研究生《矩阵论》 期末考试题
研究生矩阵论试题及答案与复习资料大全
1 4
1 3
0 0
的
Jordan
标准形。
1 0 2
解:求 E A 的初等因子组,由于
1 1 E A 4 3
0 0
1
3
0
1 3 4
0 0
1 0 2
0
1
2
0 0 0
五、(15 分)求矩阵
的满秩分解:
1 0 1 2 A 1 2 1 1
2 2 2 1
解:
A
E
1 1
0 2
1 1
2 1
1 0
0 1
0 0
2 2 2 1 0 0 1
1 0 1 2 1 0 0
0 2
1 0
23
于是有
1 A 1
2
110
1 0
0 2
1 0
23 BC
A C H CC H 1 BH B 1 BH
或
A C H B H AC H 1 B H
六、(10
分)求矩阵
A
行 0
2 0 31
1
0
0 0 0 0 1 1 1
可求得:
1 0 0 P 1 1 0
1 1 1
1 0 0
P 1
1
1
0
2 1 1
1 B 1
2
0 1 1
,
C
1 0
对任意 k F ,有 k V1 ,且 k V2 ,因此知 k V1 V2 ,故知V1,V2 为 V 的子空 间。
14-15(1)-14级-矩阵论试题与答案
中国矿业大学2014~2015学年第1学期研究生《矩阵论》试卷答题时间:120分钟 考试方式:闭卷姓名_ _____学号____________院系__________任课老师____________得分______ 【一】(10分)已知矩阵a b A c d ⎛⎫=⎪⎝⎭,定义22R ⨯上的线性变换 (),T X AX X =∈22R ⨯求T 在基11122122,,,E E E E 下的矩阵。
【二】(15分) 已知矩阵313729214A -⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭(1)求A 的不变因子、初等因子; (2)求A 的Jordan 标准形J ; (3)求可逆矩阵P 使1P AP J -=。
【三】(15分)已知矩阵010865A ⎪=- ⎪ ⎪-⎝⎭(1)求A 的特征多项式; (2)求A 的最小多项式;(3)把矩阵Ate 表示成关于A 的多项式。
【四】(10分)已知矩阵111032A ⎪= ⎪ ⎪⎝⎭,求A 的QR 分解。
【五】(10分) 已知矩阵0.20.70.30.6A ⎛⎫= ⎪⎝⎭(1)求1,A A ∞; (2)讨论矩阵幂级数0kk A∞=∑的敛散性;若收敛,求其和。
【六】(15分)已知下面矛盾方程组123131311221x x x x x x x ++=⎧⎪+=⎨⎪+=⎩ (1)求系数矩阵A 的满秩分解; (2)求A 的广义逆矩阵A +;(3)求该方程组的极小范数最小二乘解。
【七】(15分)()n n ij A a R ⨯=∈,证明:2,,max max ij ij i ji ja An a ≤≤⋅【八】(10分)假设A 是n 阶方阵,若A 不与任何对角阵相似,证明:存在多项式()f λ及正整数k ,使得()f A O ≠但[()]k f A O =。
参 考 答 案【一】(10分)已知矩阵a b A c d ⎛⎫=⎪⎝⎭,定义22R ⨯上的线性变换 (),T X AX X =∈22R ⨯求T 在基11122122,,,E E E E 下的矩阵。
西安邮电大学矩阵论期末真题试题2
西安邮电大学研究生课程考试试题
第1页 共3页 西安邮电大学研究生课程考试试题
( — 学年第一学期)
一、填空题(每小题4分,共20分)
1.设T 是线性空间n V )1(>n 的线性变换,若数λ不是T 的特征值,则n V 的子空间{}
n V x x Tx x V ∈==,λλ的维数是 2.已知⎪⎪⎪⎭⎫ ⎝⎛-=5221001i i A ,其中1-=i ,则=1A ,=2A , =F A
3.已知⎪⎪⎪⎪⎭⎫ ⎝⎛--=613
13461A ,矩阵A 是否是收敛矩阵 ,根据是 4.已知⎪⎪⎪⎭
⎫ ⎝⎛=300211101A ,则A 的Jordan 标准形是 5.线性空间n V 中,设由基(Ⅰ):n x x x ,,,21Λ到基(Ⅱ):n y y y ,,,21Λ的过渡矩阵为C ,给定n 阶矩阵B ,线性变换T 满足B x x x Ty Ty Ty n n ),,,(),,,(2121ΛΛ=,则T 在基(Ⅱ)下的矩阵是
二、已知⎪⎪⎪⎭
⎫ ⎝⎛=321043211111A ,求A 的满秩分解.(10分)
三、已知⎪⎪⎪⎭
⎫ ⎝⎛=4021588017190A ,应用n Gerschgori 的特征值估计理论分离A 的特征值,并在复平面上画图表示.(10分)
四、设n m R A ⨯∈,证明在列向量空间m R 中,)(T A N 与)(A R 互补. (10分)。
09+10年北航研究生矩阵论 矩阵理论B期末试卷
二、设 A∈ 8×8,且 λ I − A 等价于准对角阵
diag
⎧⎪⎨⎪⎩⎡⎢⎣λ
2 −1 0
1 ⎤ ⎡λ +1 λ + 2⎥⎦ , ⎢⎣λ −1
0⎤ λ −1⎥⎦
,(λ
+
2)2
,
λ
+
2,
1,
1⎫⎪⎬⎪⎭
(1)试求 λ I − A 的初等因子,不变因子;Smith 标准形(3)写出 A 的最小多项式及 Jordan 形.
四、证明:1)、 因为 A+ = A,故 A3 = A 所以 秩A=秩A3 ≤ 秩A2 ≤ 秩A,所以 秩A2 = 秩A
2)、由 A3 − A = 0,故 λ3 − λ 将 A 零化,且 λ3 − λ = 0无重根, A 可对角化。
3)、 A 的特征根为 1、-1 和 0,而 秩A=r 。故非零特根个数为(对角线非零元素的个数为 r)
附加题证明:令 B = A( AT A)−1 AT ,则 BT = B 为实对称矩阵,且 B2 = B
从而 BT B 与 B 由相同的特征值,且 B 的正奇异值就是 B 的正特征值。λ2 −1 = λ(λ −1) 是
B 的 零 化 式 。 故 B 的 最 大 特 征 值 为 1 ( 否 则 B 为 零 矩 阵 , 从 而 A = 0 , 矛 盾 ), 所 以 B = B的最大奇异值= 1 = 1
3⎤ 2⎥⎦
.(1)计算
e
At
;
(2)试求
f
∞
A=
n=0
n +1 n!
A2
+
A
n
.
八、 A∈ n×n. 证明 lim Am = 0 ⇔ ρ ( A) < 1. m→∞
研究生期末试题矩阵论a及答案
,
可得谱分解式 (10分)
六、当 时, ;当 时,存在 与 使得 ,从而有
,(4分)
对于 ,有
,(7分)
对于 ,有
所以 是 中的矩阵范数.(10分)
七、解
,
, ,
.(10分)
八、容易求出矩阵A的最小多项式为 ,所以 ,于是
由此知 的内插多项式表示为
.(6分)
将矩阵A代入上式得
.
当 时, ,故
一、(10分) 为数域,对于线性空间 中任意矩阵 ,规则 , 分别为
,问 , 是否为 上的变换,如果是,证明该变换为线性变换,并求该变换在基 , , , 下的矩阵,判断该变换是否为可逆变换.
解:因 , ,故 为 上的变换, 不是 上的变换。(4分)
又对于线性空间 中任意矩阵 , , ,故为线性变换。(6分)
七、(10分)已知函数矩阵
,
其中 ,试求 , , , .
八、(10分)已知矩阵 ,写出矩阵函数 的Lagrange-Sylvester内插多项式表示,并计算 .
.
长 春 理 工 大 学
研 究 生 期 末 考 试标准答案及评分标准
科目名称:矩阵论命题人:姜志侠
适用专业:审核人:
开课学期:2012——2013学年第 一 学期□开卷√闭卷
长 春 理 工 大 学
研 究 生 期 末 考 试试 题
科目名称:矩 阵 论命题人:姜志侠
适用专业:理 工 科审核人:
开课学期:2013 ——2014 学年第 一 学期□开卷 √闭卷
一、(10分) 为数域,对于线性空间 中任意矩阵 ,规则 , 分别为 ,问 , 是否为 上的变换,如果是,证明该变换为线性变换,并求该变换在基 , , , 下的矩阵.
矩阵论研究生复习题
矩阵论研究生复习题矩阵理论及应用证明题复习题正规矩阵(包括Hermite 矩阵;Hermite 正定矩阵等)1. 设()ij n n A a ?=是n 阶Hermite 矩阵,12,,,n λλλ 是A 的特征值,且12n λλλ≥≥≥ ,证明:(1)1H n H x Axx xλλ≤≤ ;(2){}11max n kk k n a λλ≤≤≤≤.2.假设n 阶Hermite 矩阵A 是正定的。
证明:(1)存在正定矩阵S 使得2A S =;(2)对任意n 维列向量,X Y ,有2HH H Y AXX AX Y AY≤,并且,等号成立当且仅当,X Y 线性相关。
3.证明:设,A B 都是Hermite 矩阵,A 的特征值都大于a ,B 的特征值都大于b ,则A B +的特征值都大于a b +。
4.设A 为n 阶正定Hermite 矩阵,证明(1)Hnn AG a ββ??=是正定的的充分必要条件为1H nn a A ββ->,(2)Hnn AG a ββ=正定时有不等式:nn G a A ≤. 5.A 是n 阶Hermite 矩阵,证明:246A A I -+是正定Hermite 矩阵6.A 、B 都为n 阶正定Hermite 矩阵,且AB BA =,则AB 亦为正定Hermite 矩阵范数1.设?为n nC ?上的矩阵范数,λ为复矩阵A 的特征值,证明:mm A λ≤(m 为正整数)2.设λ是n 阶可逆矩阵A 的特征值,A 是A 的任意一种范数证明:11A λ-≥3.设A 是n 阶可逆矩阵,A 是A 的任意一种范数.证明:A 的谱半径()11A Aρ-≥4.A 是n 阶复矩阵,证明221AA A∞≤5.假设A 是s n ?矩阵,,U V 分别是s s ?、n n ?酉矩阵。
证明:FFAUAV=,22A UAV =。
6.设()ijn nA a ?=为n 阶Hermite 矩阵,证明:(1)2()A A ρ=;(2)()ij aA ρ≤.7.设A 为n 阶方阵,A 是从属于任何向量范数的矩阵范数, 证明:1)1I =; 2) 1A <时,I A -可逆,且()11111I A A A-≤-≤+-.矩阵分解1. A 为秩为r 的半正定Hermite 矩阵,则存在列满秩矩阵P ,使得HA P P =∑,其中1(0,1,2,,),H i r r i r P P λλλ??∑=>== ?I (其中r I 为r 阶单位矩阵) 2.设A 是n 正定Hermite 矩阵,利用矩阵的QR 分解证明:存在一个上三角形矩阵T ,使得H A T T =3.设矩阵,A B 都是m n ?矩阵,利用矩阵的满秩分解证明:()rankA B ran kA rankB +≤+.4.A 为秩为r 的半正定Hermite 矩阵,则存在行满秩矩阵P ,使得HA P P =∑,其中1(0,1,2,,),H i r r i r PP I λλλ?? ?∑=>== ?. 5.A 、B 都为n 阶Hermite 矩阵,其中B 为n 阶正定矩阵,证明:存在可逆矩阵Q ,使=H Q BQ E ,H Q AQ 为对角矩阵(这里E 为n 阶单位矩阵)6.A 是n 阶可逆矩阵,则A 可以分解为一个酉矩阵与一个正定矩阵的乘积7.设m n A C ?∈,证明A 的秩为r 的充分必要条件是存在,m rr m rr F C G C ??∈∈,使得A FG =.8.设A 为n 阶可逆方阵,证明:存在酉矩阵,Q P 使得QAP 为对角线元素都是正数的对角矩阵.。
最新南航矩阵论研究生试卷及答案
(2)求广义逆矩阵 ;
(3)求该线性方程组的极小最小二乘解.
在上海,随着轨道交通的发展,地铁商铺应运而生,并且在重要的商业圈已经形成一定的气候,投资经营地铁商铺逐渐成为一大热门。在人民广场地下“的美”购物中心,有一家DIY自制饰品店---“碧芝自制饰品店”。解答:(1)矩阵 , 的满秩分解为
(1)若对任意 ,有 则 可逆;
我们大学生没有固定的经济来源,但我们也不乏缺少潮流时尚的理念,没有哪个女生是不喜欢琳琅满目的小饰品,珠光宝气、穿金戴银便是时尚的时代早已被推出轨道,简洁、个性化的饰品成为现代时尚女性的钟爱。因此饰品这一行总是吸引很多投资者的目光。然而我们女生更注重的是感性消费,我们的消费欲望往往建立在潮流、时尚和产品的新颖性上,所以要想在饰品行业有立足之地,又尚未具备雄厚的资金条件的话,就有必要与传统首饰区别开来,自制饰品就是近一两年来沿海城市最新流行的一种。(2)若 都是Hermite正定矩阵,则 的特征值均为正数;
南京航空航天大学2012级硕士研究生
共6页第1页
2012 ~ 2013学年第1学期《矩阵论》课程考试A卷
考试日期:2013年1月15日课程编号:A080001命题教师:阅卷教师:
学院专业学号姓名成绩
一、(20分)设 是 的一个线性子空间,对任意 ,定义: ,其中 .
(1)求 的一组基和维数;
(2)对任意 ,定义:
(2)因为 是相容范数,且 ,则 在收敛半径内,因此级数收敛.……………(5分)
(3) .……………(5分)
开了连锁店,最大的好处是让别人记住你。“漂亮女生”一律采用湖蓝底色的装修风格,简洁、时尚、醒目。“品牌效应”是商家梦寐以求的制胜法宝。
共6页第6页
南航07-14矩阵论试卷
南京航空航天大学07-14硕士研究生矩阵论试题2007 ~ 2008学年《矩阵论》 课程考试A 卷一、(20分)设矩阵⎪⎪⎪⎭⎫ ⎝⎛-----=111322211A , (1)求A 的特征多项式和A 的全部特征值; (2)求A 的行列式因子、不变因子和初等因子;(3)求A 的最小多项式,并计算I A A 236-+;(4)写出A 的Jordan 标准形。
二、(20分)设22⨯R 是实数域R 上全体22⨯实矩阵构成的线性空间(按通常矩阵的加法和数与矩阵的乘法)。
(1)求22⨯R的维数,并写出其一组基;(2)设W 是全体22⨯实对称矩阵的集合, 证明:W 是22⨯R的子空间,并写出W 的维数和一组基;(3)在W 中定义内积W B A BA tr B A ∈=,),(),(其中,求出W 的一组标准正交基;(4)给出22⨯R 上的线性变换T : 22,)(⨯∈∀+=R A A A A T T写出线性变换T 在(1)中所取基下的矩阵,并求T 的核)(T Ker 和值域)(T R 。
三、(20分)(1)设⎪⎪⎭⎫⎝⎛-=121312A ,求1A ,2A ,∞A ,F A ; (2)设nn ij C a A ⨯∈=)(,令ijji a n A ,*max ⋅=,证明:*是n n C ⨯上的矩阵范数并说明具有相容性;(3)证明:*2*1A A A n ≤≤。
四、(20分)已知矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛-=100100011111A ,向量⎪⎪⎪⎪⎪⎭⎫⎝⎛=2112b , (1)求矩阵A 的QR 分解;(2)计算+A ;(3)用广义逆判断方程组b Ax =是否相容?若相容,求其通解;若不相容,求其极小最小二乘解。
五、(20分)(1)设矩阵⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=15.025.011210,2223235t t B t t A ,其中t 为实数,问当t 满足什么条件时, B A >成立?(2)设n 阶Hermite 矩阵022121211>⎪⎪⎭⎫⎝⎛=A A A A A H,其中k k C A ⨯∈11,证明:0,012111122211>->-A A A A A H。
华中科技大学矩阵论样题
—4—
四、(15 分)设线性方程组 AX=b 表示如下:
x3 x1
1 x2
x3
1
x1 x2 1
(1)求 A 的满秩分解; (2)计算 A+ (3)求该方程组的最佳最小二乘解。
—5—
五、(15 分) 设非零列向量,Rn,n2,A=TRnn, tr(A)表示矩阵 A 的迹 (1)求矩阵 A 的特征值. (2)证明 A 的最小多项式是 m()=2 tr(A) (3)写出矩阵 A 的 Jordan 标准型.
(4) (7 分)假设 A Cnn 是可逆的,证明:
其中 , 分别为 的最大和最小的奇异值.
—2—
—3—
三、(15 分)
3 1 0 0
设矩阵 A 1 0
1 0
0 5
0
3
,求矩阵
A
的
Jordan
标准型
Hale Waihona Puke JA和可逆矩阵P,使得
P1AP=JA.
0 0 3 1
—7—
华中科技大学研究生课程考试草稿纸
课程名称:
矩阵论
学生类别
考试日期
学号__________________
课程类别
√□公共课 □专业课
考核形式
□开卷 √□闭卷
2014.12.18 学生所在院系_______________ 姓名__________________
—8—
华中科技大学研究生课程考试答题纸
课程名称: 学生类别
矩阵论 硕士 考试日期
课程类别
√□公共课 □专业课
考核形式
□开卷 √□闭卷
2014.12.18 学生所在院系_______________
研究生矩阵论试题及答案与复习资料大全
矩阵论试题(2011级硕士试题)一、(10分)设函数矩阵 ()⎪⎪⎭⎫⎝⎛-=t t t t t A sin cos cos sin 求:()⎰tdt t A 0和(()⎰20t dt t A )'。
解:()⎰t dt t A 0=()⎪⎪⎪⎭⎫ ⎝⎛-⎰⎰⎰⎰tttt tdt tdt dt t dtt 00sin cos cos sin =⎪⎪⎭⎫⎝⎛---t t t t cos 1sin sin cos 1 (()⎰2t dt t A )'=()⎪⎪⎭⎫⎝⎛-=⋅22222sin cos cos sin 22t t t t t t t A 二、(15分)在3R 中线性变换σ将基⎪⎪⎪⎭⎫ ⎝⎛-=1111α,⎪⎪⎪⎭⎫ ⎝⎛-=1202α,⎪⎪⎪⎭⎫⎝⎛-=1013α变为基 ⎪⎪⎪⎭⎫⎝⎛-=0111β,⎪⎪⎪⎭⎫ ⎝⎛-=1102β,⎪⎪⎪⎭⎫ ⎝⎛-=2303β(1)求σ在基321,,ααα下的矩阵表示A ;(2)求向量()T 3,2,1=ξ及()ξσ在基321,,ααα下的坐标; (3)求向量()()ξσξ及T 3,2,1=在基321,,βββ下的坐标。
解:(1)不难求得:()2111ααβασ-==()32122αααβασ++-== ()321332αααβασ++-== 因此σ在321,,ααα下矩阵表示为⎪⎪⎪⎭⎫ ⎝⎛---=110211111A(2)设()⎪⎪⎪⎭⎫ ⎝⎛=321321,,k k k αααξ,即⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛321111021101321k k k解之得:9,4,10321-=-==k k k 所以ξ在321,,ααα下坐标为()T 9,4,10--。
()ξσ在321,,ααα下坐标可得⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛133223*********1111321y y y (3)ξ在基321,,βββ下坐标为⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛---6151941001111110194101A()ξσ在基321,,βββ下坐标为⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛---94101332230111111011332231A三、(20分)设⎪⎪⎪⎭⎫ ⎝⎛-=301010200A ,求At e 。
矩阵论试题(整理)(完整版)实用资料
矩阵论试题(整理)(完整版)实用资料(可以直接使用,可编辑完整版实用资料,欢迎下载)矩阵论试题(06,12)一.(18分填空:设1.A-B的Jordan标准形为J=2.是否可将A看作线性空间V2中某两个基之间的过渡矩阵()。
3.是否可将B看作欧式空间V2中某个基的度量矩阵。
()4.(),其中。
5.若常数k使得kA为收敛矩阵,则k应满足的条件是()。
6.AB的全体特征值是()。
7.()。
8.B的两个不同秩的{1}-逆为。
二.(10分设,对于矩阵的2-范数和F-范数,定义实数,(任意)验证是中的矩阵范数,且与向量的2-范数相容。
三.(15分已知。
1.求;2.用矩阵函数方法求微分方程满足初始条件x(0的解。
四.(10分用Householder变换求矩阵的QR分解。
五.(10分)用Gerschgorin定理隔离矩阵的特征值。
(要求画图表示)六.(15分已知。
1.求A的满秩分解;2.求A+;3.用广义逆矩阵方法判断线性方程组Ax=b是否有解;4.求线性方程组Ax=b的极小范数解,或者极小范数最小二乘解x0。
(要求指出所求的是哪种解)七.(15分已知欧式空间R22的子空间R22中的内积为V中的线性变换为T(X=XP+XT, 任意XV,1.给出子空间V的一个标准正交基;2.验证T是V中的对称变换;3.求V的一个标准正交基,使T在该基下的矩阵为对角矩阵.八.(7分设线性空间V n的线性变换T在基下的矩阵为A,T e表示V n的单位变换,证明:存在x00,使得T(x0=(T e-T(x0的充要条件是为A的特征值.矩阵论试题(07,12)一.(18分填空:1.矩阵的Jordan标准形为J=2.设则3.若A是正交矩阵,则cos(A=4.设,A+是A的Moore-Penrose逆,则(-2A, A+=5.设,则AB+I2I3的全体特征值是()。
6.设向量空间R2按照某种内积构成欧式空间,它的两组基为和且与的内积为则基的度量矩阵为()。
2014年矩阵论考试样卷(研究生)
同济大学课程考核试卷(样卷)2013—2014学年第一学期命题教师签名: 审核教师签名: 课号:2102001 课名:矩阵论 考试考查:考试此卷选为:期中考试( )、期终考试( √ )、重修( )试卷(注意:本试卷共七大题,三大张,满分100分.考试时间为120分钟.要求写出解题过程,否则不予计分) 一、填空与选择题(4⨯6分)1.设矩阵134251122A --⎛⎫⎪=-- ⎪⎪⎝⎭的三角分解A LR =,则单位下三角形矩阵L =2.设5阶矩阵A 的特征矩阵E A λ-的初等因子是2,,2,2λλλλ--,则A 的最小多项式()m λ= 。
3.设T 是22R⨯上的线性变换:对任意22R ⨯∈A ,()2TT A A A =+,则T 的特征值是 。
4.设A 为4阶实矩阵,线性方程组0Ax =的解空间是V ,4(){|R }R A Ax x =∈,则V 在4R 内的正交补是A. ()R AB. ()T R AC. ()()T R A R A ⋂D. ()()T R A R A +5. 设3R 中1{(,0,0)|R }TV x x =∈,2{(,,)|R }TV x x x x =∈,则12V V +=A.{(,,)|,R }T x x y x y ∈B.{(,,)|,R }T x y x x y ∈C.{(,,)|,R }T x y y x y ∈D. }R ∈x x x x T |),,{(6.设A 是m n ⨯矩阵,则[()]TR AA +=A.()R AB.()T R A )(+A R D.前三个选项都不对二、(14分)设1231231001002,1,0;0,1,1121111αααβββ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪====== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭是3R 的两组基,T 为3R 上的线性变换,TT1231313((,,))(2,,2)T x x x x x x x =+,求 (1)求由基123,,ααα到基123,,βββ的过度矩阵; (2)T 在基123,,βββ的下的矩阵。
矩阵论--武汉理工大学研究生考试试题2010(科学硕士)
武汉理工大学研究生考试试题(2010)课程矩阵论(共6题,答题时不必抄题,标明题目序号),填空题(15 分)1 1 1 0已知矩阵A 0 °,A 2 1 1 ,A 3所生成的子空间的维数为证明:(代B )是V 的一个内积;多项式所成的线性空间,对于任意的 f (t ) a 2t 2 a 1t a 。
F[t]3,定义:1、 已知矩阵A 的初级因子为 ,( 1)2, 2 ,( 1)3,则其最小多项式为2、 设线性变换T 在基1, 2, 3的矩阵为A ,由基 3到基 3的过渡矩阵为P , 向量在基3下的坐标为x ,则像T ()在基 3下的坐标 1 ,则由这四个矩阵 14、 0已知A 0,则 A 10 A 6 8A已知向量 1,2,0, T i), i 2 则其范数 二,(20)设 V A a 11 a 21 a 22an a 21 0为R 2 2的子集合,1、 证明:V 是R 2 2的线性子空间;2、 求V 的维数与一组基;3、 a*i1 a^对于任意的A , a 21 a 22 V ,定义(A, B) 4a 11b 113a 〔2b [2 2玄21匕21 a 22b 22 4、 求V 在上面所定义的内积下的一组标准正交基。
三、(15 分)设 F[t]32 f(t) a 2t a 〔t 玄 a j R, i 0,1,2为所有次数小于3的实系数1、 证明:T 是F[tb 上的线性变换;2、 求T 在基1,t,t 2下的矩阵A 。
四,(15分)设矩阵1 2 3A 0 1 20 0 11、 求A 的Jordan 标准形;2、 求A 的最小多项式。
五(20分)已知1 0 1 0A 0 11, b 11 0 1 11、 求A 的满秩分解;2、 求 A ;3、 求AX b 的最小二乘解;4、 求AX b 的极小范数最小二乘解。
六、(15分)已知X 。
01、求矩阵函数e At ;2 T[f(t)] (a 。
中南大学矩阵论考试试题及参考答案
中南大学2010年秋季硕士研究生《矩阵论》考试试题考试形式:开卷 时间:120分钟 总分100分姓名 学号一、 (16分) 已知3阶Hermite 矩阵A 的特征值为1,2,2,且()(),0,1, 1,0,TTi i ξη==是A 的属于特征值2的两个相互正交的特征向量. 1.(10分) 求A ;2.(6分) 求A 的不变因子与最小多项式.二、(20分) 对任何()C ij n nA a ⨯=∈,定义111n nij m i j Aa ===∑∑.1.(8分) 证明1m ⋅是Cn n⨯上一种矩阵范数;2.(6分) 证明1m ⋅与向量∞-范数相容; 3.(6分) 证明1m ⋅与矩阵范数m ∞⋅等价,其中1,max ij m i j nAn a ∞≤≤=⋅.三、(20分) 设020i A i ⎛⎫⎪= ⎪⎝⎭. 1.(6分) 验证A 是否为收敛矩阵; 2.(6分) 判断矩阵幂级数()1012kk kk ∞+=-∑的敛散性;3.(8分) 求Ate .四、(14分) 设113242212A -⎛⎫ ⎪=- ⎪ ⎪⎝⎭.求A 的QR 分解.五、(15分) 设1211141111A -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭.利用特征值隔离法和盖尔圆定理证明:A 的三个特征值全为实数,且分别位于实数区间()()0.5, 2.5, 2.5, 5.5 -和[]10, 14内.六、(15分)设1121, 1101A b -⎛⎫⎛⎫==⎪ ⎪-⎝⎭⎝⎭.1. (8分)求A 的全部{}1逆;2. (7分)利用{}1逆判断Ax b =是否有解,并在有解时求其通解.2010年矩阵论试题参考答案一、解. 1.因为A 为3阶Hermite 矩阵,所以有3个相互正交的特征向量,且酉相似于对角形122⎛⎫⎪⎪ ⎪⎝⎭ . 设A 的属于特征值1的特征向量为()123,,T x x x x =,则, ,x x ξη⊥⊥ 即 131300ix x x ix -+=⎧⎨-=⎩,解得 ()0,1,0, 0Tx k k =≠任意. 将, , x ξη单位化得12301,0, 00p p p ⎛⎫⎪=== ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭.令()12301000,,U p p p ⎛⎪ ⎪ ⎝==,则U 是酉矩阵且122H U AU ⎛⎫ ⎪= ⎪ ⎪⎝⎭从而0010112100202200212HU UA ⎛⎫⎛ ⎪ ⎪⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎝⎛⎫ ⎪=⎪⎪⎝⎭. 2.由A 相似于对角形122⎛⎫⎪⎪ ⎪⎝⎭知,A 的初等因子为 1, 2,2λλλ---,从而得A 的不变因子为 ()() 123()1,()2, ()12d d d λλλλλλ==-=--, 最小多项式为 ()()3()()12A m d λλλλ==--.二、1.证明. 1)()ij n nA a ⨯∀=∈C,显然有0A =时,10m A=,0A ≠时10m A>.2)(), n nij A a λ⨯∀∈∀=∈C C,111111nnnnij ji j m j m i i Aa aAλλλλ====⋅===∑∑∑∑.3)()(), ij ij n nA aB b ⨯∀==∈C,()11111111111nnnnn n n nij ij ij ij ij ij i j i j i j i m j m m a b a b a A BAb B=========++=≤+++=∑∑∑∑∑∑∑∑.4)()(), ij ij n nA aB b ⨯∀==∈C,1111111nnnnnnik kj ik kji j k i j m k a b a b AB=======≤⋅∑∑∑∑∑∑1111111111nnn n n nn nik kj ikkj i j k k i k j k m m a b a b AB========⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪⎪ ⎪⎝⎭⎝⋅⎝⎭⎝≤⎭⎭∑∑∑∑∑∑∑∑.由定义知1m A是n n⨯C上的矩阵范数.2.证明.()()12, ,,,Tn nn n ij A a x ξξξ⨯∀=∀=∈∈CC ,()11111111111111maxmax max m ma ax max m x x a n nnijnnnij ij jij ij i ni ni n j j j j j j m ni nj i j jj j nj na a AxAa xa a ξξξξξ≤≤≤≤≤≤===≤≤≤∞≤≤≤≤∞=≤===≤⋅≤⋅=⋅≤⋅⋅=∑∑∑∑∑∑所以矩阵范数1m ⋅与向量∞-范数相容.3.对任何()n nij A a ⨯=∈C,121,1,11ax x 1m ma m m nnij ij ij i j ni j nm i j n a A n a AAna ∞∞≤≤≤≤===≤=≤=∑∑所以矩阵范数1m ⋅与m ∞⋅等价.三、解. 1.2222122ii I A iλλλλλ--===+--,故A()A ρ=1()A ρ<,所以A 为收敛矩阵. 2.矩阵幂级数对应的复变量幂级数的收敛半径为()()1112lim212kk k kk r ++→+∞-⋅-==,而()A r ρ=<,故题中的矩阵幂级数绝对收敛.3.设()()()2101,2tet q t t b b λλλλ⎛⎫=++ ⎪⎝+⎭(()(()1010sin sin i b t b t e i b t b t ⎧==+⎪⎪⎨⎪=-=-⎪⎩解得()()01 b t b t ==. ()()10c 100.2010Ate b t A b i i t I ⎛⎫⎛=+⎫⎪=+=⎪⎪⎭⎪⎪⎭⎭四、解.记1231132, 4, 2,212a a a -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪===- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 先将A 的第一列1a 用Householder 变换化为与1100e ⎛⎫⎪= ⎪ ⎪⎝⎭共线.易得123a =, 11111211232-30=2202a a e a e -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-=-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.令1111213131a e u a e -⎛⎫-⎪==⎪-⎪⎭,31122121232212HI u H u ⎛⎫ ⎪- ⎪ ⎪-⎝⎭=-=,则 ()()11311111132221111222103212210H H a I uu a --⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=-=--=-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,()1211132411114031113H a ---⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪=--= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭,()1333221121112210314H a -⎛⎫⎛⎫⎪ ⎪=--= ⎪⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝ ⎪ ⎪⎝⎭⎝⎭⎭,从而()()112311112133********H a a a H a H a H a H A ⎛⎫⎪=== ⎪ ⎝⎭-⎪.再记103b ⎛⎫= ⎪-⎝⎭.则123b =, 113303b -⎛⎫⎛⎫-= ⎪ ⎪-⎝⎭⎝⎭.令11213101130b v b ⎛⎫- ⎪-⎫⎝⎭==⎪-⎛⎫⎭- ⎪⎝⎭, 221011012011110H H I vv -⎛⎫⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭, 22101011H H ⎛⎫⎪-⎛⎫== ⎪⎝ ⎝⎭⎪⎪-⎭, 有2133103433100001010003140H H A R ⎛⎫⎛⎛⎫ ⎪-⎫ ⎪⎪=-= ⎪⎪ ⎪⎪-⎝ ⎪ ⎪⎝⎭⎭⎝-⎭ .令()1122121221121201322110HH HQ H H H H H H ⎛⎫⎛⎫⎪⎪====-- ⎪⎪ ⎪⎪--⎝⎭⎝⎭12233312221321221332123233123--⎛⎫ ⎪---⎛⎫⎪⎪-== ⎪ ⎪- ⎪⎝⎭⎭⎪⎝-⎪, 则Q 为酉矩阵,且A 的QR 分解为122333221331034333212030303QR A --⎛⎫⎪ ==⎪- ⎪⎛⎫⎪-⎪ ⎪⎝ ⎪⎪⎭⎭- ⎝.五、证明.A 的三个行盖尔圆和列盖尔圆都为:{}{}{}123 122, 42 1 ,2 n n n z G z G z z z G z =∈=∈=-≤-≤≤∈-C C C . 1G 为孤立的盖尔圆,而2G 与3G 相交.由盖尔圆定理知1G 中有A 的一个特征值,2G 与3G 的并中有A 的两个特征值.对任何0ε>,取 1232, 1d d d ε=+==.令2113,12221412112 1 B DAD d D d d εεεε-⎛⎫ ⎪+-- ⎪⎪==- ⎪+ ⎪⎪-+⎝⎛⎫ ⎪=⎭⎪ ⎪⎝⎭,则B 与A 相似,从而与A 有相同的特征值.B 的三个盖尔圆为:{}12 1242 41, 1, 2n n G z G z z z εε⎧⎫=∈=∈⎨⎬+-≤+-≤+⎩⎭C C 3 1121n z z G ε-≤⎧⎫=∈⎨+⎬+⎩⎭C .它们是三个孤立的盖尔圆,故由盖尔圆定理知,B 的三个特征值中分别位于这三个盖尔圆中.由于B 为实矩阵,其特征多项式为实系数多项式,从而其特征值如为复数,则必共轭成对出现.注意到 123, , G G G 的圆心都在实轴上, 123, , G G G都关于实轴对称,如果含有复特征值,则其共轭的特征值也在同一个盖尔圆中,与每个孤立盖尔圆中只有一个特征值矛盾.因此,B 的特征值,从而A 的特征值都为实数.综上,A 的特征值分别位于孤立的盖尔圆1G , 2G和 3G 的实轴上,即位于实数区间 []10, 14,113,522εε⎡⎤-+⎢⎥++⎣⎦ 和11, 2 22εε⎡⎤-+⎢⎥++⎣⎦中.注意到0ε>知,A 的特征值分别位于[]10, 14,()2.5, 5.5 和 ()0.5, 2.5 -中.六、解.1.11221122232100100000000000000110101111110112010000000001010S T I I AI --⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎛⎫⎛⎫ ⎪ ⎪=→⎪ ⎪⎪⎪⎝⎭⎝⎭ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭- ,11112222111122221011001101001a ab T S ab ab b a b --++⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪⎪=-=-- ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 故A 的全部{}1逆为{}11221122 1 , ab A ab aa b b -++⎛⎫⎪-- ⎧⎫⎪⎪=⎨⎬⎪⎪⎪⎝⎭⎪⎩⎭任意. 2.取A 的一个{}1逆()11221112200A -⎛⎫⎪= ⎪ ⎪⎝⎭.由 ()112211221111211121011011101000AA b b --⎛⎫⎛⎫--⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭⎪ ⎪⎝⎭⎝⎭知Ax b =有解,其通解为()()()111122221111222121100111201011100000100A b I A A y x y -⎡-⎤⎛⎫⎛⎫⎛⎫-⎛⎫⎛⎫⎢⎥⎪ ⎪ ⎪==+- ⎪ ⎪⎢⎥ ⎪ ⎪ ⎪-⎝⎭⎝⎭ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦+- 110010100100110001000y -⎡-⎤⎛⎫⎛⎫⎛⎫⎢⎥⎪ ⎪ ⎪=+-⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1233100100011010110001y y y y -⎛⎫⎛⎫⎛-⎛⎫⎛⎫⎪ ⎪+- ⎪ ⎪ ⎪ ⎪⎝⎫ ⎪ ⎪⎪=+-= ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎝⎝⎭⎭⎭⎭,3y 任意,或写成110101x k -⎛⎫⎛⎫⎪ ⎪=+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, k 任意.中南大学2011年秋季硕士研究生《矩阵论》考试试题考试形式:开卷 时间:120分钟 总分:100分姓名 学号一、 (18分) 已知3阶方阵A 的不变因子为()()()()1231, ,6.d d d λλλλλλ===- 1.(6分) 求A 的谱半径()A ρ;2.(6分) 求()lim kk A A →+∞⎛⎫⎪ ⎪⎝⎭ρ;3.(6分) 判断矩阵幂级数()()012kkkk A A ρ∞=⎛⎫- ⎪ ⎪⎝⎭∑的收敛性.二、(20分) 设a ⋅和b ⋅是n n ⨯C 上的任意两种矩阵范数. 对任何()n n ij A a ⨯=∈C ,定义A =.1.(8分) 证明⋅也是n n ⨯C 上一种矩阵范数;2.(6分) 若v ⋅是n C 上一种向量范数,且a ⋅和b ⋅都与v ⋅相容,证明⋅也与v ⋅相容;3.(6分) 若n n A ⨯∈C 且20A A =≠,证明1a A ≥.三、(20分) 设4332A ⎛⎫=⎪--⎝⎭.1.(6分) 求()TdF x dx ,其中12x x x ⎛⎫= ⎪⎝⎭,()T F x x A =; 2.(8分) 求sin At ; 3.(6分) 求1cos Atdt ⎰.四、(16分) 设222112222243333644A ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪ ⎪⎝⎭. 利用Gerschgorin 定理,1.(8分) 证明A 可逆且有3个线性无关的特征向量;2.(8分) 证明A 的特征值全为实数,并求它们所在的实数区间.五、(26分)设101, 1001i A i b ⎛⎫⎛⎫ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭.1.(10分)求A 的奇异值分解;2.(8分)求A 的加号逆A +;3.(8分)利用A +判断Ax b =是否有解,并在有解时求其极小范数解,无解时求其极小范数最小二乘解.2011年矩阵论试题参考答案一、 (18分) 已知3阶方阵A 的不变因子为()()()()1231, , 6.d d d λλλλλλ===- 1.(6分) 求A 的谱半径()A ρ;2.(6分) 求()lim ;kk A A →+∞⎛⎫ ⎪ ⎪⎝⎭ρ3.(6分) 判断矩阵幂级数()()012kkkk A A ρ∞=⎛⎫- ⎪ ⎪⎝⎭∑的收敛性. 解. 1.A 的特征多项式为:()()()()12326I A d d d λλλλλλ==--,故A 的特征值为0, 0, 6, 从而()6A ρ=.2.因为A 的最小多项式()()()36A m d ==-λλλλ无重根(或者A 的初等因子均为一次的,它们是:, , 6-λλλ),从而A 可对角化, 故存在可逆矩阵P 使1006A P P -⎛⎫ ⎪= ⎪ ⎪⎝⎭,()10061A A P P A -⎛⎫ ⎪== ⎪ ⎪⎝⎭ρ, 从而()1100lim lim 00.611kkk k A A P P P P A --→+∞→+∞⎛⎫⎛⎫⎛⎫⎪ ⎪=== ⎪ ⎪ ⎪ ⎪⎝⎭⎪ ⎪⎝⎭⎝⎭ρ 3.解法1. 记()AB A =ρ. 则 ()()()01122kkkk k k k k A B A ρ∞∞==⎛⎫--= ⎪ ⎪⎝⎭∑∑. ()() 166A A B ⎛⎫=== ⎪⎝⎭ρρρ,复变量幂级数()12kk kk ∞=-∑的收敛半径 ()()1112lim212kkk k k r +→+∞+-==-, ()B r <ρ, 故矩阵幂级数 ()()012kkkk A A ρ∞=⎛⎫- ⎪ ⎪⎝⎭∑绝对收敛. 解法2. 记()2AB A =ρ. 则 ()()()0112kkk kk k k A B A ρ∞∞==⎛⎫-=- ⎪ ⎪⎝⎭∑∑. ()()112122A A B ρρρ⎛⎫=== ⎪⎝⎭,复变量幂级数 ()01k kk z ∞=-∑的收敛半径 ()()11lim 11kk k r +→+∞-==-, ()B r <ρ, 故矩阵幂级数()()012kkkk A A ρ∞=⎛⎫- ⎪ ⎪⎝⎭∑绝对收敛. 解法3. ()()()0011 212kkkk k k k k A A A ρ∞∞==⎛⎫--= ⎪ ⎪⎝⎭∑∑ ,复变量幂级数()112kk k k ∞=-∑的收敛半径 ()()11112lim 12112kkk k k r +→+∞+-==-, ()A r <ρ, 故矩阵幂级数 ()()012kkk k A A ρ∞=⎛⎫- ⎪ ⎪⎝⎭∑ 绝对收敛.二、(20分) 设a ⋅和b ⋅是n n ⨯C 上的任意两种矩阵范数. 对任何()n n ij A a ⨯=∈C ,定义A =.1.(8分) 证明⋅也是n n ⨯C 上一种矩阵范数;2.(6分) 若v ⋅是n C 上一种向量范数,且a ⋅和b ⋅都与v ⋅相容,证明⋅也与v ⋅相容;3.(6分) 若n n A ⨯∈C 且20A A =≠,证明1a A ≥.1.证明. 1)当0A =时,0a b A A ==,故0A =;当 0A ≠时,0, 0,a b A A >>故0A >. 2), n nA ⨯∀∈∀∈C C λ,A A λλ===⋅.3), n nA B ⨯∀∈C,记 , ,a a b b x y A B A B ⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭则 22, ,x A B y ==222 .A B x y x y A B +=≤=++≤=+4), n nA B ⨯∀∈C,.AB A B =≤≤=⋅由定义知A 是n n⨯C上的矩阵范数.2.证明., ,n nn A x ⨯∀∈∀∈C C 由已知条件有, ,v a v v b v Ax A x Ax A x ≤⋅≤⋅故,v v Ax A x ≤≤=⋅ 即⋅与v ⋅相容.3.证法1. 2aa a aAA A A =≤⋅,而0A ≠,故 0a A >,从而 1a A ≥.证法2. 2, A A A =∴ 的特征值只能为0或1,而0A ≠,故A 的特征值不全为0,从而 ()()1, 1a A A A ρρ=≥=.证法3.由 2A A = 可得:1k ∀≥ 有 k A A =,故 lim 0kk A A →+∞=≠,因而A 不是收敛矩阵,从而()()1, 1a A A A ρρ≥≥≥. 三、(20分) 设4332A ⎛⎫=⎪--⎝⎭.1.(6分) 求()TdF x dx ,其中12x x x ⎛⎫= ⎪⎝⎭,()TF x x A =; 2.(8分) 求sin At ; 3.(6分) 求1cos Atdt ⎰.解. 1.()()121243,32F x x x x x =--,()()()()124, 3, 3, 2,F x F x x x ∂∂==--∂∂ 故()()()()12, 4, 3, 3, 2TdF x F x F x dx x x ∂∂⎛⎫==-- ⎪∂∂⎝⎭. 2.()243312I A λλλλ--=+--=,A 的特征值为121==λλ. 设 ()()()()210sin 1t g b t b t λλλλ=-++,则()()()101111 sin sint b t b t d tb t d λλλλλλλ===⎧=+⎡⎤⎣⎦⎪⎨=⎪⎩, 即()()()101 sin cost b t b t t t b t =+⎧⎪⎨=⎪⎩, 解得()()01 sincos cosb t t t t b t t t =-⎧⎪⎨=⎪⎩. 故()()()104310sin cos sin cos 3201sin 3cos 3cos .3cos sin 3cos At b t A b t I t t t t t t t tt t t tt t t ⎛⎫⎛⎫=+=+- ⎪ ⎪--⎝⎭⎝⎭+⎛⎫= ⎪--⎝⎭3.解法1. 43132A ==--,A 可逆且12334A ---⎛⎫= ⎪⎝⎭. 由2知sin13cos13cos1sin 3cos1sin13cos1A +⎛⎫= ⎪--⎝⎭.又 1sin cos d AtAt Adt-=,故 111111000sin cos sin sin 23sin13cos13cos12sin13cos13sin13cos1.343cos1sin13cos13sin13cos14sin13cos1d At Atdt A dt A At A A dt---===--+-+-+⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪----⎝⎭⎝⎭⎝⎭⎰⎰解法2. 用2中同样的方法可算得()43103sin cos 3sin cos sin sin cos ,32013sin 3sin cos t t tt t At t t t t t t t t t t -+-⎛⎫⎛⎫⎛⎫=-++= ⎪ ⎪ ⎪--+⎝⎭⎝⎭⎝⎭从而11003sin cos 3sin 2sin13cos13sin13cos1cos .3sin 3sin cos 3sin13cos14sin13cos1t t t t t Atdt dt t t t t t -+--+-+⎛⎫⎛⎫== ⎪ ⎪+--⎝⎭⎝⎭⎰⎰四、(16分) 设222112222243333644A ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪ ⎪⎝⎭. 利用Gerschgorin 定理,1.(8分) 证明A 可逆且有3个线性无关的特征向量;2.(8分) 证明A 的特征值全为实数,并求它们所在的实数区间.解.1.A 的3个盖尔圆{}()123 2, , , 1, 2, 3C i i G G z i R G G z i =∈-≤=的半径依次为1232221132283315, , 2243394416R R R =+==+==+=. 显然 310kk G=∉,由Gerschgorin 定理1知,A 的3个特征值都不等于0, A A =的3个特征值的乘积0≠,从而A 可逆.因为A 的任意两个相邻盖尔圆圆心的距离为2,而每个盖尔圆的半径都小于1,故A 的3个盖尔圆互不相交,由Gerschgorin 定理2知,A 有3个互异的特征值,从而有3个线性无关的特征向量.2.因为A 为实矩阵,其盖尔圆圆心都在实轴上,故A 的所有盖尔圆都关于实轴对称. 又实矩阵A 的复特征值必共轭成对出现,它们同时位于或同时不位于A 的某一个盖尔圆. 而由1知A 的每个盖尔圆中只有A 的一个特征值,从而A 只有实特征值,它们分别位于A 的3个盖尔圆的实轴上,由此得到A 的3个特征值所在的3个实数区间分别为338815152, 2, 4, 4, 6, 6, 44991616⎡⎤⎡⎤⎡⎤-+-+-+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即 511284481111, , , , , . 44991616⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦同理,A 的3个实特征值也分别位于A 的3个列盖尔圆{}()123 2,, ''''i 'i z G G i G G z R -=∈≤C的实轴上,123, , '''G G G 的半径依次为123222231713111217, , 341224162336'''R R R =+==+==+=. 综合前面的结论可知A 的3个特征值所在的3个实数区间分别为33111117172, 2, 4, 4, 6, 6, 4416163636⎡⎤⎡⎤⎡⎤-+-+-+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 即 5115375199233, , , , , . 441683636⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦五、(26分)设101, 1001i A i b ⎛⎫⎛⎫⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭.1.(12分)求A 的奇异值分解;2.(6分)求A 的加号逆A +;3.(8分)利用A +判断Ax b =是否有解,并在有解时求其极小范数解,无解时求其极小范数最小二乘解.解.1.110221102200Hi i i A A i i i ⎛⎫-⎛⎫⎛⎫ ⎪=-= ⎪ ⎪ ⎪---⎝⎭⎝⎭ ⎪⎝⎭, ()22422H iI A A i ---==--λλλλλ, H A A 的特征值为:4, 0, A 的奇异值为:2,()2∑=.由 ()40HI A A x -= 求得HA A 的属于特征值4的特征向量为:1i ⎛⎫ ⎪⎝⎭,由 ()00HI A A x -= 求得HA A 的属于特征值0的特征向量为:1i -⎛⎫⎪⎝⎭,将这两个特征向量单位化后组成矩阵V得:11i i V -⎫==⎪⎪⎭⎪⎭.取11i V ⎫=⎪⎭,令11111112000i i U AV i -⎛⎫ ⎪ ⎪⎛⎫⎫⎛⎫ =∑=-=⎪⎪ ⎝⎭⎭ ⎝ ⎪ ⎪⎝⎭,00001U ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭. 由奇异值分解定理知,A 的奇异值分解为02000000000001HA U V⎛⎫ ⎪⎪⎛⎫∑⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪⎝⎭⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭. 2.解法1. 由1得A 的加号逆为1010*******000001H i i A V U -+⎫⎪⎪⎛⎫-⎛⎫∑⎫⎪ ⎪==⎪⎪⎪ ⎪⎭⎝⎭⎪⎝⎭ ⎪ ⎪⎝⎭101.104i i -⎛⎫= ⎪--⎝⎭解法2. 用初等行变换将A 化成行最简形111000000i i A i ⎛⎫⎛⎫ ⎪ ⎪=-→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,取 ()1, 10F i G i ⎛⎫ ⎪== ⎪ ⎪⎝⎭得A 的满秩分解为 A FG =.A 的加号逆为()()()()()1111111110100H H H H A G GG F F F i i i i i i ----+⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪⎪==-- ⎪ ⎪ ⎪ ⎪⎪--⎝⎭⎝⎭⎝⎭ ⎪ ⎪⎝⎭⎝⎭()()()1111012210104i i i i ---⎛⎫⎛⎫=-= ⎪ ⎪---⎝⎭⎝⎭. 3.由10101111110420010i i i AA b i b i +-⎛⎫⎛⎫⎛⎫-⎛⎫ ⎪ ⎪ ⎪=-=≠ ⎪ ⎪ ⎪ ⎪--⎝⎭ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭知Ax b =无解,其极小范数最小二乘解为0010111101441i i x A b i +⎛⎫--⎛⎫⎛⎫ ⎪=== ⎪ ⎪ ⎪---⎝⎭⎝⎭⎪-⎝⎭.中南大学2012年秋季硕士研究生《矩阵论》考试试题考试形式:开卷 时间:120分钟 总分:100分姓名 学号一、 (16分) 已知4阶方阵A 的特征值为1, 2, 2, 2,且其一阶和二阶行列式因子分别为()()121, 2.D D λλλ==-1.(6分) 求A 的不变因子和最小多项式;2.(4分) 求A 的Jordan 标准形;3.(6分) 求实数t 的取值范围,使cos At 为收敛矩阵.二、(16分) 设a⋅和b ⋅分别是m C 和n C 上的向量范数. 对任何()11, , , , , Tm n m m m n x +++=∈C ξξξξ,定义 a b x u v =+,其中()1, , Tm u = ξξ,()1, , Tm m n v ++= ξξ.1.(10分) 证明⋅是m n +C 上的一种向量范数;2.(6分) 若11122122, , , ,m m m n n m n n A A A A ⨯⨯⨯⨯∀∈∈∈∈C C C C 及, m n u v ∀∈∈C C 有11111111121221212222, , , ,a m a a mb b m a b m b A u A u A v A v A u A u A v A v ≤⋅≤⋅≤⋅≤⋅其中1m ⋅是矩阵1m 范数.证明()()m n m n +⨯+C 上的矩阵1m 范数与上面定义的向量范数⋅相容.三、(18分) 1.(8分)设()ijn nX x ⨯=是矩阵变量,且det 0X ≠.求()1det TdX dX-; 2.(10分)设1011A ⎛⎫= ⎪⎝⎭.求矩阵幂级数()()12211121!k k k k A t k --+∞=--∑的和.四、(14分) 设112010232A ⎛⎫ ⎪=- ⎪ ⎪⎝⎭.1.(8分)求矩阵A 的Crout 分解;2. (6分)利用Crout 分解求方程Ax b =的解,其中()1, 1, 1Tb =-.五、(14分) 利用Gerschgorin 定理及特征值的隔离方法判断矩阵1211621111A -⎛⎫⎪= ⎪ ⎪⎝⎭是否有小于零的特征值,并估计A 的每个特征值的分布范围.六、(22分)设101101, 102112A D ⎛⎫⎛⎫ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.1.(8分)求A 的全部{}1逆;2.(8分)求A 的加号逆A +;3.(6分)判断矩阵方程AX D =是否有解.2012年矩阵论试题参考答案一、(16分) 已知4阶方阵A 的特征值为1, 2, 2, 2,且其一阶和二阶行列式因子分别为()()121, 2.D D λλλ==-1.(6分) 求A 的不变因子和最小多项式;2.(4分) 求A 的Jordan 标准形;3.(6分) 求实数t 的取值范围,使cos At 为收敛矩阵.解. 1.因为()4D λ即为A 的特征多项式,且A 的特征值为1, 2, 2, 2,故()()()3412D λλλ=--. 再由行列式因子与不变因子的性质与相互关系知()()232D λλ=-,从而A 的不变因子为()()()()()()123412, , 2,12 d d d d λλλλλλλλ====----,A 的最小多项式为 ()()()()412A m d λλλλ==--.2.由A 的不变因子知,A 的初等因子为, , 12 2,2λλλλ----,故A 的Jordan 标准形为 1222J ⎛⎫⎪⎪= ⎪ ⎪⎝⎭. 3. cos At 的特征值为 cos , cos 2, cos 2, cos 2t t t t ,谱半径为(){cos max cos ,At t ρ= }cos 2t . cos At 为收敛矩阵当且仅当其谱半径小于1,即cos 1, cos 21t t ≠≠,故实数t 的取值范围是:,2k k t ππ≠.二、(16分) 设a⋅和b ⋅分别是m C 和n C 上的向量范数. 对任何()11, , , , , Tm n m m m n x +++=∈C ξξξξ,定义 a b x u v =+,其中()1, , Tm u = ξξ,()1, , Tm m n v ++= ξξ.1.(10分) 证明⋅是m n +C 上的一种向量范数;2.(6分) 若11122122, , , ,m m m n n m n n A A A A ⨯⨯⨯⨯∀∈∈∈∈C C C C 及, m n u v ∀∈∈C C 有11111111121221212222, , , ,a m a a mb b m a b m b A u A u A v A v A u A u A v A v ≤⋅≤⋅≤⋅≤⋅其中1m ⋅是矩阵1m 范数.证明()()m n m n +⨯+C 上的矩阵1m 范数与上面定义的向量范数⋅相容.证明.1. 1)非负性. 当()11,, , , , 0Tm m m n x ++== ξξξξ时,()1, , 0Tm u == ξξ,()1, , 0T m m n v ++== ξξ,故0a b x u v =+=. 当()11, , , , , 0Tm m m n x ++≠= ξξξξ时,0u ≠或0v ≠,故0au>或0b v >,从而0a b x u v =+>.2)齐次性. ()11, , , ,, , Tm m m n m nx λξξξξ+++∀∈∀=∈ C C,()a b a b a bx u v u v u vx λλλλλλλ=+=+=+⋅=⋅⋅⋅.3)三角不等式.()()1111, , , , , , , , , , , TTm m m n m m m n m n x y ξξξξηηηη+++++∀==∈ C ,记()()()()11112121, , , , , , , , , , , TTTTm m m n m m m n u v u v ξξξξηηηη++++==== ,则12121212aba ab bu u v v u v x y u y v x =+++++++=≤+.由定义知⋅是m n +C 上的一种向量范数. 2.()()()11, , , , , , m n Tm m n m n m m n A x ξξξξ+⨯++++∀∀∈=∈ CC ,将A 和x 分块为11122122A A A A A ⎛⎫=⎪⎝⎭及u x v ⎛⎫= ⎪⎝⎭,其中11122122, , , ,m m m n n m n n A A A A ⨯⨯⨯⨯∈∈∈∈C C C C mu ∈C ,n v ∈C ,则1112111221222122A A A u A v u Ax A A A u A v v +⎛⎫⎛⎫⎛⎫==⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭, 1112212211122122a b a a b b A u A v A u A v A u A v A u v A A x =+++≤+++111111122122m m m m a b ba u u A v vA A A ⋅+⋅+⋅+⋅≤()()11111111211222aa m m m m bbm m AA u u vA vA AA⋅+⋅⋅+=+⋅+≤()11,bm m a v u x AA=+=⋅⋅所以()()m n m n +⨯+C 上的矩阵范数1m ⋅与上面定义的向量范数⋅相容.三、(18分) 1.(8分)设()ijn nX x ⨯=是矩阵变量,且det 0X ≠.求()1det TdX dX-; 2.(10分)设1011A ⎛⎫= ⎪⎝⎭.求矩阵幂级数()()12211121!k k k k A t k --+∞=--∑的和. 解. 1.()111det , det det n nik ik ij ij ik ik k k jX X x X x X x X X -=≠===+∑∑,其中ik X 是ik x 的代数余子式,()det ij ijX X x ∂=∂,从而()()()()122det 11det det det det ij ijij ijX X X x x Xx X X -∂∂∂⎛⎫==-⋅=-⎪∂∂∂⎝⎭, ()()()()111*22de 1det de t 1de det t t TTij i Tj d X X dX X X X X x X X ---⎛⎫⎛⎫∂ ⎪==-=-= ⎪ ⎪- ⎪∂⎝⎭⎝⎭. 2.()()()()11221221111si 1121!!n 21k k k k k k k k A t A t A A At k k ----+∞+∞==---==--∑∑.()210111I A λλλλ--==---. 设()()()()120sin ,1b t b q t t t λλλλ=-++.在该式及对其两边关于λ求导后的式子中,将1λ=代入得()()()101sin ,cos ,t b t b t t t b t =+⎧⎪⎨=⎪⎩ 解得()()01sin cos co s , b t t t t b t t t =-=. 从而()()()101010cos sin cos .110sin 0sin cos sin 1t t t t tAt b t A b t I t t t t ⎛⎫=+⎛⎫⎛⎫=+-= ⎪ ⎝⎭⎝⎪⎭⎪⎭⎝()()()()112212211111011sin 1121!21!sin 0cos sin k k k k k k k k A t A t A A At k k t t t t ----+∞+∞=-=--⎛⎫===⎪-⎛-⎝⎭⎫⎪⎝⎭∑∑ sin 0sin cos sin t t t t t +=⎛⎫ ⎪⎝⎭.四、(14分) 设112010232A ⎛⎫ ⎪=- ⎪ ⎪⎝⎭.1.(8分)求矩阵A 的Crout 分解;2. (6分)利用Crout 分解求方程Ax b =的解,其中()1, 1, 1Tb =-.解.1.设111213212223313233001001001l r r A l l r ll l ⎛⎫⎛⎫⎪⎪= ⎪⎪ ⎪⎪⎝⎭⎝⎭. 由Crout 分解的紧凑计算格式得 11111l a ==, 212131310, 2l a l a ====, 1312121311111, 2,a a r r l l ==== 222221121,l a l r =-=- 323231121,l a l r =-= ()232321132210,r a l r l =-= 3333311332232,l a l r l r =--=-故A 的Crout 分解为111201102120010000A ⎛⎫⎛⎫ ⎪⎪= ⎪⎪ ⎪⎝⎝-⎭-⎪⎭.2. 由 123101212001011y y y ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎭--⎝ 解得123111y y y ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎝-⎪⎝⎭⎭, 再由 123101*********x x x ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=- ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭解得123011x x x ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎝-⎪⎝⎭⎭, 即方程Ax b =的解的解为 011x ⎛⎫ =-⎪⎪ ⎪⎝⎭.五、(14分) 利用Gerschgorin 定理及特征值的隔离方法判断矩阵1211621111A -⎛⎫ ⎪= ⎪ ⎪⎝⎭是否有小于零的特征值,并估计A 的每个特征值的分布范围.证明.1. A 有小于零的特征值.A 的三个行盖尔圆为{}{}{}123 , 136,311 2 n n n G z G z z z z G z +-=∈=∈-≤=∈≤≤C C C ,三个列盖尔圆为{} {} {}123 , 126,311 3 n n n Gz G z z z z G z +-=∈=∈-≤=∈≤≤C C C . 1G 与 1G 均为孤立的盖尔圆,且 11G G ⊂,而2G 与3G 相交, 2G 与 3G 也相交.由盖尔圆定理知 1G 中有A 的一个特征值,() ()2323G G G G 中有A 的两个特征值. 令111115522251611521, 1215B D D AD -⎛⎫ ⎪ ⎪===⎛⎫ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎪, 则1B 与A 相似,从而与A 有相同的特征值.1B 的三个列盖尔圆为{}1112, ,41665 n B n B z z G z G z ⎧⎫=∈=∈⎨⎬⎩⎭-≤+≤C C139 2 11n B z z G -⎧⎫=∈⎨⎩⎭≤⎬C . 11B G仍为孤立的盖尔圆.由盖尔圆定理知 11B G 中仍有且仅有1B 的一个特征值. 由于1B 为实矩阵,其特征多项式为实系数多项式,从而其特征值如为复数,则必共轭成对出现.注意到 11B G的圆心为()1, 0-,在实轴上, 11B G 关于实轴对称,如果含有复特征值,则其共轭的特征值也在 11B G 中,与每个孤立盖尔圆中只有一个特征值矛盾.因此,含于 11B G中的该特征值必为实数,即位于实轴上.再注意到 11B G 的半径为45知,该特征值位于闭区间91, 55⎡⎤--⎢⎥⎣⎦中,故1B ,从而A ,有一个小于零的特征值.2. 令122228433324351, 31161114B D D AD -⎛⎫ ⎪ ⎪===⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪-⎝⎭⎝⎭⎪,则2B 与A 相似,从而与A 有相同的特征值.2B 的三个行盖尔圆为{}123117146114, , 4 n n n G z G z G z z z z ⎧⎫⎧⎫=∈=∈=∈⎨⎬⎨⎬⎩⎭≤≤+-⎭-≤⎩C C C , 它们是3个孤立的盖尔圆,从而每个盖尔圆中各有2B ,即A 的一个特征值.由与上面相同的推理知,每个特征值均为实数,都位于实轴上,故A 的特征值分别位于[]5, 3-,1335, 44⎡⎤⎢⎥⎣⎦和 3751, 44⎡⎤⎢⎥⎣⎦中.综合1.的结果知,A 的3个特征值分别位于91, 55⎡⎤--⎢⎥⎣⎦,1335, 44⎡⎤⎢⎥⎣⎦ 和 3751, 44⎡⎤⎢⎥⎣⎦中.六、(22分)设101101, 102102A D ⎛⎫⎛⎫⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.1.(8分)求A 的全部{}1逆;2.(8分)求A 的加号逆A +;3.(6分)判断矩阵方程AX D =是否有解.解.1.3221010101210111111111100002000001000000000000000000000AI TI I S ⎛⎫⎛⎫⎪⎪⎛⎫ ⎪ ⎪⎛⎫⎪ ⎪ ⎪=→⎪ ⎪⎪⎪⎝⎭ ⎪⎝⎭⎪ ⎪ ⎪ ⎪⎝⎭⎝--⎭- , 1001010101201001010121211a a a a a T S b b b b b ⎛⎫-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪=-= ⎪ ⎪⎪ ⎪ ⎪--+⎝⎭⎝⎭⎝⎭⎝⎭ ⎪-⎝⎭,故A 的全部{}1逆为{}12 , 112a a a b a A b b b ⎧⎫-⎛⎫⎪⎪=⎨⎬ ⎪--+⎝⎭⎪⎪⎩⎭任意. 2.A 为列满秩矩阵,故A 的加号逆为111010210252102010110112201121A --+⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎢⎥ ⎪=-= ⎪ ⎪ ⎪ ⎪⎢⎥ ⎪---⎝⎭⎝⎭⎝⎭⎝⎭ ⎪⎢⎥⎝⎭⎣⎦ 22212221021250116516-⎛⎫⎛⎛⎫⎪-⎫== ⎪⎪--⎝⎝-⎝⎭⎭⎭. 3. 在A 的{}1逆的集合{}1A 中取A 的一个{}1逆()1A =100010⎛⎫⎪-⎝⎭.由教材定理 6.5知AX D =有解的充要条件是()1AA D D =.计算得()1101110011110110010101021022100212100010AA D D ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪=-== ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎛⎫⎭⎝⎭⎝⎭⎪⎝⎭≠-, 故矩阵方程AX D =无解.中南大学2013年秋季硕士研究生《矩阵论》考试试题考试形式:开卷 时间:120分钟 总分:100分姓名 学号一、 (16分) 设A 为3阶Hermite 矩阵,||12A =−, ()1tr A =,且()1, 0, 2T i 为()40A I x ∗−=的一个解,其中I 为单位矩阵, A ∗为A 的伴随矩阵.1. (8分) 确定t 的取值范围,使ln()I At +有定义;2. (8分) 求A .二、(16分) 记所有形如00A M B =的矩阵(其中,A B 分别为m 和n 阶方阵)的集合为Ω.对每个00A MB Ω=∈(其中()ij m m A a ×=,()pq n n B b ×=),定义 1,11||||||max ||m mijpq p q ni j M an b ≤≤===+⋅∑∑.1.(10分) 证明M 是Ω上的一种矩阵范数;2.(6分) 证明M 与C m n +上的向量1范数相容.三、(18分) 1.(8分) 设()ijm nA a ×=是给定的矩阵,()ijn mX x ×=是矩阵变量,且()()f X tr XA =.求()Tdf X dX; 2.(10分)设2102A − =.求||A e 及AtAe .四、(14分) 设313010431A=−−.求矩阵A 的QR 分解.五、(16分) 利用Gerschgorin 定理及特征值的隔离方法判断矩阵1.511121219A −=是否可逆,并估计A 的每个特征值的分布范围.六、(20分)设1001010, 02100A b=−=.1.(12分)求A 的加号逆A +;2.(8分)利用加号逆判断方程Ax b =是否有解,并在有解时求其极小范数解,无解时求其极小范数最小二乘解.2013年矩阵论试题参考答案一、 (16分) 设A 为3阶Hermite 矩阵,||12A =−, ()1tr A =,且()1, 0, 2Ti为()40AI x ∗−=的一个解,其中I 为单位矩阵, A ∗为A 的伴随矩阵. 1. (8分) 确定t 的取值范围,使ln()I At +有定义; 2. (8分) 求A . 解 1. 设A 的三个特征值为123,,λλλ.依题意有12312312,,1λλλλλλ=−++=.记()11, 0, 2,T iξ= 则()140A E ξ∗−=,()11240E A ξ−−=,即()130E A ξ−−=,从而3−是A 的一个特征值,1ξ是对应的特征向量.代入前面的式子可算得A 的另两个特征值为2, 2. 所以()3,()3||A At t ρρ==. 故使ln()I At +有定义的t 须满足()3||1At t ρ=<, 即1||3t <. 2. 由Hermite 矩阵的不同特征值所对应的特征向量正交知,特征值2所对应的特征向量与1ξ正交,从而满足方程1320z iz −=,由此解得特征向量()()230, 1, 0, 2, 0, 1T Ti ξξ==. 将三个特征向量正交化单位化得酉矩阵00100U =, 满足322H U AU − =,从而0033102201020100202220200H i A U U i −−===−−.二、(16分) 记所有形如00A M B= 的矩阵(其中,A B 分别为m 和n 阶方阵)的集合为Ω.对每个00A M B Ω=∈(其中()ijm mA a ×=,()pqn nB b ×=),定义1,11||||||max ||m mijpq p q ni j M an b ≤≤===+⋅∑∑.1.(10分) 证明M 是Ω上的一种矩阵范数;2.(6分) 证明M 与C m n +上的向量1范数相容.证明 1.易知1||||||||||||m m M A B ∞=+,1||||,||||m m A B ∞都是矩阵范数.1)非负性. 当0M =时,必有0,0A B ==,从而1||||||0||||0||0m m M ∞=+=. 当0M ≠时,必有0A ≠或0B ≠,从而1||||0m A >或||||0m A ∞>, 1||||||||m M A =||||0m B ∞+>.2)齐次性. 0 0,C A M B λ∀∈∀=∈Ω,有00A M B λλλ = ,()111m m m m m m M A BA BA BMλλλλλλλ∞∞∞=+=⋅+⋅=⋅+=⋅.3)三角不等式. 12121200,00A A M M B B ∀==∈,12121200A A M M B B ++= +,111121212121212m m m m m m M M A A B B A A B B M M ∞∞∞+=+++≤+++=+.4)乘积不等式. 12121200,00A A M M B B ∀==∈,12121200A A M M B B=, 1111212121212m m m m m m M M A A B B A A B B ∞∞∞=+≤+()()11112212m m m m A B AB MM ∞∞≤++=⋅.由定义知M 是Ω上的一种矩阵范数.2.00A M B ∀=∈ Ω,12C m n x x x + = ∈ ,其中12,C C m nx x ∈∈, 12Ax Mx Bx =.由1||||,||||m m A B ∞都与向量1范数相容得1112121111111m m m m Mx Ax Bx A x Bx A x Bx ∞∞=+≤+≤+()111m m A BxM x ∞=+=⋅,所以Ω上的矩阵范数M 与C m n +上的向量1范数相容.三、(18分) 1.(8分) 设()ijm nA a ×=是给定的矩阵,()ijn mX x ×=是矩阵变量,且()()f X tr XA =.求()Tdf X dX; 2.(10分)设2102A − =.求||A e 及AtAe . 解 1.()1111()n mn m kl lk ij ji kl lkij ji k l k l f X tr XA x a x a x a x a =======+− ∑∑∑∑,()ji ij f X a x ∂=∂,故 ()()()()TT ji ijTij df X f X a a A dX x∂====∂.2. ()221202I A λλλλ−−==−−,故A 的特征值为2,2,A e 的特征值为22,e e ,故224||.A e e e e ==再设()()()()210,2te q t b t b t λλλλ=−++.在该式及对其两边关于λ求导后的式子中,将2λ=代入得()()()210212,,tteb t b t te b t =+ = 解得 ()()222012, tttb t e te b t te =−=.从而()()()2222210221102.02010t t Att t t t e te e b t A b t I te e te e −− =+=+−=2222222212202002t t tt t At t t e te e te e Ae e e −−−− ==.四、(14分) 设313010431A=−−.求矩阵A 的QR 分解.解 用Givens 变换求A 的QR 分解.A 的第一列为304,取 133405501043055T = −得 133403135315501001001043431013055T A=−=− −− −. 13T A 的右下角的2阶矩阵第一列为11− ,再取2310000T=得23131005315310010*******T T A R=−= −3. 令132333410005550100043040555H HQ T T−===, 则Q 为酉矩阵,且A 的QR 分解为35315004005A QR== .五、(16分)利用Gerschgorin定理及特征值的隔离方法判断矩阵1.511121219A−=是否可逆,并估计A的每个特征值的分布范围.解A的三个行盖尔圆为:{}{}{} 1231.52,,2293 n n nzG z G z zz G z=∈=∈=+≤−≤≤∈−C C C.三个列盖尔圆为:{}{}{} 1231.5,,32292 n n nG z Gz z z G z z′′′=∈=∈+≤−≤−≤=∈C C C.3G与3G′都为孤立的盖尔圆,且33G G′⊂,而1G与2G相交,1G′与2G′也相交.由盖尔圆定理知3G′中有A的一个特征值,1G与2G的并中有A的两个特征值.取12391,,4d d d===.令112341.5194,12999924dD d B DADd−−===,则B与A相似,从而与A有相同的特征值.B的三个行盖尔圆为:1231313271.52, 99,94 n n nG z G zz z G z z+≤−=∈=∈=∈≤−≤C C C1G是一个孤立的盖尔圆, 2G与 3G相交,由盖尔圆定理知, 1G中有A的一个特征值,2G与 3G的并中有B的两个特征值.而 1G及 2G与 3G的并都不包含原点,故B的三个特征值中都不等于零,B可逆,从而A也可逆.由于A,B都为实矩阵,其特征多项式都为实系数多项式,从而其特征值如为复数,则必共轭成对出现.注意到123,,G G G 及 123, , G G G 的圆心都在实轴上,123,,G G G 及 123, , G G G都关于实轴对称,如果含有复特征值,则其共轭的特征值也在同一个盖尔圆中,与每个孤立盖尔圆中只有一个特征值矛盾.因此,B 的特征值,从而A 的特征值都为实数.综上,A 有两个特征值分别位于孤立的盖尔圆 1G 和3G ′的实轴上,即位于实数区间 531, 1818 −− 和[]7, 11中.而另一个特征值位于 () ()123123\\G GG G G G G G 的实轴上,即位于155, 2, 6, 21899 −=中.所以,A 的特征值分别位于区间531, 1818 −− ,5, 29 和 []7, 11中.六、(20分)设1001010, 02100A b=−=.1.(12分)求A 的加号逆A +;2.(8分)利用加号逆判断方程Ax b =是否有解,并在有解时求其极小范数解,无解时求其极小范数最小二乘解.解 1. 100100010010, 210000A=−→A 的满秩分解为101000101021A=−,1101010100100100010101010010010212121HH HH HA −+ −−− 1110101052102221021010101220112501160000−−− = −−−。
矩阵理论试卷(整理版)
山东科技大学2010研究生矩阵理论试卷 1、 在矩阵的四个空间中,行空间、列空间、零空间和左零空间中,维数与矩阵的秩相等的子空间是行空间和列空间.2、 在矩阵的四个基本子空间中,和列空间构成正交补的是 左零空间。
3、 利用QR 分解可以讲矩阵分解为正交阵和上三角形矩阵乘积。
4、 通过矩阵 svd 分解,可以获得矩阵四个基本子空间的标准正交基。
5、 将3×3矩阵的第一行加到第三行是初等变换,对应的初等矩阵式 ⎪⎪⎪⎭⎫ ⎝⎛1010100016、 当矩阵的零空间中有非零向量的时候,线性方程组Ax=b 有无穷多解。
7、 所有的2×2实矩阵组成一个向量空间,这个空间的标准基是 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛1000010000100001 8、 通过施密特正交化可以获得矩阵的QR 分解。
9、 在选定一个基后,任何维数为n 的欧式空间与n R 同构。
10 如果将矩阵视为线性处理系统,矩阵有m 行,n 列,则输入空间的维数是n 。
二、判断题1、给定一个线性空间,他的基不是唯一的,但是各个基中的基向量个数是相等的。
(R )2、两个子空间的并集是一个子空间。
(F )3、在线性方程组Ax=b ,当矩阵A 式列满秩的时候,无论向量b 是什么,方程组都有解。
(F )4、线性变换在不同的基下的矩阵一般不同,同一线性变换的不同矩阵表示所对应的特征值都相同。
(R )5、线性变换在不同基下的矩阵一般不同,但是对应同一线性变换的各个矩阵的特征向量都相同。
(F )6、矩阵特征值的代数重数是该特征值对应的特征子空间的维数。
(F )7、任何N ×N 的实矩阵都可以对角化。
(F )8、矩阵的左逆就是矩阵的最小范数广义逆。
(F )9、任何M ×N 实矩阵都有奇异值分解。
(R )10、正交投影矩阵都是幂等矩阵。
(R )三、(矩阵的四个基本子空间和投影矩阵)设矩阵A 为 A=⎪⎪⎭⎫ ⎝⎛4242 1、求矩阵A 的四个基本子空间的基和维数初等变换 ⎪⎪⎭⎫ ⎝⎛0042 dim R (A )=dim R (T A )=1 dim N (A )=dim N (T A )=1 R(A)的基 ⎪⎪⎭⎫ ⎝⎛22 R(T A )的基 ⎪⎪⎭⎫ ⎝⎛42 N(A)的基⎪⎪⎭⎫ ⎝⎛-12 N(T A )的基 ⎪⎪⎭⎫⎝⎛-11 2、画出矩阵A 的四个基本子空间的示意图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
武汉大学2018-2019第一学期研究生《矩阵论》期末考试题
一、(15分)设W={(x 1,x 2,x 3,x 4)|x 1-x 2+x 3-x 4=0},其中(x 1,x 2,x 3,x 4)∈R 4
(1)证明W 是线性空间;
(2)求W 的一组基和维数;
(3)将W 的基扩充为R 4的基。
二、(15分)设V 是欧氏空间,W 是V 的任意一个子空间,令W ⊥={α∈V|α⊥W}
证明:(1)W ⊥也是V 的子空间;
(2)V=W ⊕W ⊥。
三、(15分)在R 3中定义变换σ(x 1,x 2,x 3)丅=(x 1+x 2,x 1-x 2,x 3)
丅(1)证明σ是线性变换;
(2)求σ的像lmσ和σ的核kerσ;
(3)求σ在基β1=(1.0.0)丅,β2=(1.1.0)丅,β3=(1.1.1)丅下的矩阵表示。
四、(15分)设σ是n 维线性空间,
V (F )上的一个线性变换,关于基α1,α2,...,αn 和基β1,β2,...,βn 的矩阵分别为A 和B 。
证明:存在可逆矩阵P 使得B=P -1AP 。
五、(15分)已知A=⎪⎪⎪⎭
⎫ ⎝⎛0 2 21- 2 21- 1 3(1)求A 的最小多项式;
(2)求A 所有的行列式因子、不变因子和初等因子;(3)求可逆矩阵P 使得P -1AP 为对角矩阵或Jordan 矩阵。
六、(25分)设A ∈R m ×n ,B ∈R n ×p
(1)证明:秩(AB )≤秩(A ),秩(AB )≤秩(B )(2)证明:秩(AB )≥秩(A )+秩(B )-n。