级课时练习)如图,△ABC的内切圆⊙O与AB,BC,AC相切于点D,E,F,已知AB =6,AC=5,BC=7,则DE的长是()A B C D【思路点拨】【解题过程】10.(2022·江苏无锡·九年级期中)我们定义:两边平方和等于第三边平方的2倍的三角形叫做奇异三角形,根据定义:①等边三角形一定是奇异三角形;②在Rt△ABC中,∠C=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,则a:b:c=12;③如图,AB是⊙O的直径,C是⊙O上一点(不与点A、B重合),D是半圆ADB的中点,C、D在直径AB的两侧,若在⊙O内存在点E,使AE=AD,CB=CE.则△ACE是奇异三角形;④在③的条件下,当△ACE是直角三角形时,∠AOC=120°,其中,说法正确的有()A.①②B.①③C.②④D.③④【答案】B【思路点拨】【解题过程】解:设等边三角形的边长为a,则a2+a2=2a2,满足奇异三角形的定义,∴等边三角形一定是奇异三角形,故①正确;在RtΔABC中,a2+b2=c2,∵c>b>a>0,∴2c2>a2+b2,2a2<b2+c2,若△ABC是奇异三角形,一定有2b2=a2+c2,∴2b2=a2+(a2+b2),∴b2=2a2,得b=.∵c2=b2+a2=3a2,∴c,∴a:b:c=1故②错误;在RtΔABC中,a2+b2=c2,∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,在RtΔACB中,AC2+BC2=AB2;在RtΔADB中,AD2+BD2=AB2.∵D是半圆ADB的中点,∴AD=BD,∴AD=BD,∴AB2=AD2+BD2=2AD2,又∵CB=CE,AE=AD,∴AC2+CE2=2AE2.∴ΔACE是奇异三角形,故③正确;由③可得ΔACE是奇异三角形,∴AC2+CE2=2AE2.当ΔACE是直角三角形时,由②可得AC:AE:CE=1AC:AE:CE=1,(Ⅰ)当AC:AE:CE=1AC:CE=1AC:CB=1∵∠ACB=90∘,∴∠ABC=30°,∴∠AOC=2∠ABC=60°.(Ⅱ)当AC:AE:CE=1时,AC:CE=1,即AC:CB=1,∵∠ACB=90°,∴∠ABC=60°,∴∠AOC=2∠ABC=120°,∴∠AOC的度数为60°或120°,故④错误;故选:B.评卷人得分二.填空题(本大题共5小题,每小题3分,满分15分)11.(2022·全国·九年级课时练习)工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小圆孔的宽口AB的长度为____mm.【思路点拨】先根据钢珠的直径求出其半径,再构造直角三角形,求出小圆孔的宽口AB的长度的一半,最后乘以2即为所求.【解题过程】12.(2022·全国·九年级课时练习)已知⊙O的直径为10cm,AB,CD是⊙O的两条弦,AB//CD,AB=8cm,CD=6cm,则AB与CD之间的距离为________cm.【思路点拨】分两种情况考虑:当两条弦位于圆心O同一侧时,当两条弦位于圆心O两侧时;利用垂径定理和勾股定理分别求出OE和OF的长度,即可得到答案.【解题过程】解:分两种情况考虑:当两条弦位于圆心O一侧时,如图1所示,13.(2022·山东菏泽·九年级期中)如图,正方形ABCD内接于⊙O,PA,PD分别与⊙O相切于点A和点D,PD的延长线与BC的延长线交于点E.已知AB=2,则图中阴影部分的面积为___________.【思路点拨】【解题过程】14.(2022·全国·九年级课时练习)如图,⊙O是等边△ABC的外接圆,已知D是⊙O上一动点,连接AD、CD,若圆的半径r=2,则以A、B、C、D为顶点的四边形的最大面积为_____.【思路点拨】连接BO并延长交AC于E,交AC于D,根据垂径定理得到点D到AC的距离最大,根据直角三角形的性质、三角形的面积公式计算,得到答案.【解题过程】15.(2022·全国·九年级课时练习)如图,在矩形ABCD中,AB=6,BC=8,E为AD上一点,且AE=2,F为BC边上的动点,以为EF直径作⊙O,当⊙O与矩形的边相切时,BF的长为______.【思路点拨】⊙O与矩形的边相切,但没有具体说与哪个边相切,所以该题有三种情况:第一种情况是圆与边AD、BC 相切,此时BF=AE;第二种情况是圆与边AB相切,利用中位线定理以及勾股定理可求出BF的长;第三种是圆与边CD相切,同样利用中位线定理以及勾股定理求得BF.【解题过程】解:①当圆与边AD、BC相切时,如图1所示此时∠AEO=BFO=90°所以四边形AEFB为矩形即BF=AE=2;②当圆与边AB相切时,设圆的半径为R,切点为H,圆与边AD交于E、N两点,与边BC交于M、F两点,连接EM、HO,如图2所示此时OE=OF=OH=R,点O、H分别是EF、AB的中点∴2OH=AE+BF即BF=2R-2∵BM=AE=2∴MF=2R-4在Rt△EFM中,EM2+MF2=EF2∴BF=13.2评卷人得分三.解答题(本大题共9小题,满分55分)16.(2022·全国·九年级课时练习)在《阿基米德全集》中的《引理集》中记录了古希腊数学家阿基米德提出的有关圆的一个引理.如图,已知AB,C是弦AB上一点,请你根据以下步骤完成这个引理的作图过程.(1)尺规作图(保留作图痕迹,不写作法):①作线段AC的垂直平分线DE,分别交AB于点D,AC于点E,连接AD,CD;②以点D为圆心,DA长为半径作弧,交AB于点F(F,A两点不重合),连接DF,BD,BF.(2)直接写出引理的结论:线段BC,BF的数量关系.【思路点拨】【解题过程】解:(1)作出线段AC的垂直平分线DE,连接AD,CD;以D为圆心,DA长为半径作弧,交AB于点F,连接DF,BD,BF,如图示:(2)结论:BC=BF.理由如下:由作图可得:DE是AC的垂直平分线,DA=DF,∴DA=DC=DF,∴∠DAC=∠DCA,AD=FD,∴∠DBC=∠DBF,∵四边形ABFD是圆的内接四边形,∴∠DAB+∠DFB=180°,∵∠DCA+∠DCB=180°,∴∠DFB=∠DCB,∵DB=DB,∴△DCB≌△DFB,∴BC=BF.17.(2022·江西上饶·九年级期末)如图,⊙O的直径AB的长为2,点C在圆周上,∠CAB=30°.点D是圆上一动点,DE∥AB交CA的延长线于点E,连接CD,交AB于点F.(1)如图1,当DE与⊙O相切时,求∠CFB的度数;(2)如图2,当点F是CD的中点时,求△CDE的面积.【思路点拨】(1)由题意可求∠AOD=90°,即可求∠C=45°,即可求∠CFB的度数;(2)连接OC,根据垂径定理可得AB⊥CD,利用勾股定理.以及直角三角形30度性质求出CD、DE即可.【解题过程】解:(1)如图:连接OD∵DE与⊙O相切∴∠ODE=90°∵AB∥DE18.(2022·全国·九年级专题练习)如图,AB是半圆O的直径,点D是半圆O上一点,点C是AD的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE、CB于点P、Q,连接AC.(1)求证:GP=GD;(2)求证:P是线段AQ的中点;(3)连接CD,若CD=2,BC=4,求⊙O的半径和CE的长.【思路点拨】(1)结合切线的性质以及已知得出∠GPD=∠GDP,进而得出答案;(2)利用圆周角定理得出PA,PC,PQ的数量关系进而得出答案;(3)直接利用勾股定理结合三角形面积得出答案.【解题过程】(1)证明:连接OD,则OD⊥GD,∠OAD=∠ODA,∵∠ODA+∠GDP=90°,∠EAP+∠GPD=∠EPA+∠EAP=90°,∴∠GPD=∠GDP;∴GP=GD;(2)证明:∵AB为直径,∴∠ACB=90°,∵CE⊥AB于E,∴∠CEB=90°,∴∠ACE+∠ECB=∠ABC+∠ECB=90°,∴∠ACE=∠ABC=∠CAP,∴PC=PA,∵∠ACB=90°,∴∠CQA+∠CAP=∠ACE+∠PCQ=90°,∴∠PCQ=∠CQA,∴PC=PQ,∴PA=PQ,即P为Rt△ACQ斜边AQ的中点;(3)连接CD,∵弧AC=弧CD,∴CD=AC,∵CD=2,∴AC=2,19.(2022·全国·九年级课时练习)对于平面直角坐标系xOy中的图形P,Q,给出如下定义:M为图形P 上任意一点,N为图形Q上任意一点,如果M,N两点间的距离有最小值,那么称这个最小值为图形P,Q 间的“非常距离”,记作d(P,Q).已知点A(−2,2),B(2,2),连接AB.(1)d(点O,AB)=;(2)⊙O半径为r,若d(⊙O,AB)=0,直接写出r的取值范围;(3)⊙O半径为r,若将点A绕点B逆时针旋转α°(0°<α<180°),得到点A′.①当α=30°时d(⊙O,A′)=0,求出此时r的值;②对于取定的r值,若存在两个α使d(⊙O,A′)=0,直接写出r的范围.【思路点拨】(1)理解题意后直接利用垂线段最短即可求解.(2)先理解当⊙O与线段有交点时,d(⊙O,AB)=0,利用⊙O与线段相切和⊙O经过A点即可求解.(3)①先确定A′位于x轴上,再求出OA′的长即可求解;②先确定A′的轨迹,再利用存在两个α使d(⊙O,A')=0,确定并求出两个界点值,即可求解.【解题过程】∴∠A′NB=90°,由旋转知BA′=BA=2−(−2)=4,∵∠ABA′=30°,BA′=2,∴A′N=12∴A′位于x轴上,BN=42−22=23,∴A′M=23,∴A′O=23−2,∵对于取定的r值,若存在两个α使d(⊙O,A')=0,∴⊙O与以AH为直径的半圆有两个交点(A点和H点除外),此时有两个界点值,分别是⊙O与该半圆内切时和⊙O由B(2,2),得OB=22+22=22,当⊙O与该半圆内切时,r=4−22,当⊙O经过A点时,r=22,∴4−22<r<22.20.(2022·四川德阳·九年级阶段练习)如图1,四边形ABCD内接于⊙O,AD为直径,过点C作CE⊥AB于点E,连接AC.(1)求证:∠CAD=∠ECB;(2)若CE是⊙O的切线,∠CAD=30°,连接OC,如图2.①请判断四边形ABCO的形状,并说明理由;②当AB=2时,求AD,AC与CD围成阴影部分的面积.【思路点拨】【解题过程】解:(1)证明:∵四边形ABCD内接于⊙O,∴∠D+∠ABC=180°,∵∠EBC+∠ABC=180°,∴∠D=∠EBC,∵AD为⊙O直径,∴∠ACD=90°,∴∠D+∠CAD=90°,∵CE⊥AB,∴∠ECB+∠EBC=90°,∴∠CAD=∠ECB;(2)①四边形ABCO是菱形,理由如下:∵CE是⊙O的切线,∴OC⊥EC,∵AB⊥EC,∴∠OCE=∠E=90°,∴∠OCE+∠E=180°,∴OC∥AE,∴∠ACO=∠BAC,∴CF=3,21.(2022·全国·九年级专题练习)如图,以AB为直径的⊙O上有一动点C,⊙O的切线CD交AB的延长线于点D,过点B作BM∥OC交⊙O于点M,连接AM,OM,BC.(1)求证:AM∥CD(2)若OA=5,填空:①当AM=时,四边形OCBM为菱形;②连接MD,过点O作ON⊥MD于点N,若BD=,则ON=.【思路点拨】(1)首先根据圆周角定理可得∠MAB+∠ABM=90°,由切线的性质可得∠DOC+∠CDO=90°,再根据平行线的性质即可证得∠MAB=∠CDO,据此即可证得结论;(2)①根据菱形性质可得OM= OA=MB= 5,即可求得AB,再根据勾股定理即可求得;②首先可证得△ODC 是等腰直角三角形,再根据勾股定理及三角形的面积,即可求解.【解题过程】(1)证明:∵AB是⊙O的直径,∴∠AMB=90°,∴∠MAB+∠ABM=90°,∵CD是⊙O的切线,∴OC⊥CD,∴∠DOC+∠CDO=90°,又∵BM∥OC,∴∠ABM=∠DOC,∴∠MAB=∠CDO,∴AM∥CD;(2)解:①若四边形OCBM为菱形,则OM=OA=MB =5,∵AB是⊙O的直径,∴∠AMB=90°,∵BD=52−5,OB=5,∴OD=OB+BD=5+5∵CD是⊙O的切线,∴∠OCD=90°,22.(2022·全国·九年级课时练习)如图,AB是⊙O的直径,P为AB上一点,弦CD与弦EF交于点P,PB平分∠DPF,连DF交AB于点G.(1)求证:CD=EF;(2)若∠DPF=60°,PE∶PF=1∶3,AB=OG的长.【思路点拨】【解题过程】(1)证明:如图,过点O作OM⊥EF于点M,ON⊥CD于点N,连接OF、OD,则∠OMF=∠OND=90°,∵PB平分∠DPF,OM⊥EF,ON⊥CD,∴OM=ON,在Rt△OFM和Rt△ODN中,∵OF=OD OM=ON,∴Rt△OFM≌Rt△ODN(HL),∴FM=DN,∵OM⊥EF,ON⊥CD,23.(2022·全国·九年级课时练习)问题提出:(1)如图1,已知△ABC是边长为2的等边三角形,则△ABC 的面积为______.问题探究:(2)如图2,在△ABC中,已知∠BAC=120°,BC=△ABC的最大面积.问题解决:(3)如图3,某校学生礼堂的平面示意图为矩形ABCD,其宽AB=20米,长BC=24米,为了能够监控到礼堂内部情况,现需要在礼堂最尾端墙面CD上安装一台摄像头M进行观测,并且要求能观测到礼堂前端墙面AB区域,同时为了观测效果达到最佳,还需要从点M出发的观测角∠AMB=45°.请你通过所学的知识进行分析,在墙面CD区域上是否存在点M满足要求?若存在,求出MC的长度;若不存在,请说明理由.【思路点拨】(1)作AD⊥BC于D,由勾股定理求出AD的长,即可求出面积;(2)作△ABC的外接圆⊙O,可知点A在BC上运动,当A'O⊥BC时,△ABC的面积最大,求出A'H的长,从而得出答案;(3)以AB为边,在矩形ABCD的内部作一个等腰直角三角形AOB,且∠AOB=90°,过O作HG⊥AB于H,交CD于G,利用等腰直角三角形的性质求出OA,OG的长,则以O为圆心,OA为半径的圆与CD相交,从而⊙O上存在点M,满足∠AMB=45°,此时满足条件的有两个点M,过M1作M1F⊥AB于F,作EO⊥M1F 于E,连接OF,利用勾股定理求出OE的长,从而解决问题.【解题过程】24.(2022·江苏·苏州中学九年级阶段练习)在Rt△ABC中,∠BCA=90°,CA=CB,点D是△ABC外一动点(点B,点D位于AC两侧),连接CD,AD.(1)如图1,点O是AB的中点,连接OC,OD,当△AOD为等边三角形时,∠ADC的度数是;(2)如图2,连接BD,当∠ADC=135°时,探究线段BD,CD,DA之间的数量关系,并说明理由;(3)如图3,⊙O是△ABC的外接圆,点D在AC上,点E为AB上一点,连接CE,DE,当AE=1,BE=7时,直接写出△CDE面积的最大值及此时线段BD的长.【思路点拨】【解题过程】即△CDE面积的面积最大值为4,此时,BD。
数学初三九年级上册 压轴解答题中考真题汇编[解析版] 汇编经典
数学初三九年级上册 压轴解答题中考真题汇编[解析版] 汇编经典一、压轴题1.在平面直角坐标系xOy 中,对于任意三点A ,B ,C ,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的外延矩形.点A ,B ,C 的所有外延矩形中,面积最小的矩形称为点A ,B ,C 的最佳外延矩形.例如,图中的矩形,,都是点A ,B ,C 的外延矩形,矩形是点A ,B ,C 的最佳外延矩形.(1)如图1,已知A (-2,0),B (4,3),C (0,). ①若,则点A ,B ,C 的最佳外延矩形的面积为 ;②若点A ,B ,C 的最佳外延矩形的面积为24,则的值为 ; (2)如图2,已知点M (6,0),N (0,8).P (,)是抛物线上一点,求点M ,N ,P 的最佳外延矩形面积的最小值,以及此时点P 的横坐标的取值范围;(3)如图3,已知点D (1,1).E (,)是函数的图象上一点,矩形OFEG 是点O ,D ,E 的一个面积最小的最佳外延矩形,⊙H 是矩形OFEG 的外接圆,请直接写出⊙H 的半径r 的取值范围.2.研究发现:当四边形的对角线互相垂直时,该四边形的面积等于对角线乘积的一半,如图1,已知四边形ABCD 内接于O ,对角线AC BD =,且AC BD ⊥.(1)求证:AB CD =; (2)若O 的半径为8,弧BD 的度数为120︒,求四边形ABCD 的面积;(3)如图2,作OM BC ⊥于M ,请猜测OM 与AD 的数量关系,并证明你的结论. 3.如图,在矩形ABCD 中,E 、F 分别是AB 、AD 的中点,连接AC 、EC 、EF 、FC ,且EC EF ⊥.(1)求证:AEF BCE ∽; (2)若23AC =,求AB 的长;(3)在(2)的条件下,求出ABC 的外接圆圆心与CEF △的外接圆圆心之间的距离? 4.如图,已知矩形ABCD 中,BC =2cm ,AB =23cm ,点E 在边AB 上,点F 在边AD 上,点E 由A 向B 运动,连结EC 、EF ,在运动的过程中,始终保持EC ⊥EF ,△EFG 为等边三角形.(1)求证△AEF ∽△BCE ;(2)设BE 的长为xcm ,AF 的长为ycm ,求y 与x 的函数关系式,并写出线段AF 长的范围;(3)若点H 是EG 的中点,试说明A 、E 、H 、F 四点在同一个圆上,并求在点E 由A 到B 运动过程中,点H 移动的距离.5.如图,在ABC ∆中,90ACB ∠=︒,以点B 为圆心,BC 的长为半径画弧,交线段AB 于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 于点E ,连结CD .(1)若28A ∠=︒,求ACD ∠的度数; (2)设BC a =,AC b =;①线段AD 的长度是方程2220x ax b +-=的一个根吗?说明理由. ②若线段AD EC =,求ab的值. 6.如图1,有一块直角三角板,其中AB 16=,ACB 90∠=,CAB 30∠=,A 、B 在x 轴上,点A 的坐标为()20,0,圆M 的半径为33,圆心M 的坐标为()5,33-,圆M 以每秒1个单位长度的速度沿x 轴向右做平移运动,运动时间为t 秒;()1求点C 的坐标;()2当点M 在ABC ∠的内部且M 与直线BC 相切时,求t 的值;()3如图2,点E 、F 分别是BC 、AC 的中点,连接EM 、FM ,在运动过程中,是否存在某一时刻,使EMF 90∠=?若存在,直接写出t 的值,若不存在,请说明理由.7.我们知道,如图1,AB 是⊙O 的弦,点F 是AFB 的中点,过点F 作EF ⊥AB 于点E ,易得点E 是AB 的中点,即AE =EB .⊙O 上一点C (AC >BC ),则折线ACB 称为⊙O 的一条“折弦”.(1)当点C 在弦AB 的上方时(如图2),过点F 作EF ⊥AC 于点E ,求证:点E 是“折弦ACB ”的中点,即AE =EC+CB .(2)当点C 在弦AB 的下方时(如图3),其他条件不变,则上述结论是否仍然成立?若成立说明理由;若不成立,那么AE 、EC 、CB 满足怎样的数量关系?直接写出,不必证明.(3)如图4,已知Rt △ABC 中,∠C =90°,∠BAC =30°,Rt △ABC 的外接圆⊙O 的半径为2,过⊙O 上一点P 作PH ⊥AC 于点H ,交AB 于点M ,当∠PAB =45°时,求AH 的长.8.如图,AB 是⊙O 的直径,AF 是⊙O 的弦,AE 平分BAF ∠,交⊙O 于点E ,过点E 作直线ED AF ⊥,交AF 的延长线于点D ,交AB 的延长线于点C .(1)求证:CD 是⊙O 的切线; (2)若10,6AB AF ==,求AE 的长.9.如图,Rt △ABC ,CA ⊥BC ,AC =4,在AB 边上取一点D ,使AD =BC ,作AD 的垂直平分线,交AC 边于点F ,交以AB 为直径的⊙O 于G ,H ,设BC =x . (1)求证:四边形AGDH 为菱形; (2)若EF =y ,求y 关于x 的函数关系式; (3)连结OF ,CG .①若△AOF 为等腰三角形,求⊙O 的面积;②若BC =3,则30CG+9=______.(直接写出答案).10.如图,在▱ABCD 中,AB =4,BC =8,∠ABC =60°.点P 是边BC 上一动点,作△PAB 的外接圆⊙O 交BD 于E .(1)如图1,当PB =3时,求PA 的长以及⊙O 的半径; (2)如图2,当∠APB =2∠PBE 时,求证:AE 平分∠PAD ;(3)当AE 与△ABD 的某一条边垂直时,求所有满足条件的⊙O 的半径.11.如图,抛物线y =ax 2-4ax +b 交x 轴正半轴于A 、B 两点,交y 轴正半轴于C ,且OB =OC =3.(1) 求抛物线的解析式;(2) 如图1,D 为抛物线的顶点,P 为对称轴左侧抛物线上一点,连接OP 交直线BC 于G ,连GD .是否存在点P ,使2GDGO?若存在,求点P 的坐标;若不存在,请说明理由; (3) 如图2,将抛物线向上平移m 个单位,交BC 于点M 、N .若∠MON =45°,求m 的值.12.如图,抛物线y =﹣(x +1)(x ﹣3)与x 轴分别交于点A 、B (点A 在B 的右侧),与y 轴交于点C ,⊙P 是△ABC 的外接圆.(1)直接写出点A 、B 、C 的坐标及抛物线的对称轴; (2)求⊙P 的半径;(3)点D 在抛物线的对称轴上,且∠BDC >90°,求点D 纵坐标的取值范围;(4)E 是线段CO 上的一个动点,将线段AE 绕点A 逆时针旋转45°得线段AF ,求线段OF 的最小值.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)①18;②t=4或t=-1;(2)48;,或;(3)【解析】试题分析:(1)根据给出的新定义进行求解;(2)过M点作轴的垂线与过N点垂直于轴的直线交于点Q,则当点P位于矩形OMQN内部或边界时,矩形OMQN是点M,N,P的最佳外延矩形,且面积最小;根据当y=0是y=8时求出x的值得到取值范围;(3)根据最佳外延矩形求出半径的取值范围.试题解析:(1)①18;②t=4或t=-1;(2)如图,过M点作轴的垂线与过N点垂直于轴的直线交于点Q,则当点P位于矩形OMQN内部或边界时,矩形OMQN是点M,N,P的最佳外延矩形,且面积最小.∵S矩形OMQN=OM·ON=6×8=48,∴点M,N,P的最佳外延矩形面积的最小值为48.抛物线与轴交于点T(0,5).令,有,解得:x=-1(舍去),或x=5.令y=8,有,解得x=1,或x=3.∴,或.(3).考点:新定义的理解、二次函数的应用、圆的性质.2.(1)见解析;(2)96;(3)AD=2OM,理由见解析【解析】【分析】(1)根据弦、弧、圆心角的关系证明;(2)根据弧BD的度数为120°,得到∠BOD=120°,利用解直角三角形的知识求出BD,根据题意计算即可;(3)连结OB、OC、OA、OD,作OE⊥AD于E,如图3,根据垂径定理得到AE=DE,再利用圆周角定理得到∠BOM=∠BAC,∠AOE=∠ABD,再利用等角的余角相等得到∠OBM=∠AOE,则可证明△BOM≌△OAE得到OM=AE,证明结论.【详解】解:(1)证明:∵AC=BD,∴AC BD,则AB DC,∴AB=CD;(2)如图1,连接OB、OD,作OH⊥BD于H,∵弧BD的度数为120°,∴∠BOD=120°,∴∠BOH=60°,则BH=32OB=43,∴BD=83,则四边形ABCD的面积=12×AC×BD=96;(3)AD=2OM,连结OB、OC、OA、OD,作OE⊥AD于E,如图2,∵OE⊥AD,∴AE=DE,∵∠BOC=2∠BAC,而∠BOC=2∠BOM,∴∠BOM=∠BAC,同理可得∠AOE=∠ABD,∵BD⊥AC,∴∠BAC+∠ABD=90°,∴∠BOM+∠AOE=90°,∵∠BOM+∠OBM=90°,在△BOM和△OAE中,OMB OEAOBM OAEOB OA∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BOM≌△OAE(AAS),∴OM=AE,∴AD=2OM.【点睛】本题考查了圆的综合题:熟练掌握圆周角定理、垂径定理、等腰三角形的性质和矩形的性质、会利用三角形全等解决线段相等的问题是解题的关键.3.(1)详见解析;(2)23)12【解析】【分析】(1)由矩形的性质得到90EAF CBE∠=∠=︒,再根据同角的余角相等,得到AFE BEC=∠∠,即可证明相似;(2)根据矩形的性质和相似三角形的性质,得到222AB BC=,再利用勾股定理,即可求出AB的长度;(3)分别找出两个三角形外接圆的圆心M、N,利用三角形中位线定理,即可求出MN的长度.【详解】(1)证明:在矩形ABCD中,有90EAF CBE∠=∠=︒,∴90AEF AFE∠+∠=︒,∵EC EF⊥,∴90FEC∠=︒,∴90AEF BEC∠+∠=︒,∴AFE BEC=∠∠,∴AEF BCE∽;(2)在矩形ABCD中,有AD=BC,∵E、F分别是AB、AD的中点,∴22,2AB AE BE AD AF===;∴AE AFBC BE=,∴222AB BC =,在Rt △ABC 中,由勾股定理得,222AB BC AC +=,∴221122AB AB +=, 解得:22AB =; (3)如图:∵△ABC 是直角三角形,∴△ABC 的外接圆的圆心在AC 中点M 处, 同理,△CEF 的外接圆的圆心在CF 的中点N 处, ∴线段MN 为△ACF 的中位线, ∴1124MN AF AD ==, 由(2)知,22222AB BC AD ==, ∴22AD AB =, ∴22122882MN AB ===. 【点睛】本题考查了求三角形外接圆的圆心距,矩形的性质,相似三角形的判定和性质,勾股定理解直角三角形,三角形中位线定理,解题的关键是熟练利用所学性质进行证明和求解. 4.(1)详见解析;(2)21y 32x x =-,302AF ≤≤;(3)3. 【解析】 【分析】(1)由∠A =∠B =90°,∠AFE =∠BEC ,得△AEF ∽△BCE ;(2)由(1)△AEF ∽BCE 得AF AE BE BC =,23y xx -=,即2132y x x =-+,然后求函数最值;(3)连接FH ,取EF 的中点M ,证MA =ME =MF =MH ,则A 、E 、H 、F 在同一圆上;连接AH ,证∠EFH =30°由A 、E 、H 、F 在同一圆上,得∠EAH =∠EFH =30°,线段AH 即为H 移动的路径,在直角三角形ABH 中,3602AH sin AB =︒=,可进一步求AH. 【详解】解:(1)在矩形ABCD 中,∠A =∠B =90°, ∴∠AEF +∠AFE =90°, ∵EF ⊥CE , ∴∠AEF +∠BEC =90°, ∴∠AFE =∠BEC , ∴△AEF ∽△BCE ; (2)由(1)△AEF ∽BEC 得AF AE BE BC =,232y xx -=, ∴2132y x x =-+, ∵2132y x x =-+=213(3)22x --+, 当3x =时,y 有最大值为32, ∴302AF ≤≤; (3)如图1,连接FH ,取EF 的中点M , 在等边三角形EFG 中,∵点H 是EG 的中点, ∴∠EHF =90°, ∴ME =MF =MH ,在直角三角形AEF 中,MA =ME =MF , ∴MA =ME =MF =MH , 则A 、E 、H 、F 在同一圆上; 如图2,连接AH ,∵△EFG 为等边三角形,H 为EG 中点,∴∠EFH =30° ∵A 、E 、H 、F 在同一圆上∴∠EAH =∠EFH =30°, 如图2所示的线段AH 即为H 移动的路径,在直角三角形ABH 中,602AH sin AB =︒=,∵AB =∴AH =3, 所以点H 移动的距离为3.【点睛】此题主要考查圆的综合问题,会证明三角形相似,会分析四点共圆,会运用二次函数分析最值,会分析最短轨迹并解直角三角形是得分的关键.5.(1)ACD ∠=31︒;(2)①是;②34a b =. 【解析】【分析】(1)根据三角形内角和定理求出∠B ,根据等腰三角形的性质求出∠BCD ,计算即可; (2)①根据勾股定理求出AD ,利用求根公式解方程,比较即可;②根据勾股定理列出算式,计算即可.【详解】(1)在ABC ∆中,90ACB ∠=︒.∴90B A ∠=︒-∠ 9028=︒-︒62=︒,∵BC BD =, ∴1802B BCD BDC ︒-∠∠=∠= 180622︒-︒= 59=︒.∴DCA ACB BCD ∠=∠-∠9059=︒-︒31=︒.(2)①BD BC a ==,∴AD AB BD =-AB a =-.在Rt ABC ∆中,90ACB ∠=︒,AB ==∵2220x ax b +-=,∴x =a =-a AB =-±.∴线段AD 的长度是方程2220x ax b +-=的一个根.②∵AE AD =,又∵AD EC =, ∴2b AE EC ==, ∴2b AD =. 在Rt ABC ∆中,222AB AC BC =+, ∴2222b a b a ⎛⎫+=+ ⎪⎝⎭, 22224b a ab b a ++=+, ∴234b ab =. ∵0b >, ∴34b a =, ∴34a b =. 【点睛】本题考查的是勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.6.(1)(C 8,;(2)t=18s ;(3)t 15=【解析】【分析】(1)如图1中,作CH ⊥AB 于H .解直角三角形求出CH ,OH 即可.(2)如图1﹣1中,设⊙M 与直线BC 相切于点N ,作MH ⊥AB 于H .求出OH 的长即可解决问题.(3)设M (﹣5+t ,),EF 12=AB =8,由∠EMF =90°,可得EM 2+MF 2=EF 2,由此构建方程即可解决问题.【详解】(1)如图1中,作CH⊥AB于H.∵A(20,0),AB=16,∴OA=20,OB=4.在Rt△ABC中,∵∠ACB=90°,AB=16,∠CAB=30°,∴BC12=AB=8,CH=BC•sin60°=43,BH=BC•cos60°=4,∴OH=8,∴C(8,43).(2)如图1﹣1中,设⊙M与直线BC相切于点N,作MH⊥AB于H.∵MN=MH3MN⊥BC,MH⊥BA,∴∠MBH=∠MBN=30°,∴BH3==9,∴点M的运动路径的长为5+4+9=18,∴当点M在∠ABC的内部且⊙M与直线BC相切时,t的值为18s.(3)∵C(8,3B(4,0),A(20,0).∵CE=EB,CF=FA,∴E(6,3),F(14,3),设M(﹣5+t,3),EF12=AB=8.∵∠EMF=90°,∴EM2+MF2=EF2,∴(6+5﹣t)2+32+(14+5﹣t)2+32=82,整理得:t2﹣30t+212=0,解得:t=1513【点睛】本题是圆的综合题,考查了平移变换,解直角三角形,切线的判定和性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.7.(1)见解析;(2)结论AE=EC+CB不成立,新结论为:CE=BC+AE,见解析;(3)AH3﹣13+1.【解析】【分析】(1)在AC上截取AG=BC,连接FA,FG,FB,FC,证明△FAG≌△FBC,根据全等三角形的性质得到FG=FC,根据等腰三角形的性质得到EG=EC,即可证明.(2)在CA上截取CG=CB,连接FA,FB,FC,证明△FCG≌△FCB,根据全等三角形的性质得到FG=FB,得到FA=FG,根据等腰三角形的性质得到AE=GE,即可证明.(3)分点P在弦AB上方和点P在弦AB下方两种情况进行讨论.【详解】解:(1)如图2,在AC上截取AG=BC,连接FA,FG,FB,FC,∵点F是AFB的中点,FA=FB,在△FAG和△FBC中,,FA FBFAG FBCAG BC=⎧⎪∠=∠⎨⎪=⎩∴△FAG≌△FBC(SAS),∴FG=FC,∵FE⊥AC,∴EG=EC,∴AE=AG+EG=BC+CE;(2)结论AE=EC+CB不成立,新结论为:CE=BC+AE,理由:如图3,在CA上截取CG=CB,连接FA,FB,FC,∵点F是AFB的中点,∴FA=FB,FA FB=,∴∠FCG=∠FCB,在△FCG和△FCB中,,CG CBFCG FCBFC FC=⎧⎪∠=∠⎨⎪=⎩∴△FCG≌△FCB(SAS),∴FG=FB,∴FA=FG,∵FE⊥AC,∴AE=GE,∴CE=CG+GE=BC+AE;(3)在Rt△ABC中,AB=2OA=4,∠BAC=30°,∴12232BC AB AC===,,当点P在弦AB上方时,如图4,在CA上截取CG=CB,连接PA,PB,PG,∵∠ACB=90°,∴AB为⊙O的直径,∴∠APB=90°,∵∠PAB=45°,∴∠PBA=45°=∠PAB,∴PA=PB,∠PCG=∠PCB,在△PCG和△PCB中,,CG CBPCG PCBPC PC=⎧⎪∠=∠⎨⎪=⎩∴△PCG≌△PCB(SAS),∴PG=PB,∴PA=PG,∵PH⊥AC,∴AH=GH,∴AC=AH+GH+CG=2AH+BC,∴2322AH=+,∴31AH =-,当点P 在弦AB 下方时,如图5, 在AC 上截取AG =BC ,连接PA ,PB ,PC ,PG∵∠ACB =90°,∴AB 为⊙O 的直径,∴∠APB =90°,∵∠PAB =45°,∴∠PBA =45°=∠PAB ,∴PA =PB ,在△PAG 和△PBC 中,,AG BC PAG PBC PA PB =⎧⎪∠=∠⎨⎪=⎩∴△PAG ≌△PBC (SAS ),∴PG =PC ,∵PH ⊥AC ,∴CH =GH ,∴AC =AG+GH+CH =BC+2CH ,∴2322CH ,=+ ∴31CH =-,∴()233131AH AC CH =-=--=+, 即:当∠PAB =45°时,AH 的长为31- 或3 1.+【点睛】考查弧,弦的关系,全等三角形的判定与性质,等腰三角形的判定与性质等,综合性比较强,注意分类讨论思想方法在解题中的应用.8.(1)详见解析;(2)5【解析】【分析】(1)通过证明OE ∥AD 得出结论OE ⊥CD ,从而证明CD 是⊙0的切线;(2)在Rt △ADE 中,求出AD ,DE ,利用勾股定理即可解决问题.【详解】(1)证明:∵AE 平分∠DAC ,∴∠CAE =∠DAE .∵OA =OE ,∴∠OEA =∠OAE .∴∠DAE =∠AEO ,.∴AD ∥OE .∵AD ⊥CD ,∴OE ⊥CD .∴CD 是⊙O 的切线.(2)解:连接BF 交OE 于K .∵AB 是直径,∴∠AFB =90°,∵AB =10,AF =6,∴BF 22106-8,∵OE ∥AD ,∴∠OKB =∠AFB =90°,∴OE ⊥BF ,∴FK =BK =4,∵OA =OB ,KF =KB ,∴OK =12AF =3, ∴EK =OE ﹣OK =2,∵∠D =∠DFK =∠FKE =90°,∴四边形DFKE 是矩形,∴DE =KF =4,DF =EK =2,∴AD =AF+DF =8,在Rt △ADE 中,AE 22AD DE +2284+45. 【点睛】本题考查切线的判定和性质,勾股定理,矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.9.(1)证明见解析;(2)y =18x 2(x >0);(3)①163π或8π或()π;②【解析】【分析】(1)根据线段的垂直平分线的性质以及垂径定理证明AG=DG=DH=AH即可;(2)只要证明△AEF∽△ACB,可得AE EFAC BC=解决问题;(3)①分三种情形分别求解即可解决问题;②只要证明△CFG∽△HFA,可得GFAF=CGAH,求出相应的线段即可解决问题;【详解】(1)证明:∵GH垂直平分线段AD,∴HA=HD,GA=GD,∵AB是直径,AB⊥GH,∴EG=EH,∴DG=DH,∴AG=DG=DH=AH,∴四边形AGDH是菱形.(2)解:∵AB是直径,∴∠ACB=90°,∵AE⊥EF,∴∠AEF=∠ACB=90°,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴AE EF AC BC=,∴124x yx=,∴y=18x2(x>0).(3)①解:如图1中,连接DF.∵GH 垂直平分线段AD ,∴FA =FD ,∴当点D 与O 重合时,△AOF 是等腰三角形,此时AB =2BC ,∠CAB =30°, ∴AB =83, ∴⊙O 的面积为163π. 如图2中,当AF =AO 时,∵AB 22AC BC +216x +∴OA 216x +, ∵AF 22EF AE +2221182x ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭ 216x +2221182x ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭解得x =4(负根已经舍弃),∴AB =2∴⊙O 的面积为8π.如图2﹣1中,当点C与点F重合时,设AE=x,则BC=AD=2x,AB=2164x+,∵△ACE∽△ABC,∴AC2=AE•AB,∴16=x•2164x+,解得x2=217﹣2(负根已经舍弃),∴AB2=16+4x2=817+8,∴⊙O的面积=π•14•AB2=(217+2)π综上所述,满足条件的⊙O的面积为163π或8π或(217+2)π;②如图3中,连接CG.∵AC=4,BC=3,∠ACB=90°,∴AB=5,∴OH=OA=52,∴AE=32,∴OE=OA﹣AE=1,∴EG=EH2512⎛⎫-⎪⎝⎭212,∵EF=18x2=98,∴FG=2﹣98,AF158,AH,∵∠CFG=∠AFH,∠FCG=∠AHF,∴△CFG∽△HFA,∴GF CG AF AH=,∴9 28158-=∴CG,=.故答案为【点睛】本题考查圆综合题、相似三角形的判定和性质、垂径定理、线段的垂直平分线的性质、菱形的判定和性质、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用分类讨论的思想思考问题.10.(1)PAO的半径为3;(2)见解析;(3)⊙O的半径为2或【解析】【分析】(1)过点A作BP的垂线,作直径AM,先在Rt△ABH中求出BH,AH的长,再在Rt△AHP中用勾股定理求出AP的长,在Rt△AMP中通过锐角三角函数求出直径AM的长,即求出半径的值;(2)证∠APB=∠PAD=2∠PAE,即可推出结论;(3)分三种情况:当AE⊥BD时,AB是⊙O的直径,可直接求出半径;当AE⊥AD时,连接OB,OE,延长AE交BC于F,通过证△BFE∽△DAE,求出BE的长,再证△OBE是等边三角形,即得到半径的值;当AE⊥AB时,过点D作BC的垂线,通过证△BPE∽△BND,求出PE,AE的长,再利用勾股定理求出直径BE的长,即可得到半径的值.【详解】(1)如图1,过点A作BP的垂线,垂足为H,作直径AM,连接MP,在Rt△ABH中,∠ABH=60°,∴∠BAH=30°,∴BH=12AB=2,AH=AB•sin60°=∴HP=BP﹣BH=1,∴在Rt△AHP中,AP∵AB是直径,∴∠APM=90°,在Rt△AMP中,∠M=∠ABP=60°,∴AM=APsin60︒,∴⊙O的半径为3,即PA⊙O(2)当∠APB=2∠PBE时,∵∠PBE=∠PAE,∴∠APB=2∠PAE,在平行四边形ABCD中,AD∥BC,∴∠APB=∠PAD,∴∠PAD=2∠PAE,∴∠PAE=∠DAE,∴AE平分∠PAD;(3)①如图3﹣1,当AE⊥BD时,∠AEB=90°,∴AB是⊙O的直径,∴r=12AB=2;②如图3﹣2,当AE⊥AD时,连接OB,OE,延长AE交BC于F,∵AD∥BC,∴AF⊥BC,△BFE∽△DAE,∴BFAD =EFAE,在Rt△ABF中,∠ABF=60°,∴AF=AB•sin60°=BF=12AB=2,∴28,∴EF=5,在Rt△BFE中,BE,∵∠BOE=2∠BAE=60°,OB=OE,∴△OBE是等边三角形,∴r;③当AE⊥AB时,∠BAE=90°,∴AE为⊙O的直径,∴∠BPE=90°,如图3﹣3,过点D作BC的垂线,交BC的延长线于点N,延开PE交AD于点Q,在Rt△DCN中,∠DCN=60°,DC=4,∴DN=DC•sin60°=CN=12CD=2,∴PQ=DN=设QE=x,则PE=x,在Rt△AEQ中,∠QAE=∠BAD﹣BAE=30°,∴AE=2QE=2x,∵PE∥DN,∴△BPE∽△BND,∴PEDN =BPBN,∴BP10,∴BP=10x,在Rt△ABE与Rt△BPE中,AB2+AE2=BP2+PE2,∴16+4x2=(10x)2+(x)2,解得,x1=(舍),x2,∴AE=∴BE=∴r,∴⊙O的半径为2或47或7.【点睛】此题主要考查圆与几何综合,解题的关键是熟知圆的基本性质、勾股定理及相似三角形的判定与性质.11.(1)y =x 2-4x +3 ;(2) P(36626--,);(3) 9922m -+= 【解析】 【分析】 (1)把,,代入,解方程组即可.(2)如图1中,连接OD 、BD,对称轴交x 轴于K,将绕点O 逆时针旋转90°得到△OCG,则点G 在线段BC 上,只要证明是等腰直角三角形,即可得到直线GO 与抛物线的交点即为所求的点P .利用方程组即可解决问题. (3)如图2中,将绕点O 顺时针旋转得到,首先证明,设,,则,设平移后的抛物线的解析式为,由消去y 得到,由,推出,,M 、N 关于直线对称,所以,设,则,利用勾股定理求出a 以及MN 的长,再根据根与系数关系,列出方程即可解决问题.【详解】 (1),,,代入,得,解得,∴抛物线的解析式为(2)如图1中,连接OD 、BD,对称轴交x 轴于K.由题意,,,,,,,将绕点O 逆时针旋转90°得到,则点G 在线段BC 上,,,,是等腰直角三角形,,∴直线GO与抛物线的交点即为所求的点P.设直线OD的解析式为,把D点坐标代入得到,,,∴直线OD的解析式为,,∴直线OG的解析式为,由解得或, 点P在对称轴左侧,点P坐标为(3)如图2中,将绕点O顺时针旋转90°得到,,,,,,,,,,设,,则,设平移后的抛物线的解析式为,由消去y得到,,,∴M、N关于直线对称,,设,则,,(负根已经舍弃),,,【点睛】本题考查了二次函数的综合题、一次函数、全等三角形的判定与性质、根与系数的关系、勾股定理等知识点,解题的关键是灵活运用所学知识,学会利用旋转添加辅助线,构造全等三角形,学会利用方程组及根与系数的关系,构建方程解决问题,本题难度较大. 12.(1)点B的坐标为(﹣1,0),点A的坐标为(3,0),点C的坐标为(0,3);抛物线的对称轴为直线x=1;(2)⊙P5;(3)1<y<2;(4)3﹣322.【解析】【分析】(1)分别代入y=0、x=0求出与之对应的x、y的值,进而可得出点A、B、C的坐标,再由二次函数的对称性可找出抛物线的对称轴;(2)连接CP、BP,在Rt△BOC中利用勾股定理可求出BC的长,由等腰直角三角形的性质及圆周角定理可得出∠BPC=90°,再利用等腰直角三角形的性质可求出BP的值即可;(3)设点D的坐标为(1,y),当∠BDC=90°时,利用勾股定理可求出y值,进而可得出:当1<y<2时,∠BDC>90°;(4)将△ACO绕点A逆时针方向旋转45°,点C落在点C′处,点O落在点O′处,根据旋转的性质可找出点C′的坐标及∠AC′O′=45°,进而可找出线段C′O′所在直线的解析式,由点E在CO上可得出点F在C′O′上,过点O作OF⊥C′O′于点F,则△OC′F 为等腰直角三角形,此时线段OF取最小值,利用等腰直角三角形的性质即可求出此时OF的长即可.【详解】(1)当y=0时,﹣(x+1)(x﹣3)=0,解得:x1=﹣1,x2=3,∴点B的坐标为(﹣1,0),点A的坐标为(3,0);当x=0时,y=﹣(0+1)×(0﹣3)=3,∴点C的坐标为(0,3);∵抛物线与x轴交于点(﹣1,0)、(3,0),∴抛物线的对称轴为直线x=1;(2)连接CP、BP,如图1所示,在Rt△BOC中,BC=∵∠AOC=90°,OA=OC=3,∴∠OAC=∠OCA=45°,∴∠BPC=2∠OAC=90°,∴CP=BP∴⊙P(3)设点D的坐标为(1,y),当∠BDC=90°时,BD2+CD2=BC2,∴[(﹣1﹣1)2+(0﹣y)2]+[(0﹣1)2+(3﹣y)2]=10,整理,得:y2﹣3y+2=0,解得:y1=1,y2=2,∴当1<y<2时,∠BDC>90°;(4)将△ACO绕点A逆时针方向旋转45°,点C落在点C′处,点O落在点O′处,如图2所示.∵AC=ACO=45°,∴点C′的坐标为(3﹣,0),∠AC′O′=45°,∴线段C′O′所在直线的解析式为y=﹣x+3﹣∵点E在线段CO上,∴点F在线段C′O′上.过点O作OF⊥C′O′于点F,则△OC′F为等腰直角三角形,此时线段OF取最小值,∵△OC′F为等腰直角三角形,∴OF OC′3)=3.【点睛】本题考查了二次函数图象上点的坐标特征、二次函数的性质、圆周角定理、勾股定理、旋转以及等腰直角三角形,解题的关键是:(1)利用二次函数图象上点的坐标特征求出点A 、B 、C 的坐标;(2)利用圆周角定理找出∠BPC =90°;(3)利用极限值法求出点D 纵坐标;(4)利用点到直线之间垂直线段最短确定点F 的位置.。
一元二次方程(压轴题综合测试卷)(解析版)—2024-2025学年九年级数学上册压轴题专项(人教版)
一元二次方程(满分100)学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一、选择题(本大题共10小题,每小题3分,满分30分)1.(22-23八年级下·浙江·开学考试)已知下面三个关于x的一元二次方程ax2+bx+c=0, bx2+cx+a=0, cx2+ax+b=0恰好有一个相同的实数根b,则a+b+c的值为()A.0B.1C.3D.不确定【思路点拨】本题考查了一元二次方程的解,使方程左右两边相等的未知数的值叫方程的解.把x=b代入3个方程得出ax2+bx+c=0, bx2+cx+a=0, cx2+ax+b=0,3个方程相加即可得出(a+b+c)(b2+a+1)=0,即可求出答案.【解题过程】把x=b代入ax2+bx+c=0, bx2+cx+a=0, cx2+ax+b=0得:ab2+b·b+c=0, b·b2+cb+a=0, cb2+ab+b=0,相加得:(a+b+c)b2+(b+c+a)b+(a+b+c)=0,(a+b+c)(b2+a+1)=0,∵b2+b+1=b+34>0,∴a+b+c=0,故选:A.2.(23-24九年级上·福建泉州·期末)若x=2是关于x的一元二次方程x2―52ax―a2=0(a>0)的一个根,下面对a的值估计正确的是()A.0<a<12B.12<a<1C.1<a<32D.32<a<2【思路点拨】本题主要考查了一元二次方程的解、解一元二次方程、实数大小估算等知识,利用公式法解关于a 的方程a 2+5a ―4=0是解题关键.将x =2代入方程x 2―52ax ―a 2=0(a >0)并整理,获得关于a 的方程a 2+5a ―4=0,然后估计a 的大小即可.【解题过程】解:将x =2代入方程x 2―52ax ―a 2=0(a >0),可得22―52×a ×2―a 2=0,整理可得a 2+5a ―4=0,解得a ==∴a 1=a 2=∵a >0,∴a =<<6<<7,∴1<―5+<2,∴12<<1,即12<a <1.故选:B .3.(23-24九年级下·浙江·自主招生)若方程x 2―3x ―1=0的根也是方程x 4+ax 2+bx +c =0的根,则a +b ―2c 的值为( )A .―13B .―9C .―5D .前三个答案都不对【思路点拨】本题主要考查了一元二次方程的解.设m 是方程x 2―3x ―1=0的一个根.根据方程解的意义知,m 既满足方程x 2―3x ―1=0,也满足方程x 4+ax 2+bx +c =0,将m 代入这两个方程,并整理,得(9+a )m 2+(6+b )m +c +1=0.从而可知:方程x 2―3x ―1=0的两根也是方程(9+a )x 2+(6+b )x +c +1=0的根,这两个方程实质上应该是同一个一元二次方程,然后根据同一个一元二次方程的定义找出相对应的系数间的关系即可.【解题过程】解:设m 是方程x 2―3x ―1=0的一个根,则m 2―3m ―1=0,∴m 2=3m +1.由题意得:m也是方程x4+ax2+bx+c=0的根,∴m4+am2+bm+c=0,把m2=3m+1,代入得(3m+1)2+am2+bm+c=0,整理得:(9+a)m2+(6+b)m+c+1=0.∴方程x2―3x―1=0的两根也是方程(9+a)x2+(6+b)x+c+1=0的根,∴可设(9+a)x2+(6+b)x+c+1=k(x2―3x―1),∴k=9+a,―3k=6+b,―k=c+1,∴b=―3a―33,c=―a―10,∴a+b―2c=a+(―3a―33)―2(―a―10)=―13.故选:A.4.(22-23九年级上·重庆璧山·期中)使得关于x的不等式组6x―a≥―10―1+12x<―18x+32有且只有4个整数解,且关于x的一元二次方程(a―5)x2+4x+1=0有实数根的所有整数a的值之和为()A.35B.30C.26D.21【思路点拨】先求出不等式组的解集,根据有且只有4个整数解可确定a的取值范围,再通过根的判别式确定a的取值范围,最后结合两个取值范围找出满足条件的整数相加即可.【解题过程】解:整理不等式组得:6x―a≥―10①―8+4x<―x+12②由①得:x≥a―106,由②得:x<4∵不等式组有且只有4个整数解,∴不等式组的4个整数解是:3,2,1,0,∴―1<a―106≤0,解得:4<a≤10,∵(a―5)x2+4x+1=0有实数根,∴Δ=b2―4ac=16―4×(a―5)×1=36―4a≥0,解得:a≤9,∵方程(a―5)x2+4x+1=0是一元二次方程,∴a≠5∴4<a≤9,且a≠5,满足条件的整数有:6、7、8、9;∴6+7+8+9=30,故选:B.5.(2024九年级·全国·竞赛)已知关于x的一元二次方程x2―kx+2k―1=0的两个实数根分别为x1、x2,且x21+x22=7,那么(x1―x2)2的值为()A.13或―11B.13C.―11D.11【思路点拨】本题主要考查一元二次方程根的判别式以及一元二次方程根与系数的关系,首先根据一元二次方程根与系数的关系结合x21+x22=7求出k=―1,k=5,再根据根的判别式得出k=―1,从而得出x1+x2=―1,x1x2 =―3,再把(x1―x2)2变形为(x1―x2)2=x21+x22―2x1x2,然后再代入计算即可.【解题过程】解:∵一元二次方程x2―kx+2k―1=0的两个实数根分别为x1、x2,∴x1+x2=―(―k)=k,x1x2=2k―1,又x21+x22=(x1+x2)2―2x1x2=7,∴k2―2(2k―1)=7,解得,k1=―1,k2=5,又Δ=(―k)2―4×1×(2k―1)=(k―4)2―16,当k1=―1时,△=(―1―4)2―16=9>0,当k2=5时,△=(5―4)2―16=―15<0,∴k=―1,∴x1x2=―3,∴(x1―x2)2=x21+x22―2x1x2=7―2×(―3)=7+6=13.故选:B6.(23-24八年级下·安徽亳州·阶段练习)已知关于x的一元二次方程x2―(2m+1)x+m(m+1)=0(m 是常数),若一个等腰三角形的一边长为6,另两边长是该方程的两个实数根,则该三角形的周长为( )A.17或19B.15或17C.13或15D.17【思路点拨】本题考查一元二次方程的判别式与根的个数的关系,以及一元二次方程与几何的综合应用.熟练掌握一元二次方程的判别式与根的个数的关系,一元二次方程的解的定义,是解题的关键.根据方程有两个实数根,得到6是等腰三角形的腰长,是方程的一个根,进行求解即可.【解题过程】解:∵一元二次方程有两个实数根,∴Δ=[―(2m+1)]2―4m(m+1)≥0,=4m2+4m+1―4m2―4m=1>0;∴不管m去何值,方程x2―(2m+1)x+m(m+1)=0都有两个不相等的实数根,∵一个等腰三角形的一边长为6,另两边长是该方程的两个实数根,∴6是腰长,x=6是方程x2―(2m+1)x+m(m+1)=0的一个根,∴62―6(2m+1)+m(m+1)=0,整理,得:m2―11m+30=0,解得:m=5或m=6,当m=5时,x2―11x+30=0,解得x1=5,x2=6,此时等腰三角形的三边长:6,6,5,周长=6+6+5=17;当m=6时,x2―13x+42=0,解得x1=6,x2=7,此时等腰三角形的三边长:6,6,7,周长=6+6+7=19.故选:A.7.(2024·浙江·模拟预测)如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另外一个根的2倍,则称这样的方程为“倍根方程”.以下关于倍根方程的说法:①方程x2―x―2=0是倍根方程;②若p,q满足pq=2,则关于x的方程px2+3x+q=0是倍根方程;③若(x―2)(mx+n)=0是倍根方程,则4m2+5mn+n2=0.其中正确的个数为()A.0B.1C.2D.3【思路点拨】本题考查解一元二次方程,新定义的倍根方程的意义,理解倍根方程的意义和正确求出方程的解是解决问题的关键.①求出方程的解,再判断是否为倍根方程;②当p,q满足pq=2,则px2+3x+q=(px+1)(x+q)=0,求出两个根,再根据pq=2代入可得两个根之间的关系,进而判断是否为倍根方程;③根据倍根方程和其中一个根,可求出另一个根,进而得到m、n之间的关系,然后代入验证即可判断.【解题过程】解:①解方程x2―x―2=0(x―2)(x+1)=0,∴x―2=0或x+1=0,解得,x1=2,x2=―1,得,x1≠2x2,∴方程x2―x―2=0不是倍根方程;故①不正确;②∵pq=2,则:px2+3x+q=(px+1)(x+q)=0,∴x1=―1p,x2=―q,∴x2=―q=―2p=2x1,因此是倍根方程,故②正确;③若(x―2)(mx+n)=0是倍根方程,x1=2,因此x2=1或x2=4,当x2=1时,m+n=0,当x2=4时,4m+n=0,∴4m2+5mn+n2=(m+n)(4m+n)=0,故③正确;故选:C.8.(23-24八年级下·浙江杭州·阶段练习)对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+b+c=0,则方程必有一根为x=1;②若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;③若ax2+bx+c=0(a≠0)两根为x1,x2且满足x1≠x2≠0,则方程cx2+bx+a=0(c≠0),必有实根1 x1,1x2;④若x0是一元二次方程ax2+bx+c=0的根,则b2―4ac=(2ax0+b)2其中正确的()A.①②B.①④C.①③④D.①②③④【思路点拨】本题考查一元二次方程根的判断,根据一元二次方程根的判别式及根的定义以及求根公式逐个判断排除.【解题过程】解:①若a+b+c=0,则x=1是方程ax2+bx+c=0的解,故①正确;②若c是方程ax2+bx+c=0的一个根,∴ac2+bc+c=0∴当c≠0时,有ac+b+1=0成立;,故②不正确;③∵方程ax2+bx+c=0(a≠0)两根为x1,x2且满足x1≠x2≠0,∴Δ=b2―4ac≥0,令x1=x2=∴方程cx2+bx+a=0(c≠0)有两个实数根,令两根分别为x′1,x′2∴x′1===1x2,x′2===1x1,∴方程cx2+bx+a=0(c≠0),必有实根1x1,1x2,故③正确;④若x0是一元二次方程ax2+bx+c=0的根,则由求根公式可得:x0=∴2ax0+b=±∴b2―4ac=(2ax0+b)2,故④正确.故正确的有①③④,故选:C.9.(22-23九年级下·重庆渝中·阶段练习)根据绝对值的定义可知|x|=x(x≥0)―x(x<0),下列结论正确的个数有()①化简|a|+|b|+|c|一共有8种不同的结果;②|x +3|+|2―x |的最大值是5;③若a n =|3n ―19|,S n =a 1+a 2+⋅⋅⋅+a n (n 为正整数),则当S n =1327时,n =35;④若关于x 的方程|13x 2―23x ―83|=x +b 有2个不同的解,其中b 为常数,则―4<b <2或b >3312A .4个B .3个C .2个D .1个【思路点拨】由|a |、|b |、|c |的结果分别有2种,则|a|+|b|+|c|的结果共有2×2×2=8种,可判断①;根据x 的取值,化简运算|x +3|+|2―x |即可判断②;根据【解题过程】解:∵ |a |、|b |、|c |的结果分别有2种,∴ |a|+|b|+|c|的结果共有2×2×2=8种,故①正确;当x >2时,|x +3|+|2―x |=x +3+x ―2=2x +1,当0≤x ≤2时,|x +3|+|2―x |=x +3+2―x =5,当―3≤x <0时,|x +3|+|2―x |=3―x +2―x =5―2x ,当x <―3时,|x +3|+|2―x |=―x ―3+2―x =―2x ―1,故②错误;∵n 是正整数,∴a n =|3n ―19|=19―3n,1≤n ≤63n ―19,n ≥7 ,S 6=16+13+10+7+4+1=51,S n =51+(2+3n―19)(n―6)2,n ≥7,当n =35时,S n =51+(2+3×35―19)×(35―6)2=51+1276=1327,故③正确;|13x 2―23x ―83|=2―23x ―83,x ≤―2或x ≥413x 2+23x +83,―2<x <4 ,当x ≤―2或x ≥4时,13x 2―23x ―83=x +b ,∴13x 2―53x ―83―b =0,∵方程有2个不同的解,Δ=b 2―4ac =――4×13×―83―b >0,解得:b >―5712,当―2<x <4时,―13x 2+23x +83=x +b ,∴―13x 2―13x +83―b =0,∵方程有2个不同的解,Δ=b 2―4ac =――4××―b >0,解得:b <3312,故④错误;综上,正确的有①③,故选:C .10.(22-23八年级下·浙江绍兴·期末)空地上有一段长为a 米的旧墙MN ,利用旧墙和木栏围成一个矩形菜园(如图1或图2),已知木栏总长为40米,所围成的菜园面积为S .下列说法错误的是( )A .若a =16,S =196,则有一种围法B .若a =20,S =198,则有一种围法C .若a =24,S =198,则有两种围法D .若a =24,S =200,则有一种围法【思路点拨】分两种情况讨论:,图2围法,设矩形菜园垂直于墙的边为x 米,分别表示矩形的长,再利用矩形面积列方程,解方程,注意检验x 的范围,从而可得答案.【解题过程】解:设矩形菜园的宽为x 米,则长为(40―2x )米,∴S =x (40―2x )=―2x 2+40x,当a =16时,采用图1围法,则此时12≤x <20,当S=196时,―2x2+40x=196,解得:x1=10+2=10―此时都不符合题意,采用图2围法,如图,此时矩形菜园的宽为x米,即AB=CD=x,则AD+BC=40―2x+16,则BC=28―x,所以长为(28―x)米,结合28―x>16可得0<x<12,∴x(28―x)=196,解得:x1=x2=14,经检验不符合题意,综上:若a=16,S=196,,则没有围法,故A符合题意;设矩形菜园的宽为x米,则长为―2x)米,∴S=x(40―2x)=―2x2+40x,当a=20时,采用图1围法,则此时10≤x<20,当S=198时,―2x2+40x=198,解得:x1=11,x2=9,经检验x=11符合题意;采用图2围法,如图,此时矩形菜园的宽为x米,即AB=CD=x,则AD+BC=40―2x+20,则BC=30―x,所以长为(30―x)米,结合30―x>20可得0<x<10,∴x(30―x)=198,解得:x1=15+x2=15―经检验x=15―综上:若a=20,S=198,则有两种围法,故B不符合题意;设矩形菜园的宽为x米,则长为(40―2x)米,∴S=x(40―2x)=―2x2+40x,当a=20时,采用图1围法,则此时10≤x<20,当S=198时,―2x2+40x=198,解得:x1=11,x2=9,经检验都符合题意;采用图2围法,如图,此时矩形菜园的宽为x米,即AB=CD=x,则AD+BC=40―2x+24,则BC=32―x,所以长为(32―x)米,结合32―x>24可得0<x<8,∴x(32―x)=198,解得:x1=16+x2=16―经检验都不符合题意,若a=24,S=198,则有两种围法,C不符合题意,设矩形菜园的宽为x米,则长为(40―2x)米,∴S=x(40―2x)=―2x2+40x,当a=20时,采用图1围法,则此时10≤x<20,当S=200时,―2x2+40x=200,解得:x1=x2=10,经检验符合题意;采用图2围法,如图,此时矩形菜园的宽为x米,即AB=CD=x,则AD+BC=40―2x+24,则BC=32―x,所以长为(32―x)米,结合32―x>24可得0<x<8,∴x(32―x)=200,解得:x1=16+2=16―经检验都不符合题意,综上所述,若a=24,S=200,则有一种围法,D不符合题意;故选A.评卷人得分二、填空题(本大题共5小题,每小题3分,满分15分)11.(23-24九年级上·四川凉山·阶段练习)已知关于x的一元二次方程m(x―ℎ)2―k=0(m,ℎ,k均为常数,且m≠0)的解是x1=2,x2=5,则关于x的一元二次方程m(x―ℎ+3)2=k的解是.【思路点拨】的解为y1=2,y2=5,解方程即可本题考查同解方程,涉及换元法,令x+3=y,由题意得到(y―ℎ)2=km得到答案,读懂题意,由同解方程求解是解决问题的关键.【解题过程】解:∵关于x的一元二次方程m(x―ℎ)2―k=0(m,ℎ,k均为常数,且m≠0)的解是x1=2,x2=5,即(x―ℎ)2=k的解为x1=2,x2=5;m令x+3=y,∴关于x的一元二次方程m(x―ℎ+3)2=k化为m(y―ℎ)2=k,∵(x―ℎ)2=k的解为x1=2,x2=5,m∴(y―ℎ)2=km的解为y1=2,y2=5,即x+3=2或x+3=5,∴x1=―1,x2=2,∴关于x的一元二次方程m(x―ℎ+3)2=k的解是x1=―1,x2=2,故答案为:x1=―1,x2=2.12.(23-24九年级上·湖南岳阳·期中)在京珠高速公路上行驶着一辆时速为108千米的汽车,突然发现前面有情况,紧急刹车后又滑行30米才停车.刹车后汽车滑行10米时用了秒.【思路点拨】本题考查一元一次方程及一元二次方程的应用,是匀减速运动的问题,速度应为平均速度,基本等量关系:平均速度×时间=路程,列方程并解方程即可解决,注意速度单位的转化和题目的问题相符.【解题过程】解:时速为108千米=30米/秒,设紧急刹车后又滑行30米需要时间为x秒,则30+02⋅x=30,解得:x=2.平均每秒减速=(30―0)÷2=15(米/秒);设刹车后汽车滑行10米时用了t秒,依题意列方程:30+(30―15t)2⋅t=,解方程得x1=x2=>2(不合题意,舍去),即x=故答案为:x=13.(23-24九年级上·重庆江津·期末)如果关于x的一元二次方程x2+4x+m+2=0有实数根,且关于y的分式方程my+1y―3=5+23―y有正整数解,那么符合条件的所有整数m的和为.【思路点拨】本题考查了一元二次方程根的判别式,解分式方程,利用一元二次方程根的判别式,得到关于m的一元一次不等式,解之得到m的取值范围,解分式方程得到分式方程的解,再由分式方程有正整数解得到m的值,结合m取值范围确定符合条件的所有整数m,将其相加即可求解,由一元二次方程和分式方程得到符合条件的所有整数m是解题的关键.【解题过程】解:∵关于x的一元二次方程x2+4x+m+2=0有实数根,∴Δ=16―4(m+2)≥0,解得m≤2,解分式方程my+1y―3=5+23―y得,y=185―m(m≠5),∵关于y的分式方程my+1y―3=5+23―y有正整数解,∴5―m=1,2,3,6,9,18,解得m=4,3,2,―1,―4,―13,∵y―3≠0,∴185―m≠3,∴m≠―1,又∵m≤2,∴符合条件的整数m有2,―4,―13,∴为2+(―4)+(―13)=―15,故答案为:―15.14.(23-24九年级上·湖南湘西·阶段练习)已知关于x的一元二次方程(2n―mn)x2+2(m―n)x―2m+mn=0有两个相等的实数根,那么1m +1n的值为.【思路点拨】本题考查了一元二次方程判别式,根据题意得b2―4ac=[2(m―n)]2―4(2n―mn)(―2m+mn)=0,整理可得(m+n)2=mn(2n―mn+2m),两边同时除m2n2得12×(m+n)2m2n2+12=1m+1n,由1m+1n=m+nmn,通过换元法即可求解.【解题过程】解:由题意得:b2―4ac=[2(m―n)]2―4(2n―mn)(―2m+mn)=0化简得:(m―n)2=mn(2―m)(n―2)∴(m+n)2―4mn=mn(2n―4―mn+2m)(m+n)2―4mn=2mn2―4mn―m2n2+2m2n(m+n)2=2mn2―m2n2+2m2n(m+n)2=mn(2n―mn+2m)两边同时除m2n2得:(m+n)2m2n2=2m―1+2n两边同时除2得:12×(m+n)2m2n2+12=1m+1n∵1 m +1n=m+nmn令t=m+nmn,∴1 2×(m+n)2m2n2+12=1m+1n可转化为12×t2+12=t,化简得:t2―2t+1=0,即(t―1)2=0,解得:t=1,∴1 m +1n=m+nmn=1,故答案为:1.15.(23-24八年级下·浙江杭州·阶段练习)若关于x的一元二次方程(x―2)(x―3)=m有实数根x1,x2,且x1≠x2,有下列结论:①m≥―14;②若x1=1,则x2=4;③关于x的方程(x―3)(x―4)=m的根为x1―1,x2―1;④关于x的方程(x―x1)(x―x2)+m=0的根为2,3.其中正确结论的有.【思路点拨】本题考查的是一元二次方程的解的含义,根的判别式的应用,根与系数的关系,一元二次方程的解法,理解题意是解本题的关键,把方程化为一般形式结合判别式可判定①,把方程的解代入原方程可判定②,结合整体思想可判定③,利用根与系数的关系把(x―x1)(x―x2)+m=0变形,再解方程可判定④,从而可得答案.【解题过程】解:①(x―2)(x―3)=m化为一般形式为x2―5x+6―m=0,∵原方程有实数根x1、x2,且x1≠x2,∴Δ=b2―4ac=(―5)2―4(6―m)>0解得:m>―14,故①错误,∵关于x的一元二次方程(x―2)(x―3)=m有实数根x1、x2,当x1=1,则m=2,∴方程为x2―5x+4=0,解得:x1=1,x2=4,故②正确;∵关于x的一元二次方程(x―2)(x―3)=m有实数根x1,x2,且x1≠x2,而(x―3)(x―4)=m可化为:[(x―1)―2][(x―1)―3]=m,∴x―1=x1,x―1=x2,∴x=x1+1或x=x2+1,故③错误;∵(x―2)(x―3)=m化为一般形式为x2―5x+6―m=0,∵原方程有实数根x1、x2,且x1≠x2,∴x1+x2=5,x1x2=6―m,∵(x―x1)(x―x2)+m=x2―(x1+x2)x1+m+x1x2=x2―5x+m+6―m=x2―5x+6,∴x2―5x+6=0,解得:x=2或x=3,故④正确,故答案为:②④评卷人得分三、解答题(本大题共8小题,满分55分)16.(6分)(22-23八年级上·上海青浦·期末)解方程:(1=2;(2)2xx2―2x―3―1x―3=1;(3)2x2―=0【思路点拨】(1)移项后两边平方得出x+2=4++8―x,求出x―5=x2―10x+25=4(8―x),求出x,再进行检验即可;(2)观察可得最简公分母是(x―3)(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解;(3)令t=2x2―1―=0,代入原方程,得t2―3t+2=0,所以t1=2,t2=1,然后分两种情况分别解方程即可.【解题过程】(1=2=2+两边平方得,x+2=4++8―x,合并同类项得,2x―10=∴x―5=两边平方得,x2―10x+25=4(8―x),整理得,x2―6x―7=0,∴(x+1)(x―7)=0,解得:x1=―1,x2=7,经检验,x1=―1,不是原方程的解,∴原方程的解为:x=7.(2)2xx2―2x―3―1x―3=1解:方程两边同时乘以(x―3)(x得,2x―(x+1)=x2―2x―3整理得,x2―3x―2=0,解得,x==∴x1=x2=经检验,x1=x2=(x―3)(x+1)≠0,∴原方程的根为:x1=x2=(3)2x2―=0解:2x2―1―+2=0令t=t2―3t+2=0,∴(t―2)(t―1)=0,解得:t1=2,t2=1,当t1=2=2,即:2x2―1=4,∴x2=52,解得:x1=―x2=当t2=1=1,即:2x2―1=1,∴x2=1,解得:x3=―1,x4=1,经检验x1,x2,x3,x4都为原方程的解∴原方程的解为:x1=―x2=x3=―1,x4=1.17.(6分)(22-23九年级上·福建龙岩·阶段练习)已知关于x的方程(2m―1)x2―(2m+1)x+1=0.(1)求证:不论m为何值,方程必有实数根;(2)当m为整数时,方程是否有有理根?若有求出m的值,若没有请说明理由.【思路点拨】(1)①当2m―1=0时,方程为一元一次方程,即可求解;②当2m―1≠0时,方程为二元一次方程,由一元二次方程根的判别式:Δ>0时,方程有两个不相等的实数根;Δ=0时,方程有两个相等的实数根;Δ<0时,方程有无的实数根;据此进行求解即可.(2)①当2m―1=0时,即:m=12,即可求解;②当2m―1≠0时,当m为整数时,假设方程有有理根,则需满足:Δ=(2m―1)2+4是完全平方数,设(2m―1)2+4=n2(n为整数),则有(2m―1+n)(2m―1―n) =―4,即可求解.∴2m―1+n=12m―1―n=―4或2m―1+n=―12m―1―n=4或2m―1+n=22m―1―n=―2或2m―1+n=―22m―1―n=2,【解题过程】(1)解:由题意得①当2m―1=0时,即:m=12,方程为一元一次方程:―2x+1=0,此时方程必有实数根;②当2m―1≠0时,即:m≠12,此时方程为一元二次方程,a=2m―1,b=―(2m+1),c=1,∴Δ=[―(2m+1)]2―4(2m―1)=4m 2―4m +5=(2m ―1)2+4,∵(2m ―1)2≥0,∴(2m ―1)2+4>0,∴Δ>0,故不论m 为何值,方程必有实数根;综上所述:不论m 为何值,方程必有实数根.(2)解:当m 为整数时,方程没有有理根,理由如下:①当2m ―1=0时,即:m =12,方程为一元一次方程,方程有有理根,∵ m 为整数,∴此情况不存在;②当2m ―1≠0时,当m 为整数时,假设方程有有理根,则需满足:Δ=(2m ―1)2+4是完全平方数,设(2m ―1)2+4=n 2(n 为整数),则有(2m ―1+n )(2m ―1―n )=―4∴ 2m ―1+n =12m ―1―n =―4 或2m ―1+n =―12m ―1―n =4 或2m ―1+n =22m ―1―n =―2 或2m ―1+n =―22m ―1―n =2 ,解得:m =―14或m =12,此时与m 为整数矛盾,∴当m 为整数时,方程没有有理根;综上所述:当m 为整数时,方程没有有理根.18.(6分)(23-24八年级上·山东德州·阶段练习)阅读材料:200多年前,数学王子高斯用他独特的方法快速计算出1+2+3+⋯+100的值.我们从这个算法中受到启发,用下面方法计算数列1,2,3,…,n ,…的前n 项和:由1+2+⋯+n ―1+n n +n ―1+⋯+2+1(n +1)+(n +1)+⋯+(n +1)+(n +1).可知1+2+3+⋯+n=(n+1)×n2应用以上材料解决下面问题:(1)有一个三角点阵(如图),从上向下数有无数多行,其中第一行有1个点,第二行有2个点,…,第n 行有n个点,⋯.若该三角点阵前n行的点数和为325,求n的值.(2)在第一问的三角点阵图形中,前n行的点数和能是900吗?如果能,求出n;如果不能,说明理由.(3)如果把上图中的三角点阵中各行的点数依次换为3,6,9,…,3n,…,前n行的点数和能是900吗?如果能,求出n;如果不能,说明理由.【思路点拨】(1)直接由所给公式列一元二次方程求解即可;(2)由所给公式列方程整理后求解,根据n为正整数判断即可;(3)根据题意列方程,提公因数3后利用所给公式和一元二次方程的解法求解即可.【解题过程】=325,(1)解:根据题意,得1+2+3+…+n=(n+1)×n2即n2+n―650=0,解得n1=25,n2=―26(负值舍去),∴n的值为25;(2)解:不能,理由为:=900得n2+n―1800=0,由1+2+3+…+n=(n+1)×n2∵Δ=1+4×1800=7201>0,∴n=∵n∴不存在n值,使前n行的点数和是900.即在第一问的三角点阵图形中,前n行的点数不能是900;(3)解:能,n =24,理由为:由3+6+9+…+3n =900得3(1+2+3+…+n)=900,则1+2+3+…+n =(n+1)×n2=300,∴n 2+n ―600=0,解得n 1=24,n 2=―25(负值舍去),∴当n =24时,前n 行的点数和是900.19.(6分)(22-23八年级下·重庆北碚·期末)甲、乙两工程队共同承建某高速铁路桥梁工程,计划每天各施工6米.已知甲乙每天施工所需成本共108万元.因地质情况不同,甲每合格完成1米桥梁施工成本比乙每合格完成1米的桥梁施工成本多2万元.(1)分别求出甲,乙每合格完成1米的桥梁施工成本;(2)实际施工开始后,甲每合格完成1米隧道施工成本增加16a 万元,且每天多挖124a .乙每合格完成1米隧道施工成本增加13a 万元,且每天多挖18a 米.若最终每天实际总成本比计划多24+112a 万元,求a 的值.【思路点拨】(1)设乙每合格完成1米的桥梁施工成本为x 万元,则甲每合格完成1米桥梁施工成本为(x +2)万元,根据题意列方程即可求解;(2)根据题意分别表示出甲、乙每天的实际工作量,实际成本,根据数量关系列方程即可求解.【解题过程】(1)解:设乙每合格完成1米的桥梁施工成本为x 万元,则甲每合格完成1米桥梁施工成本为(x +2)万元,∴6x +6(x +2)=108,解得,x =8,∴甲每合格完成1米桥梁施工成本为10万元,乙每合格完成1米的桥梁施工成本为8万元.(2)解:由(1)可知,甲每合格完成1米桥梁施工成本为10万元,乙每合格完成1米的桥梁施工成本为8万元,∴实际施工开始后,甲每合格完成1米隧道施工成本增加16a 万元,则甲每合格完成1米实际成本为10+16a万元,且每天多挖124a ,则甲每天实际完成量为6×1+124a =6+14a 米,乙每合格完成1米隧道施工成本增加13a 万元,则乙每合格完成1米实际成本为8+13a 万元,且每天多挖18a 米,则乙每天实际完成量为6+18a 米,终每天实际总成本比计划多24+112a 万元,则最中每天的实际总成本为108+24+112a =132+112a万元,∴10+16a×6+14a+8+13a×6+18a=132+112a,整理得,a2+12a―288=0,解得,a1=12,a2=―24(不符合题意,舍去),∴a的值为12.20.(6分)(22-23九年级下·重庆沙坪坝·开学考试)正月十五是中华民族传统的节日——元宵节,家家挂彩灯、户户吃汤圆已成为世代相沿的习俗.位于北关古城内的盼盼手工汤圆店,计划在元宵节前用21天的时间生产袋装手工汤圆,已知每袋汤圆需要0.3斤汤圆馅和0.5斤汤圆粉,而汤圆店每天能生产450斤汤圆馅或300斤汤圆粉(每天只能生产其中一种).(1)若这21天生产的汤圆馅和汤圆粉恰好配套,且全部及时加工成汤圆,则总共生产了多少袋手工汤圆?(2)为保证手工汤圆的最佳风味,汤圆店计划把达21天生产的汤圆在10天内销售完毕.据统计,每袋手工汤圆的成本为13元,售价为25元时每天可售出225袋,售价每降低2元,每天可多售出75袋.汤圆店按售价25元销售2天后,余下8天进行降价促销,第10天结束后将还未售出的手工汤圆以15元/袋的价格全部卖给古城小吃店,若最终获利40500元,则促销时每袋应降价多少元?【思路点拨】(1)设总共生产了a袋手工汤圆,利用这21天生产的汤圆馅和汤圆粉恰好配套做等量关系列出方程即可;(2)设促销时每袋应降价x元,利用最终获利40500元做等量关系列出方程即可.【解题过程】(1)设总共生产了a袋手工汤圆,依题意得,0.3a450+0.5a300=21解得a=9000,经检验a=9000是原方程的解,答:总共生产了9000袋手工汤圆(2)设促销时每袋应降价x元,当刚好10天全部卖完时,依题意得,225×2×(25―13)+8(25―13―x)225+752x=40500整理得:x2―6x+45=0Δ=62―4×45<0,∴方程无解∴10天不能全部卖完∴第10天结束后将还未售出的手工汤圆以15元/袋的价格全部卖给古城小吃店的利润为(15―13)9000―2×225―8225+752x =12600―600x∴依题意得,225×2×(25―13)+8(25―13―x )225+752x +12600―600x =40500解得x 1=1,x 2=3∵要促销∴x =3即促销时每袋应降价3元.21.(8分)(23-24九年级上·福建泉州·期中)阅读材料,解答问题:已知实数m ,n 满足m 2―m ―1=0,n 2―n ―1=0,且m ≠n ,则m ,n 是方程x 2―x ―1=0的两个不相等的实数根,由根与系数的关系可知m +n =1,mn =―1.根据上述材料,解决以下问题:(1)直接应用:已知实数a ,b 满足:a 2―5a +1=0,b 2―5b +1=0且a ≠b ,则a +b =______,ab =______;(2)间接应用:已知实数m ,n 满足:2m 2―7m +10,n 2―7n +2=0,且mn ≠1,求2mn+2mn+3n+1的值.(3)拓展应用:已知实数p ,q 满足:p 2―2p =3―t ,12q 2―q =12(3―t )且p ≠q ,求q 2+1(2p +4―t )的取值范围.【思路点拨】本题考查一元二次方程根与系数的关系的应用(1)根据根与系数的关系即可求解;(2)先验证m ≠0,再在2m 2―7m +1=0两边同时除以m 2,得1m ,n 是一元二次方程x 2―7x +2=0的两个不等实数根,求出1m +n =7,1m ⋅n =2,变形代入即可;(3)先根据题意得到p,q 是一元二次方程x 2―2x =3―t 的两个不等实数根,求出p +q =2,pq =t ―3代入q 2+1(2p +4―t )化简,又因为p,q 是方程x 2―2x =3―t 的两个不等实数根,利用根与系数的关系即可求解.【解题过程】解:(1)由题意得:a ,b 是方程x 2―5x +1=0的两个不相等的实数根,由根与系数的关系可知a +b =5,ab =1;解:(2)∵把m =0代入2m 2―7m +1得1≠0不合题意,∴m ≠0∴2m 2―7m +1=0两边同时除以m 2―71m +2=0,又∵n 2―7n +2=0,且mn ≠1,∴可将1m ,n 看作一元二次方程x 2―7x +2=0的两个不等实数根,∴利用根与系数的关系可得出1m +n =7,1m ⋅n =2,∴mn +1=7m,n =2m ,∴2mn+2mn+3n+1=2(mn+1)(mn+1)+3n =2⋅7m7m+3⋅2m =1413.解:(3)将方程12q 2―q =12(3―t)两边同时乘以2得q 2―2q =3―t ,又∵p 2―2p =3―t ,且p ≠q ,∴可将p,q 看作一元二次方程x 2―2x =3―t 的两个不等实数根,∴利用根与系数的关系可得出p +q =2,pq =t ―3,q 2=2q +3―t,∴q 2+1(2p +4―t)=(2q +3―t +1)(2p +4―t)=(2q +4―t)(2p +4―t)=4pq +8q ―2qt +8p +16―4t ―2pt ―4t +t 2=4pq +8(p +q)―2t(p +q)+16―8t +t 2=4(t ―3)+8×2―2t ⋅2+16―8t +t 2=4t ―12+16―4t +16―8t +t 2=t 2―8t +20=(t ―4)2+4∵p,q 是方程x 2―2x =3―t 的两个不等实数根,∴Δ=(―2)2―4(t ―3)=4―4t +12=16―4t >0,∴t <4.∵(t―4)2+4>4,∴q2+1(2p+4―t)>4.22.(8分)(23-24九年级上·江苏连云港·阶段练习)如图,矩形ABCD中,AB=6cm,AD=2cm,动点P,Q分别从点A,C同时出发,点P以2cm/s的速度向终点B移动,点Q以1cm/s的速度向点D移动,当有一点到达终点时,另一点也停止运动,设运动的时间为t(s).(1)当t=2s时,四边形BCQP面积是______cm(2)当t为何值时,点P和点Q距离是4cm?(3)当t为何值时,以点P,Q、D为顶点的三角形是等腰三角形.【思路点拨】(1)当t=2时,可以得出CQ=2cm,AP=4cm,就有PB=6―4=2(cm),由矩形的面积就可以得出四边形BCQP的面积;(2)如图1,作QE⊥AB于E,在Rt△PEQ中,由勾股定理建立方程求出其解即可,如图2,作PE⊥CD于E,在Rt△PEQ中,由勾股定理建立方程求出其解即可;(3)分情况讨论,如图3,当PQ DQ时,如图4,当PD=PQ时,如图5,当PD=QD时,由等腰三角形的性质及勾股定理建立方程就可以得出结论.【解题过程】(1)如图,∵四边形ABCD是矩形,∴AB=CD=6,AD=BC=2,∠A=∠B=∠C=∠D=90°.∵CQ=2cm,AP=4cm,∴PB=6―4=2(cm).∴S=2×2=4(cm2).∴四边形BCQP面积是4cm2,故答案为:4;(2)如图1,作QE⊥AB于E,∴∠PEQ=90°,∵∠B=∠C=90°,∴四边形BCQE是矩形,∴QE=BC=2cm,BE=CQ=t cm.∵AP=2t cm,∴PE=6―2t―t=(6―3t)cm.在Rt△PQE中,由勾股定理,得(6―3t)2+4=16,解得:t=t=.如图2,作QE⊥AB于E,∴∠PEQ=90°.∵∠B=∠C=90°,∴四边形BCQE是矩形,∴QE=BC=2cm,BP=6―2t.∵CQ=t,∴PE=t―(6―2t)=3t―6在Rt△PEQ中,由勾股定理,得(3t―6)2+4=16,解得:t=t=,综上所述:t=(3)如图3,当PQ=DQ时,作QE⊥AB于E,∴∠PEQ=90°,∵∠B=∠C=90°,∴四边形BCQE是矩形,∴QE=BC=2cm,BE=CQ=t(cm).∵AP=2t,∴PE=6―2t―t=6―3t.DQ=6―t.∵PQ=DQ,∴PQ=6―t.在Rt△PQE中,由勾股定理,得(6―3t)2+4=(6―t)2,解得:t=如图4,当PD=PQ时,作PE⊥DQ于E,DQ,∠PED=90°.∴DE=QE=12∵∠A=∠D=90°,∴四边形APED是矩形,∴PE=AD=2cm.DE=AP=2t cm,∵DQ=(6―t)cm,cm.∴DE=6―t2∴2t=6―t,2解得:t=6;5如图5,当PD=QD时,∵AP=2t cm,CQ=t cm,∴DQ=6―t(cm),∴PD=6―t(cm).在Rt△APD中,由勾股定理,得4+4t2=(6―t)2,解得t1=t2=.或综上所述:t=或6523.(9分)(23-24八年级上·四川成都·期末)已知平面直角坐标系中,直线AB图象上有两点A和点B,与x轴交于点C,与y轴交于点D.(1)求直线AB的表达式;(2)若在y轴上有一异于原点的点P,使△PAB为等腰三角形,求点P的坐标;(3)若将线段AB沿直线y=mx+n(m≠0)进行对折得到线段A1B1,且点A1始终在直线OA上,当线段A1B1与x轴有交点时,求n的取值的最大值.【思路点拨】(1)运用待定系数法即可求得答案;(2)设P(0,t),表示出PA2,PB2,AB2,根据△PAB为等腰三角形,则PA=PB或PA=AB或PB=AB,分别建立方程求解即可得出答案;(3)由于点A关于直线y=mx+n的对称点点A1始终在直线OA上,因此直线y=mx+n必与直线OA垂直,当点B1落到x轴上时,n的取值的最大,根据BB1∥OA,求出点B1的坐标,求出BB1和AA1的中点坐标代入y=mx+n(m≠0),即可求得n的最大值.【解题过程】(1)解:设直线AB的解析式为y=kx+b(k≠0),∵A,B,∴2k+b=5k+b=,解得:k=―b=,∴直线AB的解析式为y=―(2)解:设P(0,t),则PA2=(0―2)2+(t―2=t2―+16,PB2=(0―5)2+(t―2=t2―+28,AB2=(2―5)2+2=12,∵△PAB为等腰三角形,∴PA=PB或PA=AB或PB=AB,当PA=PB时,PA2=PB2,∴t2―+16=t2―+28,解得:t=―∴P(0,―;当PA=AB时,PA2=AB2,∴t2―+16=12,∴t=t=∴P+或P当PB=AB时,PB2=AB2,∴t2―+28=12,∵Δ=(―2―4×16=―52<0,∴此方程无解;综上所述,△PAB为等腰三角形时,点P的坐标为(0,―或+或―;(3)解:当点B1落到x轴上时,n的取值的最大,如图,设直线OA的解析式为y=ax,∵点A的坐标为A,∴2a=a=∴直线OA的解析式为y=,∵BB1∥OA,∴直线BB1可设为y=+e,∵点B的坐标为,∴e=解得:e=―∴直线BB1解析式为y=―当y=0―=0,解得:x=4.∴点B1的坐标为(4,0),∴BB1过点A1作A1E⊥x轴于点E,设点A1p,p,则A1E=,OE=p,∴B1E=4―p,根据对称性可知,A1B12=AB2=12,根据勾股定理得:A1E2+B1E2=A1B12,p2+(4―p)2=12,解得:p1=p2=1,∴A1,∴AA1y=mx+n+n=+n=,解得:m=―n=,∴当线段A1B1与x轴有交点时,n的取值的最大值为。
初三九年级数学上册上册数学压轴题测试卷 (word版,含解析)
初三九年级数学上册上册数学压轴题测试卷 (word 版,含解析)一、压轴题1.已知P 是⊙O 上一点,过点P 作不过圆心的弦PQ ,在劣弧PQ 和优弧PQ 上分别有动点A 、B(不与P ,Q 重合),连接AP 、BP . 若∠APQ=∠BPQ.(1)如图1,当∠APQ=45°,AP=1,BP=22时,求⊙O 的半径;(2)如图2,选接AB ,交PQ 于点M ,点N 在线段PM 上(不与P 、M 重合),连接ON 、OP ,若∠NOP+2∠OPN=90°,探究直线AB 与ON 的位置关系,并证明.2.已知,如图1,⊙O 是四边形ABCD 的外接圆,连接OC 交对角线BD 于点F ,延长AO 交BD 于点E ,OE=OF.(1)求证:BE=FD ;(2)如图2,若∠EOF=90°,BE=EF ,⊙O 的半径25AO =ABCD 的面积; (3)如图3,若AD=BC ;①求证:22•AB CD BC BD +=;②若2•12AB CD AO ==,直接写出CD 的长.3.如图,已知矩形ABCD 中,BC =2cm ,AB 3cm ,点E 在边AB 上,点F 在边AD 上,点E 由A 向B 运动,连结EC 、EF ,在运动的过程中,始终保持EC ⊥EF ,△EFG 为等边三角形.(1)求证△AEF ∽△BCE ;(2)设BE 的长为xcm ,AF 的长为ycm ,求y 与x 的函数关系式,并写出线段AF 长的范围;(3)若点H 是EG 的中点,试说明A 、E 、H 、F 四点在同一个圆上,并求在点E 由A 到B 运动过程中,点H 移动的距离.4.如图,Rt △ABC ,CA ⊥BC ,AC =4,在AB 边上取一点D ,使AD =BC ,作AD 的垂直平分线,交AC 边于点F ,交以AB 为直径的⊙O 于G ,H ,设BC =x .(1)求证:四边形AGDH 为菱形;(2)若EF =y ,求y 关于x 的函数关系式;(3)连结OF ,CG .①若△AOF 为等腰三角形,求⊙O 的面积;②若BC =3,则30CG+9=______.(直接写出答案).5.已知抛物线y =﹣14x 2+bx +c 经过点A (4,3),顶点为B ,对称轴是直线x =2.(1)求抛物线的函数表达式和顶点B 的坐标;(2)如图1,抛物线与y 轴交于点C ,连接AC ,过A 作AD ⊥x 轴于点D ,E 是线段AC 上的动点(点E 不与A ,C 两点重合);(i )若直线BE 将四边形ACOD 分成面积比为1:3的两部分,求点E 的坐标;(ii )如图2,连接DE ,作矩形DEFG ,在点E 的运动过程中,是否存在点G 落在y 轴上的同时点F 恰好落在抛物线上?若存在,求出此时AE 的长;若不存在,请说明理由.6.如图 1,抛物线21:4C y ax ax c =-+交x 轴正半轴于点()1,0,A B ,交y 轴正半轴于C ,且OB OC =.(1)求抛物线1C 的解析式;(2)在图2中,将抛物线1C 向右平移n 个单位后得到抛物线2C ,抛物线2C 与抛物线1C 在第一象限内交于一点P ,若CAP ∆的内心在CAB △内部,求n 的取值范围(3)在图3中,M 为抛物线1C 在第一象限内的一点,若MCB ∠为锐角,且3tan MCB ∠>,直接写出点M 横坐标M x 的取值范围___________7.如图1,已知菱形ABCD 的边长为3A 在x 轴负半轴上,点B 在坐标原点.点D 的坐标为33),抛物线y=ax 2+b(a≠0)经过AB 、CD 两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD以每秒1个单位长度的速度沿x轴正方向匀速平移(如图2),过点B作BE⊥CD于点E,交抛物线于点F,连接DF.设菱形ABCD平移的时间为t秒(0<t<3.....)①是否存在这样的t,使DF=7FB?若存在,求出t的值;若不存在,请说明理由;②连接FC,以点F为旋转中心,将△FEC按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x.轴与..抛物线在.....(.包括边界....).时,求t的取值范围.(直接写出答案即可).......成的图形中....x.轴上方的部分围8.如图,在平面直角坐标系中,直线l分别交x轴、y轴于点A,B,∠BAO = 30°.抛物线y = ax2 + bx + 1(a < 0)经过点A,B,过抛物线上一点C(点C在直线l上方)作CD∥BO 交直线l于点D,四边形OBCD是菱形.动点M在x轴上从点E( -3,0)向终点A匀速运动,同时,动点N在直线l上从某一点G向终点D匀速运动,它们同时到达终点.(1)求点D的坐标和抛物线的函数表达式.(2)当点M运动到点O时,点N恰好与点B重合.①过点E作x轴的垂线交直线l于点F,当点N在线段FD上时,设EM = m,FN = n,求n 关于m的函数表达式.②求△NEM面积S关于m的函数表达式以及S的最大值.9.对于线段外一点和这条线段两个端点连线所构成的角叫做这个点关于这条线段的视角.如图1,对于线段AB及线段AB外一点C,我们称∠ACB为点C关于线段AB的视角.如图2,点Q在直线l上运动,当点Q关于线段AB的视角最大时,则称这个最大的“视角”为直线l关于线段AB的“视角”.(1)如图3,在平面直角坐标系中,A(0,4),B(2,2),点C坐标为(﹣2,2),点C 关于线段AB 的视角为 度,x 轴关于线段AB 的视角为 度;(2)如图4,点M 是在x 轴上,坐标为(2,0),过点M 作线段EF ⊥x 轴,且EM =MF =1,当直线y =kx (k ≠0)关于线段EF 的视角为90°,求k 的值;(3)如图5,在平面直角坐标系中,P (3,2),Q (3+1,1),直线y =ax +b (a >0)与x 轴的夹角为60°,且关于线段PQ 的视角为45°,求这条直线的解析式.10.()1尺规作图1:已知:如图,线段AB 和直线且点B 在直线上求作:点C ,使点C 在直线上并且使ABC 为等腰三角形.作图要求:保留作图痕迹,不写作法,做出所有符合条件的点C .()2特例思考:如图一,当190∠=时,符合()1中条件的点C 有______个;如图二,当160∠=时,符合()1中条件的点C 有______个.()3拓展应用:如图,AOB 45∠=,点M ,N 在射线OA 上,OM x =,ON x 2=+,点P 是射线OB 上的点.若使点P ,M ,N 构成等腰三角形的点P 有且只有三个,求x 的值.11.在平面直角坐标系xOy 中,对于任意三点A ,B ,C ,给出如下定义:如果矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的覆盖矩形.点A ,B ,C 的所有覆盖矩形中,面积最小的矩形称为点A ,B ,C 的最优覆盖矩形.例如,下图中的矩形A 1B 1C 1D 1,A 2B 2C 2D 2,AB 3C 3D 3都是点A ,B ,C 的覆盖矩形,其中矩形AB 3C 3D 3是点A ,B ,C 的最优覆盖矩形.(1)已知A (﹣2,3),B (5,0),C (t ,﹣2).①当t =2时,点A ,B ,C 的最优覆盖矩形的面积为 ;②若点A ,B ,C 的最优覆盖矩形的面积为40,求直线AC 的表达式;(2)已知点D (1,1).E (m ,n )是函数y =4x(x >0)的图象上一点,⊙P 是点O ,D ,E 的一个面积最小的最优覆盖矩形的外接圆,求出⊙P 的半径r 的取值范围.12.矩形ABCD 中,AB =2,AD =4,将矩形ABCD 绕点C 顺时针旋转至矩形EGCF (其中E 、G 、F 分别与A 、B 、D 对应).(1)如图1,当点G 落在AD 边上时,直接写出AG 的长为 ;(2)如图2,当点G 落在线段AE 上时,AD 与CG 交于点H ,求GH 的长;(3)如图3,记O 为矩形ABCD 对角线的交点,S 为△OGE 的面积,求S 的取值范围.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1) ☉O 的半径是32;(2)AB ∥ON ,证明见解析. 【解析】【分析】(1) 连接AB ,根据题意可AB 为直径,再用勾股定理即可.(2) 连接OA , OB , OQ ,根据圆周角定理可得Q 2APQ,B0Q 2BPO AO ∠=∠∠=∠,从而证出OC AB ⊥,延长PO 交☉0于点R ,则有2OPN QOR ∠=∠,再根据三角形内角和定理求得OQN ∠=90︒得证.【详解】解:(1)连接AB ,在☉0中,o APQ BPQ 45∠=∠=,o APB APQ BPQ 90∴∠=∠+∠=AB ∴是☉0的直径.Rt APB ∴∆在中,22AB AP BP =+AB=3∴∴☉0的半径是32(2)AB//ON证明:连接OA , OB , OQ ,在☉0中, AQ AQ =, BQ BQ =,Q 2APQ,B0Q 2BPO AO ∴∠=∠∠=∠.又APQ BPQ ∠=∠,AOQ BOQ ∴∠=∠.在AOB ∆中,OA OB =, AOQ BOQ ∠=∠,OC AB ∴⊥,即o OCA 90∠=连接OQ ,交AB 于点C在☉0中,OP OQ =OPN OQP.∴∠=∠延长PO 交☉0于点R ,则有2OPN QOR ∠=∠o NOP 2OPN 90∴∠+∠=,又:o NOP NOQ QOR 180∠+∠+∠=,NOQ90O∴∠=NOQ OCA180O∴∠+∠= .AB//ON∴【点睛】本题考查了圆周角定理,勾股定理、等腰三角形的性质以及三角形的内角和定理,是一道综合题,灵活运用相关知识是解题的关键.2.(1)见详解;(2)125;(3)①见详解,②32-6【解析】【分析】(1)如图1中,作OH⊥BD于H.根据等腰三角形的性质以及垂径定理即可;(2)如图2中,作OH⊥BD于H,连接OB,求出AC,BD,根据S四边形ABCD=12•BD•AM+1 2•BD•CM=12•BD•AC即可求解;(3)①如图3中,连接OB,作OH⊥BD于H.利用等腰直角三角形的性质,完全平方公式等知识即可;②如图3中,连接OB,设DM=CM=x,想办法求出BC,DB,在Rt△BCM中,利用勾股定理构建方程即可.【详解】(1)证明:如图1中,作OH⊥BD于H.∵OE=OF,OH⊥EF,∴EH=HF,∴BH=HD,∴BE=DF;(2)解:如图2中,作OH⊥BD于H,连接OB.∵∠EOF=90°,OE=OF,OA=OC,∴∠OEF=∠OAC=45°,∴∠AME=90°,即AC⊥BD,连接OB.设OH=a,∵BE=EF,∴BE=2EH=2OH=2a,在Rt△BOH中,∵OH2+BH2=OB2,∴a2+(3a)2=(25)2,∴a=2或-2(舍弃),∴BD=BE+EF+DF=6a=62,在Rt△AOC中,AC=2AO=210,∴S四边形ABCD=12•BD•AM+12•BD•CM=12•BD•AC=12×210×62=125;(3)①如图3中,连接OB,作OH⊥BD于H.∵OE=OF,OA=OC,∴∠EOH=12∠EOF=12(∠EAC+∠ACO)=12×2∠OAC=∠OAC,∴AC∥OH,∴AC⊥BD,∴∠ABD=∠CAB=∠CDB=45°,∴BM ,DM ,CM=DM ,∴AB•CD+BC 2DM+BM 2+CM 2=(BM+DM )2=BD 2;②如图3中,连接OB ,设DM=CM=x ,∵∠BOC=2∠BDC=90°,∴,∵AB•CD+BC 2=BD 2,AB•CD=AO 2=12,∴12+24=BD 2,∴BD=6(负根已经舍弃),在Rt △BCM 中,∵BC 2=BM 2+CM 2,∴()2=(6-x )2+x 2,∴或∴.【点睛】本题属于圆综合题,考查了垂径定理,等腰三角形的性质,等腰直角三角形的判定和性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.3.(1)详见解析;(2)21y 2x =-,302AF ≤≤;(3)3. 【解析】【分析】(1)由∠A =∠B =90°,∠AFE =∠BEC ,得△AEF ∽△BCE ;(2)由(1)△AEF ∽BCE 得AF AEBE BC =,y x =,即212y x =-+,然后求函数最值;(3)连接FH ,取EF 的中点M ,证MA =ME =MF =MH ,则A 、E 、H 、F 在同一圆上;连接AH ,证∠EFH =30°由A 、E 、H 、F 在同一圆上,得∠EAH =∠EFH =30°,线段AH 即为H 移动的路径,在直角三角形ABH 中,602AH sin AB =︒=,可进一步求AH. 【详解】解:(1)在矩形ABCD 中,∠A =∠B =90°,∴∠AEF +∠AFE =90°,∵EF ⊥CE ,∴∠AEF +∠BEC =90°,∴∠AFE =∠BEC ,∴△AEF ∽△BCE ;(2)由(1)△AEF ∽BEC 得AF AE BE BC =,232y x x -=, ∴2132y x x =-+, ∵2132y x x =-+=213(3)22x --+, 当3x =时,y 有最大值为32, ∴302AF ≤≤; (3)如图1,连接FH ,取EF 的中点M ,在等边三角形EFG 中,∵点H 是EG 的中点,∴∠EHF =90°,∴ME =MF =MH ,在直角三角形AEF 中,MA =ME =MF ,∴MA =ME =MF =MH ,则A 、E 、H 、F 在同一圆上;如图2,连接AH ,∵△EFG 为等边三角形,H 为EG 中点,∴∠EFH =30°∵A 、E 、H 、F 在同一圆上∴∠EAH =∠EFH =30°,如图2所示的线段AH 即为H 移动的路径,在直角三角形ABH 中,3602AH sin AB =︒=, ∵AB =23∴AH =3, 所以点H 移动的距离为3.【点睛】此题主要考查圆的综合问题,会证明三角形相似,会分析四点共圆,会运用二次函数分析最值,会分析最短轨迹并解直角三角形是得分的关键.4.(1)证明见解析;(2)y =18x 2(x >0);(3)①163π或8π或(17)π;②21【解析】【分析】(1)根据线段的垂直平分线的性质以及垂径定理证明AG=DG=DH=AH即可;(2)只要证明△AEF∽△ACB,可得AE EFAC BC=解决问题;(3)①分三种情形分别求解即可解决问题;②只要证明△CFG∽△HFA,可得GFAF=CGAH,求出相应的线段即可解决问题;【详解】(1)证明:∵GH垂直平分线段AD,∴HA=HD,GA=GD,∵AB是直径,AB⊥GH,∴EG=EH,∴DG=DH,∴AG=DG=DH=AH,∴四边形AGDH是菱形.(2)解:∵AB是直径,∴∠ACB=90°,∵AE⊥EF,∴∠AEF=∠ACB=90°,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴AE EFAC BC=,∴124x yx=,∴y=18x2(x>0).(3)①解:如图1中,连接DF.∵GH垂直平分线段AD,∴FA=FD,∴当点D与O重合时,△AOF是等腰三角形,此时AB=2BC,∠CAB=30°,∴AB=833,∴⊙O的面积为163π.如图2中,当AF=AO时,∵AB=22AC BC+=216x+,∴OA=2 16x +,∵AF=22EF AE+=2221182x⎛⎫⎛⎫+⎪ ⎪⎝⎭⎝⎭,∴216x+=2221182x⎛⎫⎛⎫+⎪ ⎪⎝⎭⎝⎭,解得x=4(负根已经舍弃),∴AB=42,∴⊙O的面积为8π.如图2﹣1中,当点C与点F重合时,设AE=x,则BC=AD=2x,AB=2164x+,∵△ACE∽△ABC,∴AC2=AE•AB,∴16=x•2164x+,解得x2=217﹣2(负根已经舍弃),∴AB2=16+4x2=817+8,∴⊙O的面积=π•14•AB2=(217+2)π综上所述,满足条件的⊙O的面积为163π或8π或(217+2)π;②如图3中,连接CG.∵AC=4,BC=3,∠ACB=90°,∴AB=5,∴OH=OA=52,∴AE=32,∴OE=OA﹣AE=1,∴EG=EH2512⎛⎫-⎪⎝⎭212,∵EF=18x2=98,∴FG 21﹣98,AF22AE EF+158,AH22AE EH+30,∵∠CFG=∠AFH,∠FCG=∠AHF,∴△CFG∽△HFA,∴GF CG AF AH=,∴9281582-= ∴CG=5﹣10,=.故答案为【点睛】本题考查圆综合题、相似三角形的判定和性质、垂径定理、线段的垂直平分线的性质、菱形的判定和性质、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用分类讨论的思想思考问题.5.(1)y =﹣14x 2+x +3,顶点B 的坐标为(2,4);(2)(i )点E 的坐标为(85,3)或(125,3);(ii )存在;当点G 落在y 轴上的同时点F 恰好落在抛物线上,此时AE 的长为43. 【解析】【分析】(1)由题意得出21441,43,124b c b ⎧-⨯++=⎪⎪⎨-=⎪⎛⎫⨯-⎪ ⎪⎝⎭⎩,解得1,3,b c =⎧⎨=⎩,得出抛物线的函数表达式为:y =﹣14x 2+x +3=﹣14(x ﹣2)2+4,即可得出顶点B 的坐标为(2,4); (2)(i )求出C (0,3),设点E 的坐标为(m ,3),求出直线BE 的函数表达式为:y =12m --x +462m m --,则点M 的坐标为(4m ﹣6,0),由题意得出OC =3,AC =4,OM =4m ﹣6,CE =m ,则S 矩形ACOD =12,S 梯形ECOM =15182m -,分两种情况求出m 的值即可; (ii )过点F 作FN ⊥AC 于N ,则NF ∥CG ,设点F 的坐标为:(a ,﹣14a 2+a +3),则NF =3﹣(﹣14a 2+a +3)=14a 2﹣a ,NC =﹣a ,证△EFN ≌△DGO (ASA ),得出NE =OD =AC =4,则AE =NC =﹣a ,证△ENF ∽△DAE ,得出NF NE AE AD =,求出a =﹣43或0,当a =0时,点E与点A重合,舍去,得出AE=NC=﹣a=43,即可得出结论.【详解】(1)∵抛物线y=﹣14x2+bx+c经过点A(4,3),对称轴是直线x=2,∴21441, 43,124b cb⎧-⨯++=⎪⎪⎨-=⎪⎛⎫⨯-⎪ ⎪⎝⎭⎩解得1,3, bc=⎧⎨=⎩∴抛物线的函数表达式为:y=﹣14x2+x+3,∵y=﹣14x2+x+3=﹣14(x﹣2)2+4,∴顶点B的坐标为(2,4);(2)(i)∵y=﹣14x2+x+3,∴x=0时,y=3,则C点的坐标为(0,3),∵A(4,3),∴AC∥OD,∵AD⊥x,∴四边形ACOD是矩形,设点E的坐标为(m,3),直线BE的函数表达式为:y=kx+n,直线BE交x轴于点M,如图1所示:则24,3, k nmk n+=⎧⎨+=⎩解得:1,246,2kmmnm-⎧=⎪⎪-⎨-⎪=⎪-⎩,∴直线BE的函数表达式为:y=12m--x+462mm--,令:y=12m--x+462mm--=0,则x=4m﹣6,∴点M的坐标为(4m﹣6,0),∵直线BE将四边形ACOD分成面积比为1:3的两部分,∴点M在线段OD上,点M不与点O重合,∵C(0,3),A(4,3),M(4m﹣6,0),E(m,3),∴OC=3,AC=4,OM=4m﹣6,CE=m,∴S矩形ACOD=OC•AC=3×4=12,S梯形ECOM=12(OM+EC)•OC=12(4m﹣6+m)×3=15182m-,分两种情况:①S ECOMS ACOD梯形矩形=14,即1518212m-=14,解得:m=85,∴点E的坐标为:(85,3);②S ECOMS ACOD梯形矩形=34,即1518212m-=34,解得:m=125,∴点E的坐标为:(125,3);综上所述,点E的坐标为:(85,3)或(125,3);(ii)存在点G落在y轴上的同时点F恰好落在抛物线上;理由如下:由题意得:满足条件的矩形DEFG在直线AC的下方,过点F作FN⊥AC于N,则NF∥CG,如图2所示:设点F的坐标为:(a,﹣14a2+a+3),则NF=3﹣(﹣14a2+a+3)=14a2﹣a,NC=﹣a,∵四边形DEFG与四边形ACOD都是矩形,∴∠DAE=∠DEF=∠N=90°,EF=DG,EF∥DG,AC∥OD,∴∠NEF=∠ODG,∠EMC=∠DGO,∵NF∥CG,∴∠EMC=∠EFN,∴∠EFN=∠DGO,在△EFN和△DGO中,∠NEF=∠ODG,EF=DG,∠EFN=∠DGO,∴△EFN≌△DGO(ASA),∴NE=OD=AC=4,∴AC﹣CE=NE﹣CE,即AE=NC=﹣a,∵∠DAE=∠DEF=∠N=90°,∴∠NEF+∠EFN=90°,∠NEF+∠DEA=90°,∴∠EFN=∠DEA,∴△ENF∽△DAE,∴NE NFAD AE=,即43=214a aa--,整理得:34a2+a=0,解得:a=﹣43或0,当a=0时,点E与点A重合,∴a=0舍去,∴AE=NC=﹣a=43,∴当点G落在y轴上的同时点F恰好落在抛物线上,此时AE的长为43.【点睛】本题是二次函数综合题目,考查了二次函数解析式的求法、二次函数的性质、一次函数解析式的求法、坐标与图形性质、矩形的判定与性质、全等三角形的判定与性质、相似三角形的判定与性质、梯形面积公式等知识;本题综合性强,属于中考压轴题型.6.(1)()221y x=--;(2)1023n<<;(3)552Mx<<【解析】【分析】(1)由题意可得对称轴方程,有二次函数对称性,由A点坐标可求B点坐标,代入解析式可得;(2)根据函数图像平移可得新抛物线解析式,画出图像可得交点P,由题意可得ACB BCP∠>∠,过点C作//l x轴.作PD l⊥,可得ACO PCD∠=∠,设()2,43P t t t -+,由13tan ACD tan PCD ∠=∠=可得关于t 的方程,解得t, 再将P 代入2C 解析式中得n 的值,根据Q,P 在第一象限内得n 的取值范围;(3) 当MCB ∠为直角时,可求直线CB 的解析式为:y=-x+3,直线CM 的解析式为:y=x+3,运用直线与曲线联立,可求CM 与抛物线的交点M 横坐标为:x=5;当MCB ∠为锐角且3tan MCB ∠=时,过点M 作MN CB ⊥于N,则3MN CN=,设M 点坐标为()2,43t t t -+,直线CB 解析式为y=-x+3,可求直线MN 解析式为:253y x t t =+-+,将直线MN 与直线CB 解析式联立可得:N 221515,32222t t t t ⎛⎫-+-+ ⎪⎝⎭, 由两点间距离公式可得2MN = 2213222t t ⎛⎫- ⎪⎝⎭;2CN =2215222t t ⎛⎫- ⎪⎝⎭;由3MN CN =可得:52t =,进而可得满足已知条件的点M 横坐标M x 的取值范围.【详解】解:()1对称轴为422a x a-=-= ()3,0B ∴()0,1C ∴代入()224321y x x x ∴=-+=-- ()()222:21C x n ---()2423x n x =-++CAP ∆的内心I 在CAB △内部,ACB BCP ∴∠>∠∴当ACB BCP ∠=∠时过C 作//l x 轴.作PD l ⊥,ACB BCP ∠=∠90,OCD ∠=45,DCB ∠=,ACO PCD ∴∠=∠13tan ACD tan PCD ∠=∠= 设()2,43P t t t -+ 13PD CD ∴= 3p y DP OC +==214333t t t ∴-++= 113t = 将P 代入2C 解析式中 103n ∴=又P 在第一象限内h AB ∴>2n ∴>1023n ∴<<(3) 552M x <<; 当MCB ∠为直角时,如下图所示:由(1)(2)可得:直线CB 的解析式为:y=-x+3,MCB ∠为直角,C(0,3),∴直线CM 的解析式为:y=x+3,则CM 与抛物线的交点坐标M 横坐标为:2343x x x +=-+,解得:x=5或0(舍去),所以,当MCB ∠为直角时,5M x =;当MCB ∠为锐角且3tan MCB ∠=时,如下图所示:过点M 作MN CB ⊥于N,则3MN CN =,设M 点坐标为()2,43t t t -+, MN CB ⊥,直线CB 解析式为y=-x+3,∴MN 解析式可设:y=x+b,将P ()2,43t t t -+代入解析式可得:b=253t t -+,则直线MN 解析式为:253y x t t =+-+,将直线MN 与直线CB 解析式联立可得:N 点坐标为221515,32222t t t t ⎛⎫-+-+ ⎪⎝⎭,∴2MN =2222215154332222t t t t t t t ⎛⎫⎛⎫+-+-+-+- ⎪ ⎪⎝⎭⎝⎭ = 2213222t t ⎛⎫- ⎪⎝⎭; 2CN = 222215152222t t t t ⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭ =2215222t t ⎛⎫- ⎪⎝⎭; 由3MN CN=可得: 2213221522t t t t --=3; 解得:52t =或0(舍去) ; ∴MCB ∠为锐角,且3tan MCB ∠>时,点M 的横坐标M x 的取值范围为:552M x <<. 【点睛】本题综合考查了二次函数的图像和性质,题目较难,熟练掌握二次函数的图像和性质,运用数形结合解决二次函数综合问题是解题的关键.7.(1)y=−x 2+3;(2)①或⩽t⩽2【解析】【分析】(1)根据已知条件求出AB 和CD 的中点坐标,然后利用待定系数法求该二次函数的解析式;(2)①由D (,3),则平移后坐标为D´(,3),F (t ,-t 2+3);则有DF 2=()2+(-t 2+3-3)2;FB 2=(-t 2+3)2,再根据FB ,即可求得t ;②如图3所示,画出旋转后的图形,认真分析满足题意要求时,需要具备什么样的限制条件,然后根据限制条件列出不等式,求出的取值范围,确定限制条件是解题的关键【详解】(1)由题意得AB 的中点坐标为,0),CD 的中点坐标为(0,3), 分别代入y=ax 2+b 得:3a b 0b 3+=⎧⎨=⎩,解得a 1b 3=-⎧⎨=⎩, ∴y=−x 2+3.(2)①D (3),则平移后坐标为D´(+t ,3),F (t ,-t 2+3);DF2=(−3+t-t)2+(-t2+3-3)2;FB2=(-t2+3)2DF=7FB,则(−3+t-t)2+(-t2+3-3)2=7(-t2+3)2解得:t2=2或5,则t=2或t=5;②如图3所示,依题意作出旋转后的三角形△FE′C′,过C′作MN⊥x轴,分别交抛物线、x轴于点M、点N.观察图形可知,欲使△FE′C′落在指定区域内,必须满足:EE′⩽BE且MN⩾C′N.∵F(t,3−t2),∴EF=3−(3−t2)=t2,∴EE′=2EF=2t2,由EE′⩽BE,得2t2⩽3,解得t6∵3∴C′点的横坐标为3∴3)2,又C′N=BE′=BE−EE′=3−2t2由MN⩾C′N,得32⩾3−2t2,解得t63或t⩽63舍去).∴t63t⩽6 2【点睛】本题是动线型中考压轴题,综合考查了二次函数的图象与性质、待定系数法、几何变换(平移与旋转)、菱形的性质、相似三角形的判定与性质等重要知识点,难度较大,对考生能力要求很高,灵活应用所学知识是解答本题的关键..8.(1)点D的坐标为(32,12),抛物线的解析式为243?1?3y x x=-++;(2)①313n m=+;②233124S m m=-+,S的最大值为316【解析】【分析】(1)由抛物线的解析式为y = ax2 + bx + 1,得到OB=1,根据菱形的性质结合含30度的直角三角形的性质点A、D、C的坐标,再利用待定系数法即可求解;(2)①在Rt △FEA 中,FB=12FA=2,FD=FB+BD=3,根据题意设此一次函数解析式为:n km b =+,求得3m =时,2n FB ==,23m =时,3n FD ==,代入n km b =+,即可求解;②求得NA 33m =-,过N 作NQ ⊥EA ,得到NQ=12NA=332m -,利用面积公式得到S 关于m 的函数表达式,再利用二次函数的性质即可求解.【详解】(1)∵抛物线的解析式为y = ax 2 + bx + 1,∴OB=1,∵∠BAO=30︒,∠BOA=90︒,∴AB=2OB=2,OA=2222AB OB 213-=-=,∠ABO=60︒,∴点A 的坐标为(3,0),又∵四边形OBCD 是菱形,且∠ABO=60︒,∴OD=CD=OB=1,∴△DOB 为等边三角形,∴∠BOD=60︒,∠DOA=30︒,BD=BO=OD=DA=1,延长CD 交OA 于H ,则CH ⊥OA ,∴DH=12OD=12,OH=32,CH=CD+DH=32, ∴点D 的坐标为(32,12),点C 的坐标为(32,32), 将A 30) , C 的坐标为332)代入抛物线的解析式y = ax 2 + bx + 1, 得:33103331422a b a ⎧+=⎪⎨++=⎪⎩,解得:43a b ⎧=-⎪⎨⎪=⎩,∴抛物线的解析式为24 ?1?3y x =-+; (2)①在Rt △FEA 中,∠FAE=30︒,FA=2AB=4,∴FB=12FA=2,FD=FB+BD=3, ∵动点M 、N 同时作匀速直线运动,∴n 关于m 成一次函数,故设此一次函数解析式为:n km b =+,当点M 运动到点O 时,点N 恰好与点B 重合,∴m =2n FB ==,当点M 运动到点A 时,点N 恰好与点D 重合,∴m =3n FD ==,代入n km b =+,得:23b b⎧=+⎪⎨=+⎪⎩,解得:31k b ⎧=⎪⎨⎪=⎩,∴此一次函数解析式为:1n =+; ②NA=FA-FN=4- 33n m =-, 过N 作NQ ⊥EA ,则NQ=12NA=32,∴2133226124S m m m m ⎛⎫=-=-+ ⎪ ⎪⎝⎭,∵012-<,当32m ==⎝⎭时,在0m ≤≤范围内,∴132226216S ⎛⎫=⨯-⨯= ⎪ ⎪⎝⎭最大.【点睛】本题主要考查了二次函数的综合应用,涉及待定系数法、菱形的性质、等边三角形的判定和性质、二次函数的性质、函数图象的交点等.本题涉及知识点较多,综合性较强,难度较大.9.(1)45,45;(2)k=33±;(3)y=3x+3﹣2【解析】【分析】(1)如图3,连接AC,则∠ABC=45°;设M是x轴的动点,当点M运动到点O时,∠AOB=45°,该视角最大,即可求解;(2)如图4,以点M为圆心,长度1为半径作圆M,当圆与直线y=kx相切时,直线y=kx (k≠0)关于线段EF的视角为90°,即∠EQF=90°,则MQ⊥直线OE,OQ=1,OM=2,故直线的倾斜角为30°,即可求解;(3)直线PQ的倾斜角为45°,分别作点Q、P作x轴、y轴的平行线交于点R,RQ=RP=1,以点R为圆心以长度1为半径作圆R,由(1)知,设直线与圆交于点Q′,由(1)知,当PQ′Q为等腰三角形时,视角为45°,则QQ=2RQ=2,故点Q′(3-1,1),即可求解.【详解】(1)如图3,连接AC,则∠ABC=45°;设M是x轴的动点,当点M运动到点O时,∠AOB=45°,该视角最大,由此可见:当△ABC为等腰三角形时,视角最大;故答案为:45,45;(2)如图4,以点M为圆心,长度1为半径作圆M,当圆与直线y=kx相切时,直线y=kx(k≠0)关于线段EF的视角为90°,即∠EQF=90°,则MQ⊥直线OE,MQ=1,OM=2,故直线的倾斜角为30°,故k=3±(3)直线PQ的倾斜角为45°,分别作点Q、P作x轴、y轴的平行线交于点R,RQ=RP=1,以点R为圆心以长度1为半径作圆R,由(1)知,设直线与圆交于点Q′,由(1)知,当PQ′Q为等腰三角形时,视角为45°,则QQ=2RQ=2,故点Q′(3﹣1,1),直线y=ax+b(a>0)与x轴的夹角为60°,则直线的表达式为:y=3x+b,将点Q′的坐标代入上式并解得:直线的表达式为:y=3x+3﹣2【点睛】本题考查的是一次函数综合运用,涉及到解直角三角形、圆的基本知识等,此类新定义题目,通常按照题设的顺序求解,一般比较容易.10.(1) 见解析;(2) 2,2 ;(3)0或222-或222x<<.【解析】【分析】()1根据等腰三角形的定义,用分类讨论的思想解决问题即可;()2通过画图分析可得,当190∠=时,符合()1中条件的点C有2个,当160∠=时,符合()1中条件的点C有2个;()3分三种情形讨论求解即可.【详解】解:()1如图1中,点1C,2C,3C,4C即为所求.()2如图一,当190∠=时,符∠=时,符合()1中条件的点C有2个;如图二,当160合()1中条件的点C有2个,当∠1=90°或∠1=60°时,符合条件的点C都是在点B左右各一个,当∠1=60°时,符合条件的点C如图所示:故答案为2,2.()3①如图31-中,当x 0=时,当PM PN =时,有点1P ,当ON OP =时,有点2P ,当NO NP =时,有点3P ,此时有3个P 点.②如图32-中,当N 与OB 相切于点1P 时,1OP N 是等腰直角三角形,1ON 2NP 22∴==,OM ON MN 222∴=-=,此时有3个P 点.③如图33-中,当M 经过点O 时,此时只有2个P 点,如图34-中,M 与OB 相交时,此时有3个P 点,如图35-中,当M与OB相切时,只有2个P点.此时OM22=,综上所述,当2x22<<3个P点.∴满足条件的x的值为0或222或2x22<<【点睛】本题考查等腰三角形的判定和性质,尺规作图,直线与圆的位置关系等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.11.(1)35,5784y x=+;(2172r≤.【解析】【分析】(1)①由矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的覆盖矩形.点A,B,C的所有覆盖矩形中,面积最小的矩形称为点A,B,C的最优覆盖矩形,得出最优覆盖矩形的长为:2+5=7,宽为3+2=5,即可得出结果;②由定义可知,t=-3或6,即点C坐标为(-3,-2)或(6,-2),设AC表达式为y=kx+b,代入即可求出结果;(2)OD所在的直线交双曲线于点E,矩形OFEG是点O,D,E的一个面积最小的最优覆盖矩形,OD所在的直线表达式为y=x,得出点E的坐标为(2,2),⊙P的半径最小2,当点E的纵坐标为1时,⊙P的半径最大r=172,即可得出结果.【详解】(1)①∵A(﹣2,3),B(5,0),C(2,﹣2),矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的覆盖矩形.点A,B,C的所有覆盖矩形中,面积最小的矩形称为点A,B,C的最优覆盖矩形,∴最优覆盖矩形的长为:2+5=7,宽为3+2=5,∴最优覆盖矩形的面积为:7×5=35;②∵点A,B,C的最优覆盖矩形的面积为40,∴由定义可知,t=﹣3或6,即点C坐标为(﹣3,﹣2)或(6,﹣2),设AC表达式为y=kx+b,∴3223k bk b=-+⎧⎨-=-+⎩或3226k bk b=-+⎧⎨-=+⎩∴513kb=⎧⎨=⎩或5874kb⎧=-⎪⎪⎨⎪=⎪⎩∴y=5x+13或5784y x=-+;(2)①OD所在的直线交双曲线于点E,矩形OFEG是点O,D,E的一个面积最小的最优覆盖矩形,如图1所示:∵点D(1,1),∴OD所在的直线表达式为y=x,∴点E的坐标为(2,2),∴OE=222+2=22,∴⊙P的半径最小r=2,②当DE∥x轴时,即:点E的纵坐标为1,如图2所示:∵点D (1,1).E (m ,n )是函数y =4x (x >0)的图象上一点 ∴1=4x ,解得x =4, ∴OE ═224+1=17, ∴⊙P 的半径最大r =17, ∴1722r ≤≤. 【点睛】 本题是圆的综合题目,考查了矩形的性质、勾股定理、待定系数法求直线的解析式、坐标与图形性质、反比例函数等知识;本题综合性强,有一定难度.12.(1)4﹣23;(2)32;(3)4﹣5≤S≤4+5 【解析】【分析】(1)在Rt △DCG 中,利用勾股定理求出DG 即可解决问题;(2)首先证明AH =CH ,设AH =CH =m ,则DH =AD ﹣HD =4﹣m ,在Rt △DHC 中,根据CH 2=CD 2+DH 2,构建方程求出m 即可解决问题;(3)如图,当点G 在对角线AC 上时,△OGE 的面积最小,当点G 在AC 的延长线上时,△OE′G′的面积最大,分别求出面积的最小值,最大值即可解决问题.【详解】解:(1)如图1中,∵四边形ABCD 是矩形,∴BC =AD =CG =4,∠D =90°,∵AB =CD =2,∴DG 22CD CG -2242-3,∴AG =AB ﹣BG =4﹣3故答案为:4﹣3.(2)如图2中,由四边形CGEF是矩形,得到∠CGE=90°,∵点G在线段AE上,∴∠AGC=90°,∵CA=CA,CB=CG,∴Rt△ACG≌Rt△ACB(HL).∴∠ACB=∠ACG,∵AB∥CD∴∠ACG=∠DAC,∴∠ACH=∠HAC,∴AH=CH,设AH=CH=m,则DH=AD﹣AH=5﹣m,在Rt△DHC中,∵CH2=DC2+DH2,∴m2=22+(4﹣m)2,∴m=52,∴AH=52,GH22AH AG-22522⎛⎫-⎪⎝⎭32.(3)在Rt△ABC中,2225AC AB BC=+=,152OC AC,由题可知,G点在以C点为圆心,BC为半径的圆上运动,且GE与该圆相切,因为GE=AB 不变,所以O到直线GE的距离即为△OGE的高,当点G在对角线AC上时,OG最短,即△OGE的面积最小,最小值=12×OG×EG=12×2×(4545当点G在AC的延长线上时,OG最长,即△OE′G′的面积最大.最大值=12×E′G′×OG′=12×2×(55综上所述,455【点睛】本题考查求一点到圆上点距离的最值、矩形的性质、全等三角形的判定和性质、旋转变换、勾股定理.(1)比较简单,掌握勾股定理和旋转的性质是解决此问的关键;(2)能表示Rt△DHC三边,借助方程思想是解决此问的关键;(2)理解线段GE的运动轨迹,得出面积最小(大)时G点的位置是解决此问的关键.。
九年级数学上册数学压轴题练习(Word版 含答案)
九年级数学上册数学压轴题练习(Word 版 含答案)一、压轴题1.已知P 是⊙O 上一点,过点P 作不过圆心的弦PQ ,在劣弧PQ 和优弧PQ 上分别有动点A 、B(不与P ,Q 重合),连接AP 、BP . 若∠APQ=∠BPQ. (1)如图1,当∠APQ=45°,AP=1,BP=22时,求⊙O 的半径;(2)如图2,选接AB ,交PQ 于点M ,点N 在线段PM 上(不与P 、M 重合),连接ON 、OP ,若∠NOP+2∠OPN=90°,探究直线AB 与ON 的位置关系,并证明.2.如图,矩形OABC 的顶点A 、C 分别在x 轴、y 轴的正半轴上,点B 的坐标为(3,4),一次函数23y x b =-+的图像与边OC 、AB 分别交于点D 、E ,并且满足OD BE =,M 是线段DE 上的一个动点 (1)求b 的值;(2)连接OM ,若ODM △的面积与四边形OAEM 的面积之比为1:3,求点M 的坐标; (3)设N 是x 轴上方平面内的一点,以O 、D 、M 、N 为顶点的四边形是菱形,求点N 的坐标.3.如图,点A 和动点P 在直线l 上,点P 关于点A 的对称点为Q .以AQ 为边作Rt ABQ △,使90BAQ ∠=︒,:3:4AQ AB =,作ABQ △的外接圆O .点C 在点P 右侧,4PC =,过点C 作直线m l ⊥,过点O 作OD m ⊥于点D ,交AB 右侧的圆弧于点E .在射线CD 上取点F ,使32DF CD =,以DE 、DF 等邻边作矩形DEGF ,设3AQ x =(1)用关于x 的代数式表示BQ 、DF .(2)当点P 在点A 右侧时,若矩形DEGF 的面积等于90,求AP 的长. (3)在点P 的整个运动过程中,当AP 为何值时,矩形DEGF 是正方形.4.如图,已知AB 是⊙O 的直径,AB =8,点C 在半径OA 上(点C 与点O 、A 不重合),过点C 作AB 的垂线交⊙O 于点D ,连结OD ,过点B 作OD 的平行线交⊙O 于点E 、交射线CD 于点F .(1)若ED =BE ,求∠F 的度数:(2)设线段OC =a ,求线段BE 和EF 的长(用含a 的代数式表示); (3)设点C 关于直线OD 的对称点为P ,若△PBE 为等腰三角形,求OC 的长. 5.如图,在正方形ABCD 中,P 是边BC 上的一动点(不与点B ,C 重合),点B 关于直线AP 的对称点为E ,连接AE ,连接DE 并延长交射线AP 于点F ,连接BF(1)若BAP α∠=,直接写出ADF ∠的大小(用含α的式子表示). (2)求证:BF DF ⊥.(3)连接CF ,用等式表示线段AF ,BF ,CF 之间的数量关系,并证明.6.如图,已知在矩形ABCD 中,AB =2,BC =3P ,Q 分别是BC ,AD 边上的一个动点,连结BQ ,以P 为圆心,PB 长为半径的⊙P 交线段BQ 于点E ,连结PD . (1)若DQ 3且四边形BPDQ 是平行四边形时,求出⊙P 的弦BE 的长;(2)在点P ,Q 运动的过程中,当四边形BPDQ 是菱形时,求出⊙P 的弦BE 的长,并计算此时菱形与圆重叠部分的面积.7.已知抛物线y =﹣14x 2+bx +c 经过点A (4,3),顶点为B ,对称轴是直线x =2.(1)求抛物线的函数表达式和顶点B 的坐标;(2)如图1,抛物线与y 轴交于点C ,连接AC ,过A 作AD ⊥x 轴于点D ,E 是线段AC 上的动点(点E 不与A ,C 两点重合);(i )若直线BE 将四边形ACOD 分成面积比为1:3的两部分,求点E 的坐标; (ii )如图2,连接DE ,作矩形DEFG ,在点E 的运动过程中,是否存在点G 落在y 轴上的同时点F 恰好落在抛物线上?若存在,求出此时AE 的长;若不存在,请说明理由. 8.如图,抛物线2)12(0y ax x c a =-+≠交x 轴于,A B 两点,交y 轴于点C .直线122y x =-经过点,B C .(1)求抛物线的解析式;(2)点P 是抛物线上一动点,过P 作x 轴的垂线,交直线BC 于M .设点P 的横坐标是t .①当PCM ∆是直角三角形时,求点P 的坐标;②当点P 在点B 右侧时,存在直线l ,使点,,A C M 到该直线的距离相等,求直线解析式y kx b =+(,k b 可用含t 的式子表示).9.已知点(4,0)、(2,3)-为二次函数图像抛物线上两点,且抛物线的对称轴为直线2x =.(1)求抛物线的解析式;(2)将抛物线平移,使顶点与原点重合,已知点(,1)M m -,点A 、B 为抛物线上不重合的两点(B 在A 的左侧),且直线MA 与抛物线仅有一个公共点.①如图1,当点M 在y 轴上时,过点A 、B 分别作AP y ⊥轴于点P ,BQ x ⊥轴于点Q .若APM △与BQO △ 相似, 求直线AB 的解析式;②如图2,当直线MB 与抛物线也只有一个公共点时,记A 、B 两点的横坐标分别为a 、b .当点M 在y 轴上时,直接写出m am b--的值为 ;当点M 不在y 轴上时,求证:m am b--为一个定值,并求出这个值.10.()1尺规作图1:已知:如图,线段AB 和直线且点B 在直线上求作:点C ,使点C 在直线上并且使ABC 为等腰三角形.作图要求:保留作图痕迹,不写作法,做出所有符合条件的点C .()2特例思考:如图一,当190∠=时,符合()1中条件的点C 有______个;如图二,当160∠=时,符合()1中条件的点C 有______个.()3拓展应用:如图,AOB 45∠=,点M ,N 在射线OA 上,OM x =,ON x 2=+,点P 是射线OB 上的点.若使点P ,M ,N 构成等腰三角形的点P 有且只有三个,求x 的值.11.如图1,ABC ∆是⊙O 的内接等腰三角形,点D 是弧AC 上异于,A C 的一个动点,射线AD 交底边BC 所在的直线于点E ,连结BD 交AC 于点F . (1)求证:ADB CDE ∠=∠;(2)若7BD =,3CD =,①求AD DE •的值;②如图2,若AC BD ⊥,求tan ACB ∠;(3)若5tan 2CDE ∠=,记AD x =,ABC ∆面积和DBC ∆面积的差为y ,直接写出y 关于x 的函数关系式.12.如图,PA 切⊙O 于点A ,射线PC 交⊙O 于C 、B 两点,半径OD ⊥BC 于E ,连接BD 、DC 和OA ,DA 交BP 于点F ; (1)求证:∠ADC+∠CBD =12∠AOD ; (2)在不添加任何辅助线的情况下,请直接写出图中相等的线段.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1) ☉O 的半径是32;(2)AB ∥ON ,证明见解析. 【解析】 【分析】(1) 连接AB ,根据题意可AB 为直径,再用勾股定理即可. (2) 连接OA , OB ,OQ ,根据圆周角定理可得Q 2APQ,B0Q 2BPO AO ∠=∠∠=∠,从而证出OC AB ⊥,延长PO 交☉0于点R ,则有2OPN QOR ∠=∠,再根据三角形内角和定理求得OQN ∠=90︒得证. 【详解】 解:(1)连接AB ,在☉0中,o APQ BPQ 45∠=∠=, o APB APQ BPQ 90∴∠=∠+∠=AB ∴是☉0的直径.Rt APB ∴∆在中,22AB AP BP =+AB=3∴∴☉0的半径是32(2)AB//ON证明:连接OA , OB , OQ , 在☉0中,AQ AQ =, BQ BQ =,Q 2APQ,B0Q 2BPO AO ∴∠=∠∠=∠.又APQ BPQ ∠=∠,AOQ BOQ ∴∠=∠.在AOB ∆中,OA OB =, AOQ BOQ ∠=∠,OC AB ∴⊥,即o OCA 90∠=连接OQ ,交AB 于点C 在☉0中,OP OQ =OPN OQP.∴∠=∠延长PO 交☉0于点R ,则有2OPN QOR ∠=∠o NOP 2OPN 90∴∠+∠=,又:o NOP NOQ QOR 180∠+∠+∠=,NOQ 90O ∴∠=NOQ OCA 180O ∴∠+∠= .AB//ON ∴ 【点睛】本题考查了圆周角定理,勾股定理、等腰三角形的性质以及三角形的内角和定理,是一道综合题,灵活运用相关知识是解题的关键.2.(1)b=3;(2)点M 坐标为7(1,)3;(3)93(,)42-或3654(,)1313【解析】 【分析】(1)首先在一次函数的解析式中令x=0,即可求得D 的坐标,则OD=b ,则E 的坐标即可利用b 表示出来,然后代入一次函数解析式即可得到关于b 的方程,求得b 的值;(2)首先求得四边形OAED 的面积,则△ODM 的面积即可求得,设出M 的横坐标,根据三角形的面积公式即可求得M 的横坐标,进而求得M 的坐标;(3)分两种情况进行讨论,①四边形OMDN 是菱形时,M 是OD 的中垂线与DE 的交点,M 关于OD 的对称点就是N ;②四边形OMND 是菱形,OM=OD ,M 在直线DE 上,设出M 的坐标,根据OM=OD 即可求得M 的坐标,则根据OD ∥MN,且OD=MN 即可求得N 的坐标. 【详解】(1)在23y x b =-+中,令x=0,解得y=b , 则D 的坐标是(0,b),OD=b , ∵OD=BE ,∴BE=b ,则点E 坐标为(3,4-b ),将点E 代入23y x b =-+中,得:4-b=2+b,解得:b=3; (2)如图,∵OAED S 四边形=11()(31)3622OD AE OA +=⨯+⨯=, ∵三角形ODM 的面积与四边形OAEM 的面积之比为1:3, ∴13=42ODM OAED S S ∆=四边形 设M 的横坐标是a ,则13322a ⨯=, 解得:1a =, 将1x a ==代入233y x =-+中,得: 27333y =-⨯+=则点M 坐标为7(1,)3;(3)依题意,有两种情况:①当四边形OMDN 是菱形时,如图(1),M 的纵坐标是32,把32y =代入233y x =-+中,得: 23332x -+=,解得:94x =, ∴点M 坐标为93(,)42, 点N 坐标为93(,)42-;②当四边形OMND 是菱形时,如图(2),OM =OD =3, 设M 的坐标2(,3)3m m -+, 由OM=OD 得:222(3)93m m +-+=, 解得:3613m =或m=0(舍去), 则点M 坐标为3615(,)1313, 又MN ∥OD ,MN=OD=3, ∴点N 的坐标为3654(,)1313, 综上,满足条件的点N 坐标为93(,)42-或3654(,)1313.【点睛】本题考查一次函数与几何图形的综合,涉及待定系数法、图形的面积计算、菱形的性质、方程等知识,解答的关键是认真审题,找出相关知识的联系点,运用待定系数法、数形结合法、分类讨论法等解题方法确定解题思路,进而推理、探究、发现和计算.3.(1)(1)5BQ x =;3FD x =(2)9AP =(3)12AP =或65AP =或3AP = 【解析】 【分析】(1)由:3:4AQ AB =、3AQ x =,易得4AB x =,由勾股定理得BQ ,再由中位线的性质得12AH BH AB ==,求得CD 、FD ; (2)利用(1)的结论,易得CQ 的长,作OM AQ ⊥于点M ,则//OM AB ,由垂径定理得32QM AM x ==,由矩形性质得OD MC =,利用矩形面积求得x ,得出结论; (3)点P 在A 点的右侧时,利用(1)、(2)的结论和正方形的性质得243x x +=,得AP ;点P 在A 点的左侧时,当点C 在Q 右侧,当407x <<时,473x x -=,解得x ,易得AP ;当4273x ≤<时,743x x -=,得AP ;当点C 在Q 的左侧时,即23x ≥,同理得AP . 【详解】解:(1)∵:3:4AQ AB =,3AQ x = ∴4AB x =∴在Rt ABQ △中,5BQ x ==∵OD m ⊥,m l ⊥ ∴//OD l ∵OB OQ = ∴122AH BH AB x === ∴2CD x = ∴332FD CD x == (2)∵点P 关于点A 的对称点为Q ∴3AP AQ x == ∵4PC = ∴64CQ x =+过点O 作OM AQ ⊥于点M ,如图:∵90BAQ ∠=︒∴//OM AB∵O 是ABQ △的外接圆,90BAQ ∠=︒∴点O 是BQ 的中点 ∴1322QM AM AQ x === ∴3964422OD MC CQ QM x x ==-=+-=+ ∵1522OE BQ x == ∴9542422DE OD OE x x x =-=+-=+ ∴()32490DEGF S DF DE x x =⋅=⋅+=矩形∴13x =,25x =-(不合题意,舍去)∴39AP x ==∴当点P 在点A 右侧时,若矩形DEGF 的面积等于90,AP 的长为:9.(3)若矩形DEGF 是正方形,则DE DF =①点P 在A 点的右侧时,如图:∴243x x +=∴4x =∴312AP x ==②点P 在A 点的左侧时I.当点C 在Q 右侧时i.当 407x <<时,如图:∵47DE x =-,3DF x =∴473x x -=∴25x = ∴635AP x x ==ii.当4273x ≤<时,如图:∵74DE x =-,3DF x =∴743x x -=∴1x =(不合题意,舍去)II. 当点C 在Q 的左侧时,即23x ≥,如图:∵74DE x =-,3DF x =∴743x x -=∴1x =∴33AP x ==∴综上所述,当12AP =或65AP =或3AP =时,矩形DEGF 是正方形. 故答案是:(1)5BQ x =;3FD x =(2)9AP =(3)12AP =或65AP =或3AP = 【点睛】本题考查了分类讨论思想、矩形的性质、正方形的性质、圆的性质等,综合性强,难度大,正确的画出相应的图形可以更顺利地解决问题.4.(1)30°;(2)EF=;(3)CO 的长为或时,△PEB 为等腰三角形.【解析】试题分析:(1)利用圆周角定理以及三角形内角和定理得出即可;(2)首先证明△HBO ≌△COD (AAS ),进而利用△COD ∽△CBF ,得出比例式求出EF 的长;(3)分别利用①当PB=PE ,不合题意舍去;②当BE=EP ,③当BE=BP ,求出即可. 试题解析:(1)如图1,连接EO ,∵∴∠BOE=∠EOD ,∵DO ∥BF ,∴∠DOE=∠BEO ,∵BO=EO,∴∠OBE=∠OEB,∴∠OBE=∠OEB=∠BOE=60°,∵CF⊥AB,∴∠FCB=90°,∴∠F=30°;(2)如图1,作HO⊥BE,垂足为H,∵在△HBO和△COD中,∴△HBO≌△COD(AAS),∴CO=BH=a,∴BE=2a,∵DO∥BF,∴△COD∽△CBF,∴∴,∴EF=;(3)∵∠COD=∠OBE,∠OBE=∠OEB,∠DOE=∠OEB,∴∠COD=∠DOE,∴C关于直线OD的对称点为P在线段OE上,若△PEB为等腰三角形,设CO=x,∴OP=OC=x,则PE=EO-OP=4-x,由(2)得:BE=2x,①当PB=PE,不合题意舍去;②当BE=EP,2x=4-x,解得:x=,③当BE=BP,作BM⊥EO,垂足为M,∴EM=PE=,∴∠OEB=∠COD,∠BME=∠DCO=90°,∴△BEM∽△DOC,∴,∴,整理得:x2+x-4=0,解得:x=(负数舍去),综上所述:当CO的长为或时,△PEB为等腰三角形.考点:圆的综合题.5.(1)45°+α;(2)证明见解析;(3)2BF+CF.【解析】【分析】(1)过点A作AG⊥DF于G,由轴对称性质和正方形的性质可得AE=AD,∠BAP=∠EAF,根据等腰三角形“三线合一”的性质可得∠EAG=∠DAG,即可得∠FAG=12∠BAD=45°,∠DAG+∠BAP=45°,根据直角三角形两锐角互余的性质即可得答案;(2)由(1)可得∠FAG=12∠BAD=45°,由AG⊥PD可得∠APG=45°,根据轴对称的性质可得∠BPA=∠APG=45°,可得∠BFD=90°,即可证明BF⊥DF;(3)连接BD、BE,过点C作CH//FD,交BE延长线于H,由∠BFD=∠BCD=90°可得B、F、C、D四点共圆,根据圆周角定理可得∠FBC=∠FDC,∠DFC=∠DBC=45°,根据平行线的性质可得∠FDC=∠DCH,根据角的和差关系可得∠ABF=∠BCH,由轴对称性质可得BF=EF,可得△BEF是等腰直角三角形,即可得∠BEF=45°,2BF,即可证明∠BEF=∠DFC,可得BH//FC,即可证明四边形EFCH是平行四边形,可得EH=FC,EF=CH,利用等量代换可得CH=BF,利用SAS可证明△ABF≌△BCH,可得AF=BH,即可得AF、BF、CF的数量关系.【详解】(1)过点A作AG⊥DF于G,∵点B关于直线AF的对称点为E,四边形ABCD是正方形,∴AE=AB,AB=AD=DC=BC,∠BAF=∠EAF,∴AE=AD,∵AG⊥FD,∴∠EAG=∠DAG,∴∠BAF+∠DAG=∠EAF+∠EAG,∵∠BAF+∠DAG+∠EAF+∠EAG=∠BAD=90°,∴∠BAF+∠DAG=∠GAF=45°,∴∠DAG=45°-α,∴∠ADF=90°-∠DAG=45°+α.(2)由(1)得∠GAF=45°,∵AG⊥FD,∴∠AFG=45°,∵点E、B关于直线AF对称,∴∠AFB=∠AFE=45°,∴∠BFG=90°,∴BF⊥DF.(3)连接BD、BE,过点C作CH//FD,交BE延长线于H,∵∠BFD=∠BCD=90°,∴B、F、C、D四点共圆,∴∠FDC=∠FBC,∠DFC=∠DBC=45°,∵CH//FD,∴∠DCH=∠FDC,∴∠FBC=∠DCH,∵∠ABC=∠BCD=90°,∴∠ABC+∠FBC=∠BCD+∠DCH,即∠ABF=∠BCH,∵点E、B关于直线AF对称,∴BF=EF,∵∠BFE=90°,∴△BEF是等腰直角三角形,∴∠BEF=45°,2BF,∴∠BEF=∠DFC,∴FC//BH,∴四边形EFCH是平行四边形,∴EH=FC,CH=BF,在△ABF和△BCH中,AB BCABF BCH BF CH=⎧⎪∠=∠⎨⎪=⎩,∴2BF+CF.【点睛】本题考查正方形的性质、等腰三角形的性质、轴对称的性质、圆周角定理、四点共圆的判定及全等三角形的判定与性质,正确得出B、F、C、D四点共圆并熟练掌握圆周角定理及轴对称的性质是解题关键.6.(1)637;(2)BE=433;菱形与圆重叠部分的面积为833.【解析】【分析】(1)作PT⊥BE于点T,根据垂径定理和勾股定理求BQ的值,再根据相似三角形的判定和性质即可求解;(2)根据菱形性质和勾股定理求出菱形边长,此时点E和点Q重合,再根据扇形面积公式即可求解.【详解】解:(1)如图:过点P作PT⊥BQ于点T,∵AB=2,AD=BC=3,DQ3∴AQ3在Rt△ABQ中,根据勾股定理可得:BQ7.又∵四边形BPDQ是平行四边形,∴BP=DQ3,∵∠AQB=∠TBP,∠A=∠BTP,∴△AQB∽△TBP,∴3,37 BT BDAQ BQ==即∴BT=33 7,∴BE=2BT=637.(2)设菱形BPDQ的边长为x,则AQ=23﹣x,在Rt△ABQ中,根据勾股定理,得AB2+AQ2=BQ2,即4+(23﹣x)2=x2,解得x=43 3.∵四边形BPDQ为菱形,∴BP=DP=43 3,又CP=BC-BP=233,即DP=2CP,∴∠DPC=60°,∴∠BPD=120°,∴连接PQ,易得△BPQ为等边三角形,∴PQ=BP,∴点Q也在圆P上,圆P经过点B,D,Q,如图.∴点E、Q重合,∴BE 43 3∴菱形与圆重叠部分面积即为菱形的面积,∴S菱形833.【点睛】本题考查了平行四边形、矩形、菱形的性质、垂径定理、勾股定理、相似三角形的判定和性质、扇形面积公式,解决本题的关键是综合运用以上知识.7.(1)y=﹣14x2+x+3,顶点B的坐标为(2,4);(2)(i)点E的坐标为(85,3)或(125,3);(ii)存在;当点G落在y轴上的同时点F恰好落在抛物线上,此时AE的长为43.【解析】【分析】(1)由题意得出21441,43,124b cb⎧-⨯++=⎪⎪⎨-=⎪⎛⎫⨯-⎪ ⎪⎝⎭⎩,解得1,3,bc=⎧⎨=⎩,得出抛物线的函数表达式为:y=﹣14x2+x+3=﹣14(x﹣2)2+4,即可得出顶点B的坐标为(2,4);(2)(i)求出C(0,3),设点E的坐标为(m,3),求出直线BE的函数表达式为:y=12m--x+462mm--,则点M的坐标为(4m﹣6,0),由题意得出OC=3,AC=4,OM=4m﹣6,CE=m,则S矩形ACOD=12,S梯形ECOM=15182m-,分两种情况求出m的值即可;(ii)过点F作FN⊥AC于N,则NF∥CG,设点F的坐标为:(a,﹣14a2+a+3),则NF=3﹣(﹣14a2+a+3)=14a2﹣a,NC=﹣a,证△EFN≌△DGO(ASA),得出NE=OD=AC=4,则AE=NC=﹣a,证△ENF∽△DAE,得出NF NEAE AD=,求出a=﹣43或0,当a=0时,点E与点A重合,舍去,得出AE=NC=﹣a=43,即可得出结论.【详解】(1)∵抛物线y=﹣14x2+bx+c经过点A(4,3),对称轴是直线x=2,∴21441, 43,124b cb⎧-⨯++=⎪⎪⎨-=⎪⎛⎫⨯-⎪ ⎪⎝⎭⎩解得1,3, bc=⎧⎨=⎩∴抛物线的函数表达式为:y=﹣14x2+x+3,∵y=﹣14x2+x+3=﹣14(x﹣2)2+4,∴顶点B的坐标为(2,4);(2)(i)∵y=﹣14x2+x+3,∴x=0时,y=3,则C点的坐标为(0,3),∵A(4,3),∴AC∥OD,∵AD⊥x,∴四边形ACOD是矩形,设点E的坐标为(m,3),直线BE的函数表达式为:y=kx+n,直线BE交x轴于点M,如图1所示:则24,3, k nmk n+=⎧⎨+=⎩解得:1,246,2kmmnm-⎧=⎪⎪-⎨-⎪=⎪-⎩,∴直线BE的函数表达式为:y=12m--x+462mm--,令:y=12m--x+462mm--=0,则x=4m﹣6,∴点M的坐标为(4m﹣6,0),∵直线BE将四边形ACOD分成面积比为1:3的两部分,∴点M在线段OD上,点M不与点O重合,∵C(0,3),A(4,3),M(4m﹣6,0),E(m,3),∴OC=3,AC=4,OM=4m﹣6,CE=m,∴S矩形ACOD=OC•AC=3×4=12,S梯形ECOM=12(OM+EC)•OC=12(4m﹣6+m)×3=15182m-,分两种情况:①S ECOMS ACOD梯形矩形=14,即1518212m-=14,解得:m=85,∴点E的坐标为:(85,3);②S ECOMS ACOD梯形矩形=34,即1518212m-=34,解得:m=125,∴点E的坐标为:(125,3);综上所述,点E的坐标为:(85,3)或(125,3);(ii)存在点G落在y轴上的同时点F恰好落在抛物线上;理由如下:由题意得:满足条件的矩形DEFG在直线AC的下方,过点F作FN⊥AC于N,则NF∥CG,如图2所示:设点F的坐标为:(a,﹣14a2+a+3),则NF=3﹣(﹣14a2+a+3)=14a2﹣a,NC=﹣a,∵四边形DEFG与四边形ACOD都是矩形,∴∠DAE=∠DEF=∠N=90°,EF=DG,EF∥DG,AC∥OD,∴∠NEF=∠ODG,∠EMC=∠DGO,∵NF∥CG,∴∠EMC=∠EFN,∴∠EFN=∠DGO,在△EFN和△DGO中,∠NEF=∠ODG,EF=DG,∠EFN=∠DGO,∴△EFN≌△DGO(ASA),∴NE=OD=AC=4,∴AC﹣CE=NE﹣CE,即AE=NC=﹣a,∵∠DAE=∠DEF=∠N=90°,∴∠NEF+∠EFN=90°,∠NEF+∠DEA=90°,∴∠EFN=∠DEA,∴△ENF∽△DAE,∴NE NFAD AE=,即43=214a aa--,整理得:34a2+a=0,解得:a=﹣43或0,当a=0时,点E与点A重合,∴a=0舍去,∴AE =NC =﹣a =43, ∴当点G 落在y 轴上的同时点F 恰好落在抛物线上,此时AE 的长为43.【点睛】本题是二次函数综合题目,考查了二次函数解析式的求法、二次函数的性质、一次函数解析式的求法、坐标与图形性质、矩形的判定与性质、全等三角形的判定与性质、相似三角形的判定与性质、梯形面积公式等知识;本题综合性强,属于中考压轴题型.8.(1)211242y x x =--;(2)①P (2,−2)或(-6,10),②1122y x =-或324y x t =-+-或4412424t t y x t t --=+-++ 【解析】【分析】(1)利用一次函数与坐标轴交点的特征可求出点B ,C 的坐标,根据点B ,C 的坐标,利用待定系数法可求出二次函数解析式;(2)①由PM ⊥x 轴可得出∠PMC≠90°,分∠MPC=90°及∠PCM=90°两种情况考虑: (i )当∠MPC=90°时,PC //x 轴,利用二次函数可求出点P 的坐标;(ii )当∠PCM=90°时,设PC 与x 轴交于点D ,易证△BOC ∽△COD ,利用相似三角形的性质可求出点D 的坐标,根据点C ,D 的坐标,利用待定系数法可求出直线PC 的解析式,联立直线PC 和抛物线的解析式,通过解方程组可求出点P 的坐标;②在ACM 中,如果存在直线使A 、C 、M 到该直线距离相等,则该直线应为ACM 的中位线,分开求解三条中位线方程即可求解.【详解】解:(1)因为直线交抛物线于B 、C 两点,∴当x =0时,y =12x −2=−2, ∴点C 的坐标为(0,−2);当y =0时,12x −2=0, 解得:x =4,∴点B 的坐标为(4,0).将B 、C 的坐标分别代入抛物线,得: 2144022a c c ⎧⨯-⨯+=⎪⎨⎪=-⎩,解得:142a c ⎧=⎪⎨⎪=-⎩, ∴抛物线的解析式为211242y x x =--. (2)①∵PM ⊥x 轴,M 在直线BC 上,∴∠PMC 为固定角且不等于90,∴可分两种情况考虑,如图1所示:(i )当∠MPC=90时,PC //x 轴,∴点P 的纵坐标为﹣2,将y p =-2,代入抛物线方程可得:2112242x x --=-解得: x 1=2,x 2=0(为C 点坐标,故舍去),∴点P 的坐标为(2,−2);(ii )当∠PCM=90°时,设PC 与x 轴交于点D ,∵∠OBC+∠OCB=90°,∠OCB+∠OCD=90°,∴∠OBC=∠OCD ,又∵∠BOC=∠COD=90°,∴BOC ∽COD (AAA ),∴OD OC OC OB =,即OD=2OC OB, 由(1)知,OC=2,OB=4,∴OD=1,又∵D 点在X 的负半轴∴点D 的坐标为(-1,0),设直线PC 的解析式为:y =kx +b (k ≠0,k 、b 是常数),将C(0,−2),D(-1,0)代入直线PC 的解析式,得:20b k b =-⎧⎨-+=⎩,解得:22k b =-⎧⎨=-⎩, ∴直线PC 的解析式为y =-2x −2,联立直线PC 和抛物线方程,得:22122142x x x -=---, 解得:x 1=0,y 1=−2,x 2=-6,y 2=10,点P 的坐标为(-6,10),综上所述:当PCM 是直角三角形时,点P 的坐标为(2,−2)或(-6,10); ②如图2所示,在ACM 中,如果存在直线使A 、C 、M 到该直线距离相等,则该直线应为ACM 的中位线;(a )当以CM 为底时,过A 点做CM 的平行线AN ,直线AN 平行于CM 且过点A ,则斜率为12,AN 的方程为:1(+2)2y x =,则中位线方程式为:1122y x =-; (b )当以AM 为底时,因为M 为P 点做x 轴垂线与CB 的交点,则M 的横坐标为t ,且在直线BC 上,则M 的坐标为:1,22M t t -(),其中4t >,则AM 的方程为:44+242t t y x t t --=++,过C 点做AM 的平行线CQ ,则CQ 的方程为:4224t y x t -=-+ ,则中位线方程式为:4412424t t y x t t --=+-++; (c )当以AC 为底时,AC 的方程式为:2y x =--,由b 可知M 的坐标为:1,22M t t -(),过M 做AC 的平行线MR ,则MR 的方程为:322y x t =-+-,则中位线方程式为:324y x t =-+-; 综上所述:当点P 在点B 右侧时,存在直线l ,使点,,A C M 到该直线的距离相等,直线解析式为:1122y x =-或324y x t =-+-或4412424t t y x t t --=+-++.【点睛】本题考查了一次函数坐标轴的交点坐标、待定系数法求二次函数解析式、相似三角形的判定与性质以及平行线的性质等,解题的关键是掌握三角形的顶点到中位线的距离相等.9.(1)214y x x =-;(2)①122y x =-+,②1,见解析,定值为1 【解析】【分析】(1)利用待定系数法把点(4,0)、(2,3)-代入解析式,再结合抛物线对称轴方程得到三元一次方程组,解方程组即可.(2)①先求出平移后的抛物线解析式,设出直线MA 的解析式1y kx =-,再联立抛物线解析式2114y kx y x =-⎧⎪⎨=⎪⎩,得到21104x kx -+=,令210k ∆=-=,求出k 的值,得出APM ∆为等腰直角三角形,运用APM ∆与BQO ∆相似得出90BQO APM ∠=∠=,故AB :y mx n =+,则2144m n m n +=⎧⎨-+=⎩即可求出AB 函数关系式. ②当M 在y 轴上时,m=0,再根据图像对称性可得A 、B 两点关于y 轴对称,得出a ,b 的关系,即可求出答案;当M 不在与轴上时,设MA :111y k x k m =--,联立抛物线解析式112114y k x k m y x =--⎧⎪⎨=⎪⎩,得出2114440x k x k m -++=,令212=16(1)0k k m ∆--=,同理设出MB ,令22216(1)0k k m ∆=--=,故1k ,2k 为方程210x mx --=不相等两个实数根,得出12k k m +=,即可求出答案.【详解】解:(1)设2y=ax +bx+c a (≠0),把点(4,0)、(2,3)-代入 ∵对称轴为x=2 ∴164042322a b c a b c b a ⎧⎪++=⎪-+=⎨⎪⎪-=⎩解得1410a b c ⎧=⎪⎪=-⎨⎪=⎪⎩∴抛物线解析式214y x x =-. (2)①(0,1)M -,平移后抛物线214y x =设MA :1y kx =- 则联立2114y kx y x =-⎧⎪⎨=⎪⎩,21104x kx -+= 210k ∆=-=1k ∴=±又由图,A 在y 轴右侧故1k =,(2,1)A2AP PM ∴==,APM ∆为等腰直角三角形又APM ∆与BQO ∆相似∴△BQO 为等腰直角三角形,设B (﹣x ,x ),带入抛物线解析式得:214x x = 解得x=4或x=0(舍去)∴B (﹣4,4)设AB :y mx n =+,把(2,1)A ,B (﹣4,4)带入得: 则2144m n m n +=⎧⎨-+=⎩,122m n ⎧=-⎪⎨⎪=⎩ ∴AB 解析式为:122y x =-+. ②(i )∵214y x =关于y 轴对称,M 在y 轴上,且MA ,MB 与抛物线只有一个交点 ∴A 、B 两点关于y 轴对称,∴a=﹣b ∴m a m b --=0+b 0b-=1, 故答案是:1;(ii )设MA :111y k x k m =--, 则联立112114y k x k m y x =--⎧⎪⎨=⎪⎩, 2114440x k x k m -++=,此方程仅一个根,故11422k a k ==, 且212=16(1)0k k m ∆--=,同理设MB :221y k x k m =--,亦有22b k =,22216(1)0k k m ∆=--=,故1k ,2k 为方程210x mx --=不相等两个实数根,12k k m +=,()111122122m k m k m a m b m m k k m---∴===----, 即m a m b --为一定值1, ∴当点M 不在y 轴上时,m a m b--为一个定值1. 【点睛】 本题考查的是二次函数综合题型,二次函数待定系数法求函数解析式,二次函数与一元二次方程的综合应用,二次函数与相似三角形的综合应用,解题关键在于理解题意,正确分析题目,运用数形结合思想进行解题.10.(1) 见解析;(2) 2,2 ;(3)0或222-或222x <<.【解析】【分析】()1根据等腰三角形的定义,用分类讨论的思想解决问题即可;()2通过画图分析可得,当190∠=时,符合()1中条件的点C 有2个,当160∠=时,符合()1中条件的点C 有2个;()3分三种情形讨论求解即可.【详解】解:()1如图1中,点1C ,2C ,3C ,4C 即为所求.()2如图一,当190∠=时,符合()1中条件的点C 有2个;如图二,当160∠=时,符合()1中条件的点C 有2个,当∠1=90°或∠1=60°时,符合条件的点C 都是在点B 左右各一个,当∠1=60°时,符合条件的点C 如图所示:故答案为2,2.()3①如图31-中,当x 0=时,当PM PN =时,有点1P ,当ON OP =时,有点2P ,当NO NP =时,有点3P ,此时有3个P 点.②如图32-中,当N 与OB 相切于点1P 时,1OP N 是等腰直角三角形,1ON 2NP 22∴==,OM ON MN 222∴=-=,此时有3个P 点.③如图33-中,当M 经过点O 时,此时只有2个P 点,如图34-中,M 与OB 相交时,此时有3个P 点,如图35-中,当M 与OB 相切时,只有2个P 点.此时OM 22=, 综上所述,当2x 22<<3个P 点.∴满足条件的x 的值为0或222或2x 22<<【点睛】本题考查等腰三角形的判定和性质,尺规作图,直线与圆的位置关系等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.11.(1)证明见解析;(2)①215(3)21029y x =【解析】【分析】 ()1由圆内接四边形性质知ABC CDE ∠∠=,由AB AC =知ABC ACB ∠∠=,从而得ADB ACB ABC CDE ∠∠∠∠===;()2①由BAD DCE ∠∠=,ADB CDE ∠∠=可证ADB ∽CDE.从而得AD DB CD DE =; ②连接AO 并延长交BD 于点M ,连接CM ,证MAF ≌DAF 得MF DF =,据此知BM CM CD 3===,MF DF 2==,求得22CF CD DF 5=-=定义可得答案;()3证ABD ∽AEB 得2AB AD AE.=⋅证ABD ∽CED 得BD CD AD DE.⋅=⋅从而得2ABC BCD 111S S AB AC sin BAC BD CD sin BDC x sin BAC 222∠∠∠-=⋅⋅-⋅⋅=,再由5tan ABC tan CDE 2∠∠==,可设BM 2a =,知AM 5a =,AB 29a =,由面积法可得BN a 29=,即20sin BAC 29∠=,据此得出答案. 【详解】解:()1四边形ABCD 是圆O 的内接四边形, ABC 180ADC CDE ∠∠∠∴=-=.AB AC =,ABC ACB ∠∠∴=.ADB ACB ABC CDE ∠∠∠∠∴===;()2①四边形ABCD 内接于圆,BAD 180BCD DCE ∠∠∠∴=-=.又ADB CDE ∠∠=,ADB ∴∽CDE .AD DB CD DE∴=, AD DE BD CD 7321∴⋅=⋅=⨯=;②连接AO 并延长交BD 于点M ,连接CM ,AM 平分BAC ∠,AM BC ∴⊥,CAD CBD 90ACB MAF ∠∠∠∠∴==-=. MAF ∴≌()DAF ASA .MF DF ∴=,即AC 是线段MD 的中垂线.BM CM CD 3∴===,MF DF 2∴==,在Rt CDF 中,2222CF CD DF 325=--=, BF tan ACB 5CF 5∠∴===()3BAD EAB ∠∠=,ADB ACB ABE ∠∠∠==,ABD ∴∽AEB ,AB AD AE AB∴=,即2AB AD AE =⋅. CDE ADB ∠∠=,DCE BAD ∠∠=ABD ∴∽CED , BD AD DE CD∴=,即BD CD AD DE ⋅=⋅. ABC BCD 11S S AB AC sin BAC BD CD sin BDC 22∠∠-=⋅⋅-⋅⋅, ()1sin BAC AD AE AD DE 2∠=⋅-⋅. 21x sin BAC 2∠=,又5tan ABC tan CDE 2∠∠==, 如图2,设BM 2a =,则AM 5a =,AB 29a =, 由面积法可得BN 29=,即20sin BAC 29∠=, 22ABC BCD 12010S S x x 22929y ∴-==⨯=. 【点睛】本题是圆的综合问题,解题的关键是掌握圆内接四边形的性质、圆周角定理、相似三角形和全等三角形的判定与性质、等腰三角形的性质及三角函数的应用等知识点.12.(1)详见解析;(2)详见解析;【解析】【分析】()1根据垂径定理得到BD CD =,根据等腰三角形的性质得到()111809022ODA AOD AOD ∠=-∠=-∠,即可得到结论;()2根据垂径定理得到BE CE =,BD CD =,根据等腰三角形的性质得到ADO OAD ∠=∠,根据切线的性质得到90PAO ∠=,求得90OAD DAP ∠+∠=,推出PAF PFA ∠=∠,根据等腰三角形的判定定理即可得到结论.【详解】()1证明:OD BC ⊥,BD CD ∴=,CBD DCB ∴∠=∠,90DFE EDF ∠+∠=,90EDF DFE ∴∠=-∠,OD OA =,()111809022ODA AOD AOD ∴∠=-∠=-∠, 190902DFE AOD ∴-∠=-∠, 12DEF AOD ∴∠=∠, DFE ADC DCB ADC CBD ∠=∠+∠=∠+∠,12ADC CBD AOD ∴∠+∠=∠; ()2解:OD BC ⊥,BE CE ∴=,BD CD =,BD CD ∴=,OA OD =,ADO OAD ∴∠=∠,PA 切O 于点A ,90PAO ∴∠=, 90OAD DAP ∴∠+∠=, PFA DFE ∠=∠,90PFA ADO ∴∠+∠=,PAF PFA ∴∠=∠,PA PF ∴=.【点睛】本题考查了切线的性质,等腰三角形的判定和性质,垂径定理,圆周角定理,正确的识别图形是解题的关键.。
九年级上册数学压轴题试题(WORD版含答案)
九年级上册数学压轴题试题(WORD 版含答案)一、压轴题1.如图,⊙O 的直径AB =26,P 是AB 上(不与点A ,B 重合)的任一点,点C ,D 为⊙O 上的两点.若∠APD =∠BPC ,则称∠DPC 为直径AB 的“回旋角”.(1)若∠BPC =∠DPC =60°,则∠DPC 是直径AB 的“回旋角”吗?并说明理由;(2)猜想回旋角”∠DPC 的度数与弧CD 的度数的关系,给出证明(提示:延长CP 交⊙O 于点E );(3)若直径AB 的“回旋角”为120°,且△PCD 的周长为24+133,直接写出AP 的长.2.已知,如图1,⊙O 是四边形ABCD 的外接圆,连接OC 交对角线BD 于点F ,延长AO 交BD 于点E ,OE=OF.(1)求证:BE=FD ;(2)如图2,若∠EOF=90°,BE=EF ,⊙O 的半径25AO =,求四边形ABCD 的面积; (3)如图3,若AD=BC ;①求证:22•AB CD BC BD +=;②若2•12AB CD AO ==,直接写出CD 的长.3.如图,在矩形ABCD 中,AB=20cm ,BC=4cm ,点p 从A 开始折线A ——B ——C ——D 以4cm/秒的 速度 移动,点Q 从C 开始沿CD 边以1cm/秒的速度移动,如果点P 、Q 分别从A 、C 同时出发,当其中一点到达D 时,另一点也随之停止运动,设运动的时间t (秒)(1)t 为何值时,四边形APQD 为矩形.(2)如图(2),如果⊙P 和⊙Q 的半径都是2cm ,那么t 为何值时,⊙P 和⊙Q 外切?4.如图①,O 经过等边ABC 的顶点A ,C (圆心O 在ABC 内),分别与AB ,CB 的延长线交于点D ,E ,连结DE ,BF EC ⊥交AE 于点F .(1)求证:BD BE =.(2)当:3:2AF EF =,6AC =,求AE 的长.(3)当:3:2AF EF =,AC a =时,如图②,连结OF ,OB ,求OFB △的面积(用含a 的代数式表示).5.已知,如图Rt △ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点P 为AC 的中点,Q 从点A 运动到B ,点Q 运动到点B 停止,连接PQ ,取PQ 的中点O ,连接OC ,OB .(1)若△ABC ∽△APQ ,求BQ 的长;(2)在整个运动过程中,点O 的运动路径长_____;(3)以O 为圆心,OQ 长为半径作⊙O ,当⊙O 与AB 相切时,求△COB 的面积.6.如图,Rt ABC ∆中,90C ∠=︒,4AC =,3BC =.点P 从点A 出发,沿着A C B →→运动,速度为1个单位/s ,在点P 运动的过程中,以P 为圆心的圆始终与斜边AB 相切,设⊙P 的面积为S ,点P 的运动时间为t (s )(07t <<).(1)当47t <<时,BP = ;(用含t 的式子表示)(2)求S 与t 的函数表达式;(3)在⊙P 运动过程中,当⊙P 与三角形ABC 的另一边也相切时,直接写出t 的值.7.如图,在正方形ABCD 中,P 是边BC 上的一动点(不与点B ,C 重合),点B 关于直线AP 的对称点为E ,连接AE ,连接DE 并延长交射线AP 于点F ,连接BF(1)若BAP α∠=,直接写出ADF ∠的大小(用含α的式子表示).(2)求证:BF DF ⊥.(3)连接CF ,用等式表示线段AF ,BF ,CF 之间的数量关系,并证明.8.抛物线G :2y ax c =+与x 轴交于A 、B 两点,与y 交于C (0,-1),且AB =4OC . (1)直接写出抛物线G 的解析式: ;(2)如图1,点D (-1,m )在抛物线G 上,点P 是抛物线G 上一个动点,且在直线OD 的下方,过点P 作x 轴的平行线交直线OD 于点Q ,当线段PQ 取最大值时,求点P 的坐标;(3)如图2,点M 在y 轴左侧的抛物线G 上,将点M 先向右平移4个单位后再向下平移,使得到的对应点N 也落在y 轴左侧的抛物线G 上,若S △CMN =2,求点M 的坐标.9.如图,抛物线y =ax 2-4ax +b 交x 轴正半轴于A 、B 两点,交y 轴正半轴于C ,且OB =OC =3.(1) 求抛物线的解析式;(2) 如图1,D 为抛物线的顶点,P 为对称轴左侧抛物线上一点,连接OP 交直线BC 于G ,连GD .是否存在点P ,使2GD GO=?若存在,求点P 的坐标;若不存在,请说明理由; (3) 如图2,将抛物线向上平移m 个单位,交BC 于点M 、N .若∠MON =45°,求m 的值.10.如图,一次函数122y x =-+的图象交y 轴于点A ,交x 轴于点B 点,抛物线2y x bx c =-++过A 、B 两点.(1)求A ,B 两点的坐标;并求这个抛物线的解析式;(2)作垂直x 轴的直线x =t ,在第一象限交直线AB 于M ,交这个抛物线于N .求当t 取何值时,MN 有最大值?最大值是多少?(3)在(2)的情况下,以A 、M 、N 、D 为顶点作平行四边形,求第四个顶点D 的坐标.11.如图,在平面直角坐标系中,直线l 分别交x 轴、y 轴于点A ,B ,∠BAO = 30°.抛物线y = ax 2 + bx + 1(a < 0)经过点A ,B ,过抛物线上一点C (点C 在直线l 上方)作CD ∥BO 交直线l 于点D ,四边形OBCD 是菱形.动点M 在x 轴上从点E (3,0)向终点A 匀速运动,同时,动点N 在直线l 上从某一点G 向终点D 匀速运动,它们同时到达终点.(1)求点D 的坐标和抛物线的函数表达式.(2)当点M 运动到点O 时,点N 恰好与点B 重合.①过点E 作x 轴的垂线交直线l 于点F ,当点N 在线段FD 上时,设EM = m ,FN = n ,求n 关于m 的函数表达式.②求△NEM 面积S 关于m 的函数表达式以及S 的最大值.12.如图,在边长为5的菱形OABC中,sin∠AOC=45,O为坐标原点,A点在x轴的正半轴上,B,C两点都在第一象限.点P以每秒1个单位的速度沿O→A→B→C→O运动一周,设运动时间为t(秒).请解答下列问题:(1)当CP⊥OA时,求t的值;(2)当t<10时,求点P的坐标(结果用含t的代数式表示);(3)以点P为圆心,以OP为半径画圆,当⊙P与菱形OABC的一边所在直线相切时,请直接写出t的值.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)∠DPC是直径AB的回旋角,理由见解析;(2)“回旋角”∠CPD的度数=CD的度数,证明见解析;(3)3或23.【解析】【分析】(1)由∠BPC=∠DPC=60°结合平角=180°,即可求出∠APD=60°=∠BPC,进而可说明∠DPC是直径AB的回旋角;(2)延长CP交圆O于点E,连接OD,OC,OE,由“回旋角”的定义结合对顶角相等,可得出∠APE=∠APD,由圆的对称性可得出∠E=∠D,由等腰三角形的性质可得出∠E=∠C,进而可得出∠D=∠C,利用三角形内角和定理可得出∠COD=∠CPD,即“回旋角”∠CPD的度数=CD的度数;(3)①当点P在半径OA上时,在图3中,过点F作CF⊥AB,交圆O于点F,连接PF,则PF=PC,利用(2)的方法可得出点P,D,F在同一条直线上,由直径AB的“回旋角”为120°,可得出∠APD=∠BPC=30°,进而可得出∠CPF=60°,即△PFC是等边三角形,根据等边三角形的性质可得出∠CFD=60°.连接OC,OD,过点O作OG⊥CD于点G,则∠COD=120°,根据等腰三角形的性质可得出CD=2DG,∠DOG=12∠COD=60°,结合圆的直径为26可得出CD=133,由△PCD的周长为24+133,可得出DF=24,过点O作OH⊥DF于点H,在Rt△OHD和在Rt△OHD中,通过解直角三角形可得出OH,OP的值,再根据AP=OA﹣OP可求出AP的值;②当点P在半径OB上时,用①的方法,可得:BP=3,再根据AP=AB﹣BP可求出AP的值.综上即可得出结论.【详解】(1)∵∠BPC=∠DPC=60°,∴∠APD=180°﹣∠BPC﹣∠DPC=180°﹣60°﹣60°=60°,∴∠APD=∠BPC,∴∠DPC是直径AB的回旋角.(2)“回旋角”∠CPD的度数=CD的度数,理由如下:如图2,延长CP交圆O于点E,连接OD,OC,OE.∵∠CPB=∠APE,∠APD=∠CPB,∴∠APE=∠APD.∵圆是轴对称图形,∴∠E=∠D.∵OE=OC,∴∠E=∠C,∴∠D=∠C.由三角形内角和定理,可知:∠COD=∠CPD,∴“回旋角”∠CPD的度数=CD的度数.(3)①当点P在半径OA上时,在图3中,过点F作CF⊥AB,交圆O于点F,连接PF,则PF=PC.同(2)的方法可得:点P,D,F在同一条直线上.∵直径AB的“回旋角”为120°,∴∠APD=∠BPC=30°,∴∠CPF=60°,∴△PFC是等边三角形,∴∠CFD=60°.连接OC,OD,过点O作OG⊥CD于点G,则∠COD=120°,∴CD=2DG,∠DOG=12∠COD=60°,∵AB=26,∴OC=13,∴1332 CG=∴CD=2×1332=133.∵△PCD的周长为24+133,∴PD+PC+CD=24+133,∴PD+PC=DF=24.过点O作OH⊥DF于点H,则DH=FH=12DF=12.在Rt△OHD中,OH=222213125OD DH-=-=,在Rt△OHP中,∠OPH=30°,∴OP=2OH=10,∴AP=OA﹣OP=13﹣10=3;②当点P在半径OB上时,同①的方法,可得:BP=3,∴AP=AB﹣BP=26﹣3=23.综上所述,AP的长为:3或23.【点睛】此题是圆的综合题,考查圆的对称性质,直角三角形、等腰三角形与圆的结合,(3)是此题的难点,线段AP的长度由点P所在的位置决定,因此必须分情况讨论.2.(1)见详解;(2)5326【解析】【分析】(1)如图1中,作OH⊥BD于H.根据等腰三角形的性质以及垂径定理即可;(2)如图2中,作OH⊥BD于H,连接OB,求出AC,BD,根据S四边形ABCD=12•BD•AM+1 2•BD•CM=12•BD•AC即可求解;(3)①如图3中,连接OB,作OH⊥BD于H.利用等腰直角三角形的性质,完全平方公式等知识即可;②如图3中,连接OB,设DM=CM=x,想办法求出BC,DB,在Rt△BCM中,利用勾股定理构建方程即可.【详解】(1)证明:如图1中,作OH⊥BD于H.∵OE=OF,OH⊥EF,∴EH=HF,∵OH⊥BD,∴BH=HD,∴BE=DF;(2)解:如图2中,作OH⊥BD于H,连接OB.∵∠EOF=90°,OE=OF,OA=OC,∴∠OEF=∠OAC=45°,∴∠AME=90°,即AC⊥BD,连接OB.设OH=a,∵BE=EF,∴BE=2EH=2OH=2a,在Rt△BOH中,∵OH2+BH2=OB2,∴a2+(3a)2=(52,∴2或2(舍弃),∴BD=BE+EF+DF=6a=62,在Rt△AOC中,AC=2AO=210,∴S四边形ABCD=12•BD•AM+12•BD•CM=12•BD•AC=12×210×62=125;(3)①如图3中,连接OB,作OH⊥BD于H.∵OE=OF,OA=OC,∴∠EOH=12∠EOF=12(∠EAC+∠ACO)=12×2∠OAC=∠OAC,∴AC∥OH,∴AC⊥BD,∵AD=BC,∴∠ABD=∠CAB=∠CDB=45°,∴2BM,2DM,CM=DM,∴AB•CD+BC222DM+BM2+CM2=(BM+DM)2=BD2;②如图3中,连接OB,设DM=CM=x,∵∠BOC=2∠BDC=90°,∴26,∵AB•CD+BC2=BD2,AB•CD=AO2=12,∴12+24=BD2,∴BD=6(负根已经舍弃),在Rt△BCM中,∵BC2=BM2+CM2,∴(6)2=(6-x)2+x2,∴3或3∴226.【点睛】本题属于圆综合题,考查了垂径定理,等腰三角形的性质,等腰直角三角形的判定和性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.3.(1)4;(2)t为4s,203s,283s时,⊙P与⊙Q外切.【解析】试题分析:(1)四边形APQD为矩形,也就是AP=DQ,分别用含t的代数式表示,解即可;(2)主要考虑有四种情况,一种是P在AB上,一种是P在BC上时.一种是P在CD上时,又分为两种情况,一种是P在Q右侧,一种是P在Q左侧.并根据每一种情况,找出相等关系,解即可.试题解析:(1)根据题意,当AP=DQ时,四边形APQD为矩形.此时,4t=20-t,解得t=4(s).答:t为4时,四边形APQD为矩形(2)当PQ=4时,⊙P与⊙Q外切.①如果点P在AB上运动.只有当四边形APQD为矩形时,PQ=4.由(1),得t=4(s);②如果点P在BC上运动.此时t≥5,则CQ≥5,PQ≥CQ≥5>4,∴⊙P与⊙Q外离;③如果点P在CD上运动,且点P在点Q的右侧.可得CQ=t,CP=4t-24.当CQ-CP=4时,⊙P与⊙Q外切.此时,t-(4t-24)=4,解得t=203(s);④如果点P在CD上运动,且点P在点Q的左侧.当CP-CQ=4时,⊙P与⊙Q外切.此时,4t-24-t=4,解得t=283(s),∵点P从A开始沿折线A-B-C-D移动到D需要11s,点Q从C开始沿CD边移动到D需要20s,而283<11,∴当t为4s,203s,283s时,⊙P与⊙Q外切.考点:1.矩形的性质;2.圆与圆的位置关系.4.(1)证明见解析;(2)(3) 230a【解析】【分析】(1)根据△ABC是等边三角形,从而可以得出∠BAC=∠C,结合圆周角定理即可证明;(2)过点A作AG⊥BC于点G,根据△ABC是等边三角形,可以得到BG、AG的值,由BF∥AG可得到AF BGEF EB=,求出BE,最后利用勾股定理即可求解;(3)过点O作OM⊥BC于点M,由题(2)知AF BGEF EB=,CG=BG=1122AC a=,可以得到BM的值,根据BF∥AG,可证得△EBF∽△EGA,列比例式求出BF,从而表示出△OFB的面积.【详解】(1)证明:∵△ABC是等边三角形,∴∠BAC=∠C=60°,∵∠DEB=∠BAC=60°,∠D=∠C=60°,∴∠DEB=∠D,∴BD=BE ;(2)解:如图所示,过点A 作AG ⊥BC 于点G ,∵△ABC 是等边三角形,AC=6, ∴BG=11322BC AC ==, ∴在Rt △ABG 中,333AG BG ==, ∵BF ⊥EC , ∴BF ∥AG ,∴AF BG EF EB=, ∵AF :EF=3:2,∴BE=23BG=2, ∴EG=BE+BG=3+2=5, 在Rt △AEG 中,()2222335213AE AG EG =+=+=(3)解:如图所示,过点O 作OM ⊥BC 于点M ,由题(2)知AF BGEF EB =,CG=BG=1122AC a =, ∴3=2AF BG EF EB =, ∴22113323EB BG a a ==⨯=,∴EC=CG+BG+BE=11142233a a a a ++=,∴EM=12EC =23a , ∴BM=EM-BE=211333a a a -=, ∵BF ∥AG ,∴△EBF ∽△EGA ,∴123=11532aBF BE AG EG a a ==+,∵2AG a ==,∴25BF ==, ∴△OFB的面积=211223BF BM a a ⋅=⨯=. 【点睛】本题主要考查了圆的综合题,关键是根据等边三角形的性质,勾股定理和相似三角形的判定和性质求解.5.(1)BQ=8.2cm ;(2)5cm ;(3)S △BOC =39625. 【解析】 【分析】(1)根据ABC APQ ∆~∆得AC ABAQ AP=,从而得到AQ 的长即可求出BQ 的长; (2)由点Q 与点A 重合和点Q 与点B 重合时,可以确定点O 的位置,再根据点Q 位于AB 上除端点外的任意一点时,由点O 是PQ 的中点,点F 是PB 的中点可知OF 是PBQ ∆的中位线,从而得到点O 的运动轨迹是APB ∆的 中位线,即线段EF ,即可求得答案;(3)连接AO ,过点O 作ON AC ⊥ ,先证明APQ ABC ∆~∆得到AQ AP PQAC AB BC== ,所以求得,AQ PQ 的值,且OP OQ =,再证明PON PAQ ∆~∆得到ON POAQ PA=,求得ON 的值,再根据BOC ABC AOB AOC S S S S ∆∆∆∆=--即可求得答案;【详解】解:(1)如图1所示,∵90,6,8C AC cm BC cm ∠=== ∴10AB cm = 又∵点P 为AC 的中点, ∴3AP cm = ∵ABC APQ ∆~∆ ∴AC AB AQ AP = ,即6103AQ = 解之得: 1.8AQ = 则8.2BQ AB AQ cm =-= (2)如图2,当点Q 与点A 重合时,点O 位于点E 的位置, 当点Q 与点B 重合时,点O 位于点F 的位置, 则EF 是△APB 的中位线,∴EF ∥AB ,且EF =12AB =5,152EF AB == 而当点Q 位于AB 上除端点外的任意一点时, ∵点O 是PQ 中点,点F 是PB 的中点, ∴OF 是△PBQ 的中位线, ∴OF ∥BQ ,∴点O 的运动轨迹是线段EF , 则点O 的运动路径长是5cm ; 故答案为5cm .(3)如图3,连接AO ,过点O 作ON AC ⊥于点N ,∵⊙O 与AB 相切,∴PQ AB ⊥ ,即90AQP ∠= , ∵,90PAQ BAC ACB AQP ∠=∠∠=∠= ∴APQ ABC ∆~∆ ∴AQ AP PQ AC AB BC == ,即36108AQ PQ== 解之得: 912,55AQ PQ == 则65OP OQ ==∵ON AC ⊥∴90PNO PQA ∠=∠= 又∵OPN APQ ∠=∠ ∴PON PAQ ∆~∆,∴ON PO AQ PA = ,即65935ON = , 解之得:1825ON =则BOC ABC AOB AOC S S S S ∆∆∆∆=--111•••222BC AC AB OQ AC ON =-- 11611868106225225=⨯⨯-⨯⨯-⨯⨯ 39625= 【点睛】本题主要考查了相似三角形和圆的综合问题,掌握圆的切线判定、三角形中位线定理、相似三角形的判定和性质、割补法求面积等知识点是解题关键.6.(1)7-t (2)()()()22904;25{1674725t t S t t ππ<≤=-<<(3)516,23t t ==【解析】 【分析】(1)先判断出点P 在BC 上,即可得出结论;(2)分点P 在边AC 和BC 上两种情况:利用相似三角形的性质得出比例式建立方程求解即可得出结论;(3)分点P 在边AC 和BC 上两种情况:借助(2)求出的圆P 的半径等于PC ,建立方程求解即可得出结论. 【详解】(1)∵AC =4,BC =3,∴AC +BC =7. ∵4<t <7,∴点P 在边BC 上,∴BP =7﹣t . 故答案为:7﹣t ;(2)在Rt △ABC 中,AC =4,BC =3,根据勾股定理得:AB =5,由运动知,AP =t ,分两种情况讨论:①当点P 在边AC 上时,即:0<t ≤4,如图1,记⊙P 与边AB 的切点为H ,连接PH ,∴∠AHP =90°=∠ACB . ∵∠A =∠A ,∴△APH ∽△ACB ,∴PH AP BC AB =,∴35PH t =,∴PH 35=t ,∴S 925=πt 2; ②当点P 在边BC 上时,即:4<t <7,如图,记⊙P 与边AB 的切点为G ,连接PG ,∴∠BGP =90°=∠C .∵∠B =∠B ,∴△BGP ∽△BCA ,∴PG BP AC AB =,∴745PG t -=,∴PG 45=(7﹣t ),∴S 1625=π(7﹣t )2. 综上所述:S 22904251674725t t t t ππ⎧≤⎪⎪=⎨⎪-⎪⎩(<)()(<<);(3)分两种情况讨论:①当点P 在边AC 上时,即:0<t ≤4,由(2)知,⊙P 的半径PH 35=t . ∵⊙P 与△ABC 的另一边相切,即:⊙P 和边BC 相切,∴PC =PH . ∵PC =4﹣t ,∴4﹣t 35=t ,∴t 52=秒; ②当点P 在边BC 上时,即:4<t <7,由(2)知,⊙P 的半径PG 45=(7﹣t ). ∵⊙P 与△ABC 的另一边相切,即:⊙P 和边AC 相切,∴PC =PG .∵PC=t﹣4,∴t﹣445=(7﹣t),∴t163=秒.综上所述:在⊙P运动过程中,当⊙P与三角形ABC的另一边也相切时,t的值为52秒或163秒.【点睛】本题是圆的综合题,主要考查了切线的性质,勾股定理,相似三角形的判定和性质,用分类讨论的思想解决问题是解答本题的关键.7.(1)45°+α;(2)证明见解析;(3)2BF+CF.【解析】【分析】(1)过点A作AG⊥DF于G,由轴对称性质和正方形的性质可得AE=AD,∠BAP=∠EAF,根据等腰三角形“三线合一”的性质可得∠EAG=∠DAG,即可得∠FAG=12∠BAD=45°,∠DAG+∠BAP=45°,根据直角三角形两锐角互余的性质即可得答案;(2)由(1)可得∠FAG=12∠BAD=45°,由AG⊥PD可得∠APG=45°,根据轴对称的性质可得∠BPA=∠APG=45°,可得∠BFD=90°,即可证明BF⊥DF;(3)连接BD、BE,过点C作CH//FD,交BE延长线于H,由∠BFD=∠BCD=90°可得B、F、C、D四点共圆,根据圆周角定理可得∠FBC=∠FDC,∠DFC=∠DBC=45°,根据平行线的性质可得∠FDC=∠DCH,根据角的和差关系可得∠ABF=∠BCH,由轴对称性质可得BF=EF,可得△BEF是等腰直角三角形,即可得∠BEF=45°,2BF,即可证明∠BEF=∠DFC,可得BH//FC,即可证明四边形EFCH是平行四边形,可得EH=FC,EF=CH,利用等量代换可得CH=BF,利用SAS可证明△ABF≌△BCH,可得AF=BH,即可得AF、BF、CF的数量关系.【详解】(1)过点A作AG⊥DF于G,∵点B关于直线AF的对称点为E,四边形ABCD是正方形,∴AE=AB,AB=AD=DC=BC,∠BAF=∠EAF,∴AE=AD,∵AG⊥FD,∴∠EAG=∠DAG,∴∠BAF+∠DAG=∠EAF+∠EAG,∵∠BAF+∠DAG+∠EAF+∠EAG=∠BAD=90°,∴∠BAF+∠DAG=∠GAF=45°,∴∠DAG=45°-α,∴∠ADF=90°-∠DAG=45°+α.(2)由(1)得∠GAF=45°,∵AG⊥FD,∴∠AFG=45°,∵点E、B关于直线AF对称,∴∠AFB=∠AFE=45°,∴∠BFG=90°,∴BF⊥DF.(3)连接BD、BE,过点C作CH//FD,交BE延长线于H,∵∠BFD=∠BCD=90°,∴B、F、C、D四点共圆,∴∠FDC=∠FBC,∠DFC=∠DBC=45°,∵CH//FD,∴∠DCH=∠FDC,∴∠FBC=∠DCH,∵∠ABC=∠BCD=90°,∴∠ABC+∠FBC=∠BCD+∠DCH,即∠ABF=∠BCH,∵点E、B关于直线AF对称,∴BF=EF,∵∠BFE=90°,∴△BEF是等腰直角三角形,∴∠BEF=45°,2BF,∴∠BEF=∠DFC,∴FC//BH,∴四边形EFCH是平行四边形,∴EH=FC,CH=BF,在△ABF和△BCH中,AB BCABF BCHBF CH=⎧⎪∠=∠⎨⎪=⎩,∴AF=BH=BE+EH=2BF+CF.【点睛】本题考查正方形的性质、等腰三角形的性质、轴对称的性质、圆周角定理、四点共圆的判定及全等三角形的判定与性质,正确得出B、F、C、D四点共圆并熟练掌握圆周角定理及轴对称的性质是解题关键.8.(1)2114y x=-;(2)点P37(,)216-;(3)(222,222M--+【解析】【分析】(1)根据题意得到AB=4,根据函数对称轴x=0,得到OA=OB=2,得到A、B坐标,代入函数解析式即可求解;(2)首先求得直线OD解析式,然后设P(21,14t t-),得到PQ关于t 的解析式,然后求出顶点式即可求解;(3)设点21,14M m m⎛⎫-⎪⎝⎭,然后求得直线CM的解析式,得到EM的表达式,然后根据CMN CNE MNES S S=+即可求解.【详解】(1)∵AB =4OC,且C (0,-1)∴AB=4∴OA=OB=2,即A点坐标()2,0-,B点坐标()2,0代入A点坐标得2021a=-解得14a=∴G的解析式为2114y x=-故答案为2114y x =-(2)当1x =-时,34y =-,即:点D 为(31,4--)∴直线OD 为:34y x = 设P (21,14t t -),则Q 为(22141,1334t t --),则: 22214141325()()33333212PQ t t t t t =--=-++=--+∴当32t =时,PQ 取得最大值2512,此时点P 位37(,)216- (3)设点21,14M m m ⎛⎫- ⎪⎝⎭,则N ()214,414m m ⎛⎫++- ⎪⎝⎭∵C 点坐标为(0,1)-∴可设直线CM 为1y kx =-,带入M 点坐标得:14k m = ∴直线CM 为114y mx =- 过点N 作NE y ∥轴交CM 于点E ,则E 点为()14,414m m m ⎛⎫++- ⎪⎝⎭∴4EN m =-- ∵()()12CMNCNE MNEC N N M SSSx x x x EN ⎡⎤=+=-+-•⎣⎦∴()()104=22m m --- ∴2440m m +-=解得:1222m =--,2222m =-+(舍去) ∴M ()222,222--+ 【点睛】本题考查了待定系数法求函数解析式,二次函数综合应用,是二次函数部分的压轴题,题目较难,应画出示意图,然后进行讨论分析. 9.(1)y =x 2-4x +3 ;(2) P(36626--,);(3) 9922m -+= 【解析】 【分析】 (1)把,,代入,解方程组即可.(2)如图1中,连接OD 、BD,对称轴交x 轴于K,将绕点O 逆时针旋转90°得到△OCG,则点G 在线段BC 上,只要证明是等腰直角三角形,即可得到直线GO 与抛物线的交点即为所求的点P .利用方程组即可解决问题. (3)如图2中,将绕点O 顺时针旋转得到,首先证明,设,,则,设平移后的抛物线的解析式为,由消去y 得到,由,推出,,M 、N 关于直线对称,所以,设,则,利用勾股定理求出a 以及MN 的长,再根据根与系数关系,列出方程即可解决问题.【详解】 (1),,,代入,得,解得,∴抛物线的解析式为(2)如图1中,连接OD 、BD,对称轴交x 轴于K.由题意,,,,,,,将绕点O逆时针旋转90°得到,则点G在线段BC上,,,,是等腰直角三角形,,∴直线GO与抛物线的交点即为所求的点P.设直线OD的解析式为,把D点坐标代入得到,, ,∴直线OD的解析式为,,∴直线OG的解析式为,由解得或, 点P在对称轴左侧,点P坐标为(3)如图2中,将绕点O顺时针旋转90°得到,,,,,,,,,,设,,则,设平移后的抛物线的解析式为,由消去y得到,,,∴M、N关于直线对称,,设,则,,(负根已经舍弃),,,【点睛】本题考查了二次函数的综合题、一次函数、全等三角形的判定与性质、根与系数的关系、勾股定理等知识点,解题的关键是灵活运用所学知识,学会利用旋转添加辅助线,构造全等三角形,学会利用方程组及根与系数的关系,构建方程解决问题,本题难度较大.10.(1) A(0,2),B(4,0),272 2y x x=-++;(2)当t=2时,MN有最大值4;(3) D点坐标为(0,6),(0,-2)或(4,4).【解析】【分析】(1)首先求得A、B的坐标,然后利用待定系数法求抛物线的解析式;(2)本问要点是求得线段MN的表达式,这个表达式是关于t的二次函数,利用二次函数的极值求线段MN 的最大值; (3)本问要点是明确D 点的可能位置有三种情况,如答图2所示,其中D 1、D 2在y 轴上,利用线段数量关系容易求得坐标;D 3点在第一象限是直线D 1N 和D 2M 的交点,利用直线解析式求得交点坐标即可.【详解】解:(1)∵122y x =-+的图象交y 轴于点A ,交x 轴于点B 点, ∴A 、B 点的坐标为:A (0,2),B(4,0), 将x=0,y=2代入2y x bx c =-++得c=2,将x=4,y=0,代入2y x bx c =-++得b=72, ∴抛物线解析式为:2722y x x =-++; (2)如答图1所示,设MN 交x 轴于点E ,则E(t ,0),则M(t ,122t -),又N 点在抛物线上,且x N =t ,∴2722N y t t =-++, ∴()22271224=2422N M MN y y t t t t t t ⎛⎫=-=-++--=-+--+ ⎪⎝⎭, ∴当t=2时,MN 有最大值4.(3)由(2)可知A (0,2)、M(2,1)、N(2,5),以A 、M 、N 、D 为顶点做平行四边形,D 点的可能位置有三种情况,如答图2所示,当D 在y 轴上时,设D 的坐标为(0,a ),由AD=MN ,得|a-2|=4,解得a 1=6,a 2=-2,从而D 点坐标为(0,6)或D (0,-2),当D 不在y 轴上时,由图可知D 3为D 1N 与D 2M 的交点,分别求出D 1N 的解析式为:162y x =-+, D 2M 的解析式为:322y x =-, 联立两个方程得:D 3(4,4),故所求的D 点坐标为(0,6),(0,-2)或(4,4).【点睛】本题主要考查的是二次函数综合,经常作为压轴题出现,正确的掌握二次函数的性质是解题的关键.11.(1)点D 的坐标为12),抛物线的解析式为24 ?1?3y x =-+;(2)①1n =+;②234S m =+,S 【解析】【分析】(1)由抛物线的解析式为y = ax 2 + bx + 1,得到OB=1,根据菱形的性质结合含30度的直角三角形的性质点A 、D 、C 的坐标,再利用待定系数法即可求解;(2)①在Rt △FEA 中,FB=12FA=2,FD=FB+BD=3,根据题意设此一次函数解析式为:n km b =+,求得m =2n FB ==,m =3n FD ==,代入n km b =+,即可求解;②求得NA 33m =-,过N 作NQ ⊥EA ,得到NQ=12NA=326m -,利用面积公式得到S 关于m 的函数表达式,再利用二次函数的性质即可求解.【详解】(1)∵抛物线的解析式为y = ax 2 + bx + 1,∴OB=1,∵∠BAO=30︒,∠BOA=90︒,∴AB=2OB=2,=ABO=60︒,∴点A 的坐标为0),又∵四边形OBCD 是菱形,且∠ABO=60︒,∴OD=CD=OB=1,∴△DOB 为等边三角形,∴∠BOD=60︒,∠DOA=30︒,BD=BO=OD=DA=1,延长CD 交OA 于H ,则CH ⊥OA ,∴DH=12OD=12,OH=32,CH=CD+DH=32, ∴点D 的坐标为312),点C 的坐标为332), 将A 30) , C 的坐标为332)代入抛物线的解析式y = ax 2 + bx + 1, 得:3310333142a b a ⎧+=⎪⎨+=⎪⎩, 解得:433a b ⎧=-⎪⎨⎪=⎩, ∴抛物线的解析式为24 3?1?3y x x =-+; (2)①在Rt △FEA 中,∠FAE=30︒,3FA=2AB=4,∴FB=12FA=2,FD=FB+BD=3, ∵动点M 、N 同时作匀速直线运动,∴n 关于m 成一次函数,故设此一次函数解析式为:n km b =+,当点M 运动到点O 时,点N 恰好与点B 重合,∴3m =2n FB ==,当点M 运动到点A 时,点N 恰好与点D 重合,∴23m =3n FD ==,代入n km b =+,得:23323k b k b⎧=+⎪⎨=+⎪⎩,解得:1k b ⎧=⎪⎨⎪=⎩∴此一次函数解析式为:13n m =+; ②NA=FA-FN=4- 3n =, 过N 作NQ ⊥EA ,则NQ=12NA=326m -,∴2133224S m m ⎛⎫==+ ⎪ ⎪⎝⎭,∵0<,当312m ==⎝⎭0m ≤≤范围内,∴1322S ⎛=-= ⎝⎭最大 【点睛】本题主要考查了二次函数的综合应用,涉及待定系数法、菱形的性质、等边三角形的判定和性质、二次函数的性质、函数图象的交点等.本题涉及知识点较多,综合性较强,难度较大.12.(1)t =3;(2)P (35t +2,45t ﹣4);(3)t 的值为209秒或4秒或16秒或1609秒 【解析】【分析】(1)如图1,过点C 作CP ⊥OA ,交x 轴于点P .就可以求出OP 的值,由勾股定理就可以求出的OP 值,进而求出结论;(2)t <10时,P 在OA 或AB 上运动,所以分两种情况:①当0≤t≤5时,如图1,点P 在OA 上,OP=t ,可得P 的坐标;②当5<t <10时,如图2,点P 在AB 上,构建直角三角形,根据三角函数定义可得P 的坐标;(3)设切点为G ,连接PG ,分⊙P 与四边相切,其中P 在AB 和BC 时,与各边都不相切,所以分两种情况:①当P 在OA 上时,根据三角函数列式可得t 的值;②当P 在OC 上时,同理可得结论.【详解】 (1)如图1,当CP ⊥OA 时,sin ∠AO 45CP C OC ==, 4455CP CP 即=,=, 在Rt △OPC 中,OC =5,PC =4,则OP =3,∴331t ==(2)当0≤t ≤5时,如图1,点P 在OA 上,∴P (t ,0);当5<t <10时,如图2,点P 在AB 上,过P 作PH ⊥x 轴,垂足为H ,则∠AOC =∠PAH ,∴sin ∠PAH =sin ∠AO 45C =, 44 4555PH PH t t ∴=-即=﹣, ∴333255HA t OH OA AH t ++=﹣,==,∴34P t+2t 455(,﹣);(3)设切点为G ,连接PG ,分两种情况:①当P 在OA 上时,如图3,⊙P与直线AB相切,∵OC∥AB,∴∠AOC=∠OAG,∴sin∠AOC=sin∠OA45PGGAP==,t45-t5 =,∴209t=;⊙P与BC相切时,如图4,则PG=t=OP=4;②当点P在OC上时,⊙P与AB相切时,如图5,∴OP=PG=4,∴4×5﹣t=4,t=16,⊙P与直线BC相切时,如图6,∴PG⊥BC,∵BC∥AO,∴∠AOC=∠GCP,∴sin∠AOC=sin∠GC45PGPPC==,∵OP=PG=20﹣t,∴42051tt-=-,∴1609t=,综上所述,t的值2016041699为秒或秒或秒或秒【点睛】本题考查了菱形的性质、直角三角形的性质、勾股定理、锐角三角函数等知识,解答时运用等角的三角函数列方程是关键,并注意运用分类讨论的思想,做到不重不漏.。
人教版九年级数学上册 几何模型压轴题专题练习(word版
人教版九年级数学上册 几何模型压轴题专题练习(word 版一、初三数学 旋转易错题压轴题(难)1.如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是 ,位置关系是 ;(2)探究证明:把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE 绕点A 在平面内自由旋转,若AD =4,AB =10,请直接写出△PMN 面积的最大值.【答案】(1)PM =PN ,PM ⊥PN ;(2)△PMN 是等腰直角三角形.理由见解析;(3)S △PMN 最大=492. 【解析】【分析】 (1)由已知易得BD CE =,利用三角形的中位线得出12PM CE =,12PN BD =,即可得出数量关系,再利用三角形的中位线得出//PM CE 得出DPM DCA ∠=∠,最后用互余即可得出位置关系;(2)先判断出ABD ACE ∆≅∆,得出BD CE =,同(1)的方法得出12PM BD =,12PN BD =,即可得出PM PN =,同(1)的方法由MPN DCE DCB DBC ACB ABC ∠=∠+∠+∠=∠+∠,即可得出结论;(3)方法1:先判断出MN 最大时,PMN ∆的面积最大,进而求出AN ,AM ,即可得出MN 最大AM AN =+,最后用面积公式即可得出结论.方法2:先判断出BD 最大时,PMN ∆的面积最大,而BD 最大是14AB AD +=,即可得出结论.【详解】解:(1)点P ,N 是BC ,CD 的中点,//PN BD ∴,12PN BD =, 点P ,M 是CD ,DE 的中点,//PM CE ∴,12PM CE =, AB AC =,AD AE =,BD CE ∴=,PM PN ∴=,//PN BD ,DPN ADC ∴∠=∠,//PM CE ,DPM DCA ∴∠=∠,90BAC ∠=︒,90ADC ACD ∴∠+∠=︒,90MPN DPM DPN DCA ADC ∴∠=∠+∠=∠+∠=︒,PM PN ∴⊥,故答案为:PM PN =,PM PN ⊥;(2)PMN ∆是等腰直角三角形.由旋转知,BAD CAE ∠=∠,AB AC =,AD AE =,()ABD ACE SAS ∴∆≅∆,ABD ACE ∴∠=∠,BD CE =, 利用三角形的中位线得,12PN BD =,12PM CE =, PM PN ∴=,PMN ∴∆是等腰三角形,同(1)的方法得,//PM CE ,DPM DCE ∴∠=∠,同(1)的方法得,//PN BD ,PNC DBC ∴∠=∠,DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠,MPN DPM DPN DCE DCB DBC ∴∠=∠+∠=∠+∠+∠BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠,90BAC ∠=︒,90ACB ABC ∴∠+∠=︒,90MPN ∴∠=︒,PMN ∴∆是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,PMN ∆是等腰直角三角形,MN ∴最大时,PMN ∆的面积最大,//DE BC ∴且DE 在顶点A 上面,MN ∴最大AM AN =+,连接AM ,AN ,在ADE ∆中,4AD AE ==,90DAE ∠=︒,22AM ∴=在Rt ABC ∆中,10AB AC ==,52AN =22522MN ∴=最大,222111149(72)22242PMN S PM MN ∆∴==⨯=⨯=最大. 方法2:由(2)知,PMN ∆是等腰直角三角形,12PM PN BD ==, PM ∴最大时,PMN ∆面积最大,∴点D 在BA 的延长线上,14BD AB AD ∴=+=,7PM ∴=,2211497222PMN S PM ∆∴==⨯=最大. 【点睛】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出12PM CE =,12PN BD =,解(2)的关键是判断出ABD ACE ∆≅∆,解(3)的关键是判断出MN 最大时,PMN ∆的面积最大.2.如图1,在正方形ABCD 中,点E 、F 分别在边BC ,CD 上,且BE=DF ,点P 是AF 的中点,点Q 是直线AC 与EF 的交点,连接PQ ,PD .(1)求证:AC 垂直平分EF ;(2)试判断△PDQ 的形状,并加以证明;(3)如图2,若将△CEF 绕着点C 旋转180°,其余条件不变,则(2)中的结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明见解析;(2)△PDQ是等腰直角三角形;理由见解析(3)成立;理由见解析.【解析】试题分析:(1)由正方形的性质得出AB=BC=CD=AD,∠B=∠ADF=90°,∠BCA=∠DCA=45°,由BE=DF,得出CE=CF,△CEF是等腰直角三角形,即可得出结论;(2)由直角三角形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明∠DPQ=90°,即可得出结论;(3)由直角三角形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明点A、F、Q、P四点共圆,由圆周角定理得出∠DPQ=2∠DAQ=90°,即可得出结论.试题解析:(1)证明:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠ADF=90°,∠BCA=∠DCA=45°,∵BE=DF,∴CE=CF,∴AC垂直平分EF;(2)解:△PDQ是等腰直角三角形;理由如下:∵点P是AF的中点,∠ADF=90°,∴PD=AF=PA,∴∠DAP=∠ADP,∵AC垂直平分EF,∴∠AQF=90°,∴PQ=AF=PA,∴∠PAQ=∠AQP,PD=PQ,∵∠DPF=∠PAD+∠ADP,∠QPF=∠PAQ+∠AQP,∴∠DPQ=2∠PAD+2∠PAQ=2(∠PAD+∠PAQ)=2×45°=90°,∴△PDQ是等腰直角三角形;(3)成立;理由如下:∵点P是AF的中点,∠ADF=90°,∴PD=AF=PA,∵BE=DF,BC=CD,∠FCQ=∠ACD=45°,∠ECQ=∠ACB=45°,∴CE=CF,∠FCQ=∠ECQ,∴CQ⊥EF,∠AQF=90°,∴PQ=AF=AP=PF,∴PD=PQ=AP=PF,∴点A、F、Q、P四点共圆,∴∠DPQ=2∠DAQ=90°,∴△PDQ是等腰直角三角形.考点:四边形综合题.3.在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(5,0),点B(0,3).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F.(1)如图①,当点D落在BC边上时,求点D的坐标;(2)如图②,当点D落在线段BE上时,AD与BC交于点H.①求证△ADB≌△AOB;②求点H的坐标.(3)记K为矩形AOBC对角线的交点,S为△KDE的面积,求S的取值范围(直接写出结果即可).【答案】(1)D(1,3);(2)①详见解析;②H(175,3);(3)30334-≤S 30334+【解析】【分析】(1)如图①,在Rt△ACD中求出CD即可解决问题;(2)①根据HL证明即可;②,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,根据AH2=HC2+AC2,构建方程求出m即可解决问题;(3)如图③中,当点D在线段BK上时,△DEK的面积最小,当点D在BA的延长线上时,△D′E′K的面积最大,求出面积的最小值以及最大值即可解决问题;【详解】(1)如图①中,∵A(5,0),B(0,3),∴OA=5,OB=3,∵四边形AOBC是矩形,∴AC=OB=3,OA=BC=5,∠OBC=∠C=90°,∵矩形ADEF是由矩形AOBC旋转得到,∴AD=AO=5,在Rt△ADC中,CD=22AD AC=4,∴BD=BC-CD=1,∴D(1,3).(2)①如图②中,由四边形ADEF是矩形,得到∠ADE=90°,∵点D在线段BE上,∴∠ADB=90°,由(1)可知,AD=AO,又AB=AB,∠AOB=90°,∴Rt△ADB≌Rt△AOB(HL).②如图②中,由△ADB≌△AOB,得到∠BAD=∠BAO,又在矩形AOBC中,OA∥BC,∴∠CBA=∠OAB,∴∠BAD=∠CBA,∴BH=AH,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,∵AH2=HC2+AC2,∴m2=32+(5-m)2,∴m=175,∴BH=175,∴H(175,3).(3)如图③中,当点D在线段BK上时,△DEK的面积最小,最小值=12•DE•DK=12×3×(5-342)=303344-,当点D在BA的延长线上时,△D′E′K的面积最大,最大面积=12×D′E′×KD′=12×3×(5+342)=303344+.30334-S30334+【点睛】本题考查四边形综合题、矩形的性质、勾股定理、全等三角形的判定和性质、旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用参数构建方程解决问题.4.(1)问题发现如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=90°,B,C,D在一条直线上.填空:线段AD,BE之间的关系为 .(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,请判断AD,BE的关系,并说明理由.(3)解决问题如图3,线段PA=3,点B是线段PA外一点,PB=5,连接AB,将AB绕点A逆时针旋转90°得到线段AC,随着点B的位置的变化,直接写出PC的范围.【答案】(1) AD=BE,AD⊥BE.(2) AD=BE,AD⊥BE.(3) 5-32≤PC≤5+32.【解析】【分析】(1)根据等腰三角形性质证△ACD≌△BCE(SAS),得AD=BE,∠EBC=∠CAD,延长BE 交AD于点F,由垂直定义得AD⊥BE.(2)根据等腰三角形性质证△ACD≌△BCE(SAS),AD=BE,∠CAD=∠CBE,由垂直定义得∠OHB=90°,AD⊥BE;(3)作AE⊥AP,使得AE=PA,则易证△APE≌△ACP,PC=BE,当P、E、B共线时,BE最小,最小值=PB-PE;当P、E、B共线时,BE最大,最大值=PB+PE,故5-32≤BE≤5+32.【详解】(1)结论:AD=BE,AD⊥BE.理由:如图1中,∵△ACB与△DCE均为等腰直角三角形,∴AC=BC,CE=CD,∠ACB=∠ACD=90°,在Rt△ACD和Rt△BCE中AC BCACD BCECD CE⎧⎪∠∠⎨⎪⎩===∴△ACD≌△BCE(SAS),∴AD=BE,∠EBC=∠CAD延长BE交AD于点F,∵BC⊥AD,∴∠EBC+∠CEB=90°,∵∠CEB=AEF,∴∠EAD+∠AEF=90°,∴∠AFE=90°,即AD⊥BE.∴AD=BE,AD⊥BE.故答案为AD=BE,AD⊥BE.(2)结论:AD=BE,AD⊥BE.理由:如图2中,设AD交BE于H,AD交BC于O.∵△ACB与△DCE均为等腰直角三角形,∴AC=BC,CE=CD,∠ACB=∠ECD=90°,∴ACD=∠BCE,在Rt△ACD和Rt△BCE中AC BCACD BCECD CE⎧⎪∠∠⎨⎪⎩===,∴△ACD≌△BCE(SAS),∴AD=BE,∠CAD=∠CBE,∵∠CAO+∠AOC=90°,∠AOC=∠BOH,∴∠BOH+∠OBH=90°,∴∠OHB=90°,∴AD⊥BE,∴AD=BE,AD⊥BE.(3)如图3中,作AE⊥AP,使得AE=PA,则易证△APE≌△ACP,∴PC=BE,图3-1中,当P、E、B共线时,BE最小,最小值2,图3-2中,当P、E、B共线时,BE最大,最大值=PB+PE=5+32,∴5-32≤BE≤5+32,即5-32≤PC≤5+32.【点睛】本题是几何变换综合题,考查了旋转的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找三角形全等的条件,学会添加辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.5.如图,已知△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE的中点,连接CF,DF.(1)如图1,当点D在AB上,点E在AC上时①证明:△BFC是等腰三角形;②请判断线段CF,DF的关系?并说明理由;(2)如图2,将图1中的△ADE绕点A旋转到图2位置时,请判断(1)中②的结论是否仍然成立?并证明你的判断.【答案】(1)①证明见解析;②结论:CF=DF且CF⊥DF.理由见解析;(2)(1)中的结论仍然成立.理由见解析.【解析】【详解】分析:(1)、根据“直角三角形斜边上的中线等于斜边的一半”可知CF=BF=EF,根据∠CFD=2∠ABC,∠ACB=90°,∠ABC=45°得出∠CFD=90°,从而得出答案;(2)、延长DF至G使FG=DF,连接BG,CG,DC,首先证明△BFG和△EFD全等,然后再证明△BCG和△ACD全等,从而得出GC=DC,∠BCG=∠ACD,∠DCG=∠ACB=90°,最后根据直角三角形斜中线的性质得出答案.详解:(1)①证明:∵∠BCE=90°.EF=FB,∴CF=BF=EF,∴△BFC是等腰三角形.②解:结论:CF=DF且CF⊥DF.理由如下:∵∠ADE=90°,∴∠BDE=90°,又∵∠BCE=90°,点F是BE的中点,∴CF=DF=12BE=BF,∴∠1=∠3,∠2=∠4,∴∠5=∠1+∠3=2∠1,∠6=∠2+∠4=2∠2,∴∠CFD=∠5+∠6=2(∠1+∠2)=2∠ABC,又∵△ABC是等腰直角三角形,且∠ACB=90°,∴∠ABC=45°,∴∠CFD=90°,∴CF=DF且CF⊥DF.(2)(1)中的结论仍然成立.理由如下:如图,延长DF至G使FG=DF,连接BG,CG,DC,∵F是BE的中点,∴BF=EF,又∵∠BFG=∠EFD,GF=DF,∴△BFG≌△EFD(SAS),∴∠FBG=∠FED,BG=ED,∴BG∥DE,∵△ADE和△ACB都是等腰直角三角形,∴DE=DA,∠DAE=∠DEA=45°,AC=BC,∠CAB=∠CBA=45°,又∵∠CBG=∠EBG﹣∠EBA﹣∠ABC=∠DEF﹣(180°﹣∠AEB﹣∠EAB)﹣45°=∠DEF﹣180°+∠AEB+∠EAB﹣45°=(∠DEF+∠AEB)+∠EAB﹣225°=360°﹣∠DEA+∠EAB﹣225°=360°﹣45°+∠EAB﹣225°=90°+∠EAB,而∠DAC=∠DAE+∠EAB+∠CAB=45°+∠EAB+45°=90°+∠EAB,∴∠CBG=∠DAC,又∵BG=ED,DE=DA,∴BG=AD,又∵BC=AC,∴△BCG≌△ACD(SAS),∴GC=DC,∠BCG=∠ACD,∴∠DCG=∠DCB+∠BCG=∠DCB+∠ACD=∠ACB=90°,∴△DCG是等腰直角三角形,又∵F是DG的中点,∴CF⊥DF且CF=DF.点睛:主要考查了旋转的性质,等腰三角形和全等三角形的判定,及勾股定理的运用.要掌握等腰三角形和全等三角形的性质及其判定定理并会灵活应用是解题的关键.6.已知:△ABC和△ADE均为等边三角形,连接BE,CD,点F,G,H分别为DE,BE,CD 中点.(1)当△ADE绕点A旋转时,如图1,则△FGH的形状为,说明理由;(2)在△ADE旋转的过程中,当B,D,E三点共线时,如图2,若AB=3,AD=2,求线段FH的长;(3)在△ADE旋转的过程中,若AB=a,AD=b(a>b>0),则△FGH的周长是否存在最大值和最小值,若存在,直接写出最大值和最小值;若不存在,说明理由.【答案】(1)△FGH是等边三角形;(261;(3)△FGH的周长最大值为32(a+b),最小值为32(a﹣b).【解析】试题分析:(1)结论:△FGH是等边三角形.理由如下:根据三角形中位线定理证明FG=FH,再想办法证明∠GFH=60°即可解决问题;、(2)如图2中,连接AF、EC.在Rt△AFE和Rt△AFB中,解直角三角形即可;(3)首先证明△GFH的周长=3GF=32BD,求出BD的最大值和最小值即可解决问题;试题解析:解:(1)结论:△FGH是等边三角形.理由如下:如图1中,连接BD、CE,延长BD交CE于M,设BM交FH于点O.∵△ABC和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE,∴∠BAD=∠CAE,∴△BAD≌△CAE,∴BD=CE,∠ADB=∠AEC,∵EG=GB,EF=FD,∴FG=12BD,GF∥BD,∵DF=EF,DH=HC,∴FH=12EC,FH∥EC,∴FG=FH,∵∠ADB+∠ADM=180°,∴∠AEC+∠ADM=180°,∴∠DMC+∠DAE=180°,∴∠DME=120°,∴∠BMC=60°∴∠GFH=∠BOH=∠BMC=60°,∴△GHF是等边三角形,故答案为:等边三角形.(2)如图2中,连接AF、EC.易知AF⊥DE,在Rt△AEF中,AE=2,EF=DF=1,∴AF2221-3,在Rt△ABF中,BF22AB AF-6,∴BD=CE=BF﹣DF61,∴FH=12EC=612.(3)存在.理由如下.由(1)可知,△GFH是等边三角形,GF=12BD,∴△GFH的周长=3GF=32BD,在△ABD中,AB=a,AD=b,∴BD的最小值为a﹣b,最大值为a+b,∴△FGH的周长最大值为3 2(a+b),最小值为32(a﹣b).点睛:本题考查等边三角形的性质.全等三角形的判定和性质、解直角三角形、三角形的三边关系、三角形的中位线的宽等知识,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题.7.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是;结论2:DM、MN的位置关系是;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析.【解析】试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出MN∥AE,MN=12AE,利用三角形全等证出AE=AF,而DM=12AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直.试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF 是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM,AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,∴∠DMN=∠FMN+∠DMF=∠DAF+∠BAE+∠FAE=∠BAD=90°,∴DM⊥MN;(3)(2)中的两个结论还成立,连接AE,交MD于点G,∵点M为AF的中点,点N为EF的中点,∴MN∥AE,MN=12AE,由已知得,AB=AD=BC=CD,∠B=∠ADF,CE=CF,又∵BC+CE=CD+CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,在Rt△ADF中,∵点M为AF的中点,∴DM=12AF,∴DM=MN,∵△ABE≌△ADF,∴∠1=∠2,∵AB∥DF,∴∠1=∠3,同理可证:∠2=∠4,∴∠3=∠4,∵DM=AM,∴∠MAD=∠5,∴∠DGE=∠5+∠4=∠MAD+∠3=90°,∵MN∥AE,∴∠DMN=∠DGE=90°,∴DM⊥MN.所以(2)中的两个结论还成立.考点:1.正方形的性质;2.全等三角形的判定与性质;3.三角形中位线定理;4.旋转的性质.8.(问题提出)如图①,已知△ABC是等边三角形,点E在线段AB上,点D在直线BC上,且ED=EC,将△BCE绕点C顺时针旋转60°至△ACF连接EF试证明:AB=DB+AF(类比探究)(1)如图②,如果点E在线段AB的延长线上,其他条件不变,线段AB,DB,AF之间又有怎样的数量关系?请说明理由(2)如果点E在线段BA的延长线上,其他条件不变,请在图③的基础上将图形补充完整,并写出AB,DB,AF之间的数量关系,不必说明理由.【答案】证明见解析;(1)AB=BD﹣AF;(2)AF=AB+BD.【解析】【分析】(1)根据旋转的性质得出△EDB与FEA全等的条件BE=AF,再结合已知条件和旋转的性质推出∠D=∠AEF,∠EBD=∠EAF=120°,得出△EDB≌FEA,所以BD=AF,等量代换即可得出结论.(2)先画出图形证明∴△DEB≌△EFA,方法类似于(1);(3)画出图形根据图形直接写出结论即可.【详解】(1)证明:DE=CE=CF,△BCE由旋转60°得△ACF,∴∠ECF=60°,BE=AF,CE=CF,∴△CEF是等边三角形,∴EF=CE,∴DE=EF,∠CAF=∠BAC=60°,∴∠EAF=∠BAC+∠CAF=120°,∵∠DBE=120°,∴∠EAF=∠DBE,又∵A,E,C,F四点共圆,∴∠AEF=∠ACF,又∵ED=DC,∴∠D=∠BCE,∠BCE=∠ACF,∴∠D=∠AEF,∴△EDB≌FEA,∴BD=AF,AB=AE+BF,∴AB=BD+AF.类比探究(1)DE=CE=CF,△BCE由旋转60°得△ACF,∴∠ECF=60°,BE=AF,CE=CF,∴△CEF是等边三角形,∴EF=CE,∴DE=EF,∠EFC=∠BAC=60°,∠EFC=∠FGC+∠FCG,∠BAC=∠FGC+∠FEA,∴∠FCG=∠FEA,又∠FCG=∠EAD∠D=∠EAD,∴∠D=∠FEA,由旋转知∠CBE=∠CAF=120°,∴∠DBE=∠FAE=60°∴△DEB≌△EFA,∴BD=AE, EB=AF,∴BD=FA+AB.即AB=BD-AF.(2)AF=BD+AB(或AB=AF-BD)如图③,,ED=EC=CF,∵△BCE绕点C顺时针旋转60°至△ACF,∴∠ECF=60°,BE=AF,EC=CF,BC=AC,∴△CEF是等边三角形,∴EF=EC,又∵ED=EC,∴ED=EF,∵AB=AC,BC=AC,∴△ABC是等边三角形,∴∠ABC=60°,又∵∠CBE=∠CAF,∴∠CAF=60°,∴∠EAF=180°-∠CAF-∠BAC=180°-60°-60°=60°∴∠DBE=∠EAF;∵ED=EC,∴∠ECD=∠EDC,∴∠BDE=∠ECD+∠DEC=∠EDC+∠DEC,又∵∠EDC=∠EBC+∠BED,∴∠BDE=∠EBC+∠BED+∠DEC=60°+∠BEC,∵∠AEF=∠CEF+∠BEC=60°+∠BEC,∴∠BDE=∠AEF,在△EDB和△FEA中,DBE EAFBDE AEFED EF∠∠⎧⎪∠∠⎨⎪⎩===∴△EDB≌△FEA(AAS),∴BD=AE,EB=AF,∵BE=AB+AE,∴AF=AB+BD,即AB,DB,AF之间的数量关系是:AF=AB+BD.考点:旋转变化,等边三角形,三角形全等,二、初三数学圆易错题压轴题(难)9.如图①,一个Rt△DEF直角边DE落在AB 上,点D 与点B重合,过A点作二射线AC 与斜边EF平行,己知AB=12,DE=4,DF=3,点P从A点出发,沿射线AC方向以每秒2个单位的速度运动,Q为AP中点,设运动时间为t秒(t>0)•(1)当t=5时,连接QE,PF,判断四边形PQEF的形状;(2)如图②,若在点P运动时,Rt△DEF同时沿着BA方向以每秒1个单位的速度运动,当D点到A点时,两个运动都停止,M为EF中点,解答下列问题:①当D、M、Q三点在同一直线上时,求运动时间t;②运动中,是否存在以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切?若存在,求出此时的运动时间t;若不存在,说明理由.【答案】(1)平行四边形EFPQ是菱形;(2)t=;当t为5秒或10秒时,以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切.【解析】试题分析:(1)过点Q作QH⊥AB于H,如图①,易得PQ=EF=5,由AC∥EF可得四边形EFPQ是平行四边形,易证△AHQ∽△EDF,从而可得AH=ED=4,进而可得AH=HE=4,根据垂直平分线的性质可得AQ=EQ,即可得到PQ=EQ,即可得到平行四边形EFPQ是菱形;(2)①当D、M、Q三点在同一直线上时,如图②,则有AQ=t,EM=EF=,AD=12-t,DE=4.由EF∥AC可得△DEM∽△DAQ,然后运用相似三角形的性质就可求出t的值;②若以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切,则点Q在∠ADF的角平分线上(如图③)或在∠FDB的角平分线(如图④)上,故需分两种情况讨论,然后运用相似三角形的性质求出AH、DH(用t表示),再结合AB=12,DB=t建立关于t的方程,然后解这个方程就可解决问题.试题解析:(1)四边形EFPQ是菱形.理由:过点Q作QH⊥AB于H,如图①,∵t=5,∴AP=2×5=10.∵点Q是AP的中点,∴AQ=PQ=5.∵∠EDF=90°,DE=4,DF=3,∴EF==5,∴PQ=EF=5.∵AC∥EF,∴四边形EFPQ是平行四边形,且∠A=∠FEB.又∵∠QHA=∠FDE=90°,∴△AHQ∽△EDF,∴.∵AQ=EF=5,∴AH=ED=4.∵AE=12-4=8,∴HE=8-4=4,∴AH=EH,∴AQ=EQ,∴PQ=EQ,∴平行四边形EFPQ是菱形;(2)①当D、M、Q三点在同一直线上时,如图②,此时AQ=t,EM=EF=,AD=12-t,DE=4.∵EF∥AC,∴△DEM∽△DAQ,∴,∴,解得t=;②存在以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切,此时点Q在∠ADF的角平分线上或在∠FDB的角平分线上.Ⅰ.当点Q在∠ADF的角平分线上时,过点Q作QH⊥AB于H,如图③,则有∠HQD=∠HDQ=45°,∴QH=DH.∵△AHQ∽△EDF(已证),∴,∴,∴QH=,AH=,∴DH=QH=.∵AB=AH+HD+BD=12,DB=t,∴++t=12,∴t=5;Ⅱ.当点Q在∠FDB的角平分线上时,过点Q作QH⊥AB于H,如图④,同理可得DH=QH=,AH=. ∵AB=AD+DB=AH-DH+DB=12,DB=t , ∴-+t=12,∴t=10.综上所述:当t 为5秒或10秒时,以点Q 为圆心的圆与Rt △DEF 两个直角边所在直线都相切.考点:1.圆的综合题;2.线段垂直平分线的性质;3.勾股定理;4.菱形的判定;5.相似三角形的判定与性质.10.已知圆O 的半径长为2,点A 、B 、C 为圆O 上三点,弦BC=AO ,点D 为BC 的中点,(1)如图,连接AC 、OD ,设∠OAC=α,请用α表示∠AOD ; (2)如图,当点B 为AC 的中点时,求点A 、D 之间的距离:(3)如果AD 的延长线与圆O 交于点E ,以O 为圆心,AD 为半径的圆与以BC 为直径的圆相切,求弦AE 的长.【答案】(1)1502AOD α∠=︒-;(2)7AD =3331331+- 【解析】 【分析】(1)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOC 等于30°,OA=OC 可得∠ACO=∠CAO=α,利用三角形的内角和定理即可表示出∠AOD 的值. (2)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOB 等于30°,因为点D 为BC 的中点,则∠AOB=∠BOC=60°,所以∠AOD 等于90°,根据OA=OB=2,在直角三角形中用三角函数及勾股定理即可求得OD 、AD 的长.(3)分两种情况讨论:两圆外切,两圆内切.先根据两圆相切时圆心距与两圆半径的关系,求出AD 的长,再过O 点作AE 的垂线,利用勾股定理列出方程即可求解. 【详解】(1)如图1:连接OB 、OC. ∵BC=AO ∴OB=OC=BC∴△OBC 是等边三角形 ∴∠BOC=60°∵点D是BC的中点∴∠BOD=130 2BOC∠=︒∵OA=OC∴OAC OCA∠=∠=α∴∠AOD=180°-α-α-30︒=150°-2α(2)如图2:连接OB、OC、OD.由(1)可得:△OBC是等边三角形,∠BOD=130 2BOC∠=︒∵OB=2,∴OD=OB∙cos30︒=3∵B为AC的中点,∴∠AOB=∠BOC=60°∴∠AOD=90°根据勾股定理得:AD=227AO OD+=(3)①如图3.圆O 与圆D 相内切时: 连接OB 、OC ,过O 点作OF ⊥AE ∵BC 是直径,D 是BC 的中点 ∴以BC 为直径的圆的圆心为D 点 由(2)可得:OD=3,圆D 的半径为1 ∴AD=31+ 设AF=x在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=-+-解得:331x +=∴AE=3312AF 2+=②如图4.圆O 与圆D 相外切时: 连接OB 、OC ,过O 点作OF ⊥AE ∵BC 是直径,D 是BC 的中点 ∴以BC 为直径的圆的圆心为D 点 由(2)可得:3D 的半径为1 ∴31 在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=- 解得:331x -=∴AE=331 2AF2-=【点睛】本题主要考查圆的相关知识:垂径定理,圆与圆相切的条件,关键是能灵活运用垂径定理和勾股定理相结合思考问题,另外需注意圆相切要分内切与外切两种情况.11.如图,在△ABC中,∠C=90°,∠CAB=30°,AB=10,点D在线段AB上,AD=2.点P,Q以相同的速度从D点同时出发,点P沿DB方向运动,点Q沿DA方向到点A后立刻以原速返回向点B运动.以PQ为直径构造⊙O,过点P作⊙O的切线交折线AC﹣CB于点E,将线段EP绕点E顺时针旋转60°得到EF,过F作FG⊥EP于G,当P运动到点B时,Q 也停止运动,设DP=m.(1)当2<m≤8时,AP=,AQ=.(用m的代数式表示)(2)当线段FG长度达到最大时,求m的值;(3)在点P,Q整个运动过程中,①当m为何值时,⊙O与△ABC的一边相切?②直接写出点F所经过的路径长是.(结果保留根号)【答案】(1)2+m,m﹣2;(2)m=5.5;(3)①当m=1或4或10433与△ABC的边相切.②点F 1136572【解析】试题分析:(1)根据题意可得AP =2+m ,AQ =m −2.(2)如图1中在Rt △EFG 中, 30,90EFG A EGF ∠=∠=∠=, 推出3cos30cos30FG EF PE EP =⋅=⋅=,所以当点E 与点C 重合时,PE 的值最大,求出此时EP 的长即可解决问题.(3)①当02t <≤ (Q 在往A 运动)时,如图2中,设O 切AC 于H ,连接OH .当28m <≤(Q 从A 向B 运动)时,则PQ =(2+m )−(m −2)=4,如图3中,设O 切AC 于H .连接OH .如图4中,设O 切BC 于N ,连接ON .分别求解即可.②如图5中,点F 的运动轨迹是F 1→F 2→B .分别求出122F F F B ,即可解决问题. 试题解析:(1)当28m <≤时,AP =2+m ,AQ =m −2. 故答案为2+m ,m −2. (2)如图1中,在Rt △EFG 中, 30,90EFG A EGF ∠=∠=∠=,3cos30cos302FG EF PE EP ∴=⋅=⋅=, ∴当点E 与点C 重合时,PE 的值最大, 易知此时53553AC BC EP AB ⨯⨯=== 3tan30(2)EP AP m =⋅=+ 533(2)m =+ ∴m =5.5(3)①当02t <≤ (Q 在往A 运动)时,如图2中,设O 切AC 于H ,连接OH .则有AD =2DH =2, ∴DH =DQ =1,即m =1.当28m <≤(Q 从A 向B 运动)时,则PQ =(2+m )−(m −2)=4, 如图3中,设O 切AC 于H .连接OH .则AO =2OH =4,AP =4+2=6, ∴2+m =6, ∴m =4. 如图4中,设O 切BC 于N ,连接ON .在Rt △OBN 中, 43sin60OB ON ==4310AO ∴=- 4312AP ∴=-432123m ∴+=-, 4310m ∴=-, 综上所述,当m =1或4或4310-时,O 与△ABC 的边相切。
2022-2023学年人教版九年级数学上学期压轴题汇编专题02 解一元二次方程(解析版)
2022-2023学年人教版数学九年级上册压轴题专题精选汇编专题02 解一元二次方程考试时间:120分钟 试卷满分:100分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022八下·淮北期末)若实数a ,b ,c 满足0a b c ++=,则( ) A .240b ac -> B .240b ac -< C .240b ac -≥ D .240b ac -≤【答案】C【完整解答】解:∵0a b c ++=, ∴b a c =--,∴()2244b ac a c ac -=---2224a ac c ac =++-222a ac c =-+()20a c =-≥故答案为:C【思路引导】先求出b a c =--,再代入计算求解即可。
2.(2分)(2022八下·柯桥期末)方程(x -2)2= 4(x-2)( ) A .4 B .-2C .4或-6D .6或2【答案】D【完整解答】解:移项得 (x -2)2 - 4(x —2) =0 (x-2)(x-2-4)=0 ∴x -2=0或x-6=0, 解之:x 1=2,x 2=6. 故答案为:D.【思路引导】观察方程的特点:将(x-2)看着整体,方程两边都含有公因式(x-2),因此利用因式分解法解方程.3.(2分)(2022·贵港)若2x =-是一元二次方程220x x m ++=的一个根,则方程的另一个根及m 的值分别是( )A .0,-2 B .0,0C .-2,-2D .-2,0【答案】B【完整解答】解:根据题意,∵2x =-是一元二次方程220x x m ++=的一个根,把2x =-代入220x x m ++=,则2(2)2(2)0m -+⨯-+=,解得:0m =; ∴220x x +=, ∴(2)0x x +=, ∴12x =-,0x =, ∴方程的另一个根是0x =; 故答案为:B.【思路引导】将x=-2代入方程中可得m 的值,则方程可化为x 2+2x=0,利用因式分解法可得方程的解,据此解答.4.(2分)(2022·仙桃)若关于x 的一元二次方程222410x mx m m -+--=有两个实数根1x ,2x ,且()()121222217x x x x ++-=,则m =()A .2或6B .2或8C .2D .6【答案】A【完整解答】解:∵关于x 的一元二次方程222410x mx m m -+--=有两个实数根, ∴22Δ=(2)4(41)0m m m ----≥, ∴14m ≥-,∵12 x x ,是方程222410x mx m m -+--=的两个实数根, ∵21212241x x m x x m m +=⋅=--,,又()()121222217x x x x ++-=∴12122()130x x x x +--=把21212241x x m x x m m +=⋅=--,代入整理得,28120m m -+=解得,1226m m ==,故答案为:A.【思路引导】根据方程有两个实数根可得△≥0,代入求解可得m 的范围,根据根与系数的关系可得x 1+x 2=2m ,x 1x 2=m 2-4m-1,然后结合已知条件可得m 的值.5.(2分)(2022·雅安)若关于x 的一元二次方程x 2+6x+c =0配方后得到方程(x+3)2=2c ,则c 的值为( ) A .﹣3 B .0 C .3 D .9【答案】C【完整解答】解:x 2+6x+c =0, 移项得:26x x c +=-,配方得:()239x c +=-, 而(x+3)2=2c , 92c c ∴-=,解得:3c =, 故答案为:C.【思路引导】首先将常数项c 移至右边,然后给两边同时加上一次项系数一半的平方“9”,再对左边的式子利用完全平方公式分解可得(x+3)2=9-c ,结合题意可得9-c=2c ,求解可得c 的值. 6.(2分)(2022九下·泉州开学考)已知x ,y 为实数,且满足 2244x xy y -+= ,记224u x xy y =++ 的最大值为M ,最小值为m ,则 M m += ( ).A .403B .6415C .13615D .315【答案】C【完整解答】解:∵2244x xy y -+= , ∴2244x y xy +=+ ,∴22424u x xy y xy =++=+ ,∵()225444xy xy x y =++-()2244x y =+-≥- ,当且仅当 2x y =- ,即 x = , y =,或 5x =, 5y =- 时,等号成立, ∴xy 的最小值为 45-, ∴22424u x xy y xy =++=+ 最小值为:125,即 125m =, ∵()223444xy xy x y =-+-()2424x y =--≤ ,当且仅当 2x y = 时,即 x =, y =,或 3x =-, 3y =- 时等号成立, ∴xy 的最大值为43, ∴22424u x xy y xy =++=+ 的最大值为203, 即 203M = , ∴20121363515M m +=+= , 故答案为:C.【思路引导】利用已知等式可得 22424u x xy y xy =++=+ ,根据 ()225444xy xy x y =++-=()242x y =--,根据偶次幂的非负性知当且仅当2x y =-时,xy 的最小值为 45-,即可得出 22424u x xy y xy =++=+ 最小值为125 ,即 125m = ;根据 ()223444xy xy x y =-+-()242x y =-- ,根据偶次幂的非负性当且仅当 2x y = 时, xy 的最大值为 43,即得M ,再代入计算即可.7.(2分)(2021七下·娄底期中)无论a ,b 为何值代数式a 2+b 2+6b+11﹣2a 的值总是( ) A .非负数 B .0C .正数D .负数【答案】C【完整解答】解:原式=(a 2﹣2a+1)+(b 2+6b+9)+1 =(a ﹣1)2+(b+3)2+1, ∵(a ﹣1)2≥0,(b+3)2≥0, ∴(a ﹣1)2+(b+3)2+1>0,即原式的值总是正数. 故答案为:C.【思路引导】把含a 的放一块,配成完全平方公式,把含b 的放一块,配成完全平方公式,根据平方的非负性即可得出答案.8.(2分)(2020八上·越秀期末)若 a , b , c 是 ABC ∆ 的三边长,且2220a b c ab ac bc ++---= ,则 ABC ∆ 的形状是( )A .等腰三角形B .等腰直角三角形C .等边三角形D .不能确定【答案】C【完整解答】解:∵2220a b c ab ac bc ++---= , ∴2 222222220a b c ab ac bc ++---= , ∴()222()()0a b b c c a -+-+-= , ∴a=b=c∴这个三角形是等边三角形. 故答案为:C .【思路引导】首先利用完全平方公式对等式进行变形,然后利用平方的非负性得出a 、b 、c 的数量关系,即可判定.9.(2分)(2019九上·涪城月考)若点 (),M m n 是抛物线 2223y x x =-+- 上的点,则 m n -的最小值是( ) A .0 B .158C .238D .3- 【答案】C【完整解答】解:根据题意可得: 把 (),M m n 的坐标代入表达式,即:2223n m m =-+- ,∴22(223)23m n m m m m m -=--+-=-+ ,函数的最值为 244ac b a- ,所以代入得 m n - 的最小值为:238;故答案为:C.【思路引导】根据题意把 (),M m n 的坐标代入表达式,得出 2223n m m =-+- ,求 m n - 的最小值即: 22(223)23m n m m m m m -=--+-=-+ ,求出最小值即可.10.(2分)(2022·海陵模拟)已知3x ﹣y =3a 2﹣6a+9,x+y =a 2+6a ﹣10,当实数a 变化时,x 与y 的大小关系是( ) A .x >y B .x =yC .x <yD .x >y 、x =y 、x <y 都有可能【答案】A【完整解答】解:∵3x﹣y =3a 2﹣6a+9,x+y =a 2+6a ﹣10, ∴()()()223369610x y x y a a a a --+=-+-+-,∴()()22222212192691231x y a a a a a -=-+=-++=-+,∵不论a 为何值,()22311a -+≥, ∴220x y ->, ∴22x y >, ∴x y >. 故答案为:A .【思路引导】先求出()()22222212192691231x y a a a a a -=-+=-++=-+,再求出220x y ->,最后求解即可。
初三九年级上册上册数学压轴题专题练习(解析版)
初三九年级上册上册数学压轴题专题练习(解析版)一、压轴题1.已知P 是⊙O 上一点,过点P 作不过圆心的弦PQ ,在劣弧PQ 和优弧PQ 上分别有动点A 、B(不与P ,Q 重合),连接AP 、BP . 若∠APQ=∠BPQ. (1)如图1,当∠APQ=45°,AP=1,BP=22时,求⊙O 的半径;(2)如图2,选接AB ,交PQ 于点M ,点N 在线段PM 上(不与P 、M 重合),连接ON 、OP ,若∠NOP+2∠OPN=90°,探究直线AB 与ON 的位置关系,并证明.2.点P 为图形M 上任意一点,过点P 作PQ ⊥直线,l 垂足为Q ,记PQ 的长度为d . 定义一:若d 存在最大值,则称其为“图形M 到直线l 的限距离”,记作()max ,D M l ; 定义二:若d 存在最小值,则称其为“图形M 到直线l 的基距离”,记作()min ,D M l ; (1)已知直线1:2l y x =--,平面内反比例函数2y x=在第一象限内的图象记作,H 则()1,min D H l = .(2)已知直线2:33l y x =+,点()1,0A -,点()()1,0,,0B T t 是x 轴上一个动点,T 3C 在T 上,若()max 243,63,D ABC l ≤≤求此时t 的取值范围,(3)已知直线21211k k y x k k --=+--恒过定点1111,8484P a b c a b c ⎛⎫⎪⎝+-+⎭+,点(),D a b 恒在直线3l 上,点(),28E m m +是平面上一动点,记以点E 为顶点,原点为对角线交点的正方形为图形,K ()min 3,0D K l =,若请直接写出m 的取值范围. 3.如图①,O 经过等边ABC 的顶点A ,C (圆心O 在ABC 内),分别与AB ,CB 的延长线交于点D ,E ,连结DE ,BF EC ⊥交AE 于点F .(1)求证:BD BE =.(2)当:3:2AF EF =,6AC =,求AE 的长.(3)当:3:2AF EF =,AC a =时,如图②,连结OF ,OB ,求OFB △的面积(用含a 的代数式表示).4.如图,在平面直角坐标系中,直线l:y=﹣13x+2与x轴交于点B,与y轴交于点A,以AB为斜边作等腰直角△ABC,使点C落在第一象限,过点C作CD⊥AB于点D,作CE⊥x轴于点E,连接ED并延长交y轴于点F.(1)如图(1),点P为线段EF上一点,点Q为x轴上一点,求AP+PQ的最小值.(2)将直线l进行平移,记平移后的直线为l1,若直线l1与直线AC相交于点M,与y轴相交于点N,是否存在这样的点M、点N,使得△CMN为等腰直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.5.如图, AB是⊙O的直径,点D、E在⊙O上,连接AE、ED、DA,连接BD并延长至点C,使得DAC AED∠=∠.(1)求证: AC是⊙O的切线;(2)若点E是BC的中点, AE与BC交于点F,①求证: CA CF=;②若⊙O的半径为3,BF=2,求AC的长.6.我们知道,如图1,AB是⊙O的弦,点F是AFB的中点,过点F作EF⊥AB于点E,易得点E是AB的中点,即AE=EB.⊙O上一点C(AC>BC),则折线ACB称为⊙O的一条“折弦”.(1)当点C在弦AB的上方时(如图2),过点F作EF⊥AC于点E,求证:点E是“折弦ACB”的中点,即AE=EC+CB.(2)当点C在弦AB的下方时(如图3),其他条件不变,则上述结论是否仍然成立?若成立说明理由;若不成立,那么AE、EC、CB满足怎样的数量关系?直接写出,不必证明.(3)如图4,已知Rt△ABC中,∠C=90°,∠BAC=30°,Rt△ABC的外接圆⊙O的半径为2,过⊙O上一点P作PH⊥AC于点H,交AB于点M,当∠PAB=45°时,求AH的长.7.(2015秋•惠山区期末)如图,在平面直角坐标系中,半径为1的⊙A的圆心与坐标原点O重合,线段BC的端点分别在x轴与y轴上,点B的坐标为(6,0),且sin∠OCB=.(1)若点Q是线段BC上一点,且点Q的横坐标为m.①求点Q 的纵坐标;(用含m 的代数式表示) ②若点P 是⊙A 上一动点,求PQ 的最小值;(2)若点A 从原点O 出发,以1个单位/秒的速度沿折线OBC 运动,到点C 运动停止,⊙A 随着点A 的运动而移动.①点A 从O→B 的运动的过程中,若⊙A 与直线BC 相切,求t 的值;②在⊙A 整个运动过程中,当⊙A 与线段BC 有两个公共点时,直接写出t 满足的条件. 8.抛物线G :2y ax c =+与x 轴交于A 、B 两点,与y 交于C (0,-1),且AB =4OC .(1)直接写出抛物线G 的解析式: ;(2)如图1,点D (-1,m )在抛物线G 上,点P 是抛物线G 上一个动点,且在直线OD 的下方,过点P 作x 轴的平行线交直线OD 于点Q ,当线段PQ 取最大值时,求点P 的坐标;(3)如图2,点M 在y 轴左侧的抛物线G 上,将点M 先向右平移4个单位后再向下平移,使得到的对应点N 也落在y 轴左侧的抛物线G 上,若S △CMN =2,求点M 的坐标.9.如图,抛物线2)12(0y ax x c a =-+≠交x 轴于,A B 两点,交y 轴于点C .直线122y x =-经过点,B C .(1)求抛物线的解析式;(2)点P 是抛物线上一动点,过P 作x 轴的垂线,交直线BC 于M .设点P 的横坐标是t .①当PCM ∆是直角三角形时,求点P 的坐标;②当点P 在点B 右侧时,存在直线l ,使点,,A C M 到该直线的距离相等,求直线解析式y kx b =+(,k b 可用含t 的式子表示).10.()1尺规作图1:已知:如图,线段AB 和直线且点B 在直线上求作:点C ,使点C 在直线上并且使ABC 为等腰三角形. 作图要求:保留作图痕迹,不写作法,做出所有符合条件的点C .()2特例思考:如图一,当190∠=时,符合()1中条件的点C 有______个;如图二,当160∠=时,符合()1中条件的点C 有______个.()3拓展应用:如图,AOB 45∠=,点M ,N 在射线OA 上,OM x =,ON x 2=+,点P 是射线OB 上的点.若使点P ,M ,N 构成等腰三角形的点P 有且只有三个,求x 的值. 11.如图,扇形OMN 的半径为1,圆心角为90°,点B 是上一动点,BA ⊥OM 于点A ,BC ⊥ON 于点C ,点D 、E 、F 、G 分别是线段OA 、AB 、BC 、CO 的中点,GF 与CE 相交于点P ,DE 与AG 相交于点Q . (1)当点B 移动到使AB :OA=:3时,求的长;(2)当点B 移动到使四边形EPGQ 为矩形时,求AM 的长. (3)连接PQ ,试说明3PQ 2+OA 2是定值.12.如图,PA 切⊙O 于点A ,射线PC 交⊙O 于C 、B 两点,半径OD ⊥BC 于E ,连接BD 、DC 和OA ,DA 交BP 于点F ; (1)求证:∠ADC+∠CBD =12∠AOD ; (2)在不添加任何辅助线的情况下,请直接写出图中相等的线段.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1) ☉O 的半径是32;(2)AB ∥ON ,证明见解析. 【解析】 【分析】(1) 连接AB ,根据题意可AB 为直径,再用勾股定理即可. (2) 连接OA , OB ,OQ ,根据圆周角定理可得Q 2APQ,B0Q 2BPO AO ∠=∠∠=∠,从而证出OC AB ⊥,延长PO 交☉0于点R ,则有2OPN QOR ∠=∠,再根据三角形内角和定理求得OQN ∠=90︒得证. 【详解】 解:(1)连接AB ,在☉0中,o APQ BPQ 45∠=∠=, o APB APQ BPQ 90∴∠=∠+∠=AB ∴是☉0的直径.Rt APB ∴∆在中,22AB AP BP =+AB=3∴∴☉0的半径是32(2)AB//ON证明:连接OA , OB , OQ , 在☉0中,AQ AQ =, BQ BQ =,Q 2APQ,B0Q 2BPO AO ∴∠=∠∠=∠.又APQ BPQ ∠=∠,AOQ BOQ ∴∠=∠.在AOB ∆中,OA OB =, AOQ BOQ ∠=∠,OC AB ∴⊥,即o OCA 90∠=连接OQ ,交AB 于点C 在☉0中,OP OQ =OPN OQP.∴∠=∠延长PO 交☉0于点R ,则有2OPN QOR ∠=∠o NOP 2OPN 90∴∠+∠=,又:o NOP NOQ QOR 180∠+∠+∠=,NOQ 90O ∴∠=NOQ OCA 180O ∴∠+∠= .AB//ON ∴ 【点睛】本题考查了圆周角定理,勾股定理、等腰三角形的性质以及三角形的内角和定理,是一道综合题,灵活运用相关知识是解题的关键.2.(1)22+;(2)63103t ≤≤-或103165-≤≤-3)325m ≤-或0m ≥ 【解析】 【分析】(1)作直线:y x b =-+平行于直线1l ,且与H 相交于点P ,连接PO 并延长交直线1l 于点Q ,作PM ⊥x 轴,根据只有一个交点可求出b ,再联立求出P 的坐标,从而判断出PQ 平分∠AOB ,再利用直线1l 表达式求A 、B 坐标证明OA=OB ,从而证出PQ 即为最小距离,最后利用勾股定理计算即可;(2)过点T 作TH ⊥直线2l ,可判断出T 上的点到直线2l的最大距离为TH +后根据最大距离的范围求出TH 的范围,从而得到FT 的范围,根据范围建立不等式组求解即可;(3)把点P 坐标带入表达式,化简得到关于a 、b 的等式,从而推出直线3l 的表达式,根据点E 的坐标可确定点E 所在直线表达式,再根据最小距离为0,推出直线3l 一定与图形K 相交,从而分两种情况画图求解即可. 【详解】解:(1)作直线:y x b =-+平行于直线1l ,且与H 相交于点P ,连接PO 并延长交直线1l 于点Q ,作PM ⊥x 轴,∵ 直线:y x b =-+与H 相交于点P , ∴2x b x-+=,即220x bx -+=,只有一个解, ∴24120b ∆=-⨯⨯=,解得b =∴y x =-+联立2y x y x ⎧=-+⎪⎨=⎪⎩,解得x y ⎧=⎪⎨=⎪⎩P ,∴PM OM ==P 在第一、三象限夹角的角平分线上,即PQ 平分∠AOB ,∴Rt POM 为等腰直角三角形,且OP=2, ∵直线1l :2y x =--,∴当0y =时,2x =-,当0x =时,2y =-, ∴A(-2,0),B(0,-2), ∴OA=OB=2, 又∵OQ 平分∠AOB , ∴OQ ⊥AB ,即PQ ⊥AB ,∴PQ 即为H 上的点到直线1l 的最小距离, ∵OA=OB ,∴45OAB OBA AOQ ∠=∠=∠=︒, ∴AQ=OQ ,∴在Rt AOQ 中,OA=2,则,∴2PQ OP OQ =+=+()1,2min D H l =(2)由题过点T 作TH ⊥直线2l ,则T 上的点到直线2l 的最大距离为3TH + ∵()max 243,63ABC l D V ≤≤ 即43363TH ≤ ∴3353TH ≤≤ 由题60HFO ∠=︒,则3FT =, ∴610FT ≤≤, 又∵3FT t =, ∴6310t ≤≤,解得63103t ≤≤103165-≤≤-; (3)∵直线21211k k y x k k --=+--恒过定点1111,8484P a b c a b c ⎛⎫⎪⎝+-+⎭+,∴把点P 代入得:2111211184184k k a b c a b c k k --⎛⎫+-+=++ ⎪--⎝⎭, 整理得:()()2416828162828a b c k a b c a b c k a b c +-+--+-=++---,∴2416828281628a b c a b c a b c a b c +-+=++⎧⎨--+-=---⎩,化简得224801a b c c +-+=⎧⎨=⎩,∴182b a =-+,又∵点(),D a b 恒在直线3l 上, ∴直线3l 的表达式为:182y x =-+, ∵()min 3,0D K l =,∴直线3l 一定与以点E 为顶点,原点为对角线交点的正方形图形相交, ∵(),28E m m +,∴点E 一定在直线28y x =+上运动,情形一:如图,当点E 运动到所对顶点F 在直线3l 上时,由题可知E 、F 关于原点对称, ∵(),28E m m +, ∴(),28m m F ---,把点F 代入182y x =-+得:18282m m +=--,解得:325m =-, ∵当点E 沿直线向上运动时,对角线变短,正方形变小,无交点,∴点E 要沿直线向下运动,即325m ≤-;情形二:如图,当点E 运动到直线3l 上时, 把点E 代入182y x =-+得:18282m m -+=+,解得:0m =, ∵当点E 沿直线向下运动时,对角线变短,正方形变小,无交点, ∴点E 要沿直线向上运动,即0m ≥,综上所述,325m ≤-或0m ≥. 【点睛】 本题考查新型定义题,弄清题目含义,正确画出图形是解题的关键.3.(1)证明见解析;(2)213;(3)2330a 【解析】【分析】(1)根据△ABC 是等边三角形,从而可以得出∠BAC=∠C ,结合圆周角定理即可证明;(2)过点A 作AG ⊥BC 于点G ,根据△ABC 是等边三角形,可以得到BG 、AG 的值,由BF ∥AG 可得到AF BG EF EB=,求出BE ,最后利用勾股定理即可求解; (3)过点O 作OM ⊥BC 于点M ,由题(2)知AF BG EF EB =,CG=BG=1122AC a =,可以得到BM 的值,根据BF ∥AG ,可证得△EBF ∽△EGA ,列比例式求出BF ,从而表示出△OFB 的面积.【详解】(1)证明:∵△ABC 是等边三角形,∴∠BAC=∠C=60°,∵∠DEB=∠BAC=60°,∠D=∠C=60°,∴∠DEB=∠D ,∴BD=BE ;(2)解:如图所示,过点A 作AG ⊥BC 于点G ,∵△ABC 是等边三角形,AC=6, ∴BG=11322BC AC ==, ∴在Rt △ABG 中,333AG BG ==,∵BF ⊥EC , ∴BF ∥AG ,∴AF BG EF EB=, ∵AF :EF=3:2, ∴BE=23BG=2, ∴EG=BE+BG=3+2=5,在Rt △AEG 中,()2222335213AE AG EG =+=+=(3)解:如图所示,过点O 作OM ⊥BC 于点M ,由题(2)知AF BG EF EB =,CG=BG=1122AC a =, ∴3=2AF BG EF EB =, ∴22113323EB BG a a ==⨯=, ∴EC=CG+BG+BE=11142233a a a a ++=, ∴EM=12EC =23a , ∴BM=EM-BE=211333a a a -=, ∵BF ∥AG ,∴△EBF ∽△EGA ,∴123=11532a BF BE AG EG a a ==+,∵2AG a ==,∴25BF ==, ∴△OFB的面积=211223BF BM a a ⋅=⨯=. 【点睛】本题主要考查了圆的综合题,关键是根据等边三角形的性质,勾股定理和相似三角形的判定和性质求解.4.(1)AP +PQ 的最小值为4;(2)存在,M 点坐标为(﹣12,﹣4)或(12,8).【解析】【分析】(1)由直线解析式易求AB 两点坐标,利用等腰直角△ABC 构造K 字形全等易得OE =CE =4,C 点坐标为(4,4)DB =∠CEB =90︒,可知B 、C 、D 、E 四点共圆,由等腰直角△ABC 可知∠CBD =45︒,同弧所对圆周角相等可知∠CED =45︒,所以∠OEF =45︒,CE 、OE 是关于EF 对称,作PH ⊥CE 于H ,作PG ⊥OE 于Q ,AK ⊥EC 于K .把AP +PQ 的最小值问题转化为垂线段最短解决问题.(2)由直线l 与直线AC 成45︒可知∠AMN =45︒,由直线AC 解析式可设M 点坐标为(x ,122x +),N 在y 轴上,可设N (0,y )构造K 字形全等即可求出M 点坐标. 【详解】解:(1)过A 点作AK ⊥CE ,在等腰直角△ABC 中,∠ACB =90︒,AC =BC ,∵CE ⊥x 轴,∴∠ACK +∠ECB =90︒,∠ECB +∠CBE =90︒,∴∠ACK =∠CBE在△AKC 和△CEB 中,AKC CEB ACK CBE AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,△AKC ≌△CEB (AAS )∴AK =CE ,CK =BE ,∵四边形AOEK 是矩形,∴AO =EK =BE ,由直线l:y=﹣13x+2与x轴交于点B,与y轴交于点A,可知A点坐标为(0,2),B(6,0)∴E点坐标为(4,0),C点坐标为(4,4),∵∠CDB=∠CEB=90︒,∴B、C、D、E四点共圆,∵CD CD=,∠CBA=45︒,∴∠CED=45︒,∴FE平分∠CEO,过P点作PH⊥CE于H,作PG⊥OE于G,过A点作AK⊥EC于K.∴PH=PQ,∵PA+PQ=PA+PH≥AK=OE,∴OE=4,∴AP+PQ≥4,∴AP+PQ的最小值为4.(2)∵A点坐标为(0,2),C点坐标为(4,4),设直线AC解析式为:y=kx+b把(0,2),(4,4)代入得244bk b=⎧⎨=+⎩解得122 kb⎧=⎪⎨⎪=⎩∴直线AC解析式为:y=122x+,设M点坐标为(x,122x+),N坐标为(0,y).∵MN∥AB,∠CAB=45︒,∴∠CMN=45︒,△CMN为等腰直角三角形有两种情况:Ⅰ.如解图2﹣1,∠MNC=90︒,MN=CN.同(1)理过N点构造利用等腰直角△MNC构造K字形全等,同(1)理得:SN=CR,MS =NR.∴41242x yx y-=-⎧⎪⎨+-=⎪⎩,解得:128xy=-⎧⎨=-⎩,∴M点坐标为(﹣12,﹣4)Ⅱ.如解图2﹣2,∠MNC=90︒,MN=CN.过C点构造利用等腰直角△MNC构造K字形全等,同(1)得:MS=CF,CS=FN.∴4412442x yx-=-⎧⎪⎨+-=⎪⎩,解得:1212xy=⎧⎨=⎩,∴M点坐标为(12,8)综上所述:使得△CMN为等腰直角三角形得M点坐标为(﹣12,﹣4)或(12,8).【点睛】本题综合考查了一次函数与几何知识的应用,题中运用等腰直角三角形的判定和性质,正方形的判定和性质,全等三角形的判定和性质,四点共圆,圆周角定理,垂线段最短等知识,解题的关键是中用转化的思想思考问题,学会添加常用辅助线,在平面直角坐标系中构造K字形全等三角形求点坐标解决问题,属于中考压轴题.5.(1)详见解析;(2)①详见解析;②8【解析】【分析】(1)先得到90ADB∠=︒,利用圆周角定理得到DBA DAC∠=∠,即可证明AC是切线;(2)①利用等弧所对的圆周角相等,得到BAE DAE ∠=∠,然后得到CFA CAF ∠=∠,即可得到结论成立;②设AC CF x ==,利用勾股定理,即可求出AC 的长度.【详解】(1)证明: ∵AB 是⊙O 的直径,∴90ADB ∠=︒,∴90DBA DAB ∠+∠=︒,∵DEA DBA ∠=∠,DAC DEA ∠=∠,∴DBA DAC ∠=∠,∴90DAC DAB ∠+∠=︒,∴90CAB ∠=︒,∴AC 是⊙O 的切线;(2)① ∵点E 是弧BD 的中点,∴BAE DAE ∠=∠,∵CFA DBA BAE ∠=∠+∠,CAF CAD DAE ∠=∠+∠,∴CFA CAF ∠=∠∴CA CF =;② 设CA CF x ==,在Rt ABC ∆中,2BC x =+,CA x =,6AB =,由勾股定理可得222(2)6x x +=+,解得:8x =,∴8AC =.【点睛】本题考查了切线的判定,等角对等边,以及勾股定理,要证直线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.6.(1)见解析;(2)结论AE =EC+CB 不成立,新结论为:CE =BC+AE ,见解析;(3)AH ﹣1+1.【解析】【分析】(1)在AC 上截取AG =BC ,连接FA ,FG ,FB ,FC ,证明△FAG ≌△FBC ,根据全等三角形的性质得到FG =FC ,根据等腰三角形的性质得到EG =EC ,即可证明.(2)在CA 上截取CG =CB ,连接FA ,FB ,FC ,证明△FCG ≌△FCB ,根据全等三角形的性质得到FG =FB ,得到FA =FG ,根据等腰三角形的性质得到AE =GE ,即可证明.(3)分点P 在弦AB 上方和点P 在弦AB 下方两种情况进行讨论.【详解】解:(1)如图2,在AC 上截取AG =BC ,连接FA ,FG ,FB ,FC ,∵点F 是AFB 的中点,FA =FB ,在△FAG 和△FBC 中,,FA FB FAG FBC AG BC =⎧⎪∠=∠⎨⎪=⎩∴△FAG ≌△FBC (SAS ),∴FG =FC ,∵FE ⊥AC ,∴EG =EC ,∴AE =AG+EG =BC+CE ;(2)结论AE =EC+CB 不成立,新结论为:CE =BC+AE ,理由:如图3,在CA 上截取CG =CB ,连接FA ,FB ,FC ,∵点F 是AFB 的中点,∴FA =FB , FA FB =,∴∠FCG =∠FCB ,在△FCG 和△FCB 中,,CG CB FCG FCB FC FC =⎧⎪∠=∠⎨⎪=⎩∴△FCG ≌△FCB (SAS ),∴FG=FB,∴FA=FG,∵FE⊥AC,∴AE=GE,∴CE=CG+GE=BC+AE;(3)在Rt△ABC中,AB=2OA=4,∠BAC=30°,∴12232BC AB AC===,,当点P在弦AB上方时,如图4,在CA上截取CG=CB,连接PA,PB,PG,∵∠ACB=90°,∴AB为⊙O的直径,∴∠APB=90°,∵∠PAB=45°,∴∠PBA=45°=∠PAB,∴PA=PB,∠PCG=∠PCB,在△PCG和△PCB中,,CG CBPCG PCBPC PC=⎧⎪∠=∠⎨⎪=⎩∴△PCG≌△PCB(SAS),∴PG=PB,∴PA=PG,∵PH⊥AC,∴AH=GH,∴AC=AH+GH+CG=2AH+BC,∴2322AH=+,∴31AH=,当点P在弦AB下方时,如图5,在AC上截取AG=BC,连接PA,PB,PC,PG∵∠ACB=90°,∴AB为⊙O的直径,∴∠APB=90°,∵∠PAB=45°,∴∠PBA=45°=∠PAB,∴PA=PB ,在△PAG和△PBC中,,AG BCPAG PBCPA PB=⎧⎪∠=∠⎨⎪=⎩∴△PAG≌△PBC(SAS),∴PG=PC,∵PH⊥AC,∴CH=GH,∴AC=AG+GH+CH=BC+2CH,∴2322CH,=+∴31CH=-,∴()233131AH AC CH=-=--=+,即:当∠PAB=45°时,AH的长为31-或3 1.+【点睛】考查弧,弦的关系,全等三角形的判定与性质,等腰三角形的判定与性质等,综合性比较强,注意分类讨论思想方法在解题中的应用.7.(1)①﹣m+8;②PQ最小=OQ最小﹣1=3.8;(2)①t=时,⊙A与直线BC相切;②<t≤5或7≤t≤15时,⊙A与线段BC有两个公共点.【解析】试题分析:(1)①根据正切的概念求出BC=10,OC=8,运用待定系数法求出直线BC的解析式,根据函数图象上点的坐标特征解得即可;②作OQ⊥AB交⊙A于P,则此时PQ最小,根据三角形面积公式计算即可;(2)①根据切线的性质和相似三角形的性质计算即可;②结合图形、运用直线与圆的位置关系定理解答.解:(1)①∵点B的坐标为(6,0),tan∠OCB=,∴BC=10,OC=8,设直线BC的解析式为y=kx+b,,解得,∵点Q的横坐标为m,∴点Q的纵坐标为﹣m+8;②如图1,作OQ⊥AB交⊙A于P,则此时PQ最小,×AB×OQ=×BO×CO,解得,OQ=4.8,∴PQ最小=OQ最小﹣1=3.8;(2)①如图2,⊙A与直线BC相切于H,则AH⊥BC,又∠BOC=90°,∴△BHA∽△BOC,∴=,即=,解得,BA=,则OA=6﹣=,∴t=时,⊙A与直线BC相切;②由(2)①得,t=时,⊙A与直线BC相切,当t=5时,⊙A经过点B,当t=7时,⊙A经过点B,当t=15时,⊙A经过点C,故<t≤5或7≤t≤15时,⊙A与线段BC有两个公共点.考点:圆的综合题. 8.(1)2114y x =-;(2)点P 37(,)216-;(3)(222,222M --+ 【解析】 【分析】(1)根据题意得到AB=4,根据函数对称轴x=0,得到OA=OB=2,得到A 、B 坐标,代入函数解析式即可求解;(2)首先求得直线OD 解析式,然后设P (21,14t t -),得到PQ 关于t 的解析式,然后求出顶点式即可求解; (3)设点21,14M m m ⎛⎫- ⎪⎝⎭,然后求得直线CM 的解析式,得到EM 的表达式,然后根据CMNCNEMNESSS=+即可求解.【详解】(1)∵AB =4OC ,且C (0,-1) ∴AB=4∴OA=OB=2,即A 点坐标()2,0-,B 点坐标()2,0 代入A 点坐标得2021a =- 解得14a =∴G 的解析式为2114y x =- 故答案为2114y x =-(2)当1x =-时,34y =-,即:点D 为(31,4--)∴直线OD 为:34y x = 设P (21,14t t -),则Q 为(22141,1334t t --),则: 22214141325()()33333212PQ t t t t t =--=-++=--+∴当32t =时,PQ 取得最大值2512,此时点P 位37(,)216- (3)设点21,14M m m ⎛⎫- ⎪⎝⎭,则N ()214,414m m ⎛⎫++- ⎪⎝⎭∵C 点坐标为(0,1)-∴可设直线CM 为1y kx =-,带入M 点坐标得:14k m = ∴直线CM 为114y mx =- 过点N 作NE y ∥轴交CM 于点E ,则E 点为()14,414m m m ⎛⎫++- ⎪⎝⎭∴4EN m =-- ∵()()12CMNCNE MNEC N N M S SSx x x x EN ⎡⎤=+=-+-•⎣⎦ ∴()()104=22m m ---∴2440m m +-=解得:12m =--,22m =-+(舍去) ∴M (2--+ 【点睛】本题考查了待定系数法求函数解析式,二次函数综合应用,是二次函数部分的压轴题,题目较难,应画出示意图,然后进行讨论分析. 9.(1)211242y x x =--;(2)①P (2,−2)或(-6,10),②1122y x =-或324y x t =-+-或4412424t t y x t t --=+-++【解析】 【分析】(1)利用一次函数与坐标轴交点的特征可求出点B ,C 的坐标,根据点B ,C 的坐标,利用待定系数法可求出二次函数解析式;(2)①由PM ⊥x 轴可得出∠PMC≠90°,分∠MPC=90°及∠PCM=90°两种情况考虑: (i )当∠MPC=90°时,PC //x 轴,利用二次函数可求出点P 的坐标;(ii )当∠PCM=90°时,设PC 与x 轴交于点D ,易证△BOC ∽△COD ,利用相似三角形的性质可求出点D 的坐标,根据点C ,D 的坐标,利用待定系数法可求出直线PC 的解析式,联立直线PC 和抛物线的解析式,通过解方程组可求出点P 的坐标;②在ACM 中,如果存在直线使A 、C 、M 到该直线距离相等,则该直线应为ACM 的中位线,分开求解三条中位线方程即可求解. 【详解】解:(1)因为直线交抛物线于B 、C 两点, ∴当x =0时,y =12x −2=−2, ∴点C 的坐标为(0,−2); 当y =0时,12x −2=0, 解得:x =4,∴点B 的坐标为(4,0).将B 、C 的坐标分别代入抛物线,得:2144022a c c ⎧⨯-⨯+=⎪⎨⎪=-⎩,解得:142a c ⎧=⎪⎨⎪=-⎩, ∴抛物线的解析式为211242y x x =--. (2)①∵PM ⊥x 轴,M 在直线BC 上, ∴∠PMC 为固定角且不等于90,∴可分两种情况考虑,如图1所示:(i )当∠MPC=90时,PC //x 轴, ∴点P 的纵坐标为﹣2, 将y p =-2,代入抛物线方程可得:2112242x x --=-解得: x 1=2,x 2=0(为C 点坐标,故舍去), ∴点P 的坐标为(2,−2);(ii )当∠PCM=90°时,设PC 与x 轴交于点D , ∵∠OBC+∠OCB=90°,∠OCB+∠OCD=90°, ∴∠OBC=∠OCD , 又∵∠BOC=∠COD=90°, ∴BOC ∽COD (AAA ),∴OD OC OC OB =,即OD=2OC OB, 由(1)知,OC=2,OB=4, ∴OD=1,又∵D 点在X 的负半轴 ∴点D 的坐标为(-1,0),设直线PC 的解析式为:y =kx +b (k ≠0,k 、b 是常数), 将C(0,−2),D(-1,0)代入直线PC 的解析式,得:20b k b =-⎧⎨-+=⎩,解得:22k b =-⎧⎨=-⎩, ∴直线PC 的解析式为y =-2x −2, 联立直线PC 和抛物线方程,得: 22122142x x x -=---, 解得:x 1=0,y 1=−2,x 2=-6,y 2=10, 点P 的坐标为(-6,10),综上所述:当PCM 是直角三角形时,点P 的坐标为(2,−2)或(-6,10);②如图2所示,在ACM 中,如果存在直线使A 、C 、M 到该直线距离相等,则该直线应为ACM 的中位线;(a )当以CM 为底时,过A 点做CM 的平行线AN ,直线AN 平行于CM 且过点A ,则斜率为12,AN 的方程为:1(+2)2y x =,则中位线方程式为:1122y x =-; (b )当以AM 为底时,因为M 为P 点做x 轴垂线与CB 的交点,则M 的横坐标为t ,且在直线BC 上,则M 的坐标为:1,22M t t -(),其中4t >,则AM 的方程为:44+242t t y x t t --=++,过C 点做AM 的平行线CQ ,则CQ 的方程为:4224t y x t -=-+ ,则中位线方程式为:4412424t t y x t t --=+-++; (c )当以AC 为底时,AC 的方程式为:2y x =--,由b 可知M 的坐标为:1,22M t t -(),过M 做AC 的平行线MR ,则MR 的方程为:322y x t =-+-,则中位线方程式为:324y x t =-+-; 综上所述:当点P 在点B 右侧时,存在直线l ,使点,,A C M 到该直线的距离相等,直线解析式为:1122y x =-或324y x t =-+-或4412424t t y x t t --=+-++. 【点睛】本题考查了一次函数坐标轴的交点坐标、待定系数法求二次函数解析式、相似三角形的判定与性质以及平行线的性质等,解题的关键是掌握三角形的顶点到中位线的距离相等. 10.(1) 见解析;(2) 2,2 ;(3)0或222或222x << 【解析】 【分析】()1根据等腰三角形的定义,用分类讨论的思想解决问题即可;()2通过画图分析可得,当190∠=时,符合()1中条件的点C 有2个,当160∠=时,符合()1中条件的点C 有2个; ()3分三种情形讨论求解即可.【详解】解:()1如图1中,点1C ,2C ,3C ,4C 即为所求.()2如图一,当190∠=时,符合()1中条件的点C 有2个;如图二,当160∠=时,符合()1中条件的点C 有2个,当∠1=90°或∠1=60°时,符合条件的点C 都是在点B 左右各一个,当∠1=60°时,符合条件的点C 如图所示:故答案为2,2.()3①如图31-中,当x 0=时,当PM PN =时,有点1P ,当ON OP =时,有点2P ,当NO NP =时,有点3P ,此时有3个P 点.②如图32-中,当N 与OB 相切于点1P 时,1OP N 是等腰直角三角形,1ON 2NP 22∴==,OM ON MN 222∴=-=-,此时有3个P 点.③如图33-中,当M 经过点O 时,此时只有2个P 点,如图34-中,M 与OB 相交时,此时有3个P 点,如图35-中,当M 与OB 相切时,只有2个P 点.此时OM 22=,综上所述,当2x 22<<3个P 点.∴满足条件的x 的值为0或222或2x 22<<【点睛】本题考查等腰三角形的判定和性质,尺规作图,直线与圆的位置关系等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.11.(1)证明见解析(2)当AM的长为(1﹣)时,四边形EPGQ是矩形(3)定值【解析】【分析】(1)先利用三角函数求出∠AOB=30°,再用弧长公式即可得出结论;(2)易得△AED∽△BCE,根据相似三角形的对应边成比例与勾股定理,即可求得OA的长,即可得出结论;(3)连接GE交PQ于O′,易得O′P=O′Q,O′G=O'E,然后过点P作OC的平行线分别交BC、GE于点B′、A′,由△PCF∽△PEG,根据相似三角形的对应边成比例与勾股定理,即可求得3PQ2+OA2的值.【详解】解:(1)证明:连接OB,如图①,∵四边形OABC是矩形,∴∠AOC=∠OAB=90°,在Rt△AOB中,tan∠AOB==,∴∠AOB=30°,∴==;(2)如图②,∵▱EPGQ是矩形.∴∠CED=90°∴∠AED+∠CEB=90°.又∵∠DAE=∠EBC=90°,∴∠AED=∠BCE.∴△AED∽△BCE,∴.设OA=x,AB=y,则=,得y2=2x2,又 OA2+AB2=OB2,即x2+y2=12.∴x2+2x2=1,解得:x=.∴AM=OM﹣OA=1﹣当AM 的长为(1﹣)时,四边形EPGQ 是矩形;(3)如图③,连接GE 交PQ 于O′, ∵四边形EPGQ 是平行四边形, ∴O′P=O′Q ,O′G=O′E .过点P 作OC 的平行线分别交BC 、GE 于点B′、A′. 由△PCF ∽△PEG 得,=2,∴PA′=A′B′=AB ,GA′=GE=OA , ∴A′O′=GE ﹣GA′=OA . 在Rt △PA′O′中,PO′2=PA′2+A′O′2, 即=+,又 AB 2+OA 2=1, ∴3PQ 2=AB 2+,∴OA 2+3PQ 2=OA 2+(AB 2+)=是定值.【点睛】此题是圆的综合题,主要考查了相似三角形的判定与性质、平行四边形的判定与性质、矩形的判定与性质以及勾股定理,锐角三角函数,弧长公式等知识,解题的关键是注意准确作出辅助线,注意数形结合思想与方程思想的应用. 12.(1)详见解析;(2)详见解析; 【解析】 【分析】()1根据垂径定理得到BD CD =,根据等腰三角形的性质得到()111809022ODA AOD AOD ∠=-∠=-∠,即可得到结论; ()2根据垂径定理得到BE CE =,BD CD =,根据等腰三角形的性质得到ADO OAD ∠=∠,根据切线的性质得到90PAO ∠=,求得90OAD DAP ∠+∠=,推出PAF PFA ∠=∠,根据等腰三角形的判定定理即可得到结论. 【详解】()1证明:OD BC ⊥,BD CD ∴=,CBD DCB ∴∠=∠,90DFE EDF ∠+∠=, 90EDF DFE ∴∠=-∠,OD OA =,()111809022ODA AOD AOD ∴∠=-∠=-∠,190902DFE AOD ∴-∠=-∠,12DEF AOD ∴∠=∠,DFE ADC DCB ADC CBD ∠=∠+∠=∠+∠,12ADC CBD AOD ∴∠+∠=∠;()2解:OD BC ⊥,BE CE ∴=,BD CD =, BD CD ∴=, OA OD =,ADO OAD ∴∠=∠, PA 切O 于点A ,90PAO ∴∠=, 90OAD DAP ∴∠+∠=,PFA DFE ∠=∠, 90PFA ADO ∴∠+∠=,PAF PFA ∴∠=∠, PA PF ∴=. 【点睛】本题考查了切线的性质,等腰三角形的判定和性质,垂径定理,圆周角定理,正确的识别图形是解题的关键.。
初三九年级上册上册数学压轴题测试与练习(word解析版)
初三九年级上册上册数学压轴题测试与练习(word 解析版)一、压轴题1.点P 为图形M 上任意一点,过点P 作PQ ⊥直线,l 垂足为Q ,记PQ 的长度为d . 定义一:若d 存在最大值,则称其为“图形M 到直线l 的限距离”,记作()max ,D M l ; 定义二:若d 存在最小值,则称其为“图形M 到直线l 的基距离”,记作()min ,D M l ; (1)已知直线1:2l y x =--,平面内反比例函数2y x=在第一象限内的图象记作,H 则()1,min D H l = .(2)已知直线2:33l y x =+,点()1,0A -,点()()1,0,,0B T t 是x 轴上一个动点,T 的半径为3,点C 在T 上,若()max 243,63,D ABC l ≤≤求此时t 的取值范围,(3)已知直线21211k k y x k k --=+--恒过定点1111,8484P a b c a b c ⎛⎫⎪⎝+-+⎭+,点(),D a b 恒在直线3l 上,点(),28E m m +是平面上一动点,记以点E 为顶点,原点为对角线交点的正方形为图形,K ()min 3,0D K l =,若请直接写出m 的取值范围.2.如图1:在Rt △ABC 中,AB =AC ,D 为BC 边上一点(不与点B ,C 重合),试探索AD ,BD ,CD 之间满足的等量关系,并证明你的结论.小明同学的思路是这样的:将线段AD 绕点A 逆时针旋转90°,得到线段AE ,连接EC ,DE .继续推理就可以使问题得到解决.(1)请根据小明的思路,试探索线段AD ,BD ,CD 之间满足的等量关系,并证明你的结论;(2)如图2,在Rt △ABC 中,AB =AC ,D 为△ABC 外的一点,且∠ADC =45°,线段AD ,BD ,CD 之间满足的等量关系又是如何的,请证明你的结论;(3)如图3,已知AB 是⊙O 的直径,点C ,D 是⊙O 上的点,且∠ADC =45°. ①若AD =6,BD =8,求弦CD 的长为 ;②若AD+BD =14,求2AD BD CD ⎛⎫⋅+ ⎪ ⎪⎝⎭的最大值,并求出此时⊙O 的半径.3.在平面直角坐标系xOy 中,对于任意三点A ,B ,C ,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的外延矩形.点A ,B ,C 的所有外延矩形中,面积最小的矩形称为点A ,B ,C 的最佳外延矩形.例如,图中的矩形,,都是点A ,B ,C 的外延矩形,矩形是点A ,B ,C 的最佳外延矩形.(1)如图1,已知A (-2,0),B (4,3),C (0,). ①若,则点A ,B ,C 的最佳外延矩形的面积为 ;②若点A ,B ,C 的最佳外延矩形的面积为24,则的值为 ; (2)如图2,已知点M (6,0),N (0,8).P (,)是抛物线上一点,求点M ,N ,P 的最佳外延矩形面积的最小值,以及此时点P 的横坐标的取值范围;(3)如图3,已知点D (1,1).E (,)是函数的图象上一点,矩形OFEG 是点O ,D ,E 的一个面积最小的最佳外延矩形,⊙H 是矩形OFEG 的外接圆,请直接写出⊙H 的半径r 的取值范围.4.研究发现:当四边形的对角线互相垂直时,该四边形的面积等于对角线乘积的一半,如图1,已知四边形ABCD 内接于O ,对角线AC BD =,且AC BD ⊥.(1)求证:AB CD =; (2)若O 的半径为8,弧BD 的度数为120︒,求四边形ABCD 的面积;(3)如图2,作OM BC ⊥于M ,请猜测OM 与AD 的数量关系,并证明你的结论.5.已知:在ABC 中,,90AC BC ACB ︒=∠=,点F 在射线CA 上,延长BC 至点D ,使CD CF =,点E 是射线BF 与射线DA 的交点.(1)如图1,若点F 在边CA 上; ①求证:BE AD ⊥;②小敏在探究过程中发现45BEC ︒∠=,于是她想:若点F 在CA 的延长线上,是否也存在同样的结论?请你在图2上画出符合条件的图形并通过测量猜想BEC ∠的度数. (2)选择图1或图2两种情况中的任一种,证明小敏或你的猜想.6.如图1,有一块直角三角板,其中AB 16=,ACB 90∠=,CAB 30∠=,A 、B 在x 轴上,点A 的坐标为()20,0,圆M 的半径为33,圆心M 的坐标为()5,33-,圆M 以每秒1个单位长度的速度沿x 轴向右做平移运动,运动时间为t 秒;()1求点C 的坐标;()2当点M 在ABC ∠的内部且M 与直线BC 相切时,求t 的值;()3如图2,点E 、F 分别是BC 、AC 的中点,连接EM 、FM ,在运动过程中,是否存在某一时刻,使EMF 90∠=?若存在,直接写出t 的值,若不存在,请说明理由.7.如图,已知在矩形ABCD 中,AB =2,BC =3P ,Q 分别是BC ,AD 边上的一个动点,连结BQ ,以P 为圆心,PB 长为半径的⊙P 交线段BQ 于点E ,连结PD . (1)若DQ 3且四边形BPDQ 是平行四边形时,求出⊙P 的弦BE 的长;(2)在点P ,Q 运动的过程中,当四边形BPDQ 是菱形时,求出⊙P 的弦BE 的长,并计算此时菱形与圆重叠部分的面积.8.如图,函数y=-x2+bx+c的图象经过点A(m,0),B(0,n)两点,m,n分别是方程x2-2x-3=0的两个实数根,且m<n.(1)求m,n的值以及函数的解析式;(2)设抛物线y=-x2+bx+c与x轴的另一交点为点C,顶点为点D,连结BD、BC、CD,求△BDC面积;(3)对于(1)中所求的函数y=-x2+bx+c,①当0≤x≤3时,求函数y的最大值和最小值;②设函数y在t≤x≤t+1内的最大值为p,最小值为q,若p-q=3,求t的值.9.如图,一次函数122y x=-+的图象交y轴于点A,交x轴于点B点,抛物线2y x bx c=-++过A、B两点.(1)求A,B两点的坐标;并求这个抛物线的解析式;(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.10.如图,抛物线2)12(0y ax x c a =-+≠交x 轴于,A B 两点,交y 轴于点C .直线122y x =-经过点,B C .(1)求抛物线的解析式;(2)点P 是抛物线上一动点,过P 作x 轴的垂线,交直线BC 于M .设点P 的横坐标是t .①当PCM ∆是直角三角形时,求点P 的坐标;②当点P 在点B 右侧时,存在直线l ,使点,,A C M 到该直线的距离相等,求直线解析式y kx b =+(,k b 可用含t 的式子表示).11.如图,抛物线y =﹣(x +1)(x ﹣3)与x 轴分别交于点A 、B (点A 在B 的右侧),与y 轴交于点C ,⊙P 是△ABC 的外接圆.(1)直接写出点A 、B 、C 的坐标及抛物线的对称轴; (2)求⊙P 的半径;(3)点D 在抛物线的对称轴上,且∠BDC >90°,求点D 纵坐标的取值范围;(4)E 是线段CO 上的一个动点,将线段AE 绕点A 逆时针旋转45°得线段AF ,求线段OF 的最小值.12.如图,在边长为5的菱形OABC 中,sin∠AOC=45,O 为坐标原点,A 点在x 轴的正半轴上,B ,C 两点都在第一象限.点P 以每秒1个单位的速度沿O→A→B→C→O 运动一周,设运动时间为t (秒).请解答下列问题: (1)当CP⊥OA 时,求t 的值;(2)当t <10时,求点P 的坐标(结果用含t 的代数式表示);(3)以点P 为圆心,以OP 为半径画圆,当⊙P 与菱形OABC 的一边所在直线相切时,请直接写出t 的值.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)22+;(2)63103t ≤≤-或103165-≤≤-3)325m ≤-或0m ≥ 【解析】 【分析】 (1)作直线:y x b =-+平行于直线1l ,且与H 相交于点P ,连接PO 并延长交直线1l 于点Q ,作PM ⊥x 轴,根据只有一个交点可求出b ,再联立求出P 的坐标,从而判断出PQ 平分∠AOB ,再利用直线1l 表达式求A 、B 坐标证明OA=OB ,从而证出PQ 即为最小距离,最后利用勾股定理计算即可;(2)过点T 作TH ⊥直线2l ,可判断出T 上的点到直线2l 的最大距离为3TH +后根据最大距离的范围求出TH 的范围,从而得到FT 的范围,根据范围建立不等式组求解即可;(3)把点P 坐标带入表达式,化简得到关于a 、b 的等式,从而推出直线3l 的表达式,根据点E 的坐标可确定点E 所在直线表达式,再根据最小距离为0,推出直线3l 一定与图形K 相交,从而分两种情况画图求解即可. 【详解】解:(1)作直线:y x b =-+平行于直线1l ,且与H 相交于点P ,连接PO 并延长交直线1l 于点Q ,作PM ⊥x 轴,∵ 直线:y x b =-+与H 相交于点P , ∴2x b x-+=,即220x bx -+=,只有一个解, ∴24120b ∆=-⨯⨯=,解得b =∴y x =-+联立2y x y x ⎧=-+⎪⎨=⎪⎩,解得x y ⎧=⎪⎨=⎪⎩P ,∴PM OM ==P 在第一、三象限夹角的角平分线上,即PQ 平分∠AOB ,∴Rt POM 为等腰直角三角形,且OP=2, ∵直线1l :2y x =--,∴当0y =时,2x =-,当0x =时,2y =-, ∴A(-2,0),B(0,-2), ∴OA=OB=2, 又∵OQ 平分∠AOB , ∴OQ ⊥AB ,即PQ ⊥AB ,∴PQ 即为H 上的点到直线1l 的最小距离, ∵OA=OB ,∴45OAB OBA AOQ ∠=∠=∠=︒, ∴AQ=OQ ,∴在Rt AOQ 中,OA=2,则,∴2PQ OP OQ =+=+()1,2min D H l =(2)由题过点T 作TH ⊥直线2l ,则T 上的点到直线2l 的最大距离为3TH + ∵()max 243,63ABC l D V ≤≤ 即43363TH ≤ ∴3353TH ≤≤ 由题60HFO ∠=︒,则3FT =, ∴610FT ≤≤, 又∵3FT t =, ∴6310t ≤≤,解得63103t ≤≤103165-≤≤-; (3)∵直线21211k k y x k k --=+--恒过定点1111,8484P a b c a b c ⎛⎫⎪⎝+-+⎭+,∴把点P 代入得:2111211184184k k a b c a b c k k --⎛⎫+-+=++ ⎪--⎝⎭, 整理得:()()2416828162828a b c k a b c a b c k a b c +-+--+-=++---,∴2416828281628a b c a b c a b c a b c +-+=++⎧⎨--+-=---⎩,化简得224801a b c c +-+=⎧⎨=⎩,∴182b a =-+,又∵点(),D a b 恒在直线3l 上, ∴直线3l 的表达式为:182y x =-+, ∵()min 3,0D K l =,∴直线3l 一定与以点E 为顶点,原点为对角线交点的正方形图形相交, ∵(),28E m m +,∴点E 一定在直线28y x =+上运动,情形一:如图,当点E 运动到所对顶点F 在直线3l 上时,由题可知E 、F 关于原点对称, ∵(),28E m m +, ∴(),28m m F ---,把点F 代入182y x =-+得:18282m m +=--,解得:325m =-, ∵当点E 沿直线向上运动时,对角线变短,正方形变小,无交点,∴点E 要沿直线向下运动,即325m ≤-;情形二:如图,当点E 运动到直线3l 上时, 把点E 代入182y x =-+得:18282m m -+=+,解得:0m =, ∵当点E 沿直线向下运动时,对角线变短,正方形变小,无交点, ∴点E 要沿直线向上运动,即0m ≥,综上所述,325m≤-或0m≥.【点睛】本题考查新型定义题,弄清题目含义,正确画出图形是解题的关键.2.(1)CD2+BD2=2AD2,见解析;(2)BD2=CD2+2AD2,见解析;(3)①2,②最大值为4414,半径为104【解析】【分析】(1)先判断出∠BAD=CAE,进而得出△ABD≌△ACE,得出BD=CE,∠B=∠ACE,再根据勾股定理得出DE2=CD2+CE2=CD2+BD2,在Rt△ADE中,DE2=AD2+AE2=2AD2,即可得出结论;(2)同(1)的方法得,ABD≌△ACE(SAS),得出BD=CE,再用勾股定理的出DE2=2AD2,CE2=CD2+DE2=CD2+2AD2,即可得出结论;(3)先根据勾股定理的出DE2=CD2+CE2=2CD2,再判断出△ACE≌△BCD(SAS),得出AE =BD,①将AD=6,BD=8代入DE2=2CD2中,即可得出结论;②先求出CD=2,再将AD+BD=14,CD=2代入2AD BD⎛⎫⋅ ⎪⎪⎝⎭,化简得出﹣(AD﹣212)2+4414,进而求出AD,最后用勾股定理求出AB即可得出结论.【详解】解:(1)CD2+BD2=2AD2,理由:由旋转知,AD=AE,∠DAE=90°=∠BAC,∴∠BAD=∠CAE,∵AB=AC,∴△ABD≌△ACE(SAS),∴BD=CE,∠B=∠ACE,在Rt△ABC中,AB=AC,∴∠B=∠ACB=45°,∴∠ACE=45°,∴∠DCE=∠ACB+∠ACE=90°,根据勾股定理得,DE2=CD2+CE2=CD2+BD2,在Rt△ADE中,DE2=AD2+AE2=2AD2,∴CD2+BD2=2AD2;(2)BD2=CD2+2AD2,理由:如图2,将线段AD绕点A逆时针旋转90°,得到线段AE,连接EC,DE,同(1)的方法得,ABD≌△ACE(SAS),∴BD=CE,在Rt△ADE中,AD=AE,∴∠ADE=45°,∴DE2=2AD2,∵∠ADC=45°,∴∠CDE=∠ADC+∠ADE=90°,根据勾股定理得,CE2=CD2+DE2=CD2+2AD2,即:BD2=CD2+2AD2;(3)如图3,过点C作CE⊥CD交DA的延长线于E,∴∠DCE=90°,∵∠ADC=45°,∴∠E=90°﹣∠ADC=45°=∠ADC,∴CD=CE,根据勾股定理得,DE2=CD2+CE2=2CD2,连接AC,BC,∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,∵∠ADC=45°,∴∠BDC=45°=∠ADC,∴AC=BC,∵∠DCE=∠ACB=90°,∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD,①AD=6,BD=8,∴DE=AD+AE=AD+BD=14,∴2CD2=142,∴CD=故答案为72;②∵AD+BD=14,∴CD=72,∴2AD BD CD⎛⎫⋅+⎪⎪⎝⎭=AD•(BD+22×72)=AD•(BD+7)=AD•BD+7AD=AD(14﹣AD)+7AD=﹣AD2+21AD=﹣(AD﹣212)2+4414,∴当AD=212时,22AD BD CD⎛⎫⋅+⎪⎪⎝⎭的最大值为4414,∵AD+BD=14,∴BD=14﹣212=72,在Rt△ABD中,根据勾股定理得,AB=22710AD BD+=,∴⊙O的半径为OA=12AB=7104.【点睛】本题考查圆与三角形的结合,关键在于熟记圆的性质和三角形的性质.3.(1)①18;②t=4或t=-1;(2)48;,或;(3)【解析】试题分析:(1)根据给出的新定义进行求解;(2)过M点作轴的垂线与过N点垂直于轴的直线交于点Q,则当点P位于矩形OMQN内部或边界时,矩形OMQN是点M,N,P的最佳外延矩形,且面积最小;根据当y=0是y=8时求出x的值得到取值范围;(3)根据最佳外延矩形求出半径的取值范围.试题解析:(1)①18;②t=4或t=-1;(2)如图,过M点作轴的垂线与过N点垂直于轴的直线交于点Q,则当点P位于矩形OMQN内部或边界时,矩形OMQN是点M,N,P的最佳外延矩形,且面积最小.∵S矩形OMQN=OM·ON=6×8=48,∴点M,N,P的最佳外延矩形面积的最小值为48.抛物线与轴交于点T(0,5).令,有,解得:x=-1(舍去),或x=5.令y=8,有,解得x=1,或x=3.∴,或.(3).考点:新定义的理解、二次函数的应用、圆的性质.4.(1)见解析;(2)96;(3)AD=2OM,理由见解析【解析】【分析】(1)根据弦、弧、圆心角的关系证明;(2)根据弧BD的度数为120°,得到∠BOD=120°,利用解直角三角形的知识求出BD,根据题意计算即可;(3)连结OB、OC、OA、OD,作OE⊥AD于E,如图3,根据垂径定理得到AE=DE,再利用圆周角定理得到∠BOM=∠BAC,∠AOE=∠ABD,再利用等角的余角相等得到∠OBM=∠AOE,则可证明△BOM≌△OAE得到OM=AE,证明结论.【详解】解:(1)证明:∵AC=BD,∴AC BD,则AB DC,∴AB=CD;(2)如图1,连接OB、OD,作OH⊥BD于H,∵弧BD的度数为120°,∴∠BOD=120°,∴∠BOH=60°,则BH=32OB=43, ∴BD=83,则四边形ABCD 的面积=12×AC×BD=96;(3)AD=2OM ,连结OB 、OC 、OA 、OD ,作OE ⊥AD 于E ,如图2,∵OE ⊥AD ,∴AE=DE ,∵∠BOC=2∠BAC ,而∠BOC=2∠BOM ,∴∠BOM=∠BAC ,同理可得∠AOE=∠ABD ,∵BD ⊥AC ,∴∠BAC+∠ABD=90°,∴∠BOM+∠AOE=90°,∵∠BOM+∠OBM=90°,∴∠OBM=∠AOE,在△BOM 和△OAE 中,OMB OEA OBM OAE OB OA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BOM ≌△OAE (AAS ),∴OM=AE ,∴AD=2OM .【点睛】本题考查了圆的综合题:熟练掌握圆周角定理、垂径定理、等腰三角形的性质和矩形的性质、会利用三角形全等解决线段相等的问题是解题的关键.5.(1)①详见解析;②图见解析,猜想∠BEC=45°;(2)详见解析【解析】【分析】(1)①证明△ACD≌△BCF,得到∠CAD=∠CBF即可得到∠AEF=∠BCF=90°即可;②根据已知条件画图即可;(2)取AB的中点M,根据直角三角形斜边上的中线等于斜边的一半可得到点A,B,C,E四点在同一个圆M上,再利用圆周角定理即可证明.【详解】解:(1)①∵,90AC BC ACB︒=∠=,CD CF=∴在△ACD与△BCF中,AC BCACD ACBCD CF=⎧⎪∠=∠⎨⎪=⎩∴△ACD≌△BCF(SAS)∴∠CAD=∠CBF又∵∠AFE=∠BFC∴∠AEF=∠BCF=90°,∴BE⊥AD②图如下所示:猜想∠BEC=45°,(2)选择图1证明,连接CE,取AB的中点M,连接MC,ME∵△ABC和△ABE都是直角三角形∴12MC ME AB AM BM====,∴点A,B,C,E四点在同一个圆M上,∴∠BEC=∠BAC=45°,∴∠BEC=45°【点睛】本题考查了全等三角形的判定和性质、圆周角定理等知识点,解题的关键是根据已知条件选择全等三角形的判定定理,并充分利用数形结合的思想解答.6.(1)()C 8,43;(2)t=18s ;(3)t 1513=±.【解析】【分析】(1)如图1中,作CH ⊥AB 于H .解直角三角形求出CH ,OH 即可.(2)如图1﹣1中,设⊙M 与直线BC 相切于点N ,作MH ⊥AB 于H .求出OH 的长即可解决问题.(3)设M (﹣5+t ,33),EF 12=AB =8,由∠EMF =90°,可得EM 2+MF 2=EF 2,由此构建方程即可解决问题.【详解】(1)如图1中,作CH ⊥AB 于H .∵A (20,0),AB =16,∴OA =20,OB =4.在Rt △ABC 中,∵∠ACB =90°,AB =16,∠CAB =30°,∴BC 12=AB =8,CH =BC •sin60°3BH =BC •cos60°=4,∴OH =8,∴C (8,3(2)如图1﹣1中,设⊙M 与直线BC 相切于点N ,作MH ⊥AB 于H .∵MN=MH=33,MN⊥BC,MH⊥BA,∴∠MBH=∠MBN=30°,∴BH3=MH=9,∴点M的运动路径的长为5+4+9=18,∴当点M在∠ABC的内部且⊙M与直线BC相切时,t的值为18s.(3)∵C(8,43),B(4,0),A(20,0).∵CE=EB,CF=FA,∴E(6,23),F(14,23),设M(﹣5+t,33),EF12=AB=8.∵∠EMF=90°,∴EM2+MF2=EF2,∴(6+5﹣t)2+(3)2+(14+5﹣t)2+(3)2=82,整理得:t2﹣30t+212=0,解得:t=15±13.【点睛】本题是圆的综合题,考查了平移变换,解直角三角形,切线的判定和性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.7.(1)637;(2)BE=433;菱形与圆重叠部分的面积为833.【解析】【分析】(1)作PT⊥BE于点T,根据垂径定理和勾股定理求BQ的值,再根据相似三角形的判定和性质即可求解;(2)根据菱形性质和勾股定理求出菱形边长,此时点E和点Q重合,再根据扇形面积公式即可求解.【详解】解:(1)如图:过点P作PT⊥BQ于点T,∵AB=2,AD=BC=3,DQ3∴AQ=3,在Rt△ABQ中,根据勾股定理可得:BQ=7.又∵四边形BPDQ是平行四边形,∴BP=DQ=3,∵∠AQB=∠TBP,∠A=∠BTP,∴△AQB∽△TBP,∴3,37 BT BDAQ BQ==即,∴BT=33 7,∴BE=2BT=637.(2)设菱形BPDQ的边长为x,则AQ=23﹣x,在Rt△ABQ中,根据勾股定理,得AB2+AQ2=BQ2,即4+(23﹣x)2=x2,解得x=43 3.∵四边形BPDQ为菱形,∴BP=DP=43 3,又CP=BC-BP=233,即DP=2CP,∴∠DPC=60°,∴∠BPD=120°,∴连接PQ,易得△BPQ为等边三角形,∴PQ=BP,∴点Q也在圆P上,圆P经过点B,D,Q,如图.∴点E、Q重合,∴BE 43 3∴菱形与圆重叠部分面积即为菱形的面积,∴S 菱形. 【点睛】 本题考查了平行四边形、矩形、菱形的性质、垂径定理、勾股定理、相似三角形的判定和性质、扇形面积公式,解决本题的关键是综合运用以上知识.8.(1)m =﹣1,n =3,y =﹣x 2+2x +3;(2)S=3;(3)①y 最大值=4;当x =3时,y 最小值=0;②t =﹣1或t =2【解析】【分析】(1)首先解方程求得A 、B 两点的坐标,然后利用待定系数法确定二次函数的解析式即可;(2)根据解方程直接写出点C 的坐标,然后确定顶点D 的坐标,根据两点的距离公式可得BDC ∆三边的长,根据勾股定理的逆定理可得90DBC ∠=︒,据此求出 △BDC 面积; (3)①确定抛物线的对称轴是1x =,根据增减性可知:1x =时,y 有最大值,当3x =时, y 有最小值;②分5种情况:1、当函数y 在1t x t +内的抛物线完全在对称轴的左侧;2、当11t +=时;3、当函数y 在1t x t +内的抛物线分别在对称轴的两侧;4、当1t =时,5、函数y 在1t x t +内的抛物线完全在对称轴的右侧;分别根据增减性可解答.【详解】解:(1)m ,n 分别是方程2230x x --=的两个实数根,且 m n <,用因式分解法解方程:(1)(3)0x x +-=,11x ∴=-,23x =,1m ∴=-,3n =,(1,0)A ∴-,(0,3)B ,把(1,0)-,(0,3)代入得, 103b c c --+=⎧⎨=⎩,解得23b c =⎧⎨=⎩, ∴函数解析式为2y x 2x 3=-++.(2)令2230y x x =-++=,即2230x x --=,解得11x =-,23x =,∴抛物线2y x 2x 3=-++与x 轴的交点为 (1,0)A -,(3,0)C ,1OA ∴=,3OC =,∴对称轴为1312x -+==,顶点(1,123)D -++,即 (1,4)D ,∴BC = BD ==DC ==222CD DB CB =+,BCD ∴∆是直角三角形,且90DBC ∠=︒,∴112322S BCD BD BC ==⨯⨯=; (3)∵抛物线y =﹣x 2+2x +3的对称轴为x =1,顶点为D (1,4),①在0≤x ≤3范围内,当x =1时,y 最大值=4;当x =3时,y 最小值=0;②1、当函数y 在1t x t +内的抛物线完全在对称轴的左侧,当x t =时取得最小值 223q t t =-++,最大值2(1)2(1)3p t t =-++++,令22(1)2(1)3(23)3p q t t t t -=-++++--++=,即 213t -+=,解得1t =-.2、当11t +=时,此时4p =,3q =,不合题意,舍去;3、当函数y 在1t x t +内的抛物线分别在对称轴的两侧,此时4p =,令24(23)3p q t t -=--++=,即 2220t t --=解得:11t =),21t = );或者24[(1)2(1)3]3p q t t -=--++++=,即 t =4、当1t =时,此时4p =,3q =,不合题意,舍去;5、当函数y 在1t x t +内的抛物线完全在对称轴的右侧,当x t =时取得最大值 223p t t =-++,最小值2(1)2(1)3q t t =-++++,令2223[(1)2(1)3]3p q t t t t -=-++--++++=,解得 2t =.综上,1t =-或2t =.【点睛】本题是二次函数的综合题型,其中涉及到的知识点有利用待定系数法求抛物线的解析式,抛物线的顶点公式,直角三角形的性质和判定,勾股定理的逆定理,最值问题等知识,注意运用分类讨论的思想解决问题.9.(1) A (0,2),B(4,0),2722y x x =-++;(2)当t=2时,MN 有最大值4;(3) D 点坐标为(0,6),(0,-2)或(4,4).【解析】【分析】(1)首先求得A 、B 的坐标,然后利用待定系数法求抛物线的解析式;(2)本问要点是求得线段MN 的表达式,这个表达式是关于t 的二次函数,利用二次函数的极值求线段MN 的最大值;(3)本问要点是明确D 点的可能位置有三种情况,如答图2所示,其中D 1、D 2在y 轴上,利用线段数量关系容易求得坐标;D 3点在第一象限是直线D 1N 和D 2M 的交点,利用直线解析式求得交点坐标即可.【详解】解:(1)∵122y x =-+的图象交y 轴于点A ,交x 轴于点B 点,∴A 、B 点的坐标为:A (0,2),B(4,0),将x=0,y=2代入2y x bx c =-++得c=2,将x=4,y=0,代入2y x bx c =-++得b=72, ∴抛物线解析式为:2722y x x =-++; (2)如答图1所示,设MN 交x 轴于点E ,则E(t ,0),则M(t ,122t -),又N 点在抛物线上,且x N =t ,∴2722N y t t =-++, ∴()22271224=2422N M MN y y t t t t t t ⎛⎫=-=-++--=-+--+ ⎪⎝⎭, ∴当t=2时,MN 有最大值4.(3)由(2)可知A (0,2)、M(2,1)、N(2,5),以A 、M 、N 、D 为顶点做平行四边形,D 点的可能位置有三种情况,如答图2所示,当D 在y 轴上时,设D 的坐标为(0,a ),由AD=MN ,得|a-2|=4,解得a 1=6,a 2=-2,从而D 点坐标为(0,6)或D (0,-2),当D 不在y 轴上时,由图可知D 3为D 1N 与D 2M 的交点,分别求出D 1N 的解析式为:162y x =-+,D 2M 的解析式为:322y x =-, 联立两个方程得:D 3(4,4), 故所求的D 点坐标为(0,6),(0,-2)或(4,4).【点睛】本题主要考查的是二次函数综合,经常作为压轴题出现,正确的掌握二次函数的性质是解题的关键.10.(1)211242y x x =--;(2)①P (2,−2)或(-6,10),②1122y x =-或324y x t =-+-或4412424t t y x t t --=+-++ 【解析】【分析】(1)利用一次函数与坐标轴交点的特征可求出点B ,C 的坐标,根据点B ,C 的坐标,利用待定系数法可求出二次函数解析式;(2)①由PM ⊥x 轴可得出∠PMC≠90°,分∠MPC=90°及∠PCM=90°两种情况考虑: (i )当∠MPC=90°时,PC //x 轴,利用二次函数可求出点P 的坐标;(ii )当∠PCM=90°时,设PC 与x 轴交于点D ,易证△BOC ∽△COD ,利用相似三角形的性质可求出点D 的坐标,根据点C ,D 的坐标,利用待定系数法可求出直线PC 的解析式,联立直线PC 和抛物线的解析式,通过解方程组可求出点P 的坐标; ②在ACM 中,如果存在直线使A 、C 、M 到该直线距离相等,则该直线应为ACM 的中位线,分开求解三条中位线方程即可求解.【详解】解:(1)因为直线交抛物线于B 、C 两点,∴当x =0时,y =12x −2=−2, ∴点C 的坐标为(0,−2);当y =0时,12x −2=0, 解得:x =4,∴点B 的坐标为(4,0).将B 、C 的坐标分别代入抛物线,得:2144022a c c ⎧⨯-⨯+=⎪⎨⎪=-⎩,解得:142a c ⎧=⎪⎨⎪=-⎩, ∴抛物线的解析式为211242y x x =--. (2)①∵PM ⊥x 轴,M 在直线BC 上,∴∠PMC 为固定角且不等于90,∴可分两种情况考虑,如图1所示:(i )当∠MPC=90时,PC //x 轴,∴点P 的纵坐标为﹣2, 将y p =-2,代入抛物线方程可得:2112242x x --=-解得: x 1=2,x 2=0(为C 点坐标,故舍去),∴点P 的坐标为(2,−2);(ii )当∠PCM=90°时,设PC 与x 轴交于点D ,∵∠OBC+∠OCB=90°,∠OCB+∠OCD=90°,∴∠OBC=∠OCD ,又∵∠BOC=∠COD=90°,∴BOC ∽COD (AAA ),∴OD OC OC OB =,即OD=2OC OB, 由(1)知,OC=2,OB=4,∴OD=1,又∵D 点在X 的负半轴∴点D 的坐标为(-1,0),设直线PC 的解析式为:y =kx +b (k ≠0,k 、b 是常数),将C(0,−2),D(-1,0)代入直线PC 的解析式,得:20b k b =-⎧⎨-+=⎩,解得:22k b =-⎧⎨=-⎩, ∴直线PC 的解析式为y =-2x −2,联立直线PC 和抛物线方程,得:22122142x x x -=---, 解得:x 1=0,y 1=−2,x 2=-6,y 2=10,点P 的坐标为(-6,10),综上所述:当PCM 是直角三角形时,点P 的坐标为(2,−2)或(-6,10);②如图2所示,在ACM 中,如果存在直线使A 、C 、M 到该直线距离相等,则该直线应为ACM 的中位线;(a )当以CM 为底时,过A 点做CM 的平行线AN ,直线AN 平行于CM 且过点A ,则斜率为12,AN 的方程为:1(+2)2y x =,则中位线方程式为:1122y x =-; (b )当以AM 为底时,因为M 为P 点做x 轴垂线与CB 的交点,则M 的横坐标为t ,且在直线BC 上,则M 的坐标为:1,22M t t -(),其中4t >,则AM 的方程为:44+242t t y x t t --=++,过C 点做AM 的平行线CQ ,则CQ 的方程为:4224t y x t -=-+ ,则中位线方程式为:4412424t t y x t t --=+-++; (c )当以AC 为底时,AC 的方程式为:2y x =--,由b 可知M 的坐标为:1,22M t t -(),过M 做AC 的平行线MR ,则MR 的方程为:322y x t =-+-,则中位线方程式为:324y x t =-+-; 综上所述:当点P 在点B 右侧时,存在直线l ,使点,,A C M 到该直线的距离相等,直线解析式为:1122y x =-或324y x t =-+-或4412424t t y x t t --=+-++. 【点睛】本题考查了一次函数坐标轴的交点坐标、待定系数法求二次函数解析式、相似三角形的判定与性质以及平行线的性质等,解题的关键是掌握三角形的顶点到中位线的距离相等.11.(1)点B 的坐标为(﹣1,0),点A 的坐标为(3,0),点C 的坐标为(0,3);抛物线的对称轴为直线x =1;(2)⊙P 5;(3)1<y <2;(4)3﹣322. 【解析】【分析】(1)分别代入y =0、x =0求出与之对应的x 、y 的值,进而可得出点A 、B 、C 的坐标,再由二次函数的对称性可找出抛物线的对称轴;(2)连接CP 、BP ,在Rt △BOC 中利用勾股定理可求出BC 的长,由等腰直角三角形的性质及圆周角定理可得出∠BPC =90°,再利用等腰直角三角形的性质可求出BP 的值即可;(3)设点D的坐标为(1,y),当∠BDC=90°时,利用勾股定理可求出y值,进而可得出:当1<y<2时,∠BDC>90°;(4)将△ACO绕点A逆时针方向旋转45°,点C落在点C′处,点O落在点O′处,根据旋转的性质可找出点C′的坐标及∠AC′O′=45°,进而可找出线段C′O′所在直线的解析式,由点E在CO上可得出点F在C′O′上,过点O作OF⊥C′O′于点F,则△OC′F 为等腰直角三角形,此时线段OF取最小值,利用等腰直角三角形的性质即可求出此时OF 的长即可.【详解】(1)当y=0时,﹣(x+1)(x﹣3)=0,解得:x1=﹣1,x2=3,∴点B的坐标为(﹣1,0),点A的坐标为(3,0);当x=0时,y=﹣(0+1)×(0﹣3)=3,∴点C的坐标为(0,3);∵抛物线与x轴交于点(﹣1,0)、(3,0),∴抛物线的对称轴为直线x=1;(2)连接CP、BP,如图1所示,在Rt△BOC中,BC=∵∠AOC=90°,OA=OC=3,∴∠OAC=∠OCA=45°,∴∠BPC=2∠OAC=90°,BC∴CP=BP=2∴⊙P(3)设点D的坐标为(1,y),当∠BDC=90°时,BD2+CD2=BC2,∴[(﹣1﹣1)2+(0﹣y)2]+[(0﹣1)2+(3﹣y)2]=10,整理,得:y2﹣3y+2=0,解得:y1=1,y2=2,∴当1<y<2时,∠BDC>90°;(4)将△ACO绕点A逆时针方向旋转45°,点C落在点C′处,点O落在点O′处,如图2所示.∵AC=ACO=45°,∴点C′的坐标为(3﹣,0),∠AC′O′=45°,∴线段C′O′所在直线的解析式为y=﹣x+3﹣∵点E在线段CO上,∴点F在线段C′O′上.过点O作OF⊥C′O′于点F,则△OC′F为等腰直角三角形,此时线段OF取最小值,∵△OC′F为等腰直角三角形,∴OF =22OC′=22(32﹣3)=3﹣322.【点睛】本题考查了二次函数图象上点的坐标特征、二次函数的性质、圆周角定理、勾股定理、旋转以及等腰直角三角形,解题的关键是:(1)利用二次函数图象上点的坐标特征求出点A 、B 、C 的坐标;(2)利用圆周角定理找出∠BPC =90°;(3)利用极限值法求出点D 纵坐标;(4)利用点到直线之间垂直线段最短确定点F 的位置.12.(1)t =3;(2)P (35t +2,45t ﹣4);(3)t 的值为209秒或4秒或16秒或1609秒 【解析】【分析】(1)如图1,过点C 作CP ⊥OA ,交x 轴于点P .就可以求出OP 的值,由勾股定理就可以求出的OP 值,进而求出结论;(2)t <10时,P 在OA 或AB 上运动,所以分两种情况:①当0≤t≤5时,如图1,点P 在OA 上,OP=t ,可得P 的坐标;②当5<t <10时,如图2,点P 在AB 上,构建直角三角形,根据三角函数定义可得P 的坐标;(3)设切点为G ,连接PG ,分⊙P 与四边相切,其中P 在AB 和BC 时,与各边都不相切,所以分两种情况:①当P 在OA 上时,根据三角函数列式可得t 的值;②当P 在OC 上时,同理可得结论.【详解】(1)如图1,当CP ⊥OA 时,sin ∠AO 45CP C OC==, 4455CP CP 即=,=,在Rt △OPC 中,OC =5,PC =4,则OP =3,∴331t ==(2)当0≤t ≤5时,如图1,点P 在OA 上,∴P (t ,0);当5<t <10时,如图2,点P 在AB 上,过P 作PH ⊥x 轴,垂足为H ,则∠AOC =∠PAH ,∴sin ∠PAH =sin ∠AO 45C =, 44 4555PH PH t t ∴=-即=﹣, ∴333255HA t OH OA AH t ++=﹣,==,∴34P t+2t 455(,﹣);(3)设切点为G ,连接PG ,分两种情况:①当P 在OA 上时,如图3,⊙P 与直线AB 相切,∵OC ∥AB ,∴∠AOC =∠OAG ,∴sin ∠AOC =sin ∠OA 45PG G AP==, t 45-t 5∴=,∴209t=;⊙P与BC相切时,如图4,则PG=t=OP=4;②当点P在OC上时,⊙P与AB相切时,如图5,∴OP=PG=4,∴4×5﹣t=4,t=16,⊙P与直线BC相切时,如图6,∴PG⊥BC,∵BC∥AO,∴∠AOC=∠GCP,∴sin∠AOC=sin∠GC45PGPPC==,∵OP=PG=20﹣t,∴42051tt-=-,∴1609t=,综上所述,t的值2016041699为秒或秒或秒或秒【点睛】本题考查了菱形的性质、直角三角形的性质、勾股定理、锐角三角函数等知识,解答时运用等角的三角函数列方程是关键,并注意运用分类讨论的思想,做到不重不漏.。
九年级上册数学压轴题试题(Word版 含答案)
九年级上册数学压轴题试题(Word 版 含答案)一、压轴题1.已知P 是⊙O 上一点,过点P 作不过圆心的弦PQ ,在劣弧PQ 和优弧PQ 上分别有动点A 、B(不与P ,Q 重合),连接AP 、BP . 若∠APQ=∠BPQ.(1)如图1,当∠APQ=45°,AP=1,BP=22时,求⊙O 的半径;(2)如图2,选接AB ,交PQ 于点M ,点N 在线段PM 上(不与P 、M 重合),连接ON 、OP ,若∠NOP+2∠OPN=90°,探究直线AB 与ON 的位置关系,并证明.2.如图,矩形OABC 的顶点A 、C 分别在x 轴、y 轴的正半轴上,点B 的坐标为(3,4),一次函数23y x b =-+的图像与边OC 、AB 分别交于点D 、E ,并且满足OD BE =,M 是线段DE 上的一个动点(1)求b 的值; (2)连接OM ,若ODM △的面积与四边形OAEM 的面积之比为1:3,求点M 的坐标; (3)设N 是x 轴上方平面内的一点,以O 、D 、M 、N 为顶点的四边形是菱形,求点N 的坐标.3.问题提出(1)如图①,在ABC 中,2,6,135AB AC BAC ==∠=,求ABC 的面积.问题探究(2)如图②,半圆O 的直径10AB =,C 是半圆AB 的中点,点D 在BC 上,且2CD BD =,点P 是AB 上的动点,试求PC PD +的最小值.问题解决(3)如图③,扇形AOB 的半径为20,45AOB ∠=在AB 选点P ,在边OA 上选点E ,在边OB 上选点F ,求PE EF FP ++的长度的最小值.4.如图,等边ABC 内接于O ,P 是AB 上任一点(点P 不与点A 、B 重合),连接AP 、BP ,过点C 作CM BP 交PA 的延长线于点M .(1)求APC ∠和BPC ∠的度数;(2)求证:ACM BCP △≌△;(3)若1PA =,2PB =,求四边形PBCM 的面积;(4)在(3)的条件下,求AB 的长度.5.数学概念若点P 在ABC ∆的内部,且APB ∠、BPC ∠和CPA ∠中有两个角相等,则称P 是ABC ∆的“等角点”,特别地,若这三个角都相等,则称P 是ABC ∆的“强等角点”. 理解概念(1)若点P 是ABC ∆的等角点,且100APB ∠=,则BPC ∠的度数是 .(2)已知点D 在ABC ∆的外部,且与点A 在BC 的异侧,并满足180BDC BAC ∠+∠<,作BCD ∆的外接圆O ,连接AD ,交圆O 于点P .当BCD ∆的边满足下面的条件时,求证:P 是ABC ∆的等角点.(要求:只选择其中一道题进行证明!)①如图①,DB DC =②如图②,BC BD =深入思考(3)如图③,在ABC ∆中,A ∠、B 、C ∠均小于120,用直尺和圆规作它的强等角点Q .(不写作法,保留作图痕迹)(4)下列关于“等角点”、“强等角点”的说法:①直角三角形的内心是它的等角点;②等腰三角形的内心和外心都是它的等角点;③正三角形的中心是它的强等角点;④若一个三角形存在强等角点,则该点到三角形三个顶点的距离相等;⑤若一个三角形存在强等角点,则该点是三角形内部到三个顶点距离之和最小的点,其中正确的有 .(填序号)6.如图,AB 是⊙O 的直径,AF 是⊙O 的弦,AE 平分BAF ∠,交⊙O 于点E ,过点E 作直线ED AF ⊥,交AF 的延长线于点D ,交AB 的延长线于点C .(1)求证:CD 是⊙O 的切线;(2)若10,6AB AF ==,求AE 的长.7. 如图,在Rt △ABC 中,∠C=90°,AC=8,BC=6,P 为边BC 上一个动点(可以包括点C 但不包括点B ),以P 为圆心PB 为半径作⊙P 交AB 于点D 过点D 作⊙P 的切线交边AC 于点E ,(1)求证:AE=DE ;(2)若PB=2,求AE 的长;(3)在P 点的运动过程中,请直接写出线段AE 长度的取值范围.8.如图,在▱ABCD中,AB=4,BC=8,∠ABC=60°.点P是边BC上一动点,作△PAB的外接圆⊙O交BD于E.(1)如图1,当PB=3时,求PA的长以及⊙O的半径;(2)如图2,当∠APB=2∠PBE时,求证:AE平分∠PAD;(3)当AE与△ABD的某一条边垂直时,求所有满足条件的⊙O的半径.9.如图,B是O的半径OA上的一点(不与端点重合),过点B作OA的垂线交O于点C,D,连接OD,E是O上一点,CE CA,过点C作O的切线l,连接OE并延长交直线l于点F.(1)①依题意补全图形.②求证:∠OFC=∠ODC.(2)连接FB,若B是OA的中点,O的半径是4,求FB的长.10.如图,已知在矩形ABCD中,AB=2,BC=3P,Q分别是BC,AD边上的一个动点,连结BQ,以P为圆心,PB长为半径的⊙P交线段BQ于点E,连结PD.(1)若DQ3且四边形BPDQ是平行四边形时,求出⊙P的弦BE的长;(2)在点P,Q运动的过程中,当四边形BPDQ是菱形时,求出⊙P的弦BE的长,并计算此时菱形与圆重叠部分的面积.11.如图1,在平面直角坐标系中,抛物线y=ax2+bx﹣3与直线y=x+3交于点A(m,0)和点B(2,n),与y轴交于点C.(1)求m,n的值及抛物线的解析式;(2)在图1中,把△AOC平移,始终保持点A的对应点P在抛物线上,点C,O的对应点分别为M,N,连接OP,若点M恰好在直线y=x+3上,求线段OP的长度;(3)如图2,在抛物线上是否存在点Q(不与点C重合),使△QAB和△ABC的面积相等?若存在,直接写出点Q的坐标;若不存在,请说明理由.12.如图,函数y=-x2+bx+c的图象经过点A(m,0),B(0,n)两点,m,n分别是方程x2-2x-3=0的两个实数根,且m<n.(1)求m,n的值以及函数的解析式;(2)设抛物线y=-x2+bx+c与x轴的另一交点为点C,顶点为点D,连结BD、BC、CD,求△BDC面积;(3)对于(1)中所求的函数y=-x2+bx+c,①当0≤x≤3时,求函数y的最大值和最小值;②设函数y在t≤x≤t+1内的最大值为p,最小值为q,若p-q=3,求t的值.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1) ☉O 的半径是32;(2)AB ∥ON ,证明见解析. 【解析】【分析】(1) 连接AB ,根据题意可AB 为直径,再用勾股定理即可.(2) 连接OA , OB , OQ ,根据圆周角定理可得Q 2APQ,B0Q 2BPO AO ∠=∠∠=∠,从而证出OC AB ⊥, 延长PO 交☉0于点R ,则有2OPN QOR ∠=∠,再根据三角形内角和定理求得OQN ∠=90︒得证.【详解】解:(1)连接AB ,在☉0中,o APQ BPQ 45∠=∠=,o APB APQ BPQ 90∴∠=∠+∠=AB ∴是☉0的直径.Rt APB ∴∆在中,22AB AP BP =+AB=3∴∴☉0的半径是32(2)AB//ON证明:连接OA , OB , OQ ,在☉0中, AQ AQ =, BQ BQ =,Q 2APQ,B0Q 2BPO AO ∴∠=∠∠=∠.又APQ BPQ ∠=∠,AOQ BOQ ∴∠=∠.在AOB ∆中,OA OB =, AOQ BOQ ∠=∠,OC AB ∴⊥,即o OCA 90∠=连接OQ ,交AB 于点C在☉0中,OP OQ =OPN OQP.∴∠=∠延长PO 交☉0于点R ,则有2OPN QOR ∠=∠o NOP 2OPN 90∴∠+∠=,又:o NOP NOQ QOR 180∠+∠+∠=,NOQ 90O ∴∠=NOQ OCA 180O ∴∠+∠= .AB//ON ∴【点睛】本题考查了圆周角定理,勾股定理、等腰三角形的性质以及三角形的内角和定理,是一道综合题,灵活运用相关知识是解题的关键.2.(1)b=3;(2)点M 坐标为7(1,)3;(3)93(,)42-或3654(,)1313【解析】【分析】(1)首先在一次函数的解析式中令x=0,即可求得D 的坐标,则OD=b ,则E 的坐标即可利用b 表示出来,然后代入一次函数解析式即可得到关于b 的方程,求得b 的值;(2)首先求得四边形OAED 的面积,则△ODM 的面积即可求得,设出M 的横坐标,根据三角形的面积公式即可求得M 的横坐标,进而求得M 的坐标;(3)分两种情况进行讨论,①四边形OMDN 是菱形时,M 是OD 的中垂线与DE 的交点,M 关于OD 的对称点就是N ;②四边形OMND 是菱形,OM=OD ,M 在直线DE 上,设出M 的坐标,根据OM=OD 即可求得M 的坐标,则根据OD ∥MN,且OD=MN 即可求得N 的坐标.【详解】(1)在23y x b =-+中,令x=0,解得y=b , 则D 的坐标是(0,b),OD=b ,∵OD=BE ,∴BE=b ,则点E 坐标为(3,4-b ),将点E 代入23y x b =-+中,得:4-b=2+b, 解得:b=3;(2)如图,∵OAED S 四边形=11()(31)3622OD AE OA +=⨯+⨯=, ∵三角形ODM 的面积与四边形OAEM 的面积之比为1:3,∴13=42ODM OAED S S ∆=四边形 设M 的横坐标是a ,则13322a ⨯=, 解得:1a =,将1x a ==代入233y x =-+中,得: 27333y =-⨯+= 则点M 坐标为7(1,)3;(3)依题意,有两种情况:①当四边形OMDN 是菱形时,如图(1),M 的纵坐标是32, 把32y =代入233y x =-+中,得: 23332x -+=,解得:94x =, ∴点M 坐标为93(,)42,点N 坐标为93(,)42-;②当四边形OMND 是菱形时,如图(2),OM =OD =3,设M 的坐标2(,3)3m m -+, 由OM=OD 得:222(3)93m m +-+=, 解得:3613m =或m=0(舍去), 则点M 坐标为3615(,)1313, 又MN ∥OD ,MN=OD=3,∴点N 的坐标为3654(,)1313, 综上,满足条件的点N 坐标为93(,)42-或3654(,)1313.【点睛】本题考查一次函数与几何图形的综合,涉及待定系数法、图形的面积计算、菱形的性质、方程等知识,解答的关键是认真审题,找出相关知识的联系点,运用待定系数法、数形结合法、分类讨论法等解题方法确定解题思路,进而推理、探究、发现和计算.3.(1)12;(2)53;(3)202.【解析】【分析】(1)如图1中,过点B 作BD CA ⊥,交CA 延长线于点D ,通过构造直角三角形,求出BD 利用三角形面积公式求解即可.(2)如图示,作点D 关于AB 的对称点Q ,交AB 于点H ,连接CQ ,交AB 于点P ,连接PD 、OD 、OC ,过点Q 作QM CO ⊥,交CO 延长线于点M ,确定点P 的位置,利用勾股定理与矩形的性质求出CQ 的长度即为答案.(3)解图3所示,在AB 上这一点作点P 关于OA 的对称点S ,作点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,连接OS ON OP EP FP 、、、、,通过轴对称性质的转化,最终确定最小值转化为SN 的长.【详解】(1)如解图1所示,过点B 作BD CA ⊥,交CA 延长线于点D ,135BAC ∠=,180********BAD BAC ∴∠=-∠=-=,BD CA ⊥,交CA 延长线于点D ,BAD ∴为等腰直角三角形,且90BDA ∠=,BD AD ∴=,在BAD 中,,90BD AD BDA =∠=,222BD AD AB ∴+=,即222BD AB =, 42AB =,2222(42)32BD AB ∴===,解得:4BD =,6AC =,11641222ABC S AC BD ∴=⋅=⨯⨯=.(2)如解图2所示,作点D 关于AB 的对称点Q ,交AB 于点H ,连接CQ ,交AB 于点P ,连接PD 、OD 、OC ,过点Q 作QM CO ⊥,交CO 延长线于点M , D 关于AB 的对称点Q ,CQ 交AB 于点P ,PD PQ ∴=,PC PD PC PQ CQ ∴+=+=,点P 为AB 上的动点,PC PD CQ ∴+≥,∴当点P 处于解图2中的位置,PC PD +取最小值,且最小值为CQ 的长度, 点C 为半圆AB 的中点,90COB ∴∠=,90BOD COD COB ∠+∠=∠=, 11903033BOD COB ∴∠=∠=⨯=, 10AB =,1110522OD AB ∴==⨯=, 在Rt ODH △中,由作图知,90OHD ∠=,且30HOD BOD ∠=∠=,155,222DH OD QH DH ∴==∴==, 2222553522OH OD DH ⎛⎫∴=-=-= ⎪⎝⎭, 由作图知,四边形OMQH 为矩形, 553,22OM QH MQ OH ∴====, 515522CM OM OC ∴=+=+=, 222215535322CQ CM MQ ⎛⎫⎛⎫∴=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭, PC PD ∴+的最小值为53.(3)如解图3所示,在AB 上这一点作点P 关于OA 的对称点S ,作点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,连接OS ON OP EP FP 、、、、, 点P 关于OA 的对称点S ,点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,PE SE ∴=,FP FN =,SOA POA ∠=∠,,NOB POB OS OP ON ∠=∠==,.PE EF FP SE EF FN SN ∴++=++=,SOA NOB POA POB ∠+∠=∠+∠, E 为OA 上的点,F 为OB 上的点PE EF FP SN ∴++≥,∴当点E F 、处于解图3的位置时,PE EF FP ++的长度取最小值,最小值为SN 的长度,45POA POB AOB ∠+∠=∠=,45SOA NOB ∴∠+∠=,454590SON SOA AOB NOB ∴∠=∠+∠+∠=+=.扇形AOB 的半径为20,20OS ON OP ∴===,在Rt SON 中,90SON ∠=,20,90OS ON SON ==∠=PE EF FP ∴++的长度的最小值为202.【点睛】本题主要考察了轴对称、勾股定理、圆、四边形等相关内容,理解题意,作出辅助线是做题的关键.4.(1)∠APC=60°,∠BPC=60°;(2)见解析;(315344221π 【解析】【分析】(1)由△ABC 是等边三角形,可知∠ABC=∠BAC=∠ACB=60°,由圆周角定理可知∠APC=∠ABC=60°,∠BPC=∠BAC=60°;(2)利用上题中得到的相等的角和等边三角形中相等的线段利用AAS证得两三角形全等即可;(3)根据CM∥BP说明四边形PBCM是梯形,利用上题证得的两三角形全等判定△PCM为等边三角形,进而求得PH的长,利用梯形的面积公式计算四边形的面积即可;(4)过点B作BQ⊥AP,交AP的延长线于点Q,过点A作AN⊥BC于点N,连接OB,利用勾股定理求出AB的长,在△ABC中,利用等边三角形的性质求出BN,在△BON中利用勾股定理求出OB,最后根据弧长公式求出弧AB的长.【详解】解:(1)∵△ABC是等边三角形,∴∠ABC=∠BAC=∠ACB=60°,∵=BC BC,=AC AC,∴∠APC=∠ABC=60°,∠BPC=∠BAC=60°;(2)证明:∵CM∥BP,∴∠BPM+∠M=180°,∠PCM=∠BPC,∵∠BPC=∠BAC=60°,∴∠PCM=∠BPC=60°,∴∠M=180°-∠BPM=180°-(∠APC+∠BPC)=180°-120°=60°,∴∠M=∠BPC=60°,又∵A、P、B、C四点共圆,∴∠PAC+∠PBC=180°,∵∠MAC+∠PAC=180°∴∠MAC=∠PBC∵AC=BC,在△ACM和△BCP中,M BPCMAC PBCAC BC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACM≌△BCP(AAS);(3)∵CM∥BP,∴四边形PBCM为梯形,作PH⊥CM于H,∵△ACM≌△BCP,∴CM=CP,AM=BP,又∠M=60°,∴△PCM为等边三角形,∴CM=CP=PM=PA+AM=PA+PB=1+2=3,在Rt△PMH中,∠MPH=30°,∴PH=332, ∴S 四边形PBCM =12(PB+CM )×PH=12(2+3)×332=1534;(4)过点B 作BQ ⊥AP ,交AP 的延长线于点Q ,过点A 作AN ⊥BC 于点N ,连接OB , ∵∠APC=∠BPC=60°,∴∠BPQ=60°,∴∠PBQ=30°,∴PQ=12PB=1, ∴在△BPQ 中,2221=3-∴在△AQB 中,()()2222=113=7AQ BQ +++∵△ABC 为等边三角形,∴AN 经过圆心O ,∴BN=127, ∴22212AB BN -, 在△BON 中,设BO=x ,则21x -, ∴222721=2x x ⎛⎫+- ⎪ ⎪⎝⎭⎝⎭, 解得:x=213, ∵∠BOA =2∠BCA =120°,∴AB =211202213180ππ⨯【点睛】本题考查了圆周角定理,全等三角形的判定与性质,等边三角形的判定,四边形的面积,勾股定理,弧长公式,是一道比较复杂的几何综合题,解题关键是能够掌握并灵活运用全等三角形的判定与性质等知识.5.(1)100、130或160;(2)选择①或②,理由见解析;(3)见解析;(4)③⑤【解析】【分析】(1)根据“等角点”的定义,分类讨论即可;(2)①根据在同圆中,弧和弦的关系和同弧所对的圆周角相等即可证明;②弧和弦的关系和圆的内接四边形的性质即可得出结论;(3)根据垂直平分线的性质、等边三角形的性质、弧和弦的关系和同弧所对的圆周角相等作图即可;(4)根据“等角点”和“强等角点”的定义,逐一分析判断即可.【详解】(1)(i )若APB ∠=BPC ∠时,∴BPC ∠=APB ∠=100°(ii )若BPC CPA ∠=∠时, ∴12BPC CPA ∠=∠=(360°-APB ∠)=130°; (iii )若APB ∠=CPA ∠时,BPC ∠=360°-APB ∠-CPA ∠=160°,综上所述:BPC ∠=100°、130°或160°故答案为:100、130或160.(2)选择①:连接,PB PC ∵DB DC =∴=DB DC∴BPD CPD ∠=∠∵180APB BPD ∠+∠=,180APC CPD ∠+∠=∴APB APC ∠=∠∴P 是ABC ∆的等角点.选择②连接,PB PC∵BC BD =∴BC BD =∴BDC BPD ∠=∠∵四边形PBDC 是圆O 的内接四边形,∴180BDC BPC ∠+∠=∵180BPD APB ∠+∠=∴BPC APB ∠=∠∴P 是ABC ∆的等角点(3)作BC 的中垂线MN ,以C 为圆心,BC 的长为半径作弧交MN 与点D ,连接BD , 根据垂直平分线的性质和作图方法可得:BD=CD=BC∴△BCD 为等边三角形∴∠BDC=∠BCD=∠DBC=60°作CD 的垂直平分线交MN 于点O以O 为圆心OB 为半径作圆,交AD 于点Q ,圆O 即为△BCD 的外接圆∴∠BQC=180°-∠BDC=120°∵BD=CD∴∠BQD=∠CQD∴∠BQA=∠CQA=12(360°-∠BQC )=120° ∴∠BQA=∠CQA=∠BQC如图③,点Q 即为所求. (4)③⑤.①如下图所示,在RtABC 中,∠ABC=90°,O 为△ABC 的内心假设∠BAC=60°,∠ACB=30°∵点O 是△ABC 的内心∴∠BAO=∠CAO=12∠BAC=30°,∠ABO=∠CBO=12∠ABC=45°,∠ACO=∠BCO=12∠ACB=15° ∴∠AOC=180°-∠CAO -∠ACO=135°,∠AOB=180°-∠BAO -∠ABO=105°,∠BOC=180°-∠CBO -∠BCO=120°显然∠AOC ≠∠AOB ≠∠BOC ,故①错误;②对于钝角等腰三角形,它的外心在三角形的外部,不符合等角点的定义,故②错误; ③正三角形的每个中心角都为:360°÷3=120°,满足强等角点的定义,所以正三角形的中心是它的强等角点,故③正确;④由(3)可知,点Q 为△ABC 的强等角,但Q 不在BC 的中垂线上,故QB ≠QC ,故④错误;⑤由(3)可知,当ABC ∆的三个内角都小于120时,ABC ∆必存在强等角点Q .如图④,在三个内角都小于120的ABC ∆内任取一点'Q ,连接'Q A 、'Q B 、'Q C ,将'Q AC ∆绕点A 逆时针旋转60到MAD ∆,连接'Q M ,∵由旋转得'Q A MA =,'Q C MD =,'60Q AM ∠=∴'AQ M ∆是等边三角形.∴''Q M Q A =∴'''''Q A Q B Q C Q M Q B MD ++=++∵B 、D 是定点,∴当B 、'Q 、M 、D 四点共线时,''Q M Q B MD ++最小,即'''Q A Q B Q C ++最小. 而当'Q 为ABC ∆的强等角点时,'''120AQ B BQ C CQ A AMD ∠=∠=∠==∠, 此时便能保证B 、'Q 、M 、D 四点共线,进而使'''Q A Q B Q C ++最小.故答案为:③⑤.【点睛】此题考查的是新定义类问题、圆的基本性质、圆周角定理、圆的内接多边形综合大题,掌握“等角点”和“强等角点”的定义、圆的基本性质、圆周角定理、圆的内接多边形中心角公式和分类讨论的数学思想是解决此题的关键.6.(1)详见解析;(2)45【解析】【分析】(1)通过证明OE∥AD得出结论OE⊥CD,从而证明CD是⊙0的切线;(2)在Rt△ADE中,求出AD,DE,利用勾股定理即可解决问题.【详解】(1)证明:∵AE平分∠DAC,∴∠CAE=∠DAE.∵OA=OE,∴∠OEA=∠OAE.∴∠DAE=∠AEO,.∴AD∥OE.∵AD⊥CD,∴OE⊥CD.∴CD是⊙O的切线.(2)解:连接BF交OE于K.∵AB是直径,∴∠AFB=90°,∵AB=10,AF=6,∴BF221068,∵OE∥AD,∴∠OKB =∠AFB =90°,∴OE ⊥BF ,∴FK =BK =4,∵OA =OB ,KF =KB ,∴OK =12AF =3, ∴EK =OE ﹣OK =2,∵∠D =∠DFK =∠FKE =90°,∴四边形DFKE 是矩形,∴DE =KF =4,DF =EK =2,∴AD =AF+DF =8,在Rt △ADE 中,AE =22AD DE +=2284+=45 . 【点睛】本题考查切线的判定和性质,勾股定理,矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.7.(1)详见解析;(2)AE=194;(3)74≤AE <254. 【解析】【分析】(1)首先得出∠ADE+∠PDB=90°,进而得出∠B+∠A=90°,利用PD=PB 得∠EDA=∠A 进而得出答案;(2)利用勾股定理得出ED 2+PD 2=EC 2+CP 2=PE 2,求出AE 即可;(3)分别根据当D (P)点在B 点时以及当P 与C 重合时,求出AE 的长,进而得出AE 的取值范围.【详解】(1)证明:如图1,连接PD .∵DE 切⊙O 于D .∴PD ⊥DE .∴∠ADE+∠PDB=90°.∵∠C=90°.∴∠B+∠A=90°.∵PD=PB.∴∠PDB=∠B.∴∠A=∠ADE.∴AE=DE;(2)解:如图1,连接PE,设DE=AE=x,则EC=8-x,∵PB=PD=2,BC=6.∴PC=4.∵∠PDE=∠C=90°,∴ED2+PD2=EC2+CP2=PE2.∴x2+22=(8-x)2+42.解得x=194.∴AE=194;(3)解:如图2,当P点在B点时,此时点D也在B点,∵AE=ED,设AE=ED=x,则EC=8-x,∴EC2+BC2=BE2,∴(8-x)2+62=x2,解得:x=254,如图3,当P与C重合时,∵AE=ED,设AE=ED=x,则EC=8-x,∴EC2=DC2+DE2,∴(8-x)2=62+x2,解得:x=74,∵P为边BC上一个动点(可以包括点C但不包括点B),∴线段AE长度的取值范围为:74≤AE<254.【点睛】本题主要考查圆的综合应用、切线的性质与判定以及勾股定理等知识,利用数形结合以及分类讨论的思想得出是解题关键.8.(1)PA O的半径为3;(2)见解析;(3)⊙O的半径为2或【解析】【分析】(1)过点A作BP的垂线,作直径AM,先在Rt△ABH中求出BH,AH的长,再在Rt△AHP中用勾股定理求出AP的长,在Rt△AMP中通过锐角三角函数求出直径AM的长,即求出半径的值;(2)证∠APB=∠PAD=2∠PAE,即可推出结论;(3)分三种情况:当AE⊥BD时,AB是⊙O的直径,可直接求出半径;当AE⊥AD时,连接OB,OE,延长AE交BC于F,通过证△BFE∽△DAE,求出BE的长,再证△OBE是等边三角形,即得到半径的值;当AE⊥AB时,过点D作BC的垂线,通过证△BPE∽△BND,求出PE,AE的长,再利用勾股定理求出直径BE的长,即可得到半径的值.【详解】(1)如图1,过点A作BP的垂线,垂足为H,作直径AM,连接MP,在Rt△ABH中,∠ABH=60°,∴∠BAH=30°,∴BH=12AB=2,AH=AB•sin60°=∴HP=BP﹣BH=1,∴在Rt△AHP中,AP∵AB是直径,∴∠APM=90°,在Rt△AMP中,∠M=∠ABP=60°,∴AM =AP sin 60︒=3,∴⊙O ,即PA ⊙O 的半径为3; (2)当∠APB =2∠PBE 时,∵∠PBE =∠PAE ,∴∠APB =2∠PAE ,在平行四边形ABCD 中,AD ∥BC ,∴∠APB =∠PAD ,∴∠PAD =2∠PAE ,∴∠PAE =∠DAE ,∴AE 平分∠PAD ; (3)①如图3﹣1,当AE ⊥BD 时,∠AEB =90°,∴AB 是⊙O 的直径,∴r =12AB =2; ②如图3﹣2,当AE ⊥AD 时,连接OB ,OE ,延长AE 交BC 于F ,∵AD ∥BC ,∴AF ⊥BC ,△BFE ∽△DAE , ∴BF AD =EF AE, 在Rt △ABF 中,∠ABF =60°, ∴AF =AB •sin60°=BF =12AB =2, ∴28,∴EF , 在Rt △BFE 中,BE , ∵∠BOE =2∠BAE =60°,OB =OE ,∴△OBE 是等边三角形,∴r =5;③当AE ⊥AB 时,∠BAE =90°,∴AE 为⊙O 的直径,∴∠BPE =90°,如图3﹣3,过点D 作BC 的垂线,交BC 的延长线于点N ,延开PE 交AD 于点Q , 在Rt △DCN 中,∠DCN =60°,DC =4,∴DN =DC •sin60°=23,CN =12CD =2, ∴PQ =DN =23,设QE =x ,则PE =23﹣x ,在Rt △AEQ 中,∠QAE =∠BAD ﹣BAE =30°,∴AE =2QE =2x ,∵PE ∥DN ,∴△BPE ∽△BND ,∴PE DN =BP BN , ∴2323x -=BP 10, ∴BP =10﹣533x , 在Rt △ABE 与Rt △BPE 中,AB 2+AE 2=BP 2+PE 2,∴16+4x 2=(10﹣533x )2+(23﹣x )2, 解得,x 1=63(舍),x 2=3,∴AE =23,∴BE =22AB AE +=224(23)+=27,∴r =7,∴⊙O 的半径为2或475或7.【点睛】此题主要考查圆与几何综合,解题的关键是熟知圆的基本性质、勾股定理及相似三角形的判定与性质.9.(1)①补图见解析;②证明见解析;(2)FB=21【解析】【分析】(1)①根据题意,补全图形即可;②由CD⊥OA可得∠ODC+∠AOD=90°,根据垂径定理可得AD AC=,利用等量代换可得AD CE=,根据圆周角定理可得∠EOC=∠AOD,由切线性质可得OC⊥FC,可得∠OFC+∠FOC=90°,即可证明∠OFC=∠ODC;(2)连接BF,作BG⊥l于G,根据OB=12OA,可得∠OCB=30°,利用勾股定理可求出BC的长,根据垂径定理可得CD的长,由(1)可知∠OFC=∠ODC,可得FC=CD,由BG⊥l,OC⊥l可得OC//BG,根据平行线的性质可得∠CBG=30°,根据含30°角的直角三角形的性质可求出CG的长,利用勾股定理可求出BG的长,即可求出FG的长,利用勾股定理求出FB 的长即可.【详解】(1)①延长OE,交直线l于F,如图即为所求,②∵OA⊥CD,OA为⊙O半径,∴AD AC=,∵CE CA=,∴AD CE=,∴∠EOC=∠AOD,∵FC是⊙O的切线,∴OC⊥FC,∴∠OFC+∠FOC=90°,∴∠OFC=∠ODC.(2)连接BF,作BG⊥l于G,∵B是OA的中点,⊙O半径为4,∴OB=12OA=12OC=2,∵OA⊥CD,∴∠OCD=30°,22OC OB-2242-3∴CD=2BC=43由(1)可知∠OFC=∠ODC,∴FC=CD=3∵BG⊥l,OC⊥l,∴OC//BG,∴∠CBG=∠OCD=30°,∴CG=12322BC CG-,∴FG=FC+CG=53,∴22FG BG+21【点睛】本题考查切线的性质、垂径定理、含30°角的直角三角形的性质及勾股定理,圆的切线垂直于过切点的半径;垂直于弦的直径平分弦,并且平分弦所对的两条弧;30°角所对的直角边,等于斜边的一半;熟练掌握相关性质及定理是解题关键.10.(1)637;(2)BE=433;菱形与圆重叠部分的面积为833.【解析】【分析】(1)作PT⊥BE于点T,根据垂径定理和勾股定理求BQ的值,再根据相似三角形的判定和性质即可求解;(2)根据菱形性质和勾股定理求出菱形边长,此时点E和点Q重合,再根据扇形面积公式即可求解.【详解】解:(1)如图:过点P作PT⊥BQ于点T,∵AB=2,AD=BC=3,DQ3∴AQ3在Rt△ABQ中,根据勾股定理可得:BQ7.又∵四边形BPDQ是平行四边形,∴BP=DQ3,∵∠AQB=∠TBP,∠A=∠BTP,∴△AQB∽△TBP,∴3,37 BT BDAQ BQ==即∴BT=33 7,∴BE=2BT=637.(2)设菱形BPDQ的边长为x,则AQ=23﹣x,在Rt△ABQ中,根据勾股定理,得AB2+AQ2=BQ2,即4+(23﹣x)2=x2,解得x=43 3.∵四边形BPDQ为菱形,∴BP=DP=43 3,又CP=BC-BP=233,即DP=2CP,∴∠DPC=60°,∴∠BPD=120°,∴连接PQ,易得△BPQ为等边三角形,∴PQ=BP,∴点Q也在圆P上,圆P经过点B,D,Q,如图.∴点E、Q重合,∴BE 43 3∴菱形与圆重叠部分面积即为菱形的面积,∴S菱形833.【点睛】本题考查了平行四边形、矩形、菱形的性质、垂径定理、勾股定理、相似三角形的判定和性质、扇形面积公式,解决本题的关键是综合运用以上知识.11.(1)y=x2+2x﹣3,m=﹣3,n=5;(2)17413)存在;Q点坐标为(﹣1,﹣4)或(3,12)或(﹣4,5),理由见解析【解析】【分析】(1)把点A(m,0)和点B(2,n)代入直线y=x+3,解得:m=﹣3,n=5,A(﹣3,0)、B(2,5),把A、B坐标代入抛物线解析式即可求解;(2)由平移得:PN=OA=3,NM=OC=3,设:平移后点P(t,t2+2t﹣3),则N(t+3,t2+2t﹣3),M(t+3,t2+2t﹣6),根据点M在直线y=x+3上,即可求解;(3)存在.设:直线AB交y轴于D(0,3),点C关于点D的对称点为C′(0,9)按照△QAB和△Q′AB和△ABC的面积相同即可求解.【详解】解:(1)把点A(m,0)和点B(2,n)代入直线y=x+3,解得:m=﹣3,n=5,∴A(﹣3,0)、B(2,5),把A、B坐标代入抛物线解析式,解得:a=1,b=2,∴抛物线解析式为:y=x2+2x﹣3…①,则C(0,﹣3);(2)由平移得:PN=OA=3,NM=OC=3,设:平移后点P(t,t2+2t﹣3),则N(t+3,t2+2t﹣3),∴M(t+3,t2+2t﹣6),∵点M在直线y=x+3上,∴t2+2t﹣6=t+3+3,解得:t=3或﹣4,∴P点坐标为(3,12)或(﹣4,5),则线段OP的长度为:317或41;(3)存在.设:直线AB交y轴于D(0,3),点C关于点D的对称点为C′(0,9)过点C和C′分别做AB的平行线,交抛物线于点Q、Q′,则:△QAB和△Q′AB和△ABC的面积相同,直线QC和Q′C的方程分别为:y=x﹣3和y=x+9…②,将①、②联立,解得:x=﹣1或x=3或x=﹣4,∴Q点坐标为(﹣1,﹣4)或(3,12)或(﹣4,5).【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.12.(1)m=﹣1,n=3,y=﹣x2+2x+3;(2)S=3;(3)①y最大值=4;当x=3时,y最小值=0;②t =﹣1或t =2【解析】【分析】(1)首先解方程求得A 、B 两点的坐标,然后利用待定系数法确定二次函数的解析式即可;(2)根据解方程直接写出点C 的坐标,然后确定顶点D 的坐标,根据两点的距离公式可得BDC ∆三边的长,根据勾股定理的逆定理可得90DBC ∠=︒,据此求出 △BDC 面积; (3)①确定抛物线的对称轴是1x =,根据增减性可知:1x =时,y 有最大值,当3x =时, y 有最小值;②分5种情况:1、当函数y 在1t x t +内的抛物线完全在对称轴的左侧;2、当11t +=时;3、当函数y 在1t x t +内的抛物线分别在对称轴的两侧;4、当1t =时,5、函数y 在1t x t +内的抛物线完全在对称轴的右侧;分别根据增减性可解答.【详解】解:(1)m ,n 分别是方程2230x x --=的两个实数根,且 m n <,用因式分解法解方程:(1)(3)0x x +-=,11x ∴=-,23x =,1m ∴=-,3n =,(1,0)A ∴-,(0,3)B ,把(1,0)-,(0,3)代入得, 103b c c --+=⎧⎨=⎩,解得23b c =⎧⎨=⎩, ∴函数解析式为2y x 2x 3=-++.(2)令2230y x x =-++=,即2230x x --=,解得11x =-,23x =,∴抛物线2y x 2x 3=-++与x 轴的交点为 (1,0)A -,(3,0)C ,1OA ∴=,3OC =,∴对称轴为1312x -+==,顶点(1,123)D -++,即 (1,4)D ,∴BC = BD ==DC ==222CD DB CB =+,BCD ∴∆是直角三角形,且90DBC ∠=︒,∴112322S BCD BD BC ==⨯⨯=; (3)∵抛物线y =﹣x 2+2x +3的对称轴为x =1,顶点为D (1,4),①在0≤x ≤3范围内,当x =1时,y 最大值=4;当x =3时,y 最小值=0;②1、当函数y 在1t x t +内的抛物线完全在对称轴的左侧,当x t =时取得最小值223q t t =-++,最大值2(1)2(1)3p t t =-++++,令22(1)2(1)3(23)3p q t t t t -=-++++--++=,即 213t -+=,解得1t =-.2、当11t +=时,此时4p =,3q =,不合题意,舍去;3、当函数y 在1t x t +内的抛物线分别在对称轴的两侧,此时4p =,令24(23)3p q t t -=--++=,即 2220t t --=解得:11t =),21t = );或者24[(1)2(1)3]3p q t t -=--++++=,即 t =4、当1t =时,此时4p =,3q =,不合题意,舍去;5、当函数y 在1t x t +内的抛物线完全在对称轴的右侧,当x t =时取得最大值 223p t t =-++,最小值2(1)2(1)3q t t =-++++,令2223[(1)2(1)3]3p q t t t t -=-++--++++=,解得 2t =.综上,1t =-或2t =.【点睛】本题是二次函数的综合题型,其中涉及到的知识点有利用待定系数法求抛物线的解析式,抛物线的顶点公式,直角三角形的性质和判定,勾股定理的逆定理,最值问题等知识,注意运用分类讨论的思想解决问题.。
最新初三九年级上册上册数学压轴题专题练习(word版
最新初三九年级上册上册数学压轴题专题练习(word版一、压轴题1.已知P是⊙O上一点,过点P作不过圆心的弦PQ,在劣弧PQ和优弧PQ上分别有动点A、B(不与P,Q重合),连接AP、BP. 若∠APQ=∠BPQ.(1)如图1,当∠APQ=45°,AP=1,BP=22时,求⊙O的半径;(2)如图2,选接AB,交PQ于点M,点N在线段PM上(不与P、M重合),连接ON、OP,若∠NOP+2∠OPN=90°,探究直线AB与ON的位置关系,并证明.2.如图,已知矩形ABCD中,BC=2cm,AB=23cm,点E在边AB上,点F在边AD上,点E由A向B运动,连结EC、EF,在运动的过程中,始终保持EC⊥EF,△EFG为等边三角形.(1)求证△AEF∽△BCE;(2)设BE的长为xcm,AF的长为ycm,求y与x的函数关系式,并写出线段AF长的范围;(3)若点H是EG的中点,试说明A、E、H、F四点在同一个圆上,并求在点E由A到B 运动过程中,点H移动的距离.3.如图,在Rt△AOB中,∠AOB=90°,tan B=34,OB=8.(1)求OA、AB的长;(2)点Q从点O出发,沿着OA方向以1个单位长度/秒的速度匀速运动,同时动点P从点A出发,沿着AB方向也以1个单位长度秒的速度匀速运动,设运动时间为t秒(0<t≤5)以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为C、D,连结CD,QC.①当t为何值时,点Q与点D重合?②若⊙P与线段QC只有一个公共点,求t的取值范围.4.(2015秋•惠山区期末)如图,在平面直角坐标系中,半径为1的⊙A的圆心与坐标原点O重合,线段BC的端点分别在x轴与y轴上,点B的坐标为(6,0),且sin∠OCB=.(1)若点Q是线段BC上一点,且点Q的横坐标为m.①求点Q的纵坐标;(用含m的代数式表示)②若点P是⊙A上一动点,求PQ的最小值;(2)若点A从原点O出发,以1个单位/秒的速度沿折线OBC运动,到点C运动停止,⊙A 随着点A的运动而移动.①点A从O→B的运动的过程中,若⊙A与直线BC相切,求t的值;②在⊙A整个运动过程中,当⊙A与线段BC有两个公共点时,直接写出t满足的条件.5.如图,已知AB是⊙O的直径,AB=8,点C在半径OA上(点C与点O、A不重合),过点C作AB的垂线交⊙O于点D,连结OD,过点B作OD的平行线交⊙O于点E、交射线CD于点F.(1)若ED=BE,求∠F的度数:(2)设线段OC=a,求线段BE和EF的长(用含a的代数式表示);(3)设点C关于直线OD的对称点为P,若△PBE为等腰三角形,求OC的长.6.如图,B是O的半径OA上的一点(不与端点重合),过点B作OA的垂线交O于点C,D,连接OD,E是O上一点,CE CA,过点C作O的切线l,连接OE并延长交直线l于点F.(1)①依题意补全图形.②求证:∠OFC=∠ODC.(2)连接FB,若B是OA的中点,O的半径是4,求FB的长.7.如图1,在平面直角坐标系中,抛物线y=ax2+bx﹣3与直线y=x+3交于点A(m,0)和点B(2,n),与y轴交于点C.(1)求m,n的值及抛物线的解析式;(2)在图1中,把△AOC平移,始终保持点A的对应点P在抛物线上,点C,O的对应点分别为M,N,连接OP,若点M恰好在直线y=x+3上,求线段OP的长度;(3)如图2,在抛物线上是否存在点Q(不与点C重合),使△QAB和△ABC的面积相等?若存在,直接写出点Q的坐标;若不存在,请说明理由.8.如图,函数y=-x2+bx+c的图象经过点A(m,0),B(0,n)两点,m,n分别是方程x2-2x-3=0的两个实数根,且m<n.(1)求m,n的值以及函数的解析式;(2)设抛物线y=-x2+bx+c与x轴的另一交点为点C,顶点为点D,连结BD、BC、CD,求△BDC 面积;(3)对于(1)中所求的函数y=-x 2+bx +c ,①当0≤x ≤3时,求函数y 的最大值和最小值;②设函数y 在t ≤x ≤t +1内的最大值为p ,最小值为q ,若p-q =3,求t 的值.9.如图 1,抛物线21:4C y ax ax c =-+交x 轴正半轴于点()1,0,A B ,交y 轴正半轴于C ,且OB OC =.(1)求抛物线1C 的解析式;(2)在图2中,将抛物线1C 向右平移n 个单位后得到抛物线2C ,抛物线2C 与抛物线1C 在第一象限内交于一点P ,若CAP ∆的内心在CAB △内部,求n 的取值范围(3)在图3中,M 为抛物线1C 在第一象限内的一点,若MCB ∠为锐角,且3tan MCB ∠>,直接写出点M 横坐标M x 的取值范围___________10.如图,抛物线2()20y ax x c a =++<与x 轴交于点A 和点B (点A 在原点的左侧,点B 在原点的右侧),与y 轴交于点C ,3OB OC ==.(1)求该抛物线的函数解析式.(2)如图1,连接BC ,点D 是直线BC 上方抛物线上的点,连接OD ,CD .OD 交BC 于点F ,当32COF CDF S S =::时,求点D 的坐标.(3)如图2,点E 的坐标为(03)2-,,点P 是抛物线上的点,连接EB PB PE ,,形成的PBE △中,是否存在点P ,使PBE ∠或PEB ∠等于2OBE ∠?若存在,请直接写出符合条件的点P 的坐标;若不存在,请说明理由.11.如图,在平面直角坐标系中,直线l 分别交x 轴、y 轴于点A ,B ,∠BAO = 30°.抛物线y = ax 2 + bx + 1(a < 0)经过点A ,B ,过抛物线上一点C (点C 在直线l 上方)作CD ∥BO 交直线l 于点D ,四边形OBCD 是菱形.动点M 在x 轴上从点E ( -3,0)向终点A 匀速运动,同时,动点N 在直线l 上从某一点G 向终点D 匀速运动,它们同时到达终点.(1)求点D 的坐标和抛物线的函数表达式.(2)当点M 运动到点O 时,点N 恰好与点B 重合.①过点E 作x 轴的垂线交直线l 于点F ,当点N 在线段FD 上时,设EM = m ,FN = n ,求n 关于m 的函数表达式.②求△NEM 面积S 关于m 的函数表达式以及S 的最大值.12.矩形ABCD 中,AB =2,AD =4,将矩形ABCD 绕点C 顺时针旋转至矩形EGCF (其中E 、G 、F 分别与A 、B 、D 对应).(1)如图1,当点G 落在AD 边上时,直接写出AG 的长为 ;(2)如图2,当点G 落在线段AE 上时,AD 与CG 交于点H ,求GH 的长;(3)如图3,记O 为矩形ABCD 对角线的交点,S 为△OGE 的面积,求S 的取值范围.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1) ☉O 的半径是32;(2)AB ∥ON ,证明见解析. 【解析】【分析】(1) 连接AB ,根据题意可AB 为直径,再用勾股定理即可.(2) 连接OA , OB , OQ ,根据圆周角定理可得Q 2APQ,B0Q 2BPO AO ∠=∠∠=∠,从而证出OC AB ⊥,延长PO 交☉0于点R ,则有2OPN QOR ∠=∠,再根据三角形内角和定理求得OQN ∠=90︒得证.【详解】解:(1)连接AB ,在☉0中,o APQ BPQ 45∠=∠=,o APB APQ BPQ 90∴∠=∠+∠=AB ∴是☉0的直径.Rt APB ∴∆在中,22AB AP BP =+AB=3∴∴☉0的半径是32(2)AB//ON证明:连接OA , OB , OQ ,在☉0中, AQ AQ =, BQ BQ =,Q 2APQ,B0Q 2BPO AO ∴∠=∠∠=∠.又APQ BPQ ∠=∠,AOQ BOQ ∴∠=∠.在AOB ∆中,OA OB =, AOQ BOQ ∠=∠,OC AB ∴⊥,即o OCA 90∠=连接OQ ,交AB 于点C在☉0中,OP OQ =OPN OQP.∴∠=∠延长PO 交☉0于点R ,则有2OPN QOR ∠=∠o NOP 2OPN 90∴∠+∠=,又:o NOP NOQ QOR 180∠+∠+∠=,NOQ 90O ∴∠=NOQ OCA 180O ∴∠+∠= .AB//ON ∴【点睛】本题考查了圆周角定理,勾股定理、等腰三角形的性质以及三角形的内角和定理,是一道综合题,灵活运用相关知识是解题的关键.2.(1)详见解析;(2)21y 32x x =-,302AF ≤≤;(3)3. 【解析】【分析】(1)由∠A =∠B =90°,∠AFE =∠BEC ,得△AEF ∽△BCE ;(2)由(1)△AEF ∽BCE 得AF AEBE BC =,y x =,即212y x =-+,然后求函数最值;(3)连接FH ,取EF 的中点M ,证MA =ME =MF =MH ,则A 、E 、H 、F 在同一圆上;连接AH ,证∠EFH =30°由A 、E 、H 、F 在同一圆上,得∠EAH =∠EFH =30°,线段AH 即为H 移动的路径,在直角三角形ABH 中,60AH sin AB =︒=,可进一步求AH. 【详解】解:(1)在矩形ABCD 中,∠A =∠B =90°,∴∠AEF +∠AFE =90°,∵EF ⊥CE ,∴∠AEF +∠BEC =90°,∴∠AFE =∠BEC ,∴△AEF ∽△BCE ;(2)由(1)△AEF ∽BEC 得AF AE BE BC =,y x =,∴212y x =-+,∵212y x =-+=213(22x -+,当x =y 有最大值为32, ∴302AF ≤≤; (3)如图1,连接FH ,取EF 的中点M ,在等边三角形EFG 中,∵点H 是EG 的中点,∴∠EHF =90°,∴ME =MF =MH ,在直角三角形AEF 中,MA =ME =MF ,∴MA =ME =MF =MH ,则A 、E 、H 、F 在同一圆上;如图2,连接AH ,∵△EFG 为等边三角形,H 为EG 中点,∴∠EFH =30°∵A 、E 、H 、F 在同一圆上∴∠EAH =∠EFH =30°,如图2所示的线段AH 即为H 移动的路径,在直角三角形ABH中,360AHsinAB=︒=,∵AB=23∴AH=3,所以点H移动的距离为3.【点睛】此题主要考查圆的综合问题,会证明三角形相似,会分析四点共圆,会运用二次函数分析最值,会分析最短轨迹并解直角三角形是得分的关键.3.(1)OA=6,AB=10;(2)3011;(3)0<t≤1813或3011<t≤5.【解析】【分析】(1)在Rt△AOB中,tan B=34,OB=8,即可求解;(2)利用△ACD∽△ABO、AD+OQ=OA,即可求解;(3)分QC与圆P相切、QC⊥OA两种情况,求解即可.【详解】解:(1)在Rt△AOB中,tan B=34,OB=8,∴34OAOB=,∴OA=6,则AB=10;(2)OP=AP﹣t,AC=2t,∵AC是圆直径,∴∠CDA=90°,∴CD∥OB,∴△ACD∽△ABO,∴AC ADAB AO=,即:2,106t AD=∴AD=65t,当Q与D重合时,AD+OQ=OA,∴66,5t t+=30.11t∴=(3)当QC与圆P相切时,∠QAC=90°,∵OQ=AP=t,∴AQ=6﹣t,AC=2t,∵∠A =∠A ,∠QCA =∠ABO ,∴△AQC ∽△ABO ,∴,AQ AC AB AO = 即:62106t t -= ,18.13t ∴= ∴当18013t <≤时,圆P 与QC 只有一个交点, 当QC ⊥OA 时,D 、Q 重合,由(1)知: 30.11t =∴30511t <≤时,圆P 与线段QC 只有一个交点, 故:当圆P 与线段只有一个交点,t 的取值范围为:18013t <≤或30511t <≤. 【点睛】本题为圆的综合题,涉及到圆与直线的关系、三角形相似等知识点,(3)是本题的难点,要注意分析QC 和圆及线段的位置关系分类求解.4.(1)①﹣m+8;②PQ 最小=OQ 最小﹣1=3.8;(2)①t=时,⊙A 与直线BC 相切;②<t≤5或7≤t≤15时,⊙A 与线段BC 有两个公共点.【解析】试题分析:(1)①根据正切的概念求出BC=10,OC=8,运用待定系数法求出直线BC 的解析式,根据函数图象上点的坐标特征解得即可;②作OQ ⊥AB 交⊙A 于P ,则此时PQ 最小,根据三角形面积公式计算即可;(2)①根据切线的性质和相似三角形的性质计算即可;②结合图形、运用直线与圆的位置关系定理解答.解:(1)①∵点B 的坐标为(6,0),tan ∠OCB=,∴BC=10,OC=8,设直线BC 的解析式为y=kx+b ,,解得,∵点Q 的横坐标为m ,∴点Q 的纵坐标为﹣m+8;②如图1,作OQ ⊥AB 交⊙A 于P ,则此时PQ 最小,×AB×OQ=×BO×CO,解得,OQ=4.8,∴PQ最小=OQ最小﹣1=3.8;(2)①如图2,⊙A与直线BC相切于H,则AH⊥BC,又∠BOC=90°,∴△BHA∽△BOC,∴=,即=,解得,BA=,则OA=6﹣=,∴t=时,⊙A与直线BC相切;②由(2)①得,t=时,⊙A与直线BC相切,当t=5时,⊙A经过点B,当t=7时,⊙A经过点B,当t=15时,⊙A经过点C,故<t≤5或7≤t≤15时,⊙A与线段BC有两个公共点.考点:圆的综合题.5.(1)30°;(2)EF=;(3)CO的长为或时,△PEB为等腰三角形.【解析】试题分析:(1)利用圆周角定理以及三角形内角和定理得出即可;(2)首先证明△HBO≌△COD(AAS),进而利用△COD∽△CBF,得出比例式求出EF的长;(3)分别利用①当PB=PE,不合题意舍去;②当BE=EP,③当BE=BP,求出即可.试题解析:(1)如图1,连接EO,∵∴∠BOE=∠EOD,∵DO∥BF,∴∠DOE=∠BEO,∵BO=EO,∴∠OBE=∠OEB,∴∠OBE=∠OEB=∠BOE=60°,∵CF⊥AB,∴∠FCB=90°,∴∠F=30°;(2)如图1,作HO⊥BE,垂足为H,∵在△HBO和△COD中,∴△HBO≌△COD(AAS),∴CO=BH=a,∴BE=2a,∵DO∥BF,∴△COD∽△CBF,∴∴,∴EF=;(3)∵∠COD=∠OBE,∠OBE=∠OEB,∠DOE=∠OEB,∴∠COD=∠DOE,∴C关于直线OD的对称点为P在线段OE上,若△PEB为等腰三角形,设CO=x,∴OP=OC=x,则PE=EO-OP=4-x,由(2)得:BE=2x,①当PB=PE,不合题意舍去;②当BE=EP,2x=4-x,解得:x=,③当BE=BP,作BM⊥EO,垂足为M,∴EM=PE=,∴∠OEB=∠COD,∠BME=∠DCO=90°,∴△BEM∽△DOC,∴,∴,整理得:x2+x-4=0,解得:x=(负数舍去),综上所述:当CO的长为或时,△PEB为等腰三角形.考点:圆的综合题.6.(1)①补图见解析;②证明见解析;(2)FB=21【解析】【分析】(1)①根据题意,补全图形即可;②由CD⊥OA可得∠ODC+∠AOD=90°,根据垂径定理可得AD AC=,利用等量代换可得AD CE=,根据圆周角定理可得∠EOC=∠AOD,由切线性质可得OC⊥FC,可得∠OFC+∠FOC=90°,即可证明∠OFC=∠ODC;(2)连接BF,作BG⊥l于G,根据OB=12OA,可得∠OCB=30°,利用勾股定理可求出BC的长,根据垂径定理可得CD的长,由(1)可知∠OFC=∠ODC,可得FC=CD,由BG⊥l,OC⊥l可得OC//BG,根据平行线的性质可得∠CBG=30°,根据含30°角的直角三角形的性质可求出CG的长,利用勾股定理可求出BG的长,即可求出FG的长,利用勾股定理求出FB 的长即可.【详解】(1)①延长OE,交直线l于F,如图即为所求,②∵OA⊥CD,OA为⊙O半径,∴AD AC=,∵CE CA=,∴AD CE=,∴∠EOC=∠AOD,∵FC是⊙O的切线,∴OC⊥FC,∴∠OFC+∠FOC=90°,∴∠OFC=∠ODC.(2)连接BF,作BG⊥l于G,∵B是OA的中点,⊙O半径为4,∴OB=12OA=12OC=2,∵OA⊥CD,∴∠OCD=30°,22OC OB-2242-3∴CD=2BC=43由(1)可知∠OFC=∠ODC,∴FC=CD=3∵BG⊥l,OC⊥l,∴OC//BG,∴∠CBG=∠OCD=30°,∴CG=12322BC CG-,∴FG=FC+CG=53,∴22FG BG+21【点睛】本题考查切线的性质、垂径定理、含30°角的直角三角形的性质及勾股定理,圆的切线垂直于过切点的半径;垂直于弦的直径平分弦,并且平分弦所对的两条弧;30°角所对的直角边,等于斜边的一半;熟练掌握相关性质及定理是解题关键.7.(1)y=x2+2x﹣3,m=﹣3,n=5;(2)17413)存在;Q点坐标为(﹣1,﹣4)或(3,12)或(﹣4,5),理由见解析【解析】【分析】(1)把点A(m,0)和点B(2,n)代入直线y=x+3,解得:m=﹣3,n=5,A(﹣3,0)、B(2,5),把A、B坐标代入抛物线解析式即可求解;(2)由平移得:PN=OA=3,NM=OC=3,设:平移后点P(t,t2+2t﹣3),则N(t+3,t2+2t﹣3),M(t+3,t2+2t﹣6),根据点M在直线y=x+3上,即可求解;(3)存在.设:直线AB交y轴于D(0,3),点C关于点D的对称点为C′(0,9)按照△QAB和△Q′AB和△ABC的面积相同即可求解.【详解】解:(1)把点A(m,0)和点B(2,n)代入直线y=x+3,解得:m=﹣3,n=5,∴A(﹣3,0)、B(2,5),把A、B坐标代入抛物线解析式,解得:a=1,b=2,∴抛物线解析式为:y=x2+2x﹣3…①,则C(0,﹣3);(2)由平移得:PN=OA=3,NM=OC=3,设:平移后点P(t,t2+2t﹣3),则N(t+3,t2+2t﹣3),∴M(t+3,t2+2t﹣6),∵点M在直线y=x+3上,∴t2+2t﹣6=t+3+3,解得:t=3或﹣4,∴P点坐标为(3,12)或(﹣4,5),则线段OP的长度为:1741;(3)存在.设:直线AB交y轴于D(0,3),点C关于点D的对称点为C′(0,9)过点C 和C ′分别做AB 的平行线,交抛物线于点Q 、Q ′,则:△QAB 和△Q ′AB 和△ABC 的面积相同,直线QC 和Q ′C 的方程分别为:y =x ﹣3和y =x +9…②,将①、②联立,解得:x =﹣1或x =3或x =﹣4,∴Q 点坐标为(﹣1,﹣4)或(3,12)或(﹣4,5).【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.8.(1)m =﹣1,n =3,y =﹣x 2+2x +3;(2)S=3;(3)①y 最大值=4;当x =3时,y 最小值=0;②t =﹣1或t =2【解析】【分析】(1)首先解方程求得A 、B 两点的坐标,然后利用待定系数法确定二次函数的解析式即可;(2)根据解方程直接写出点C 的坐标,然后确定顶点D 的坐标,根据两点的距离公式可得BDC ∆三边的长,根据勾股定理的逆定理可得90DBC ∠=︒,据此求出 △BDC 面积; (3)①确定抛物线的对称轴是1x =,根据增减性可知:1x =时,y 有最大值,当3x =时, y 有最小值;②分5种情况:1、当函数y 在1t x t +内的抛物线完全在对称轴的左侧;2、当11t +=时;3、当函数y 在1t x t +内的抛物线分别在对称轴的两侧;4、当1t =时,5、函数y 在1t x t +内的抛物线完全在对称轴的右侧;分别根据增减性可解答.【详解】解:(1)m ,n 分别是方程2230x x --=的两个实数根,且 m n <,用因式分解法解方程:(1)(3)0x x +-=,11x ∴=-,23x =,1m ∴=-,3n =,(1,0)A ∴-,(0,3)B ,把(1,0)-,(0,3)代入得, 103b c c --+=⎧⎨=⎩,解得23b c =⎧⎨=⎩, ∴函数解析式为2y x 2x 3=-++.(2)令2230y x x =-++=,即2230x x --=,解得11x =-,23x =,∴抛物线2y x 2x 3=-++与x 轴的交点为 (1,0)A -,(3,0)C ,1OA ∴=,3OC =,∴对称轴为1312x -+==,顶点(1,123)D -++,即 (1,4)D ,∴BC = BD ==DC ==222CD DB CB =+,BCD ∴∆是直角三角形,且90DBC ∠=︒,∴112322S BCD BD BC ==⨯⨯=; (3)∵抛物线y =﹣x 2+2x +3的对称轴为x =1,顶点为D (1,4),①在0≤x ≤3范围内,当x =1时,y 最大值=4;当x =3时,y 最小值=0;②1、当函数y 在1t x t +内的抛物线完全在对称轴的左侧,当x t =时取得最小值 223q t t =-++,最大值2(1)2(1)3p t t =-++++,令22(1)2(1)3(23)3p q t t t t -=-++++--++=,即 213t -+=,解得1t =-.2、当11t +=时,此时4p =,3q =,不合题意,舍去;3、当函数y 在1t x t +内的抛物线分别在对称轴的两侧,此时4p =,令24(23)3p q t t -=--++=,即 2220t t --=解得:11t =),21t = );或者24[(1)2(1)3]3p q t t -=--++++=,即 t =4、当1t =时,此时4p =,3q =,不合题意,舍去;5、当函数y 在1t x t +内的抛物线完全在对称轴的右侧,当x t =时取得最大值 223p t t =-++,最小值2(1)2(1)3q t t =-++++,令2223[(1)2(1)3]3p q t t t t -=-++--++++=,解得 2t =.综上,1t =-或2t =.【点睛】本题是二次函数的综合题型,其中涉及到的知识点有利用待定系数法求抛物线的解析式,抛物线的顶点公式,直角三角形的性质和判定,勾股定理的逆定理,最值问题等知识,注意运用分类讨论的思想解决问题.9.(1)()221y x =--;(2)1023n <<;(3)552M x <<【解析】【分析】(1)由题意可得对称轴方程,有二次函数对称性,由A 点坐标可求B 点坐标,代入解析式可得;(2)根据函数图像平移可得新抛物线解析式,画出图像可得交点P ,由题意可得ACB BCP ∠>∠,过点C 作//l x 轴.作PD l ⊥,可得ACO PCD ∠=∠,设()2,43P t t t -+,由13tan ACD tan PCD ∠=∠=可得关于t 的方程,解得t, 再将P 代入2C 解析式中得n 的值,根据Q,P 在第一象限内得n 的取值范围;(3) 当MCB ∠为直角时,可求直线CB 的解析式为:y=-x+3,直线CM 的解析式为:y=x+3,运用直线与曲线联立,可求CM 与抛物线的交点M 横坐标为:x=5;当MCB ∠为锐角且3tan MCB ∠=时,过点M 作MN CB ⊥于N,则3MN CN=,设M 点坐标为()2,43t t t -+,直线CB 解析式为y=-x+3,可求直线MN 解析式为:253y x t t =+-+,将直线MN 与直线CB 解析式联立可得:N 221515,32222t t t t ⎛⎫-+-+ ⎪⎝⎭, 由两点间距离公式可得2MN = 2213222t t ⎛⎫- ⎪⎝⎭;2CN =2215222t t ⎛⎫- ⎪⎝⎭;由3MN CN =可得:52t =,进而可得满足已知条件的点M 横坐标M x 的取值范围.【详解】解:()1对称轴为422a x a-=-= ()3,0B ∴()0,1C ∴代入()224321y x x x ∴=-+=-- ()()222:21C x n ---()2423x n x =-++CAP ∆的内心I 在CAB △内部,ACB BCP ∴∠>∠∴当ACB BCP ∠=∠时过C 作//l x 轴.作PD l ⊥,ACB BCP ∠=∠90,OCD ∠=45,DCB ∠=,ACO PCD ∴∠=∠13tan ACD tan PCD ∠=∠= 设()2,43P t t t -+ 13PD CD ∴= 3p y DP OC +==214333t t t ∴-++= 113t = 将P 代入2C 解析式中 103n ∴=又P 在第一象限内h AB ∴>2n ∴>1023n ∴<< (3) 552M x <<; 当MCB ∠为直角时,如下图所示:由(1)(2)可得:直线CB 的解析式为:y=-x+3,MCB ∠为直角,C(0,3),∴直线CM 的解析式为:y=x+3,则CM 与抛物线的交点坐标M 横坐标为:2343x x x +=-+,解得:x=5或0(舍去),所以,当MCB ∠为直角时,5M x =;当MCB ∠为锐角且3tan MCB ∠=时,如下图所示: 过点M 作MN CB ⊥于N,则3MN CN=,设M 点坐标为()2,43t t t -+, MN CB ⊥,直线CB 解析式为y=-x+3,∴MN 解析式可设:y=x+b,将P ()2,43t t t -+代入解析式可得:b=253t t -+,则直线MN 解析式为:253y x t t =+-+,将直线MN 与直线CB 解析式联立可得: N 点坐标为221515,32222t t t t ⎛⎫-+-+ ⎪⎝⎭, ∴2MN =2222215154332222t t t t t t t ⎛⎫⎛⎫+-+-+-+- ⎪ ⎪⎝⎭⎝⎭ = 2213222t t ⎛⎫- ⎪⎝⎭; 2CN = 222215152222t t t t ⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭ =2215222t t ⎛⎫- ⎪⎝⎭; 由3MN CN=可得: 2213221522t t t t --=3; 解得:52t =或0(舍去) ; ∴MCB ∠为锐角,且3tan MCB ∠>时,点M 的横坐标M x 的取值范围为:552M x <<. 【点睛】本题综合考查了二次函数的图像和性质,题目较难,熟练掌握二次函数的图像和性质,运用数形结合解决二次函数综合问题是解题的关键. 10.(1)2y x 2x 3=-++;(2)点D 的坐标为(14),或(2)3,;(3)点P 的坐标为:(14),或17()24-,或13209()24--,或. 【解析】【分析】(1)由3OB OC ==及图像可得B 、C 两点坐标,然后利用待定系数法直接进行求解即可; (2)由题意易得35COF COD S S =,进而得到点D 、F 横坐标之间的关系为53D F x x =,设F 点横坐标为3t ,则D 点横坐标为5t ,则有直线BC 的解析式为3y x =-+,然后可直接求解;(3)分∠PBE 或∠PEB 等于2∠OBE 两种情况分别进行求解即可.【详解】解:(1)3OB OC ==,则:()()3003B C ,,,, 把B C 、坐标代入抛物线方程,解得抛物线方程为:2y x 2x 3=-++①;(2)∵32COF CDF S S =△△::, ∴35COF COD S S =,即:53D F x x =, 设F 点横坐标为3t ,则D 点横坐标为5t , 点F 在直线BC 上,而BC 所在的直线表达式为:3y x =-+,则33(3)F t t -,, 则直线OF 所在的直线表达式为:3313t t y x x t t--==, 则点55(5)D t t -,, 把D 点坐标代入抛物线解析式,解得:15t =或2 5, 则点D 的坐标为(14),或(2)3,; (3)①当2PBE OBE ∠=∠时,当BP 在x 轴上方时,如图2,设1BP 交y 轴于点E ',∴12PBE OBE ∠=∠ , ∴E BO EBO ∠'=∠ ,又60E OB EBO BO BO ∠'=∠=︒=, ,∴()E BO EBO AAS '≌ , ∴32EO EO ==, ∴点3(20)E ',,直线1BP 过点BE '、,则其直线方程为:1322y x =-+②, 联立①②并解得:12x =- , 故点P 1的坐标为17()24-,;当BP 在x 轴下方时, 如图2,过点E 作//EF BE '交2BP 于点F ,则FEB EBE ∠=∠',∴222E BE OBE EBP OBE ∠'=∠∠=∠, ,∴FEB EBF ∠=∠ ,∴FE BF = ,直线EF 可以看成直线BE '平移而得,其k 值为12-, 则其直线表达式为:1322y x =-- , 设点13()22F m m --,,过点F 作FH y ⊥轴交于点H ,作BK HF ⊥于点K , 则点13()202H m --,,13()232K m --,, ∵EF BF =,则22FE BF =, 即:()2222331313()()22222m m m m +-++=-++, 解得:52m =, 则点511()24F -,, 则直线BF 表达式为:113322y x =-…③, 联立①③并解得:132x =-或3(舍去3),则点213209()24P --,; ②当2PEB OBE ∠=∠时,当EP 在BE 上方时,如图3,点E '为图2所求,设BE '交3EP 于点F ,∵2EBE OBE ∠'=∠,∴3EBE P EB ∠'=∠ ,∴FE BF = ,由①知,直线BE '的表达式为:1322y x =-+, 设点13()22F n n -+,,13()232K n -+,, 由FE BF =,同理可得:12n =, 故点15()24F ,, 则直线EF 的表达式为:11322y x =-④, 联立①④并解得:1n =或92- (舍去负值), ∴34(1)P , ; 当EP 在BE 下方时, 同理可得:597x ±=舍去负值), 故点4597(9177P +-+,. 故点P 的坐标为:(14),或17()24-,或13209()24--,或5799177+-+,. 【点睛】 本题主要考查二次函数的综合,关键是熟练掌握二次函数的性质与一次函数的性质,利用数形结合及分类讨论思想进行求解.11.(1)点D 的坐标为(32,12),抛物线的解析式为24 3?1?3y x x =-++;(2)①31n m =+;②2334S m m =-+,S 的最大值为93 【解析】【分析】(1)由抛物线的解析式为y = ax 2 + bx + 1,得到OB=1,根据菱形的性质结合含30度的直角三角形的性质点A 、D 、C 的坐标,再利用待定系数法即可求解;(2)①在Rt △FEA 中,FB=12FA=2,FD=FB+BD=3,根据题意设此一次函数解析式为:n km b =+,求得3m =时,2n FB ==,23m =时,3n FD ==,代入n km b =+,即可求解;②求得NA 33m =-,过N 作NQ ⊥EA ,得到NQ=12NA=332m -,利用面积公式得到S 关于m 的函数表达式,再利用二次函数的性质即可求解.【详解】(1)∵抛物线的解析式为y = ax 2 + bx + 1,∴OB=1,∵∠BAO=30︒,∠BOA=90︒,∴AB=2OB=2,OA=2222AB OB 213-=-=,∠ABO=60︒,∴点A 的坐标为(3,0),又∵四边形OBCD 是菱形,且∠ABO=60︒,∴OD=CD=OB=1,∴△DOB 为等边三角形,∴∠BOD=60︒,∠DOA=30︒,BD=BO=OD=DA=1,延长CD 交OA 于H ,则CH ⊥OA ,∴DH=12OD=12,3CH=CD+DH=32,∴点D 的坐标为(2,12),点C 的坐标为(2,32), 将A0) , C 的坐标为32)代入抛物线的解析式y = ax 2 + bx + 1,得:310331422a a ⎧+=⎪⎨++=⎪⎩,解得:43a b ⎧=-⎪⎨⎪=⎩,∴抛物线的解析式为24 ?1?3y x =-+; (2)①在Rt △FEA 中,∠FAE=30︒,FA=2AB=4,∴FB=12FA=2,FD=FB+BD=3, ∵动点M 、N 同时作匀速直线运动,∴n 关于m 成一次函数,故设此一次函数解析式为:n km b =+,当点M 运动到点O 时,点N 恰好与点B 重合,∴m =2n FB ==,当点M 运动到点A 时,点N 恰好与点D 重合,∴m =3n FD ==,代入n km b =+,得:23b b⎧=+⎪⎨=+⎪⎩,解得:31k b ⎧=⎪⎨⎪=⎩,∴此一次函数解析式为:1n =+; ②NA=FA-FN=4- 33n m =-, 过N 作NQ ⊥EA ,则NQ=12NA=32,∴2133226124S m m m m ⎛⎫=-=-+ ⎪ ⎪⎝⎭,∵30 12-<,当3334232m=-=⎛⎫⨯- ⎪⎝⎭时,在023m≤≤范围内,∴1333333932226216S⎛⎫=⨯⨯-⨯=⎪⎪⎝⎭最大.【点睛】本题主要考查了二次函数的综合应用,涉及待定系数法、菱形的性质、等边三角形的判定和性质、二次函数的性质、函数图象的交点等.本题涉及知识点较多,综合性较强,难度较大.12.(1)4﹣23;(2)32;(3)4﹣5≤S≤4+5【解析】【分析】(1)在Rt△DCG中,利用勾股定理求出DG即可解决问题;(2)首先证明AH=CH,设AH=CH=m,则DH=AD﹣HD=4﹣m,在Rt△DHC中,根据CH2=CD2+DH2,构建方程求出m即可解决问题;(3)如图,当点G在对角线AC上时,△OGE的面积最小,当点G在AC的延长线上时,△OE′G′的面积最大,分别求出面积的最小值,最大值即可解决问题.【详解】解:(1)如图1中,∵四边形ABCD是矩形,∴BC=AD=CG=4,∠D=90°,∵AB=CD=2,∴DG22CDCG-2242-3,∴AG=AB﹣BG=4﹣3故答案为:4﹣3.(2)如图2中,由四边形CGEF是矩形,得到∠CGE=90°,∵点G在线段AE上,∴∠AGC=90°,∵CA=CA,CB=CG,∴Rt△ACG≌Rt△ACB(HL).∴∠ACB=∠ACG,∵AB∥CD∴∠ACG=∠DAC,∴∠ACH=∠HAC,∴AH=CH,设AH=CH=m,则DH=AD﹣AH=5﹣m,在Rt△DHC中,∵CH2=DC2+DH2,∴m2=22+(4﹣m)2,∴m=52,∴AH=52,GH22AH AG-22522⎛⎫-⎪⎝⎭32.(3)在Rt△ABC中,2225AC AB BC=+=,152OC AC,由题可知,G点在以C点为圆心,BC为半径的圆上运动,且GE与该圆相切,因为GE=AB 不变,所以O到直线GE的距离即为△OGE的高,当点G在对角线AC上时,OG最短,即△OGE的面积最小,最小值=12×OG×EG=12×2×(4545当点G在AC的延长线上时,OG最长,即△OE′G′的面积最大.最大值=12×E′G′×OG′=12×2×(55综上所述,455【点睛】本题考查求一点到圆上点距离的最值、矩形的性质、全等三角形的判定和性质、旋转变换、勾股定理.(1)比较简单,掌握勾股定理和旋转的性质是解决此问的关键;(2)能表示Rt△DHC三边,借助方程思想是解决此问的关键;(2)理解线段GE的运动轨迹,得出面积最小(大)时G点的位置是解决此问的关键.。
九年级数学几何模型压轴题(篇)(Word版 含解析)
九年级数学几何模型压轴题(篇)(Word 版 含解析)一、初三数学 旋转易错题压轴题(难)1.如图1,在Rt ABC △中,90A ∠=︒,AB AC =,点D ,E 分别在边AB ,AC上,AD AE =,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是_________,位置关系是_________;(2)探究证明:把ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断PMN 的形状,并说明理由;(3)拓展延伸:把ADE 绕点A 在平面内自由旋转,若4=AD ,10AB =,请直接写出PMN 面积的最大值.【答案】(1)PM PN =,PM PN ⊥;(2)等腰直角三角形,见解析;(3)492【解析】 【分析】(1)由三角形中位线定理及平行的性质可得PN 与PM 等于DE 或CE 的一半,又△ABC 为等腰直角三角形,AD=AE ,所以得PN=PM ,且互相垂直;(2)由旋转可推出BAD CAE ∆∆≌,再利用PM 与PN 皆为中位线,得到PM=PN ,再利用角度间关系推导出垂直即可;(3)找到面积最大的位置作出图形,由(2)可知PM=PM ,且PM ⊥PN ,利用三角形面积公式求解即可. 【详解】(1)PM PN =,PM PN ⊥;已知点M ,P ,N 分别为DE ,DC ,BC 的中点,根据三角形的中位线定理可得12PM EC =,12PN BD =,//PM EC ,//PN BD 根据平行线性质可得DPM DCE ∠=∠,NPD ADC ∠=∠ 在Rt ABC ∆中,90A ∠=︒,AB AC =,AD AE = 可得BD EC =,90DCE ADC ∠+∠=︒ 即得PM PN =,PM PN ⊥故答案为:PM PN =;PM PN ⊥. (2)等腰直角三角形,理由如下: 由旋转可得BAD CAE ∠=∠, 又AB AC =,AD AE = ∴BAD CAE ∆∆≌∴BD CE =,ABD ACE ∠=∠, ∵点M ,P 分别为DE ,DC 的中点 ∴PM 是DCE ∆的中位线 ∴12PM CE =,且//PM CE , 同理可证12PN BD =,且//PN BD ∴PM PN =,MPD ECD ∠=∠,PNC DBC ∠=∠, ∴MPD ECD ACD ACE ACD ABD ∠=∠=∠+∠=∠+∠,DPN PNC PCN DBC PCN ∠=∠+∠=∠+∠,∴90MPN MPD DPN ACD ABD DBC PCN ABC ACB ∠=∠+∠=∠+∠+∠+∠=∠+∠=︒,即PMN ∆为等腰直角三角形.(3)把ADE ∆绕点A 旋转的如图的位置,此时1()72PN AD AB =+=,1()72PM AE AC =+= 且PN 、PM 的值最长,由(2)可知PM PN =,PM PN ⊥ 所以PMN ∆面积最大值为1497722⨯⨯=. 【点睛】本题主要考查三角形中位线的判定及性质、全等三角形的判定及性质、等腰直角三角形的判定及性质、旋转的性质等相关知识,解题关键在于找到图形中各角度之间的数量关系.2.两块等腰直角三角形纸片AOB 和COD 按图1所示放置,直角顶点重合在点O 处,25AB =,17CD =.保持纸片AOB 不动,将纸片COD 绕点O 逆时针旋转(090)αα<<角度,如图2所示.()1利用图2证明AC BD =且AC BD ⊥;()2当BD 与CD 在同一直线上(如图3)时,求AC 的长和α的正弦值.【答案】(1)详见解析;(2)7,725. 【解析】 【分析】(1)图形经过旋转以后明确没有变化的边长,证明AOC BOD ≅,得出AC=BD , 延长BD 交AC 于E ,证明∠AEB=90︒,从而得到BD AC ⊥.(2) 如图3中,设AC=x ,在Rt △ABC 中,利用勾股定理求出x ,再根据sinα=sin ∠ABC=ACAB即可解决问题 【详解】()1证明:如图2中,延长BD 交OA 于G ,交AC 于E .∵90AOB COD ∠=∠=, ∴AOC DOB ∠=∠, 在AOC 和BOD 中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩, ∴AOC BOD ≅,∴AC BD =,CAO DBO ∠=∠, ∵90DBO GOB ∠+∠=, ∵OGB AGE ∠=∠, ∴90CAO AGE ∠+∠=, ∴90AEG ∠=, ∴BD AC ⊥.()2解:如图3中,设AC x =,∵BD 、CD 在同一直线上,BD AC ⊥, ∴ABC 是直角三角形, ∴222AC BC AB +=, ∴222(17)25x x ++=, 解得7x =,∵45ODC DBO α∠=∠+∠=,45ABC DBO ∠+∠=, ∴ABC α∠=∠, ∴7sin sin 25AC ABC AB α=∠==. 【点睛】本题考查旋转的性质、全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形,利用全等三角形的性质解决问题,第二个问题的关键是利用(1)的结论解决问题,属于中考常考题型.3.边长为2的正方形ABCD 的两顶点A 、C 分别在正方形EFGH 的两边DE 、DG 上(如图1),现将正方形ABCD 绕D 点顺时针旋转,当A 点第一次落在DF 上时停止旋转,旋转过程中, AB 边交DF 于点M ,BC 边交DG 于点N. (1)求边DA 在旋转过程中所扫过的面积;(2)旋转过程中,当MN 和AC 平行时(如图2),求正方形ABCD 旋转的度数; (3)如图3,设△MBN 的周长为p ,在旋转正方形ABCD 的过程中,p 值是否有变化?请证明你的结论.【答案】(1);(2);(3)不变化,证明见解析.【解析】试题分析:(1)将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中,DA旋转了,从而根据扇形面积公式可求DA在旋转过程中所扫过的面积.(2)旋转过程中,当MN和AC平行时,根据平行的性质和全等三角形的判定和性质可求正方形ABCD旋转的度数为.(3)延长BA交DE轴于H点,通过证明和可得结论.(1)∵A点第一次落在DF上时停止旋转,∴DA旋转了.∴DA在旋转过程中所扫过的面积为.(2)∵MN∥AC,∴,.∴.∴.又∵,∴.又∵,∴.∴.∴.∴旋转过程中,当MN和AC平行时,正方形ABCD旋转的度数为.(3)不变化,证明如下:如图,延长BA交DE轴于H点,则,,∴.又∵.∴.∴.又∵, ,∴.∴.∴.∴.∴在旋转正方形ABCD的过程中,值无变化.考点:1.面动旋转问题;2.正方形的性质;3.扇形面积的计算;4.全等三角形的判定和性质.4.如图1,矩形ABCD中,E是AD的中点,以点E直角顶点的直角三角形EFG的两边EF,EG分别过点B,C,∠F=30°.(1)求证:BE=CE(2)将△EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF,EG分别与AB,BC相交于点M,N.(如图2)①求证:△BEM≌△CEN;②若AB=2,求△BMN面积的最大值;③当旋转停止时,点B恰好在FG上(如图3),求sin∠EBG的值.【答案】(1)详见解析;(2)①详见解析;②2;③62 4.【解析】【分析】(1)只要证明△BAE≌△CDE即可;(2)①利用(1)可知△EBC是等腰直角三角形,根据ASA即可证明;②构建二次函数,利用二次函数的性质即可解决问题;③如图3中,作EH⊥BG于H.设NG=m,则BG=2m,BN=EN=3m,EB=6m.利用面积法求出EH,根据三角函数的定义即可解决问题.【详解】(1)证明:如图1中,∵四边形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵E是AD中点,∴AE=DE,∴△BAE≌△CDE,∴BE=CE.(2)①解:如图2中,由(1)可知,△EBC是等腰直角三角形,∴∠EBC=∠ECB=45°,∵∠ABC=∠BCD=90°,∴∠EBM=∠ECN=45°,∵∠MEN=∠BEC=90°,∴∠BEM=∠CEN,∵EB=EC,∴△BEM≌△CEN;②∵△BEM≌△CEN,∴BM=CN,设BM=CN=x,则BN=4-x,∴S△BMN=12•x(4-x)=-12(x-2)2+2,∵-12<0,∴x=2时,△BMN的面积最大,最大值为2.③解:如图3中,作EH⊥BG于H.设NG=m,则BG=2m,BN=EN=3m,EB=6m.∴3(3m,∵S△BEG=12•EG•BN=12•BG•EH,∴EH=3?(13)2m mm=32m,在Rt△EBH中,sin∠EBH=3+362246mEHEB m+==.【点睛】本题考查四边形综合题、矩形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质、旋转变换、锐角三角函数等知识,解题的关键是准确寻找全等三角形解决问题,学会添加常用辅助线,学会利用参数解决问题,5.如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.【答案】(1)见解析;(2)①30°或150°,②AF'的长最大值为2 2+315α=.【解析】【分析】(1)延长ED交AG于点H,易证△AOG≌△DOE,得到∠AGO=∠DEO,然后运用等量代换证明∠AHE=90°即可;(2)①在旋转过程中,∠OAG′成为直角有两种情况:α由0°增大到90°过程中,当∠OAG′=90°时,α=30°,α由90°增大到180°过程中,当∠OAG′=90°时,α=150°;②当旋转到A、O、F′在一条直线上时,AF′的长最大,AF′=AO+OF′=22+2,此时α=315°.【详解】(1)如图1,延长ED交AG于点H,∵点O 是正方形ABCD 两对角线的交点, ∴OA=OD ,OA ⊥OD , ∵OG=OE ,在△AOG 和△DOE 中,90OA OD AOG DOE OG OE =⎧⎪∠=∠=︒⎨⎪=⎩, ∴△AOG ≌△DOE , ∴∠AGO=∠DEO , ∵∠AGO+∠GAO=90°, ∴∠GAO+∠DEO=90°, ∴∠AHE=90°, 即DE ⊥AG ;(2)①在旋转过程中,∠OAG′成为直角有两种情况: (Ⅰ)α由0°增大到90°过程中,当∠OAG ′=90°时, ∵OA=OD=12OG=12OG′, ∴在Rt △OAG′中,sin ∠AG′O=OA OG '=12, ∴∠AG′O=30°, ∵OA ⊥OD,OA ⊥AG′, ∴OD ∥AG′,∴∠DOG′=∠AG′O=30°∘, 即α=30°;(Ⅱ)α由90°增大到180°过程中,当∠OAG′=90°时,同理可求∠BOG′=30°,∴α=180°−30°=150°.综上所述,当∠OAG′=90°时,α=30°或150°.②如图3,当旋转到A. O、F′在一条直线上时,AF′的长最大,∵正方形ABCD的边长为1,∴OA=OD=OC=OB=22,∵OG=2OD,∴2,∴OF′=2,∴AF′=AO+OF′=22+2,∵∠COE′=45°,∴此时α=315°.【点睛】本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,掌握正方形的四条边相等、四个角相等,旋转变换的性质是解题的关键,注意特殊角的三角函数值的应用.6.在平面直角坐标系中,O为原点,点A(8,0),点B(0,6),把△ABO绕点B逆时针旋转得△A′B′O′,点A、O旋转后的对应点为A′、O′,记旋转角为α.(1)如图1,若α=90°,则AB= ,并求AA′的长;(2)如图2,若α=120°,求点O′的坐标;(3)在(2)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,直接写出点P′的坐标.【答案】(1)10,102;(2)(33,9);(3)12354 55(,)【解析】试题分析:(1)、如图①,先利用勾股定理计算出AB=5,再根据旋转的性质得BA=BA′,∠ABA′=90°,则可判定△ABA′为等腰直角三角形,然后根据等腰直角三角形的性质求AA′的长;(2)、作O′H⊥y轴于H,如图②,利用旋转的性质得BO=BO′=3,∠OBO′=120°,则∠HBO′=60°,再在Rt△BHO′中利用含30度的直角三角形三边的关系可计算出BH和O′H的长,然后利用坐标的表示方法写出O′点的坐标;(3)、由旋转的性质得BP=BP′,则O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,易得O′P+BP=O′C,利用两点之间线段最短可判断此时O′P+BP的值最小,接着利用待定系数法求出直线O′C的解析式为y=x﹣3,从而得到P(,0),则O′P′=OP=,作P′D⊥O′H于D,然后确定∠DP′O′=30°后利用含30度的直角三角形三边的关系可计算出P′D 和DO′的长,从而可得到P′点的坐标.试题解析:(1)、如图①,∵点A(4,0),点B(0,3),∴OA=4,OB=3,∴AB==5,∵△ABO绕点B逆时针旋转90°,得△A′BO′,∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′=BA=5;(2)、作O′H⊥y轴于H,如图②,∵△ABO绕点B逆时针旋转120°,得△A′BO′,∴BO=BO′=3,∠OBO′=120°,∴∠HBO′=60°,在Rt△BHO′中,∵∠BO′H=90°﹣∠HBO′=30°,∴BH=BO′=,O′H=BH=,∴OH=OB+BH=3+,∴O′点的坐标为();(3)∵△ABO绕点B逆时针旋转120°,得△A′BO′,点P的对应点为P′,∴BP=BP′,∴O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,则O′P+BP=O′P+PC=O′C,此时O′P+BP的值最小,∵点C与点B关于x轴对称,∴C(0,﹣3),设直线O′C的解析式为y=kx+b,把O′(),C(0,﹣3)代入得,解得,∴直线O′C的解析式为y=x﹣3,当y=0时,x﹣3=0,解得x=,则P(,0),∴OP=,∴O′P′=OP=,作P′D⊥O′H于D,∵∠BO′A=∠BOA=90°,∠BO′H=30°,∴∠DP′O′=30°,∴O′D=O′P′=,P′D=,∴DH=O′H﹣O′,∴P′点的坐标为(,).考点:几何变换综合题7.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是;结论2:DM、MN的位置关系是;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析.【解析】试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出MN∥AE,MN=12AE,利用三角形全等证出AE=AF,而DM=12AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直.试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF 是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM,AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,∴∠DMN=∠FMN+∠DMF=∠DAF+∠BAE+∠FAE=∠BAD=90°,∴DM⊥MN;(3)(2)中的两个结论还成立,连接AE,交MD于点G,∵点M为AF的中点,点N为EF的中点,∴MN∥AE,MN=12AE,由已知得,AB=AD=BC=CD,∠B=∠ADF,CE=CF,又∵BC+CE=CD+CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,在Rt△ADF中,∵点M为AF的中点,∴DM=12AF,∴DM=MN,∵△ABE≌△ADF,∴∠1=∠2,∵AB∥DF,∴∠1=∠3,同理可证:∠2=∠4,∴∠3=∠4,∵DM=AM,∴∠MAD=∠5,∴∠DGE=∠5+∠4=∠MAD+∠3=90°,∵MN∥AE,∴∠DMN=∠DGE=90°,∴DM⊥MN.所以(2)中的两个结论还成立.考点:1.正方形的性质;2.全等三角形的判定与性质;3.三角形中位线定理;4.旋转的性质.8.(问题提出)如图①,已知△ABC是等边三角形,点E在线段AB上,点D在直线BC上,且ED=EC,将△BCE绕点C顺时针旋转60°至△ACF连接EF试证明:AB=DB+AF(类比探究)(1)如图②,如果点E在线段AB的延长线上,其他条件不变,线段AB,DB,AF之间又有怎样的数量关系?请说明理由(2)如果点E在线段BA的延长线上,其他条件不变,请在图③的基础上将图形补充完整,并写出AB,DB,AF之间的数量关系,不必说明理由.【答案】证明见解析;(1)AB=BD﹣AF;(2)AF=AB+BD.【解析】【分析】(1)根据旋转的性质得出△EDB与FEA全等的条件BE=AF,再结合已知条件和旋转的性质推出∠D=∠AEF,∠EBD=∠EAF=120°,得出△EDB≌FEA,所以BD=AF,等量代换即可得出结论.(2)先画出图形证明∴△DEB≌△EFA,方法类似于(1);(3)画出图形根据图形直接写出结论即可.【详解】(1)证明:DE=CE=CF,△BCE由旋转60°得△ACF,∴∠ECF=60°,BE=AF,CE=CF,∴△CEF是等边三角形,∴EF=CE,∴DE=EF,∠CAF=∠BAC=60°,∴∠EAF=∠BAC+∠CAF=120°,∵∠DBE=120°,∴∠EAF=∠DBE,又∵A,E,C,F四点共圆,∴∠AEF=∠ACF,又∵ED=DC,∴∠D=∠BCE,∠BCE=∠ACF,∴∠D=∠AEF,∴△EDB≌FEA,∴BD=AF,AB=AE+BF,∴AB=BD+AF.类比探究(1)DE=CE=CF,△BCE由旋转60°得△ACF,∴∠ECF=60°,BE=AF,CE=CF,∴△CEF是等边三角形,∴EF=CE,∴DE=EF,∠EFC=∠BAC=60°,∠EFC=∠FGC+∠FCG,∠BAC=∠FGC+∠FEA,∴∠FCG=∠FEA,又∠FCG=∠EAD∠D=∠EAD,∴∠D=∠FEA,由旋转知∠CBE=∠CAF=120°,∴∠DBE=∠FAE=60°∴△DEB≌△EFA,∴BD=AE, EB=AF,∴BD=FA+AB.即AB=BD-AF.(2)AF=BD+AB(或AB=AF-BD)如图③,,ED=EC=CF ,∵△BCE 绕点C 顺时针旋转60°至△ACF , ∴∠ECF=60°,BE=AF ,EC=CF ,BC=AC , ∴△CEF 是等边三角形, ∴EF=EC , 又∵ED=EC , ∴ED=EF , ∵AB=AC ,BC=AC , ∴△ABC 是等边三角形, ∴∠ABC=60°, 又∵∠CBE=∠CAF , ∴∠CAF=60°,∴∠EAF=180°-∠CAF-∠BAC =180°-60°-60° =60°∴∠DBE=∠EAF ; ∵ED=EC , ∴∠ECD=∠EDC ,∴∠BDE=∠ECD+∠DEC=∠EDC+∠DEC , 又∵∠EDC=∠EBC+∠BED ,∴∠BDE=∠EBC+∠BED+∠DEC=60°+∠BEC , ∵∠AEF=∠CEF+∠BEC=60°+∠BEC , ∴∠BDE=∠AEF , 在△EDB 和△FEA 中,DBE EAF BDE AEF ED EF ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△EDB ≌△FEA (AAS ), ∴BD=AE ,EB=AF , ∵BE=AB+AE , ∴AF=AB+BD ,即AB ,DB ,AF 之间的数量关系是:AF=AB+BD.考点:旋转变化,等边三角形,三角形全等,二、初三数学圆易错题压轴题(难)9.已知:四边形ABCD内接于⊙O,∠ADC=90°,DE⊥AB,垂足为点E,DE的锯长线交⊙O于点F,DC的延长线与FB的延长线交于点G.(1)如图1,求证:GD=GF;(2)如图2,过点B作BH⊥AD,垂足为点M,B交DF于点P,连接OG,若点P在线段OG上,且PB=PH,求∠ADF的大小;(3)如图3,在(2)的条件下,点M是PH的中点,点K在BC上,连接DK,PC,D交PC点N,连接MN,若AB=122,HM+CN=MN,求DK的长.【答案】(1)见解析;(2)∠ADF=45°;(3)18105.【解析】【分析】(1)利用“同圆中,同弧所对的圆周角相等”可得∠A=∠GFD,由“等角的余角相等”可得∠A=∠GDF,等量代换得∠GDF=∠GFD,根据“三角形中,等角对等边”得GD=GF;(2)连接OD、OF,由△DPH≌△FPB可得:∠GBH=90°,由四边形内角和为360°可得:∠G=90°,即可得:∠ADF=45°;(3)由等腰直角三角形可得AH=BH=12,DF=AB=12,由四边形ABCD内接于⊙O,可得:∠BCG=45°=∠CBG,GC=GB,可证四边形CDHP是矩形,令CN=m,利用勾股定理可求得m=2,过点N作NS⊥DP于S,连接AF,FK,过点F作FQ⊥AD于点Q,过点F 作FR⊥DK交DK的延长线于点R,通过构造直角三角形,应用解直角三角形方法球得DK.【详解】解:(1)证明:∵DE⊥AB∴∠BED=90°∴∠A+∠ADE=90°∵∠ADC=90°∴∠GDF+∠ADE=90°∴∠A=∠GDF∵BD BD = ∴∠A =∠GFD ∴∠GDF =∠GFD ∴GD =GF (2)连接OD 、OF ∵OD =OF ,GD =GF ∴OG ⊥DF ,PD =PF 在△DPH 和△FPB 中PD PF DPH FPB PH PB =⎧⎪∠=∠⎨⎪=⎩∴△DPH ≌△FPB (SAS ) ∴∠FBP =∠DHP =90° ∴∠GBH =90°∴∠DGF =360°﹣90°﹣90°﹣90°=90° ∴∠GDF =∠DFG =45° ∴∠ADF =45°(3)在Rt △ABH 中,∵∠BAH =45°,AB =∴AH =BH =12 ∴PH =PB =6 ∵∠HDP =∠HPD =45° ∴DH =PH =6∴AD =12+6=18,PN =HM =12PH =3,PD =∵∠BFE =∠EBF =45° ∴EF =BE∵∠DAE =∠ADE =45° ∴DE =AE ∴DF =AB =∵四边形ABCD 内接于⊙O ∴∠DAB +∠BCD =180° ∴∠BCD =135° ∴∠BCG =45°=∠CBG ∴GC =GB又∵∠CGP =∠BGP =45°,GP =GP ∴△GCP ≌△GBP (SAS ) ∴∠PCG =∠PBG =90° ∴∠PCD =∠CDH =∠DHP =90°∴四边形CDHP 是矩形∴CD =HP =6,PC =DH =6,∠CPH =90° 令CN =m ,则PN =6﹣m ,MN =m +3 在Rt △PMN 中,∵PM 2+PN 2=MN 2 ∴32+(6﹣m )2=(m +3)2,解得m =2 ∴PN =4过点N 作NS ⊥DP 于S , 在Rt △PSN 中,PS =SN =22 DS =62﹣22=42SN 221tan DS 242SDN ∠=== 连接AF ,FK ,过点F 作FQ ⊥AD 于点Q ,过点F 作FR ⊥DK 交DK 的延长线于点R 在Rt △DFQ 中,FQ =DQ =12 ∴AQ =18﹣12=6 ∴tan 1226FQ FAQ AQ ∠=== ∵四边形AFKD 内接于⊙O , ∴∠DAF +∠DKF =180° ∴∠DAF =180°﹣∠DKF =∠FKR 在Rt △DFR 中,∵DF =1122,tan 2FDR ∠=∴12102410,55FR DR ==在Rt △FKR 中,∵FR =12105tan ∠FKR =2 ∴KR =6105∴DK =DR ﹣KR =24106101810555=-=.【点睛】本题是一道有关圆的几何综合题,难度较大,主要考查了圆内接四边形的性质,圆周角定理,全等三角形性质及判定,等腰直角三角形性质,解直角三角形等知识点;解题关键是添加辅助线构造直角三角形.10.已知:如图,梯形ABCD 中,AD//BC ,AD 2=,AB BC CD 6===,动点P 在射线BA 上,以BP 为半径的P 交边BC 于点E (点E 与点C 不重合),联结PE 、PC ,设x BP =,PC y =.(1)求证:PE //DC ;(2)求y 关于x 的函数解析式,并写出定义域;(3)联结PD ,当PDC B ∠=∠时,以D 为圆心半径为R 的D 与P 相交,求R 的取值范围.【答案】(1)证明见解析;(2)2436(09)y x x x =-+<<;(3)3605R <<【解析】 【分析】()1根据梯形的性质得到B DCB ∠=∠,根据等腰三角形的性质得到B PEB ∠∠=,根据平行线的判定定理即可得到结论;()2分别过P 、A 、D 作BC 的垂线,垂足分别为点H 、F 、.G 推出四边形ADGF 是矩形,//PH AF ,求得2BF FG GC ===,根据勾股定理得到22226242AF AB BF =-=-=,根据平行线分线段成比例定理得到223PH x =,13BH x =,求得163CH x =-,根据勾股定理即可得到结论; ()3作//EM PD 交DC 于.M 推出四边形PDME 是平行四边形.得到PE DM x ==,即 6MC x =-,根据相似三角形的性质得到1218655PD EC ==-=,根据相切两圆的性质即可得到结论. 【详解】()1证明:梯形ABCD ,AB CD =,B DCB ∠∠∴=,PB PE =, B PEB ∠∠∴=, DCB PEB ∠∠∴=,//PE CD ∴;()2解:分别过P 、A 、D 作BC 的垂线,垂足分别为点H 、F 、G .梯形ABCD 中,//AD BC ,,BC DG ⊥,BC PH ⊥,∴四边形ADGF 是矩形,//PH AF ,2AD =,6BC DC ==,2BF FG GC ∴===,在Rt ABF 中,22226242AF AB BF =-=-=,//PH AF ,PH BP BH AF AB BF∴==6242x BH ==, 223PH x ∴=,13BH x =, 163CH x ∴=-, 在Rt PHC 中,22PC PH CH =+22221()(6)33y x x ∴=+-2436(09)y x x x =-+<<, ()3解:作//EM PD 交DC 于M .//PE DC ,∴四边形PDME 是平行四边形.PE DM x ∴==,即 6MC x =-,PD ME ∴=,PDC EMC ∠∠=,又PDC B ∠∠=,B DCB ∠=∠,DCB EMC PBE PEB ∠∠∠∠∴===.PBE ∴∽ECM ,PB BE EC MC ∴=,即232663x x x x =--, 解得:185x =, 即125BE =, 1218655PD EC ∴==-=, 当两圆外切时,PD r R =+,即0(R =舍去); 当两圆内切时,-PD r R =,即10(R =舍去),2365R =; 即两圆相交时,3605R <<. 【点睛】本题属于圆综合题,梯形的性质,平行四边形的性质,勾股定理,相似三角形的判定和性质,正确的作出辅助线是解题的关键.11.如图所示,CD 为⊙O 的直径,点B 在⊙O 上,连接BC 、BD ,过点B 的切线AE 与CD 的延长线交于点A ,OE//BD ,交BC 于点F ,交AB 于点E.(1)求证:∠E=∠C ;(2)若⊙O 的半径为3,AD=2,试求AE 的长;(3)在(2)的条件下,求△ABC 的面积.【答案】(1)证明见解析;(2)10;(3)485. 【解析】 试题分析:(1)连接OB ,利用已知条件和切线的性质证明:OE∥BD,即可证明:∠E=∠C;(2)根据题意求出AB 的长,然后根据平行线分线段定理,可求解;(3)根据相似三角形的面积比等于相似比的平方可求解.试题解析:(1)如解图,连接OB ,∵CD 为⊙O 的直径,∴∠CBD=∠CBO+∠OBD=90°,∵AB是⊙O的切线,∴∠ABO=∠ABD+∠OBD=90°,∴∠ABD=∠CBO.∵OB、OC是⊙O的半径,∴OB=OC,∴∠C=∠CBO.∵OE∥BD,∴∠E=∠ABD,∴∠E=∠C;(2)∵⊙O的半径为3,AD=2,∴AO=5,∴AB=4.∵BD∥OE,∴=,∴=,∴BE=6,AE=6+4=10(3)S△AOE==15,然后根据相似三角形面积比等于相似比的平方可得S△ABC= S△AOE==12.如图,点A在直线l上,点Q沿着直线l以3厘米/秒的速度由点A向右运动,以AQ为边作Rt△ABQ,使∠BAQ=90°,tan∠ABQ= 34,点C在点Q右侧,CQ=1厘米,过点C作直线m⊥l,过△ABQ的外接圆圆心O作OD⊥m于点D,交AB右侧的圆弧于点E.在射线CD上取点F,使DF=13CD,以DE、DF为邻边作矩形DEGF.设运动时间为t秒.(1)直接用含t的代数式表示BQ、DF;(2)当0<t<1时,求矩形DEGF的最大面积;(3)点Q在整个运动过程中,当矩形DEGF为正方形时,求t的值.【答案】(1)BQ=5t,DF=23t;(2)16;(3)t的值为35或3.【解析】试题分析:(1)AB与OD交于点H ,根据题中的比例关系和勾股定理可表示出BQ的长;根据垂直于同一条直线的两直线平行和三角形的中位线定理可求得AH的长,再根据矩形的判定定理和矩形的性质可求CD的长,即可表示出FD;(2)根据题意表示出矩形的长和宽,然后构造二次函数,通过二次函数的最值可求解;(3)当矩形为正方形时,分别让其长与宽相等,列方程求解即可.试题解析:(1)5t BQ =,2DF=t 3; (2)DE=OD-OE=32t+1-52t=1-t ,()22211·t 13326S DF DE t t ⎛⎫==-=--+ ⎪⎝⎭,∴当t=12时,矩形DEGF 的最大面积为16; (3)当矩形DEGF 为正方形时,221133t t t t -=-=或,解得335t t ==或.13.如图,四边形ABCD 内接于⊙O ,AC 为直径,AC 和BD 交于点E ,AB =BC . (1)求∠ADB 的度数;(2)过B 作AD 的平行线,交AC 于F ,试判断线段EA ,CF ,EF 之间满足的等量关系,并说明理由;(3)在(2)条件下过E ,F 分别作AB ,BC 的垂线,垂足分别为G ,H ,连接GH ,交BO 于M ,若AG =3,S 四边形AGMO :S 四边形CHMO =8:9,求⊙O 的半径.【答案】(1)45°;(2)EA 2+CF 2=EF 2,理由见解析;(3)2【解析】【分析】(1)由直径所对的圆周角为直角及等腰三角形的性质和互余关系可得答案;(2)线段EA ,CF ,EF 之间满足的等量关系为:EA 2+CF 2=EF 2.如图2,设∠ABE=α,∠CBF=β,先证明α+β=45°,再过B 作BN ⊥BE ,使BN=BE ,连接NC ,判定△AEB ≌△CNB (SAS )、△BFE ≌△BFN (SAS ),然后在Rt △NFC 中,由勾股定理得:CF 2+CN 2=NF 2,将相关线段代入即可得出结论;(3)如图3,延长GE ,HF 交于K ,由(2)知EA 2+CF 2=EF 2,变形推得S △ABC =S 矩形BGKH ,S △BGM =S 四边形COMH ,S △BMH =S 四边形AGMO ,结合已知条件S 四边形AGMO :S 四边形CHMO =8:9,设BG=9k ,BH=8k ,则CH=3+k ,求得AE 的长,用含k 的式子表示出CF 和EF ,将它们代入EA 2+CF 2=EF 2,解得k 的值,则可求得答案.【详解】解:(1)如图1,∵AC为直径,∴∠ABC=90°,∴∠ACB+∠BAC=90°,∵AB=BC,∴∠ACB=∠BAC=45°,∴∠ADB=∠ACB=45°;(2)线段EA,CF,EF之间满足的等量关系为:EA2+CF2=EF2.理由如下:如图2,设∠ABE=α,∠CBF=β,∵AD∥BF,∴∠EBF=∠ADB=45°,又∠ABC=90°,∴α+β=45°,过B作BN⊥BE,使BN=BE,连接NC,∵AB=CB,∠ABE=∠CBN,BE=BN,∴△AEB≌△CNB(SAS),∴AE=CN,∠BCN=∠BAE=45°,∴∠FCN=90°.∵∠FBN=α+β=∠FBE,BE=BN,BF=BF,∴△BFE≌△BFN(SAS),∴EF=FN,∵在Rt△NFC中,CF2+CN2=NF2,∴EA2+CF2=EF2;(3)如图3,延长GE,HF交于K,由(2)知EA 2+CF 2=EF 2, ∴12EA 2+12CF 2=12EF 2, ∴S △AGE +S △CFH =S △EFK ,∴S △AGE +S △CFH +S 五边形BGEFH =S △EFK +S 五边形BGEFH ,即S △ABC =S 矩形BGKH , ∴12S △ABC =12S 矩形BGKH , ∴S △GBH =S △ABO =S △CBO ,∴S △BGM =S 四边形COMH ,S △BMH =S 四边形AGMO ,∵S 四边形AGMO :S 四边形CHMO =8:9,∴S △BMH :S △BGM =8:9,∵BM 平分∠GBH ,∴BG :BH =9:8,设BG =9k ,BH =8k ,∴CH =3+k ,∵AG =3,∴AE =2,∴CF 2(k+3),EF 2(8k ﹣3),∵EA 2+CF 2=EF 2, ∴222(32)2(3)]2(83)]k k ++=-,整理得:7k 2﹣6k ﹣1=0,解得:k 1=﹣17(舍去),k 2=1. ∴AB =12,∴AO =22AB =2, ∴⊙O 的半径为2.【点睛】本题属于圆的综合题,考查了圆的相关性质及定理、全等三角形的判定与性质、多边形的面积公式、勾股定理及解一元二次方程等知识点,熟练运用相关性质及定理是解题的关键.14.已知ABD △内接于圆O ,点C 为弧BD 上一点,连接BC AC AC 、,交BD 于点E ,CED ABC ∠=∠.(1)如图1,求证:弧AB =弧AD ;(2)如图2,过B 作BF AC ⊥于点F ,交圆O 点G ,连接AG 交BD 于点H ,且222EH BE DH =+,求CAG ∠的度数;(3)如图3,在(2)的条件下,圆O 上一点M 与点C 关于BD 对称,连接ME ,交AB 于点N ,点P 为弧AD 上一点,PQ BG ∥交AD 于点Q ,交BD 的延长线于点R ,AQ BN =,ANE 的周长为20,52DR =,求圆O 半径.【答案】(1)见解析;(2)∠CAG=45°;(3)r=62【解析】【分析】(1)证∠ABD=∠ACB 可得;(2)如下图,△AHD 绕点A 旋转至△ALE 处,使得点D 与点B 重合,证△ALE ≌△AHE ,利用勾股定理逆定理推导角度;(3)如下图,延长QR 交AB 于点T ,分别过点N 、Q 作BD 的垂线,交于点V ,I ,取QU=AE ,过点U 作UK 垂直BD.先证△AEN ≌△QUD ,再证△NVE ≌△RKU ,可得到NV=KR=DK ,进而求得OB 的长.【详解】(1)∵∠CED 是△BEC 的外角,∴∠CED=∠EBC+∠BCA∵∠ABC=∠ABD+∠EBC又∵∠CED=∠ABC∴∠ABD=∠ACB∴弧AB=弧AD(2)如下图,△AHD 绕点A 旋转至△ALE 处,使得点D 与点B 重合∵△ALB 是△AHD 旋转所得∴∠ABL=∠ADB ,AL=AH设∠CAG=a,则∠CBG=a∵BG⊥AC∴∠BCA=90°-a,∴∠ADB=∠ABD=90°-a∴在△BAD中,BAE+∠HAD=180-a-(90°-a)-(90°-a)=a∴∠LAE=∠EAH=a∵LA=AH,AE=AE∴△ALE≌△AHE,∴LE=EH∵HD=LB,222EH BE DH=+∴△LBE为直角三角形∴∠LBE=(90°-a)+(90°-a)=90°,解得:a=45°∴∠CAG=45°(3)如下图,延长QR交AB于点T,分别过点N、Q作BD的垂线,交于点V,I,取QU=AE,过点U作UK垂直BD由(2)得∠BAD=90°∴点O在BD上设∠R=n,则∠SER=∠BEC=∠MEB=90°-n∴∠AEN=2n∵SQ⊥AC∴∠TAS=∠AQS=∠DQR,AN=QD∵QU=AE∴△AEN≌△QUD∴∠QUD=∠AEN=2n∴UD=UR=NE,∵△ANE的周长为20∴QD+QR=20在△DQR中,QD=7∵∠ENR=∠UDK=∠R=n∴△NVE≌△RKU∴NV=KR=DK=2 2∴BN=5∴BD=122,OB=62r【点睛】本题考查了圆的证明,涉及到全等、旋转和勾股定理,解题关键是结合图形特点,适当构造全等三角形15.如图,∠ACL=90°,AC=4,动点B在射线CL,CH⊥AB于点H,以H为圆心,HB为半径作圆交射线BA于点D,交直线CD于点F,交直线BC于点E.设BC=m.(1)当∠A=30°时,求∠CDB的度数;(2)当m=2时,求BE的长度;(3)在点B的整个运动过程中,①当BC=3CE时,求出所有符合条件的m的值.②连接EH,FH,当tan∠FHE=512时,直接写出△FHD与△EFH面积比.【答案】(1)60°;(2)45;(3)①m=2或226【解析】【分析】(1)根据题意由HB=HD,CH⊥BD可知:CH是BD的中垂线,再由∠A=30°得:∠CDB=∠ABC=60°;(2)由题意可知当m=2时,由勾股定理可得:AB=5cos∠ABC 5,过点H作HK⊥BC于点K,利用垂径定理可得结论;(3))①要分两种情况:I.当点E在C右侧时,II.当点E在C左侧时;根据相似三角形性质和勾股定理即可求得结论;②根据题意先证明EF∥BD,根据平行线间距离相等可得:△FHD与△EFH高相等,面积比等于底之比,再由tan∠FHE=512可求得DHEF的值即可.【详解】解:(1)∵∠A=30°,∠ACB=90°,∴∠ABC=60°,∵HB=HD,CH⊥BD,∴CH是BD的中垂线,∴CB=CD,∴∠CDB=∠ABC=60°;(2)如图1,过点H作HK⊥BC于点K,当m=2时,BC=2,∴AB=22AC BC=25,∴cos∠ABC=BCAB =55,∴BH=BC•cos∠ABC=255,∴BK=BH•cos∠ABC=25,∴BE=2BK=45;(3)①分两种情况:I.当点E在C右侧时,如图2,连结DE,由BD是直径,得DE⊥BC,∵BC=3CE=m,∴CE=13m,BE=23m,∵DE∥AC,∴△DEB~△ACB,∴DEAC =BEBC=23,∴DE=23AC=83,∵CD=CB=m,∴Rt△CDE中,由勾股定理得:2281m33⎛⎫⎛⎫⎪⎭⎝+⎪⎝⎭=m2,∵m>0,∴m=22;II.当点E在C左侧时,如图3,连结DE,由BD是直径,得DE⊥BC,∵BC=3CE,∴CE=13m,BE=32m,∵DE∥AC,∴△DEB~△ACB,∴DEAC =BEBC=32,∴DE=32AC=6,∵CD=CB=m,∴Rt△CDE中,由勾股定理得:62+21m3⎛⎫⎪⎝⎭=m2,∵m>0,∴m=2;综上所述,①当BC=3CE时,m=2或2.②如图4,过F作FG⊥HE于点G,∵CH ⊥AB ,HB =HD ,∴CB =CD ,∴∠CBD =∠CDB ,∴DFE BEF =,即DF EF BE EF +=+,∴DF BE =,∴EF ∥BD , ∴FHD EFH S S =DH EF, ∵在Rt △FHG 中,FG HG =tan ∠FHE =512, 设FG =5k ,HG =12k ,则FH 22FG HG +22(5)(12)k k +=13k ,∴DH =HE =FH =13k ,EG =HE ﹣HG =13k ﹣12k =k ,∴EF 22FG EG +22(5)k k +26k ,∴FHD EFH SS =26k 26. 【点睛】本题考查的是圆的几何综合题,主要考查圆的性质,垂径定理,勾股定理,相似三角形判定及性质,解直角三角形知识等;综合性较强,有一定难度,解题要求对所学知识点熟练掌握和运用数形结合思维分析.16.已知AB 是O 的一条弦,点C 在O 上,联结CO 并延长,交弦AB 于点D ,且CD CB =.(1)如图1,如果BO 平分ABC ∠,求证:AB BC =;(2)如图2,如果AO OB ⊥,求:AD DB 的值;(3)延长线段AO 交弦BC 于点E ,如果EOB ∆是等腰三角形,且O 的半径长等于2,求弦BC 的长.【答案】(1)证明见解析;(2)33(3)51+和22 【解析】【分析】(1)由题意利用弦心距即可求证结果,(2)此题关键先求出AO ,做辅助线构造特殊三角形,并求证出∠AOD ,再根据平行线分线段成比例求出比值即可,(3)分情况讨论两种情况:OE=BE 时或OB=BE 时两种情况,利用三角形相似即△COE ~△CBO 找到相似比,利用相似比求解即可.【详解】(1)过点O 作OP ⊥AB ,垂足为点P ;OQ ⊥BC ,垂足为点Q ,∵BO 平分∠ABC ,∴OP=OQ ,∵OP ,OQ 分别是弦AB 、BC 的弦心距,∴AB= BC ;(2)∵OA=OB ,∵CD=CB ,∴∠CDB =∠CBD ,∴∠A+∠AOD =∠CBO +∠OBD ,∴∠AOD =∠CBO ,∵OC=OB ,∴∠C =∠CBO ,∴∠DOB =∠C +∠CBO = 2∠CBO = 2∠AOD ,∵AO ⊥OB ,∴∠ AOB =∠AOD +∠BOD =3∠AOD = 90°,∴∠AOD=30°,过点D 作DH ⊥AO ,垂足为点H ,∴∠AHD=∠DHO=90°,∴tan ∠AOD =HD OH ∵∠AHD=∠AOB=90°,∴HD ‖OB , ∴D AOB H AH O = , ∵OA=OB ,∴HD=AH ,∵HD ‖OB ,∴3AH HD OH O AH DB H ===; (3)∵∠C=∠CBO ,∴∠OEB =∠C+∠COE >∠CBO ,∴OE≠OB ;若OB = EB =2时,∵∠C=∠C ,∠COE =∠AOD =∠CBO ,∴△COE ~△CBO , ∴CO CE BC CO=, ∴222BC BC =-, ∴2BC -2BC -4=0,∴BC =舍去)或,∴;若OE = EB 时,∵∠OEB =∠C+∠COE =2∠C =2∠CBO 且∠OEB +∠CBO +∠EOB = 180°,∴4∠CBO=180°,∠CBO=45°,∴∠OEB=90°,∴cos ∠CBO=2EB OB , ∵OB=2,∴ ,∵OE 过圆心,OE ⊥BC ,∴.【点睛】此题考查圆的相关知识:圆心距及圆内三角形相似的相关知识,属于综合题型,难度较高.。
最新初三九年级上册上册数学压轴题专题练习(word版
最新初三九年级上册上册数学压轴题专题练习(word 版一、压轴题1.如图,在平面直角坐标系中,直线1l :162y x =-+分别与x 轴、y 轴交于点B 、C ,且与直线2l :12y x =交于点A .(1)分别求出点A 、B 、C 的坐标;(2)若D 是线段OA 上的点,且COD △的面积为12,求直线CD 的函数表达式; (3)在(2)的条件下,设P 是射线CD 上的点,在平面内里否存在点Q ,使以O 、C 、P 、Q 为顶点的四边形是菱形?若存在,直接写出点Q 的坐标;若不存在,请说明理由. 2.问题提出(1)如图①,在ABC 中,42,6,135AB AC BAC ==∠=,求ABC 的面积.问题探究(2)如图②,半圆O 的直径10AB =,C 是半圆AB 的中点,点D 在BC 上,且2CD BD =,点P 是AB 上的动点,试求PC PD +的最小值.问题解决(3)如图③,扇形AOB 的半径为20,45AOB ∠=在AB 选点P ,在边OA 上选点E ,在边OB 上选点F ,求PE EF FP ++的长度的最小值.3.如图,⊙O 的直径AB =26,P 是AB 上(不与点A ,B 重合)的任一点,点C ,D 为⊙O 上的两点.若∠APD =∠BPC ,则称∠DPC 为直径AB 的“回旋角”.(1)若∠BPC=∠DPC=60°,则∠DPC是直径AB的“回旋角”吗?并说明理由;(2)猜想回旋角”∠DPC的度数与弧CD的度数的关系,给出证明(提示:延长CP交⊙O 于点E);(3)若直径AB的“回旋角”为120°,且△PCD的周长为24+133,直接写出AP的长.4.如图,在平面直角坐标系中,直线l:y=﹣13x+2与x轴交于点B,与y轴交于点A,以AB为斜边作等腰直角△ABC,使点C落在第一象限,过点C作CD⊥AB于点D,作CE⊥x轴于点E,连接ED并延长交y轴于点F.(1)如图(1),点P为线段EF上一点,点Q为x轴上一点,求AP+PQ的最小值.(2)将直线l进行平移,记平移后的直线为l1,若直线l1与直线AC相交于点M,与y轴相交于点N,是否存在这样的点M、点N,使得△CMN为等腰直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.5.如图,已知矩形ABCD中,BC=2cm,AB=23cm,点E在边AB上,点F在边AD上,点E由A向B运动,连结EC、EF,在运动的过程中,始终保持EC⊥EF,△EFG为等边三角形.(1)求证△AEF∽△BCE;(2)设BE的长为xcm,AF的长为ycm,求y与x的函数关系式,并写出线段AF长的范围;(3)若点H是EG的中点,试说明A、E、H、F四点在同一个圆上,并求在点E由A到B 运动过程中,点H移动的距离.6.如图,在ABC ∆中,90ACB ∠=︒,以点B 为圆心,BC 的长为半径画弧,交线段AB 于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 于点E ,连结CD .(1)若28A ∠=︒,求ACD ∠的度数; (2)设BC a =,AC b =;①线段AD 的长度是方程2220x ax b +-=的一个根吗?说明理由. ②若线段AD EC =,求ab的值. 7.我们知道,如图1,AB 是⊙O 的弦,点F 是AFB 的中点,过点F 作EF ⊥AB 于点E ,易得点E 是AB 的中点,即AE =EB .⊙O 上一点C (AC >BC ),则折线ACB 称为⊙O 的一条“折弦”.(1)当点C 在弦AB 的上方时(如图2),过点F 作EF ⊥AC 于点E ,求证:点E 是“折弦ACB ”的中点,即AE =EC+CB .(2)当点C 在弦AB 的下方时(如图3),其他条件不变,则上述结论是否仍然成立?若成立说明理由;若不成立,那么AE 、EC 、CB 满足怎样的数量关系?直接写出,不必证明.(3)如图4,已知Rt △ABC 中,∠C =90°,∠BAC =30°,Rt △ABC 的外接圆⊙O 的半径为2,过⊙O 上一点P 作PH ⊥AC 于点H ,交AB 于点M ,当∠PAB =45°时,求AH 的长.8.如图,已知AB 是⊙O 的直径,AB =8,点C 在半径OA 上(点C 与点O 、A 不重合),过点C 作AB 的垂线交⊙O 于点D ,连结OD ,过点B 作OD 的平行线交⊙O 于点E 、交射线CD 于点F .(1)若ED =BE ,求∠F 的度数:(2)设线段OC =a ,求线段BE 和EF 的长(用含a 的代数式表示); (3)设点C 关于直线OD 的对称点为P ,若△PBE 为等腰三角形,求OC 的长.9. 如图,在Rt △ABC 中,∠C=90°,AC=8,BC=6,P 为边BC 上一个动点(可以包括点C 但不包括点B ),以P 为圆心PB 为半径作⊙P 交AB 于点D 过点D 作⊙P 的切线交边AC 于点E ,(1)求证:AE=DE ; (2)若PB=2,求AE 的长;(3)在P 点的运动过程中,请直接写出线段AE 长度的取值范围.10.如图,抛物线2()20y ax x c a =++<与x 轴交于点A 和点B (点A 在原点的左侧,点B 在原点的右侧),与y 轴交于点C ,3OB OC ==.(1)求该抛物线的函数解析式.(2)如图1,连接BC ,点D 是直线BC 上方抛物线上的点,连接OD ,CD .OD 交BC 于点F ,当32COFCDFSS=::时,求点D 的坐标.(3)如图2,点E 的坐标为(03)2-,,点P 是抛物线上的点,连接EB PB PE ,,形成的PBE △中,是否存在点P ,使PBE ∠或PEB ∠等于2OBE ∠?若存在,请直接写出符合条件的点P 的坐标;若不存在,请说明理由.11.()1尺规作图1:已知:如图,线段AB 和直线且点B 在直线上求作:点C ,使点C 在直线上并且使ABC 为等腰三角形. 作图要求:保留作图痕迹,不写作法,做出所有符合条件的点C .()2特例思考:如图一,当190∠=时,符合()1中条件的点C 有______个;如图二,当160∠=时,符合()1中条件的点C 有______个.()3拓展应用:如图,AOB 45∠=,点M ,N 在射线OA 上,OM x =,ON x 2=+,点P 是射线OB 上的点.若使点P ,M ,N 构成等腰三角形的点P 有且只有三个,求x 的值.12.如图1,ABC ∆是⊙O 的内接等腰三角形,点D 是弧AC 上异于,A C 的一个动点,射线AD 交底边BC 所在的直线于点E ,连结BD 交AC 于点F . (1)求证:ADB CDE ∠=∠;(2)若7BD =,3CD =,①求AD DE •的值;②如图2,若AC BD ⊥,求tan ACB ∠;(3)若5tan 2CDE ∠=,记AD x =,ABC ∆面积和DBC ∆面积的差为y ,直接写出y 关于x 的函数关系式.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)A(6,3),B(12,0),C(0,6);(2)y=-x+6;(3)满足条件的Q点坐标为:(-3,3)或22)或(6,6).【解析】【分析】(1)根据坐标轴上点的坐标特点,可求出B,C两点坐标.两个函数解析式联立形成二元一次方程组,可以确定A点坐标.(2)根据坐标特点和已知条件,采用待定系数法,即可作答.(3)在(2)的条件下,设P是射线CD上的点,在平面内存在点Q,使以O、C、P、2为顶点的四边形是菱形,如图所示,分三种情况考虑:①当四边形OP1Q1C为菱形时,由∠COP1=90°,得到四边形OP1Q1C为正方形;②当四边形OP2CQ2为菱形时;③当四边形OQ3P3C为菱形时;分别求出Q坐标即可.【详解】解:(1)由题意得16212y xy x⎧=-+⎪⎪⎨⎪=⎪⎩解得63 xy=⎧⎨=⎩∴A(6,3)在y=-162x+中,当y=0时,x=12,∴B(12,0)当x=0时,y=6,∴C(0,6).(2)∵点D在线段OA上,∴设D(x,12x) (0≤x≤6)∵S△COD=12∴12×6x=12x=4∴D(4,2),设直线CD的表达式为y=kx+b,把(10,6)与D(4,2)代入得624bk b=⎧⎨=+⎩解得16 kb=-⎧⎨=⎩直线CD的表达式为y=-x+6(3) 存在点2,使以O、C、P、Q为顶点的四边形是菱形,如图所示,分三种情况考虑:①当四边形OP1Q1C为菱形时OC==OP1,由∠COP1=90°,得到四边形OP1Q1C为正方形,此时Q1P1=OP1=OC=6,即Q:(6,6);②当四边形OP2CQ2为菱形时,OP2=CP2,由C坐标为(0,6),得到Q2纵坐标为3,把y=3代入直线OQ2解析式y=-x中,得:x=-3,此时Q2(-3,3);③当四边形0Q3P3C为菱形时,OC=CP3,则有OQ3=OC=CP3=P3Q3=6,设坐标为(x,-x+6),∵OC=CP3∴x2+x2= CP32= OC2=62解得,2P的坐标为2,2)此时Q322).综上,点Q的坐标是(-3,3)或2,2)或(6,6).【点睛】本题是一次函数、勾股定理、特殊的平行四边形的综合应用,是一道压轴题,在考试中第一问必须作答,二三问可以根据自己的情况进行取舍.2.(1)12;(2)53;(3)202.【解析】 【分析】(1)如图1中,过点B 作BD CA ⊥,交CA 延长线于点D ,通过构造直角三角形,求出BD 利用三角形面积公式求解即可.(2)如图示,作点D 关于AB 的对称点Q ,交AB 于点H ,连接CQ ,交AB 于点P ,连接PD 、OD 、OC ,过点Q 作QM CO ⊥,交CO 延长线于点M ,确定点P 的位置,利用勾股定理与矩形的性质求出CQ 的长度即为答案.(3)解图3所示,在AB 上这一点作点P 关于OA 的对称点S ,作点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,连接OS ON OP EP FP 、、、、,通过轴对称性质的转化,最终确定最小值转化为SN 的长. 【详解】(1)如解图1所示,过点B 作BD CA ⊥,交CA 延长线于点D ,135BAC ∠=,180********BAD BAC ∴∠=-∠=-=,BD CA ⊥,交CA 延长线于点D , BAD ∴为等腰直角三角形,且90BDA ∠=,BD AD ∴=,在BAD 中,,90BD AD BDA =∠=,222BD AD AB ∴+=,即222BD AB =,42AB =,2222(42)32BD AB ∴===,解得:4BD =,6AC =,11641222ABC S AC BD ∴=⋅=⨯⨯=.(2)如解图2所示,作点D 关于AB 的对称点Q ,交AB 于点H ,连接CQ ,交AB 于点P ,连接PD 、OD 、OC ,过点Q 作QM CO ⊥,交CO 延长线于点M ,D 关于AB 的对称点Q ,CQ 交AB 于点P ,PD PQ ∴=,PC PD PC PQ CQ ∴+=+=,点P 为AB 上的动点,PC PD CQ ∴+≥,∴当点P 处于解图2中的位置,PC PD +取最小值,且最小值为CQ 的长度,点C 为半圆AB 的中点,90COB ∴∠=,90BOD COD COB ∠+∠=∠=,11903033BOD COB ∴∠=∠=⨯=,10AB =,1110522OD AB ∴==⨯=, 在Rt ODH △中,由作图知,90OHD ∠=,且30HOD BOD ∠=∠=,155,222DH OD QH DH ∴==∴==,2222553522OH OD DH ⎛⎫∴=-=-=⎪⎝⎭, 由作图知,四边形OMQH 为矩形,553,22OM QH MQ OH ∴====, 515522CM OM OC ∴=+=+=, 222215535322CQ CM MQ ⎛⎫⎛⎫∴=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭, PC PD ∴+的最小值为53.(3)如解图3所示,在AB 上这一点作点P 关于OA 的对称点S ,作点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,连接OS ON OP EP FP 、、、、,点P 关于OA 的对称点S ,点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,PE SE ∴=,FP FN =,SOA POA ∠=∠,,NOB POB OS OP ON ∠=∠==,.PE EF FP SE EF FN SN ∴++=++=,SOA NOB POA POB ∠+∠=∠+∠, E 为OA 上的点,F 为OB 上的点 PE EF FP SN ∴++≥,∴当点E F 、处于解图3的位置时,PE EF FP ++的长度取最小值,最小值为SN 的长度,45POA POB AOB ∠+∠=∠=,45SOA NOB ∴∠+∠=,454590SON SOA AOB NOB ∴∠=∠+∠+∠=+=.扇形AOB 的半径为20,20OS ON OP ∴===,在Rt SON 中,90SON ∠=,20,90OS ON SON ==∠=PE EF FP ∴++的长度的最小值为202.【点睛】本题主要考察了轴对称、勾股定理、圆、四边形等相关内容,理解题意,作出辅助线是做题的关键.3.(1)∠DPC 是直径AB 的回旋角,理由见解析;(2)“回旋角”∠CPD 的度数=CD 的度数,证明见解析;(3)3或23.【解析】【分析】(1)由∠BPC=∠DPC=60°结合平角=180°,即可求出∠APD=60°=∠BPC,进而可说明∠DPC是直径AB的回旋角;(2)延长CP交圆O于点E,连接OD,OC,OE,由“回旋角”的定义结合对顶角相等,可得出∠APE=∠APD,由圆的对称性可得出∠E=∠D,由等腰三角形的性质可得出∠E=∠C,进而可得出∠D=∠C,利用三角形内角和定理可得出∠COD=∠CPD,即“回旋角”∠CPD的度数=CD的度数;(3)①当点P在半径OA上时,在图3中,过点F作CF⊥AB,交圆O于点F,连接PF,则PF=PC,利用(2)的方法可得出点P,D,F在同一条直线上,由直径AB的“回旋角”为120°,可得出∠APD=∠BPC=30°,进而可得出∠CPF=60°,即△PFC是等边三角形,根据等边三角形的性质可得出∠CFD=60°.连接OC,OD,过点O作OG⊥CD于点G,则∠COD=120°,根据等腰三角形的性质可得出CD=2DG,∠DOG=12∠COD=60°,结合圆的直径为26可得出CD=133,由△PCD的周长为24+133,可得出DF=24,过点O作OH⊥DF于点H,在Rt△OHD和在Rt△OHD中,通过解直角三角形可得出OH,OP的值,再根据AP=OA﹣OP可求出AP的值;②当点P在半径OB上时,用①的方法,可得:BP=3,再根据AP=AB﹣BP可求出AP的值.综上即可得出结论.【详解】(1)∵∠BPC=∠DPC=60°,∴∠APD=180°﹣∠BPC﹣∠DPC=180°﹣60°﹣60°=60°,∴∠APD=∠BPC,∴∠DPC是直径AB的回旋角.(2)“回旋角”∠CPD的度数=CD的度数,理由如下:如图2,延长CP交圆O于点E,连接OD,OC,OE.∵∠CPB=∠APE,∠APD=∠CPB,∴∠APE=∠APD.∵圆是轴对称图形,∴∠E=∠D.∵OE=OC,∴∠E=∠C,∴∠D=∠C.由三角形内角和定理,可知:∠COD=∠CPD,∴“回旋角”∠CPD的度数=CD的度数.(3)①当点P在半径OA上时,在图3中,过点F作CF⊥AB,交圆O于点F,连接PF,则PF=PC.同(2)的方法可得:点P,D,F在同一条直线上.∵直径AB的“回旋角”为120°,∴∠APD=∠BPC=30°,∴∠CPF=60°,∴△PFC是等边三角形,∴∠CFD=60°.连接OC,OD,过点O作OG⊥CD于点G,则∠COD=120°,∴CD=2DG,∠DOG=12∠COD=60°,∵AB=26,∴OC=13,∴CG=∴CD=2×2=∵△PCD的周长为24+,∴PD+PC+CD=24+,∴PD+PC=DF=24.过点O作OH⊥DF于点H,则DH=FH=12DF=12.在Rt△OHD中,OH5=,在Rt△OHP中,∠OPH=30°,∴OP=2OH=10,∴AP=OA﹣OP=13﹣10=3;②当点P在半径OB上时,同①的方法,可得:BP=3,∴AP=AB﹣BP=26﹣3=23.综上所述,AP的长为:3或23.【点睛】此题是圆的综合题,考查圆的对称性质,直角三角形、等腰三角形与圆的结合,(3)是此题的难点,线段AP 的长度由点P 所在的位置决定,因此必须分情况讨论.4.(1)AP +PQ 的最小值为4;(2)存在,M 点坐标为(﹣12,﹣4)或(12,8).【解析】【分析】(1)由直线解析式易求AB 两点坐标,利用等腰直角△ABC 构造K 字形全等易得OE =CE =4,C 点坐标为(4,4)DB =∠CEB =90︒,可知B 、C 、D 、E 四点共圆,由等腰直角△ABC 可知∠CBD =45︒,同弧所对圆周角相等可知∠CED =45︒,所以∠OEF =45︒,CE 、OE 是关于EF 对称,作PH ⊥CE 于H ,作PG ⊥OE 于Q ,AK ⊥EC 于K .把AP +PQ 的最小值问题转化为垂线段最短解决问题.(2)由直线l 与直线AC 成45︒可知∠AMN =45︒,由直线AC 解析式可设M 点坐标为(x ,122x +),N 在y 轴上,可设N (0,y )构造K 字形全等即可求出M 点坐标. 【详解】解:(1)过A 点作AK ⊥CE ,在等腰直角△ABC 中,∠ACB =90︒,AC =BC ,∵CE ⊥x 轴,∴∠ACK +∠ECB =90︒,∠ECB +∠CBE =90︒,∴∠ACK =∠CBE在△AKC 和△CEB 中,AKC CEB ACK CBE AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,△AKC ≌△CEB (AAS )∴AK =CE ,CK =BE ,∵四边形AOEK 是矩形,∴AO =EK =BE ,由直线l :y =﹣13x +2与x 轴交于点B ,与y 轴交于点A ,可知A 点坐标为(0,2),B (6,0)∴E 点坐标为(4,0),C 点坐标为(4,4),∵∠CDB =∠CEB =90︒,∴B、C、D、E四点共圆,∵CD CD=,∠CBA=45︒,∴∠CED=45︒,∴FE平分∠CEO,过P点作PH⊥CE于H,作PG⊥OE于G,过A点作AK⊥EC于K.∴PH=PQ,∵PA+PQ=PA+PH≥AK=OE,∴OE=4,∴AP+PQ≥4,∴AP+PQ的最小值为4.(2)∵A点坐标为(0,2),C点坐标为(4,4),设直线AC解析式为:y=kx+b把(0,2),(4,4)代入得244bk b=⎧⎨=+⎩解得122 kb⎧=⎪⎨⎪=⎩∴直线AC解析式为:y=122x+,设M点坐标为(x,122x+),N坐标为(0,y).∵MN∥AB,∠CAB=45︒,∴∠CMN=45︒,△CMN为等腰直角三角形有两种情况:Ⅰ.如解图2﹣1,∠MNC=90︒,MN=CN.同(1)理过N点构造利用等腰直角△MNC构造K字形全等,同(1)理得:SN=CR,MS =NR.∴41242x yx y-=-⎧⎪⎨+-=⎪⎩,解得:128xy=-⎧⎨=-⎩,∴M点坐标为(﹣12,﹣4)Ⅱ.如解图2﹣2,∠MNC=90︒,MN=CN.过C点构造利用等腰直角△MNC构造K字形全等,同(1)得:MS=CF,CS=FN.∴4412442x yx-=-⎧⎪⎨+-=⎪⎩,解得:1212xy=⎧⎨=⎩,∴M点坐标为(12,8)综上所述:使得△CMN为等腰直角三角形得M点坐标为(﹣12,﹣4)或(12,8).【点睛】本题综合考查了一次函数与几何知识的应用,题中运用等腰直角三角形的判定和性质,正方形的判定和性质,全等三角形的判定和性质,四点共圆,圆周角定理,垂线段最短等知识,解题的关键是中用转化的思想思考问题,学会添加常用辅助线,在平面直角坐标系中构造K 字形全等三角形求点坐标解决问题,属于中考压轴题.5.(1)详见解析;(2)21y 32x x =-,302AF ≤≤;(3)3. 【解析】【分析】(1)由∠A =∠B =90°,∠AFE =∠BEC ,得△AEF ∽△BCE ;(2)由(1)△AEF ∽BCE 得AF AE BE BC =,23y x x -=,即2132y x x =-+,然后求函数最值;(3)连接FH ,取EF 的中点M ,证MA =ME =MF =MH ,则A 、E 、H 、F 在同一圆上;连接AH ,证∠EFH =30°由A 、E 、H 、F 在同一圆上,得∠EAH =∠EFH =30°,线段AH 即为H 移动的路径,在直角三角形ABH 中,360AH sin AB =︒=,可进一步求AH.解:(1)在矩形ABCD 中,∠A =∠B =90°,∴∠AEF +∠AFE =90°,∵EF ⊥CE ,∴∠AEF +∠BEC =90°,∴∠AFE =∠BEC , ∴△AEF ∽△BCE ;(2)由(1)△AEF ∽BEC 得AF AE BE BC =,23y x x -=, ∴2132y x x =-+, ∵2132y x x =-+=213(3)22x --+, 当3x =时,y 有最大值为32, ∴302AF ≤≤; (3)如图1,连接FH ,取EF 的中点M ,在等边三角形EFG 中,∵点H 是EG 的中点,∴∠EHF =90°,∴ME =MF =MH ,在直角三角形AEF 中,MA =ME =MF ,∴MA =ME =MF =MH ,则A 、E 、H 、F 在同一圆上;如图2,连接AH ,∵△EFG 为等边三角形,H 为EG 中点,∴∠EFH =30°∵A 、E 、H 、F 在同一圆上∴∠EAH =∠EFH =30°,如图2所示的线段AH 即为H 移动的路径,在直角三角形ABH 中,360AH sin AB =︒=, ∵AB =23所以点H 移动的距离为3.【点睛】此题主要考查圆的综合问题,会证明三角形相似,会分析四点共圆,会运用二次函数分析最值,会分析最短轨迹并解直角三角形是得分的关键.6.(1)ACD ∠=31︒;(2)①是;②34a b =. 【解析】【分析】(1)根据三角形内角和定理求出∠B ,根据等腰三角形的性质求出∠BCD ,计算即可; (2)①根据勾股定理求出AD ,利用求根公式解方程,比较即可;②根据勾股定理列出算式,计算即可.【详解】(1)在ABC ∆中,90ACB ∠=︒.∴90B A ∠=︒-∠ 9028=︒-︒62=︒,∵BC BD =, ∴1802B BCD BDC ︒-∠∠=∠= 180622︒-︒= 59=︒.∴DCA ACB BCD ∠=∠-∠9059=︒-︒31=︒.(2)①BD BC a ==,∴AD AB BD =-AB a =-.在Rt ABC ∆中,90ACB ∠=︒,AB ==∵2220x ax b +-=,∴x =a =-a AB =-±.∴线段AD 的长度是方程2220x ax b +-=的一个根.②∵AE AD =,又∵AD EC =, ∴2b AE EC ==, ∴2b AD =. 在Rt ABC ∆中,222AB AC BC =+, ∴2222b a b a ⎛⎫+=+ ⎪⎝⎭, 22224b a ab b a ++=+, ∴234b ab =. ∵0b >, ∴34b a =, ∴34a b =. 【点睛】本题考查的是勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.7.(1)见解析;(2)结论AE =EC+CB 不成立,新结论为:CE =BC+AE ,见解析;(3)AH ﹣1+1.【解析】【分析】(1)在AC 上截取AG =BC ,连接FA ,FG ,FB ,FC ,证明△FAG ≌△FBC ,根据全等三角形的性质得到FG =FC ,根据等腰三角形的性质得到EG =EC ,即可证明.(2)在CA 上截取CG =CB ,连接FA ,FB ,FC ,证明△FCG ≌△FCB ,根据全等三角形的性质得到FG =FB ,得到FA =FG ,根据等腰三角形的性质得到AE =GE ,即可证明.(3)分点P 在弦AB 上方和点P 在弦AB 下方两种情况进行讨论.【详解】解:(1)如图2,在AC 上截取AG =BC ,连接FA ,FG ,FB ,FC , ∵点F 是AFB 的中点,FA =FB ,在△FAG 和△FBC 中,,FA FB FAG FBC AG BC =⎧⎪∠=∠⎨⎪=⎩∴△FAG ≌△FBC (SAS ),∴FG =FC ,∵FE ⊥AC ,∴EG =EC ,∴AE =AG+EG =BC+CE ;(2)结论AE =EC+CB 不成立,新结论为:CE =BC+AE , 理由:如图3,在CA 上截取CG =CB ,连接FA ,FB ,FC ,∵点F 是AFB 的中点,∴FA =FB , FA FB =,∴∠FCG =∠FCB ,在△FCG 和△FCB 中,,CG CB FCG FCB FC FC =⎧⎪∠=∠⎨⎪=⎩∴△FCG ≌△FCB (SAS ),∴FG=FB,∴FA=FG,∵FE⊥AC,∴AE=GE,∴CE=CG+GE=BC+AE;(3)在Rt△ABC中,AB=2OA=4,∠BAC=30°,∴12232BC AB AC===,,当点P在弦AB上方时,如图4,在CA上截取CG=CB,连接PA,PB,PG,∵∠ACB=90°,∴AB为⊙O的直径,∴∠APB=90°,∵∠PAB=45°,∴∠PBA=45°=∠PAB,∴PA=PB,∠PCG=∠PCB,在△PCG和△PCB中,,CG CBPCG PCBPC PC=⎧⎪∠=∠⎨⎪=⎩∴△PCG≌△PCB(SAS),∴PG=PB,∴PA=PG,∵PH⊥AC,∴AH=GH,∴AC=AH+GH+CG=2AH+BC,∴2322AH=+,∴31AH=,当点P在弦AB下方时,如图5,在AC上截取AG=BC,连接PA,PB,PC,PG∵∠ACB=90°,∴AB为⊙O的直径,∴∠APB=90°,∵∠PAB=45°,∴∠PBA=45°=∠PAB,∴PA=PB,在△PAG 和△PBC中,,AG BCPAG PBCPA PB=⎧⎪∠=∠⎨⎪=⎩∴△PAG≌△PBC(SAS),∴PG=PC,∵PH⊥AC,∴CH=GH,∴AC=AG+GH+CH=BC+2CH,∴2322CH,=+∴31CH=-,∴()233131AH AC CH=-=--=+,即:当∠PAB=45°时,AH的长为31-或3 1.+【点睛】考查弧,弦的关系,全等三角形的判定与性质,等腰三角形的判定与性质等,综合性比较强,注意分类讨论思想方法在解题中的应用.8.(1)30°;(2)EF=;(3)CO的长为或时,△PEB为等腰三角形.【解析】试题分析:(1)利用圆周角定理以及三角形内角和定理得出即可;(2)首先证明△HBO≌△COD(AAS),进而利用△COD∽△CBF,得出比例式求出EF的长;(3)分别利用①当PB=PE,不合题意舍去;②当BE=EP,③当BE=BP,求出即可.试题解析:(1)如图1,连接EO,∵∴∠BOE=∠EOD,∵DO∥BF,∴∠DOE=∠BEO,∵BO=EO,∴∠OBE=∠OEB,∴∠OBE=∠OEB=∠BOE=60°,∵CF⊥AB,∴∠FCB=90°,∴∠F=30°;(2)如图1,作HO⊥BE,垂足为H,∵在△HBO和△COD中,∴△HBO≌△COD(AAS),∴CO=BH=a,∴BE=2a,∵DO∥BF,∴△COD∽△CBF,∴∴,∴EF=;(3)∵∠COD=∠OBE,∠OBE=∠OEB,∠DOE=∠OEB,∴∠COD=∠DOE,∴C关于直线OD的对称点为P在线段OE上,若△PEB为等腰三角形,设CO=x,∴OP=OC=x,则PE=EO-OP=4-x,由(2)得:BE=2x,①当PB=PE,不合题意舍去;②当BE=EP,2x=4-x,解得:x=,③当BE=BP,作BM⊥EO,垂足为M,∴EM=PE=,∴∠OEB=∠COD,∠BME=∠DCO=90°,∴△BEM∽△DOC,∴,∴,整理得:x2+x-4=0,解得:x=(负数舍去),综上所述:当CO的长为或时,△PEB为等腰三角形.考点:圆的综合题.9.(1)详见解析;(2)AE=194;(3)74≤AE<254.【解析】【分析】(1)首先得出∠ADE+∠PDB=90°,进而得出∠B+∠A=90°,利用PD=PB得∠EDA=∠A进而得出答案;(2)利用勾股定理得出ED2+PD2=EC2+CP2=PE2,求出AE即可;(3)分别根据当D(P)点在B点时以及当P与C重合时,求出AE的长,进而得出AE的取值范围.【详解】(1)证明:如图1,连接PD.∵DE切⊙O于D.∴PD⊥DE.∴∠ADE+∠PDB=90°.∵∠C=90°.∴∠B+∠A=90°.∵PD=PB.∴∠PDB=∠B.∴∠A=∠ADE.∴AE=DE;(2)解:如图1,连接PE,设DE=AE=x,则EC=8-x,∵PB=PD=2,BC=6.∴PC=4.∵∠PDE=∠C=90°,∴ED2+PD2=EC2+CP2=PE2.∴x2+22=(8-x)2+42.解得x=194.∴AE=194;(3)解:如图2,当P点在B点时,此时点D也在B点,∵AE=ED,设AE=ED=x,则EC=8-x,∴EC2+BC2=BE2,∴(8-x)2+62=x2,解得:x=254, 如图3,当P 与C 重合时,∵AE=ED ,设AE=ED=x ,则EC=8-x ,∴EC 2=DC 2+DE 2,∴(8-x )2=62+x 2,解得:x=74, ∵P 为边BC 上一个动点(可以包括点C 但不包括点B ), ∴线段AE 长度的取值范围为:74≤AE <254. 【点睛】本题主要考查圆的综合应用、切线的性质与判定以及勾股定理等知识,利用数形结合以及分类讨论的思想得出是解题关键.10.(1)2y x 2x 3=-++;(2)点D 的坐标为(14),或(2)3,;(3)点P 的坐标为:(14),或17()24-,或13209()24--,或5799177+-+,. 【解析】【分析】(1)由3OB OC ==及图像可得B 、C 两点坐标,然后利用待定系数法直接进行求解即可;(2)由题意易得35COF COD S S =,进而得到点D 、F 横坐标之间的关系为53D F x x =,设F 点横坐标为3t ,则D 点横坐标为5t ,则有直线BC 的解析式为3y x =-+,然后可直接求解;(3)分∠PBE 或∠PEB 等于2∠OBE 两种情况分别进行求解即可.【详解】解:(1)3OB OC ==,则:()()3003B C ,,,, 把B C 、坐标代入抛物线方程,解得抛物线方程为:2y x 2x 3=-++①;(2)∵32COF CDF S S =△△::, ∴35COF COD S S =,即:53D F x x =, 设F 点横坐标为3t ,则D 点横坐标为5t , 点F 在直线BC 上,而BC 所在的直线表达式为:3y x =-+,则33(3)F t t -,, 则直线OF 所在的直线表达式为:3313t t y x x t t--==, 则点55(5)D t t -,, 把D 点坐标代入抛物线解析式,解得:15t =或2 5, 则点D 的坐标为(14),或(2)3,; (3)①当2PBE OBE ∠=∠时,当BP 在x 轴上方时,如图2,设1BP 交y 轴于点E ', ∴12PBE OBE ∠=∠ , ∴E BO EBO ∠'=∠ ,又60E OB EBO BO BO ∠'=∠=︒=, ,∴()E BO EBO AAS '≌ ,∴32EO EO ==, ∴点3(20)E ',,直线1BP 过点BE '、,则其直线方程为:1322y x =-+②, 联立①②并解得:12x =- , 故点P 1的坐标为17()24-,;当BP 在x 轴下方时, 如图2,过点E 作//EF BE '交2BP 于点F ,则FEB EBE ∠=∠',∴222E BE OBE EBP OBE ∠'=∠∠=∠, ,∴FEB EBF ∠=∠ ,∴FE BF = ,直线EF 可以看成直线BE '平移而得,其k 值为12-, 则其直线表达式为:1322y x =-- , 设点13()22F m m --,,过点F 作FH y ⊥轴交于点H ,作BK HF ⊥于点K , 则点13()202H m --,,13()232K m --,, ∵EF BF =,则22FE BF =, 即:()2222331313()()22222m m m m +-++=-++, 解得:52m =, 则点511()24F -,, 则直线BF 表达式为:113322y x =-…③, 联立①③并解得:132x =-或3(舍去3), 则点213209()24P --,; ②当2PEB OBE ∠=∠时,当EP 在BE 上方时,如图3,点E '为图2所求,设BE '交3EP 于点F ,∵2EBE OBE ∠'=∠,∴3EBE P EB ∠'=∠ ,∴FE BF = ,由①知,直线BE '的表达式为:1322y x =-+, 设点13()22F n n -+,,13()232K n -+,, 由FE BF =,同理可得:12n =, 故点15()24F ,, 则直线EF 的表达式为:11322y x =-④, 联立①④并解得:1n =或92- (舍去负值), ∴34(1)P , ; 当EP 在BE 下方时, 同理可得:597x ±=舍去负值), 故点4597(9177P +-+,. 故点P 的坐标为:(14),或17()24-,或13209()24--,或5799177+-+,. 【点睛】 本题主要考查二次函数的综合,关键是熟练掌握二次函数的性质与一次函数的性质,利用数形结合及分类讨论思想进行求解.11.(1) 见解析;(2) 2,2 ;(3)0或222或222x <<【解析】【分析】()1根据等腰三角形的定义,用分类讨论的思想解决问题即可;()2通过画图分析可得,当190∠=时,符合()1中条件的点C 有2个,当160∠=时,符合()1中条件的点C 有2个;()3分三种情形讨论求解即可.【详解】解:()1如图1中,点1C ,2C ,3C ,4C 即为所求.()2如图一,当190∠=时,符合()1中条件的点C 有2个;如图二,当160∠=时,符合()1中条件的点C 有2个,当∠1=90°或∠1=60°时,符合条件的点C 都是在点B 左右各一个,当∠1=60°时,符合条件的点C 如图所示:故答案为2,2.()3①如图31-中,当x 0=时,当PM PN =时,有点1P ,当ON OP =时,有点2P ,当NO NP =时,有点3P ,此时有3个P 点.②如图32-中,当N 与OB 相切于点1P 时,1OP N 是等腰直角三角形, 1ON 2NP 22∴==,OM ON MN 222∴=-=-,此时有3个P 点.③如图33-中,当M 经过点O 时,此时只有2个P 点,如图34-中,M 与OB 相交时,此时有3个P 点,如图35-中,当M 与OB 相切时,只有2个P 点.此时OM 22=,综上所述,当2x 22<<3个P 点.∴满足条件的x 的值为0或222或2x 22<<【点睛】本题考查等腰三角形的判定和性质,尺规作图,直线与圆的位置关系等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.12.(1)证明见解析;(2)①21(3)21029y x =【解析】【分析】 ()1由圆内接四边形性质知ABC CDE ∠∠=,由AB AC =知ABC ACB ∠∠=,从而得ADB ACB ABC CDE ∠∠∠∠===;()2①由BAD DCE ∠∠=,ADB CDE ∠∠=可证ADB ∽CDE.从而得AD DB CD DE =; ②连接AO 并延长交BD 于点M ,连接CM ,证MAF ≌DAF 得MF DF =,据此知BM CM CD 3===,MF DF 2==,求得CF ==定义可得答案;()3证ABD ∽AEB 得2AB AD AE.=⋅证ABD ∽CED 得BD CD AD DE.⋅=⋅从而得2ABC BCD 111S S AB AC sin BAC BD CD sin BDC x sin BAC 222∠∠∠-=⋅⋅-⋅⋅=,再由5tan ABC tan CDE 2∠∠==,可设BM 2a =,知AM 5a =,AB =,由面积法可得BN=,即20sin BAC 29∠=,据此得出答案. 【详解】解:()1四边形ABCD 是圆O 的内接四边形,ABC 180ADC CDE ∠∠∠∴=-=.AB AC =,ABC ACB ∠∠∴=.ADB ACB ABC CDE ∠∠∠∠∴===;()2①四边形ABCD 内接于圆, BAD 180BCD DCE ∠∠∠∴=-=.又ADB CDE ∠∠=,ADB ∴∽CDE .AD DB CD DE∴=, AD DE BD CD 7321∴⋅=⋅=⨯=;②连接AO 并延长交BD 于点M ,连接CM ,AM 平分BAC ∠, AM BC ∴⊥,CAD CBD 90ACB MAF ∠∠∠∠∴==-=.MAF ∴≌()DAF ASA .MF DF ∴=,即AC 是线段MD 的中垂线.BM CM CD 3∴===,MF DF 2∴==,在Rt CDF 中,2222CF CD DF 325=-=-=,BF tan ACB 5CF 5∠∴===. ()3BAD EAB ∠∠=,ADB ACB ABE ∠∠∠==,ABD ∴∽AEB ,AB AD AE AB∴=,即2AB AD AE =⋅. CDE ADB ∠∠=,DCE BAD ∠∠=ABD ∴∽CED ,BD AD DE CD∴=,即BD CD AD DE ⋅=⋅. ABC BCD 11S S AB AC sin BAC BD CD sin BDC 22∠∠-=⋅⋅-⋅⋅, ()1sin BAC AD AE AD DE 2∠=⋅-⋅. 21x sin BAC 2∠=,又5tan ABC tan CDE 2∠∠==,如图2,设BM 2a =,则AM 5a =,AB =, 由面积法可得BN=,即20sin BAC 29∠=, 22ABC BCD 12010S S x x 22929y ∴-==⨯=. 【点睛】本题是圆的综合问题,解题的关键是掌握圆内接四边形的性质、圆周角定理、相似三角形和全等三角形的判定与性质、等腰三角形的性质及三角函数的应用等知识点.。
【压轴专练】专题07_探索三角形相似的条件(解析版)-2021-2022学年九上压轴题
2021-2022学年北师大版数学九年级上册压轴题专题精选汇编专题07 探索三角形相似的条件一.选择题1.(2021春•沂源县期末)如图,△ABC中,CE⊥AB,垂足为E,BD⊥AC,垂足为点D,CE与BD交于点F,则图中相似三角形有几对()A.6对B.5对C.4对D.3对【思路引导】根据相似三角形的判定一一证明即可.【完整解答】解:∵BD⊥AC,CE⊥AB,∴∠AEC=∠ADB=90°,∠BEF=∠CDF=90°,∵∠A=∠A,∠EFB=∠DFC,∴△AEC∽△ADB,△BEF∽△CDF,∵∠EBF=∠ABD,∠BEF=∠ADB=90°,∴△BEF∽△BDA∽△CEA∽△CDF,∴共有6对相似三角形,故选:A.2.(2021春•芝罘区期末)如图,小正方形的边长均为1,则A、B、C、D四个选项中的三角形(阴影部分)与△ABC相似的是()A.B.C.D.【思路引导】应用两三角形相似判定定理,三边对应成比例,分别对各选项进行分析即可得出答案.【完整解答】解:已知给出的三角形的各边分别为、2、、只有选项A的各边为1、、与它的各边对应成比例.故选:A.3.(2021春•周村区期末)平面直角坐标系中,直线y=﹣x+2和x轴,y轴分别交于A,B两点,在第二象限内有一点P,使△P AO和△AOB相似,则符合要求的点P的个数为()A.2B.3C.4D.5【思路引导】根据相似三角形的相似条件,画出图形即可解决问题.【完整解答】解:如图,①分别过点O、点A作AB、OB的平行线交于点P1,则△OAP1与△AOB相似(全等),②作AP2⊥OP1,垂足为P2则△AOP2与△AOB相似.③作∠AOP3=∠ABO交AP1于P3,则△AOP3与△AOB相似.④作AP4⊥OP3垂足为P4,则△AOP4与△AOB相似.故选:C.4.(2021春•雁塔区校级期末)如图,D是△ABC边AB上一点,添加一个条件后,仍不能使△ACD∽△ABC的是()A.∠ACD=∠B B.∠ADC=∠ACB C.AC2=AD•AB D.【思路引导】直接利用相似三角形的判定方法分别分析得出答案.【完整解答】解:A、当∠ACD=∠B时,再由∠A=∠A,可得出△ACD∽△ABC,故此选项不合题意;B、当∠ADC=∠ACB时,再由∠A=∠A,可得出△ACD∽△ABC,故此选项不合题意;C、当AC2=AD•AB时,即=,再由∠A=∠A,可得出△ACD∽△ABC,故此选项不合题意;D、当=时,无法得出△ACD∽△ABC,故此选项符合题意.故选:D.5.(2021•龙湾区模拟)如图,△ABC中,P为边AB上一点,下列选项中的条件,不能说明△ACP与△ACB相似的是()A.∠ACP=∠B B.∠APC=∠ACBC.AC2=AP×AB D.AB×CP=AP×AC【思路引导】本题主要应用两三角形相似的判定定理,做题即可.【完整解答】解:A、当∠ACP=∠B,∠A=∠A时,△APC∽△ACB,故本选项不符合题意;B、当∠APC=∠ACB,∠A=∠A时,△APC∽△ACB,故本选项不符合题意;C、当AC2=AP•AB,即AC:AB=AP:AC时,结合∠A=∠A可以判定△APC∽△ACB,故本选项不符合题意;D、当AB×CP=AP×AC时,不能判断△APC和△ACB相似.故选:D.6.(2020•黄埔区模拟)如图,在四边形ABCD中,∠BAC=90°,AB=6,AC=8,E是BC 的中点,AD∥BC,AE∥DC,EF⊥CD于点F.下列结论错误的是()A.四边形AECD的周长是20B.△ABC∽△FECC.∠B+∠ACD=90°D.EF的长为【思路引导】根据平行四边形和菱形的判定即可证明A选项;根据菱形的性质和三角形的面积公式即可证明C选项和D选项;根据△ABC与△FEC的三边长即可证明B选项.【完整解答】解:∵∠BAC=90°,AB=6,AC=8,∴BC==10,∵AD∥BC,AE∥DC,∴四边形AECD是平行四边形,∵∠BAC=90°,E是BC的中点,∴AE=CE=BC=5,∴四边形AECD是菱形,∴菱形AECD的周长是20,故A选项正确,不符合题意;∵四边形AECD是菱形,∴∠ACB=∠ACD,∵∠B+∠ACB=90°,∴∠B+∠ACD=90°,故C选项正确,不符合题意;如图,过A作AH⊥BC于点H,∵S△ABC=BC•AH=AB•AC,∴AH==,∵点E是BC的中点,BC=10,四边形AECD是菱形,∴CD=CE=5,∵S▱AECD=CE•AH=CD•EF,∴EF=AH=.故D选项正确,不符合题意;在Rt△EFC中,EF=,EC=5,∴FC==,在Rt△CAB中,AB=6,AC=8,BC=10,∵=,=,=,∴△ABC与△FEC不相似,故B选项错误,符合题意.故选:B.7.(2020秋•叶县期中)如图,在△ABC中,点D、E分别在边AB、AC上,则在下列四个条件中:①∠AED=∠B;②DE∥BC;③;④AD•BC=DE•AC,能满足△ADE∽△ACB的条件有()A.1个B.2个C.3个D.4个【思路引导】根据相似三角形的判定定理对各条件进行逐一判断即可.【完整解答】解:①∠B=∠AED,∠A=∠A,则可判断△ADE∽△ACB,故①符合题意;②DE∥BC,则△ADE∽△ABC,故②不符合题意,③,且夹角∠A=∠A,能确定△ADE∽△ACB,故③符合题意;④由AD•BC=DE•AC可得=,此时不确定∠ADE=∠ACB,故不能确定△ADE∽△ACB,故④不符合题意,故选:B.8.(2020•浙江自主招生)已知点A,C在直线BD的同侧,且AB⊥BD于B,CD⊥BD于D,AB=6,CD=4,BD=14,现有点P在直线BD上,并且满足△ABP与△CDP相似,则这样的点P的个数为()A.3B.5C.6D.7【思路引导】设DP=x,根据已知可以分三种情况:①当点P在线段BD上时;②当点P在线段BD的右侧时;③当点P在线段BD的左侧时;分别得出比例式得出方程,解方程求出x的值,即可得出结果.【完整解答】解:∵AB⊥DB,CD⊥DB,∴∠D=∠B=90°,设DP=x,分三种情况:①当点P在线段BD上时,当PD:AB=CD:PB时,△PDC∽△ABP,∴=,解得:DP=2或12,当PD:PB=CD:AB时,△PCD∽△P AB,∴,解得:DP=5.6;②当点P在线段BD的右侧,如图1所示:当时,△PCD∽△P AB,即,解得:x=28;当时,△PCD∽△APB,即,解得:x=﹣7±(负值舍去),∴PD=﹣7+;③当点P在线段BD的左侧时,如图2所示:当时,△PCD∽△APB,即,解得:x=7±(负值舍去),∴PD=7+;综上所述:当DP=5.6或2或12或28或﹣7+或7+时,△ABP与△CDP相似,即这样的点P的个数有6个;故选:C.9.(2019春•宝安区校级月考)如图,正方形ABCD中,AB=2,点N为AD为边上一点,连接BN,作AP⊥BN于点P,点M为AB边上一点,且∠PMA=∠PCB,连接CM.下列结论正确的个数有()(1)△P AM∽△PBC(2)PM⊥PC;(3)∠MPB=∠MCB;(4)若点N为AD中点,则S△PCN=6(5)AN=AMA.5个B.4个C.3个D.2个【思路引导】根据互余角性质得∠P AM=∠PBC,进而得△P AM∽△PBC,可以判断(1);由相似三角形得∠APM=∠BPC,进而得∠CPM=∠APB,从而判断(2);由B、C、P、M四点共圆得∠MPB=∠MCB,进而判断(3);过P点作EF⊥BC,分别志AD、BC相交于点EF,由相似三角形得PF,进而由△BCN与△BCP的面积之差求得△PCN的面积便可判断(4);由△APB∽△NAB得,再结合△P AM∽△PBC便可判断(5).【完整解答】解:(1)∵AP⊥BN,∴∠P AM+∠PBA=90°,∵∠PBA+∠PBC=90°,∴∠P AM=∠PBC,∵∠PMA=∠PCB,∴△P AM∽△PBC,故(1)正确;(2)∵△P AM∽△PBC,∴∠APM=∠BPC,∴∠CPM=∠APB=90°,即PM⊥PC,故(2)正确;(3)∵∠MPC+∠MBC=90°+90°=180°,∴B、C、P、M四点共圆,∴∠MPB=∠MCB,故(3)正确;(4)过点P作EF⊥BC,分别交AD、BC于E、F点,∵N为AD的中点,AB=2∴AN=DN=,BC=EF=2,∴BN=,易证△ANP∽△NBA,得,即,∴PN=1,∴PB=5﹣1=4,∵AD∥BC,∴△PEN∽△PFB,∴,∴PF=,∴,故(4)错误;(5)易证△P AN∽△P AB,∴,∵△P AM∽△PBC,∴,∴,∵AB=BC,∴AM=AN,故(5)正确;故选:B.二.填空题10.(2021春•濮阳期末)在△ABC中,AB=6cm,AC=9cm,动点D从点B开始沿BA边运动,速度为1cm/s;动点E从点A开始沿AC边运动,速度为2cm/s.如果D,E两动点同时运动,那么当它们运动或s时,由D,A,E三点连成的三角形与△ABC 相似.【思路引导】分两种情形①当=时,②当=时,分别构建方程求解即可.【完整解答】解:根据题意得:AE=2t,BD=t,∴AD=6﹣t,∵∠A=∠A,∴分两种情况:①当=时,即=,解得:t=;②当=时,即=,解得:t=;综上所述:当t=或时,△ADE与△ABC相似.11.(2021•葫芦岛二模)如图,在△ABC中,AB=15,AC=18,D为AB上一点,且AD=AB,在AC边上取一点E,便以A,D,E为顶点的三角形与△ABC相似,则AE等于12或.【思路引导】根据相似三角形对应边成比例得出=或=,再代值计算即可.【完整解答】解:∵△ABC∽△ADE或△ABC∽△AED,∴=或=,∵AD=AB,AB=15,∴AD=10,∵AC=18,∴=或=,解得:AE=12或.故答案为:12或.12.(2020秋•北海期末)如图,在△ABC中,AB=8,BC=16,点P是AB边的中点,点Q 是BC边上一个动点,当BQ=2或8 时,△BPQ与△BAC相似.【思路引导】直接利用△BPQ∽△BAC或△BPQ∽△BCA,分别得出答案.【完整解答】解:∵AB=8,BC=16,点P是AB边的中点,∴BP=4.当△BPQ∽△BAC时,则=,故=,解得:BQ=8;当△BPQ∽△BCA时,则=,故=,解得:BQ=2,综上所述:当BQ=2或8时,△BPQ与△BAC相似.故答案为:2或8.13.(2021•抚顺县模拟)如图,在正方形网格中有3个斜三角形:①△ABC;②△CDB;③△DEB;其中能与△ABC相似的是③△DEB.(△ABC除外)【思路引导】分别求出三个三角形的三边的比,符合这个结果就是与△ABC相似的.【完整解答】解:∵△ABC的三边之比是AB:AC:BC=1::,②△CDB的三边之比是CD:BC:BD=1::;③△DEB中DE:BD:BE=2:2:=1::.∴③(△DEB)与△ABC相似,故答案为:③△DEB.14.(2021•河北模拟)如图,在Rt△ABC的直角边AC上有一任意点P(不与点A、C重合),过点P作一条直线,将△ABC分成一个三角形和一个四边形,则所得到的三角形与原三角形相似的直线最多有 4 条.【思路引导】过点P作直线与另一边相交,使所得的三角形与原三角形已经有一个公共角,只要再作一个等于△ABC的另一个角即可.【完整解答】解:如图所示,①过点P作AB的垂线段PD,则△ADP∽△ACB;②过点P作BC的平行线PE,交AB于E,则△APE∽△ACB;③过点P作AB的平行线PF,交BC于F,则△PCF∽△ACB;④作∠PGC=∠A,则△GCP∽△ACB.故答案为:4.15.(2020秋•松江区月考)如图,△ABC中,∠C=90°,∠B=30°,AC=2,点P是边AB上一点,将△ABC沿经过点P的直线折叠,使得点A落在边BC上的A′处,若△PBA′恰好和△ABC相似,则此时AP的长为或2﹣2 .【思路引导】分两种情形:①如图1中,当∠P A′B=∠C=90°时,△BP A′∽△BAC,②如图2中,当∠PBC=90°时,△BP A′∽△BCA,分别利用相似三角形的性质构建方程求解即可.【完整解答】解:①如图1中,当∠P A′B=∠C=90°时,设P A=P A′=x.在Rt△ABC中,∵∠C=90°,AC=2,∠B=30°,∴AB=2AC=4,BC=AC=2,∵∠B=∠B,∠BA′P=∠C=90°,∴△BP A′∽△BAC,∴=,∴=,∴x=.②如图2中,当∠BP A′=90°时,△BP A′∽△BCA,∴=,∴=,∴x=2﹣2,综上所述,满足条件的AP的值为或2﹣2.16.(2020秋•江阴市月考)如图,在△ABC纸板中,AC=8,BC=4,AB=10,P是AC上一点,过点P沿直线剪下一个与△ABC相似的小三角形纸板,如果有4种不同的剪法,那么AP长的取值范围是6≤AP<8 .【思路引导】分四种情况讨论,依据相似三角形的对应边成比例,即可得到AP的长的取值范围.【完整解答】解:如图所示,过P作PD∥AB交BC于D或PE∥BC交AB于E,则△PCD∽△ACB或△APE∽△ACB,此时0<AP<8;如图所示,过P作∠APF=∠B交AB于F,则△APF∽△ABC,此时0<AP≤8;如图所示,过P作∠CPG=∠CBA交BC于G,则△CPG∽△CBA,此时,△CPG∽△CBA,当点G与点B重合时,CB2=CP×CA,即42=CP×8,∴CP=2,AP=6,∴此时,6≤AP<8;综上所述,要有4种不同的剪法,使得过点P沿直线剪下一个与△ABC相似,则AP长的取值范围是6≤AP<8.故答案为:6≤AP<8.17.(2019•东平县二模)如图,△ABC是边长为6cm等边三角形,动点P、Q同时从A、B 出发,分别沿AB、BC方向匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点停止运动,在运动过程中作QR∥BA交AC于点R,连接PR,设运动的时间为t(s),当t=1.2 s时△APR∽△PRQ.【思路引导】先证△CRQ为等边三角形,并用含t的式子表示图中的相关线段,由QR∥BA推得∠QRP=∠APR,从而△PRQ中再有一个角等于∠A,即等于60°,即可得△APR ∽△PRQ.根据相似三角形的性质列比例式求解即可.【完整解答】解:∵△ABC是边长为6cm等边三角形,∴∠A=∠B=∠C=60°∵QR∥BA∴∠CRQ=∠A=60°,∠CQR=∠B=60°∴△CRQ为等边三角形∵点P运动的速度是1cm/s,点Q运动的速度是2cm/s∴AP=t,PB=6﹣t,BQ=2t,CQ=CR=RQ=6﹣2t,AR=2t∵QR∥BA∴∠QRP=∠APR若要△APR∽△PQR,则需满足∠RPQ=60°∴∠BPQ+∠APR=120°,∠ARP+∠APR=120°∴∠BPQ=∠ARP又∵∠A=∠B∴△APR∽△BQP∴=∴=解得t=1.2故答案为1.2.18.(2011春•成华区期末)如图,正方形ABCD的边长为4,AE=EB,MN=2,线段MN 的两端在CB、CD上滑动,当CM=或时,△ADE与△CMN相似.【思路引导】根据AE=EB,△AED中AD=2AE,所以在△MNC中,分CM与AE和AD 是对应边两种情况利用相似三角形对应边成比例求出CM与CN的关系,然后利用勾股定理列式计算即可.【完整解答】解:∵AE=EB,∴AD=2AE,又∵△AED与以M、N、C为顶点的三角形相似,∴分两种情况:①CM与AD是对应边时,CM=2CN,∴CM2+CN2=MN2=4,即CM2+CM2=4,解得:CM=;②CM与AE是对应边时,CM=CN,∴CM2+CN2=MN2=4,即CM2+4CM2=4,解得:CM=.综上所述:当CM为或时,△AED与△CMN相似.故答案是:或.19.(2003•武汉)△ABC中,以AB为直径的▱O交BC边于点D,连接AD,要使△ABD与△ACD相似,则△ABC的边AB与AC之间,应满足的条件为AB⊥AC.(填入一个即可)【思路引导】本题主要应用两三角形相似的判定定理,做题即可.【完整解答】解:∵AB为▱O的直径∴∠ADC=∠BDA=90°∴当∠CAD=∠B时,△ABD∽△CAD∵∠CAD+∠C=90°∴∠B+∠C=90°∴AB⊥AC答案不唯一,如AB⊥AC.三.解答题20.(2021春•朝阳区校级期末)如图所示,在四边形ABCD中,CA是∠BCD的角平分线,且AC2=CD•BC,求证:△ABC∽△DAC.【思路引导】根据两边成比例夹角相等两三角形相似证明即可.【完整解答】证明:∵AC平分∠BCD,∴∠ACB=∠ACD,∵AC2=CD•BC,∴=,∴△ABC∽△DAC.21.(2021春•龙口市期末)如图,在Rt△ABC中,∠C=90°,AC=10cm,BC=8cm.点M从点C出发,以2cm/s的速度沿CA向点A匀速运动,点N从点B出发,以1cm/s的速度沿BC向点C匀速运动,当一个点到达终点时,另一点也随即停止运动.(1)经过几秒后,△MCN的面积等于△ABC面积的?(2)经过几秒,△MCN与△ABC相似?【思路引导】(1)设经过x秒,△MCN的面积等于△ABC面积的,根据三角形的面积和已知列出方程,求出方程的解即可;(2)根据相似三角形的判定得出两种情况,再求出t即可.【完整解答】解:(1)设经过x秒,△MCN的面积等于△ABC面积的.×2x(8﹣x)=×8×10×.解得x1=x2=4.答:经过4秒后,△MCN的面积等于△ABC面积的;(2)设经过t秒,△MCN与△ABC相似.∵∠C=∠C,∴可分为两种情况:①=,即=,解得t=;②=,即=.解得t=.答:经过或秒,△MCN与△ABC相似.22.(2021•越秀区校级二模)如图,在△P AB中,点C、D在AB上,PC=PD=CD,∠A=∠BPD,求证:△APC∽△PBD.【思路引导】根据等腰三角形的性质得出∠PCD=∠PDC,根据三角形的外角性质得出∠A+∠APC=∠PCD,∠B+∠BPD=∠PDC,求出∠B=∠APC,再根据相似三角形的判定推出即可.【完整解答】证明:∵PC=PD,∴∠PCD=∠PDC,∵∠A+∠APC=∠PCD,∠B+∠BPD=∠PDC,又∵∠A=∠BPD,∴∠B=∠APC,∴△APC∽△PBD.23.(2020秋•崇川区期末)如图,已知BD⊥AB于点B,AC⊥AB于点A,且BD=4,AC=3,AB=a,在线段AB上是否存在一点E,使△BDE∽△ACE?【思路引导】当∠ACE=∠BDE时,△ACE∽△BDE,利用相似三角形的性质解答.【完整解答】解:存在,理由如下:∵BD⊥AB于点B,AC⊥AB,∴∠A=∠B=90°,当∠ACE=∠BDE时,△ACE∽△BDE,∴==,∴AE=BE,∴AE=AB=a.∴点E在线段AB上,距离点A的距离是a.24.(2020秋•宁德期末)如图,在矩形ABCD中,点E是BC边上的点,AC⊥DE,垂足为F.求证:△ABC∽△ECD.【思路引导】利用“两角法”证得结论.【完整解答】证明:∵四边形ABCD是矩形,∴∠B=∠BCD=90°.∴∠ACB+∠ACD=90°.又∵AC⊥DE,∴∠CDE+∠ACD=90°.∴∠ACB=∠CDE.∴△ABC∽△ECD.25.(2021•拱墅区二模)如图,在△ABC中,D、E分别是边AC、BC的中点,F是BC延长线上一点,∠F=∠B.(1)若AB=10,求FD的长;(2)若AC=BC,求证:△CDE∽△DFE.【思路引导】(1)首先利用中位线定理得到DE∥AB以及DE的长,再证明∠DEC=∠F 即可;(2)根据等腰三角形的性质得到∠A=∠B,进而求出∠CDE=∠F并结合∠CED=∠DEF即可证明△CDE∽△DFE.【完整解答】解:(1)∵D、E分别是AC、BC的中点,∴DE∥AB,DE=AB=5,∵DE∥AB,∴∠DEC=∠B,而∠F=∠B,∴∠DEC=∠F,∴DF=DE=5;(2)∵AC=BC,∴∠A=∠B,∵∠CDE=∠A,∠CED=∠B,∴∠CDE=∠B,∵∠B=∠F,∴∠CDE=∠F,∵∠CED=∠DEF,∴△CDE∽△DFE.26.(2020秋•肇源县期末)已知:如图,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),当t为何值时,以A、P、Q为顶点的三角形与△ABC相似?【思路引导】先利用勾股定理计算出AB=5,由于∠P AQ=∠BAC,根据两组对应边的比相等且夹角对应相等的两个三角形相似,当=时,△APQ∽△ABC,即=;当=时,△APQ∽△ACB,即=,然后分别解方程求出t即可.【完整解答】解:∵∠C=90°,AC=4cm,BC=3cm,∴AB==5,则BP=t,AQ=2t,AP=5﹣t,∵∠P AQ=∠BAC,当=时,△APQ∽△ABC,即=,解得t=;当=时,△APQ∽△ACB,即=,解得t=;答:t为s或s时,以A、P、Q为顶点的三角形与△ABC相似.27.(2019秋•临安区期末)如图,点B、D、E在一条直线上,BE交AC于点F,=,且∠BAD=∠CAE.(1)求证:△ABC∽△ADE;(2)求证:△AEF∽△BCF.【思路引导】(1)根据相似三角形的判定定理证明;(2)根据相似三角形的性质定理得到∠C=∠E,结合图形,证明即可.【完整解答】(1)∵∠BAD=∠CAE∴∠BAD+∠CAD=∠CAE+∠CAD即∠BAC=∠DAE在△ABC和△ADE中=,∠BAC=∠DAE,∴△ABC∽△ADE;(2)∵△ABC∽△ADE,∴∠C=∠E、在△AEF和△BFC中,∠C=∠E,∠AFE=∠BFC,∴△AEF∽△BCF.28.(2020春•肇源县期末)如图,在△ABC中,∠B=90°,AB=6cm,BC=12cm,点P从点A开始,沿AB边以1cm/s的速度向点B运动:点Q从点B开始,沿BC边以2cm/s的速度向点C运动,当点P运动到点B时,运动停止,如果P、Q分别从A、B两点同时出发.(1)几秒后△PBQ的面积等于8cm2?(2)几秒后以P、B、Q为顶点的三角形与△ABC相似?【思路引导】(1)设t秒后△PBQ的面积等于8cm,此时,AP=t,BP=6﹣t,BQ=2t,再由三角形的面积公式即可得出结论;(2)设x秒后以P、B、Q为顶点的三角形与△ABC相似,此时,AP=x,BP=6﹣x,BQ=2x,再分△BPQ∽△BAC与△BPQ∽△BCA两种情况进行讨论即可.【完整解答】解:(1)设t秒后△PBQ的面积等于8cm,此时,AP=t,BP=6﹣t,BQ=2t,∵S△PBQ=BP•BQ,即(6﹣t)×2t=8,即t2﹣6t+8=0,解得t1=2,t2=4.∴2秒或4秒后,△PBQ的面积等于8cm2;(2)设x秒后以P、B、Q为顶点的三角形与△ABC相似,此时,AP=x,BP=6﹣x,BQ=2x,①若△BPQ∽△BAC,则=,即=,解得x=3;②若△BPQ∽△BCA,则=,即=,解得x=1.2.综上所述,1.2秒或3秒后,以P、B、Q为顶点的三角形与△ABC相似.。
最新苏教版初三九年级上册数学 压轴解答题易错题(Word版 含答案)
最新苏教版初三九年级上册数学 压轴解答题易错题(Word 版 含答案)一、压轴题1.点P 为图形M 上任意一点,过点P 作PQ ⊥直线,l 垂足为Q ,记PQ 的长度为d . 定义一:若d 存在最大值,则称其为“图形M 到直线l 的限距离”,记作()max ,D M l ; 定义二:若d 存在最小值,则称其为“图形M 到直线l 的基距离”,记作()min ,D M l ; (1)已知直线1:2l y x =--,平面内反比例函数2y x=在第一象限内的图象记作,H 则()1,min D H l = .(2)已知直线2:33l y x =+,点()1,0A -,点()()1,0,,0B T t 是x 轴上一个动点,T 的半径为3,点C 在T 上,若()max 243,63,D ABC l ≤≤求此时t 的取值范围,(3)已知直线21211k k y x k k --=+--恒过定点1111,8484P a b c a b c ⎛⎫⎪⎝+-+⎭+,点(),D a b 恒在直线3l 上,点(),28E m m +是平面上一动点,记以点E 为顶点,原点为对角线交点的正方形为图形,K ()min 3,0D K l =,若请直接写出m 的取值范围. 2.如图1,Rt △ABC 两直角边的边长为AC =3,BC =4.(1)如图2,⊙O 与Rt △ABC 的边AB 相切于点X ,与边BC 相切于点Y .请你在图2中作出并标明⊙O 的圆心(用尺规作图,保留作图痕迹,不写作法和证明)(2)P 是这个Rt △ABC 上和其内部的动点,以P 为圆心的⊙P 与Rt △ABC 的两条边相切.设⊙P 的面积为S ,你认为能否确定S 的最大值?若能,请你求出S 的最大值;若不能,请你说明不能确定S 的最大值的理由.3.如图,点A 和动点P 在直线l 上,点P 关于点A 的对称点为Q .以AQ 为边作Rt ABQ △,使90BAQ ∠=︒,:3:4AQ AB =,作ABQ △的外接圆O .点C 在点P 右侧,4PC =,过点C 作直线m l ⊥,过点O 作OD m ⊥于点D ,交AB 右侧的圆弧于点E .在射线CD 上取点F ,使32DF CD =,以DE 、DF 等邻边作矩形DEGF ,设3AQ x =(1)用关于x 的代数式表示BQ 、DF .(2)当点P 在点A 右侧时,若矩形DEGF 的面积等于90,求AP 的长.(3)在点P的整个运动过程中,当AP为何值时,矩形DEGF是正方形.4.【问题学习】小芸在小组学习时问小娟这样一个问题:已知α为锐角,且sinα=13,求sin2α的值.小娟是这样给小芸讲解的:构造如图1所示的图形,在⊙O中,AB是直径,点C在⊙O上,所以∠ACB=90°,作CD⊥AB于D.设∠BAC=α,则sinα=13BCAB,可设BC=x,则AB=3x,….【问题解决】(1)请按照小娟的思路,利用图1求出sin2α的值;(写出完整的解答过程)(2)如图2,已知点M,N,P为⊙O上的三点,且∠P=β,sinβ=35,求sin2β的值.5.如图,已知AB是⊙O的直径,AB=8,点C在半径OA上(点C与点O、A不重合),过点C作AB的垂线交⊙O于点D,连结OD,过点B作OD的平行线交⊙O于点E、交射线CD于点F.(1)若ED=BE,求∠F的度数:(2)设线段OC=a,求线段BE和EF的长(用含a的代数式表示);(3)设点C 关于直线OD 的对称点为P ,若△PBE 为等腰三角形,求OC 的长.6.翻转类的计算问题在全国各地的中考试卷中出现的频率很大,因此初三(5)班聪慧的小菲同学结合2011年苏州市数学中考卷的倒数第二题对这类问题进行了专门的研究。
最新九年级上册上册数学压轴题测试与练习(word解析版)
最新九年级上册上册数学压轴题测试与练习(word解析版)一、压轴题1.如图1:在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),试探索AD,BD,CD之间满足的等量关系,并证明你的结论.小明同学的思路是这样的:将线段AD绕点A逆时针旋转90°,得到线段AE,连接EC,DE.继续推理就可以使问题得到解决.(1)请根据小明的思路,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;(2)如图2,在Rt△ABC中,AB=AC,D为△ABC外的一点,且∠ADC=45°,线段AD,BD,CD之间满足的等量关系又是如何的,请证明你的结论;(3)如图3,已知AB是⊙O的直径,点C,D是⊙O上的点,且∠ADC=45°.①若AD=6,BD=8,求弦CD的长为;②若AD+BD=14,求2AD BD CD⎛⎫⋅+⎪⎪⎝⎭的最大值,并求出此时⊙O的半径.2.如图,在矩形ABCD中,AB=20cm,BC=4cm,点p从A开始折线A——B——C——D以4cm/秒的速度移动,点Q从C开始沿CD边以1cm/秒的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达D时,另一点也随之停止运动,设运动的时间t(秒)(1)t为何值时,四边形APQD为矩形.(2)如图(2),如果⊙P和⊙Q的半径都是2cm,那么t为何值时,⊙P和⊙Q外切?3.如图,在平面直角坐标系中,直线l:y=﹣13x+2与x轴交于点B,与y轴交于点A,以AB为斜边作等腰直角△ABC,使点C落在第一象限,过点C作CD⊥AB于点D,作CE⊥x轴于点E,连接ED并延长交y轴于点F.(1)如图(1),点P为线段EF上一点,点Q为x轴上一点,求AP+PQ的最小值.(2)将直线l进行平移,记平移后的直线为l1,若直线l1与直线AC相交于点M,与y轴相交于点N,是否存在这样的点M、点N,使得△CMN为等腰直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.4.数学概念若点P 在ABC ∆的内部,且APB ∠、BPC ∠和CPA ∠中有两个角相等,则称P 是ABC ∆的“等角点”,特别地,若这三个角都相等,则称P 是ABC ∆的“强等角点”. 理解概念(1)若点P 是ABC ∆的等角点,且100APB ∠=,则BPC ∠的度数是 . (2)已知点D 在ABC ∆的外部,且与点A 在BC 的异侧,并满足180BDC BAC ∠+∠<,作BCD ∆的外接圆O ,连接AD ,交圆O 于点P .当BCD ∆的边满足下面的条件时,求证:P 是ABC ∆的等角点.(要求:只选择其中一道题进行证明!)①如图①,DB DC = ②如图②,BC BD =深入思考(3)如图③,在ABC ∆中,A ∠、B 、C ∠均小于120,用直尺和圆规作它的强等角点Q .(不写作法,保留作图痕迹)(4)下列关于“等角点”、“强等角点”的说法: ①直角三角形的内心是它的等角点; ②等腰三角形的内心和外心都是它的等角点; ③正三角形的中心是它的强等角点;④若一个三角形存在强等角点,则该点到三角形三个顶点的距离相等;⑤若一个三角形存在强等角点,则该点是三角形内部到三个顶点距离之和最小的点,其中正确的有 .(填序号)5.如图,在矩形ABCD 中,E 、F 分别是AB 、AD 的中点,连接AC 、EC 、EF 、FC,且EC EF⊥.(1)求证:AEF BCE∽;(2)若23AC=,求AB的长;(3)在(2)的条件下,求出ABC的外接圆圆心与CEF△的外接圆圆心之间的距离?6.我们知道,如图1,AB是⊙O的弦,点F是AFB的中点,过点F作EF⊥AB于点E,易得点E是AB的中点,即AE=EB.⊙O上一点C(AC>BC),则折线ACB称为⊙O的一条“折弦”.(1)当点C在弦AB的上方时(如图2),过点F作EF⊥AC于点E,求证:点E是“折弦ACB”的中点,即AE=EC+CB.(2)当点C在弦AB的下方时(如图3),其他条件不变,则上述结论是否仍然成立?若成立说明理由;若不成立,那么AE、EC、CB满足怎样的数量关系?直接写出,不必证明.(3)如图4,已知Rt△ABC中,∠C=90°,∠BAC=30°,Rt△ABC的外接圆⊙O的半径为2,过⊙O上一点P作PH⊥AC于点H,交AB于点M,当∠PAB=45°时,求AH的长.7.【问题学习】小芸在小组学习时问小娟这样一个问题:已知α为锐角,且sinα=13,求sin2α的值.小娟是这样给小芸讲解的:构造如图1所示的图形,在⊙O中,AB是直径,点C在⊙O上,所以∠ACB=90°,作CD⊥AB于D.设∠BAC=α,则sinα=13BCAB=,可设BC=x,则AB=3x,….【问题解决】(1)请按照小娟的思路,利用图1求出sin2α的值;(写出完整的解答过程)(2)如图2,已知点M,N,P为⊙O上的三点,且∠P=β,sinβ=35,求sin2β的值.8.如图,在▱ABCD中,AB=4,BC=8,∠ABC =60°.点P是边BC上一动点,作△PAB的外接圆⊙O交BD于E.(1)如图1,当PB=3时,求PA 的长以及⊙O的半径;(2)如图2,当∠APB=2∠PBE时,求证:AE平分∠PAD;(3)当AE与△ABD的某一条边垂直时,求所有满足条件的⊙O的半径.9.如图,B是O的半径OA上的一点(不与端点重合),过点B作OA的垂线交O于点C,D,连接OD,E是O上一点,CE CA=,过点C作O的切线l,连接OE并延长交直线l于点F.(1)①依题意补全图形. ②求证:∠OFC=∠ODC . (2)连接FB ,若B 是OA 的中点,O 的半径是4,求FB 的长.10.已知抛物线y =﹣14x 2+bx +c 经过点A (4,3),顶点为B ,对称轴是直线x =2.(1)求抛物线的函数表达式和顶点B 的坐标;(2)如图1,抛物线与y 轴交于点C ,连接AC ,过A 作AD ⊥x 轴于点D ,E 是线段AC 上的动点(点E 不与A ,C 两点重合);(i )若直线BE 将四边形ACOD 分成面积比为1:3的两部分,求点E 的坐标; (ii )如图2,连接DE ,作矩形DEFG ,在点E 的运动过程中,是否存在点G 落在y 轴上的同时点F 恰好落在抛物线上?若存在,求出此时AE 的长;若不存在,请说明理由. 11.如图1(注:与图2完全相同)所示,抛物线212y x bx c =-++经过B 、D 两点,与x 轴的另一个交点为A ,与y 轴相交于点C . (1)求抛物线的解析式.(2)设抛物线的顶点为M ,求四边形ABMC 的面积(请在图1中探索)(3)设点Q 在y 轴上,点P 在抛物线上.要使以点A 、B 、P 、Q 为顶点的四边形是平行四边形,求所有满足条件的点P 的坐标(请在图2中探索)12.矩形ABCD中,AB=2,AD=4,将矩形ABCD绕点C顺时针旋转至矩形EGCF(其中E、G、F分别与A、B、D对应).(1)如图1,当点G落在AD边上时,直接写出AG的长为;(2)如图2,当点G落在线段AE上时,AD与CG交于点H,求GH的长;(3)如图3,记O为矩形ABCD对角线的交点,S为△OGE的面积,求S的取值范围.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)CD2+BD2=2AD2,见解析;(2)BD2=CD2+2AD2,见解析;(3)①2,②最大值为4414710【解析】【分析】(1)先判断出∠BAD=CAE,进而得出△ABD≌△ACE,得出BD=CE,∠B=∠ACE,再根据勾股定理得出DE2=CD2+CE2=CD2+BD2,在Rt△ADE中,DE2=AD2+AE2=2AD2,即可得出结论;(2)同(1)的方法得,ABD≌△ACE(SAS),得出BD=CE,再用勾股定理的出DE2=2AD 2,CE 2=CD 2+DE 2=CD 2+2AD 2,即可得出结论;(3)先根据勾股定理的出DE 2=CD 2+CE 2=2CD 2,再判断出△ACE ≌△BCD (SAS ),得出AE =BD ,①将AD =6,BD =8代入DE 2=2CD 2中,即可得出结论;②先求出CD =,再将AD+BD =14,CD =代入AD BD ⎛⎫⋅ ⎪ ⎪⎝⎭,化简得出﹣(AD ﹣212)2+4414,进而求出AD ,最后用勾股定理求出AB 即可得出结论. 【详解】解:(1)CD 2+BD 2=2AD 2,理由:由旋转知,AD =AE ,∠DAE =90°=∠BAC , ∴∠BAD =∠CAE , ∵AB =AC ,∴△ABD ≌△ACE (SAS ), ∴BD =CE ,∠B =∠ACE , 在Rt △ABC 中,AB =AC , ∴∠B =∠ACB =45°, ∴∠ACE =45°,∴∠DCE =∠ACB+∠ACE =90°,根据勾股定理得,DE 2=CD 2+CE 2=CD 2+BD 2, 在Rt △ADE 中,DE 2=AD 2+AE 2=2AD 2, ∴CD 2+BD 2=2AD 2; (2)BD 2=CD 2+2AD 2, 理由:如图2,将线段AD 绕点A 逆时针旋转90°,得到线段AE ,连接EC ,DE , 同(1)的方法得,ABD ≌△ACE (SAS ), ∴BD =CE ,在Rt △ADE 中,AD =AE , ∴∠ADE =45°, ∴DE 2=2AD 2, ∵∠ADC =45°,∴∠CDE =∠ADC+∠ADE =90°,根据勾股定理得,CE 2=CD 2+DE 2=CD 2+2AD 2, 即:BD 2=CD 2+2AD 2;(3)如图3,过点C 作CE ⊥CD 交DA 的延长线于E , ∴∠DCE =90°, ∵∠ADC =45°,∴∠E =90°﹣∠ADC =45°=∠ADC , ∴CD =CE ,根据勾股定理得,DE 2=CD 2+CE 2=2CD 2,连接AC,BC,∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,∵∠ADC=45°,∴∠BDC=45°=∠ADC,∴AC=BC,∵∠DCE=∠ACB=90°,∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD,①AD=6,BD=8,∴DE=AD+AE=AD+BD=14,∴2CD2=142,∴CD=72,故答案为72;②∵AD+BD=14,∴CD=72,∴2AD BD CD⎛⎫⋅+⎪⎪⎝⎭=AD•(BD+22×72)=AD•(BD+7)=AD•BD+7AD=AD(14﹣AD)+7AD=﹣AD2+21AD=﹣(AD﹣212)2+4414,∴当AD=212时,22AD BD CD⎛⎫⋅+⎪⎪⎝⎭的最大值为4414,∵AD+BD=14,∴BD=14﹣212=72,在Rt△ABD中,根据勾股定理得,AB=22710AD BD+=,∴⊙O的半径为OA=12AB=7104.【点睛】本题考查圆与三角形的结合,关键在于熟记圆的性质和三角形的性质.2.(1)4;(2)t为4s,203s,283s时,⊙P与⊙Q外切.【解析】试题分析:(1)四边形APQD为矩形,也就是AP=DQ,分别用含t的代数式表示,解即可;(2)主要考虑有四种情况,一种是P在AB上,一种是P在BC上时.一种是P在CD上时,又分为两种情况,一种是P在Q右侧,一种是P在Q左侧.并根据每一种情况,找出相等关系,解即可.试题解析:(1)根据题意,当AP=DQ时,四边形APQD为矩形.此时,4t=20-t,解得t=4(s).答:t为4时,四边形APQD为矩形(2)当PQ=4时,⊙P与⊙Q外切.①如果点P在AB上运动.只有当四边形APQD为矩形时,PQ=4.由(1),得t=4(s);②如果点P在BC上运动.此时t≥5,则CQ≥5,PQ≥CQ≥5>4,∴⊙P与⊙Q外离;③如果点P在CD上运动,且点P在点Q的右侧.可得CQ=t,CP=4t-24.当CQ-CP=4时,⊙P与⊙Q外切.此时,t-(4t-24)=4,解得t=203(s);④如果点P在CD上运动,且点P在点Q的左侧.当CP-CQ=4时,⊙P与⊙Q外切.此时,4t-24-t=4,解得t=283(s),∵点P从A开始沿折线A-B-C-D移动到D需要11s,点Q从C开始沿CD边移动到D需要20s,而283<11,∴当t为4s,203s,283s时,⊙P与⊙Q外切.考点:1.矩形的性质;2.圆与圆的位置关系.3.(1)AP+PQ的最小值为4;(2)存在,M点坐标为(﹣12,﹣4)或(12,8).【解析】 【分析】(1)由直线解析式易求AB 两点坐标,利用等腰直角△ABC 构造K 字形全等易得OE =CE =4,C 点坐标为(4,4)DB =∠CEB =90︒,可知B 、C 、D 、E 四点共圆,由等腰直角△ABC 可知∠CBD =45︒,同弧所对圆周角相等可知∠CED =45︒,所以∠OEF =45︒,CE 、OE 是关于EF 对称,作PH ⊥CE 于H ,作PG ⊥OE 于Q ,AK ⊥EC 于K .把AP +PQ 的最小值问题转化为垂线段最短解决问题.(2)由直线l 与直线AC 成45︒可知∠AMN =45︒,由直线AC 解析式可设M 点坐标为(x ,122x +),N 在y 轴上,可设N (0,y )构造K 字形全等即可求出M 点坐标.【详解】解:(1)过A 点作AK ⊥CE ,在等腰直角△ABC 中,∠ACB =90︒,AC =BC , ∵CE ⊥x 轴,∴∠ACK +∠ECB =90︒,∠ECB +∠CBE =90︒, ∴∠ACK =∠CBE 在△AKC 和△CEB 中,AKC CEB ACK CBE AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩, △AKC ≌△CEB (AAS ) ∴AK =CE ,CK =BE , ∵四边形AOEK 是矩形, ∴AO =EK =BE , 由直线l :y =﹣13x +2与x 轴交于点B ,与y 轴交于点A ,可知A 点坐标为(0,2),B (6,0)∴E 点坐标为(4,0),C 点坐标为(4,4), ∵∠CDB =∠CEB =90︒, ∴B 、C 、D 、E 四点共圆, ∵CD CD =,∠CBA =45︒, ∴∠CED =45︒, ∴FE 平分∠CEO ,过P 点作PH ⊥CE 于H ,作PG ⊥OE 于G ,过A 点作AK ⊥EC 于K . ∴PH =PQ ,∵PA +PQ =PA +PH ≥AK =OE , ∴OE =4, ∴AP +PQ ≥4, ∴AP +PQ 的最小值为4.(2)∵A点坐标为(0,2),C点坐标为(4,4),设直线AC解析式为:y=kx+b把(0,2),(4,4)代入得244bk b=⎧⎨=+⎩解得122 kb⎧=⎪⎨⎪=⎩∴直线AC解析式为:y=122x+,设M点坐标为(x,122x+),N坐标为(0,y).∵MN∥AB,∠CAB=45︒,∴∠CMN=45︒,△CMN为等腰直角三角形有两种情况:Ⅰ.如解图2﹣1,∠MNC=90︒,MN=CN.同(1)理过N点构造利用等腰直角△MNC构造K字形全等,同(1)理得:SN=CR,MS =NR.∴41242x yx y-=-⎧⎪⎨+-=⎪⎩,解得:128xy=-⎧⎨=-⎩,∴M点坐标为(﹣12,﹣4)Ⅱ.如解图2﹣2,∠MNC=90︒,MN=CN.过C点构造利用等腰直角△MNC构造K字形全等,同(1)得:MS=CF,CS=FN.∴4412442x yx-=-⎧⎪⎨+-=⎪⎩,解得:1212xy=⎧⎨=⎩,∴M点坐标为(12,8)综上所述:使得△CMN为等腰直角三角形得M点坐标为(﹣12,﹣4)或(12,8).【点睛】本题综合考查了一次函数与几何知识的应用,题中运用等腰直角三角形的判定和性质,正方形的判定和性质,全等三角形的判定和性质,四点共圆,圆周角定理,垂线段最短等知识,解题的关键是中用转化的思想思考问题,学会添加常用辅助线,在平面直角坐标系中构造K 字形全等三角形求点坐标解决问题,属于中考压轴题.4.(1)100、130或160;(2)选择①或②,理由见解析;(3)见解析;(4)③⑤【解析】【分析】(1)根据“等角点”的定义,分类讨论即可;(2)①根据在同圆中,弧和弦的关系和同弧所对的圆周角相等即可证明;②弧和弦的关系和圆的内接四边形的性质即可得出结论;(3)根据垂直平分线的性质、等边三角形的性质、弧和弦的关系和同弧所对的圆周角相等作图即可;(4)根据“等角点”和“强等角点”的定义,逐一分析判断即可.【详解】(1)(i )若APB ∠=BPC ∠时,∴BPC ∠=APB ∠=100°(ii )若BPC CPA ∠=∠时,∴12BPC CPA ∠=∠=(360°-APB ∠)=130°; (iii )若APB ∠=CPA ∠时,BPC ∠=360°-APB ∠-CPA ∠=160°,综上所述:BPC ∠=100°、130°或160°故答案为:100、130或160.(2)选择①:连接,PB PC∵DB DC =∴=DB DC∴BPD CPD ∠=∠∵180APB BPD ∠+∠=,180APC CPD ∠+∠=∴APB APC ∠=∠∴P 是ABC ∆的等角点.选择②连接,PB PC∵BC BD =∴BC BD =∴BDC BPD ∠=∠∵四边形PBDC 是圆O 的内接四边形,∴180BDC BPC ∠+∠=∵180BPD APB ∠+∠=∴BPC APB ∠=∠∴P 是ABC ∆的等角点(3)作BC 的中垂线MN ,以C 为圆心,BC 的长为半径作弧交MN 与点D ,连接BD , 根据垂直平分线的性质和作图方法可得:BD=CD=BC∴△BCD 为等边三角形∴∠BDC=∠BCD=∠DBC=60°作CD 的垂直平分线交MN 于点O以O 为圆心OB 为半径作圆,交AD 于点Q ,圆O 即为△BCD 的外接圆∴∠BQC=180°-∠BDC=120°∵BD=CD∴∠BQD=∠CQD∴∠BQA=∠CQA=12(360°-∠BQC )=120° ∴∠BQA=∠CQA=∠BQC如图③,点Q 即为所求. (4)③⑤.①如下图所示,在RtABC 中,∠ABC=90°,O 为△ABC 的内心假设∠BAC=60°,∠ACB=30°∵点O 是△ABC 的内心∴∠BAO=∠CAO=12∠BAC=30°,∠ABO=∠CBO=12∠ABC=45°,∠ACO=∠BCO=12∠ACB=15° ∴∠AOC=180°-∠CAO -∠ACO=135°,∠AOB=180°-∠BAO -∠ABO=105°,∠BOC=180°-∠CBO -∠BCO=120°显然∠AOC ≠∠AOB ≠∠BOC ,故①错误;②对于钝角等腰三角形,它的外心在三角形的外部,不符合等角点的定义,故②错误; ③正三角形的每个中心角都为:360°÷3=120°,满足强等角点的定义,所以正三角形的中心是它的强等角点,故③正确;④由(3)可知,点Q 为△ABC 的强等角,但Q 不在BC 的中垂线上,故QB ≠QC ,故④错误;⑤由(3)可知,当ABC ∆的三个内角都小于120时,ABC ∆必存在强等角点Q .如图④,在三个内角都小于120的ABC ∆内任取一点'Q ,连接'Q A 、'Q B 、'Q C ,将'Q AC ∆绕点A 逆时针旋转60到MAD ∆,连接'Q M ,∵由旋转得'Q A MA =,'Q C MD =,'60Q AM ∠=∴'AQ M ∆是等边三角形.∴''Q M Q A =∴'''''Q A Q B Q C Q M Q B MD ++=++∵B 、D 是定点,∴当B 、'Q 、M 、D 四点共线时,''Q M Q B MD ++最小,即'''Q A Q B Q C ++最小.而当'Q 为ABC ∆的强等角点时,'''120AQ B BQ C CQ A AMD ∠=∠=∠==∠,此时便能保证B 、'Q 、M 、D 四点共线,进而使'''Q A Q B Q C ++最小.故答案为:③⑤.【点睛】此题考查的是新定义类问题、圆的基本性质、圆周角定理、圆的内接多边形综合大题,掌握“等角点”和“强等角点”的定义、圆的基本性质、圆周角定理、圆的内接多边形中心角公式和分类讨论的数学思想是解决此题的关键.5.(1)详见解析;(2)23)12【解析】【分析】(1)由矩形的性质得到90EAF CBE ∠=∠=︒,再根据同角的余角相等,得到AFE BEC =∠∠,即可证明相似;(2)根据矩形的性质和相似三角形的性质,得到222AB BC =,再利用勾股定理,即可求出AB 的长度;(3)分别找出两个三角形外接圆的圆心M 、N ,利用三角形中位线定理,即可求出MN 的长度.【详解】(1)证明:在矩形ABCD 中,有90EAF CBE ∠=∠=︒,∴90AEF AFE ∠+∠=︒,∵EC EF ⊥,∴90FEC ∠=︒,∴90AEF BEC ∠+∠=︒,∴AFE BEC =∠∠,∴AEF BCE ∽;(2)在矩形ABCD 中,有AD=BC ,∵E 、F 分别是AB 、AD 的中点,∴22,2AB AE BE AD AF ===;∵AEF BCE ∽,∴AE AF BC BE=, ∴222AB BC =,在Rt △ABC 中,由勾股定理得,222AB BC AC +=,∴221122AB AB +=, 解得:22AB =;(3)如图:∵△ABC 是直角三角形,∴△ABC 的外接圆的圆心在AC 中点M 处,同理,△CEF 的外接圆的圆心在CF 的中点N 处,∴线段MN 为△ACF 的中位线, ∴1124MN AF AD ==, 由(2)知,22222AB BC AD ==, ∴2AD AB =, ∴221222MN AB ===. 【点睛】本题考查了求三角形外接圆的圆心距,矩形的性质,相似三角形的判定和性质,勾股定理解直角三角形,三角形中位线定理,解题的关键是熟练利用所学性质进行证明和求解.6.(1)见解析;(2)结论AE =EC+CB 不成立,新结论为:CE =BC+AE ,见解析;(3)AH 3﹣13+1.【解析】【分析】(1)在AC 上截取AG =BC ,连接FA ,FG ,FB ,FC ,证明△FAG ≌△FBC ,根据全等三角形的性质得到FG =FC ,根据等腰三角形的性质得到EG =EC ,即可证明.(2)在CA 上截取CG =CB ,连接FA ,FB ,FC ,证明△FCG ≌△FCB ,根据全等三角形的性质得到FG =FB ,得到FA =FG ,根据等腰三角形的性质得到AE =GE ,即可证明.(3)分点P 在弦AB 上方和点P 在弦AB 下方两种情况进行讨论.【详解】解:(1)如图2,在AC 上截取AG =BC ,连接FA ,FG ,FB ,FC ,∵点F 是AFB 的中点,FA =FB ,在△FAG 和△FBC 中,,FA FB FAG FBC AG BC =⎧⎪∠=∠⎨⎪=⎩∴△FAG ≌△FBC (SAS ),∴FG =FC ,∵FE ⊥AC ,∴EG =EC ,∴AE =AG+EG =BC+CE ;(2)结论AE =EC+CB 不成立,新结论为:CE =BC+AE ,理由:如图3,在CA 上截取CG =CB ,连接FA ,FB ,FC ,∵点F 是AFB 的中点,∴FA =FB , FA FB =,∴∠FCG =∠FCB ,在△FCG 和△FCB 中,,CG CB FCG FCB FC FC =⎧⎪∠=∠⎨⎪=⎩∴△FCG ≌△FCB (SAS ),∴FG=FB,∴FA=FG,∵FE⊥AC,∴AE=GE,∴CE=CG+GE=BC+AE;(3)在Rt△ABC中,AB=2OA=4,∠BAC=30°,∴12232BC AB AC===,,当点P在弦AB上方时,如图4,在CA上截取CG=CB,连接PA,PB,PG,∵∠ACB=90°,∴AB为⊙O的直径,∴∠APB=90°,∵∠PAB=45°,∴∠PBA=45°=∠PAB,∴PA=PB,∠PCG=∠PCB,在△PCG和△PCB中,,CG CBPCG PCBPC PC=⎧⎪∠=∠⎨⎪=⎩∴△PCG≌△PCB(SAS),∴PG=PB,∴PA=PG,∵PH⊥AC,∴AH=GH,∴AC=AH+GH+CG=2AH+BC,∴2322AH=+,∴31AH=,当点P在弦AB下方时,如图5,在AC上截取AG=BC,连接PA,PB,PC,PG∵∠ACB=90°,∴AB为⊙O的直径,∴∠APB=90°,∵∠PAB=45°,∴∠PBA=45°=∠PAB,∴PA=PB,在△PAG和△PBC中,,AG BCPAG PBCPA PB=⎧⎪∠=∠⎨⎪=⎩∴△PAG≌△PBC(SAS),∴PG=PC,∵PH⊥AC,∴CH=GH,∴AC=AG+GH+CH=BC+2CH,∴2322CH,=+∴31CH=-,∴()233131AH AC CH=-=--=+,即:当∠PAB=45°时,AH的长为31-或3 1.+【点睛】考查弧,弦的关系,全等三角形的判定与性质,等腰三角形的判定与性质等,综合性比较强,注意分类讨论思想方法在解题中的应用.7.(1)sin2α=429;(2)sin2β=sin∠MON=2425.【解析】试题分析:(1)如图1中,⊙O中,AB是直径,点C在⊙O上,所以∠ACB=90°,作CD⊥AB于D.设∠BAC=α,则sinα=13BCAB=,可设BC=x,则AB=3x.利用面积法求出CD,在Rt△COD中,根据sin2α=CDOC,计算即可.(2)如图2中,连接NO,并延长交⊙O 于点Q,连接MQ,MO,过点M作MR⊥NO于点R.首先证明∠MON=2∠Q=2β,在Rt△QMN中,由sinβ=35MNNQ=,设MN=3k,则NQ=5k,易得OM=12NQ=52k,可得MQ=22QN MN-=4k,由12•MN•MQ=12•NQ•MR,求出在Rt△MRO中,根据sin2β=sin∠MON=MROM,计算即可.试题解析:(1)如图1中,⊙O中,AB是直径,点C在⊙O上,所以∠ACB=90°,作CD⊥AB于D.设∠BAC=α,则sinα=13BCAB=,可设BC=x,则AB=3x.∴AC=22AB BC-=22(3)x x-=22x,∵12•AC•BC=12•AB•CD,∴CD=223 x,∵OA=OC,∴∠OAC=∠OCA=α,∴∠COB=2α,∴sin2α=CDOC=429.(2)如图2中,连接NO,并延长交⊙O于点Q,连接MQ,MO,过点M作MR⊥NO于点R.在⊙O中,∠NMQ=90°,∵∠Q=∠P=β,∴∠MON=2∠Q=2β,在Rt△QMN中,∵sinβ=35MNNQ=,∴设MN=3k,则NQ=5k,易得OM=12NQ=52k,∴=4k,∵1122NMQS MN MQ NQ MR∆==,∴3k•4k=5k•MR∴MR=12k 5,在Rt△MRO中,sin2β=sin∠MON=122455252kMRkOM==.考点:圆的综合题.8.(1)PAO2)见解析;(3)⊙O的半径为2或5【解析】【分析】(1)过点A作BP的垂线,作直径AM,先在Rt△ABH中求出BH,AH的长,再在Rt△AHP中用勾股定理求出AP的长,在Rt△AMP中通过锐角三角函数求出直径AM的长,即求出半径的值;(2)证∠APB=∠PAD=2∠PAE,即可推出结论;(3)分三种情况:当AE⊥BD时,AB是⊙O的直径,可直接求出半径;当AE⊥AD时,连接OB,OE,延长AE交BC于F,通过证△BFE∽△DAE,求出BE的长,再证△OBE是等边三角形,即得到半径的值;当AE⊥AB时,过点D作BC的垂线,通过证△BPE∽△BND,求出PE,AE的长,再利用勾股定理求出直径BE的长,即可得到半径的值.【详解】(1)如图1,过点A作BP的垂线,垂足为H,作直径AM,连接MP,在Rt△ABH中,∠ABH=60°,∴∠BAH=30°,∴BH=12AB=2,AH=AB•sin60°=∴HP=BP﹣BH=1,∴在Rt△AHP中,AP∵AB是直径,∴∠APM=90°,在Rt△AMP中,∠M=∠ABP=60°,∴AM=APsin60︒,∴⊙O的半径为3,即PA⊙O的半径为3;(2)当∠APB=2∠PBE时,∵∠PBE=∠PAE,∴∠APB=2∠PAE,在平行四边形ABCD中,AD∥BC,∴∠APB=∠PAD,∴∠PAD=2∠PAE,∴∠PAE=∠DAE,∴AE平分∠PAD;(3)①如图3﹣1,当AE⊥BD时,∠AEB=90°,∴AB是⊙O的直径,∴r=12AB=2;②如图3﹣2,当AE⊥AD时,连接OB,OE,延长AE交BC于F,∵AD∥BC,∴AF⊥BC,△BFE∽△DAE,∴BFAD =EFAE,在Rt△ABF中,∠ABF=60°,∴AF=AB•sin60°=BF=12AB=2,∴28,∴EF,在Rt△BFE中,BE5,∵∠BOE=2∠BAE=60°,OB=OE,∴△OBE是等边三角形,∴r =47; ③当AE ⊥AB 时,∠BAE =90°,∴AE 为⊙O 的直径,∴∠BPE =90°,如图3﹣3,过点D 作BC 的垂线,交BC 的延长线于点N ,延开PE 交AD 于点Q , 在Rt △DCN 中,∠DCN =60°,DC =4,∴DN =DC •sin60°=23,CN =12CD =2, ∴PQ =DN =23,设QE =x ,则PE =23﹣x ,在Rt △AEQ 中,∠QAE =∠BAD ﹣BAE =30°,∴AE =2QE =2x ,∵PE ∥DN ,∴△BPE ∽△BND ,∴PE DN =BP BN , ∴2323x -=BP 10, ∴BP =10﹣53x , 在Rt △ABE 与Rt △BPE 中,AB 2+AE 2=BP 2+PE 2,∴16+4x 2=(10﹣53x )2+(23﹣x )2, 解得,x 1=63(舍),x 2=3,∴AE =23,∴BE =22AB AE +=224(23)+=27,∴r =7,∴⊙O 的半径为2或47或7.【点睛】此题主要考查圆与几何综合,解题的关键是熟知圆的基本性质、勾股定理及相似三角形的判定与性质.9.(1)①补图见解析;②证明见解析;(2)FB=21【解析】【分析】(1)①根据题意,补全图形即可;②由CD⊥OA可得∠ODC+∠AOD=90°,根据垂径定理可得AD AC=,利用等量代换可得AD CE=,根据圆周角定理可得∠EOC=∠AOD,由切线性质可得OC⊥FC,可得∠OFC+∠FOC=90°,即可证明∠OFC=∠ODC;(2)连接BF,作BG⊥l于G,根据OB=12OA,可得∠OCB=30°,利用勾股定理可求出BC的长,根据垂径定理可得CD的长,由(1)可知∠OFC=∠ODC,可得FC=CD,由BG⊥l,OC⊥l可得OC//BG,根据平行线的性质可得∠CBG=30°,根据含30°角的直角三角形的性质可求出CG的长,利用勾股定理可求出BG的长,即可求出FG的长,利用勾股定理求出FB 的长即可.【详解】(1)①延长OE,交直线l于F,如图即为所求,②∵OA⊥CD,OA为⊙O半径,∴AD AC=,∵CE CA=,∴AD CE=,∴∠EOC=∠AOD,∵FC是⊙O的切线,∴OC⊥FC,∴∠OFC+∠FOC=90°,∴∠OFC=∠ODC.(2)连接BF,作BG⊥l于G,∵B是OA的中点,⊙O半径为4,∴OB=12OA=12OC=2,∵OA⊥CD,∴∠OCD=30°,22OC OB-2242-3∴CD=2BC=43由(1)可知∠OFC=∠ODC,∴FC=CD=3∵BG⊥l,OC⊥l,∴OC//BG,∴∠CBG=∠OCD=30°,∴CG=12322BC CG-,∴FG=FC+CG=53,∴22FG BG+21【点睛】本题考查切线的性质、垂径定理、含30°角的直角三角形的性质及勾股定理,圆的切线垂直于过切点的半径;垂直于弦的直径平分弦,并且平分弦所对的两条弧;30°角所对的直角边,等于斜边的一半;熟练掌握相关性质及定理是解题关键.10.(1)y=﹣14x2+x+3,顶点B的坐标为(2,4);(2)(i)点E的坐标为(85,3)或(125,3);(ii)存在;当点G落在y轴上的同时点F恰好落在抛物线上,此时AE的长为43.【解析】【分析】(1)由题意得出21441,43,124b cb⎧-⨯++=⎪⎪⎨-=⎪⎛⎫⨯-⎪ ⎪⎝⎭⎩,解得1,3,bc=⎧⎨=⎩,得出抛物线的函数表达式为:y=﹣14x2+x+3=﹣14(x﹣2)2+4,即可得出顶点B的坐标为(2,4);(2)(i)求出C(0,3),设点E的坐标为(m,3),求出直线BE的函数表达式为:y=12m--x+462mm--,则点M的坐标为(4m﹣6,0),由题意得出OC=3,AC=4,OM=4m﹣6,CE=m,则S矩形ACOD=12,S梯形ECOM=15182m-,分两种情况求出m的值即可;(ii)过点F作FN⊥AC于N,则NF∥CG,设点F的坐标为:(a,﹣14a2+a+3),则NF=3﹣(﹣14a2+a+3)=14a2﹣a,NC=﹣a,证△EFN≌△DGO(ASA),得出NE=OD=AC=4,则AE=NC=﹣a,证△ENF∽△DAE,得出NF NEAE AD=,求出a=﹣43或0,当a=0时,点E与点A重合,舍去,得出AE=NC=﹣a=43,即可得出结论.【详解】(1)∵抛物线y=﹣14x2+bx+c经过点A(4,3),对称轴是直线x=2,∴21441, 43,124b cb⎧-⨯++=⎪⎪⎨-=⎪⎛⎫⨯-⎪ ⎪⎝⎭⎩解得1,3, bc=⎧⎨=⎩∴抛物线的函数表达式为:y=﹣14x2+x+3,∵y=﹣14x2+x+3=﹣14(x﹣2)2+4,∴顶点B的坐标为(2,4);(2)(i)∵y=﹣14x2+x+3,∴x=0时,y=3,则C点的坐标为(0,3),∵A(4,3),∴AC∥OD,∵AD⊥x,∴四边形ACOD是矩形,设点E的坐标为(m,3),直线BE的函数表达式为:y=kx+n,直线BE交x轴于点M,如图1所示:则24,3, k nmk n+=⎧⎨+=⎩解得:1,246,2kmmnm-⎧=⎪⎪-⎨-⎪=⎪-⎩,∴直线BE的函数表达式为:y=12m--x+462mm--,令:y=12m--x+462mm--=0,则x=4m﹣6,∴点M的坐标为(4m﹣6,0),∵直线BE将四边形ACOD分成面积比为1:3的两部分,∴点M在线段OD上,点M不与点O重合,∵C(0,3),A(4,3),M(4m﹣6,0),E(m,3),∴OC=3,AC=4,OM=4m﹣6,CE=m,∴S矩形ACOD=OC•AC=3×4=12,S梯形ECOM=12(OM+EC)•OC=12(4m﹣6+m)×3=15182m-,分两种情况:①S ECOMS ACOD梯形矩形=14,即1518212m-=14,解得:m=85,∴点E的坐标为:(85,3);②S ECOMS ACOD梯形矩形=34,即1518212m-=34,解得:m=125,∴点E的坐标为:(125,3);综上所述,点E的坐标为:(85,3)或(125,3);(ii)存在点G落在y轴上的同时点F恰好落在抛物线上;理由如下:由题意得:满足条件的矩形DEFG在直线AC的下方,过点F作FN⊥AC于N,则NF∥CG,如图2所示:设点F的坐标为:(a,﹣14a2+a+3),则NF=3﹣(﹣14a2+a+3)=14a2﹣a,NC=﹣a,∵四边形DEFG与四边形ACOD都是矩形,∴∠DAE=∠DEF=∠N=90°,EF=DG,EF∥DG,AC∥OD,∴∠NEF=∠ODG,∠EMC=∠DGO,∵NF∥CG,∴∠EMC=∠EFN,∴∠EFN=∠DGO,在△EFN和△DGO中,∠NEF=∠ODG,EF=DG,∠EFN=∠DGO,∴△EFN≌△DGO(ASA),∴NE=OD=AC=4,∴AC﹣CE=NE﹣CE,即AE=NC=﹣a,∵∠DAE=∠DEF=∠N=90°,∴∠NEF+∠EFN=90°,∠NEF+∠DEA=90°,∴∠EFN=∠DEA,∴△ENF∽△DAE,∴NE NFAD AE=,即43=214a aa--,整理得:34a2+a=0,解得:a=﹣43或0,当a=0时,点E与点A重合,∴a=0舍去,∴AE=NC=﹣a=43,∴当点G落在y轴上的同时点F恰好落在抛物线上,此时AE的长为43.【点睛】本题是二次函数综合题目,考查了二次函数解析式的求法、二次函数的性质、一次函数解析式的求法、坐标与图形性质、矩形的判定与性质、全等三角形的判定与性质、相似三角形的判定与性质、梯形面积公式等知识;本题综合性强,属于中考压轴题型.11.(1)21322y x x=-++;(2)92;(3)点P的坐标为:3(2,)2或(4,52-)或(4-,212-).【解析】【分析】(1)由图可知点B、点D的坐标,利用待定系数法,即可求出抛物线的解析式;(2)过点M作ME⊥AB于点E,由二次函数的性质,分别求出点A、C、M的坐标,然后得到OE、BE的长度,再利用切割法求出四边形的面积即可;(3)由点Q在y轴上,设Q(0,y),由平行四边形的性质,根据题意可分为:①当AB 为对角线时;②当BQ2为对角线时;③当AQ3为对角线时;分别求出三种情况的点P的坐标,即可得到答案.【详解】解:(1)根据题意,抛物线212y x bx c=-++经过B、D两点,点D为(2-,52-),点B为(3,0),则2215(2)22213302b cb c⎧-⨯--+=-⎪⎪⎨⎪-⨯++=⎪⎩,解得:132bc=⎧⎪⎨=⎪⎩,∴抛物线的解析式为21322y x x=-++;(2)∵22131(1)2222y x x x=-++=--+,∴点M的坐标为(1,2)令21322x x-++=,解得:11x=-,23x=,∴点A为(1-,0);令0x=,则32y=,∴点C为(0,32);∴OA=1,OC=32,过点M作ME⊥AB于点E,如图:∴2ME =,1OE =,2BE =,∴111()222ABMC S OA OC OC ME OE BE ME =•++•+•四边形, ∴131313791(2)122222222442ABMC S =⨯⨯+⨯+⨯+⨯⨯=++=四边形; (3)根据题意,点Q 在y 轴上,则设点Q 为(0,y ),∵点P 在抛物线上,且以点A 、B 、P 、Q 为顶点的四边形是平行四边形,如图所示,可分为三种情况进行分析:①AB 为对角线时,则11PQ 为对角线;由平行四边形的性质,∴点E 为AB 和11PQ 的中点,∵E 为(1,0),∵点Q 1为(0,y ),∴点P 1的横坐标为2;当2x =时,代入21322y x x =-++, ∴32y =, ∴点13(2,)2P ;②当BQ 2是对角线时,AP 也是对角线,∵点B (3,0),点Q 2(0,y ),∴BQ 2中点的横坐标为32, ∵点A 为(1-,0),∴点P 2的横坐标为4,当4x =时,代入21322y x x =-++, ∴52y =-, ∴点P 2的坐标为(4,52-); ③当AQ 3为对角线时,BP 3也是对角线;∵点A 为(1-,0),点Q 3(0,y ),∴AQ 3的中点的横坐标为12-, ∵点B (3,0),∴点P 3的横坐标为4-,当4x =-时,代入21322y x x =-++, ∴212y =-, ∴点P 3的坐标为(4-,212-); 综合上述,点P 的坐标为:3(2,)2或(4,52-)或(4-,212-). 【点睛】本题考查了二次函数的性质,平行四边形的性质,解一元二次方程,以及坐标与图形等知识,解题的关键是熟练掌握二次函数的性质进行解题,注意利用分类讨论和数形结合的思想进行分析.12.(1)4﹣23;(2)32;(3)4﹣5≤S≤4+5【解析】【分析】(1)在Rt△DCG中,利用勾股定理求出DG即可解决问题;(2)首先证明AH=CH,设AH=CH=m,则DH=AD﹣HD=4﹣m,在Rt△DHC中,根据CH2=CD2+DH2,构建方程求出m即可解决问题;(3)如图,当点G在对角线AC上时,△OGE的面积最小,当点G在AC的延长线上时,△OE′G′的面积最大,分别求出面积的最小值,最大值即可解决问题.【详解】解:(1)如图1中,∵四边形ABCD是矩形,∴BC=AD=CG=4,∠D=90°,∵AB=CD=2,∴DG=22CDCG-=2242-=23,∴AG=AB﹣BG=4﹣23,故答案为:4﹣23.(2)如图2中,由四边形CGEF是矩形,得到∠CGE=90°,∵点G在线段AE上,∴∠AGC=90°,∵CA=CA,CB=CG,∴Rt△ACG≌Rt△ACB(HL).∴∠ACB=∠ACG,∵AB∥CD∴∠ACG=∠DAC,∴∠ACH=∠HAC,∴AH=CH,设AH=CH=m,则DH=AD﹣AH=5﹣m,在Rt△DHC中,∵CH2=DC2+DH2,∴m2=22+(4﹣m)2,∴m=52,∴AH=52,GH=22AH AG-=22522⎛⎫-⎪⎝⎭=32.(3)在Rt△ABC中,2225AC AB BC=+=,152OC AC,由题可知,G点在以C点为圆心,BC为半径的圆上运动,且GE与该圆相切,因为GE=AB 不变,所以O到直线GE的距离即为△OGE的高,当点G在对角线AC上时,OG最短,即△OGE的面积最小,最小值=12×OG×EG=12×2×(4﹣5)=4﹣5.当点G在AC的延长线上时,OG最长,即△OE′G′的面积最大.最大值=12×E′G′×OG′=12×2×(4+5)=4+5.综上所述,455【点睛】本题考查求一点到圆上点距离的最值、矩形的性质、全等三角形的判定和性质、旋转变换、勾股定理.(1)比较简单,掌握勾股定理和旋转的性质是解决此问的关键;(2)能表示Rt△DHC三边,借助方程思想是解决此问的关键;(2)理解线段GE的运动轨迹,得出面积最小(大)时G点的位置是解决此问的关键.。
初三九年级数学上册数学压轴题测试与练习(word解析版)
初三九年级数学上册数学压轴题测试与练习(word 解析版)一、压轴题1.如图①,A (﹣5,0),OA =OC ,点B 、C 关于原点对称,点B (a ,a +1)(a >0). (1)求B 、C 坐标; (2)求证:BA ⊥AC ;(3)如图②,将点C 绕原点O 顺时针旋转α度(0°<α<180°),得到点D ,连接DC ,问:∠BDC 的角平分线DE ,是否过一定点?若是,请求出该点的坐标;若不是,请说明理由.2.如图,在四边形ABCD 中,9054ABC BCD AB BC cm CD cm ∠=∠=︒===,,点P 从点C 出发以1/cm s 的速度沿CB 向点B 匀速移动,点M 从点A 出发以15/cm s 的速度沿AB 向点B 匀速移动,点N 从点D 出发以/acm s 的速度沿DC 向点C 匀速移动.点P M N 、、同时出发,当其中一个点到达终点时,其他两个点也随之停止运动,设移动时间为ts . (1)如图①,①当a 为何值时,点P B M 、、为顶点的三角形与PCN △全等?并求出相应的t 的值; ②连接AP BD 、交于点E ,当AP BD ⊥时,求出t 的值; (2)如图②,连接AN MD 、交于点F .当3883a t ==,时,证明:ADF CDF S S ∆∆=.3.如图,在矩形ABCD 中,AB=20cm ,BC=4cm ,点p 从A 开始折线A ——B ——C ——D 以4cm/秒的 速度 移动,点Q 从C 开始沿CD 边以1cm/秒的速度移动,如果点P 、Q 分别从A 、C 同时出发,当其中一点到达D 时,另一点也随之停止运动,设运动的时间t (秒)(1)t 为何值时,四边形APQD 为矩形.(2)如图(2),如果⊙P 和⊙Q 的半径都是2cm ,那么t 为何值时,⊙P 和⊙Q 外切? 4.如图①,O 经过等边ABC 的顶点A ,C (圆心O 在ABC 内),分别与AB ,CB 的延长线交于点D ,E ,连结DE ,BF EC ⊥交AE 于点F . (1)求证:BD BE =.(2)当:3:2AF EF =,6AC =,求AE 的长.(3)当:3:2AF EF =,AC a =时,如图②,连结OF ,OB ,求OFB △的面积(用含a 的代数式表示).5.问题发现:(1)如图①,正方形ABCD 的边长为4,对角线AC 、BD 相交于点O ,E 是AB 上点(点E 不与A 、B 重合),将射线OE 绕点O 逆时针旋转90°,所得射线与BC 交于点F ,则四边形OEBF 的面积为 . 问题探究:(2)如图②,线段BQ =10,C 为BQ 上点,在BQ 上方作四边形ABCD ,使∠ABC =∠ADC =90°,且AD =CD ,连接DQ ,求DQ 的最小值;问题解决:(3)“绿水青山就是金山银山”,某市在生态治理活动中新建了一处南山植物园,图③为南山植物园花卉展示区的部分平面示意图,在四边形ABCD 中,∠ABC =∠ADC =90°,AD =CD ,AC =600米.其中AB 、BD 、BC 为观赏小路,设计人员考虑到为分散人流和便观赏,提出三条小路的长度和要取得最大,试求AB +BD +BC 的最大值. 6.数学概念若点P 在ABC ∆的内部,且APB ∠、BPC ∠和CPA ∠中有两个角相等,则称P 是ABC ∆的“等角点”,特别地,若这三个角都相等,则称P 是ABC ∆的“强等角点”. 理解概念(1)若点P 是ABC ∆的等角点,且100APB ∠=,则BPC ∠的度数是 . (2)已知点D 在ABC ∆的外部,且与点A 在BC 的异侧,并满足180BDC BAC ∠+∠<,作BCD ∆的外接圆O ,连接AD ,交圆O 于点P .当BCD ∆的边满足下面的条件时,求证:P 是ABC ∆的等角点.(要求:只选择其中一道题进行证明!)①如图①,DB DC = ②如图②,BC BD =深入思考(3)如图③,在ABC ∆中,A ∠、B 、C ∠均小于120,用直尺和圆规作它的强等角点Q .(不写作法,保留作图痕迹)(4)下列关于“等角点”、“强等角点”的说法: ①直角三角形的内心是它的等角点; ②等腰三角形的内心和外心都是它的等角点; ③正三角形的中心是它的强等角点;④若一个三角形存在强等角点,则该点到三角形三个顶点的距离相等;⑤若一个三角形存在强等角点,则该点是三角形内部到三个顶点距离之和最小的点,其中正确的有 .(填序号)7.我们知道,如图1,AB 是⊙O 的弦,点F 是AFB 的中点,过点F 作EF ⊥AB 于点E ,易得点E 是AB 的中点,即AE =EB .⊙O 上一点C (AC >BC ),则折线ACB 称为⊙O 的一条“折弦”.(1)当点C在弦AB的上方时(如图2),过点F作EF⊥AC于点E,求证:点E是“折弦ACB”的中点,即AE=EC+CB.(2)当点C在弦AB的下方时(如图3),其他条件不变,则上述结论是否仍然成立?若成立说明理由;若不成立,那么AE、EC、CB满足怎样的数量关系?直接写出,不必证明.(3)如图4,已知Rt△ABC中,∠C=90°,∠BAC=30°,Rt△ABC的外接圆⊙O的半径为2,过⊙O上一点P作PH⊥AC于点H,交AB于点M,当∠PAB=45°时,求AH的长.8.如图,Rt△ABC,CA⊥BC,AC=4,在AB边上取一点D,使AD=BC,作AD的垂直平分线,交AC边于点F,交以AB为直径的⊙O于G,H,设BC=x.(1)求证:四边形AGDH为菱形;(2)若EF=y,求y关于x的函数关系式;(3)连结OF,CG.①若△AOF为等腰三角形,求⊙O的面积;②若BC=3,则30CG+9=______.(直接写出答案).9.【问题学习】小芸在小组学习时问小娟这样一个问题:已知α为锐角,且sinα=13,求sin2α的值.小娟是这样给小芸讲解的:构造如图1所示的图形,在⊙O 中,AB 是直径,点C 在⊙O 上,所以∠ACB=90°,作CD ⊥AB 于D .设∠BAC=α,则sinα=13BC AB =,可设BC=x ,则AB=3x ,…. 【问题解决】(1)请按照小娟的思路,利用图1求出sin2α的值;(写出完整的解答过程)(2)如图2,已知点M ,N ,P为⊙O 上的三点,且∠P=β,sinβ=35 ,求sin2β的值.10.如图,B 是O 的半径OA 上的一点(不与端点重合),过点B 作OA 的垂线交O 于点C ,D ,连接OD ,E 是O 上一点,CE CA =,过点C 作O 的切线l ,连接OE 并延长交直线l 于点F.(1)①依题意补全图形. ②求证:∠OFC=∠ODC . (2)连接FB ,若B 是OA 的中点,O 的半径是4,求FB 的长.11.如图,抛物线y =ax 2-4ax +b 交x 轴正半轴于A 、B 两点,交y 轴正半轴于C ,且OB =OC =3.(1) 求抛物线的解析式;(2) 如图1,D 为抛物线的顶点,P 为对称轴左侧抛物线上一点,连接OP 交直线BC 于G ,连GD .是否存在点P ,使2GDGO=P 的坐标;若不存在,请说明理由; (3) 如图2,将抛物线向上平移m 个单位,交BC 于点M 、N .若∠MON =45°,求m 的值.12.如图,扇形OMN的半径为1,圆心角为90°,点B是上一动点,BA⊥OM于点A,BC⊥ON于点C,点D、E、F、G分别是线段OA、AB、BC、CO的中点,GF与CE相交于点P,DE与AG相交于点Q.(1)当点B移动到使AB:OA=:3时,求的长;(2)当点B移动到使四边形EPGQ为矩形时,求AM的长.(3)连接PQ,试说明3PQ2+OA2是定值.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)点B(3,4),点C(﹣3,﹣4);(2)证明见解析;(3)定点(4,3);理由见解析.【解析】【分析】(1)由中心对称的性质可得OB=OC=5,点C(﹣a,﹣a﹣1),由两点距离公式可求a 的值,即可求解;(2)由两点距离公式可求AB,AC,BC的长,利用勾股定理的逆定理可求解;(3)由旋转的性质可得DO=BO=CO,可得△BCD是直角三角形,以BC为直径,作⊙O,连接OH,DE与⊙O交于点H,由圆周角定理和角平分线的性质可得∠HBC=∠CDE =45°=∠BDE=∠BCH,可证CH=BH,∠BHC=90°,由两点距离公式可求解.【详解】解:(1)∵A (﹣5,0),OA =OC , ∴OA =OC =5,∵点B 、C 关于原点对称,点B (a ,a +1)(a >0), ∴OB =OC =5,点C (﹣a ,﹣a ﹣1), ∴5=()()220+10a a -+-,∴a =3, ∴点B (3,4), ∴点C (﹣3,﹣4);(2)∵点B (3,4),点C (﹣3,﹣4),点A (﹣5,0), ∴BC =10,AB =45 ,AC =25, ∵BC 2=100,AB 2+AC 2=80+20=100, ∴BC 2=AB 2+AC 2, ∴∠BAC =90°, ∴AB ⊥AC ; (3)过定点, 理由如下:∵将点C 绕原点O 顺时针旋转α度(0°<α<180°),得到点D , ∴CO =DO , 又∵CO =BO , ∴DO =BO =CO , ∴△BCD 是直角三角形, ∴∠BDC =90°,如图②,以BC 为直径,作⊙O ,连接OH ,DE 与⊙O 交于点H ,∵DE 平分∠BDC , ∴∠BDE =∠CDE =45°,∴∠HBC =∠CDE =45°=∠BDE =∠BCH , ∴CH =BH ,∠BHC =90°, ∵BC =10,∴BH =CH =2,OH =OB =OC =5,设点H (x ,y ), ∵点H 在第四象限, ∴x <0,y >0,∴x 2+y 2=25,(x ﹣3)2+(y ﹣4)2=50, ∴x =4,y =3, ∴点H (4,﹣3),∴∠BDC 的角平分线DE 过定点H (4,3). 【点睛】本题是几何变换综合题,考查了中心对称的性质,直角三角形的性质,角平分线的性质,圆的有关知识,勾股定理的逆定理,两点距离公式等知识,灵活运用这些性质解决问题是本题的关键.2.(1)① 2.5t =, 1.1a =或2t =,0.5a =;②1t =;(2)见解析 【解析】 【分析】(1)①当PBM PCN ≅△△时或当MBP PCN ≅△△时,分别列出方程即可解决问题; ②当AP BD ⊥时,由ABP BCD ≅△△,推出BP CD =,列出方程即可解决问题; (2)如图②中,连接AC 交MD 于O 只要证明AOM COD ≅△△,推出OA OC =,可得ADO CDO S S ∆∆=,AFO CFO S S ∆∆=,推出ADO AFO CDO CFO S S S S ∆∆∆∆-=-,即ADF CDF S S ∆∆=;【详解】解:(1)①90ABC BCD ∠=∠=︒,∴当PBM PCN ≅△△时,有BM NC =,即5t t -=①5 1.54t at -=-②由①②可得 1.1a =, 2.5t =.当MBP PCN ≅△△时,有BM PC =,BP NC =,即5 1.5t t -=③ 54t at -=-④,由③④可得0.5a =,2t =.综上所述,当 1.1a =, 2.5t =或0.5a =,2t =时,以P 、B 、M 为顶点的三角形与PCN △全等; ②AP BD ⊥, 90BEP ∴∠=︒,90APB CBD ∴∠+∠=︒,90ABC ∠=︒,90APB BAP ∴∠+∠=︒, BAP CBD ∴∠=∠,在ABP △和BCD 中,BAP CBD AB BCABC BCD ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ABP BCD ASA ∴≅△△,BP CD ∴=, 即54t -=, 1t ∴=;(2)当38a =,83t =时,1DN at ==,而4CD =,DN CD ∴<,∴点N 在点C 、D 之间, 1.54AM t ==,4CD =, AM CD ∴=,如图②中,连接AC 交MD 于O , 90ABC BCD ∠=∠=︒, 180ABC BCD ∴∠+∠=︒, //AB BC ∴,AMD CDM ∴∠=∠,BAC DCA ∠=∠, 在AOM 和COD △中, AMD CDM AM CDBAC DCA ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()AOM COD ASA ∴≅△△,OA OC ∴=,ADO CDO S S ∆∆∴=,AFO CFO S S ∆∆=, ADO AFO CDO CFO S S S S ∆∆∆∆∴-=-, ADF CDF S S ∆∆∴=.【点睛】本题考查三角形综合题、全等三角形的判定和性质、等高模型等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题. 3.(1)4;(2)t 为4s ,203s ,283s 时,⊙P 与⊙Q 外切. 【解析】试题分析:(1)四边形APQD为矩形,也就是AP=DQ,分别用含t的代数式表示,解即可;(2)主要考虑有四种情况,一种是P在AB上,一种是P在BC上时.一种是P在CD上时,又分为两种情况,一种是P在Q右侧,一种是P在Q左侧.并根据每一种情况,找出相等关系,解即可.试题解析:(1)根据题意,当AP=DQ时,四边形APQD为矩形.此时,4t=20-t,解得t=4(s).答:t为4时,四边形APQD为矩形(2)当PQ=4时,⊙P与⊙Q外切.①如果点P在AB上运动.只有当四边形APQD为矩形时,PQ=4.由(1),得t=4(s);②如果点P在BC上运动.此时t≥5,则CQ≥5,PQ≥CQ≥5>4,∴⊙P与⊙Q外离;③如果点P在CD上运动,且点P在点Q的右侧.可得CQ=t,CP=4t-24.当CQ-CP=4时,⊙P与⊙Q外切.此时,t-(4t-24)=4,解得t=203(s);④如果点P在CD上运动,且点P在点Q的左侧.当CP-CQ=4时,⊙P与⊙Q外切.此时,4t-24-t=4,解得t=283(s),∵点P从A开始沿折线A-B-C-D移动到D需要11s,点Q从C开始沿CD边移动到D需要20s,而283<11,∴当t为4s,203s,283s时,⊙P与⊙Q外切.考点:1.矩形的性质;2.圆与圆的位置关系.4.(1)证明见解析;(2)2【解析】【分析】(1)根据△ABC是等边三角形,从而可以得出∠BAC=∠C,结合圆周角定理即可证明;(2)过点A作AG⊥BC于点G,根据△ABC是等边三角形,可以得到BG、AG的值,由BF∥AG可得到AF BGEF EB=,求出BE,最后利用勾股定理即可求解;(3)过点O作OM⊥BC于点M,由题(2)知AF BGEF EB=,CG=BG=1122AC a=,可以得到BM的值,根据BF∥AG,可证得△EBF∽△EGA,列比例式求出BF,从而表示出△OFB的面积.【详解】(1)证明:∵△ABC是等边三角形,∴∠BAC=∠C=60°,∵∠DEB=∠BAC=60°,∠D=∠C=60°,∴∠DEB=∠D , ∴BD=BE ;(2)解:如图所示,过点A 作AG ⊥BC 于点G ,∵△ABC 是等边三角形,AC=6,∴BG=11322BC AC ==, ∴在Rt △ABG 中,333AG BG ==,∵BF ⊥EC , ∴BF ∥AG ,∴AF BG EF EB=, ∵AF :EF=3:2,∴BE=23BG=2, ∴EG=BE+BG=3+2=5,在Rt △AEG 中,()2222335213AE AG EG =+=+=(3)解:如图所示,过点O 作OM ⊥BC 于点M ,由题(2)知AF BG EF EB =,CG=BG=1122AC a =, ∴3=2AF BG EF EB =, ∴22113323EB BG a a ==⨯=, ∴EC=CG+BG+BE=11142233a a a a ++=,∴EM=12EC=23a,∴BM=EM-BE=211 333a a a-=,∵BF∥AG,∴△EBF∽△EGA,∴123=11532aBF BEAG EG a a==+,∵332AG BG a==,∴2335BF a a=⨯=,∴△OFB的面积=21313223BF BMa a a⋅=⨯⨯=.【点睛】本题主要考查了圆的综合题,关键是根据等边三角形的性质,勾股定理和相似三角形的判定和性质求解.5.(1)4;(2)52;(3)600(2+1).【解析】【分析】(1)如图①中,证明△EOB≌△FOC即可解决问题;(2)如图②中,连接BD,取AC的中点O,连接OB,OD.利用四点共圆,证明∠DBQ=∠DAC=45°,再根据垂线段最短即可解决问题.(3)如图③中,将△BDC绕点D顺时针旋转90°得到△EDA,首先证明AB+BC+BD=(2+1)BD,当BD最大时,AB+BC+BD的值最大.【详解】解:(1)如图①中,∵四边形ABCD是正方形,∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,∵∠EOF=90°,∴∠EOF=∠BOC,∴∠EOB=∠FOC,∴△EOB≌△FOC(SAS),∴S△EOB=S△OFC,∴S四边形OEBF=S△OBC=14•S正方形ABCD=4,故答案为:4;(2)如图②中,连接BD,取AC的中点O,连接OB,OD.∵∠ABD=∠ADC=90°,AO=OC,∴OA=OC=OB=OD,∴A,B,C,D四点共圆,∴∠DBC=∠DAC,∵DA=DC,∠ADC=90°,∴∠DAC=∠DCA=45°,∴∠DBQ=45°,根据垂线段最短可知,当QD⊥BD时,QD的值最短,DQ的最小值=22BQ=52.(3)如图③中,将△BDC绕点D顺时针旋转90°得到△EDA,∵∠ABC+∠ADC=180°,∴∠BCD+∠BAD=∠EAD+BAD=180°,∴B,A,E三点共线,∵DE=DB,∠EDB=90°,∴BE2BD,∴AB+BC=AB+AE=BE2BD,∴BC +BC +BD +1)BD ,∴当BD 最大时,AB +BC +BD 的值最大,∵A ,B ,C ,D 四点共圆,∴当BD 为直径时,BD 的值最大,∵∠ADC =90°,∴AC 是直径,∴BD =AC 时,AB +BC +BD 的值最大,最大值=600+1).【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,四点共圆,圆周角定理,垂线段最短等知识,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,学会用转化的思想思考问题,属于中考常考题型.6.(1)100、130或160;(2)选择①或②,理由见解析;(3)见解析;(4)③⑤【解析】【分析】(1)根据“等角点”的定义,分类讨论即可;(2)①根据在同圆中,弧和弦的关系和同弧所对的圆周角相等即可证明;②弧和弦的关系和圆的内接四边形的性质即可得出结论;(3)根据垂直平分线的性质、等边三角形的性质、弧和弦的关系和同弧所对的圆周角相等作图即可;(4)根据“等角点”和“强等角点”的定义,逐一分析判断即可.【详解】(1)(i )若APB ∠=BPC ∠时,∴BPC ∠=APB ∠=100°(ii )若BPC CPA ∠=∠时, ∴12BPC CPA ∠=∠=(360°-APB ∠)=130°; (iii )若APB ∠=CPA ∠时,BPC ∠=360°-APB ∠-CPA ∠=160°,综上所述:BPC ∠=100°、130°或160°故答案为:100、130或160.(2)选择①:连接,PB PC ∵DB DC =∴=DB DC∴BPD CPD ∠=∠∵180APB BPD ∠+∠=,180APC CPD ∠+∠=∴APB APC ∠=∠∴P 是ABC ∆的等角点.选择②连接,PB PC∵BC BD =∴BC BD =∴BDC BPD ∠=∠∵四边形PBDC 是圆O 的内接四边形,∴180BDC BPC ∠+∠=∵180BPD APB ∠+∠=∴BPC APB ∠=∠∴P 是ABC ∆的等角点(3)作BC 的中垂线MN ,以C 为圆心,BC 的长为半径作弧交MN 与点D ,连接BD , 根据垂直平分线的性质和作图方法可得:BD=CD=BC∴△BCD 为等边三角形∴∠BDC=∠BCD=∠DBC=60°作CD 的垂直平分线交MN 于点O以O 为圆心OB 为半径作圆,交AD 于点Q ,圆O 即为△BCD 的外接圆∴∠BQC=180°-∠BDC=120°∵BD=CD∴∠BQD=∠CQD∴∠BQA=∠CQA=12(360°-∠BQC )=120° ∴∠BQA=∠CQA=∠BQC如图③,点Q 即为所求. (4)③⑤.①如下图所示,在RtABC 中,∠ABC=90°,O 为△ABC 的内心假设∠BAC=60°,∠ACB=30°∵点O 是△ABC 的内心∴∠BAO=∠CAO=12∠BAC=30°,∠ABO=∠CBO=12∠ABC=45°,∠ACO=∠BCO=12∠ACB=15° ∴∠AOC=180°-∠CAO -∠ACO=135°,∠AOB=180°-∠BAO -∠ABO=105°,∠BOC=180°-∠CBO -∠BCO=120°显然∠AOC ≠∠AOB ≠∠BOC ,故①错误;②对于钝角等腰三角形,它的外心在三角形的外部,不符合等角点的定义,故②错误; ③正三角形的每个中心角都为:360°÷3=120°,满足强等角点的定义,所以正三角形的中心是它的强等角点,故③正确;④由(3)可知,点Q 为△ABC 的强等角,但Q 不在BC 的中垂线上,故QB ≠QC ,故④错误;⑤由(3)可知,当ABC ∆的三个内角都小于120时,ABC ∆必存在强等角点Q . 如图④,在三个内角都小于120的ABC ∆内任取一点'Q ,连接'Q A 、'Q B 、'Q C ,将'Q AC ∆绕点A 逆时针旋转60到MAD ∆,连接'Q M ,∵由旋转得'Q A MA =,'Q C MD =,'60Q AM ∠=∴'AQ M ∆是等边三角形.∴''Q M Q A =∴'''''Q A Q B Q C Q M Q B MD ++=++∵B 、D 是定点,∴当B 、'Q 、M 、D 四点共线时,''Q M Q B MD ++最小,即'''Q A Q B Q C ++最小.而当'Q 为ABC ∆的强等角点时,'''120AQ B BQ C CQ A AMD ∠=∠=∠==∠, 此时便能保证B 、'Q 、M 、D 四点共线,进而使'''Q A Q B Q C ++最小.故答案为:③⑤.【点睛】此题考查的是新定义类问题、圆的基本性质、圆周角定理、圆的内接多边形综合大题,掌握“等角点”和“强等角点”的定义、圆的基本性质、圆周角定理、圆的内接多边形中心角公式和分类讨论的数学思想是解决此题的关键.7.(1)见解析;(2)结论AE=EC+CB不成立,新结论为:CE=BC+AE,见解析;(3)AH的长为3﹣1或3+1.【解析】【分析】(1)在AC上截取AG=BC,连接FA,FG,FB,FC,证明△FAG≌△FBC,根据全等三角形的性质得到FG=FC,根据等腰三角形的性质得到EG=EC,即可证明.(2)在CA上截取CG=CB,连接FA,FB,FC,证明△FCG≌△FCB,根据全等三角形的性质得到FG=FB,得到FA=FG,根据等腰三角形的性质得到AE=GE,即可证明.(3)分点P在弦AB上方和点P在弦AB下方两种情况进行讨论.【详解】解:(1)如图2,在AC上截取AG=BC,连接FA,FG,FB,FC,∵点F是AFB的中点,FA=FB,在△FAG和△FBC中,,FA FBFAG FBCAG BC=⎧⎪∠=∠⎨⎪=⎩∴△FAG≌△FBC(SAS),∴FG=FC,∵FE ⊥AC ,∴EG =EC ,∴AE =AG+EG =BC+CE ;(2)结论AE =EC+CB 不成立,新结论为:CE =BC+AE ,理由:如图3,在CA 上截取CG =CB ,连接FA ,FB ,FC ,∵点F 是AFB 的中点,∴FA =FB , FA FB =,∴∠FCG =∠FCB ,在△FCG 和△FCB 中,,CG CB FCG FCB FC FC =⎧⎪∠=∠⎨⎪=⎩∴△FCG ≌△FCB (SAS ),∴FG =FB ,∴FA =FG ,∵FE ⊥AC ,∴AE =GE ,∴CE =CG+GE =BC+AE ;(3)在Rt △ABC 中,AB =2OA =4,∠BAC =30°,∴12232BC AB AC ===,, 当点P 在弦AB 上方时,如图4,在CA 上截取CG =CB ,连接PA ,PB ,PG ,∵∠ACB =90°,∴AB 为⊙O 的直径,∴∠APB =90°,∵∠PAB =45°,∴∠PBA =45°=∠PAB ,∴PA =PB ,∠PCG =∠PCB ,在△PCG 和△PCB 中, ,CG CB PCG PCB PC PC =⎧⎪∠=∠⎨⎪=⎩∴△PCG ≌△PCB (SAS ),∴PG =PB ,∴PA =PG ,∵PH ⊥AC ,∴AH =GH ,∴AC =AH+GH+CG =2AH+BC ,∴22AH =+,∴1AH =,当点P 在弦AB 下方时,如图5, 在AC 上截取AG =BC ,连接PA ,PB ,PC ,PG∵∠ACB =90°,∴AB 为⊙O 的直径,∴∠APB =90°,∵∠PAB =45°,∴∠PBA =45°=∠PAB ,∴PA =PB ,在△PAG 和△PBC 中,,AG BC PAG PBC PA PB =⎧⎪∠=∠⎨⎪=⎩∴△PAG ≌△PBC (SAS ),∴PG =PC ,∵PH ⊥AC ,∴CH =GH ,∴AC =AG+GH+CH =BC+2CH ,∴22CH ,=+∴1CH =,∴)11AH AC CH =-==,即:当∠PAB =45°时,AH 的长为31- 或3 1.+【点睛】考查弧,弦的关系,全等三角形的判定与性质,等腰三角形的判定与性质等,综合性比较强,注意分类讨论思想方法在解题中的应用.8.(1)证明见解析;(2)y =18x 2(x >0);(3)①163π或8π或(17)π;②21【解析】【分析】(1)根据线段的垂直平分线的性质以及垂径定理证明AG=DG=DH=AH 即可; (2)只要证明△AEF ∽△ACB ,可得AE EF AC BC=解决问题; (3)①分三种情形分别求解即可解决问题; ②只要证明△CFG ∽△HFA ,可得GF AF =CG AH ,求出相应的线段即可解决问题; 【详解】(1)证明:∵GH 垂直平分线段AD ,∴HA =HD ,GA =GD ,∵AB 是直径,AB ⊥GH ,∴EG =EH ,∴DG =DH ,∴AG =DG =DH =AH ,∴四边形AGDH 是菱形.(2)解:∵AB 是直径,∴∠ACB =90°, ∵AE ⊥EF ,∴∠AEF =∠ACB =90°,∵∠EAF =∠CAB ,∴△AEF ∽△ACB ,∴AE EF AC BC=,∴124x yx=,∴y=18x2(x>0).(3)①解:如图1中,连接DF.∵GH垂直平分线段AD,∴FA=FD,∴当点D与O重合时,△AOF是等腰三角形,此时AB=2BC,∠CAB=30°,∴AB=83,∴⊙O的面积为163π.如图2中,当AF=AO时,∵AB22AC BC+216x+∴OA216x+,∵AF22EF AE+2221182x⎛⎫⎛⎫+⎪ ⎪⎝⎭⎝⎭∴2162x+=2221182x⎛⎫⎛⎫+⎪ ⎪⎝⎭⎝⎭,解得x=4(负根已经舍弃),∴AB=42,∴⊙O的面积为8π.如图2﹣1中,当点C与点F重合时,设AE=x,则BC=AD=2x,AB=2164x+,∵△ACE∽△ABC,∴AC2=AE•AB,∴16=x•2164x+,解得x2=217﹣2(负根已经舍弃),∴AB2=16+4x2=817+8,∴⊙O的面积=π•14•AB2=(217+2)π综上所述,满足条件的⊙O的面积为163π或8π或(217+2)π;②如图3中,连接CG.∵AC=4,BC=3,∠ACB=90°,∴AB=5,∴OH=OA=52,∴AE=32,∴OE=OA﹣AE=1,∴EG=EH2,∵EF=18x2=98,∴FG=2﹣98,AF158,AH2,∵∠CFG=∠AFH,∠FCG=∠AHF,∴△CFG∽△HFA,∴GF CG AF AH=,∴9281582-=∴CG=5﹣10,=.故答案为【点睛】本题考查圆综合题、相似三角形的判定和性质、垂径定理、线段的垂直平分线的性质、菱形的判定和性质、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用分类讨论的思想思考问题.9.(1;(2)sin2β=sin∠MON=2425.【解析】试题分析:(1)如图1中,⊙O中,AB是直径,点C在⊙O上,所以∠ACB=90°,作CD⊥AB于D.设∠BAC=α,则sinα=13BCAB=,可设BC=x,则AB=3x.利用面积法求出CD,在Rt△COD中,根据sin2α=CDOC,计算即可.(2)如图2中,连接NO,并延长交⊙O于点Q,连接MQ,MO,过点M作MR⊥NO于点R.首先证明∠MON=2∠Q=2β,在Rt△QMN中,由sinβ=35MNNQ=,设MN=3k,则NQ=5k,易得OM=12NQ=52k,可得MQ=22QN MN-=4k,由12•MN•MQ=12•NQ•MR,求出在Rt△MRO中,根据sin2β=sin∠MON=MROM,计算即可.试题解析:(1)如图1中,⊙O中,AB是直径,点C在⊙O上,所以∠ACB=90°,作CD⊥AB于D.设∠BAC=α,则sinα=13BCAB=,可设BC=x,则AB=3x.∴AC=22AB BC-=22(3)x x-=22x,∵12•AC•BC=12•AB•CD,∴CD=223 x,∵OA=OC,∴∠OAC=∠OCA=α,∴∠COB=2α,∴sin2α=CDOC=429.(2)如图2中,连接NO,并延长交⊙O于点Q,连接MQ,MO,过点M作MR⊥NO于点R.在⊙O中,∠NMQ=90°,∵∠Q=∠P=β,∴∠MON=2∠Q=2β,在Rt△QMN中,∵sinβ=35MNNQ=,∴设MN=3k,则NQ=5k,易得OM=12NQ=52k,∴22QN MN-=4k,∵1122 NMQSMN MQ NQ MR∆==,∴3k•4k=5k•MR∴MR=12k5,在Rt△MRO中,sin2β=sin∠MON=122455252kMRkOM==.考点:圆的综合题.10.(1)①补图见解析;②证明见解析;(2)FB=221.【解析】【分析】(1)①根据题意,补全图形即可;②由CD⊥OA可得∠ODC+∠AOD=90°,根据垂径定理可得AD AC=,利用等量代换可得AD CE=,根据圆周角定理可得∠EOC=∠AOD,由切线性质可得OC⊥FC,可得∠OFC+∠FOC=90°,即可证明∠OFC=∠ODC;(2)连接BF,作BG⊥l于G,根据OB=12OA,可得∠OCB=30°,利用勾股定理可求出BC 的长,根据垂径定理可得CD的长,由(1)可知∠OFC=∠ODC,可得FC=CD,由BG⊥l,OC⊥l可得OC//BG,根据平行线的性质可得∠CBG=30°,根据含30°角的直角三角形的性质可求出CG的长,利用勾股定理可求出BG的长,即可求出FG的长,利用勾股定理求出FB 的长即可.【详解】(1)①延长OE,交直线l于F,如图即为所求,②∵OA⊥CD,OA为⊙O半径,∴AD AC=,∵CE CA=,∴AD CE=,∴∠EOC=∠AOD,∵FC是⊙O的切线,∴OC ⊥FC , ∴∠OFC+∠FOC=90°, ∴∠OFC=∠ODC.(2)连接BF ,作BG ⊥l 于G , ∵B 是OA 的中点,⊙O 半径为4,∴OB=12OA=12OC=2, ∵OA ⊥CD ,∴∠OCD=30°,BC=22OC OB -=2242-=23, ∴CD=2BC=43, 由(1)可知∠OFC=∠ODC , ∴FC=CD=43, ∵BG ⊥l ,OC ⊥l , ∴OC//BG ,∴∠CBG=∠OCD=30°, ∴CG=12BC=3,BG=22BC CG -=3, ∴FG=FC+CG=53, ∴BF=22FG BG +=221.【点睛】本题考查切线的性质、垂径定理、含30°角的直角三角形的性质及勾股定理,圆的切线垂直于过切点的半径;垂直于弦的直径平分弦,并且平分弦所对的两条弧;30°角所对的直角边,等于斜边的一半;熟练掌握相关性质及定理是解题关键. 11.(1)y =x 2-4x +3 ;(2) P(36626--,);(3) 9922m -+= 【解析】 【分析】 (1)把,,代入,解方程组即可.(2)如图1中,连接OD 、BD,对称轴交x 轴于K,将绕点O 逆时针旋转90°得到△OCG,则点G 在线段BC 上,只要证明是等腰直角三角形,即可得到直线GO 与抛物线的交点即为所求的点P.利用方程组即可解决问题. (3)如图2中,将绕点O顺时针旋转得到,首先证明,设,,则,设平移后的抛物线的解析式为,由消去y得到,由,推出,,M、N关于直线对称,所以,设,则,利用勾股定理求出a以及MN的长,再根据根与系数关系,列出方程即可解决问题.【详解】(1), ,,代入,得,解得,∴抛物线的解析式为(2)如图1中,连接OD、BD,对称轴交x轴于K.由题意,,,,,,,将绕点O逆时针旋转90°得到,则点G在线段BC上,,,,是等腰直角三角形,,∴直线GO与抛物线的交点即为所求的点P.设直线OD的解析式为,把D点坐标代入得到,,,∴直线OD的解析式为,,∴直线OG的解析式为,由解得或, 点P在对称轴左侧,点P坐标为(3)如图2中,将绕点O顺时针旋转90°得到,,,,,,,,,,设,,则, 设平移后的抛物线的解析式为,由消去y得到,,,∴M、N关于直线对称,,设,则,,(负根已经舍弃),,,【点睛】本题考查了二次函数的综合题、一次函数、全等三角形的判定与性质、根与系数的关系、勾股定理等知识点,解题的关键是灵活运用所学知识,学会利用旋转添加辅助线,构造全等三角形,学会利用方程组及根与系数的关系,构建方程解决问题,本题难度较大.12.(1)证明见解析(2)当AM的长为(1﹣)时,四边形EPGQ是矩形(3)定值【解析】【分析】(1)先利用三角函数求出∠AOB=30°,再用弧长公式即可得出结论;(2)易得△AED∽△BCE,根据相似三角形的对应边成比例与勾股定理,即可求得OA的长,即可得出结论;(3)连接GE交PQ于O′,易得O′P=O′Q,O′G=O'E,然后过点P作OC的平行线分别交BC、GE于点B′、A′,由△PCF∽△PEG,根据相似三角形的对应边成比例与勾股定理,即可求得3PQ2+OA2的值.【详解】解:(1)证明:连接OB,如图①,∵四边形OABC是矩形,∴∠AOC=∠OAB=90°,在Rt△AOB中,tan∠AOB==,∴∠AOB=30°,∴==;(2)如图②,∵▱EPGQ是矩形.∴∠CED=90°∴∠AED+∠CEB=90°.又∵∠DAE=∠EBC=90°,∴∠AED=∠BCE.∴△AED∽△BCE,∴.设OA=x,AB=y,则=,得y2=2x2,又 OA2+AB2=OB2,即x2+y2=12.∴x2+2x2=1,解得:x=.∴AM=OM﹣OA=1﹣当AM的长为(1﹣)时,四边形EPGQ是矩形;(3)如图③,连接GE交PQ于O′,∵四边形EPGQ是平行四边形,∴O′P=O′Q,O′G=O′E.过点P作OC的平行线分别交BC、GE于点B′、A′.由△PCF∽△PEG得, =2,∴PA′=A′B′=AB,GA′=GE=OA,∴A′O′=GE﹣GA′=OA.在Rt△PA′O′中,PO′2=PA′2+A′O′2,即=+,又 AB2+OA2=1,∴3PQ2=AB2+,∴OA2+3PQ2=OA2+(AB2+)=是定值.【点睛】此题是圆的综合题,主要考查了相似三角形的判定与性质、平行四边形的判定与性质、矩形的判定与性质以及勾股定理,锐角三角函数,弧长公式等知识,解题的关键是注意准确作出辅助线,注意数形结合思想与方程思想的应用.。
最新初三九年级数学上册 压轴解答题测试与练习(word解析版)
最新初三九年级数学上册 压轴解答题测试与练习(word 解析版)一、压轴题 1.问题提出(1)如图①,在ABC 中,42,6,135AB AC BAC ==∠=,求ABC 的面积.问题探究(2)如图②,半圆O 的直径10AB =,C 是半圆AB 的中点,点D 在BC 上,且2CD BD =,点P 是AB 上的动点,试求PC PD +的最小值.问题解决(3)如图③,扇形AOB 的半径为20,45AOB ∠=在AB 选点P ,在边OA 上选点E ,在边OB 上选点F ,求PE EF FP ++的长度的最小值.2.如图,在四边形ABCD 中,9054ABC BCD AB BC cm CD cm ∠=∠=︒===,,点P 从点C 出发以1/cm s 的速度沿CB 向点B 匀速移动,点M 从点A 出发以15/cm s 的速度沿AB 向点B 匀速移动,点N 从点D 出发以/acm s 的速度沿DC 向点C 匀速移动.点P M N 、、同时出发,当其中一个点到达终点时,其他两个点也随之停止运动,设移动时间为ts . (1)如图①,①当a 为何值时,点P B M 、、为顶点的三角形与PCN △全等?并求出相应的t 的值; ②连接AP BD 、交于点E ,当AP BD ⊥时,求出t 的值; (2)如图②,连接AN MD 、交于点F .当3883a t ==,时,证明:ADF CDF S S ∆∆=.3.点P 为图形M 上任意一点,过点P 作PQ ⊥直线,l 垂足为Q ,记PQ 的长度为d .定义一:若d 存在最大值,则称其为“图形M 到直线l 的限距离”,记作()max ,D M l ; 定义二:若d 存在最小值,则称其为“图形M 到直线l 的基距离”,记作()min ,D M l ; (1)已知直线1:2l y x =--,平面内反比例函数2y x=在第一象限内的图象记作,H 则()1,min D H l = .(2)已知直线2:33l y x =+,点()1,0A -,点()()1,0,,0B T t 是x 轴上一个动点,T 的半径为3,点C 在T 上,若()max 243,63,D ABC l ≤≤求此时t 的取值范围,(3)已知直线21211k k y x k k --=+--恒过定点1111,8484P a b c a b c ⎛⎫⎪⎝+-+⎭+,点(),D a b 恒在直线3l 上,点(),28E m m +是平面上一动点,记以点E 为顶点,原点为对角线交点的正方形为图形,K ()min 3,0D K l =,若请直接写出m 的取值范围.4.如图1:在Rt △ABC 中,AB =AC ,D 为BC 边上一点(不与点B ,C 重合),试探索AD ,BD ,CD 之间满足的等量关系,并证明你的结论.小明同学的思路是这样的:将线段AD 绕点A 逆时针旋转90°,得到线段AE ,连接EC ,DE .继续推理就可以使问题得到解决.(1)请根据小明的思路,试探索线段AD ,BD ,CD 之间满足的等量关系,并证明你的结论;(2)如图2,在Rt △ABC 中,AB =AC ,D 为△ABC 外的一点,且∠ADC =45°,线段AD ,BD ,CD 之间满足的等量关系又是如何的,请证明你的结论;(3)如图3,已知AB 是⊙O 的直径,点C ,D 是⊙O 上的点,且∠ADC =45°. ①若AD =6,BD =8,求弦CD 的长为 ;②若AD+BD =14,求2AD BD CD 2⎛⎫⋅+ ⎪ ⎪⎝⎭的最大值,并求出此时⊙O 的半径.5.如图,点A 和动点P 在直线l 上,点P 关于点A 的对称点为Q .以AQ 为边作Rt ABQ △,使90BAQ ∠=︒,:3:4AQ AB =,作ABQ △的外接圆O .点C 在点P 右侧,4PC =,过点C 作直线m l ⊥,过点O 作OD m ⊥于点D ,交AB 右侧的圆弧于点E .在射线CD 上取点F ,使32DF CD =,以DE 、DF 等邻边作矩形DEGF ,设3AQ x =(1)用关于x 的代数式表示BQ 、DF .(2)当点P 在点A 右侧时,若矩形DEGF 的面积等于90,求AP 的长. (3)在点P 的整个运动过程中,当AP 为何值时,矩形DEGF 是正方形.6.研究发现:当四边形的对角线互相垂直时,该四边形的面积等于对角线乘积的一半,如图1,已知四边形ABCD 内接于O ,对角线AC BD =,且AC BD ⊥.(1)求证:AB CD =; (2)若O 的半径为8,弧BD 的度数为120︒,求四边形ABCD 的面积;(3)如图2,作OM BC ⊥于M ,请猜测OM 与AD 的数量关系,并证明你的结论. 7.已知:如图1,在O 中,弦2AB =,1CD =,AD BD ⊥.直线,AD BC 相交于点E .(1)求E ∠的度数;(2)如果点,C D 在O 上运动,且保持弦CD 的长度不变,那么,直线,AD BC 相交所成锐角的大小是否改变?试就以下三种情况进行探究,并说明理由(图形未画完整,请你根据需要补全).①如图2,弦AB 与弦CD 交于点F ; ②如图3,弦AB 与弦CD 不相交: ③如图4,点B 与点C 重合.8.【问题学习】小芸在小组学习时问小娟这样一个问题:已知α为锐角,且sinα=1 3,求sin2α的值.小娟是这样给小芸讲解的:构造如图1所示的图形,在⊙O中,AB是直径,点C在⊙O上,所以∠ACB=90°,作CD⊥AB于D.设∠BAC=α,则sinα=13BCAB,可设BC=x,则AB=3x,….【问题解决】(1)请按照小娟的思路,利用图1求出sin2α的值;(写出完整的解答过程)(2)如图2,已知点M,N,P为⊙O上的三点,且∠P=β,sinβ=35,求sin2β的值.9.翻转类的计算问题在全国各地的中考试卷中出现的频率很大,因此初三(5)班聪慧的小菲同学结合2011年苏州市数学中考卷的倒数第二题对这类问题进行了专门的研究。
初三九年级数学上册上册数学压轴题易错题(Word版 含答案)
初三九年级数学上册上册数学压轴题易错题(Word版含答案)一、压轴题1.如图①,A(﹣5,0),OA=OC,点B、C关于原点对称,点B(a,a+1)(a>0).(1)求B、C坐标;(2)求证:BA⊥AC;(3)如图②,将点C绕原点O顺时针旋转α度(0°<α<180°),得到点D,连接DC,问:∠BDC的角平分线DE,是否过一定点?若是,请求出该点的坐标;若不是,请说明理由.2.如图,在平面直角坐标系中,直线1l:162y x=-+分别与x轴、y轴交于点B、C,且与直线2l:12y x=交于点A.(1)分别求出点A、B、C的坐标;(2)若D是线段OA上的点,且COD△的面积为12,求直线CD的函数表达式;(3)在(2)的条件下,设P是射线CD上的点,在平面内里否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.3.在平面直角坐标系xOy中,对于任意三点A,B,C,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的外延矩形.点A,B,C的所有外延矩形中,面积最小的矩形称为点A,B,C的最佳外延矩形.例如,图中的矩形,,都是点A,B,C的外延矩形,矩形是点A,B,C的最佳外延矩形.(1)如图1,已知A (-2,0),B (4,3),C (0,). ①若,则点A ,B ,C 的最佳外延矩形的面积为 ;②若点A ,B ,C 的最佳外延矩形的面积为24,则的值为 ; (2)如图2,已知点M (6,0),N (0,8).P (,)是抛物线上一点,求点M ,N ,P 的最佳外延矩形面积的最小值,以及此时点P 的横坐标的取值范围;(3)如图3,已知点D (1,1).E (,)是函数的图象上一点,矩形OFEG 是点O ,D ,E 的一个面积最小的最佳外延矩形,⊙H 是矩形OFEG 的外接圆,请直接写出⊙H 的半径r 的取值范围.4.已知:在ABC 中,,90AC BC ACB ︒=∠=,点F 在射线CA 上,延长BC 至点D ,使CD CF =,点E 是射线BF 与射线DA 的交点.(1)如图1,若点F 在边CA 上; ①求证:BE AD ⊥;②小敏在探究过程中发现45BEC ︒∠=,于是她想:若点F 在CA 的延长线上,是否也存在同样的结论?请你在图2上画出符合条件的图形并通过测量猜想BEC ∠的度数. (2)选择图1或图2两种情况中的任一种,证明小敏或你的猜想. 5.如图,在平面直角坐标系中,直线l :y =﹣13x +2与x 轴交于点B ,与y 轴交于点A ,以AB 为斜边作等腰直角△ABC ,使点C 落在第一象限,过点C 作CD ⊥AB 于点D ,作CE ⊥x 轴于点E ,连接ED 并延长交y 轴于点F .(1)如图(1),点P 为线段EF 上一点,点Q 为x 轴上一点,求AP +PQ 的最小值. (2)将直线l 进行平移,记平移后的直线为l 1,若直线l 1与直线AC 相交于点M ,与y 轴相交于点N ,是否存在这样的点M 、点N ,使得△CMN 为等腰直角三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.6.数学概念若点P 在ABC ∆的内部,且APB ∠、BPC ∠和CPA ∠中有两个角相等,则称P 是ABC ∆的“等角点”,特别地,若这三个角都相等,则称P 是ABC ∆的“强等角点”. 理解概念(1)若点P 是ABC ∆的等角点,且100APB ∠=,则BPC ∠的度数是 . (2)已知点D 在ABC ∆的外部,且与点A 在BC 的异侧,并满足180BDC BAC ∠+∠<,作BCD ∆的外接圆O ,连接AD ,交圆O 于点P .当BCD ∆的边满足下面的条件时,求证:P 是ABC ∆的等角点.(要求:只选择其中一道题进行证明!)①如图①,DB DC = ②如图②,BC BD =深入思考(3)如图③,在ABC ∆中,A ∠、B 、C ∠均小于120,用直尺和圆规作它的强等角点Q .(不写作法,保留作图痕迹)(4)下列关于“等角点”、“强等角点”的说法: ①直角三角形的内心是它的等角点; ②等腰三角形的内心和外心都是它的等角点; ③正三角形的中心是它的强等角点;④若一个三角形存在强等角点,则该点到三角形三个顶点的距离相等;⑤若一个三角形存在强等角点,则该点是三角形内部到三个顶点距离之和最小的点,其中正确的有 .(填序号)7.如图,已知AB 是⊙O 的直径,AB =8,点C 在半径OA 上(点C 与点O 、A 不重合),过点C 作AB 的垂线交⊙O 于点D ,连结OD ,过点B 作OD 的平行线交⊙O 于点E 、交射线CD 于点F .(1)若ED =BE ,求∠F 的度数:(2)设线段OC =a ,求线段BE 和EF 的长(用含a 的代数式表示); (3)设点C 关于直线OD 的对称点为P ,若△PBE 为等腰三角形,求OC 的长.8. 如图,在Rt △ABC 中,∠C=90°,AC=8,BC=6,P 为边BC 上一个动点(可以包括点C 但不包括点B ),以P 为圆心PB 为半径作⊙P 交AB 于点D 过点D 作⊙P 的切线交边AC 于点E ,(1)求证:AE=DE ; (2)若PB=2,求AE 的长;(3)在P 点的运动过程中,请直接写出线段AE 长度的取值范围.9.如图,已知在矩形ABCD 中,AB =2,BC =3P ,Q 分别是BC ,AD 边上的一个动点,连结BQ ,以P 为圆心,PB 长为半径的⊙P 交线段BQ 于点E ,连结PD . (1)若DQ 3且四边形BPDQ 是平行四边形时,求出⊙P 的弦BE 的长;(2)在点P ,Q 运动的过程中,当四边形BPDQ 是菱形时,求出⊙P 的弦BE 的长,并计算此时菱形与圆重叠部分的面积.10.如图,函数y=-x 2+bx +c 的图象经过点A (m ,0),B (0,n )两点,m ,n 分别是方程x 2-2x -3=0的两个实数根,且m <n .(1)求m ,n 的值以及函数的解析式;(2)设抛物线y=-x 2+bx +c 与x 轴的另一交点为点C ,顶点为点D ,连结BD 、BC 、CD ,求△BDC 面积;(3)对于(1)中所求的函数y=-x 2+bx +c , ①当0≤x ≤3时,求函数y 的最大值和最小值;②设函数y 在t ≤x ≤t +1内的最大值为p ,最小值为q ,若p-q =3,求t 的值.11.一个四边形被一条对角线分割成两个三角形,如果分割所得的两个三角形相似,我们就把这条对角线称为相似对角线.(1)如图,正方形ABCD 的边长为4,E 为AD 的中点,点F ,H 分别在边AB 和CD 上,且1AF DH ==,线段CE 与FH 交于点G ,求证:EF 为四边形AFGE 的相似对角线;(2)在四边形ABCD 中,BD 是四边形ABCD 的相似对角线,120A CBD ∠=∠=,2AB =,6BD =,求CD 的长;(3)如图,已知四边形ABCD 是圆O 的内接四边形,90A ∠=,8AB =,6AD =,点E 是AB 的中点,点F 是射线AD 上的动点,若EF 是四边形AECF 的相似对角线,请直接写出线段AF 的长度(写出3个即可).12.在平面直角坐标系xOy 中,对于任意三点A ,B ,C ,给出如下定义:如果矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的覆盖矩形.点A ,B ,C 的所有覆盖矩形中,面积最小的矩形称为点A ,B ,C 的最优覆盖矩形.例如,下图中的矩形A 1B 1C 1D 1,A 2B 2C 2D 2,AB 3C 3D 3都是点A ,B ,C 的覆盖矩形,其中矩形AB 3C 3D 3是点A ,B ,C 的最优覆盖矩形. (1)已知A (﹣2,3),B (5,0),C (t ,﹣2). ①当t =2时,点A ,B ,C 的最优覆盖矩形的面积为 ;②若点A ,B ,C 的最优覆盖矩形的面积为40,求直线AC 的表达式;(2)已知点D (1,1).E (m ,n )是函数y =4x(x >0)的图象上一点,⊙P 是点O ,D ,E 的一个面积最小的最优覆盖矩形的外接圆,求出⊙P 的半径r 的取值范围.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)点B (3,4),点C (﹣3,﹣4);(2)证明见解析;(3)定点(4,3);理由见解析. 【解析】 【分析】(1)由中心对称的性质可得OB =OC =5,点C (﹣a ,﹣a ﹣1),由两点距离公式可求a 的值,即可求解;(2)由两点距离公式可求AB ,AC ,BC 的长,利用勾股定理的逆定理可求解; (3)由旋转的性质可得DO =BO =CO ,可得△BCD 是直角三角形,以BC 为直径,作⊙O ,连接OH ,DE 与⊙O 交于点H ,由圆周角定理和角平分线的性质可得∠HBC =∠CDE =45°=∠BDE =∠BCH ,可证CH =BH ,∠BHC =90°,由两点距离公式可求解. 【详解】解:(1)∵A (﹣5,0),OA =OC ,∴OA =OC =5,∵点B 、C 关于原点对称,点B (a ,a +1)(a >0), ∴OB =OC =5,点C (﹣a ,﹣a ﹣1), ∴5=()()220+10a a -+-,∴a =3, ∴点B (3,4), ∴点C (﹣3,﹣4);(2)∵点B (3,4),点C (﹣3,﹣4),点A (﹣5,0), ∴BC =10,AB =45 ,AC =25, ∵BC 2=100,AB 2+AC 2=80+20=100, ∴BC 2=AB 2+AC 2, ∴∠BAC =90°, ∴AB ⊥AC ; (3)过定点, 理由如下:∵将点C 绕原点O 顺时针旋转α度(0°<α<180°),得到点D , ∴CO =DO , 又∵CO =BO , ∴DO =BO =CO , ∴△BCD 是直角三角形, ∴∠BDC =90°,如图②,以BC 为直径,作⊙O ,连接OH ,DE 与⊙O 交于点H ,∵DE 平分∠BDC , ∴∠BDE =∠CDE =45°,∴∠HBC =∠CDE =45°=∠BDE =∠BCH , ∴CH =BH ,∠BHC =90°, ∵BC =10,∴BH =CH =2,OH =OB =OC =5, 设点H (x ,y ),∵点H在第四象限,∴x<0,y>0,∴x2+y2=25,(x﹣3)2+(y﹣4)2=50,∴x=4,y=3,∴点H(4,﹣3),∴∠BDC的角平分线DE过定点H(4,3).【点睛】本题是几何变换综合题,考查了中心对称的性质,直角三角形的性质,角平分线的性质,圆的有关知识,勾股定理的逆定理,两点距离公式等知识,灵活运用这些性质解决问题是本题的关键.2.(1)A(6,3),B(12,0),C(0,6);(2)y=-x+6;(3)满足条件的Q点坐标为:(-3,3)或)或(6,6).【解析】【分析】(1)根据坐标轴上点的坐标特点,可求出B,C两点坐标.两个函数解析式联立形成二元一次方程组,可以确定A点坐标.(2)根据坐标特点和已知条件,采用待定系数法,即可作答.(3)在(2)的条件下,设P是射线CD上的点,在平面内存在点Q,使以O、C、P、2为顶点的四边形是菱形,如图所示,分三种情况考虑:①当四边形OP1Q1C为菱形时,由∠COP1=90°,得到四边形OP1Q1C为正方形;②当四边形OP2CQ2为菱形时;③当四边形OQ3P3C为菱形时;分别求出Q坐标即可.【详解】解:(1)由题意得16212y xy x⎧=-+⎪⎪⎨⎪=⎪⎩解得63 xy=⎧⎨=⎩∴A(6,3)在y=-162x+中,当y=0时,x=12,∴B(12,0)当x=0时,y=6,∴C(0,6).(2)∵点D在线段OA上,∴设D(x,12x) (0≤x≤6)∵S△COD=12∴12×6x=12x=4∴D(4,2),设直线CD的表达式为y=kx+b,把(10,6)与D(4,2)代入得624bk b=⎧⎨=+⎩解得16 kb=-⎧⎨=⎩直线CD的表达式为y=-x+6(3) 存在点2,使以O、C、P、Q为顶点的四边形是菱形,如图所示,分三种情况考虑:①当四边形OP1Q1C为菱形时OC==OP1,由∠COP1=90°,得到四边形OP1Q1C为正方形,此时Q1P1=OP1=OC=6,即Q:(6,6);②当四边形OP2CQ2为菱形时,OP2=CP2,由C坐标为(0,6),得到Q2纵坐标为3,把y=3代入直线OQ2解析式y=-x中,得:x=-3,此时Q2(-3,3);③当四边形0Q3P3C为菱形时,OC=CP3,则有OQ3=OC=CP3=P3Q3=6,设坐标为(x,-x+6),∵OC=CP3∴x2+x2= CP32= OC2=62解得,x=32,P的坐标为 (32,6-32)此时Q3 (32,-32).综上,点Q的坐标是(-3,3)或(32,-32)或(6,6).【点睛】本题是一次函数、勾股定理、特殊的平行四边形的综合应用,是一道压轴题,在考试中第一问必须作答,二三问可以根据自己的情况进行取舍.3.(1)①18;②t=4或t=-1;(2)48;,或;(3)【解析】试题分析:(1)根据给出的新定义进行求解;(2)过M点作轴的垂线与过N点垂直于轴的直线交于点Q,则当点P位于矩形OMQN内部或边界时,矩形OMQN是点M,N,P 的最佳外延矩形,且面积最小;根据当y=0是y=8时求出x 的值得到取值范围;(3)根据最佳外延矩形求出半径的取值范围.试题解析:(1)①18; ②t=4或t=-1; (2)如图,过M 点作轴的垂线与过N 点垂直于轴的直线交于点Q ,则当点P 位于矩形OMQN 内部或边界时,矩形OMQN 是点M ,N ,P 的最佳外延矩形,且面积最小.∵S 矩形OMQN =OM·ON =6×8=48, ∴点M ,N ,P 的最佳外延矩形面积的最小值为48. 抛物线与轴交于点T (0,5). 令,有,解得:x=-1(舍去),或x=5.令y=8,有,解得x=1,或x=3.∴,或.(3).考点:新定义的理解、二次函数的应用、圆的性质.4.(1)①详见解析;②图见解析,猜想∠BEC=45°;(2)详见解析 【解析】 【分析】(1)①证明△ACD ≌△BCF ,得到∠CAD=∠CBF 即可得到∠AEF=∠BCF=90°即可; ②根据已知条件画图即可;(2)取AB 的中点M ,根据直角三角形斜边上的中线等于斜边的一半可得到点A ,B ,C ,E 四点在同一个圆M 上,再利用圆周角定理即可证明. 【详解】解:(1)①∵,90AC BC ACB ︒=∠=,CD CF =∴在△ACD 与△BCF 中,AC BC ACD ACB CD CF =⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△BCF (SAS ) ∴∠CAD=∠CBF 又∵∠AFE=∠BFC ∴∠AEF=∠BCF=90°, ∴BE ⊥AD ②图如下所示:猜想∠BEC=45°,(2)选择图1证明,连接CE,取AB的中点M,连接MC,ME ∵△ABC和△ABE都是直角三角形∴12MC ME AB AM BM ====,∴点A,B,C,E四点在同一个圆M上,∴∠BEC=∠BAC=45°,∴∠BEC=45°【点睛】本题考查了全等三角形的判定和性质、圆周角定理等知识点,解题的关键是根据已知条件选择全等三角形的判定定理,并充分利用数形结合的思想解答.5.(1)AP+PQ的最小值为4;(2)存在,M点坐标为(﹣12,﹣4)或(12,8).【解析】【分析】(1)由直线解析式易求AB两点坐标,利用等腰直角△ABC构造K字形全等易得OE=CE=4,C点坐标为(4,4)DB=∠CEB=90︒,可知B、C、D、E四点共圆,由等腰直角△ABC 可知∠CBD=45︒,同弧所对圆周角相等可知∠CED=45︒,所以∠OEF=45︒,CE、OE是关于EF对称,作PH⊥CE于H,作PG⊥OE于Q,AK⊥EC于K.把AP+PQ的最小值问题转化为垂线段最短解决问题.(2)由直线l与直线AC成45︒可知∠AMN=45︒,由直线AC解析式可设M点坐标为(x,122x+),N在y轴上,可设N(0,y)构造K字形全等即可求出M点坐标.【详解】解:(1)过A 点作AK ⊥CE ,在等腰直角△ABC 中,∠ACB =90︒,AC =BC ,∵CE ⊥x 轴,∴∠ACK +∠ECB =90︒,∠ECB +∠CBE =90︒,∴∠ACK =∠CBE在△AKC 和△CEB 中,AKC CEB ACK CBE AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,△AKC ≌△CEB (AAS )∴AK =CE ,CK =BE ,∵四边形AOEK 是矩形,∴AO =EK =BE ,由直线l :y =﹣13x +2与x 轴交于点B ,与y 轴交于点A ,可知A 点坐标为(0,2),B (6,0)∴E 点坐标为(4,0),C 点坐标为(4,4),∵∠CDB =∠CEB =90︒,∴B 、C 、D 、E 四点共圆,∵CD CD =,∠CBA =45︒,∴∠CED =45︒,∴FE 平分∠CEO ,过P 点作PH ⊥CE 于H ,作PG ⊥OE 于G ,过A 点作AK ⊥EC 于K .∴PH =PQ ,∵PA +PQ =PA +PH ≥AK =OE ,∴OE =4,∴AP +PQ ≥4,∴AP +PQ 的最小值为4.(2)∵A 点坐标为(0,2),C 点坐标为(4,4),设直线AC 解析式为:y =kx+b 把(0,2),(4,4)代入得244b k b =⎧⎨=+⎩解得122k b ⎧=⎪⎨⎪=⎩∴直线AC 解析式为:y =122x +, 设M 点坐标为(x ,122x +),N 坐标为(0,y ).∵MN∥AB,∠CAB=45︒,∴∠CMN=45︒,△CMN为等腰直角三角形有两种情况:Ⅰ.如解图2﹣1,∠MNC=90︒,MN=CN.同(1)理过N点构造利用等腰直角△MNC构造K字形全等,同(1)理得:SN=CR,MS =NR.∴41242x yx y-=-⎧⎪⎨+-=⎪⎩,解得:128xy=-⎧⎨=-⎩,∴M点坐标为(﹣12,﹣4)Ⅱ.如解图2﹣2,∠MNC=90︒,MN=CN.过C点构造利用等腰直角△MNC构造K字形全等,同(1)得:MS=CF,CS=FN.∴4412442x yx-=-⎧⎪⎨+-=⎪⎩,解得:1212xy=⎧⎨=⎩,∴M点坐标为(12,8)综上所述:使得△CMN为等腰直角三角形得M点坐标为(﹣12,﹣4)或(12,8).【点睛】本题综合考查了一次函数与几何知识的应用,题中运用等腰直角三角形的判定和性质,正方形的判定和性质,全等三角形的判定和性质,四点共圆,圆周角定理,垂线段最短等知识,解题的关键是中用转化的思想思考问题,学会添加常用辅助线,在平面直角坐标系中构造K 字形全等三角形求点坐标解决问题,属于中考压轴题.6.(1)100、130或160;(2)选择①或②,理由见解析;(3)见解析;(4)③⑤【解析】【分析】(1)根据“等角点”的定义,分类讨论即可;(2)①根据在同圆中,弧和弦的关系和同弧所对的圆周角相等即可证明;②弧和弦的关系和圆的内接四边形的性质即可得出结论;(3)根据垂直平分线的性质、等边三角形的性质、弧和弦的关系和同弧所对的圆周角相等作图即可;(4)根据“等角点”和“强等角点”的定义,逐一分析判断即可.【详解】(1)(i )若APB ∠=BPC ∠时,∴BPC ∠=APB ∠=100°(ii )若BPC CPA ∠=∠时,∴12BPC CPA ∠=∠=(360°-APB ∠)=130°; (iii )若APB ∠=CPA ∠时,BPC ∠=360°-APB ∠-CPA ∠=160°,综上所述:BPC ∠=100°、130°或160°故答案为:100、130或160.(2)选择①:连接,PB PC ∵DB DC =∴=DB DC∴BPD CPD ∠=∠∵180APB BPD ∠+∠=,180APC CPD ∠+∠=∴APB APC ∠=∠∴P 是ABC ∆的等角点.选择②连接,PB PC∵BC BD =∴BC BD =∴BDC BPD ∠=∠∵四边形PBDC 是圆O 的内接四边形,∴180BDC BPC ∠+∠=∵180BPD APB ∠+∠=∴BPC APB ∠=∠∴P 是ABC ∆的等角点(3)作BC 的中垂线MN ,以C 为圆心,BC 的长为半径作弧交MN 与点D ,连接BD , 根据垂直平分线的性质和作图方法可得:BD=CD=BC∴△BCD 为等边三角形∴∠BDC=∠BCD=∠DBC=60°作CD 的垂直平分线交MN 于点O以O 为圆心OB 为半径作圆,交AD 于点Q ,圆O 即为△BCD 的外接圆∴∠BQC=180°-∠BDC=120°∵BD=CD∴∠BQD=∠CQD∴∠BQA=∠CQA=12(360°-∠BQC )=120° ∴∠BQA=∠CQA=∠BQC如图③,点Q 即为所求. (4)③⑤.①如下图所示,在RtABC 中,∠ABC=90°,O 为△ABC 的内心假设∠BAC=60°,∠ACB=30°∵点O 是△ABC 的内心∴∠BAO=∠CAO=12∠BAC=30°,∠ABO=∠CBO=12∠ABC=45°,∠ACO=∠BCO=12∠ACB=15° ∴∠AOC=180°-∠CAO -∠ACO=135°,∠AOB=180°-∠BAO -∠ABO=105°,∠BOC=180°-∠CBO -∠BCO=120°显然∠AOC ≠∠AOB ≠∠BOC ,故①错误;②对于钝角等腰三角形,它的外心在三角形的外部,不符合等角点的定义,故②错误; ③正三角形的每个中心角都为:360°÷3=120°,满足强等角点的定义,所以正三角形的中心是它的强等角点,故③正确;④由(3)可知,点Q 为△ABC 的强等角,但Q 不在BC 的中垂线上,故QB ≠QC ,故④错误;⑤由(3)可知,当ABC ∆的三个内角都小于120时,ABC ∆必存在强等角点Q . 如图④,在三个内角都小于120的ABC ∆内任取一点'Q ,连接'Q A 、'Q B 、'Q C ,将'Q AC ∆绕点A 逆时针旋转60到MAD ∆,连接'Q M ,∵由旋转得'Q A MA =,'Q C MD =,'60Q AM ∠=∴'AQ M ∆是等边三角形.∴''Q M Q A =∴'''''Q A Q B Q C Q M Q B MD ++=++∵B 、D 是定点,∴当B 、'Q 、M 、D 四点共线时,''Q M Q B MD ++最小,即'''Q A Q B Q C ++最小.而当'Q 为ABC ∆的强等角点时,'''120AQ B BQ C CQ A AMD ∠=∠=∠==∠, 此时便能保证B 、'Q 、M 、D 四点共线,进而使'''Q A Q B Q C ++最小.故答案为:③⑤.【点睛】此题考查的是新定义类问题、圆的基本性质、圆周角定理、圆的内接多边形综合大题,掌握“等角点”和“强等角点”的定义、圆的基本性质、圆周角定理、圆的内接多边形中心角公式和分类讨论的数学思想是解决此题的关键.7.(1)30°;(2)EF=;(3)CO的长为或时,△PEB为等腰三角形.【解析】试题分析:(1)利用圆周角定理以及三角形内角和定理得出即可;(2)首先证明△HBO≌△COD(AAS),进而利用△COD∽△CBF,得出比例式求出EF的长;(3)分别利用①当PB=PE,不合题意舍去;②当BE=EP,③当BE=BP,求出即可.试题解析:(1)如图1,连接EO,∵∴∠BOE=∠EOD,∵DO∥BF,∴∠DOE=∠BEO,∵BO=EO,∴∠OBE=∠OEB,∴∠OBE=∠OEB=∠BOE=60°,∵CF⊥AB,∴∠FCB=90°,∴∠F=30°;(2)如图1,作HO⊥BE,垂足为H,∵在△HBO和△COD中,∴△HBO≌△COD(AAS),∴CO=BH=a,∴BE=2a,∵DO∥BF,∴△COD∽△CBF,∴∴,∴EF=;(3)∵∠COD=∠OBE,∠OBE=∠OEB,∠DOE=∠OEB,∴∠COD=∠DOE,∴C关于直线OD的对称点为P在线段OE上,若△PEB为等腰三角形,设CO=x,∴OP=OC=x,则PE=EO-OP=4-x,由(2)得:BE=2x,①当PB=PE,不合题意舍去;②当BE=EP,2x=4-x,解得:x=,③当BE=BP,作BM⊥EO,垂足为M,∴EM=PE=,∴∠OEB=∠COD,∠BME=∠DCO=90°,∴△BEM∽△DOC,∴,∴,整理得:x2+x-4=0,解得:x=(负数舍去),综上所述:当CO的长为或时,△PEB为等腰三角形.考点:圆的综合题.8.(1)详见解析;(2)AE=194;(3)74≤AE<254.【解析】【分析】(1)首先得出∠ADE+∠PDB=90°,进而得出∠B+∠A=90°,利用PD=PB得∠EDA=∠A进而得出答案;(2)利用勾股定理得出ED2+PD2=EC2+CP2=PE2,求出AE即可;(3)分别根据当D(P)点在B点时以及当P与C重合时,求出AE的长,进而得出AE的取值范围.【详解】(1)证明:如图1,连接PD.∵DE切⊙O于D.∴PD⊥DE.∴∠ADE+∠PDB=90°.∵∠C=90°.∴∠B+∠A=90°.∵PD=PB.∴∠PDB=∠B.∴∠A=∠ADE.∴AE=DE;(2)解:如图1,连接PE,设DE=AE=x,则EC=8-x,∵PB=PD=2,BC=6.∴PC=4.∵∠PDE=∠C=90°,∴ED2+PD2=EC2+CP2=PE2.∴x2+22=(8-x)2+42.解得x=194.∴AE=194;(3)解:如图2,当P点在B点时,此时点D也在B点,∵AE=ED,设AE=ED=x,则EC=8-x,∴EC2+BC2=BE2,∴(8-x)2+62=x2,解得:x=254,如图3,当P与C重合时,∵AE=ED,设AE=ED=x,则EC=8-x,∴EC2=DC2+DE2,∴(8-x)2=62+x2,解得:x=74,∵P为边BC上一个动点(可以包括点C但不包括点B),∴线段AE长度的取值范围为:74≤AE<254.【点睛】本题主要考查圆的综合应用、切线的性质与判定以及勾股定理等知识,利用数形结合以及分类讨论的思想得出是解题关键.9.(16372)BE433833.【解析】【分析】(1)作PT⊥BE于点T,根据垂径定理和勾股定理求BQ的值,再根据相似三角形的判定和性质即可求解;(2)根据菱形性质和勾股定理求出菱形边长,此时点E和点Q重合,再根据扇形面积公式即可求解.【详解】解:(1)如图:过点P作PT⊥BQ于点T,∵AB=2,AD=BC=3,DQ3∴AQ3在Rt△ABQ中,根据勾股定理可得:BQ7.又∵四边形BPDQ是平行四边形,∴BP=DQ3,∵∠AQB=∠TBP,∠A=∠BTP,∴△AQB∽△TBP,∴3,37 BT BDAQ BQ==即∴BT 33 7∴BE=2BT 63 7(2)设菱形BPDQ的边长为x,则AQ=3x,在Rt△ABQ中,根据勾股定理,得AB2+AQ2=BQ2,即4+(3x)2=x2,解得x 43 3.∵四边形BPDQ为菱形,∴43 3,又CP=BC-BP=233,即DP=2CP, ∴∠DPC=60°,∴∠BPD=120°,∴连接PQ,易得△BPQ 为等边三角形,∴PQ=BP,∴点Q 也在圆P 上,圆P 经过点B,D,Q,如图.∴点E 、Q 重合,∴BE 433∴菱形与圆重叠部分面积即为菱形的面积,∴S 菱形833. 【点睛】 本题考查了平行四边形、矩形、菱形的性质、垂径定理、勾股定理、相似三角形的判定和性质、扇形面积公式,解决本题的关键是综合运用以上知识.10.(1)m =﹣1,n =3,y =﹣x 2+2x +3;(2)S=3;(3)①y 最大值=4;当x =3时,y 最小值=0;②t =﹣1或t =2【解析】【分析】(1)首先解方程求得A 、B 两点的坐标,然后利用待定系数法确定二次函数的解析式即可;(2)根据解方程直接写出点C 的坐标,然后确定顶点D 的坐标,根据两点的距离公式可得BDC ∆三边的长,根据勾股定理的逆定理可得90DBC ∠=︒,据此求出 △BDC 面积; (3)①确定抛物线的对称轴是1x =,根据增减性可知:1x =时,y 有最大值,当3x =时, y 有最小值;②分5种情况:1、当函数y 在1t x t +内的抛物线完全在对称轴的左侧;2、当11t +=时;3、当函数y 在1t x t +内的抛物线分别在对称轴的两侧;4、当1t =时,5、函数y 在1t x t +内的抛物线完全在对称轴的右侧;分别根据增减性可解答.【详解】解:(1)m ,n 分别是方程2230x x --=的两个实数根,且 m n <,用因式分解法解方程:(1)(3)0x x +-=,11x ∴=-,23x =,1m ∴=-,3n =,(1,0)A ∴-,(0,3)B ,把(1,0)-,(0,3)代入得, 103b c c --+=⎧⎨=⎩,解得23b c =⎧⎨=⎩, ∴函数解析式为2y x 2x 3=-++.(2)令2230y x x =-++=,即2230x x --=,解得11x =-,23x =,∴抛物线2y x 2x 3=-++与x 轴的交点为 (1,0)A -,(3,0)C ,1OA ∴=,3OC =,∴对称轴为1312x -+==,顶点(1,123)D -++,即 (1,4)D ,∴BC = BD ==DC ==222CD DB CB =+,BCD ∴∆是直角三角形,且90DBC ∠=︒,∴112322S BCD BD BC ==⨯⨯=; (3)∵抛物线y =﹣x 2+2x +3的对称轴为x =1,顶点为D (1,4),①在0≤x ≤3范围内,当x =1时,y 最大值=4;当x =3时,y 最小值=0;②1、当函数y 在1t x t +内的抛物线完全在对称轴的左侧,当x t =时取得最小值 223q t t =-++,最大值2(1)2(1)3p t t =-++++,令22(1)2(1)3(23)3p q t t t t -=-++++--++=,即 213t -+=,解得1t =-.2、当11t +=时,此时4p =,3q =,不合题意,舍去;3、当函数y 在1t x t +内的抛物线分别在对称轴的两侧,此时4p =,令24(23)3p q t t -=--++=,即 2220t t --=解得:11t =),21t = );或者24[(1)2(1)3]3p q t t -=--++++=,即 t =4、当1t =时,此时4p =,3q =,不合题意,舍去;5、当函数y 在1t x t +内的抛物线完全在对称轴的右侧,当x t =时取得最大值 223p t t =-++,最小值2(1)2(1)3q t t =-++++,令2223[(1)2(1)3]3p q t t t t -=-++--++++=,解得 2t =.综上,1t =-或2t =.【点睛】本题是二次函数的综合题型,其中涉及到的知识点有利用待定系数法求抛物线的解析式,抛物线的顶点公式,直角三角形的性质和判定,勾股定理的逆定理,最值问题等知识,注意运用分类讨论的思想解决问题. 11.(1)详见解析;(2)333CD =+或3;(3)详见解析.【解析】【分析】(1)只要证明△EAF ∽△FEG 即可解决问题;(2)如图3中,作DE ⊥BA 交BA 的延长线于E .设AE=a .在Rt △BDE 中,利用勾股定理构建方程求出a ,分两种情形构建方程求解即可;(3)①当△AFE ∽△EFC 时,连接BC ,AC ,BD .②当△AFE ∽△FEC 时,作CH ⊥AD 交AD 的延长线于H ,作OM ⊥AD 于M ,连接OA .③当△AFE ∽△CEF 时,分别求解即可,注意答案不唯一.【详解】解:(1)如图1,∵正方形ABCD 中4AB AD CD ===,90A D ∠=∠=,E 为AD 中点∴2AE ED ==,∵1AF DH ==,∴12AF DE AE CD == ∴AEF DCE ∆∆∽∴AEF DCE ∠=∠,AFE DEC ∠=∠∵//AF DH ,∴四边形AFHD 为平行四边形∴AD FH ,∴AEF EFG ∠=∠,DEC EGF AFE ∠=∠=∠∴AEF EFG ∆∆∽∴EF 为四边形AFGE 的相似对角线.(2)如图2,过点D 作DE BA ⊥,垂足为E ,设AE a =∵120A CBD ∠=∠=,∴60EAD ∠=,∴3DE a =∵2AB =,6BD =∴()22236a a ++=31a -=(负根已经舍弃), ∴31AD =-分为两种情况:①如图3,当ABD BCD ∆∆∽时,AD BD BD CD=∴()316CD -=,∴333CD =+②如图4,当ABD BDC ∆∆∽时,AB BD BD CD= ∴26CD =,∴3CD =综上,333CD =+或3(3)①如图5,∵∠FEC=∠A=90°,∠BEF=∠BEC+∠FEC=∠A+∠AEF ,∴AFE BEC ∠=∠,AF EF AF AE EC BE==,∴AFE BEC ∆∆∽,∴90B ∠= 由“一线三等角”得83AF =.②如图,当△AFE ∽△FEC 时,作CH ⊥AD 交AD 的延长线于H ,作OM ⊥AD 于M ,连接OA .∵△AFE ∽△FEC ,∴∠AFE=∠FEC ,∴AD ∥EC ,∴∠CEB=∠DAB=90°,∵∠OMA=∠AHC=90°,∴四边形AEOM ,四边形AECH 都是矩形,∵OM⊥AD,∴AM=MD=3,∴AM=OE=3,∵OE⊥AB,∴AE=EB=4,∴OA=2234+=5,∴CE=AH=8,设AF=x,则FH=8-x,CH=AE=4,由△AEF∽△HFC,可得AFCH=AEFH,∴448xx =-,解得x=4,经检验x=4是分式方程的解,∴AF=4.③如图当△AFE∽△CEF时易证四边形AECF是矩形,AF=EC=8.综上所述,满足条件的AF的长为83或4或8.(答案不唯一)【点睛】本题属于圆综合题,考查正方形的性质,相似三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用分类讨论的思想思考问题,属于中考常考题型.12.(1)35,5784y x=+;(2172r≤.【解析】【分析】(1)①由矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的覆盖矩形.点A,B,C的所有覆盖矩形中,面积最小的矩形称为点A,B,C的最优覆盖矩形,得出最优覆盖矩形的长为:2+5=7,宽为3+2=5,即可得出结果;②由定义可知,t=-3或6,即点C坐标为(-3,-2)或(6,-2),设AC表达式为y=kx+b,代入即可求出结果;(2)OD所在的直线交双曲线于点E,矩形OFEG是点O,D,E的一个面积最小的最优覆盖矩形,OD所在的直线表达式为y=x,得出点E的坐标为(2,2),⊙P的半径最小r=2,当点E的纵坐标为1时,⊙P的半径最大r=17,即可得出结果.【详解】(1)①∵A(﹣2,3),B(5,0),C(2,﹣2),矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的覆盖矩形.点A,B,C的所有覆盖矩形中,面积最小的矩形称为点A,B,C的最优覆盖矩形,∴最优覆盖矩形的长为:2+5=7,宽为3+2=5,∴最优覆盖矩形的面积为:7×5=35;②∵点A,B,C的最优覆盖矩形的面积为40,∴由定义可知,t=﹣3或6,即点C坐标为(﹣3,﹣2)或(6,﹣2),设AC表达式为y=kx+b,∴3223k bk b=-+⎧⎨-=-+⎩或3226k bk b=-+⎧⎨-=+⎩∴513kb=⎧⎨=⎩或5874kb⎧=-⎪⎪⎨⎪=⎪⎩∴y=5x+13或5784y x=-+;(2)①OD所在的直线交双曲线于点E,矩形OFEG是点O,D,E的一个面积最小的最优覆盖矩形,如图1所示:∵点D(1,1),∴OD所在的直线表达式为y=x,∴点E的坐标为(2,2),∴OE222+2=22∴⊙P的半径最小r2②当DE∥x轴时,即:点E的纵坐标为1,如图2所示:∵点D (1,1).E (m ,n )是函数y =4x (x >0)的图象上一点 ∴1=4x ,解得x =4, ∴OE ═224+117, ∴⊙P 的半径最大r 17, 172r ≤. 【点睛】 本题是圆的综合题目,考查了矩形的性质、勾股定理、待定系数法求直线的解析式、坐标与图形性质、反比例函数等知识;本题综合性强,有一定难度.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三九年级上册数学压轴题测试与练习(word 解析版)一、压轴题1.已知,如图1,⊙O 是四边形ABCD 的外接圆,连接OC 交对角线BD 于点F ,延长AO 交BD 于点E ,OE=OF.(1)求证:BE=FD ;(2)如图2,若∠EOF=90°,BE=EF ,⊙O 的半径25AO =,求四边形ABCD 的面积; (3)如图3,若AD=BC ;①求证:22•AB CD BC BD +=;②若2•12AB CD AO ==,直接写出CD 的长. 2.如图①,O 经过等边ABC 的顶点A ,C (圆心O 在ABC 内),分别与AB ,CB 的延长线交于点D ,E ,连结DE ,BF EC ⊥交AE 于点F . (1)求证:BD BE =.(2)当:3:2AF EF =,6AC =,求AE 的长.(3)当:3:2AF EF =,AC a =时,如图②,连结OF ,OB ,求OFB △的面积(用含a 的代数式表示).3.如图1,有一块直角三角板,其中AB 16=,ACB 90∠=,CAB 30∠=,A 、B 在x 轴上,点A 的坐标为()20,0,圆M 的半径为33,圆心M 的坐标为(5,33-,圆M 以每秒1个单位长度的速度沿x 轴向右做平移运动,运动时间为t 秒;()1求点C 的坐标;()2当点M 在ABC ∠的内部且M 与直线BC 相切时,求t 的值;()3如图2,点E 、F 分别是BC 、AC 的中点,连接EM 、FM ,在运动过程中,是否存在某一时刻,使EMF 90∠=?若存在,直接写出t 的值,若不存在,请说明理由.4.如图,Rt ABC ∆中,90C ∠=︒,4AC =,3BC =.点P 从点A 出发,沿着A CB →→运动,速度为1个单位/s ,在点P 运动的过程中,以P 为圆心的圆始终与斜边AB 相切,设⊙P 的面积为S ,点P 的运动时间为t (s )(07t <<). (1)当47t <<时,BP = ;(用含t 的式子表示) (2)求S 与t 的函数表达式;(3)在⊙P 运动过程中,当⊙P 与三角形ABC 的另一边也相切时,直接写出t 的值.5.如图,在Rt △ABC 中,∠A=90°,0是BC 边上一点,以O 为圆心的半圆与AB 边相切于点D ,与BC 边交于点E 、F ,连接OD ,已知BD=3,tan ∠BOD=34,CF=83.(1)求⊙O 的半径OD ; (2)求证:AC 是⊙O 的切线; (3)求图中两阴影部分面积的和.6.如图,已知在矩形ABCD 中,AB =2,BC =3P ,Q 分别是BC ,AD 边上的一个动点,连结BQ ,以P 为圆心,PB 长为半径的⊙P 交线段BQ 于点E ,连结PD . (1)若DQ 3且四边形BPDQ 是平行四边形时,求出⊙P 的弦BE 的长;(2)在点P ,Q 运动的过程中,当四边形BPDQ 是菱形时,求出⊙P 的弦BE 的长,并计算此时菱形与圆重叠部分的面积.7.MN 是O 上的一条不经过圆心的弦,4MN =,在劣弧MN 和优弧MN 上分别有点A,B (不与M,N 重合),且AN BN =,连接,AM BM .(1)如图1,AB 是直径,AB 交MN 于点C ,30ABM ︒∠=,求CMO ∠的度数; (2)如图2,连接,OM AB ,过点O 作//OD AB 交MN 于点D ,求证:290MOD DMO ︒∠+∠=;(3)如图3,连接,AN BN ,试猜想AM MB AN NB ⋅+⋅的值是否为定值,若是,请求出这个值;若不是,请说明理由.8.某校网球队教练对球员进行接球训练,教练每次发球的高度、位置都一致.教练站在球场正中间端点A 的水平距离为x 米,与地面的距离为y 米,运行时间为t 秒,经过多次测试,得到如下部分数据: t 秒 0 1.5 2.5 4 6.5 7.5 9 … x 米 0 4 8 10 12 16 20 … y 米24.565.8465.844.562…(2)网球落在地面时,与端点A 的水平距离是多少? (3)网球落在地面上弹起后,y 与x 满足(256y a x k =-+①用含a 的代数式表示k ;②球网高度为1.2米,球场长24米,弹起后是否存在唯一击球点,可以将球沿直线扣杀到A 点,若有请求出a 的值,若没有请说明理由.9.抛物线G :2y ax c =+与x 轴交于A 、B 两点,与y 交于C (0,-1),且AB =4OC .(1)直接写出抛物线G 的解析式: ;(2)如图1,点D (-1,m )在抛物线G 上,点P 是抛物线G 上一个动点,且在直线OD 的下方,过点P 作x 轴的平行线交直线OD 于点Q ,当线段PQ 取最大值时,求点P 的坐标;(3)如图2,点M 在y 轴左侧的抛物线G 上,将点M 先向右平移4个单位后再向下平移,使得到的对应点N 也落在y 轴左侧的抛物线G 上,若S △CMN =2,求点M 的坐标.10.如图,抛物线2()20y ax x c a =++<与x 轴交于点A 和点B (点A 在原点的左侧,点B 在原点的右侧),与y 轴交于点C ,3OB OC ==.(1)求该抛物线的函数解析式.(2)如图1,连接BC ,点D 是直线BC 上方抛物线上的点,连接OD ,CD .OD 交BC 于点F ,当32COFCDFSS=::时,求点D 的坐标.(3)如图2,点E 的坐标为(03)2-,,点P 是抛物线上的点,连接EB PB PE ,,形成的PBE △中,是否存在点P ,使PBE ∠或PEB ∠等于2OBE ∠?若存在,请直接写出符合条件的点P 的坐标;若不存在,请说明理由.11.一个四边形被一条对角线分割成两个三角形,如果分割所得的两个三角形相似,我们就把这条对角线称为相似对角线.(1)如图,正方形ABCD 的边长为4,E 为AD 的中点,点F ,H 分别在边AB 和CD 上,且1AF DH ==,线段CE 与FH 交于点G ,求证:EF 为四边形AFGE 的相似对角线;(2)在四边形ABCD 中,BD 是四边形ABCD 的相似对角线,120A CBD ∠=∠=,2AB =,6BD =,求CD 的长;(3)如图,已知四边形ABCD 是圆O 的内接四边形,90A ∠=,8AB =,6AD =,点E 是AB 的中点,点F 是射线AD 上的动点,若EF 是四边形AECF 的相似对角线,请直接写出线段AF 的长度(写出3个即可).12.如图,抛物线y =﹣(x +1)(x ﹣3)与x 轴分别交于点A 、B (点A 在B 的右侧),与y 轴交于点C ,⊙P 是△ABC 的外接圆.(1)直接写出点A 、B 、C 的坐标及抛物线的对称轴; (2)求⊙P 的半径;(3)点D 在抛物线的对称轴上,且∠BDC >90°,求点D 纵坐标的取值范围;(4)E 是线段CO 上的一个动点,将线段AE 绕点A 逆时针旋转45°得线段AF ,求线段OF 的最小值.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)见详解;(2)5326 【解析】 【分析】(1)如图1中,作OH ⊥BD 于H .根据等腰三角形的性质以及垂径定理即可;(2)如图2中,作OH⊥BD于H,连接OB,求出AC,BD,根据S四边形ABCD=12•BD•AM+1 2•BD•CM=12•BD•AC即可求解;(3)①如图3中,连接OB,作OH⊥BD于H.利用等腰直角三角形的性质,完全平方公式等知识即可;②如图3中,连接OB,设DM=CM=x,想办法求出BC,DB,在Rt△BCM中,利用勾股定理构建方程即可.【详解】(1)证明:如图1中,作OH⊥BD于H.∵OE=OF,OH⊥EF,∴EH=HF,∵OH⊥BD,∴BH=HD,∴BE=DF;(2)解:如图2中,作OH⊥BD于H,连接OB.∵∠EOF=90°,OE=OF,OA=OC,∴∠OEF=∠OAC=45°,∴∠AME=90°,即AC⊥BD,连接OB.设OH=a,∵BE=EF,∴BE=2EH=2OH=2a,在Rt△BOH中,∵OH2+BH2=OB2,∴a2+(3a)2=(25)2,∴a=2或-2(舍弃),∴BD=BE+EF+DF=6a=62,在Rt△AOC中,AC=2AO=210,∴S四边形ABCD=12•BD•AM+12•BD•CM=12•BD•AC=12×210×62=125;(3)①如图3中,连接OB,作OH⊥BD于H.∵OE=OF,OA=OC,∴∠EOH=12∠EOF=12(∠EAC+∠ACO)=12×2∠OAC=∠OAC,∴AC∥OH,∴AC⊥BD,∵AD=BC,∴∠ABD=∠CAB=∠CDB=45°,∴2BM,2DM,CM=DM,∴AB•CD+BC222DM+BM2+CM2=(BM+DM)2=BD2;②如图3中,连接OB,设DM=CM=x,∵∠BOC=2∠BDC=90°,∴26,∵AB•CD+BC2=BD2,AB•CD=AO2=12,∴12+24=BD2,∴BD=6(负根已经舍弃),在Rt△BCM中,∵BC2=BM2+CM2,∴(6)2=(6-x)2+x2,∴3或3∴226.【点睛】本题属于圆综合题,考查了垂径定理,等腰三角形的性质,等腰直角三角形的判定和性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.2.(1)证明见解析;(2)213;(3) 2330a 【解析】 【分析】(1)根据△ABC 是等边三角形,从而可以得出∠BAC=∠C ,结合圆周角定理即可证明; (2)过点A 作AG ⊥BC 于点G ,根据△ABC 是等边三角形,可以得到BG 、AG 的值,由BF ∥AG 可得到AF BGEF EB=,求出BE ,最后利用勾股定理即可求解; (3)过点O 作OM ⊥BC 于点M ,由题(2)知AF BGEF EB =,CG=BG=1122AC a =,可以得到BM 的值,根据BF ∥AG ,可证得△EBF ∽△EGA ,列比例式求出BF ,从而表示出△OFB 的面积. 【详解】(1)证明:∵△ABC 是等边三角形, ∴∠BAC=∠C=60°,∵∠DEB=∠BAC=60°,∠D=∠C=60°, ∴∠DEB=∠D , ∴BD=BE ;(2)解:如图所示,过点A 作AG ⊥BC 于点G ,∵△ABC 是等边三角形,AC=6, ∴BG=11322BC AC ==, ∴在Rt △ABG 中,333AG BG == ∵BF ⊥EC , ∴BF ∥AG , ∴AF BG EF EB =, ∵AF :EF=3:2, ∴BE=23BG=2, ∴EG=BE+BG=3+2=5, 在Rt △AEG 中,()2222335213AE AG EG =+=+=(3)解:如图所示,过点O 作OM ⊥BC 于点M ,由题(2)知AF BGEF EB =,CG=BG=1122AC a =, ∴3=2AF BG EF EB =, ∴22113323EB BG a a ==⨯=,∴EC=CG+BG+BE=11142233a a a a ++=, ∴EM=12EC =23a , ∴BM=EM-BE=211333a a a -=, ∵BF ∥AG ,∴△EBF ∽△EGA ,∴123=11532aBF BE AG EG a a ==+, ∵332AG BG a ==, ∴2335BF ==, ∴△OFB 的面积=21313223BF BM a a ⋅=⨯=. 【点睛】本题主要考查了圆的综合题,关键是根据等边三角形的性质,勾股定理和相似三角形的判定和性质求解.3.(1)(C 8,43;(2)t=18s ;(3)t 1513= 【解析】 【分析】(1)如图1中,作CH ⊥AB 于H .解直角三角形求出CH ,OH 即可.(2)如图1﹣1中,设⊙M与直线BC相切于点N,作MH⊥AB于H.求出OH的长即可解决问题.(3)设M(﹣5+t,33),EF12=AB=8,由∠EMF=90°,可得EM2+MF2=EF2,由此构建方程即可解决问题.【详解】(1)如图1中,作CH⊥AB于H.∵A(20,0),AB=16,∴OA=20,OB=4.在Rt△ABC中,∵∠ACB=90°,AB=16,∠CAB=30°,∴BC12=AB=8,CH=BC•sin60°=43,BH=BC•cos60°=4,∴OH=8,∴C(8,43).(2)如图1﹣1中,设⊙M与直线BC相切于点N,作MH⊥AB于H.∵MN=MH3MN⊥BC,MH⊥BA,∴∠MBH=∠MBN=30°,∴BH3==9,∴点M的运动路径的长为5+4+9=18,∴当点M在∠ABC的内部且⊙M与直线BC相切时,t的值为18s.(3)∵C(8,3B(4,0),A(20,0).∵CE=EB,CF=FA,∴E(6,3),F(14,3),设M(﹣5+t,3),EF12=AB=8.∵∠EMF=90°,∴EM2+MF2=EF2,∴(6+5﹣t)2+32+(14+5﹣t)2+32=82,整理得:t2﹣30t+212=0,解得:t=1513【点睛】本题是圆的综合题,考查了平移变换,解直角三角形,切线的判定和性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.4.(1)7-t (2)()()()22904;25{1674725t t S t t ππ<≤=-<<(3)516,23t t ==【解析】 【分析】(1)先判断出点P 在BC 上,即可得出结论;(2)分点P 在边AC 和BC 上两种情况:利用相似三角形的性质得出比例式建立方程求解即可得出结论;(3)分点P 在边AC 和BC 上两种情况:借助(2)求出的圆P 的半径等于PC ,建立方程求解即可得出结论. 【详解】(1)∵AC =4,BC =3,∴AC +BC =7. ∵4<t <7,∴点P 在边BC 上,∴BP =7﹣t . 故答案为:7﹣t ;(2)在Rt △ABC 中,AC =4,BC =3,根据勾股定理得:AB =5,由运动知,AP =t ,分两种情况讨论:①当点P 在边AC 上时,即:0<t ≤4,如图1,记⊙P 与边AB 的切点为H ,连接PH ,∴∠AHP =90°=∠ACB . ∵∠A =∠A ,∴△APH ∽△ACB ,∴PH AP BC AB =,∴35PH t =,∴PH 35=t ,∴S 925=πt 2; ②当点P 在边BC 上时,即:4<t <7,如图,记⊙P 与边AB 的切点为G ,连接PG ,∴∠BGP =90°=∠C .∵∠B =∠B ,∴△BGP ∽△BCA ,∴PG BP AC AB =,∴745PG t -=,∴PG 45=(7﹣t ),∴S 1625=π(7﹣t )2. 综上所述:S 22904251674725t t t t ππ⎧≤⎪⎪=⎨⎪-⎪⎩(<)()(<<);(3)分两种情况讨论:①当点P 在边AC 上时,即:0<t ≤4,由(2)知,⊙P 的半径PH 35=t . ∵⊙P 与△ABC 的另一边相切,即:⊙P 和边BC 相切,∴PC =PH . ∵PC =4﹣t ,∴4﹣t 35=t ,∴t 52=秒; ②当点P 在边BC 上时,即:4<t <7,由(2)知,⊙P 的半径PG 45=(7﹣t ). ∵⊙P 与△ABC 的另一边相切,即:⊙P 和边AC 相切,∴PC =PG .∵PC=t﹣4,∴t﹣445=(7﹣t),∴t163=秒.综上所述:在⊙P运动过程中,当⊙P与三角形ABC的另一边也相切时,t的值为52秒或163秒.【点睛】本题是圆的综合题,主要考查了切线的性质,勾股定理,相似三角形的判定和性质,用分类讨论的思想解决问题是解答本题的关键.5.(1)OD=4,(2)证明过程见详解(3)504 3π-【解析】【分析】(1)根据AB与圆O相切,在Rt△OBD中运用tan∠BOD=34,即可求出OD的长,(2)作辅助线证明四边形ADOG是矩形,得DO∥AC,sin∠OCG=35,在Rt△OCG中,求出OG的长等于半径即可解题,(3)利用S阴影=S Rt△BAC-S正方形ADOG-14S圆O,求出AC长度即可解题.【详解】解:(1)∵AB与圆O相切,∴OD⊥AB,在R t△OBD中,BD=3,tan∠BOD=BDOD=34,∴OD=4,(2)过点O作OG垂直AC于点G,∵∠A=90°,AB与圆O相切,∴四边形ADOG是矩形,∴DO∥AC,∴∠BOD=∠OCG,∵tan∠BOD=BDOD=34,∴sin∠OCG=3 5 ,∵CF=83,OF=4,∴OG=OGsin∠OCG=4=r,∴AC是⊙O的切线(3)由前两问可知,四边形ADOG是边长为4的正方形,扇形DOE和扇形GOF的面积之和是四分之一圆的面积,在R t△ABC中,tan∠C=34,AB=4+3=7,∴AC=ABtan C∠=734=283,∴S阴影=S Rt△BAC-S正方形ADOG-14S圆O=212817444234π⨯⨯-⨯-=5043π-【点睛】本题考查了三角函数的应用和直线与圆的位置关系,中等难度,熟悉三角函数并熟练应用是解题关键.6.(16372)BE433833.【解析】【分析】(1)作PT⊥BE于点T,根据垂径定理和勾股定理求BQ的值,再根据相似三角形的判定和性质即可求解;(2)根据菱形性质和勾股定理求出菱形边长,此时点E和点Q重合,再根据扇形面积公式即可求解.【详解】解:(1)如图:过点P作PT⊥BQ于点T,∵AB=2,AD=BC=3,DQ3∴AQ3在Rt△ABQ中,根据勾股定理可得:BQ7.又∵四边形BPDQ是平行四边形,∴BP=DQ3,∵∠AQB=∠TBP,∠A=∠BTP,∴△AQB∽△TBP,∴3,37 BT BDAQ BQ==即∴BT 33 7∴BE=2BT 63 7(2)设菱形BPDQ的边长为x,则AQ=3x,在Rt△ABQ中,根据勾股定理,得AB2+AQ2=BQ2,即4+(3x)2=x2,解得x 43 3.∵四边形BPDQ为菱形,∴43 3,又233即DP=2CP,∴∠DPC=60°,∴∠BPD=120°,∴连接PQ,易得△BPQ为等边三角形,∴PQ=BP,∴点Q也在圆P上,圆P经过点B,D,Q,如图.∴点E 、Q 重合, ∴BE 433∴菱形与圆重叠部分面积即为菱形的面积,∴S 菱形833. 【点睛】本题考查了平行四边形、矩形、菱形的性质、垂径定理、勾股定理、相似三角形的判定和性质、扇形面积公式,解决本题的关键是综合运用以上知识. 7.(1)15°;(2)见解析;(3)16 【解析】 【分析】(1)先求得45AMN BMN ︒∠=∠=,再由OM OB =得到30OMB OBM ︒∠=∠=,于是可解;(2)连接,,OA OB ON .可证AON BON ∠=∠,ON AB ⊥,由//OD AB 可知90DON ︒∠=,在MON ∆中用内角和定理可证明;(3)延长MB 至点M ',使BM AM '=,连接NM ',作NE MM '⊥于点E.证明AMN BM N '≅,得到'MM N ∆是等腰三角形,然后在MNE ∆中用勾股定理即可求出16AM MB AN NB ⋅+⋅=. 【详解】 (1)AB 是O 的直径,90AMB ︒∴∠=AN BN =45AMN BMN ︒∴∠=∠=OM OB =30OMB OBM ︒∴∠=∠= 453015CMO ︒︒︒∴∠=-=(2)连接,,OA OB ON .AN BN =AON BON ∴∠=∠,ON AB ⊥ //OD AB90DON ︒∴∠=OM ON =OMN ONM ∴∠=∠180OMN ONM MOD DON ︒∠+∠+∠+∠=290MOD DMO ︒∴∠+∠=(3)延长MB 至点M ',使BM AM '=,连接NM ',作NE MM '⊥于点E. 设AM a =,BM b =.四边形AMBN 是圆内接四边形180A MBN ︒∴∠+∠=180NBM MBN '︒∠+∠= A NBM '∴∠=∠AN BN =AN BN ∴=(SAS)AMN BM N '∴≅MN NM '∴=,BM AM a '==, NE MM '⊥于点E.11()22ME EM MM a b ''∴===+,()2222ME BN BE MN +-=22211()()1622a b BN b a ⎡⎤⎡⎤∴++--=⎢⎥⎢⎥⎣⎦⎣⎦化简得216ab NB +=,16AM MB AN NB ∴⋅+⋅=【点睛】本题考查了圆的综合题,涉及的知识点有圆周角定理和垂径定理以及圆内接四边形的性质,综合性质较强,能够做出相应的辅助线是解题的关键.8.(1)10;(2)10+米;(3)①100k a =-;②不存在,理由见解析 【解析】 【分析】(1)利用表格中数据直接得出网球达到最大高度时的时间及最大值; (2)首先求出函数解析式,进而求出网球落在地面时,与端点A 的水平距离; (3)①由(2)得网球落在地面上时,得出对应点坐标,代入计算即可; ②由球网高度及球桌的长度可知其扣杀路线解析式为110y x =,若要击杀则有(2110010a x a x --=,根据有唯一的击球点即该方程有唯一实数根即可求得a 的值,继而根据对应x 的值取舍可得. 【详解】 (1)由表格中数据可得4t =,(秒),网球达到最大高度,最大高度为6;(2)以A 为原点,以球场中线所在直线为x 轴,网球发出的方向为x 轴的正方向,竖直运动方向为y 方向,建立平面直角坐标系.由表格中数据,可得y 是x 的二次函数,且顶点坐标为(10,6), 可设2(10)6y m x =-+, 将(0,2)代入,可得:125m =-, ∴21(10)625y x =--+,当0y =,得10x =±(负值舍去),∴网球落在地面上时,网球与端点A 的距离为10+米;(3)①由(2)得网球落在地面上时,对应的点为(10+,0)代入(2y a x k =-+,得100k a =-;②不存在.∵网高1.2米,球网到A 的距离为24122=米, ∴扣杀路线在直线经过(0,0)和(12,1.2)点,∴扣杀路线在直线110y x =上,令(2110010a x a x --=,整理得:2150010ax x a ⎛⎫-+= ⎪⎝⎭, 当0=时符合条件,221106200010a a ⎛⎫=+-= ⎪⎝⎭,解得1a =,2a =.开口向下,0a <, ∴1a ,2a 都可以,将1a ,2a 分别代入(2110010a x a x --=,得到得解都是负数,不符合实际. 【点睛】本题主要考查了二次函数的实际应用,由实际问题建立起二次函数的模型并将二次函数的问题转化为一元二次方程求解是解题的关键.9.(1)2114y x =-;(2)点P 37(,)216-;(3)(2M --+ 【解析】 【分析】(1)根据题意得到AB=4,根据函数对称轴x=0,得到OA=OB=2,得到A 、B 坐标,代入函数解析式即可求解;(2)首先求得直线OD 解析式,然后设P (21,14t t -),得到PQ 关于t 的解析式,然后求出顶点式即可求解; (3)设点21,14M m m ⎛⎫- ⎪⎝⎭,然后求得直线CM 的解析式,得到EM 的表达式,然后根据CMNCNEMNESSS=+即可求解.【详解】(1)∵AB =4OC ,且C (0,-1) ∴AB=4∴OA=OB=2,即A 点坐标()2,0-,B 点坐标()2,0 代入A 点坐标得2021a =- 解得14a =∴G 的解析式为2114y x =- 故答案为2114y x =-(2)当1x =-时,34y =-,即:点D 为(31,4--)∴直线OD 为:34y x = 设P (21,14t t -),则Q 为(22141,1334t t --),则: 22214141325()()33333212PQ t t t t t =--=-++=--+∴当32t =时,PQ 取得最大值2512,此时点P 位37(,)216- (3)设点21,14M m m ⎛⎫- ⎪⎝⎭,则N ()214,414m m ⎛⎫++- ⎪⎝⎭∵C 点坐标为(0,1)-∴可设直线CM 为1y kx =-,带入M 点坐标得:14k m = ∴直线CM 为114y mx =- 过点N 作NE y ∥轴交CM 于点E ,则E 点为()14,414m m m ⎛⎫++- ⎪⎝⎭∴4EN m =--∵()()12CMNCNE MNEC N N M S SSx x x x EN ⎡⎤=+=-+-•⎣⎦ ∴()()104=22m m --- ∴2440m m +-=解得:12m =--,22m =-+(舍去)∴M (2--+ 【点睛】本题考查了待定系数法求函数解析式,二次函数综合应用,是二次函数部分的压轴题,题目较难,应画出示意图,然后进行讨论分析.10.(1)2y x 2x 3=-++;(2)点D 的坐标为(14),或(2)3,;(3)点P 的坐标为:(14),或17()24-,或13209()24--,或.【解析】 【分析】(1)由3OB OC ==及图像可得B 、C 两点坐标,然后利用待定系数法直接进行求解即可;(2)由题意易得35COFCOD SS =,进而得到点D 、F 横坐标之间的关系为53D F x x =,设F 点横坐标为3t ,则D 点横坐标为5t ,则有直线BC 的解析式为3y x =-+,然后可直接求解;(3)分∠PBE 或∠PEB 等于2∠OBE 两种情况分别进行求解即可. 【详解】解:(1)3OB OC ==,则:()()3003B C ,,,, 把B C 、坐标代入抛物线方程,解得抛物线方程为:2y x 2x 3=-++①;(2)∵32COF CDF S S =△△::, ∴35COFCOD SS =,即:53D F x x =, 设F 点横坐标为3t ,则D 点横坐标为5t ,点F 在直线BC 上,而BC 所在的直线表达式为:3y x =-+,则33(3)F t t -,, 则直线OF 所在的直线表达式为:3313t t y x x t t--==, 则点55(5)D t t -,,把D 点坐标代入抛物线解析式,解得:15t =或2 5, 则点D 的坐标为(14),或(2)3,; (3)①当2PBE OBE ∠=∠时,当BP 在x 轴上方时,如图2,设1BP 交y 轴于点E ', ∴12PBE OBE ∠=∠ , ∴E BO EBO ∠'=∠ ,又60E OB EBO BO BO ∠'=∠=︒=, ,∴()E BO EBO AAS '≌ ,∴32EO EO ==, ∴点3(20)E ',,直线1BP 过点BE '、,则其直线方程为:1322y x =-+②, 联立①②并解得:12x =- , 故点P 1的坐标为17()24-,;当BP 在x 轴下方时, 如图2,过点E 作//EF BE '交2BP 于点F ,则FEB EBE ∠=∠',∴222E BE OBE EBP OBE ∠'=∠∠=∠, ,∴FEB EBF ∠=∠ ,∴FE BF = ,直线EF 可以看成直线BE '平移而得,其k 值为12-, 则其直线表达式为:1322y x =-- , 设点13()22F m m --,,过点F 作FH y ⊥轴交于点H ,作BK HF ⊥于点K , 则点13()202H m --,,13()232K m --,, ∵EF BF =,则22FE BF =, 即:()2222331313()()22222m m m m +-++=-++, 解得:52m =, 则点511()24F -,, 则直线BF 表达式为:113322y x =-…③, 联立①③并解得:132x =-或3(舍去3), 则点213209()24P --,; ②当2PEB OBE ∠=∠时,当EP 在BE 上方时,如图3,点E '为图2所求,设BE '交3EP 于点F ,∵2EBE OBE ∠'=∠,∴3EBE P EB ∠'=∠ ,∴FE BF = ,由①知,直线BE '的表达式为:1322y x =-+, 设点13()22F n n -+,,13()232K n -+,,由FE BF =,同理可得:12n =, 故点15()24F ,,则直线EF 的表达式为:11322y x =-④, 联立①④并解得:1n =或92- (舍去负值), ∴34(1)P , ; 当EP 在BE 下方时,同理可得:x =舍去负值),故点458(417P +-+,.故点P 的坐标为:(14),或17()24-,或13209()24--,或. 【点睛】 本题主要考查二次函数的综合,关键是熟练掌握二次函数的性质与一次函数的性质,利用数形结合及分类讨论思想进行求解.11.(1)详见解析;(2)3CD =或3;(3)详见解析.【解析】【分析】(1)只要证明△EAF ∽△FEG 即可解决问题;(2)如图3中,作DE ⊥BA 交BA 的延长线于E .设AE=a .在Rt △BDE 中,利用勾股定理构建方程求出a ,分两种情形构建方程求解即可;(3)①当△AFE ∽△EFC 时,连接BC ,AC ,BD .②当△AFE ∽△FEC 时,作CH ⊥AD 交AD 的延长线于H ,作OM ⊥AD 于M ,连接OA .③当△AFE ∽△CEF 时,分别求解即可,注意答案不唯一.【详解】解:(1)如图1,∵正方形ABCD 中4AB AD CD ===,90A D ∠=∠=,E 为AD 中点∴2AE ED ==,∵1AF DH ==,∴12AF DE AE CD == ∴AEF DCE ∆∆∽∴AEF DCE ∠=∠,AFE DEC ∠=∠ ∵//AF DH ,∴四边形AFHD 为平行四边形∴AD FH ,∴AEF EFG ∠=∠,DEC EGF AFE ∠=∠=∠∴AEF EFG ∆∆∽∴EF 为四边形AFGE 的相似对角线. (2)如图2,过点D 作DE BA ⊥,垂足为E ,设AE a =∵120A CBD ∠=∠=,∴60EAD ∠=,∴3DE a =∵2AB =,6BD =∴()22236a a ++=312a -=(负根已经舍弃), ∴31AD =-分为两种情况:①如图3,当ABD BCD ∆∆∽时,AD BD BD CD = ∴()316CD -=,∴333CD =+②如图4,当ABD BDC ∆∆∽时,AB BD BD CD= ∴26CD =,∴3CD =综上,333CD =+或3(3)①如图5,∵∠FEC=∠A=90°,∠BEF=∠BEC+∠FEC=∠A+∠AEF ,∴AFE BEC ∠=∠,AF EF AF AE EC BE==,∴AFE BEC ∆∆∽,∴90B ∠= 由“一线三等角”得83AF =.②如图,当△AFE∽△FEC时,作CH⊥AD交AD的延长线于H,作OM⊥AD于M,连接OA.∵△AFE∽△FEC,∴∠AFE=∠FEC,∴AD∥EC,∴∠CEB=∠DAB=90°,∵∠OMA=∠AHC=90°,∴四边形AEOM,四边形AECH都是矩形,∵OM⊥AD,∴AM=MD=3,∴AM=OE=3,∵OE⊥AB,∴AE=EB=4,∴OA=2234+=5,∴CE=AH=8,设AF=x,则FH=8-x,CH=AE=4,由△AEF∽△HFC,可得AFCH=AEFH,∴448xx =-,解得x=4,经检验x=4是分式方程的解,∴AF=4.③如图当△AFE∽△CEF时易证四边形AECF是矩形,AF=EC=8.综上所述,满足条件的AF的长为83或4或8.(答案不唯一)【点睛】本题属于圆综合题,考查正方形的性质,相似三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用分类讨论的思想思考问题,属于中考常考题型.12.(1)点B的坐标为(﹣1,0),点A的坐标为(3,0),点C的坐标为(0,3);抛物线的对称轴为直线x=1;(2)⊙P;(3)1<y<2;(4)3﹣2.【解析】【分析】(1)分别代入y=0、x=0求出与之对应的x、y的值,进而可得出点A、B、C的坐标,再由二次函数的对称性可找出抛物线的对称轴;(2)连接CP、BP,在Rt△BOC中利用勾股定理可求出BC的长,由等腰直角三角形的性质及圆周角定理可得出∠BPC=90°,再利用等腰直角三角形的性质可求出BP的值即可;(3)设点D的坐标为(1,y),当∠BDC=90°时,利用勾股定理可求出y值,进而可得出:当1<y<2时,∠BDC>90°;(4)将△ACO绕点A逆时针方向旋转45°,点C落在点C′处,点O落在点O′处,根据旋转的性质可找出点C′的坐标及∠AC′O′=45°,进而可找出线段C′O′所在直线的解析式,由点E在CO上可得出点F在C′O′上,过点O作OF⊥C′O′于点F,则△OC′F 为等腰直角三角形,此时线段OF取最小值,利用等腰直角三角形的性质即可求出此时OF 的长即可.【详解】(1)当y=0时,﹣(x+1)(x﹣3)=0,解得:x1=﹣1,x2=3,∴点B的坐标为(﹣1,0),点A的坐标为(3,0);当x=0时,y=﹣(0+1)×(0﹣3)=3,∴点C的坐标为(0,3);∵抛物线与x轴交于点(﹣1,0)、(3,0),∴抛物线的对称轴为直线x=1;(2)连接CP、BP,如图1所示,在Rt△BOC中,BC=∵∠AOC=90°,OA=OC=3,∴∠OAC=∠OCA=45°,∴∠BPC=2∠OAC=90°,∴CP=BP=2BC∴⊙P(3)设点D的坐标为(1,y),当∠BDC=90°时,BD2+CD2=BC2,∴[(﹣1﹣1)2+(0﹣y)2]+[(0﹣1)2+(3﹣y)2]=10,整理,得:y2﹣3y+2=0,解得:y1=1,y2=2,∴当1<y<2时,∠BDC>90°;(4)将△ACO绕点A逆时针方向旋转45°,点C落在点C′处,点O落在点O′处,如图2所示.∵AC=2232OA OC+=,∠ACO=45°,∴点C′的坐标为(3﹣32,0),∠AC′O′=45°,∴线段C′O′所在直线的解析式为y=﹣x+3﹣32,∵点E在线段CO上,∴点F在线段C′O′上.过点O作OF⊥C′O′于点F,则△OC′F为等腰直角三角形,此时线段OF取最小值,∵△OC′F为等腰直角三角形,∴OF=22OC′=22(32﹣3)=3﹣322.【点睛】本题考查了二次函数图象上点的坐标特征、二次函数的性质、圆周角定理、勾股定理、旋转以及等腰直角三角形,解题的关键是:(1)利用二次函数图象上点的坐标特征求出点A、B、C的坐标;(2)利用圆周角定理找出∠BPC=90°;(3)利用极限值法求出点D纵坐标;(4)利用点到直线之间垂直线段最短确定点F的位置.。