九年级数学期中测评华东师大版

合集下载

华东师大新版九年级数学第一学期期中试卷

华东师大新版九年级数学第一学期期中试卷

F EDCBA F E CBA EDCB AOF EDCBA 华东师大新版九年级数学第一学期期中试题班级: _____________ 姓名:一、选择题(2×10=20分)1、 下列式子中,二次根式的个数是( )2A 、1B 、2C 、3D 、4 2、下列二次根式中,最简二次根式是( ) ABCD3a =-,则a 的取值范围是( )A 、0a <B 、0a ≤C 、0a >D 、0a ≥ 4、下列方程是关于x 的一元二次方程的是( )A 、20ax bx c ++= B 、220a x bx c ++=C20bx c ++= D 、22(1)0a x bx c +++=5、已知关于x 的一元二次方程22210a x x a ++-=的一根是0,则它的另一根是( ) A 、1 B 、-1 C 、1或-1 D 、0 6、下列方程中,没有实数根的方程是( )A 、2240x x -+= B 、231260x x --=C 、2250x x += D 、243x x -= 图17、如图1,已知四边形ABCD 是平行四边形, EF//BC ,则图中相似三角形共有( ) A 、1组 B 、2组 C 、3组 D 、4组8、如图2,在三角形ABC 中,E 、F 分别是AB 、AC 边上的点, 图2且有EF//BC ,如果45AC EB =,则ACFC =( )A 、94B 、59C 、54D 、959、已知两个三角形的面积比为4:9,周长是40cm ,则这两个三角形的周长分别是( ) A 、16cm 和24cm B 、1426cm cm 和 C 、1822cm cm 和 D 、2020cm cm 和 10、如图3:AB 是斜靠在墙AC 上的楼梯,梯脚B 点距离墙1.6m ,梯上D 点距墙1.4m ,0.55BD m =,则梯子长为( )A 、3.84mB 、4.00mC 、4.4mD 、4.5m二、填空⨯(38=24分)1、已知3=-2(3-的算术平方根是_________________。

华师大版九年级上册数学期中考试试卷及答案

华师大版九年级上册数学期中考试试卷及答案

华师大版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案) 1.下列根式是最简二次根式的是( )A B C D 2.下列运算正确的是( )A =BC =D 23= 3.已知关于x 的方程2(1)210a x x -+-=有实数根,则a 的取值范围是( ) A .1a ≠B .2a ≤C .2a ≤且1a ≠D .无法确定4.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,下列说法中不正确...的是A .12DE BC =B .AD AEAB AC = C .△ADE ∽△ABC D .:1:2ADEABCS S=5.某商品经过连续两次降价,售价由原来的每件25元降到每件16元,则平均每次降价的百分率为( ). A .20%;B .40%;C .18%;D .36%.6.如图,在△ABC 中,D 、F 分别是AB 、BC 上的点,且DF ∥AC ,若S △BDF :S △DFC =1:4,则S △BDF :S △DCA =( )A .1:16B .1:18C .1:20D .1:247.如图,点A 在线段BD 上,在BD 的同侧作等腰Rt ABC ∆和等腰Rt ADE ∆,CD 与BE 、AE 分别交于点P 、M .对于下列结论:①BAECAD ∆∆;②MP MD MA ME ⋅=⋅;③22CB CP CM =⋅.其中正确的是( )A .①②③B .①C .①②D .②③8.在ABC 中,13,cos 2AB AC B ∠===BC 边长为( ) A .7B .8C .7或17D .8或179.如图,在直角BAD 中,延长斜边BD 到点C ,使12DC BD =,连接AC ,若tanB=53,则tan CAD ∠的值( )A B C .13D .1510.已知△ABC ∽△A 1B 1C 1,且∠A =60°,∠B 1=40°,则∠C 1的度数为( ) A .40° B .60°C .80°D .100°二、填空题 11.若23b a =,则a ba b +=-______________. 12.一个等腰三角形的两条边长分别是方程x 2﹣7x +10=0的两根,则该等腰三角形的周长是_____.13.如图,在一块长为22m 、宽为17m 的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形一边平行),剩余部分种上草坪,使草坪面积为300m 2.若设道路宽为xm ,则根据题意可列方程为 .14.如图,在矩形ABCD 中,点E 为AB 的中点,点F 为射线AD 上一动点,A 'EF 与AEF 关于EF 所在直线对称,连接AC ,分别交E A '、EF 于点M 、N ,AB =AD =2.若EMN 与AEF 相似,则AF 的长为_____.三、解答题15.(1)计算: 2|1+-(2)解下列方程①2(2)24x x -=- ②2410x x --=(配方法)16.先化简,再求值:222444(2)11x x x x x x x-+++-+÷--,其中x 满足x 2﹣4x +3=0.17.已知关于x 的一元二次方程22(22)(2)0x m x m m --+-=. (1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为12x x ,,且221210x x +=,求m 的值.18.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?19.如图所示,在正方形ABCD 中,E ,F 分别是边AD ,CD 上的点,AE =ED ,DF=14DC ,连结EF 并延长交BC 的延长线于点G ,连结BE . (1)求证:△ABE ∽△DEF .(2)若正方形的边长为4,求BG 的长.20.如图,在ABCD 中,AM BC ⊥,AN CD ⊥,垂足分别为M ,N .求证:(1)~AMB AND ∆∆; (2)AM MNAB AC=.21.先阅读理解下面的例题,再按要求解答下列问题: 例题:求代数式y 2+4y +8的最小值.解:y 2+4y +8=y 2+4y +4+4=(y +2)2+4,∵(y +2)2≥0,∴(y +2)2+4≥4,∴y 2+4y +8的最小值是4.(1)求代数式m2+m+4的最小值;(2)求代数式4-x2+2x的最大值;(3)某居民小区要在一块一边靠墙(墙长15 m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为20 m的栅栏围成.如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?22.在△ABC中,AB=8,BC=6,∠B为锐角且cosB=12.(1)求△ABC的面积.(2)求tanC.23.如图,在△ABC中,点N为AC边的任意一点,D为线段AB上一点,若∠MPN的顶点P为线段CD上任一点,其两边分别与边BC,AC交于点M、N,且∠MPN+∠ACB=180°.(1)如图1,若AC=BC,∠ACB=90°,且D为AB的中点时,则PMPN=,请证明你的结论;(2)如图2,若BC=m,AC=n,∠ACB=90°,且D为AB的中点时,则PMPN=;(3)如图3,若BDAB=k,BC=m,AC=n,请直接写出PMPN的值.(用k,m,n表示)参考答案1.A【分析】根据最简二次根式的定义,逐一验证排除即可.【详解】A是最简二次根式,故此选项正确;BCD=故选:A.【点睛】本题考查了最简二次根式的定义,熟记最简二次根式的定义是解题的关键.2.C【分析】根据二次根式的加减乘除运算法则进行计算即可.【详解】AB2-C=,故此选项正确; D= 故选:C . 【点睛】本题考查了二次根式的混合运算,掌握二次根式的混合运算是解题的关键. 3.B 【分析】根据方程2(1)210a x x -+-=有实数根,分情况讨论:方程为关于x 的一次方程时,则1a -=0计算可得;方程为关于x 的二次方程时,10a -≠且0∆≥计算即可得,综合二种情况即可. 【详解】根据题意知,若方程是关于x 的一次方程时,可得1a -=0,解得a =1;若方程为二次方程时,10a -≠且0∆≥,解得2a ≤且1a ≠,综合二种情况可得2a ≤, 故选:B . 【点睛】本题考查了方程的根的判定,分情况讨论的思想,掌握分情况讨论思想是解题的关键. 4.D 【解析】∵在△ABC 中,点D 、E 分别是AB 、AC 的中点, ∴DE ∥BC ,DE=12BC , ∴△ADE ∽△ABC ,AD AEAB AC=, ∴21()4ADE ABCS DE SBC ==. 由此可知:A 、B 、C 三个选项中的结论正确,D 选项中结论错误. 故选D. 5.A 【分析】可设降价的百分率为x ,第一次降价后的价格为()251x -,第一次降价后的价格为()2251x -,根据题意列方程求解即可.【详解】解:设降价的百分率为x根据题意可列方程为()225116x -= 解方程得115x =,295x =(舍) ∴每次降价得百分率为20% 故选A . 【点睛】本题考查了一元二次方程的在销售问题中的应用,正确理解题意,找出题中等量关系是解题的关键. 6.C 【分析】根据等高三角形面积的比等于底的比和相似三角形面积的比等于相似比的平方即可解出结果. 【详解】∵S △BDF :S △DFC =1:4, ∴BF :FC=1:4, ∴BF :BC=1:5, ∵DF ∥AC , ∴△BFD ∽△BCA ,∴2125BFD BCASBF SBC ⎛⎫== ⎪⎝⎭, 设S △BFD =k ,则S △DFC =4k ,S △ABC =25k , ∴S △ADC =20k ,∴S △BDF :S △DCA =1:20. 故选C . 【点睛】本题考查了相似三角形的性质,相似三角形面积的比等于相似比的平方,注意各三角形面积之间的关系是解题的关键.7.A【详解】分析:(1)由等腰Rt△ABC和等腰Rt△ADE三边份数关系可证;(2)通过等积式倒推可知,证明△PAM∽△EMD即可;(3)2CB2转化为AC2,证明△ACP∽△MCA,问题可证.详解:由已知:,∴AC AD AB AE=∵∠BAC=∠EAD ∴∠BAE=∠CAD ∴△BAE∽△CAD 所以①正确∵△BAE∽△CAD ∴∠BEA=∠CDA ∵∠PME=∠AMD ∴△PME∽△AMD∴MP ME MA MD=∴MP•MD=MA•ME所以②正确∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A四点共圆∴∠APD=∠EAD=90°∵∠CAE=180°-∠BAC-∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵∴2CB 2=CP•CM 所以③正确 故选A .点睛:本题考查了相似三角形的性质和判断.在等积式和比例式的证明中应注意应用倒推的方法寻找相似三角形进行证明,进而得到答案. 8.C 【分析】由B 的余弦值得到它的度数,再分情况讨论,画出图象,利用锐角三角函数求出BC 的长. 【详解】解:∵cos B ∠= ∴45B ∠=︒,如图,当ABC 是钝角三角形时,∵AB =,45B ∠=︒, ∴12AD BD ==, ∵13AC =, ∴5CD =,∴1257BC BD CD =-=-=, 如图,当ABC 是锐角三角形时,12517BC BD CD =+=+=.故选:C .【点睛】本题考查解直角三角形,解题的关键是掌握解直角三角形的方法,需要注意进行分类讨论.9.D【分析】延长AD ,过点C 作CE AD ⊥,垂足为E ,由5tan 3B =,即53AD AB =,设5AD x =,则3AB x =,然后可证明CDE BDA ∆∆∽,然后相似三角形的对应边成比例可得:12CE DE CD AB AD BD ===,进而可得32CE x =,52DE x =,从而可求1tan 5EC CAD AE ∠==. 【详解】解:如图,延长AD ,过点C 作CE AD ⊥,垂足为E ,5tan 3B =,即53AD AB =, ∴设5AD x =,则3AB x =,CDE BDA ∠=∠,CED BAD ∠=∠,CDE BDA ∴∆∆∽, ∴12CE DE CD AB AD BD ===, 32CE x ∴=,52DE x =, 152AE x ∴=, 1tan 5EC CAD AE ∴∠==. 故选:D .【点睛】本题考查了锐角三角函数的定义,相似三角形的判定和性质以及直角三角形的性质,是基础知识要熟练掌握,解题的关键是:正确添加辅助线,将CAD ∠放在直角三角形中. 10.C【分析】直接利用相似三角形的性质得出对应角相等进而得出答案.【详解】解:∵△ABC∽△A1B1C1,∴∠A1=∠A=60°,∠B=∠B1=40°,则∠C1=180°﹣60°﹣40°=80°.故选:C.【点睛】此题主要考查了相似三角形的性质,正确得出对应角度数是解题关键.11.5【分析】根据题意,把23ba=化简整理得23b a=,代入所求代数式计算即可.【详解】由题意得,23b a=,代入所求代数式,可得原式=253352133a a aa a a+==-,故答案为:5.【点睛】本题考查了分式的化简求值,整体代换的思想,掌握整体代换的思想是解题的关键.12.12【分析】首先利用因式分解法解方程,再利用三角形三边关系得出各边长,进而得出答案. 【详解】解:x2﹣7x+10=0(x﹣2)(x﹣5)=0,解得:x1=2,x2=5,故等腰三角形的腰长只能为5,5,底边长为2,则其周长为:5+5+2=12.故答案为:12.【点睛】本题考查因式分解法解一元二次方程,需要熟悉三角形三边的关系以及等腰三角形的性质. 13.(22-x )(17-x )=300.【分析】把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程.【详解】设道路的宽应为x 米,由题意有(22﹣x )(17﹣x )=300,故答案为(22﹣x )(17﹣x )=300.14.1或3【分析】分两种情形①当EM ⊥AC 时,△EMN ∽△EAF .②当EN ⊥AC 时,△ENM ∽△EAF ,分别求解.【详解】解:①当EM ⊥AC 时,△EMN ∽△EAF ,∵四边形ABCD 是矩形,∴AD =BC =2,∠B =90°,∴tan ∠CAB =3BC AB =, ∴∠CAB =30°,∴∠AEM =60°,∴∠AEF =30°,∴AF =AE•tan30°1, ②当EN ⊥AC 时,△ENM ∽△EAF ,由(1)可知,∠CAB =30°,EN ⊥AC∴∠AEN=∠MEN=60°,∵1122AE AB ==⨯= ∴tan tan 60AF AEF AE ∠=︒=,= ∴AF =3,故答案为:1或3.【点睛】本题考查翻折变换,矩形的性质,解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.(1)②3;(2)①12x =,24x =;②12x =22x =【分析】(1)①先把每个二次根式进行化简,化成最简二次根式,然后进行合并计算即可; ②先把每个式子进行化简,利用最简二次根式,二次根式平方的性质,绝对值的性质,化简后进行计算即可;(2)①先去括号,把一元二次方程化简为一般形式,然后利用因式分解法解方程即可; ②利用配方法直接求解一元二次方程即可.【详解】(1)①原式3=-,=②原式21=,3=,故答案为:3;(2)①把原方程化简为:244240x x x -+-+=,2680x x -+=,(2)(4)0x x --=,解得:12x =或24x =,故答案为:12x =或24x =;②原方程可化为:2445x x +=-,2(2)5x -=,2x =解得:12x =22x =故答案为:12x =22x =【点睛】本题考查了二次根式的化简计算,绝对值的性质,二次根式平方的性质,一元二次方程的解法,掌握计算的方法是解题的关键.16.化简结果是12x -+,求值结果是:15-. 【分析】先根据分式混合运算的法则把原式进行化简,再求出x 的值代入进行计算即可.【详解】解:原式=2224(2)(1)1(112)⎛⎫-+---⋅ ⎪--⎝⎭-+x x x x x x x x =222243211(2)-+-+--⋅-+x x x x x x x =2211(2)+-⋅-+x x x x =12x -+, ∵x 满足x 2﹣4x +3=0,∴(x -3)(x -1)=0,∴x 1=3,x 2=1,当x =3时,原式=﹣132+=15-; 当x =1时,分母等于0,原式无意义.∴分式的值为15-. 故答案为:化简结果是12x -+,求值结果是:15-. 【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及解一元二次方程的能力.17.(1)证明见详解.(2)m 的值为3或1-.【分析】(1)根据240b ac =->,即可证明方程有两个不相等的实数根(2)根据根与系数的关系,通过变形计算即可求出答案.【详解】解:(1)证明:∵22[(22)]4(2)m m m ∆=----=2248448m m m m -+-+=40>∴该方程有两个不相等的实数根.(2)由一元二次方程根与系数的关系,得:1222x x m +=-,2122x x m m ⋅=-.∵221210x x +=,∴21212()210x x x x +-=,即22(22)2(2)10m m m ---=,化简,得2230m m --=,解得13m =,21m =-,∴m 的值为3或1-.【点睛】本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系以及一元二次方程的解法,本题属于中等题型.18.解:设购买了x 件这种服装,根据题意得:()802x 10x 1200⎡⎤--=⎣⎦,解得:x 1=20,x 2=30.当x=30时,80﹣2(30﹣10)=40(元)<50不合题意舍去.答:她购买了30件这种服装.【详解】试题分析:根据一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,表示出每件服装的单价,进而得出等式方程求出即可.19.(1)见解析;(2)BG=BC+CG=10.【分析】(1)利用正方形的性质,可得∠A =∠D ,根据已知可得AE :AB =DF :DE ,根据有两边对应成比例且夹角相等三角形相似,可得△ABE ∽△DEF ;(2)根据相似三角形的预备定理得到△EDF ∽△GCF ,再根据相似的性质即可求得CG 的长,那么BG 的长也就不难得到.【详解】(1)证明:∵ABCD 为正方形,∴AD =AB =DC =BC ,∠A =∠D =90 °.∵AE =ED ,∴AE :AB =1:2.∵DF =14DC , ∴DF :DE =1:2,∴AE :AB =DF :DE ,∴△ABE ∽△DEF ;(2)解:∵ABCD 为正方形,∴ED ∥BG ,∴△EDF ∽△GCF ,∴ED :CG =DF :CF .又∵DF =14DC ,正方形的边长为4, ∴ED =2,CG =6,∴BG =BC+CG =10.【点睛】本题考查了正方形的性质,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.20.(1)见解析;(2)见解析【分析】(1)根据平行四边形的性质得B D ∠=∠,AD BC =,再由AM BC ⊥,AN CD ⊥得到90AMB AND ∠=∠=︒,然后根据相似三角形的判定方法即可得到结论;(2)由~AMB AND ∆∆得到AM AB AN AD=,再证明出B MAN ∠=∠,利用AD BC =,从而证明出~AMN BAC ∆∆即可得出结论.【详解】解:(1)四边形ABCD 为平行四边形,B D ∴∠=∠,AD BC =,AM BC ⊥,AN CD ⊥,90AMB AND ∴∠=∠=︒,~AMB AND ∴∆∆;(2)~AMB AND ∆∆,AM AB AN AD∴=, 而AD BC =, AM AB AN BC∴=①, //AD BC , 90DAM AMB ∴∠=∠=︒,90MAN DAN ∠=︒-∠,而90D DAN ∠=︒-∠,MAN D ∴∠=∠,而D B ∠=∠,B MAN ∴∠=∠②,由①②得,~AMN BAC ∆∆,AM MN AB AC∴=. 【点睛】本题考查了平行四边行的性质应用,相似三角形的判定和性质,掌握相似三角形的判定和性质是解题的关键.21.(1)154;(2)5;(3)当x =5m 时,花园的面积最大,最大面积是50m 2. 【详解】试题分析:(1)、将原式进行配方,然后根据非负数的性质得出最小值;(2)、将原式进行配方,然后根据非负数的性质得出最大值;(2)、根据题意得出代数式,然后进行配方得出最值.试题解析:(1)、m 2+m+4=(m+)2+, ∵(m+)2≥0, ∴(m+)2+≥,则m 2+m+4的最小值是; (2)、4﹣x 2+2x=﹣(x ﹣1)2+5, ∵﹣(x ﹣1)2≤0, ∴﹣(x ﹣1)2+5≤5,则4﹣x 2+2x 的最大值为5;(3)、由题意,得花园的面积是x (20﹣2x )=﹣2x 2+20x ,∵﹣2x 2+20x=﹣2(x ﹣5)2+50=﹣2(x ﹣5)2≤0, ∴﹣2(x ﹣5)2+50≤50,∴﹣2x 2+20x 的最大值是50,此时x=5, 则当x=5m 时,花园的面积最大,最大面积是50m 2.考点:一元二次方程的应用22.(1)(2)【分析】(1)如图,过点A 作AH ⊥BC 于H .解直角三角形求出AH 即可解决问题.(2)解直角三角形求出AH ,CH 即可解决问题.【详解】(1)如图,过点A 作AH ⊥BC 于H .∵cosB=12, ∴∠B=60°,∴BH=AB•cosB=812⨯=4,AH=•8AB sinB ==,∴S △ABC=12•BC•AH=12×6× (2)在Rt △ACH 中,∵∠AHC=90°,AH=CH=BC ﹣BH=7﹣4=2,∴tanC 2AH CH ===. 【点睛】本题考查了解直角三角形,三角形的面积等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.23.(1)1,证明见解析;(2)n m;(3)()1kn k m - . 【分析】(1)如图1中,作PG ⊥AC 于G ,PH ⊥BC 于H ,只需证明△PHM ∽△PGN ,根据相似三角形对应边成比例即可得;(2)如图2中,作PG ⊥AC 于G ,PH ⊥BC 于H 通过证明△PHM ∽△PGN ,可得PM PH PN PG =,再根据△PHC ∽△ACB ,PG=HC ,即可得PM n PN m=; (3)如图3中,作PG ⊥AC 于G ,PH ⊥BC 于H ,DT ⊥AC 于T ,DK ⊥BC 于K ,易证△PMH ∽△PGN ,可得PM PH PN PG =,由1·21·2ACD BCD AC DT S AD S BD BC DK==,得出()1DK kn DT k m =-,再根据DT ∥PG ,DK ∥PH ,可得PH CPPGDK CD DT ==,从而可推导得出()1PHDK knPG DT k m ==-,据此问题得以解决.【详解】(1)如图1中,作PG ⊥AC 于G ,PH ⊥BC 于H ,∵AC=BC ,∠ACB=90°,且D 为AB 的中点,∴CD 平分∠ACB ,∵PG ⊥AC 于G ,PH ⊥BC 于H ,∴PG=PH ,∵∠PGC=∠PHC=∠GCH=90°,∴∠GPH=∠MPN=90°,∴∠MPH=∠NPG ,∵∠PHM=∠PGN=90°,∴△PHM ∽△PGN ,∴PM PHPN PG ==1,故答案为:1;(2)如图2中,作PG ⊥AC 于G ,PH ⊥BC 于H ,∵∠PGC=∠PHC=∠GCH=90°,∴∠GPH=∠MPN=90°,∴∠MPH=∠NPG ,∵∠PHM=∠PGN=90°,∴△PHM ∽△PGN , ∴PMPHPN PG =,∵PG=HC , ∴C PMPHPN H =∵D 为AB 中点,∴DC=DB ,∴∠DBC=∠DCB ,∴△PHC ∽△ACB , ∴PHACHC BC =, ∴HC PMPHACnPN BC m === 故答案为:nm ;(3)如图3中,作PG ⊥AC 于G ,PH ⊥BC 于H ,DT ⊥AC 于T ,DK ⊥BC 于K ,同(2)可得△PMH ∽△PGN , ∴PMPHPN PG =, ∵1·21·2ACD BCD AC DTSAD S BDBC DK ==,∴()1DK kn DT k m=-, ∵DT ∥PG ,DK ∥PH , ∴PH CP PG DK CD DT==, ∴()1PH DK kn PG DT k m==-, ∴()1PM kn PN k m=-. 【点睛】本题考查了相似三角形的综合题,涉及相似三角形的判定与性质、角平分线的性质定理、三角形的面积等,解题的关键是灵活运用所知识、添加辅助线构造直角三角形解决问题.。

华师大版九年级上册数学期中考试试卷含答案

华师大版九年级上册数学期中考试试卷含答案

华师大版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.下列式子是最简二次根式的是( )A BC D2.已知关于x 的一元二次方程2230x kx -+=有两个相等的实根,则k 的值为( )A .±B .C .2或3 D3.已知∠A 是锐角,且满足3tanA 0,则∠A 的大小为( )A .30°B .45°C .60°D .无法确定 4.如图,太阳光线与水平线成70°角,窗子高AB =2米,要在窗子外面上方0.2米的点D 处安装水平遮阳板DC ,使光线不能直接射入室内,则遮阳板DC 的长度至少是( )A .2tan 70︒米B .2sin70°米C . 2.2tan 70︒米D .2.2cos70°米 5.若关于x 的一元二次方程260x x k -+=通过配方法可以化成2()(0)x m n n +=的形式,则k 的值不可能是( )A .3B .6C .9D .106.为迎接端午促销活动,某服装店从6月份开始对春装进行“折上折“(两次打折数相同)优惠活动,已知一件原价500元的春装,优惠后实际仅需320元,设该店春装原本打x 折,则有 A .500(12)320x -= B .2500(1)320x -=C .250032010x ⎛⎫= ⎪⎝⎭D .2500132010x ⎛⎫-= ⎪⎝⎭ 7.如图,已知△ABC ,任取一点O ,连AO ,BO ,CO ,分别取点D ,E ,F ,使OD =13AO ,OE =13BO ,OF =13CO ,得△DEF ,有下列说法: ①△ABC 与△DEF 是位似图形;②△ABC 与△DEF 是相似图形;③△DEF 与△ABC 的周长比为1:3;④△DEF 与△ABC 的面积比为1:6.则正确的个数是( )A .1B .2C .3D .48.如图,在四边形ABCD 中,P 是对角线BD 的中点,E ,F 分别是AB ,CD 的中点,AD =BC ,∠PEF =25°,则∠EPF 的度数是( )A .100°B .120°C .130°D .150°9.如图,在ABC ∆中,2AC =,4BC =,D 为BC 边上的一点,且CAD B ∠=∠.若ADC ∆的面积为a ,则ABD ∆的面积为( )A .2aB .52aC .3aD .72a10.如图,在平面直角坐标系中,点A 坐标为(2,),作AB ⊥x 轴于点B ,连接AO ,绕原点B 将△AOB 逆时针旋转60°得到△CBD ,则点C 的坐标为( )A .(﹣1)B .(﹣2)C .,1)D .2)二、填空题11=________________. 12.一元二次方程3(x ﹣5)2=2(x ﹣5)的解是_____.13.如图是用杠杆撬石头的示意图,C 是支点,当用力压杠杆的A 端时,杠杆绕C 点转动,另一端B 向上翘起,石头就被撬动.现有一块石头,要使其滚动,杠杆的B 端必须向上翘起10cm ,已知杠杆的动力臂AC 与阻力臂BC 之比为51:,要使这块石头滚动,至少要将杠杆的A 端向下压_____cm .14.如图,在边长为1的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点O ,则tan ∠AOD=________.15.如图,已知▱ABCD 中,AB =16,AD =10,sinA =35,点M 为AB 边上一动点,过点M 作MN ⊥AB ,交AD 边于点N ,将∠A 沿直线MN 翻折,点A 落在线段AB 上的点E 处,当△CDE 为直角三角形时,AM 的长为_____.三、解答题16.计算或解方程(1﹣2cos30°+(12-)﹣2﹣|1|(2)解方程:3x 2x ﹣1=017.已知:关于x的方程x2+2x+k2﹣1=0.(1)试说明无论取何值时,方程总有两个不相等的实数根.(2)如果方程有一个根为3,试求2k2+12k+2019的值.18.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,3).(1)画出△ABC绕点B逆时针旋转90°得到的△A1BC1.(2)以原点O为位似中心,位似比为2:1,在y轴的左侧,画出将△ABC放大后的△A2B2C2,并写出A2点的坐标.19.自开展“全民健身运动”以来,喜欢户外步行健身的人越来越多,为方便群众步行健身,AB=米,某地政府决定对一段如图1所示的坡路进行改造.如图2所示,改造前的斜坡200AC=米后,斜坡AB改造为斜坡CD,其坡坡度为1:;将斜坡AB的高度AE降低20度为1:4.求斜坡CD的长.(结果保留根号)20.如图,某旅游景点要在长、宽分别为40m、24m的矩形水池的正中央建立一个与矩形的各边互相平行的正方形观赏亭,观赏亭的四边连接四条与矩形的边互相平行且宽度相等的道路,已知道路的宽为正方形边长的14,若道路与观赏亭的面积之和是矩形水池面积的16,求道路的宽21.在正方形ABCD中,P是BC上一点,且BP=3PC,Q是CD的中点.(1)求证:△ADQ∽△QCP;(2)若PQ=3,求AP的长.22.如图,已知Rt△ABC中,∠C=90°,AC=6,BC=8,点P以每秒1个单位的速度从A向C运动,同时点Q以每秒2个单位的速度从B向A方向运动,Q到达A点后,P点也停止运动,设点P,Q运动的时间为t秒.(1)求P点停止运动时,BP的长;(2)P,Q两点在运动过程中,点E是Q点关于直线AC的对称点,是否存在时间t,使四边形PQCE为菱形?若存在,求出此时t的值;若不存在,请说明理由.(3)P,Q两点在运动过程中,求使△APQ与△ABC相似的时间t的值.23.(操作发现)如图(1),在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD =45°,连接AC,BD交于点M.①AC与BD之间的数量关系为;②∠AMB的度数为;(类比探究)如图(2),在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC,交BD的延长线于点M.请计算ACBD的值及∠AMB的度数;(实际应用)如图(3),是一个由两个都含有30°角的大小不同的直角三角板ABC、DCE 组成的图形,其中∠ACB=∠DCE=90°,∠A=∠D=30°且D、E、B在同一直线上,CE=1,BC,求点A、D之间的距离.参考答案1.C【分析】根据最简二次根式即可求出答案.解:(A)原式=A不选;(B B不选;(D D不选;故选:C.【点睛】本题考查了二次根式的化简,正确掌握二次根式的化简是解题的关键.2.A【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于k的方程,解之即可得出结论.【详解】∵方程2-+=有两个相等的实根,230x kx∴△=k2-4×2×3=k2-24=0,解得:k=±故选A.【点睛】本题考查了根的判别式,熟练掌握“当△=0时,方程有两个相等的两个实数根”是解题的关键.3.A【分析】直接利用特殊角的三角函数值进而计算得出答案.【详解】解:∵3tanA0,∴tanA=,3∴∠A=30°.【点睛】此题主要考查三角函数,解题的关键是熟知特殊角的三角函数值.4.C【分析】由已知条件易求DB 的长,在光线、遮阳板和窗户构成的直角三角形中,80°角的正切值=窗户高:遮阳板的宽,据此即可解答.【详解】解:∵DA =0.2米,AB =2米,∴DB =DA+AB =2.2米,∵光线与地面成70°角,∴∠BCD =70°.又∵tan ∠BCD =DBDC ,∴DC =DB tan BCD ∠= 2.2tan 70︒m .故选:C .【点睛】此题主要考查三角函数的应用,解题的关键是熟知正切的定义.5.D【分析】方程配方得到结果,即可作出判断.【详解】解:方程260x x k -+=,变形得:26x x k -=-,配方得:2699x x k -+=-,即2(3)9x k -=-,90k ∴-,即9k ,则k 的值不可能是10,故选D .【点睛】此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.6.C【分析】设该店春装原本打x 折,根据原价及经过两次打折后的价格,可得出关于x 的一元二次方程,此题得解.【详解】解:设该店春装原本打x 折,依题意,得:500(10x )2=320. 故选C .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.7.C【分析】直接利用位似图形的性质以及相似图形的性质分别分析得出答案.【详解】解:∵任取一点O ,连AO ,BO ,CO ,分别取点D ,E ,F ,OD =13AO ,OE =13BO ,OF =13CO , ∴△DEF 与△ABC 的相似比为:1:3,∴①△ABC 与△DEF 是位似图形,正确;②△ABC 与△DEF 是相似图形,正确;③△DEF 与△ABC 的周长比为1:3,正确;④△DEF 与△ABC 的面积比为1:9,故此选项错误.故选:C .【点睛】此题主要考查位似图形的性质,解题的关键是熟知位似的特点.8.C【解析】【分析】根据三角形中位线定理得到PE=12 AD ,PF=12BC ,根据等腰三角形的性质、三角形内角和定理计算即可.【详解】解:∵P 是对角线BD 的中点,E ,F 分别是AB ,CD 的中点,∴PE=12AD ,PF=12BC , ∵AD=BC ,∴PE=PF ,∴∠PFE=∠PEF=25°,∴∠EPF=130°,故选:C .【点睛】本题考查三角形中位线定理,解题的关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半.9.C【分析】根据相似三角形的判定定理得到ACDBCA ∆∆,再由相似三角形的性质得到答案. 【详解】∵CAD B ∠=∠,ACD BCA ∠=∠,∴ACD BCA ∆∆, ∴2ACD BCA S AC S AB ∆∆⎛⎫= ⎪⎝⎭,即14BCAa S ∆=, 解得,BCA ∆的面积为4a ,∴ABD ∆的面积为:43a a a -=,故选C .【点睛】本题考查相似三角形的判定定理和性质,解题的关键是熟练掌握相似三角形的判定定理和性质.10.A【分析】首先证明∠AOB =60°,∠CBE =30°,求出CE ,EB 即可解决问题.【详解】解:过点C 作CE ⊥x 轴于点E ,∵A (2,),∴OB =2,AB =∴Rt △ABO 中,tan ∠AOB∴∠AOB =60°,又∵△CBD 是由△ABO 绕点B 逆时针旋转60°得到,∴BC =AB =∠CBE =30°,∴CE =12BC BE =3,∴OE =1,∴点C 的坐标为(﹣1,故选:A .【点睛】此题主要考查旋转的性质,解题的关键是熟知正切的性质.11.【解析】【分析】直接利用二次根式的乘法运算法则计算得出答案.【详解】原式=故答案为:【点睛】本题考查了二次根式的乘法运算,正确化简二次根式是解题关键.12.5或173【分析】根据因式分解法即可求出答案.【详解】解:∵3(x ﹣5)2=2(x ﹣5),∴3(x ﹣5)2﹣2(x ﹣5)=0,∴(x ﹣5)[3(x ﹣5)﹣2]=0,∴x =5或x =173; 故答案为5或173 【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.13.50.【分析】首先根据题意构造出相似三角形,然后根据相似三角形的对应边成比例求得端点A 向下压的长度.【详解】解:如图;AM BN 、都与水平线垂直,即//AM BN ;易知:ACM BCN ∽;AC AM BC BN∴=, 杠杆的动力臂AC 与阻力臂BC 之比为51:, 51AM BN ∴=,即5AM BN =; ∴当10BN cm ≥时,50AM cm ≥;故要使这块石头滚动,至少要将杠杆的端点A 向下压50cm .故答案为50.【点睛】本题考查相似三角形的判定与性质的实际应用,正确的构造相似三角形是解题的关键.14.2【分析】首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求得tan∠BOF 的值,继而求得答案.【详解】如图,连接BE,∵四边形BCEK是正方形,∴KF=CF=12CK,BF=12BE,CK=BE,BE⊥CK,∴BF=CF,根据题意得:AC∥BK,∴△ACO∽△BKO,∴KO:CO=BK:AC=1:3,∴KO:KF=1:2,∴KO=OF=12CF=12BF,在Rt△PBF中,tan∠BOF=BFOF=2,∵∠AOD=∠BOF,∴tan∠AOD=2.故答案为2【点睛】此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.15.4或8【解析】【分析】①当∠CDE=90°,如图1,根据折叠的性质得到MN⊥AB,AM=EM,得到AN=DN=1 2AD=5,设MN=3x,AN=5x=5,于是得到AM=4;②当∠DEC=90°,如图2,过D作DH⊥AB于H,根据相似三角形的性质得到DE CDHE DE=,由sinA=35,AD=10,得到DH=6,AH=8,设HE=x,根据勾股定理求出x的值,继而求得AE的值,从而得到AM的值,即可得到结论.【详解】当△CDE为直角三角形时,①当∠CDE=90°,如图1,∵在▱ABCD中,AB∥CD,∴DE⊥AB,∵将∠A沿直线MN翻折,点A落在线段AB上的点E处,∴MN⊥AB,AM=EM,∴MN∥DE,∴AN=DN=12AD=5,∵sinA=35 MNAN=,∴设MN=3x,AN=5x=5,∴MN=3,∴AM=4;②当∠DEC=90°,如图2,过D作DH⊥AB于H,∵AB∥CD,∴∠HDC=90°,∴∠HDC+∠CDE =∠CDE+∠DCE =90°,∴∠HDE =∠DCE ,∴△DHE ∽△CED , ∴DE CD HE DE=, ∵sinA =35,AD =10, ∴DH =6,∴AH =8,设HE =x ,∴DE =∵DH 2+HE 2=DE 2,∴62+x 2=16x ,∴x =8﹣x =不合题意舍去),∴AE =AH+HE =16﹣,∴AM =12AE =8,综上所述,AM 的长为4或8,故答案为4或8.【点睛】本题考查了翻折变换(折叠问题),平行四边形的性质,解直角三角形,相似三角形的判定和性质,正确的作出辅助线是解题的关键.16.(1)5;(2)x 1,x 2【分析】(1)根据特殊锐角三角函数的值以及负整数指数幂的意义即可求出答案;(2)根据公式法即可求出答案.【详解】解:(1)原式=﹣1)=5;(2)由题意可知:a =3,b ,c =﹣1,∴△=6+12=18,∴x∴x 1=6,x 2=6. 【点睛】此题主要考查实数的运算及一元二次方程的求解,解题的关键是熟知实数的性质及公式法求解方程.17.(1)见解析;(2)2003【分析】(1)计算判别式的值得到△=4,然后根据判别式的意义可判断方程总有两个不相等的实数根;(2)利用一元二次方程根的定义得到k 2+6k =﹣8,再把2k 2+12k+2019变形为2(k 2+6k )+2019,然后利用整体代入的方法计算.【详解】解:(1)∵△=(2k )2﹣4×1×(k 2﹣1)=4k 2﹣4k 2+4=4>0,∴无论k 取何值时,方程总有两个不相等的实数根;(2)把x =3代入x 2+2x+k 2﹣1=0的9+6k+k 2﹣1=0,∴k 2+6k =﹣8,∴2k 2+12k+2019=2(k 2+6k )+2019=﹣16+2019=2003.【点睛】此题主要考查根的判别式及根的定义,解题的关键是熟知根的判别式的应用.18.(1)见解析;(2)(﹣4,2) .【分析】(1)根据网格结构找出点A 、B 、C 以点B 为旋转中心逆时针旋转90°后的对应点,然后顺次连接即可.(2)利用位似图形的性质得出对应点位置即可得出答案.【详解】解:(1)如图所示,△A 1BC 1即为所求;(2)如图,△A 2B 2C 2,即为所求,A 2(﹣4,2);故答案是:(﹣4,2).【点睛】此题主要考查旋转与位似图形的作图,解题的关键是熟知旋转的性质及位似的定义.19.斜坡CD 的长是【分析】根据题意和锐角三角函数可以求得AE 的长,进而得到CE 的长,再根据锐角三角函数可以得到ED 的长,最后用勾股定理即可求得CD 的长.【详解】∵90AEB =︒∠,200AB =,坡度为1:,∴tan3ABE ∠==, ∴30ABE ∠=︒,∴11002AE AB ==, ∵20AC =,∴80CE =,∵90CED ∠=︒,斜坡CD 的坡度为1:4, ∴14CE DE =, 即8014ED =, 解得,320ED =,∴CD =米,答:斜坡CD 的长是【点睛】本题考查解直角三角形的应用﹣坡度坡角问题,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.20.道路的宽为2米【分析】首先假设道路的宽为x 米,根据道路的宽为正方形边长的14,得出正方形的边长以及道路与正方形的面积进而得出答案.【详解】解:设道路的宽为x 米,则可列方程:x (24﹣4x )+x (40﹣4x )+16x 2=16×40×24, 即:x 2+8x ﹣20=0,解得:x 1=2,x 2=﹣10(舍去).答:道路的宽为2米.【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到等量关系列出方程求解.21.(1)见解析;(2)【分析】(1)在所要求证的两个三角形中,已知的等量条件为:∠D=∠C=90°,若证明两三角形相似,可证两个三角形的对应直角边成比例;(2)证明AQ=2PQ,AQ⊥PQ即可解决问题.【详解】(1)证明:∵四边形ABCD是正方形,∴AD=CD,∠C=∠D=90°;又∵Q是CD中点,∴CQ=DQ=12 AD;∵BP=3PC,∴CP=14 AD,∴CQAD=CPDQ=12,又∵∠C=∠D=90°,∴△ADQ∽△QCP;(2)由(1)知,△ADQ∽△QCP,CQAD=PQQA=12,∴AQ=2PQ,∵PQ=3,∴AQ=6,∵△ADQ∽△QCP,∴∠AQD=∠QPC,∠DAQ=∠PQC,∴∠PQC+∠DQA=DAQ+AQD=90°,∴AQ⊥QP,∴∠AQP=90°,∴PA【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知正方形的性质及相似三角形的判定定理.22.(1(2)存在,t=3017s时,四边形PQCE是菱形;(3)t的值为3011s或5013s时△APQ与△ABC相似【分析】(1)求出点Q的从B到A的运动时间,再求出AP的长,利用勾股定理即可解决问题.(2)如图1中,当四边形PQCE是菱形时,连接QE交AC于K,作QD⊥BC于D.根据DQ=CK,构建方程即可解决问题.(3)分两种情形:如图3﹣1中,当∠APQ=90°时,如图3﹣2中,当∠AQP=90°时,分别构建方程即可解决问题.【详解】解:(1)在Rt△ABC中,∵∠C=90°,AC=6,BC=8,∴AB=10,点Q运动到点A时,t=102=5,∴AP=5,PC=1,在Rt△PBC中,PB(2)如图1中,当四边形PQCE是菱形时,连接QE交AC于K,作QD⊥BC于D.∵四边形PQCE是菱形,∴PC⊥EQ,PK=KC,∵∠QKC=∠QDC=∠DCK=90°,∴四边形QDCK是矩形,∴DQ=CK,∴35•2t=12(6﹣t),解得t=30 17.∴t=3017s时,四边形PQCE是菱形.(3)如图3﹣1中,当∠APQ=90°时,∵∠APQ=∠C=90°,∴PQ∥BC,∴AQAB=APAC,∴10210t -=6t , ∴t =3011. 如图3﹣2中,当∠AQP =90°时,∵△AQP ∽△ACB , ∴AQ AC =AP AB, ∴1026t -=10t , ∴t =5013, 综上所述,t 的值为3011s 或5013s 时△APQ 与△ABC 相似. 【点睛】此题主要考查相似三角形的判定与性质,解题的关键是根据题意分情况讨论,找到对应线段成比例进行求解.23.【操作发现】①AC =BD ;②∠AMB =45°;【类比探究】AC BD =,∠AMB =90°;【实际应用】【分析】操作发现:如图(1),证明△COA ≌△DOB (SAS ),即可解决问题.类比探究:如图(2),证明△COA ∽△ODB ,可得AC CO BD OD==∠MAK =∠OBK ,已解决可解决问题.实际应用:分两种情形解直角三角形求出BE ,再利用相似三角形的性质解决问题即可.【详解】解:操作发现:如图(1)中,设OA 交BD 于K .∵∠AOB =∠COD =45°,∴∠COA =∠DOB ,∵OA =OB ,OC =OD ,∴△COA ≌△DOB (SAS ),∴AC =DB ,∠CAO =∠DBO ,∵∠MKA =∠BKO ,∴∠AMK =∠BOK =45°,故答案为AC =BD ,∠AMB =45°类比探究:如图(2)中,在△OAB 和△OCD 中,∵∠AOB =∠COD =90°,∠OAB =∠OCD =30°,∴∠COA =∠DOB ,OC ,OA , ∴OCOAOD OB =,∴△COA ∽△ODB ,∴ACCOBD OD ==∠MAK =∠OBK ,∵∠AKM =∠BKO ,∴∠AMK =∠BOK =90°.实际应用:如图3﹣1中,作CH ⊥BD 于H ,连接AD .在Rt△DCE中,∵∠DCE=90°,∠CDE=30°,EC=1,∴∠CEH=60°,∵∠CHE=90°,∴∠HCE=30°,∴EH=12EC=12,∴CH在Rt△BCH中,BH92 ==,∴BE=BH﹣EH=4,∵△DCA∽△ECB,∴AD:BE=CD:EC∴AD=如图3﹣2中,连接AD,作CH⊥DE于H.同法可得BH=92,EH=12,∴BE=92+12=5,∵△DCA∽△ECB,∴AD:BE=CD:EC∴AD=【点睛】本题属于相似形综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。

华师大版九年级上册数学期中考试试卷及答案

华师大版九年级上册数学期中考试试卷及答案

华师大版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.下列式子属于最简二次根式的是()A B C>0) D2a的取值范围是()A.a≥-1 B.a≠2C.a≥-1且a≠2D.a>23.若关于x的方程kx2﹣3x﹣94=0有实数根,则实数k的取值范围是()A.k=0 B.k≥﹣1 C.k≥﹣1且k≠0D.k>﹣14.若关于x的一元二次方程2x2x k10--+=有两个不相等的实数根,则一次函数y kx k=-的大致图象是()A.B.C.D.5.如图,△ABC中,AB=AC=12,AD⊥BC于点D,点E在AD上且DE=2AE,连接BE 并延长交AC于点F,则线段AF长为()A.4 B.3 C.2.4 D.26.下列结论中,错误的有:()①所有的菱形都相似;②放大镜下的图形与原图形不一定相似;③等边三角形都相似;④有一个角为110度的两个等腰三角形相似;⑤所有的矩形不一定相似.A.1个B.2个C.3个D.4个7.如图,△ABC 的面积是12,点D 、E 、F 、G 分别是BC 、AD 、BE 、CE 的中点,则△AFG 的面积是( )A .4.5B .5C .5.5D .68.在平面直角坐标系中,以原点O 为位似中心,把△ABC 放大得到△A 1B 1C 1,使它们的相似比为1:2,若点A 的坐标为(2,2),则它的对应点A 1的坐标一定是( ) A .(﹣2,﹣2)B .(1,1)C .(4,4)D .(4,4)或(﹣4,﹣4)9.如图所示,ABC 的顶点是正方形网格的格点,则sin A 的值为( )A .12BCD 10.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF ,下列四个结论:①△AEF ∽△CAB ;②CF=2AF ;③DF=DC ;④tan ∠A .4个B .3个C .2个D .1个二、填空题11_____.12.一个多边形图案在一个有放大功能的复印机上复印出来,它的一条边由原来的1cm变成了2cm,那么它的面积会由原来的6cm2变为________.13.如图,在平行四边形ABCD中,AB=3,AD=4 ,AF交BC于E,交DC的延长线于F,且CF=1,则CE的长为________.14.如图,已知∠AON=40°,OA=6,点P是射线ON上一动点,当△AOP为直角三角形时,∠A=_____°.15.已知a,b为直角三角形两边的长,满足2a40-,则第三边的长是_三、解答题16.(1)计算:(12)-2)0(2)解方程:2x2+5x=3.17.已知关于x的方程x2+mx+m﹣3=0.(1)若该方程的一个根为2,求m的值及方程的另一个根;(2)求证:不论m取何实数,该方程都有两个不相等的实数根.18.阅读下列材料,并解决相应问题:222===应用:用上述类似的方法化简下列各式:;(2)若a 3a的值.19.已知:如图,△ABC是等边三角形,点D、E分别在边BC、AC上,∠ADE=60°.(1)求证:△ABD∽△DCE;(2)如果AB=3,EC=,求DC的长.20.如图,面积为48cm2的正方形,四个角是面积为3cm2的小正方形,现将四个角剪掉,制作一个无盖的长方体盒子,求这个长方体盒子的体积.21.如图,点C在△ADE的边DE上,AD与BC相交于点F,∠1=∠2,AB AD AC AE=.(1)试说明:△ABC ∽△ADE;(2)试说明:AF•DF=BF•CF.22.如图,在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB 的中点,连结DE(1)证明DE∥CB;(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.23.已知:如图,ABC是边长为3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1/cm s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间()t s,解答下列各问题:()1经过25秒时,求PBQ△的面积;()2当t为何值时,PBQ△是直角三角形?()3是否存在某一时刻t,使四边形APQC的面积是ABC面积的三分之二?如果存在,求出t的值;不存在请说明理由.参考答案1.B【解析】分析:根据最简二次根式的定义即可求出答案.详解:A.原式A不是最简二次根式;B.是最简二次根式;C.原式=C不是最简二次根式;D.原式D不是最简二次根式;故选B.点睛:本题考查了最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型.2.C【分析】根据被开方数大于等于0,分母不等于0列式计算即可.【详解】解:由题意得,a10,a2+≥≠解得,a≥-1且a≠2,故答案为:C.【点睛】本题考查的知识点是根据分式有意义的条件确定字母的取值范围,属于基础题目,比较容易掌握.3.B【分析】讨论: ①当k=0时,方程化为一次方程, 方程有一个实数解; 当k≠0时,方程为二次方程,Δ≥0,然后求出两个中情况下的的公共部分即可.【详解】解:①当k=0时,方程化为-3x-94=0,解得x=34;当k≠0时,Δ=29(3)4()4k --⨯⨯-≥0,解得 k≥-1,所以k 的范围为k≥-1.故选B.【点睛】本题主要考查一元二次方程根的判别式,注意讨论k 的取值.4.B【分析】首先根据一元二次方程有两个不相等的实数根确定k 的取值范围,然后根据一次函数的性质确定其图象的位置.【详解】∵关于x 的一元二次方程x 2﹣2x ﹣k +1=0有两个不相等的实数根,∴(﹣2)2﹣4(﹣k +1)>0,即k >0,∴﹣k <0,∴一次函数y =kx ﹣k 的图象位于一、三、四象限.故选B .【点睛】本题考查了根的判别式及一次函数的图象的问题,解题的关键是根据一元二次方程的根的判别式确定k 的取值范围,难度不大.5.C【分析】作DH ∥BF 交AC 于H ,根据等腰三角形的性质得到BD=DC ,得到FH=HC ,根据平行线分线段成比例定理得到HF DE 2FA EA==,计算即可. 【详解】解:作DH ∥BF 交AC 于H ,∵AB=AC ,AD ⊥BC ,∴BD=DC ,∴FH=HC ,∵DH ∥BF , ∴HF DE 2FA EA==, ∴AF=15AC=2.4.故选C.【点睛】考查的是等腰三角形的性质、平行线分线段成比例定理,掌握等腰三角形的三线合一、平行线分线段成比例定理是解题的关键.6.B【分析】根据相似多边形的定义判断①⑤,根据相似图形的定义判断②,根据相似三角形的判定判断③④.【详解】相似多边形对应边成比例,对应角相等,菱形之间的对应角不一定相等,故①错误;放大镜下的图形只是大小发生了变化,形状不变,所以一定相似,②错误;等边三角形的角都是60°,一定相似,③正确;钝角只能是等腰三角形的顶角,则底角只能是35°,所以两个等腰三角形相似,④正确;矩形之间的对应角相等,但是对应边不一定成比例,故⑤正确.有2个错误,故选B.【点睛】本题考查相似图形的判定,注意相似三角形与相似多边形判定的区别.7.A【详解】试题分析:∵点D,E,F,G分别是BC,AD,BE,CE的中点,∴AD是△ABC的中线,BE是△ABD的中线,CF是△ACD的中线,AF是△ABE的中线,AG是△ACE的中线,∴△AEF的面积=×△ABE的面积=×△ABD的面积=×△ABC的面积=,同理可得△AEG的面积=,△BCE的面积=×△ABC的面积=6,又∵FG是△BCE的中位线,∴△EFG的面积=×△BCE的面积=,∴△AFG的面积是×3=,故选A.考点:三角形中位线定理;三角形的面积.8.D【解析】【分析】根据如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k进行解答.【详解】∵以原点O为位似中心,相似比为:1:2,把△ABC放大得到△A1B1C1,点A的坐标为(2,2),则它的对应点A1的坐标一定为:(4,4)或(-4,-4),故选D.【点睛】本题考查了位似变换:位似图形与坐标,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.9.B【分析】连接CD,求出CD⊥AB,根据勾股定理求出AC,在Rt△ADC中,根据锐角三角函数定义求出即可.【详解】解:连接CD(如图所示),设小正方形的边长为1,∵∠DBC=∠DCB=45°,∴CD AB ⊥,在Rt ADC 中,AC =,CD =,则sin CD A AC ===故选B .【点睛】本题考查了勾股定理,锐角三角形函数的定义,等腰三角形的性质,直角三角形的判定的应用,关键是构造直角三角形.10.B【解析】试题解析:如图,过D 作DM ∥BE 交AC 于N ,∵四边形ABCD 是矩形,∴AD ∥BC ,∠ABC =90°,AD =BC ,∵BE ⊥AC 于点F ,∴∠EAC =∠ACB ,∠ABC =∠AFE =90°,∴△AEF ∽△CAB ,故①正确;∵AD ∥BC ,∴△AEF ∽△CBF , ∴AE AF BC CF=, ∵AE =12AD =12BC , ∴12AF CF =,∴CF =2AF ,故②正确;∵DE ∥BM ,BE ∥DM ,∴四边形BMDE 是平行四边形,∴BM =DE =12BC , ∴BM =CM ,∴CN =NF ,∵BE ⊥AC 于点F ,DM ∥BE ,∴DN ⊥CF ,∴DM 垂直平分CF ,∴DF =DC ,故③正确;设AE =a ,AB =b ,则AD =2a ,由△BAE ∽△ADC ,有2b a a b =,即b ,∴tan ∠CAD =2CD b AD a ==.故④不正确; 故选B .【点睛】本题主要考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.解题时注意:相似三角形的对应边成比例.11【详解】解:原式 12.24cm 2【解析】【分析】复印前后的多边形按照比例放大或缩小,因此它们是相似多边形,按照相似多边形的性质求解即可.【详解】由题意可知,相似多边形的边长之比=相似比=1:2,∴面积之比=(1:2)2=1:4,∴它的面积会由原来的6cm2变为:6×4=24cm2,故答案为:24cm2.【点睛】本题考查的知识点是相似多边形的性质,解题的关键是熟练的掌握相似多边形的性质. 13.【详解】试题分析:由两线段平行,同位角相等,即可证出三角形相似,根据相似三角形的对应边成比例,结合已有的量即可解决本题.解:∵四边形ABCD为平行四边形,∴AB=CD=3,BC∥AD,∵E为BC上一点,∴CE∥AD,∠FEC=∠FAD,∠FCE=∠D,∴△FCE∽△FDA,∴==,又∵CD=3,CF=1,AD=4,∴CE=,故答案为.考点:相似三角形的判定与性质;平行四边形的性质.14.50°或90°【详解】分析:分别从若AP⊥ON与若PA⊥OA去分析求解,根据三角函数的性质,即可求得答案.详解:当AP⊥ON时,∠APO=90°,则∠A=50°,当PA⊥OA时,∠A=90°,即当△AOP为直角三角形时,∠A=50或90°.故答案为50°或90°.点睛:此题考查了直角三角形的性质,注意掌握数形结合思想与分类讨论思想的应用.15.【分析】根据非负数的性质可求出a 和b 的值,再分别讨论不同的斜边情况下的第三边长.【详解】∵2a 40-≥0,2a 40-+=∴2a 4=0-解得a=2或2-,b=2或3,因为a 、b 为边长,则a=-2舍去.当a=2,b=2当a=2,b=3若b 为斜边,a综上,第三边的长是【点睛】本题考查非负数的性质,注意题目没有说明直角边斜边的情况,需要进行分类讨论. 16.(1)1;(2)x 1=12,x 2=-3. 【分析】(1)根据负指数,算术平方根,零次幂和三角函数值的运算进行计算即可.(2)将方程变为一般式,利用求根公式解方程.【详解】解:(1)原式=2-1=1. (2)解:2x 2+5x -3=0,这里a =2,b =5,c =-3,∵b 2-4ac =49>0,∴x =574-±, 则x 1=12,x 2=-3. 【点睛】本题考查实数的混合运算和解一元二次方程,实数的运算需要记住几个常考点:负指数、算术平方根、零次幂和特殊角度的三角函数.17.(1)m=﹣13,x1=-53;(2)见解析.【解析】【分析】(1)把x=2代入原方程求得m的值,进一步求得方程的另一个根即可;(2)计算出根的判别式,进一步利用配方法和非负数的性质证得结论即可.【详解】解:(1)将x=2代入方程x2+mx+m﹣3=0得4+2m+m﹣3=0,解得m=﹣13,方程为x2﹣13x﹣103=0,即3x2﹣x﹣10=0,解得x1=-53,x2=2故答案为m=﹣13,另一个根为-53(2)∵△=m2﹣4(m﹣3)=m2﹣4m+12=(m﹣2)2+8>0,∴不论m取何实数,该方程都有两个不相等的实数根.【点睛】考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.18.【分析】(1)直接找出分母有理化因式进而化简求出答案;(2)直接表示出a的值,进而化简求出答案.【详解】(2).∵∴3∴=3.a【点睛】此题主要考查了分母有理化,正确表示出有理化因式是解题关键.19.(1)见解析;(2)DC=1或DC=2.【解析】试题分析:(1)△ABC是等边三角形,得到∠B=∠C=60°,AB=AC,推出∠BAD=∠CDE,得到△ABD∽△DCE;(2)由△ABD∽△DCE,得到=,然后代入数值求得结果.(1)证明:∵△ABC是等边三角形,∴∠B=∠C=60°,AB=AC,∵∠B+∠BAD=∠ADE+∠CDE,∠B=∠ADE=60°,∴∠BAD=∠CDE∴△ABD∽△DCE;(2)解:由(1)证得△ABD∽△DCE,∴=,设CD=x,则BD=3﹣x,∴=,∴x=1或x=2,∴DC=1或DC=2.考点:相似三角形的判定与性质.20.3【分析】由大正方形的面积可求出边长,再由小正方形面积求出边长,然后由底面积乘以高得到盒子体积.【详解】解:∵大正方形面积为48cm2,∴,∵小正方形面积为3cm2,∴,∴长方体盒子的体积=(23.【点睛】本题考查二次根式的计算,根据条件找出盒子的底面边长,和高是关键.21.(1)见解析;(2)见解析.【分析】(1)由∠1=∠2易得∠BAC=∠DAE,再根据对应边成比例,可判定相似;(2)由△ABC ∽△ADE得到∠B=∠D,再由对顶角相等可得△ABF ∽△CDF,最后列出比例式得出结论.【详解】(1)证明:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC,∴∠BAC=∠DAE,∵ABAC=ADAE,∴ABAD=ACAE,∴△ABC ∽△ADE;(2)证明:∵△ABC ∽△ADE,∴∠B=∠D,∵∠BFA =∠DFC,∴△ABF ∽△CDF,∴BFDF=AFCF,∴AF•DF=BF•CF.【点睛】本题考查相似三角形的判定和性质,熟练掌握相似三角形的判定定理是解题的关键. 22.(1)见解析(2)当1AC AB2=或AB=2AC时,四边形DCBE是平行四边形.【分析】(1)首先连接CE,根据直角三角形的性质可得CE=AB=AE,再根据等边三角形的性质可得AD=CD,然后证明△ADE≌△CDE,进而得到∠ADE=∠CDE=30°,再有∠DCB=150°可证明DE∥CB.(2)当1AC AB2=或AB=2AC时,四边形DCBE是平行四边形.若四边形DCBE是平行四边形,则DC∥BE,∠DCB+∠B=180°进而得到∠B=30°,再根据三角函数可推出答案.【详解】解:(1)证明:连结CE,∵点E为Rt△ACB的斜边AB的中点,∴CE=12AB=AE.∵△ACD是等边三角形,∴AD=CD.在△ADE与△CDE中,AD DC {DE DE AE CE===,∴△ADE≌△CDE(SSS)∴∠ADE=∠CDE=30°∵∠DCB=150°∴∠EDC+∠DCB=180°∴DE∥CB(2)∵∠DCB=150°,若四边形DCBE是平行四边形,则DC∥BE,∠DCB+∠B=180°.∴∠B=30°.在Rt△ACB中,sinB=ACAB,即sin30°=AC1AB2=∴1AC AB 2=或AB=2AC . ∴当1AC AB 2=或AB=2AC 时,四边形DCBE 是平行四边形. 【点睛】此题主要考查了平行线的判定、全等三角形的判定与性质,以及平行四边形的判定,关键是掌握直角三角形的性质,以及等边三角形的性质.23.(1)50;(2)当1t =秒或2t =秒时,PBQ △是直角三角形(3)无论t 取何值,四边形APQC 的面积都不可能是ABC 面积的23. 【分析】(1)根据路程=速度×时间,求出BQ ,AP 的值,再求出BP 的值,然后利用三角形的面积公式进行解答即可;(2)①∠BPQ=90°;②∠BQP=90°.然后在直角三角形BQP 中根据BP ,BQ 的表达式和∠B 的度数进行求解即可;(3)本题可先用△ABC 的面积-△PBQ 的面积表示出四边形APQC 的面积,即可得出y ,t 的函数关系式,然后另y 等于三角形ABC 面积的三分之二,可得出一个关于t 的方程,如果方程无解则说明不存在这样的t 值,如果方程有解,那么求出的t 值即可.【详解】()1经过25秒时,22AP cm BQ cm 55==,, ABC 是边长为3cm 的等边三角形,AB BC 3cm B 60,∠∴===, 213BP 3cm 55∴=-=,PBQ ∴的面积11132BP BQ sin B 2255∠=⋅⋅=⨯⨯= ()2设经过t 秒PBQ 是直角三角形,则AP tcm BQ tcm ==,, ABC 中,AB BC 3cm B 60∠===,,()BP 3t cm ∴=-, PBQ 中,()BP 3t cm BQ tcm ,=-=,若PBQ 是直角三角形,则BQP 90∠=或BPQ 90∠=,当BQP 90∠=时,1BQ BP 2=, 即()1t 3t t 1(2=-=,秒),当BPQ 90∠=时,1BP BQ 2=,13t t t 2(2,-==秒),答:当t 1=秒或t 2=秒时,PBQ 是直角三角形.() 3过P 作PM BC ⊥于M ,BPM 中,PMsin B PB ∠=,)PM PB sin B 3t ∠∴=⋅=-,)PBQ 11S BQ PM t 3t 22∴=⋅=⋅-,)2ABC PBQ 11y S S 3t 3t 22∴=-=⨯⨯-2=+y ∴与t 的关系式为2y t t 444=-+,假设存在某一时刻t ,使得四边形APQC 的面积是ABC 面积的23, 则ABC APQC 2S S 3=四边形,2221t 332=⨯⨯ 2t 3t 30∴-+=,2(3)4130--⨯⨯<,∴方程无解,∴无论t 取何值,四边形APQC 的面积都不可能是ABC 面积的23. 【点睛】:本题考查的是等边三角形的性质、直角三角形的判定与三角形面积公式,根据题意作出辅助线,利用数形结合求解是解答此题的关键.。

华东师大版九年级数学上册期中考试卷(附答案与解析)

华东师大版九年级数学上册期中考试卷(附答案与解析)

华东师大版九年级数学上册期中考试卷(附答案与解析)(满分:120分;考试时长:90分钟)姓名班级学号成绩一.选择题(共8小题,满分24分,每小题3分)1.如图是一个机器的零件,则下列说法正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.主视图、左视图与俯视图均不相同2.175亿元用科学记数法表示为()A.1.75×109元B.1.75×1010元C.1.75×1011元D.17.5×109元3.若关于x的不等式(a+2020)x>a+2020的解为x<1,则a的取值范围是()A.a>﹣2020B.a<﹣2020C.a>2020D.a<20204.如图,在数轴上对应的点可能是()A.点A B.点B C.点C D.点D5.如图,AB是⊙O的直径,CD是⊙O的弦,若∠C=34°,则∠ABD=()A.66°B.56°C.46°D.36°6.如图,为测量一根与地面垂直的旗杆AH的高度,在距离旗杆底端H10米的B处测得旗杆顶端A的仰角∠ABH=α,则旗杆AH的高度为()A.10sinα米B.10cosα米C.米D.10tanα米7.用尺规作图如图所示,首先以A为圆心,任意长为半径画弧,分别交AB,AC于点E,F;再是分别以E,F为圆心,以大于EF长为半径画弧,两弧交于D点,最后作射线AD.下列结论不正确的是()A.AF=DF B.∠BAD=∠CAD C.∠AFD=∠AED D.DE=DF8.如图,平面直角坐标系中,已知A(3,3),B(0,﹣1),将线段AB绕点A顺时针旋转90°得到线段AB′,点B'恰好在反比例函数y=的图象上,则k等于()A.6B.﹣6C.7D.﹣7二.填空题(共6小题,满分18分,每小题3分)9.分解因式:a2b﹣18ab+81b=.10.若关于x的一元二次方程ax2+3x+2=0有两个不相等的实数根,则a的取值范围为.11.幻方的历史悠久,传说最早出现在夏禹时代的“洛书”中,如图是一个三阶幻方(即每行、每列、每条对角线上的三个数之和都相等),则x的值为.12.将等腰直角三角板ABC与量角器按如图方式放置,其中A为半圆形量角器的0刻度线,直角边BC与量角器相切于点D,斜边AB与量角器相交于点E,若量角器在点D的读数为120°,则∠DAE的度数是°.13.如图,正八边形ABCDEFGH内接于⊙O,点P是上的任意一点,则∠CPE的度数为.14.若点A(﹣,y1)、B(,y2)都在二次函数y=﹣x2+2x+m的图象上,则y1y2.三.解答题(共10小题,满分78分)15.先化简,再求值:(x+3)(x﹣3)+x(4﹣x),其中x=.16.某电脑公司现有A,B两种型号的甲品牌电脑和C,D,E三种型号的乙品牌电脑.树人中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.(1)若各种选购方案被选中的可能性相同,请用列表法或画树状图法求C型号电脑被选中的概率;(2)现知树人中学购买甲、乙两种品牌电脑共30台(价格如图所示),恰好用了10万元人民币,其中乙品牌电脑为C型号电脑,请直接写出购买的C型号电脑有台.17.为响应政府“绿色出行”的号召,张老师上班由自驾车改为骑公共自行车.已知张老师家距上班地点10千米.他用骑公共自行车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程少45千米,他从家出发到上班地点,骑公共自行车方式所用的时间是自驾车方式所用的时间的4倍.张老师用骑公共自行车方式上班比用自驾车的方式上班多用多少小时?18.如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,2),B(3,4),C(4,1).(1)请画出与△ABC关于x轴对称的△A1B1C1;(2)△ABC绕O点逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2,并求出线段OA 在旋转过程中扫过的图形的面积.19.如图,在△ABC中,AB=AC,AE是中线,点D是AB的中点,连接DE,且BF∥DE,EF∥DB.(1)求证:四边形BDEF是菱形;(2)若AC=3,BC=2,直接写出四边形BDEF的面积.20.现需了解2019年各月份中5至14日广州市每天最低气温的情况:图①是3月份的折线统计图.(数据来源于114天气网)(1)图②是3月份的频数分布直方图,根据图①提供的信息,补全图②中的频数分布直方图;(2)3月13日与10日这两天的最低气温之差是℃;(3)图③是5月份的折线统计图.用表示5月份的方差;用表示3月份的方差,比较大小:;比较3月份与5月份,月份的更稳定.21.盐城市初级中学为了缓解校门口的交通堵塞,倡导学生步行上学.小丽步行从家去学校,图中的线段表示小丽步行的路程s(米)与所用时间t(分钟)之间的函数关系.试根据函数图象回答下列问题:(1)小丽家离学校米;(2)小丽步行的速度是米/分钟;(3)求出m的值.22.(1)如图①,矩形ABCD的对角线相交于点O,点O称为矩形ABCD的几何中心.直线l经过点O,与矩形的边AD,BC分别交于点M,N,请判断线段OM与ON的数量关系,并说明理由;(2)如图②,将矩形ABCD以直线l为对称轴翻折,使点C的对应点与点A重合,请判断直线l是否经过矩形ABCD的几何中心,并说明理由;(3)如图③,在(2)的条件下,AB=6,BC=8,在线段EF上有一点P,若点P到矩形ABCD一边的距离与OP的长都等于a,请直接写出a的所有可能的值.23.问题背景:如图1,在矩形ABCD中,AB=2,∠ABD=30°,点E是边AB的中点,过点E作EF⊥AB交BD于点F.实验探究:(1)在一次数学活动中,小王同学将图1中的△BEF绕点B按逆时针方向旋转90°,如图2所示,得到结论:①=;②直线AE与DF所夹锐角的度数为.(2)小王同学继续将△BEF绕点B按逆时针方向旋转,旋转至如图3所示位置.请问探究(1)中的结论是否仍然成立?并说明理由.拓展延伸:在以上探究中,当△BEF旋转至D、E、F三点共线时,则△ADE的面积为.24.如图1,直线y=ax2+4ax+c与x轴交于点A(﹣6,0)和点B,与y轴交于点C,且OC =3OB.(1)直接写出抛物线的解析式及直线AC的解析式;(2)抛物线的顶点为D,E为抛物线在第四象限的一点,直线AE解析式为y=﹣x﹣2,求∠CAE﹣∠CAD的度数.(3)如图2,若点P是抛物线上的一个动点,作PQ⊥y轴垂足为点Q,直线PQ交直线AC于E,再过点E作x轴的垂线垂足为R,线段QR最短时,点P的坐标及QR的最短长度.参考答案与解析一.选择题(共8小题,满分24分,每小题3分)1.解:该几何体的主视图与左视图相同,底层是一个矩形,上层的中间是一个矩形;俯视图是两个同心圆.故选:A.2.解:175亿=175****0000=1.75×1010.故选:B.3.解:∵关于x的不等式(a+2020)x>a+2020的解为x<1∴a+2020<0解得:a<﹣2020.故选:B.4.解:∵1<3<4∴1<<2∴A点符合题意.故选:A.5.解:∵AB为⊙O的直径∴∠ADB=90°∴∠DAB+∠ABD=90°∵∠DAB=∠BCD=34°∴∠ABD=90°﹣34°=56°故选:B.6.解:∵BH=10m,∠ABH=α∴tanα=∴AH=BH•tanα=10tanα(米)故选:D.7.解:由基本作图方法可得:AF=AE,FD=DE在△AFD和△AED中∴△AFD≌△AED(SSS)∴∠BAD=∠CAD,∠AFD=∠AED,故选项B,C,D正确,不合题意;无法得出AF=DF故选项A错误,符合题意.故选:A.8.解:作AC⊥y轴于点C,B′D⊥AC于D,如图所示∵∠BAB′=90°,∠ACB=90°,AB=AB′∴∠BAC+∠ABC=90°,∠BAC+∠B′AD=90°∴∠ABC=∠B′AD∴△ABC≌△B′AD∴AC=B′D,BC=AD∵A(3,3),B(0,﹣1)∴BC=AD=4,AC=B′D=3∴CD=4﹣3=1∴B′(﹣1,6)∵点B'恰好在反比例函数y=的图象上∴k=﹣1×6=﹣6故选:B.二.填空题(共6小题,满分18分,每小题3分)9.解:a2b﹣18ab+81b=b(a2﹣18a+81)=b(a﹣9)2.故答案为:b(a﹣9)2.10.解:根据题意得a≠0且Δ=32﹣4×a×2>0 解得a<且a≠0即a的取值范围为a<且a≠0.故答案为:a<且a≠0.11.解:依题意得:4+3+8=8+5+x解得:x=2.故答案为:2.12.解:如图,连接OD、DF由D为切点可知:OD⊥BC∵AC⊥BC∴OD∥AC由题意可得:∠AOD=120°∴∠DOF=∠CAO=60°∴∠BAO=60°﹣45°=15°∵∠DAO=30°∴∠DAE=∠DAO﹣∠BAO=15°故答案为:15.13.解:连接OD、OC、OE,如图所示:∵八边形ABCDEFGH是正八边形∴∠COD=∠DOE==45°∴∠COE=45°+45°=90°∴∠CPE=∠COE=45°.故答案为:45°.14.解:∵点A(﹣,y1)、B(,y2)都在二次函数y=﹣x2+2x+m的图象上∴y2﹣y1=﹣()2+2×+m﹣[﹣(﹣)2+2×(﹣)+m]=﹣(2﹣)2+2×(2﹣)+(﹣)2+=﹣4+﹣()2+4﹣+()2+=>0∴y1<y2故答案为:<.三.解答题(共10小题,满分78分)15.解:原式=x2﹣9+4x﹣x2=4x﹣9当x=时原式=1﹣9=﹣8.16.解:(1)画树状图得:共有6种等可能的结果,其中C型号电脑被选中的结果有2种∴C型号电脑被选中的概率为=;(2)①选用方案AC时设购买C型号电脑x台,A型号电脑y台由题意得:解得:(不合题意舍去);②选用方案BC时设购买C型号电脑a台,B型号电脑b台由题意得:解得:综上所述,购买的C型号电脑有20台故答案为:20.17.解:设张老师用骑公共自行车方式上班平均每小时行驶x千米,则用自驾车的方式上班平均每小时行驶(x+45)千米依题意得:=4×解得:x=15经检验,x=15是原方程的解,且符合题意∴﹣=﹣=(小时).答:张老师用骑公共自行车方式上班比用自驾车的方式上班多用小时.18.解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;∵OA2=12+22=5,∠AOA2=90°∴S==π答:线段OA在旋转过程中扫过的图形是扇形△OAA2,面积是.19.(1)证明:∵BF∥DE,EF∥DB∴四边形BDEF是平行四边形∵AB=AC,AE是中线∴AE⊥BC∴∠AEB=90°∵点D是AB的中点∴DE=AB=BD∴四边形BDEF是菱形;(2)解:∵AE⊥BC,BE=BC=1,AC=3∴AE===2∴△ABE的面积=BE×AE=×1×2=∵点D是AB的中点∴△BDE的面积=△ADE的面积=△ABE的面积∵菱形BDEF的面积=2△BDE的面积∴四边形BDEF的面积=△ABE的面积=.20.解:(1)最低气温14℃的有3天所以补充频数分布直方图如下:(2)3月13日与10日这两天的最低气温之差是15﹣12=3(℃)故答案为3;(3)根据折线统计图分布,可知3月份最低气温波动比5月份最低气温波动小所以S32<,3月份更稳定故答案为<,3.21.解:(1)根据题意可知,小丽家离学校1000米故答案为:1000;(2)小丽步行的速度是:1000÷10=100(米/分钟)故答案为:100;(3)m=4×100=400.22.解:(1)线段OM与ON的数量关系为:OM=ON,理由:∵四边形ABCD为矩形∴AO=CO,AD∥BC∴∠MAC=∠NCA.在△AOM和△CON中∴△AOM≌△CON(ASA)∴OM=ON;(2)直线l经过矩形ABCD的几何中心,理由:连接AC,AC交EF于点G,如图∵将矩形ABCD以直线l为对称轴翻折,使点C的对应点与点A重合∴l为AC的垂直平分线∴AG=CG∵矩形ABCD的对角线相交于点O,点O称为矩形ABCD的几何中心∴OA=OC.∴点G与点O重合∴直线l经过矩形ABCD的几何中心O;(3)①当点P到矩形ABCD的边BC的距离与OP的长都等于a时,连接AC,则AC经过EF的中点O,如图∴AC===10∴AO=CO=AC=5.由题意:OE⊥AC∴∠AOE=∠D=90°.∵∠OAE=∠DAC∴△AOE∽△ADC∴∴∴OE=.∴OF=OE=.由题意:PH⊥BC,OP=PH=a∴PF=﹣a.过点O作OM⊥BC于点M,则OM为△ABC的中位线∴OM=AB=3.∵PH⊥BC,OM⊥BC∴PH∥OM∴△FPH∽△FOM∴∴解得:a=.同理可求:②当点P到矩形ABCD的边AD的距离与OP的长都等于a时,a=;③当点P到矩形ABCD的边AB的距离与OP的长都等于a时,PH⊥AB,PH=OP=a 连接AC,则AC经过EF的中点O,过点P作PG⊥BC于点G,过点OP作OM⊥BC于点M,如图由①知:OF=,PF=﹣a,OM为△ABC的中位线∴BM=BC=4.∵将矩形ABCD以直线l为对称轴翻折,使点C的对应点与点A重合∴∠D′=∠D=90°,AD′=CD=AB,DE=D′E,∠FAD′=90°∵∠BAD=90°∴∠BAF=∠D′AE.在△BAF和△D′AE中∴△BAF≌△D′AE(ASA)∴BF=D′E.设D′E=DE=x,则AE=8﹣x在Rt△AED′中∵AE2=D′E2+AD′2∴(8﹣x)2=x2+62解得:x=.∴BF=D′E=.∵PH⊥AB,PG⊥BC,∠B=90°∴四边形PHBG为矩形∴BG=PH=a∴FG=BG﹣BF=a﹣,FM=BM﹣BF=4﹣=.∵PG⊥BC,OM⊥BC∴PG∥OM∴△FPG∽△FOM∴∴解得:a=.同理可求:④当点P到矩形ABCD的边CD的距离与OP的长都等于a时,a=.综上,若点P到矩形ABCD一边的距离与OP的长都等于a,a的所有可能的值为和.23.解:(1)如图1,∵∠ABD=30°,∠DAB=90°,EF⊥BA∴cos∠ABD==如图2,设AB与DF交于点O,AE与DF交于点H∵△BEF绕点B按逆时针方向旋转90°∴∠DBF=∠ABE=90°∴△FBD∽△EBA∴=,∠BDF=∠BAE又∵∠DOB=∠AOF∴∠DBA=∠AHD=30°∴直线AE与DF所夹锐角的度数为30°故答案为:,30°;(2)结论仍然成立理由如下:如图3,设AE与BD交于点O,AE与DF交于点H∵将△BEF绕点B按逆时针方向旋转∴∠ABE=∠DBF又∵=∴△ABE∽△DBF∴=,∠BDF=∠BAE又∵∠DOH=∠AOB∴∠ABD=∠AHD=30°∴直线AE与DF所夹锐角的度数为30°.拓展延伸:如图4,当点E在AB的上方时,过点D作DG⊥AE于G∵AB=2,∠ABD=30°,点E是边AB的中点,∠DAB=90°∴BE=,AD=2,DB=4∵∠EBF=30°,EF⊥BE∴EF=1∵D、E、F三点共线∴∠DEB=∠BEF=90°∴DE===∵∠DEA=30°∴DG=DE=由(2)可得:=∴∴AE=∴△ADE的面积=×AE×DG=××=;如图5,当点E在AB的下方时,过点D作DG⊥AE,交EA的延长线于G同理可求:△ADE的面积=×AE×DG=××=;故答案为:或.24.解:(1)∵y=ax2+4ax+c=a(x+2)2﹣4a+c ∴抛物线的对称轴为直线x=﹣2∵A(﹣6,0)∴B(2,0)∴OB=2∴OC=3OB=6∴C(0,6)将B、C两点坐标代入y=ax2+4ax+c∴解得∴抛物线的解析式为y=﹣x2﹣2x+6设直线AC的解析式为y=kx+m∴∴∴直线AC的解析式为y=x+6;(2)∵y=﹣x2﹣2x+6=﹣(x+2)2+8∴顶点D(﹣2,8)过D作DM⊥y轴于M则M(0,8)∵C(0,6)∴DM=CM=2∴∠MCD=45°,CD=2∵OA=OC=6∴∠OCA=45°∴∠ACD=90°,AC=Rt△ACD中,∵直线AE与y轴交点N(0,﹣2)∴ON=2∴tan∠BAE==∴∠CAD=∠BAE∴∠CAE﹣∠CAD=∠CAE﹣∠BAE=∠OAC=45°;(3)∵PQ⊥y轴,ER⊥x轴∴∠OQE=∠ROQ=∠QOR=90°∴四边形OQER为矩形∴QR=OE∴当OE⊥AC时,QR=OE最短∵OA=OC=6∴△AOC为等腰直角三角形,此时E为线段AC的中点∴最短长度QR=OE=AC=3∵E(﹣3,3),PQ⊥y轴∴P点纵坐标也为3∴﹣x2﹣2x+6=3解得∴点P的坐标为(﹣2+,3)或(﹣2﹣,3)∴QR的最短长度为.。

华东师大九年级上册数学期中试卷

华东师大九年级上册数学期中试卷

华东师大九年级上册数学期中试卷一、选择题(共30分,共10题,每题3分)1.化简12的结果是( )A.23B.32C.33D.22 2.若53 b b a ,则b a的值为( ) A. 58 B.35 C.53 D.85 3.下列运算正确的是( )A. 5)5(2B.523C.428D.6324.下列说法中正确的是( )A.两个直角三角形相似B.两个等腰三角形相似C.两个等边三角形相似D.两个锐角三角形相似 5.下列方程没有实数根的是( )A.01872x x B.x x 412C.0322x x D.12)2( x x6.如图,网格中的两个三角形是位似图形,它们的位似中心是( ) A.点A B.点B C.点C D.点D7.若1 x 是一元二次方程012)3(22 m mx x m 的其中一个解,则m 的值为( ) A.3 B.-3 C.3 D.28.若矩形ABCD ∽矩形EFGH ,相似比为2:3,已知cm BC cm AB 5,4 ,则矩形EFGH 的周长是( ) A.12cm B.27cm C.24cm D.18cm9. 已知在ABC 中,64,78 AC AB A ,,下列阴影部分的三角形与原ABC 不相似的是( )10.如图,在平面直角坐标系中,将正方形OABC 绕点O 逆时针45°后得到正方形111C B OA ,依次方式,将正方形OABC 绕点O 连续旋转2021次得到正方形202120212021C B OA ,如果点C 的坐标为)1,0(,那么点2021B 的坐标为( )A.)1,1(B.)02(,C.)20( ,D.)0,1(二、填空题(共15分,每小题3分,共5小题)11.计算: )13()13(____________12.如图,若四边形ABCD ∽四边形EFGH ,则 的度数为__________13. 现要在一个长为35m ,宽为22m 的矩形花园中修建等宽的小道,剩余的地方种植花草,如图,要使种植花草的面积为625m²,设小道的宽为xm,则根据题意,课列方程为____________14. 如图,在ABC 中,BC DE //,G 为BC 上一点,连接AG 交DE 于点F ,已知56.2 EC AG AF ,,则AC =__________15. 如图,P 为平行四边形ABCD 边BC 上一点,F E ,分别为PD PA ,上的点,且PE AE PF DF 3,3 ,PAB PDC PEF ,,的面积分别为21,S S S ,,若3 S ,则21S S =____________三、解答题(共75分)16. (共10分)(1)计算:40)25(2(2)解方程:06722x x17. (本题6分)如图,在ABC 中,CAE BAE ,AE BE 于点E ,BE 的延长线交AC 于点D ,F 是CD 的中点,求证:BC EF 2118. (本题7分)如图,在四边形ABCD 中,BC AD //, 90BAD ,且DC BD (1)ABD 与DCB 相似吗?请说明理由(2)若94 BC AD ,,请求出DB 的长19.(本题9分)如图,在平面直角坐标系中,给出了格点△ABC (顶点式网格线的交点),已知点B 的坐标为(1,2). (1)画出△ABC 关于y 轴对称的△111C B A ,并写出1C 的坐标.(2)在给定的网格中,以点O 为位似中心,将△111C B A 作位似变换且放大到原来的两倍,得到△222C B A ,画出△222C B A ;并写出点2B 的坐标.20.(本题8分)阅读下面问题:12121 ;23231 ;25251. (1)根据以上规律,化简:① 10111;(2)nn 11(n 为正整数)= .(3)比较2223 和2122 的大小.21.(本题10分)某饮料批发商店平均每天可售出某款饮料300瓶,售出1瓶该款饮料的利润是1元.经调查发现,若该款饮料的批发价每降低0.1元,则每天可多售出100瓶.为了使每天获得的利润更多,该饮料批发商店决定降价x 元.(1)当x 为多少时,该饮料批发商店每天卖出该款饮料的利润为400元?(2)该饮料批发商店每天卖出该款饮料的利润能达到600元吗?若能,请求出x 的值,若不能,请说明理由.22.(本题12分)综合与实践某“综合与实践”小组开展了测量本校旗杆高度的实践活动,他们制定了测量方案,并利用课余时间完成了实地测量.他们在旗杆底部所在的平面上,放置一个平面镜E.来测量学校旗杆的高度,当镜子中心与旗杆的距离20 EB 米,镜子中心与测量者的距离2 ED 米时,测量者刚好从镜子中看到旗杆的顶端点A.已知测量者的身高为1.6米,测量者的眼睛距地面的高度为1.5米,求学校旗杆的高度时多少米.任务一:在计算过程中C,D 之间的距离应该是 米.任务二:根据以上测量结果,请你帮助“综合与实践”小组求出学校旗杆AB 的高度.任务三:该“综合与实践”小组在制定方案时,讨论过“利用测量者在阳光下的影子测量旗杆的高度”的方案,请你再备用图中画出该方案的示意图,并说明必要的已知条件.23.(本题13分)综合与探究如图,将矩形纸片)(DC AD ABCD 的A 沿着过点D 的直线折叠,使点A 落在BC 边上。

华师大版九年级上册数学期中考试试卷带答案

华师大版九年级上册数学期中考试试卷带答案

华师大版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.下列各式中,一定是二次根式的是( )A B C D 2.方程x 2﹣9=0的解是( )A .x=3B .x=9C .x=±3D .x=±9 3.下列计算正确的是( )A =B =C =D .3=- 4.用配方法解方程2850x x -+=,将其化为2()x m n +=的形式,正确的是( ) A .2(4)11x += B .2(4)21x += C .2(8)11x -= D .2(4)11x -=5.当0xy <等于( )A .-B .C .D .- 6.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m ,另一边减少了2m ,剩余空地的面积为18m 2,求原正方形空地的边长.设原正方形的空地的边长为xm ,则可列方程为( )A .(x+1)(x+2)=18B .x 2﹣3x+16=0C .(x ﹣1)(x ﹣2)=18D .x 2+3x+16=0 7.已知34x y =,那么下列等式中,不成立的是( ) A .37x x y =+ B .14x y y C .3344x y +=+ D .4x=3y8.如图,在Rt △ABC 中,∠C=90°.CD 是斜边AB 上的高,若得到CD 2=BD•AD 这个结论可证明()A.△ADC∽△ACB B.△BDC∽△BCA C.△ADC∽△CBD D.无法判断9.如图,点A,B为定点,定直线l//AB,P是l上一动点.点M,N分别为PA,PB的中点,对于下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤10.在四边形ABCD 中,∠B=90°,AC=4,AB∥CD,DH 垂直平分AC,点H 为垂足,设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为( )A.B.C.D.二、填空题11有意义,则x的取值范围是__.12.我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是_____.13.2018-2019赛季中国男子篮球职业联赛,采用双循环制(每两队之间都进行现场比赛),比赛总场数为380场,则参赛队伍有__________支.14.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为_____尺.15.在等腰三角形ABC 中,4AB AC ==,3BC =,将ABC ∆的一角沿着MN 折叠,点B 落在AC 上的点D 处,如图所示,若ABC ∆与DMC ∆相似,则BM 的长度为__________.三、解答题16.计算:(1(211)(1()3--17.解下列方程(1)3(2)2(2)x x x -=-(2)231060x x -+=(配方法).18.先化简,再求值:22222212a b a b a b ab ab ⎛⎫-+÷- ⎪+⎝⎭,其中a =3b =319.已知关于x 的一元二次方程22(21)10x m x m +++-=.(1)当m 为何值时,方程有两个不相等的实数根?(2)在(1)的结论下,若m 取最小整数,求此时方程的两个根.20.如图,△ABC 和△BEC 均为等腰直角三角形,且∠ACB=∠BEC=90°,点P 为线段BE 延长线上一点,连接CP ,以CP 为直角边向下作等腰直角△CPD ,线段BE 与CD 相交于点F .(1)求证:PC CE CD CB=; (2)连接BD ,请你判断AC 与BD 有什么位置关系?并说明理由.21.“早黑宝”葡萄品种是我省农科院研制的优质新品种在我省被广泛种植,邓州市某葡萄种植基地2017年种植“早黑宝”100亩,到2019年“早黑宝”的种植面积达到196亩 (1)求该基地这两年“早黑宝”种植面积的平均增长率;(2)市场查发现,当“早黑宝”的售价为20元千克时,每天售出200千克,售价每降价1元,每天可多售出50千克,为了推广直传,基地决定降价促销,同时减存已知该基地“早黑宝”的平均成本价为12元/千克,若使销售“早黑宝”天获利1750元,则售价应降低多少元?22.如图1,在矩形ABCD 中,2AB =,5BC =,1BP =,90MPN ∠=,将MPN ∠绕点P 从PB 处开始按顺时针方向旋转,PM 交边AB (或AD )于点E ,PN 交边AD (或CD )于点F ,当PN 旋转至PC 处时,MPN ∠停止旋转.(1)特殊情形:如图2,发现当PM 过点A 时,PN 也恰巧过点D ,此时ABP ∆ PCD ∆(填“≌”或“∽”);(2)类比探究:如图3,在旋转过程中,PE PF的值是否为定值?若是,请求出该定值;若不是,请说明理由.23.从三角形(不是等腰三角形)一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC 中,CD 为角平分线,∠A =40°,∠B =60°,求证:C D 为△ABC 的完美分割线.(2)在△ABC 中,∠A =48°,CD 是△ABC 的完美分割线,且△ACD 为等腰三角形,求∠ACB的度数.(3)如图2,△ABC 中,AC =2,BC CD 是△ABC 的完美分割线,且△ACD 是以CD 为底边的等腰三角形,求完美分割线CD 的长.参考答案1.D【分析】a≥)的式子叫二次根式,根据定义判断即可.【详解】解:A a表示任意实数,不是二次根式,故本选项错误;B被开方数-10<0,不是二次根式,故本选项错误;C a+1表示任意实数,不是二次根式,故本选项错误;D被开方数a2+1为非负数,即a2+1>0,是二次根式,故本选项正确.故选D【点睛】本题考查对二次根式的定义的应用,对二次根式定义的条件的理解是解答此题的关键. 2.C【解析】试题分析:首先把﹣9移到方程右边,再两边直接开平方即可.解:移项得;x2=9,两边直接开平方得:x=±3,故选C.考点:解一元二次方程-直接开平方法.3.C【分析】根据二次根式的乘法法则对A、C进行判断;根据二次根式的加减法对B进行判断;根据二次根式的性质对D进行判断.【详解】解:A、原式,所以A选项错误;B、原式,所以B选项错误;C、原式C选项正确;D 、原式=3,所以D 选项错误.故选C .【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4.D【分析】先把5移到方程的右边,然后方程两边都加16,最后把左边根据完全平方公式写成完全平方的形式,然后两边同时开平方即可.【详解】2850x x -+=,移项得285x x -=-,配方得2816516x x -+=-+,即2(4)11x -=.故选D .【点睛】本题考查了配方法解一元二次方程,配方法的一般步骤:①把常数项移到等号的右边;②把二次项的系数化为1;③等式两边同时加上一次项系数一半的平方.5.A【分析】a =,再根据绝对值化简法则进行化简.【详解】∵0xy <,且2xy 为非负数,∴x>0,y<0,y y x .故选A【点睛】本题考查二次根式的化简,a =化简此题是关键之处. 6.C【详解】试题分析:可设原正方形的边长为xm ,则剩余的空地长为(x ﹣1)m ,宽为(x ﹣2)m .根据长方形的面积公式列方程可得()()-1-2x x =18.故选C .考点:由实际问题抽象出一元二次方程.7.B【详解】【分析】根据比例的基本性质逐项进行求解即可.【详解】A ,∵x 3y 4=,∴x 3x y 7=+,此选项正确,不合题意;B ,∵x 3y 4=,∴x y y-=–14,此选项错误,符合题意;C ,∵x 3y 4=,∴x 33y 44+=+,此选项正确,不合题意;D ,∵x 3y 4=,∴4x=3y ,此选项正确,不合题意, 故选B .【点睛】本题考查了比例的性质,熟练掌握和应用比例的性质是解题的关键.8.C【解析】 试题分析:根据题意可得:CD AD BD CD=,结合∠ADC=∠CDB 可得:△ADC ∽△CBD. 9.B【详解】试题分析: ①、MN=12AB ,所以MN 的长度不变; ②、周长C △PAB =12(AB+PA+PB ),变化;③、面积S△PMN=14S△PAB=14×12AB·h,其中h为直线l与AB之间的距离,不变;④、直线NM与AB之间的距离等于直线l与AB之间的距离的一半,所以不变;⑤、画出几个具体位置,观察图形,可知∠APB的大小在变化.故选B考点:动点问题,平行线间的距离处处相等,三角形的中位线10.D【详解】因为DH垂直平分AC,∴DA=DC,AH=HC=2,∴∠DAC=∠DCH,∵CD∥AB,∴∠DCA=∠BAC,∴∠DAN=∠BAC,∵∠DHA=∠B=90°,∴△DAH∽△CAB,∴AD AH AC AB=,∴24yx=,∴y=8x,∵AB<AC,∴x<4,∴图象是D.故选D.11.x≥﹣1【分析】根据二次根式有意义的条件可得x+1≥0,再解不等式即可.【详解】∵有意义,∴:x+1≥0,解得:x≥﹣1,故答案为:x≥﹣1.【点睛】本题考查的知识点为二次根式有意义的条件.二次根式的被开方数是非负数.12.x1=﹣1,x2=﹣3.【解析】【分析】换元法即可求解,见详解.【详解】令2x+3=t,则方程(2x+3)2+2(2x+3)﹣3=0化为t2+2t﹣3=0,解得:t=1或-3,即2x+3=1或2x+3=-3解得:x1=﹣1,x2=﹣3.【点睛】本题考查了一元二次方程求解方法中的换元法,熟悉换元法的解题步骤是解题关键. 13.20支【分析】设参赛队伍有x支,根据参加比赛采用双循环制(每两队之间都进行2场比赛),共有比赛380场,可列出方程,求解即可.【详解】解:设参赛队伍有x支,根据题意得,x x1380解得,x1=20,x2=-19(不符合题意,舍去)∴参赛队伍有20支.故答案为:20【点睛】本题考查了由实际问题抽象出一元二次方程,关键是根据总比赛场数做为等量关系列方程求解.14.57.5【分析】根据题意有△ABF∽△ADE,再根据相似三角形的性质可求出AD的长,进而得到答案. 【详解】如图,AE与BC交于点F,由BC //ED 得△ABF∽△ADE,∴AB:AD=BF:DE,即5:AD=0.4:5,解得:AD=62.5(尺),则BD=AD-AB=62.5-5=57.5(尺)故答案为57.5.【点睛】本题主要考查相似三角形的性质:两个三角形相似对应角相等,对应边的比相等.15.32或127【分析】根据折叠得到BM=ND,根据相似三角形的性质得到CM MDCB AB或CM MDAC AB,设BM=x,则CM=3-x,即可求出x的长,得到BM的长. 【详解】解:∵△BMN沿MN折叠,B和D重合,∴BM=DM,设BM=x,则CM=3-x,∵当△CMD∽△CBA,∴CM MD CB AB,∴334x x,解得:x=127,即BM=127;∵当△CMD∽△CAB,∴CM MD CA AB,∴344x x,解得:x=32,即BM=32;∴BM=32或127.故答案为:32或127【点睛】本题主要考查相似三角形性质以及图形的折叠问题,根据相似三角形的性质列出比例式是解答此题的关键.16.(12)4【分析】(1)化简各项二次根式,再合并同类二次根式;(2a=化简绝对值,利用平方差公式(a+b)(a-b)=a2-b2,根据负指数幂1ppaa-=进行计算.【详解】(1)解:原式223=⨯-==(2)原式2(13)=-224==【点睛】进行实数的运算,要明确有理数的运算法则及性质在实数范围内仍然成立.特别地,碰到化简绝对值的运算,首先判断绝对值符号里代数式整体的正负,再根据绝对值的意义,整体取正或负.17.(1)12x =,223x =-(2)153x =,253x = 【分析】(1)利用因式分解法解方程;(2)方程两边同时除以3,使二次项系数为1,利用配方法解方程.【详解】(1)移项,得3(2)2(2)0x x x ---=方程左边分解因式,得(2)(32)0x x -+=∴20x -=或320x +=∴12x =,223x =- (2)移项,得23106x x -=-方程两边同时除以3,得21023x x -=- 配方,得2221055()2()333x x -+=-+ 即257()39x -=.直接开平方,得53x -=.∴153x +=,253x = 【点睛】本题考查了解一元二次方程,根据方程系数特征,选用恰当的方法解方程是解答此题的关键.18.2a b-【分析】先将括号里的分式进行通分,再将括号里分式进行相减,最后再根据分式的除法法则计算,最后代入数值即可求解.【详解】原式=222222222a b a b ab a b ab ab ab ⎛⎫-+÷- ⎪+⎝⎭, =()()()()22a b a b a b ab a b ab ⎛⎫+-- ⎪÷ ⎪+⎝⎭, =2a b-, 把a =3b =3:原式【点睛】本题主要考查分式的化简求值,解决本题的关键是要熟练掌握分式的通分,分式减法和分式的除法法则.19.(1)54m >-(2)10x =,21x = 【分析】(1)根据方程的系数和根的判别式Δ=b 2-4ac>0,列出关于m 的不等式,求出解集即可解答;(2)在m 的解集中,确定m 的最小整数后再确定原方程,求根即可.【详解】解:(1)∵方程22(21)10x m x m +++-=有两个不相等的实数根,∴22(21)4(1)450m m m +--=+> 解得54m >- ∴当54m >-时,方程有两个不相等的实数根. (2)由(1),得54m >-,故m 的最小整数值是-1 当1m =-时,原方程为20x x -=解得10x =,21x =即此时方程的两个根分别为10x =,21x =【点睛】本题考查了一元二次方程根的差别式,明确由一元二次方程根的判别式和方程实数根的个数关系及正确解方程是解答此题的关键.20.(1)证明见解析;(2)AC∥BD,理由见解析.【分析】(1)证明△BCE∽△DCP,相似三角形的对应边成比例;(2)由△PCE∽△DCB,证∠CBD=∠CEP=90°.【详解】(1)∵,△ABC和△BEC均为等腰直角三角形,且∠ACB=∠BEC=90°,∴∠ECB=∠PCD=45°,∠CEB=∠CPD=90°,∴△BCE∽△DCP,∴PC CE CD CB=;(2)AC∥BD,理由:∵∠PCE+∠ECD=∠BCD+∠ECD=45°,∴∠PCE=∠BCD,∵PC CECD CB=,∴△PCE∽△DCB,∴∠CBD=∠CEP=90°,∵∠ACB=90°,∴∠ACB=∠CBD,∴AC∥BD.【点睛】本题考查了相似三角形的判定与性质,判定两个三角形相似的方法有:①平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似;②三边成比例的两个三角形相似;③两边成比例且夹角相等的两个三角形相似;④有两个角相等的三角形相似.21.(1)40%(2)3元【分析】(1)设该基地这两年“早黑宝”种植面积的平均增长率为x,根据题意得关于x的一元二次方程,解方程,然后根据问题的实际意义作出取舍即可;(2)设售价应降低y元,根据每千克的利润乘以销售量,等于1750,列方程并求解,再结合问题的实际意义作出取舍即可.【详解】(1)设该基地这两年“早黑宝”种植面积的平均增长率为x,根据题意得100(1+x)2=196解得x 1=0.4=40%,x 2=−2.4(不合题意,舍去)答:该基地这两年“早黑宝”种植面积的平均增长率为40%.(2)设售价应降低y 元,则每天可售出(200+50y )千克根据题意,得(20−12−y )(200+50y )=1750整理得,y 2−4y +3=0,解得y 1=1,y 2=3∵要减少库存∴y 1=1不合题意,舍去,∴y =3答:售价应降低3元.【点睛】本题考查了一元二次方程在增长率问题和销售问题中的应用,根据题目正确列出方程,是解题的关键.22.(1)∽(2)PE PF 的值为定值12,详见解析 【分析】(1)根据矩形的性质找出∠B=∠C=90°,再通过同角的余角相等得出BAP CPD ∠=∠,由此即可得出ΔABP ∽ΔPCD;(2)过点F 作FG ⊥PC 于点G ,根据矩形的性质以及角的关系找出∠B=∠FGP=90°,∠BEP=∠FPG,由此得出△EBP ≌△PGF,根据相似三角形的性质找出边与边之间的关系,即可得出结论.【详解】(1)∽,理由如下:∵90MPN ∠=,90B =∠,∴90BAP APB CPD APB ∠+∠=∠+∠=∴BAP CPD ∠=∠又∵B C ∠=∠∴ABP ∆∽PCD ∆(2)在旋转过程中,PE PF的值为定值理由如下:过点F 作FG BC ⊥于点G ,如图所示,则B FGP ∠=∠∵90,90MPN B ∠=∠=∴90BEP EPB CPF EPB ∠+∠=∠+∠=∴BEP CPF ∠=∠∴EBP ∆∽PGF ∆ ∴PE PB PF FG= 在矩形ABGF 中,2FG AB ==,1PB = ∴12PB FG = ∴12PE PF =,即PE PF 的值为定值12. 【点睛】本题考查相似三角形的性质和判定的综合应用,以及矩形性质和旋转性质,证明三角形相似用其性质列出对应边成比例是解答此题的关键.23.(1)证明见解析;(2)∠ACB =96°或114°;(3【分析】(1)根据完美分割线的定义只要证明①△ABC 不是等腰三角形,②△ACD 是等腰三角形,③△BDC ∽△BCA 即可.(2)分三种情形讨论即可①如图2,当AD =CD 时,②如图3中,当AD =AC 时,③如图4中,当AC =CD 时,分别求出∠ACB 即可.(3)设BD =x ,利用△BCD ∽△BAC ,得BC BD BA BC=,列出方程即可解决问题. 【详解】(1)如图1中,∵∠A =40°,∠B =60°,∴∠ACB =80°,∴△ABC 不是等腰三角形,∵CD 平分∠ACB ,∴∠ACD =∠BCD =12∠ACB =40°,∴∠ACD =∠A =40°,∴△ACD 为等腰三角形,∵∠DCB =∠A =40°,∠CBD =∠ABC ,∴△BCD ∽△BAC ,∴CD 是△ABC 的完美分割线.(2)①当AD =CD 时,如图2,∠ACD =∠A =45°,∵△BDC ∽△BCA ,∴∠BCD =∠A =48°,∴∠ACB =∠ACD +∠BCD =96°.②当AD =AC 时,如图3中,∠ACD =∠ADC =(180°-48°)÷2=66°,∵△BDC ∽△BCA ,∴∠BCD =∠A =48°,∴∠ACB =∠ACD +∠BCD =114°.③当AC =CD 时,如图4中,∠ADC =∠A =48°,∵△BDC ∽△BCA ,∴∠BCD =∠A =48°,∵∠ADC >∠BCD ,矛盾,舍弃,∴∠ACB =96°或114°.(3)由已知AC =AD =2,∵△BCD ∽△BAC ,∴BC BD BA BC=设BD =x ,∴2(2)x x =+),∵x >0,∴x 1,∵△BCD ∽△BAC ,∴CD BD AC BC =,∴CD ×2=【点睛】本题考查相似三角形的判定和性质、等腰三角形的性质等知识,解题的关键是理解题意,学会分类讨论思想,属于中考常考题型.。

华东师大版九年级数学上册期中测试卷及答案【各版本】

华东师大版九年级数学上册期中测试卷及答案【各版本】

华东师大版九年级数学上册期中测试卷及答案【各版本】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的绝对值是( )A .﹣3B .3C .-13D .132.已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2-ab -ac -bc 的值是( )A .0B .1C .2D .33.若抛物线2y x ax b =++与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线1x =,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A .()3,6--B .()3,0-C .()3,5--D .()3,1--4.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .45.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x 名同学,那么依题意,可列出的方程是( )A .x (x+1)=210B .x (x ﹣1)=210C .2x (x ﹣1)=210D .12x (x ﹣1)=210 6.关于x 的方程2(1)(2)x x ρ-+=(ρ为常数)根的情况下,下列结论中正确的是( )A .两个正根B .两个负根C .一个正根,一个负根D .无实数根7.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .8.如图,A ,B 是反比例函数y=4x 在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,则△OAB 的面积是( )A .4B .3C .2D .19.如图,已知⊙O 的直径AE =10cm ,∠B =∠EAC ,则AC 的长为( )A .5cmB .52cmC .53cmD .6cm10.如图,DE ∥FG ∥BC ,若DB=4FB ,则EG 与GC 的关系是( )A .EG=4GCB .EG=3GC C .EG=52GCD .EG=2GC二、填空题(本大题共6小题,每小题3分,共18分)1.计算:02(3)π-+-=_____________.2.分解因式:x 3﹣16x =_____________.3.若函数y=mx 2+2x+1的图象与x 轴只有一个公共点,则常数m 的值是_____.4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD的周长为_____________.5.如图,AB为△ADC的外接圆⊙O的直径,若∠BAD=50°,则∠ACD=_____°.6.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学计数法表示为___________.三、解答题(本大题共6小题,共72分)1.解分式方程:122 11xx x+= -+2.先化简,再求值:2443(1)11m mmm m-+÷----,其中22m=-.3.如图,在ABC中,ACB90∠=,AC BC=,D是AB边上一点(点D与A,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90得到线段CE,连结DE交BC于点F,连接BE.1()求证:ACD≌BCE;2()当AD BF=时,求BEF∠的度数.4.如图,在ABC 中,点D E 、分别在边BC AC 、上,连接AD DE 、,且B ADE C ∠=∠=∠.(1)证明:BDA CED △∽△;(2)若45,2B BC ∠=︒=,当点D 在BC 上运动时(点D 不与B C 、重合),且ADE 是等腰三角形,求此时BD 的长.5.元旦期间,某超市开展有奖促销活动,凡在超市购物的顾客均有转动圆盘的机会(如图),如果规定当圆盘停下来时指针指向8就中一等奖,指向2或6就中二等奖,指向1或3或5就中纪念奖,指向其余数字不中奖.(1)转动转盘中奖的概率是多少?(2)元旦期间有1000人参与这项活动,估计获得一等奖的人数是多少?6.某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y (个)与销售单价x (元)有如下关系:y=﹣x+60(30≤x ≤60).设这种双肩包每天的销售利润为w 元.(1)求w 与x 之间的函数关系式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于42元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、B4、C5、B6、C7、D8、B9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、32、x (x +4)(x –4).3、0或14、10.5、406、2.5×10-6三、解答题(本大题共6小题,共72分)1、3x =2、22m m-+ 1. 3、()1略;()2BEF 67.5∠=.4、(1)理由见详解;(2)2BD =或1,理由见详解.5、(1)34;(2)125 6、(1)w =﹣x 2+90x ﹣1800;(2)当x =45时,w 有最大值,最大值是225;(3)该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.。

华东师大版九年级数学上册期中测试卷(带答案)

华东师大版九年级数学上册期中测试卷(带答案)

华东师大版九年级数学上册期中测试卷(带答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.8的相反数的立方根是( )A .2B .12C .﹣2D .12-2.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-3.已知α、β是方程x 2﹣2x ﹣4=0的两个实数根,则α3+8β+6的值为( )A .﹣1B .2C .22D .304.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)5.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A .54573x x -=-B .54573x x +=+C .45357x x ++=D .45357x x --= 6.已知:等腰直角三角形ABC 的腰长为4,点M 在斜边AB 上,点P 为该平面内一动点,且满足PC =2,则PM 的最小值为( )A .2B . 2C .D .7.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .18.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD9.如图,已知⊙O 的直径AE =10cm ,∠B =∠EAC ,则AC 的长为( )A .5cmB .52cmC .53cmD .6cm10.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)164__________.2.因式分解:a 3-a =_____________.3.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是__________.4.如图,直线1y x =+与抛物线245y x x =-+交于A ,B 两点,点P 是y 轴上的一个动点,当PAB ∆的周长最小时,PAB S ∆=__________.5.如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为_________m .6.如图,平面直角坐标系中,矩形OABC 的顶点A (﹣6,0),C (0,23).将矩形OABC 绕点O 顺时针方向旋转,使点A 恰好落在OB 上的点A 1处,则点B 的对应点B 1的坐标为__________.三、解答题(本大题共6小题,共72分)1.解方程:33122x x x -+=--2.先化简,再求值(32m ++m ﹣2)÷2212m m m -++;其中m 23.如图①,已知抛物线y=ax 2+bx+c 的图像经过点A (0,3)、B (1,0),其对称轴为直线l :x=2,过点A 作AC ∥x 轴交抛物线于点C ,∠AOB 的平分线交线段AC 于点E ,点P 是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.4.如图,ABC中,点E在BC边上,AE AB=,将线段AC绕点A旋转到AF 的位置,使得CAF BAE∠=∠,连接EF,EF与AC交于点G=;(1)求证:EF BC(2)若65∠的度数.ACB∠=︒,求FGCABC∠=︒,285.我国中小学生迎来了新版“教育部统编义务教育语文教科书”,本次“统编本”教材最引人关注的变化之一是强调对传统文化经典著作的阅读.某校对A 《三国演义》、B《红楼梦》、C《西游记》、D《水浒》四大名著开展“最受欢迎的传统文化经典著作”调查,随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了下面两幅不完整的统计图:(1)本次一共调查了_________名学生;(2)请将条形统计图补充完整;(3)某班语文老师想从这四大名著中随机选取两部作为学生暑期必读书籍,请用树状图或列表的方法求恰好选中《三国演义》和《红楼梦》的概率.6.某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、D4、C5、B6、B7、B8、D9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2、a (a -1)(a + 1)3、30°或150°.4、125.5、136、(6)三、解答题(本大题共6小题,共72分)1、4x =2、11m m +-,原式=.3、(1)y=x 2-4x+3.(2)当m=52时,四边形AOPE 面积最大,最大值为758.(3)P 点的坐标为 :P 1P 2352,),P 3(2,2),P 412). 4、(1)略;(2)78°.5、(1)50;(2)见解析;(3)16. 6、(1)35元/盒;(2)20%.。

华东师大版九年级数学上册期中考试及答案【各版本】

华东师大版九年级数学上册期中考试及答案【各版本】

华东师大版九年级数学上册期中考试及答案【各版本】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣15的绝对值是( ) A .﹣15 B .15 C .﹣5 D .52.已知抛物线24y x bx =-++经过(2,)n -和(4, )n 两点,则n 的值为( )A .﹣2B .﹣4C .2D .43.已知α、β是方程x 2﹣2x ﹣4=0的两个实数根,则α3+8β+6的值为( )A .﹣1B .2C .22D .304.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)5.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x 名同学,那么依题意,可列出的方程是( )A .x (x+1)=210B .x (x ﹣1)=210C .2x (x ﹣1)=210D .12x (x ﹣1)=210 6.定义运算:21m n mn mn =--☆.例如2:42424217=⨯-⨯-=☆.则方程10x =☆的根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .只有一个实数根7.如图,直线AB ∥CD ,则下列结论正确的是( )A .∠1=∠2B .∠3=∠4C .∠1+∠3=180°D .∠3+∠4=180°8.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ∆∆≌的是( )A .CB CD = B .BAC DAC ∠=∠C .BCA DCA ∠=∠D .90B D ∠=∠=︒9.如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°10.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)123=______________.2.因式分解:a 3-ab 2=____________.3.函数132y xx=--+中自变量x的取值范围是__________.4.如图1是一个由1~28的连续整数排成的“数阵”.如图2,用2×2的方框围住了其中的四个数,如果围住的这四个数中的某三个数的和是27,那么这三个数是a,b,c,d中的__________.5.如图,点A,B是反比例函数y=kx(x>0)图象上的两点,过点A,B分别作AC⊥x轴于点C,BD⊥x轴于点D,连接OA,BC,已知点C(2,0),BD=2,S△BCD =3,则S△AOC=__________.6.如图是一张矩形纸片,点E在AB边上,把BCE沿直线CE对折,使点B落在对角线AC上的点F处,连接DF.若点E,F,D在同一条直线上,AE=2,则DF=_____,BE=__________.三、解答题(本大题共6小题,共72分)1.解方程:12133xx x -+=--2.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.3.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.4.如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣14<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.某商场准备购进A,B两种书包,每个A种书包比B种书包的进价少20元,用700元购进A种书包的个数是用450元购进B种书包个数的2倍,A种书包每个标价是90元,B种书包每个标价是130元.请解答下列问题:(1)A,B两种书包每个进价各是多少元?(2)若该商场购进B种书包的个数比A种书包的2倍还多5个,且A种书包不少于18个,购进A,B两种书包的总费用不超过5450元,则该商场有哪几种进货方案?(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,A种,B 种书包各有几个?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、C5、B6、A7、D8、C9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)12、a (a+b )(a ﹣b )3、23x -<≤4、a ,b ,d 或a ,c ,d5、5.6、 1三、解答题(本大题共6小题,共72分)1、1x =2、(1)y=﹣x 2﹣2x+3;(2)抛物线与y 轴的交点为:(0,3);与x 轴的交点为:(﹣3,0),(1,0);(3)15.3、(1)略;(24、(1)(m ,2m ﹣5);(2)S △ABC =﹣82a a +;(3)m 的值为72或.5、(1)30;(2)①补图见解析;②120;③70人.6、(1)A ,B 两种书包每个进价各是70元和90元;(2)共有3种方案,详见解析;(3)赠送的书包中,A 种书包有1个,B 种书包有个,样品中A 种书包有2个,B 种书包有2个.。

华东师大版九年级数学上册期中试卷(完整)

华东师大版九年级数学上册期中试卷(完整)

华东师大版九年级数学上册期中试卷(完整)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的相反数是()A.13-B.13C.3-D.32.已知x+1x=6,则x2+21x=()A.38 B.36 C.34 D.323.已知m=4+3,则以下对m的估算正确的()A.2<m<3 B.3<m<4 C.4<m<5 D.5<m<6 4.如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A.﹣2 B.0 C.1 D.45.已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠3 6.一个等腰三角形的两条边长分别是方程27100x x-+=的两根,则该等腰三角形的周长是()A.12 B.9 C.13 D.12或97.如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()A .北偏东30°B .北偏东80°C .北偏西30°D .北偏西50°8.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD9.如图,已知⊙O 的直径AE =10cm ,∠B =∠EAC ,则AC 的长为( )A .5cmB .52cmC .53cmD .6cm10.如图,E ,F 是平行四边形ABCD 对角线AC 上两点,AE=CF=14AC .连接DE ,DF 并延长,分别交AB ,BC 于点G ,H ,连接GH ,则ADG BGHS S △△的值为( )A .12B .23C .34D .1二、填空题(本大题共6小题,每小题3分,共18分)1.计算618136的结果是_____________. 2.因式分解:3222x x y xy +=﹣__________. 3.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____.4.把长方形纸片ABCD 沿对角线AC 折叠,得到如图所示的图形,AD 平分∠B ′AC ,则∠B ′CD=__________.5.如图,点A ,B 是反比例函数y=k x(x >0)图象上的两点,过点A ,B 分别作AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,连接OA ,BC ,已知点C (2,0),BD=2,S △BCD =3,则S △AOC =__________.6.已知抛物线()20y ax bx c a =++≠的对称轴是直线1x =,其部分图象如图所示,下列说法中:①0abc <;②0a b c -+<;③30a c +=;④当13x 时,0y >,正确的是__________(填写序号).三、解答题(本大题共6小题,共72分)1.解分式方程:21124x x x -=--2.先化简,再求值:2443(1)11m m m m m -+÷----,其中22m =.3.如图,以D 为顶点的抛物线y=﹣x 2+bx+c 交x 轴于A 、B 两点,交y 轴于点C,直线BC的表达式为y=﹣x+3.(1)求抛物线的表达式;(2)在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;(3)在x轴上是否存在一点Q,使得以A、C、Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.4.如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE ⊥BC于点E.(1)试判断DE与⊙O的位置关系,并说明理由;(2)过点D作DF⊥AB于点F,若BE=33,DF=3,求图中阴影部分的面积.5.某商场服装部分为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额的数据,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)该商场服装营业员的人数为,图①中m的值为;(2)求统计的这组销售额数据的平均数、众数和中位数.6.东营市某学校2015年在商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2016年为响应习总书记“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个,恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%,如果此次购买甲、乙两种足球的总费用不超过2900元,那么这所学校最多可购买多少个乙种足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、B4、C5、C6、A7、A8、D9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)12、()2 x x y-3、24、30°5、5.6、①③④.三、解答题(本大题共6小题,共72分)1、32x=-.2、22mm-+1.3、(1)y=﹣x2+2x+3;(2)P (97,127);(3)当Q的坐标为(0,0)或(9,0)时,以A、C、Q为顶点的三角形与△BCD相似.4、(1)DE与⊙O相切,理由略;(2)阴影部分的面积为25、(1)25;28;(2)平均数:18.6;众数:21;中位数:18.6、(1)购买一个甲种足球需50元,购买一个乙种足球需70元;(2)这所学校最多可购买18个乙种足球.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学期中测评华东师大版【同步教育信息】一. 本周教学内容: 期中测评【模拟试题】一. 选择题(本题共12分,每题3分)在每题的四个备选答案中只有一个是正确的,请将正确答案前的字母填在括号中。

1. 方程x x 2440-+=根的情况是( ) A. 有两个不相等的实数根 B. 有两个相等的实数根 C. 只有一个实数根 D. 没有实数根 2. 下列计算中,正确的是( ) A. 235a b ab +=B. a a a ⋅=33C. a a a 623÷=D. ()-=ab a b 2223. 如图,用直角钢尺检查某一工件是否为半圆环形,根据所检查的情形,四个工件中肯定是半圆形的是( )4. 把一个小球以20m/s 的速度竖直向上弹出,它在空中的高度h (m )与时间t (s )满足关系:h t t =-2052,当h =20时,小球的运动时间为( ) A. 20sB. 2sC. ()222+sD. ()222-s二. 填空题(本题共18分,每空3分)5. 已知分式213x x +-有意义,则x 的取值范围是____________。

6. 地球的体积是111012.⨯立方米,地球的体积是月球体积的50倍,则月球的体积用科学记数法表示为________________________立方米。

7. 用计算器探索:按一定规律排列的一组数:1,2,-3,2,5,-6,7,……,如果从1开始依次连续选取若干个数,使它们的和大于5,那么至少要选____________个数。

8. 一个函数具有下列性质:①它的图象不经过第三象限;②图象经过点(-1,1);③当-<<10x 时,函数值y 随自变量x 增大而增大。

试写出一个同时满足上述三条性质的函数的解析式________________________。

9. 如图是置于水平地面上的一个球形储油罐,小敏想测量它的半径,在阳光下,他测得球的影子的最远点A 到球罐与地面接触点B 的距离是10米(如示意图,AB =10米);同一时刻,他又测得竖直立在地面上长为1米的竹竿的影子长为2米,那么,球的半径是____________米。

10. 如图,弦AB 所对的圆心角是60度,则弦AB 所对的圆周角的度数为____________度。

三. 解答题:(本题共30分,每小题6分)11. 计算:()x x x x xx +-+-+÷-2244422 12. 请将分式aba b 2222-改写成两个分式的乘积形式(满足分式的条件,写出一种)13. 解方程()()x x +-=25114. 解分式方程12312x xx-+=-- 15. 用配方法解方程x ax b 20++=四. 解答题(本题共18分,每小题6分)16. 已知在∆ABC 中,∠=C 90,AC =8,BC =6,求AB 边上的高的长 17. 阅读理解题:我们知道:顶点在圆上,并且两边都和圆相交的角叫做圆周角,一条弧所对的圆周角的度数等于它所对的圆心角度数的一半,类似地,我们定义:顶点在圆外,并且两边都和圆相交的角叫做圆外角,如图:∠DPB 是圆外角,那么它的度数与它所夹的BD ⋂和AC ⋂所对的圆心角的度数有什么关系?(1)用文字表述你得到的结论:(不用字母和数学符号)______________________________________________________________ (2)解释你得到的结论的依据:______________________________________________________________18. 一只猫观察到一只老鼠藏身的洞在地面上共有A 、B 、C 三个出口(如图所示),这只猫应蹲在何处,才能等距离地守护住三个洞口?画出示意图并说出你的理由。

CA五. (本题12分,每小题6分) 19. 已知x x 2210--=,求x x 441+的值。

20. 如图,一块长a 、宽b (a>b )的铁板,要在去掉一个与三边相切的圆后,再剪出半径相同且互相外切的两个相等的最大圆,(1)求这两个等圆的半径(用a 或b 表示);(2)说明满足上述条件的a 与b 的关系。

六. (本题12分,每小题6分)21. 已知关于x 的一元二次方程mx m x m 231210--+-=(),其根的判别式的值等于1,求m 的值及该方程的根。

22. 如图,这是电话线杆埋设时的示意图,请你利用所学的知识及生活经验画出第三根电话线杆,并简单说明你的理由(只画示意图)七. 用方程或方程组解应用题(本题8分) 23. 某厂六月份的生产产值为300万元,七月份由于持续高温,迫使工厂的部分车间停产,使七月份的产值比六月份产值减少了三分之一,八月份的产值开始回升,到第三季度结束时第三季度的总产值为728万元。

(1)请你求出八、九月份产值的平均增长率(2)如果增长率不变,请你估算出该厂在本年度中后半年的产值多少万元(只取整数)?八. (本题共10分,24题4分,25题6分)24. 已知⊙O 中,弦AB 、CD 交于P 点,若AC ⋂,BD ⋂所对的圆心角的度数分别为80 和60 ,求∠APC 的度数。

25. 如图,已知AB 是⊙O 的直径,点C 是圆上一点,直线ED 过C 点,若∠=∠ACE ABC(1)说明直线ED 是⊙O 的切线;(2)如果AE ED ⊥于E 点,BD ED ⊥于D 点,且AB =10,AC :BC =3:4,求四边形AEDB 的面积。

【试题答案】数学参考答案及评分标准 1. B2. D3. A4. B5. x ≠36. 221010.⨯7. 78. y x=-19. 2.5m10. 30 ;15011. 解:原式=+-⋅-+-⋅-x x x x x x x 2224222() 2分 =++-x x x x 242()4分=-+-x x x 2442()=-x x x2226分12. 解:写对两个分式给满分;写对一个给3分。

13. 解:原方程整理为x x 23110--=2分 则a =1,b =-3,c =-113分 由求根公式,有x b b aca=-±-2424分 得x 13532=+,x 23532=-6分14. 12312x xx-+=-- 解:去分母,1321+-=-()x x2分 解得x =24分 经检验x =2是原方程的增根 5分 所以原方程无解6分 15. 用配方法解方程:x ax b 20++= 解:原方程变形为x ax b 2+=-1分 配方为x ax a a b 22244++=- 2分 则()x a a b+=-244223分 当a b 240-≥时4分解得x a a b 1242=-+-,x a a b 2242=---6分16. 解:过点C 作AB 边上的高,垂足为D1分在∆ABC 中,∠=ABC 90由勾股定理,有AB AC BC 222=+又AC =8,BC =6 解得AB =10 3分 由面积关系,有S BC AC AB CD ABC ∆=⋅=⋅12124分可得CD =48. 6分 答:AB 边上的高为4.817. 答:(1)等于这两段弧所对的圆心角的度数的差的一半3分 (2)略 6分 18. 答:猫应蹲在三角形的外心处 3分 因为三角形的外心到三个顶点的距离相等6分19. 解:由方程,可知x ≠0 1分 所以,方程可化为x x--=210 2分 则有()x x -=1423分 即x x 2216+=4分 则()x x222136+=5分 所以,x x44134+=6分 20. 解:如图,连结CE 且延长交BA 于点A1分连结EB ,CD 交于M 点,连结AM 交ED 于N 点且延长与BC 相交 3分 连结BN 且延长交AC 于Q 点,连结CN 且延长交AB 于P 点,连结PQ 则PQ 为所求 6分 (如果用其他方法作出的,要考虑它是否可以证明,可证明其真实性的给满分) 21. 解:根据题意,有m ≠0 由根的判别式,有b ac 240-≥ 即[()]()----=3142112m m m2分 解得m 12=,m 20=(不合题意,舍去)4分所以,原方程可化为25302x x -+= 解得x x 12132==, 6分22. 解:(1)设小圆的半径为x 则依题意,有4x b = 解得x b =42分(2)分别连结三个圆的圆心,过大圆的圆心作两个小圆连心线的垂线,设高为h由图形可知,大圆的半径长为b 23分由勾股定理,有()x b x h +-=2222 而h a b b =--24 则有()()()34434222b b a b =+-4分 解得a b =+3224,a b =-32246分23. 解:(1)设八、九月份产值的平均增长率为x1分依题意,有 300233002313002317282⨯+⨯++⨯+=()()x x4分 解得x 102=.,x 232=-.(舍)5分 (2)728288128812881198623++++++=()()()x x x 万元 8分24. 解:只要能同时求出70或110给满分。

25. 解:(1)连结OC ,证明出ED 是切线给2分 (2)由已知可知,AC :BC =3:4,及AB =10 可求AC =6,BC =8 则S ABC ∆=24 3分延长BC 交AE 延长线于F 点由此可知∆OBC 是等腰三角形及AF//BD可知∆ABF 是等腰三角形以及∆BDC 与∆FEC 是中心对称图形 所以,有S AEDB =48 6分 (注:此题的方法较多,其他方法参照给分)。

相关文档
最新文档