学而思七年级数学教材
学而思初一数学秋季班第2讲.有理数综合运算.尖子班.教师版
学而思初一数学秋季班第2讲.有理数综合运算.尖子班.教师版1初一秋季·第2讲·尖子班·教师版如何计算?实数7级实数初步实数6级绝对值实数5级有理数综合运算满分晋级阶梯漫画释义2有理数综合运算2初一秋季·第2讲·尖子班·教师版知识点切片(4个) 7+2+1+1知识点目标有理数综合运算(7)1、有理数加减法则;2、有理数加法的运算律;3、有理数减法法则;4、有理数乘法法则;5、有理数除法法则;6、有理数乘方;7、有理数混合运算的运算顺序裂项技巧(2)1、分数裂项;2、整数裂项连锁约分(1) 1、连锁约分,简便运算整体思想(1)1、整体思想,化繁为简题型切片(6个)对应题目题型目标乘法分配律的应用例1、练习1 连续自然数的加减交替例2、练习1 有理数综合运算例3、练习2裂项例4、例5、练习3、练习4 连锁约分例6、练习5 整体思想例7、练习6有理数综合运算1.有理数加法法则:① 同号两数相加,取相同的符号,并把绝对值相加.② 绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.③ 一个数同0相加,仍得这个数.2.有理数加法的运算律:①两个加数相加,交换加数的位置,和不变.a b b a +=+(加法交换律)②三个数相加,先把前两个数相加,或者先把后两个数相加,和不变. ()()a b c a b c ++=++(加法结合律).3.有理数减法法则:减去一个数,等于加上这个数的相反数,()a b a b -=+-.4. 有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘. 任何数同0相乘,都得0.5. 有理数除法法则:除以一个不等于0的数,等于乘以这个数的倒数.1a b a b÷=?,(0b ≠)两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0. 6. 有理数乘方知识导航知识、题型切片3初一秋季·第2讲·尖子班·教师版概念:求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂. 在n a 中,a 叫做底数,n 叫做指数.含义:n a 中,a 为底数,n 为指数,它表示a 的个数,n a 表示有n 个a 连续相乘. 特别注意:负数及分数的乘方,应把底数加上括号.7. 有理数混合运算的运算顺序:① 先乘方,再乘除,最后加减;② 同级运算,从左到右进行;③ 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.加减法为一级运算,乘除法为二级运算,乘方及开方(以后学)称为三级运算.同级运算,按从左到右的顺序进行;不同级运算,先算三级运算,然后二级,最后一级;如果有括号,先算括号里的,有多重括号时,先算小括号里的,再算中括号里的,最后算大括号里的.④ 在进行有理数运算时,先确定符号,再计算绝对值,有括号的先算括号里的数.【例1】计算:⑴735(1)(36)1246??-+---?-⑵11171110()71110++⑶111(0.25)(5)( 3.5)()2244-?-+?-+-?⑷371(8)32-?-⑸112571113623461236-÷+---+ ? ?????【解析】⑴原式=()735(36)(36)36(1)(36)21273036121246-?-+?-+-?---?-=-+-=- ? ?????.⑵原式11107107111107077257=?+?+?=++=.⑶原式111111()(5)()( 3.5)()2()(5 3.52)0424442=-?---?-+-?=-?-++=.⑷原式33337187188568568323244?=+?=?+?=+= .⑸设112571113623461236a b =-=+---+,,题目中要求a b ,可以先求ba ,则原式=()125711136=182********=7723461236??+---+?---+++- ,∴原式=177.【例2】连续自然数加减交替问题乘法分配律的应用4初一秋季·第2讲·尖子班·教师版⑴填空:12344950-+-++-=L L ;123499100101-+-++-+=L L ;⑵计算:()112341n n +-+-++-?L L .【解析】⑴25-,51;⑵2n -(n 为偶数)或12n+(n 为奇数).针对例2的拓展:⑴1234567891011122009201020112012--++--++--+++--+L ;⑵1234567891011122009201020112012+--++--++--+++--L . 【解析】⑴原式()()()()12345678910111220092010201120120=--++--++--+++--+=L .⑵原式()()()()12345678910111213200620072008200920102011201 2=+--++--++--+++--++--L 1201020112012=+-- 2012=-..【例3】计算:⑴()216123113284 2.5242523412??-÷-?+++--? ???⑵()22213111112190.75242222÷÷-+÷--?--?? ? ?????????⑶()()3220132231313 1.20.33??--?-÷--?÷⑷()()231814511722851755??-?-+-?----?-?? ? ?????????⑸()2323510.3534124111159650.52-÷-÷-?-? ? ? ÷【解析】⑴解:原式16132 6.25121618222532?=--?-+++-- ? ??11 6.251250=++-1.02 6.2512=+- 4.73=-.有理数综合运算5初一秋季·第2讲·尖子班·教师版⑵解:原式341119199232244216=??-+÷-?- ? ????? 11199122216??=-+?-?- 1991816=---69121616=----15316=-.⑶解:原式()32213 1.2 1.23130.30.30.3=?÷-- 14803=--14803=-.⑷解:原式()()11716525285525??=-?-+----?-16112517165=-++-1241 3.2=-++ 119.8=-.⑸解:原式()322855255159650.52-=?÷?-? ???????????÷2281093=÷-? ? ????? 0=.1.分数裂项技巧:⑴()11111n n n n =-++;⑵()1111n n k k n n k ??=- ?++??;⑶()()()()()1111122112n n n n n n n ??=-??+++++;⑷()()()()()1111222n n k n k k n n k n k n k ??=-??+++++.2.整数裂项技巧:⑴()()()()()()()()111121121133n n n n n n n n n n n n +=++--=++--+;⑵思路导航6初一秋季·第2讲·尖子班·教师版()()()()()()()()()()()()1112123112311244n n n n n n n n n n n n n n n n ++=+++--=+++--++.3.连锁约分多个分数相乘通过约掉分子分母中的相同因数简便运算.【例4】计算:⑴11111161111161621212626313136+++++;⑵2310011(12)(12)(123)(1299)(12100)----++++++++++L L L . 【解析】⑴原式1111111111111561111161621212626313136??=-+-+-+-+-+-1115636??=- 136=. ⑵注意到每一项分母两个因子的差恰好等于分子,因此考虑拆项;经过尝试,发现有:2111(12)12=-?++,311(12)(123)12123=-++++++…,所以原式111111212123=----- ? ?++++11129912100??-- ?++++++??L L L112100=+++L 15050=.针对例4的铺垫:计算:⑴1111223344599100+++++L ⑵111113355720112013++++L 【解析】⑴原式111111112233499100=-+-+-++-L11100=- 99100=.⑵原式11111111123355720112013??=?-+-+-++-L11122013??=?- 分数裂项运算7初一秋季·第2讲·尖子班·教师版1201222013=?10062013=. 针对例4的拓展计算:⑴111111315131517293133+++L ;⑵1111111111234567892612203042567290++++++++;⑶11120101111201022009201012011120092200820091??+ ++-+++ L L . 【解析】⑴原式111111120411131315131515172931313313299=-+-++-= ?L . ⑵原式1111111111234567892612203042567290=+++++++++++++++++ ? ? ? ? ? ? ? ? ????()1111111111+2+3+4+5+6+7+8+92612203042567290??=+++ ++++++1111111451223349101945(1)=451010=+-+-+-++-=+-L⑶原式11111201011111111120112010220092010201120102009220082009=++++++-?++++++ ? L L 1111111111111201120102200920102009220082009??=++++++-++++++ ? ?????????L L 1220112010=12021055=.【例5】计算:⑴12233499100?+?+?++?L ;⑵1335579799?+?+?++?L ;⑶123234484950??+??++??L .【解析】⑴原式()()()11232341345299100101983=??+??-+??-++??-L ()11231232342343459899100991001013=??-??+??-??+??--??+??L 333300=.⑵原式()()()()11351357157939799101956=??++??-+??-++??-L ()1313513535735757995979997991016=+??-??+??-??+??--??+??L 整数裂项运算8初一秋季·第2讲·尖子班·教师版161651=.⑶原式()()()11234234513456248495051474=+-+-++-?L ()11234123423452345345647484950484950514=-+-+--+L 1499400=.【例6】计算:⑴11111111111111241035911+++---- ??? ????? ?????????????????L L⑵11111111111113243546979998100+?+?+?+??+?+ ? ? ? ? ? ???????????????????L【解析】⑴原式3579112468101246810357911==.⑵原式1312413514619799198100113243546979998100+?+?+?+?+?+=L 2222222345989913243546979998100=L 299100?=9950=.【例7】⑴已知1111111112581120411101640+++++++=,111111112581120411101640---+--++的值为. ⑵计算:11111111111111232006232005232006232005+++?++++-++++?+++ ? ? ? ?L L L L .【解析】⑴1111111111111111111225811204111016401111016402581 120411101640---+--++=++-+++++++ ? ?11121111101640??=++-1121101640??=+-165211640=?-131164=-. 整体思想连锁约分运算9初一秋季·第2讲·尖子班·教师版⑵设111232005a =+++L ,则原式 ()22111111200620062006200620062006a a a a a a a a a a =++-++=+++-++= ? ? ? ?.10 初一秋季·第2讲·尖子班·教师版训练1. 计算:1111111261220304256--+-++--+--+ ? ? ? ???????【解析】 4756.训练2. 计算:1111113243517191820+++++L 【解析】原式111111111111232242171921820=-+-++-+- ? ? ? ?????????L1111111111111123351719224461820=-+-++-+-+-++- ? ?????L L1111112192220=-+- ? ?????995311940760=+=.训练3. 33221129234+==??;33322112336344++==??;33332211234100454+++==??;…….⑴ 若n 为正整数,猜想3333123n ++++=L ;⑵ 利用上题的结论来比较3333123100++++L 与()25000-的大小.【解析】⑴()22114n n ??+; ⑵ 3333221123100100101255025004++++=??=L∵2550250025000000>∴()233331231005000++++>-L .训练4. 设三个互不相等的有理数,既可分别表示为1a b a +,,的形式,又可分别表示为0bb,,的形式,则20042001a b +=【解析】先找出这三个数中的1和0.由已知,这两个数组分别对应相等,于是可断定,a b +与a 中有一个为0,ba与b 中有一个为1.但若0a =,则ba 无意义,所以0a ≠,只能0ab +=,于是a b =-.又0a ≠,那么1ba=-,则1b =,故1a =-.此时,()2004200420012001112a b +=-+=.11初一秋季·第2讲·尖子班·教师版乘法分配律的应用、连续自然数的加减交替【练习1】⑴ 计算:()()(){}()34|15|73-+---+-----;⑵ 计算:1111181232-÷-+- ? ?????;⑶ 计算: 135********++++-----L L .【解析】⑴26-;⑵29;⑶50-.有理数综合运算【练习2】计算:4343(27)(2)(2)3-÷---?-+-【解析】 25.裂项【练习3】计算:1111112612203042-----= .【解析】原式11111111111122334455667223677=-----=-----= ? ??L .【练习4】计算:2446688101012?+?+?+?+?. 【解析】原式()()1246468210121486=??+??-++??-L ()1246246468468810121012146=??-??+??-??+-??+??L 11012146=280=. 连锁约分【练习5】计算:111111111111111122334420132013+-+-+-+- ??????????? ???????????????????L【解析】原式111111111111111122334420132013=-+-+-+-+ ??????????? ???????????????L1324352012201422334420132013=L 1201422013=?10072013=. 整体思想【练习6】计算:()()()()222222222222123492350123502349+++++++-+++++++L L L L .【解析】设2222349a =+++L ,则原式()()()()()22222221501505050502500a a a a a a a a a a =++-++=+++-++=数学史复习巩固12 初一秋季·第2讲·尖子班·教师版1+1=2吗?皮亚诺(Peano,Giuseppe )意大利数学家。
学而思初一数学秋季班第1讲.有理数与数轴.尖子班.学生版
1初一秋季·第1讲·尖子班·学生版长度单位实数5级 有理数综合运算实数4级 有理数与数轴 实数3级 有理数的混合运算 满分晋级阶梯漫画释义1有理数与数轴2初一秋季·第1讲·尖子班·学生版知识点切片(3个)2+1+1知识点目标有理数与数轴(2) 1、点表示数;2、比较大小 相反数与数轴(1) 1、相反数的几何意义 绝对值与数轴(1)1、绝对值的几何意义题型切片(6个)对应题目题型目标用数轴表示数 例1、练习1数轴上点、线段的移动 例2、例3、练习2 利用数轴比较大小例4、练习3 利用数轴性质建立方程求点对应的数 例5、练习4 数轴折叠 例6、练习5 周期问题与数轴例7、练习6数轴:规定了原点、正方向和单位长度的直线叫做数轴;原点、正方向、单位长度称为数轴的三要素,三者缺一不可.有理数与数轴的关系:一切有理数都可以用数轴上的点表示出来.在数轴上,右边的点所对应的数总比左边的点所对应的数大.正数都大于0,负数都小于0,正数大于一切负数. 注意:数轴上的点不都代表有理数,如π.相反数:只有符号不同的两个数,互称为相反数.特别地,0的相反数是0.数轴上,位于原点两侧且到原点距离相等的点表示的数互为相反数.绝对值:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a .正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数.数轴上的点,对应的数绝对值越大,离原点越远.【例1】 ⑴在数轴上画出表示12.540252--,,,,各数的点,并按从小到大的顺序重新排列,用“<”连接起来.⑵如图,数轴上表示数2-的相反数的点是( ) A .点P B .点Q C .点M D .点N ⑶数轴的单位长度为1,点A ,B 表示的数的绝对值相等,那么点A 表示的数是( ) A .4- B .2- C .0 D .4【例2】 ⑴数轴上有一点A ,它表示的有理数是3-,将点A 向左移动3个单位得到点B ,再向3210﹣1﹣2P Q M BA3初一秋季·第1讲·尖子班·学生版右移动8个单位,得到点C ,则点B 表示的数是 ,点C 表示的数是 .⑵在数轴上,坐标是整数的点称为“整点”.设数轴的单位长度是1厘米,若在这个数轴上随意画出一条长2013厘米的线段AB ,则线段AB 盖住的整点至少有 个, 至多有 个.【例3】 ⑴一个机器人从数轴原点出发,沿数轴正方向以每前进3步后退2步的程序运动,设该机器人每秒钟前进或后退1步,并且每步的距离为1个单位长,n x 表示第n 秒时机器人在数轴上的位置所对应的数. ①求3x 、5x 的值.②比较2013x 与2014x 的大小.⑵电子跳蚤在数轴上的某一点0K ,第一步由点0K 向左跳1个单位到点1K ,第二步由点1K 向右跳2个单位到点2K ,第三步由点2K 向左跳3个单位到点3K ,第四步由点3K 向右跳4个单位到点4K ,…,按以上规律跳了100步时,电子跳蚤落在数轴上的点100K 所表示的数恰好是19.94.求电子跳蚤的初始位置点0K 所表示的数.【例4】 ⑴有理数a b ,在数轴上的对应点如图,试比较a a b b a b a b --+-,,,,,的大小.4初一秋季·第1讲·尖子班·学生版0ba⑵已知a b ,是不为0的有理数,且a a b b a b =-=>,,,那么用数轴上的点来表示a b ,,正确的应该是哪一个( )DCB A a bab 0abb a【例5】 ⑴如图,数轴上标出若干点,每相邻的两点相距一个单位长度,点A 、B 、C 、D 对应的数分别为整数a 、b 、c 、d ,且24d a -=.试问:数轴上的原点在哪一点上?A B C D MNabcd⑵如图,数轴上标出若干个点,每相邻的两点相距1个单位,点A 、B 、C 、D 对应的数分别是整数a 、b 、c 、d .①若2a b c d +++=-,那么与数轴原点最接近的点是( )A .A 点B .B 点C .C 点D .D 点② 若7a b +=,那么与数轴原点最接近的点是( )A .A 点B .B 点C .C 点D .D 点⑶如图,在数轴上有若干个点,每相邻两个点之间的距离是一个单位长,有理数a 、b 、c 、d 所表示的点是这些点中的4个,且在数轴上的位置如图所示,已知343a b =-,求2c d +的值.A5初一秋季·第1讲·尖子班·学生版dc b a【例6】 已知在纸面上有一数轴(如图),折叠纸面.1⑴ 若1表示的点与1-表示的点重合,则2-表示的点与数 表示的点重合: ⑵ 若1-表示的点与3表示的点重合,则5表示的点与数 表示的点重合;⑶ 若数轴上A 、B 两点之间的距离为c 个单位长度,点A 表示的有理数是a ,并且A 、B 两点经折叠后重合,请写出此时折线与数轴的交点表示的有理数是多少?【例7】 如图所示,数轴被折成90︒,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3.先让圆周上数字2所对应的点与数轴上的数3所对应的点重合,数轴固定,圆紧贴数轴沿着数轴的正方向滚动,那么数轴上的数2013将与圆周上的数字 重合?初一秋季·第1讲·尖子班·学生版987654312367初一秋季·第1讲·尖子班·学生版训练1. 已知a b +与a b -互为相反数,求2000200020032003a b a b ++-训练2. 在数轴上任取一条长度为119999的线段,则此线段在这条数轴上最多能盖住的整数点的个数为 .训练3. 设a 是大于1的有理数,若a ,23a +,213a +在数轴上对应的点分别记作A ,B ,C ,则A ,B ,C 三点在数轴上自左至右的顺序是 .训练4. ⑴ a 、b 、c 、d 分别为有理数,a 是绝对值最小的有理数,b 是最小的正整数,c 的相反数是其本身,d 为负数且它的倒数是本身.求:①ab 的值;②a b c d ++-的值.⑵ 非零整数m ,n 满足||||50m n +-=,所有这样的有序(即()(),,m n n m 和不同)整数组()m n ,共有 组.8初一秋季·第1讲·尖子班·学生版用数轴表示数【练习1】 一辆货车从超市出发,向东走了3km 到达小彬家,继续向前走了1.5km 到达小颖家,然后向西走了9.5km 到达小明家,最后回到超市⑴以超市为原点,向东作为正方向,用1个单位长度表示1km ,在数轴上表示出小明,小彬,小颖家的位置. ⑵小明家距离小彬家多远? ⑶货车一共行驶了多少千米?数轴上的点、线段的移动【练习2】 ⑴在数轴上,点A 和点B 都在与154-对应的点上,若点A 以每秒3个单位长度的速度 向动,点B 以每秒2个单位长度的速度向左运动,则7秒之后,点A 和点B 所处的位置对应的数是什么?这时线段AB 的长度是多少?⑵在数轴上表示整数的点称为整数点,某数轴的单位长度是1cm ,若在这个数轴上随意画出一条长2007cm 的线段AB .被线段AB 盖住的整数有( )个.A .2005或2006B .2006或2007C .2007或2008D .2008或2009利用数轴比较大小 【练习3】 数a b c d ,,,所对应的点A B C D ,,,在数轴上的位置如图所示,那么a c +与b d +的大小关系为 .利用数轴性质建立方程求点对应的数9初一秋季·第1讲·尖子班·学生版【练习4】 如图,数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、D 对应的整数a 、b 、c 、d ,且29b a -=,那么数轴的原点对应点是( ).A .A 点B .B 点C .C 点D .D 点DCB A数轴折叠【练习5】 已知在纸面上有一数轴(如图),折叠纸面.1⑴ 若1-表示的点与5表示的点重合,则7表示的点与数 表示的点重合; ⑵ 若数轴上A 、B 两点之间的距离为8个单位长度,点A 表示的有理数是10-,并且A 、B 两点经折叠后重合,请写出此时折线与数轴的交点表示的有理数是多少?周期问题与数轴【练习6】 如图,圆的周长为3,在圆的三等分点处标上数字0、1、2. 圆从图示的位置向右滚动,那么数轴上的2013将与圆上哪个数字重合?120…201321﹣1数轴是谁最先发现的?勒内·笛卡儿1596年3月31日生于法国安德尔-卢瓦尔省的图赖讷(现笛卡尔,因笛卡儿得名),1650年2月11日逝世于瑞典斯德哥尔摩,是世界著名的法国哲学家、数学家、物理学家。
学而思初一数学暑假班第3讲.有理数四则运算.教师版
①同号两数相加,取相同的符号 ,并把绝对 ... ②绝对值不相等的异号两数相加,取绝... 较大的加数符号,并用较大的绝对值减去 较小的 ... 3有理数四则运算模块一有理数的加减法定 义有理数加法法则:..... .. 值相加.对值.. .. 绝对值.示例剖析3 + 5 = 8-5 + 3 = - (5 - 3) = -2-3 + 0 = -3③一个数同 0 相加,仍得这个数. 有理数加法的运算步骤:法则是运算的依据,根据有理数加法的运算法则,可以得到加法的运算步骤: ①确定和的符号;②求和的绝对值,即确定是两个加数的绝对值的和或差.有理数加法的运算技巧:①分数与小数均有时,应先化为统一形式. ②带分数可分为整数与分数两部分参与运算.③多个加数相加时,若有互为相反数的两个数,可先结合相加得零. ④若有可以凑整的数,即相加得整数时,可先结合相加. ⑤若有同分母的分数或易通分的分数,应先结合在一起. ⑥符号相同的数可以先结合在一起.有理数加法的运算律:① 两个数相加,交换加数的位置,和不变.② 三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.有理数减法法则:减去一个数,等于加上这个数的相反数.有理数减法的运算步骤:a +b = b + a (加法交换律)(a + b ) + c = a + (b + c) (加法结合律)a -b = a + (-b ) (减法法则)第 3 讲·尖端预备班·教师版1(+7.5) + ⎛ +3 3 ⎫ =⑵ (-7.5) + ⎛ -3 3 ⎫ = ⑶ + - ⎪= - - - ⎪ + - ⎪ ⑵ 3 + (-5.5) + -1 ⎪ + -3 ⎪ (-3) + (-4)+ | -15| + {- ⎡⎣- (-7 )⎤⎦}⑷ - - + 1 + - 2 +①把减号变为加号(改变运算符号)②把减数变为它的相反数(改变性质符号)③把减法转化为加法,按照加法运算的步骤进行3 - 0.15 - 9 + 5 - 11 = (+3) + (-0.15) + (-9) + (+5) + (-11)它的含义是正 3,负 0.15,负 9,正 5,负 11 的和.运算.有理数加减混合运算的步骤:①把算式中的减法转化为加法; ②省略加号与括号;③利用运算律及技巧简便计算,求出结果.注意:根据有理数减法法则,减去一个数等于加上它的相反数,因此加减混合运算可以依据上述法则 转变为只有加法的运算,即为求几个正数,负数和 0 的和,这个和称为代数和.为了书写简便,可以把加 号与每个加数外的括号均省略,写成省略加号和的形式.夯实基础【例1】 计算:⑴⎝ 5 ⎭ ⎝ 5 ⎭7 ⎛ 53 ⎫ 6 ⎝ 6 ⎭【解析】⑴ 11.1;⑵ -11.1 ;⑶ - 23 .3【例2】 计算:⑴ -20 + (-15) - (-28) - 17(人大附中期中)⑵⑶2 1 ⎛ 1 ⎫ ⎛3 ⎫ 3 8 ⎝ 3 ⎭ ⎝ 8 ⎭1 1 32 - 2 + 2 -34 3 4 3(北京师范大学附属实验)【解析】⑴ -24 ;⑵ 1 ;⑶ -3 .2【例3】 计算:⑴ -7.34 + (-12.74 ) + 12.34 + 7.341 ⎛ 1 ⎫ ⎛ 1 ⎫ 3 ⎝ 3 ⎭ ⎝2 ⎭ ⑶ 23 1 3 2 34 2 4 32第 3 讲·尖端预备班·教师版⑸ 6 + 24 + 4 - 16 - 6.8 - 3.2⑴ -18 ⎪ + +53 ⎪ + (-53.6) + +18 ⎪ + (-100)⑵ [4 5 ⑷ 1 - 2 + 3 - 4 - 5 + 6 - 7 + 8 - 94 ⎫ ⎛ 3 ⎫5 ⎭ ⎝ 5 ⎭ ( + + + L + + ) + ( + + + L + + ) +( + + + L + + ) + L + ( + )= 1 + ⎪ - 3 - ⎪ + 3 + ⎪ - 5 - ⎪ - 5 + ⎪ + 7 - ⎪ - 7 + ⎪ + 9 - ⎪ - 9 + ⎪= (1 - 3 + 3 - 5 - 5 + 7 - 7 + 9 - 9) + + ⎪= -9 + + + + ⎪ - + + + + ⎪= -9 + 1 - ⎪ - - ⎪ = -9 + = -8⑸原式 = 1 3 25 5【解析】⑴ -0.4 ;⑵ -7 ;⑶ 1;⑷ - 1 ;⑸ 9.2能力提升【例4】 计算:⎛ ⎛ 4 ⎫ ⎝ ⎝5 ⎭ 1 2 7+(- )]+[(- )+6 ]12 7 7 12⑶ 11+192+1993+19994+199995+1999996+19999997+199999998+19999999991 5 1 19 1 41 1 71 12 6 12 20 30 42 56 72 90⑸1 1 1 1 12 2 2 2 2 234 59 60 3 45 59 603 3 3 3 3 58 594 4 6 59 60 59 60【解析】⑴ - 100 ⑵ 1047⑶ 添上 9+8+7+6+5+4+3+2+1,依次与各数配对相加,得:原式 = 20+200+2×10 3 +2×10 4 +…+2×10 9 -(9+8+7+6+5+4+3+2+1)= 2222222220-45= 2222222175.⑷ 原式⎛ 1 ⎫ ⎛ 1 ⎫ ⎛ 1 ⎫ ⎛ 1 ⎫ ⎛ 1 ⎫ ⎛ 1 ⎫ ⎛ 1 ⎫ ⎛ 1 ⎫ ⎛ 1 ⎫ ⎝ 2 ⎭ ⎝ 6 ⎭ ⎝ 12 ⎭ ⎝ 20 ⎭ ⎝ 30 ⎭ ⎝42 ⎭ ⎝ 56 ⎭ ⎝ 72 ⎭ ⎝ 90 ⎭ ⎛ 1 1 1 1 1 1 1 1 1 ⎫+ + - - - - - ⎝ 2 6 12 20 30 42 56 72 90 ⎭⎛ 1 1 1 1 ⎫ ⎛ 1 1 1 1 1 ⎫⎝ 2 6 12 20 ⎭ ⎝ 30 42 56 72 90 ⎭⎛ 1 ⎫ ⎛ 1 1 ⎫ 7 3⎝ 5 ⎭ ⎝ 5 10 ⎭10 101 2 1 2 3 1 2 3 59+ ( + ) + ( + + )+Λ +( + + +Λ + )2 3 3 4 4 4 60 60 60 60第 3 讲·尖端预备班·教师版3有理数乘法法则:两数相乘 ,同号得正,异号 得负,并把绝对值相乘.任何数同 0 相乘,都得 0.= 1 2 3 4 59 + + + +Λ +2 2 2 2 21= (1 + 2 + 3+Λ +59)21 (1 + 59) ⨯ 59 = ⨯2 2 = 885模块二有理数乘除法定义.... .... .... 有理数乘法运算律:①两个数相乘,交换因数的位置,积相等. ②三个数相乘,先把前两个数相乘,或者先把 后两个数相乘,积相等.③一个数同两个数的和相乘,等于把这个数分示例剖析3 ⨯4 = 12-3 ⨯ 4 = -(3 ⨯ 4) = -12 -3 ⨯ (-4) = 12ab = ba (乘法交换律)abc = a(bc) (乘法结合律)a(b + c) = ab + ac (乘法分配律)别同这两个数相乘,再把积相加.有理数乘法法则的推广:①几个不等于 0 的数相乘,积的符号由负因数的个数决定,当负因数的个数是偶数时,积为正数;负因数的个数是奇数时,积为负数.(奇负偶正)②几个数相乘,如果有一个因数为 0,则积为 0.③在进行乘法运算时,若有带分数,应先化为假分数,便于约分;若有小数及分数,一般先将小 数化为分数,或凑整计算;利用乘法分配律及其逆用,也可简化计算.在进行有理数运算时,先确定符号,再计算绝对值,有括号的先算括号里的数.有理数除法法则:除以一个不等于 0 的数,等 于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值 相除;0 除以任何一个不等于 0 的数,都得 0. 有理数除法的运算步骤:首先确定商的符号,然后再求出商的绝对值.夯实基础【例5】 计算:4第 3 讲·尖端预备班·教师版1 33 ÷ 5 = 3 ⨯ =5 5 1a ÷b = a ⋅ ( b ≠ 0 )b-4 ÷ 2 = -2(-0.25)⨯ 0.5 ⨯ ⎛ -70 3 ⎫ ⨯ 4 (-3)⨯ ⎛ -1 4 ⎫ ⨯ ⎛ -1 1 ⎫ ⨯ ⎛ +5 1 ⎫ ⨯ ⑵⎝⎝ 5 ⎭ ⎝ 9 ⎭ ⎝ 2 ⎭ 115 ⎭ ⑴ 36 ⨯ + - - - ⎪ ⑵ - - + ⎪ ⨯ -48) (-8)⨯ ⎛ -12 9 ⎫⎪ - (-5)⨯ ⎛ -12 9 ⎫⎪ + 4 ⨯ ⎛ -129 ⎫⎪16 ⎭ 16 ⎭ ⎪ ⎪运算顺序可以简记为:“从左到右,从高(级)到低(级),从小(括号)到大(括号)”.⑴ ⎪ ⎪ ⎪3【解析】⑴ 35 3 ;⑵ -9 .10【例6】 计算:⎛ 1 1 1 1 1 ⎫ ⎝ 2 3 4 6 9 ⎭ ⎛ 1 1 1 1 ⎫ ( ⎝ 4 36 6 12 ⎭⑶ ⎝ ⎝ ⎝ 16 ⎭⑷ (-0.25)⨯ ⎛ -5 1 ⎫ + 1 ⨯ (-3.5) + ⎛ - 1 ⎫ ⨯ 2⎝ 2 ⎭ 4 ⎝ 4 ⎭【解析】⑴ 11;⑵ -6 2 ;⑶ -12 9 ;⑷ 0 3 16模块三有理数四则混合运算定义 示例剖析有理数混合运算的运算顺序: ⑴ 先乘方(下节课学习),再乘除,最后加减; ⑵ 同级运算,从左到右进行;⑶ 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.加减法为一级运算,乘除法为二级运算,乘方 及开方(以后学)称为三级运算..... .... .. ..同级运算,按从左到右的顺序进行;不同级运 算,应先算三级运算,然后二级,最后一级;如果有括号,先算括号里的,有多重括号时,先 算小括号里的,再算中括号里的,最后算大括号里的.易错点 1:注意运算顺序,先乘除后加减,同级的从左到右依次运算,有括号的先算括号里的. 易错点 2:如果只有乘除的,先确定符号,把所有的数都变为正数进行运算.能力提升第 3 讲·尖端预备班·教师版5⑴ -5 ⎪ ⨯ - 8 ÷ (-2 + 4) ⑶ ⎢1 - - + ⎪ ⨯ 24⎥ ÷ (-5) 【例8】 计算:⑴ ⎨⎢- - -1 ⎪ + 2 ⎥ ⨯ 48 - (-1) ÷ - ⎪⎬ ÷ (-5)⑵ 原式 = (2004+1)×2003第一组: -5 , 3 , 4.25 , 5.75 ;第二组: -2 , ;第三组: 2.25 , , -4 .【例7】 计算:⎛ 1 ⎫ 4 ⎝ 2 ⎭ 11(北师大附属实验中学期中)⑵ -9 + 12 ÷ (-6) - (-4)⨯ (-4) ÷ (-8)⎡ 2 ⎛ 5 1 7 ⎫ ⎤ ⎣ 13 ⎝ 8 6 12 ⎭ ⎦(清华附中期中)【解析】⑴ -6 ;⑵ -9 ;⑶ 4 1013⎧⎡ 5 ⎛ 1 ⎫ 1 ⎤ ⎛ 1 2 ⎫⎫ ⎩⎣ 12 ⎝ 2 ⎭6 ⎦ ⎝ 2 3 ⎭⎭⑵ 2005× 2003 1001-1001×2004 1002⑶ 2008 ⨯ 200920092009 - 2009 ⨯ 200820082008【解析】⑴ -301001-(1002-1)×2004 10022003 1001= (2003-1001)+( +)200410022001 =1003.2004⑶ 原式 = 2008 ⨯ 2009 ⨯100010001 - 2009 ⨯ 2008 ⨯100010001= 0探索创新【例9】 从下面每组数中各取一个数,将它们相乘,那么所有这样的乘积的总和是 .13 1 13 15512【解析】所有乘积的总和是: (-5 + 3 1 + 4.25 + 5.75) ⨯ (-2 1 + 1 ) ⨯ (2.25 + 5 - 4) = 680 = 25 53 3 15 12 27 276第 3 讲·尖端预备班·教师版c > 0 , ac < 0 那么 b ②如果 a b > 0 , < 0 那么 ac b > 0 , bc < 0 ,且 a(b - c) > 0 ,试确定 a 、 b 、 c 的符号.⑵ bc < 0 说明 b 、 c 异号,那么 < 0 ;y - z z - x x - y 中负数的个数是(b bcd ±3 9 【例 12】计算4 ×(0.125+ 7 0.125 ⨯ (7 + 3 ) + 9 - 2 1 【解析】设 a = 7 1【例10】⑴ 用“>”或“<”填空①如果 abbc0;0.⑵ 如果 ac【解析】⑴ ① < ;② < ;c b又因为 ac > 0 ,所以 a < 0 ;b因为 a(b - c) > 0 ,所以 b - c < 0 ,进而得 b < c ,且 bc < 0 , 所以 b < 0 , c > 0 .【例11】⑴ 若19a + 98b = 0 ,则 ab 是()A .正数B .非正数C .负数D .非负数⑵ 已知有理数 x, y , z 两两不等,则 x - y , y - z , z - x)A .1 个B .2 个C .3 个D .0 个或 2 个⑶ 若 a , b , c , d 是互不相等的整数,且 a bcd = 9 ,则 a + b + c + d 的值为()A .0B .4C . 8D .无法确定⑷ 如果 4 个不同的正整数 m , n , p , q 满足 (7 - m )(7 - n )(7 - p )(7 - q ) = 4 , 那么 m + n + p + q 的值是多少?【解析】 ⑴ B .由19a + 98b = 0 ,得19a = -98b ,可知 a 、 的符号相反或者 a = b = 0 ,故有 ab ≤ 0 ;⑵ B .三数乘积为 1,则要么为 3 正,要么为 1 正 2 负;分析可知为 1 正 2 负.⑶ A . a ,,, 4 个数分别是 ±1, 3 ,所以 a + b + c + d = 0 ; ⑷ (7 - m )(7 - n )(7 - p )(7 - q ) = 1⨯ (-1)⨯ 2 ⨯ (-2) ,所以 m , n , p , q 这 4 个数分别为 5 , 6 , 8 , 9 , 所以 m + n + p + q = 28 .1 2 6 1 7 + 3 - 21 2 6 1 2 4 3 7 57 4 + 332 6 14 + 3 3 ,b = 0.125,c = 9 7 - 25 ,则5).第3讲·尖端预备班·教师版7原式=a+ 3 ,0.125, 9 - 2c×(b + )ab + c a= a ab + c ×ab + c a= 1.【点评】此题横看纵看都显得比较复杂,但若仔细观察,整个式子可分为三个部分:7 1 2 6 1,因此,采用变量替换就大大减少了计算量. 4 3 7 58第 3 讲·尖端预备班·教师版5⑵3681168实战演练知识模块一有理数加减法课后演练【演练1】填空:⑴ 1.323【解析】⑴ 1.3;⑵3.2【演练2】⑴ 5.5 3.2 2.5 4.8141.25⑵8.531131112⑶23562.81324556⑷517379.543747.5⑸ 5.5 3.2 2.5 4.8⑹32172317【解析】⑴11;⑵0;⑶1;⑷7.5;⑸ 1.4;⑹89.知识模块二有理数乘除法课后演练【演练3】⑴0.03311 2333⑵1144516⑶12734151458【解析】⑴7;⑵2;⑶1.2【演练4】计算:⑴7115第3讲·尖端预备班·教师版9⑵ ⎢- + - - -1 ⎥ ⨯ -36) ⑶ -2 ÷ ⨯ -3 ⎪ ⨯ (-0.75) ÷ ⨯ - ⎪ (-1) ÷ ⎧⎨⎡⎢12 ⨯ ⎛ - 5 ⎫⎪ + 3 ⨯ (-0.5)⎤⎥ ⨯ (-4) ÷ (-6)⎫⎬ ⎝ 8 ⎭ ⎦ 【演练6】 ⑴ 如果 < 0 , < 0 ,试确定 ac 的符号; ⎡ 7 3 5 ( )⎤ ( ⎣ 12 4 6 ⎦1 5 ⎛ 1 ⎫2 ⎛ 5 ⎫34 ⎝ 2 ⎭5 ⎝ 2 ⎭【解析】⑴ 575 1 ;⑵ -12 ;⑶ 245 2 8知识模块三 有理数加减乘除混合运算 课后演练【演练5】 计算: ⎩⎣ ⎭ 【解析】 1 6a b b c⑵ 已知整数 a, b , c , d 满足 abcd = 25 ,且 a > b > c > d ,那么 a - b + c - d = .【解析】⑴ a < 0 说明 a 、b 异号; b < 0 说明 b 、c 异号,所以 a 、c 同号,所以 ac 的符号为正; b c⑵ 易知 a = 5 , b = 1 , c = -1, d = -5 ,则 a - b + c - d = 5 - 1 + (-1) - (-5) = 810 第 3 讲·尖端预备班·教师版。
学而思初中数学朱韬老师教程
学而思初中数学朱韬老师教程一、教学目标:通过本教程的学习,学生应掌握初中数学的基本概念、思想方法和解题技巧,能够有效应对中考数学考试,达到良好的数学素养和成绩。
二、教学大纲:1.数学基础- 数学符号与运算法则- 整数、分数和小数的概念和性质- 数论基础及应用,如公因数、公倍数、质数、约数等- 代数中的基本内容,如代数式、方程、不等式等2.平面几何- 平面图形的认识和性质,如点、线、角、三角形、四边形、圆等- 平面几何基本定理证明和应用,如勾股定理、角平分线定理、中垂线定理等- 向量的认知、性质和运算3.立体几何- 空间图形的认知和性质,如点、线、面、体的概念- 空间几何基本定理证明和应用,如正方体的表面积、体积、稳定性等- 立体几何中的向量和投影的应用4.统计与概率- 统计学的基本概念和方法,如资料的整理、分析和表示方法- 概率的认知、性质和问题解法,如事件、样本空间、概率法则等三、教学重点和难点:1.代数中方程、不等式的解法选择和应用2.平面几何基本定理的证明和应用3.立体几何中空间图形的认知和应用4.概率问题的理解和求解方法四、教学方法:本教程采用“理论与实践相结合”、“引导性学习”、“启发性学习”、“传统课堂教学”等多种教学方法,使学生在启发式教学实践中自主发现问题,提高数学思维能力。
五、教学体系:本教程结合中考数学考试的要求和题型,分阶段分模块学习,让学生按照模块学习和模块检测,切实提高学生对数学知识的理解和应用能力,达到中考数学复习的目标。
六、学习建议:1.注重课堂学习,积极参与,扎实掌握每个模块的基本概念与方法。
2.加强练习与巩固,在课后留出适当时间进行练习,熟记公式与方法。
3.多彩生活,提高数学思维,积累数学思维的素材,增强对数学的热爱与兴趣。
学而思初一数学秋季班第1讲.有理数与数轴.尖子班.教师版
1初一秋季·第1讲·尖子班·教师版长度单位实数5级 有理数综合运算实数4级 有理数与数轴 实数3级 有理数的混合运算 满分晋级阶梯漫画释义1有理数与数轴2初一秋季·第1讲·尖子班·教师版知识点切片(3个)2+1+1知识点目标有理数与数轴(2) 1、点表示数;2、比较大小 相反数与数轴(1) 1、相反数的几何意义 绝对值与数轴(1)1、绝对值的几何意义题型切片(6个)对应题目题型目标用数轴表示数 例1、练习1数轴上点、线段的移动 例2、例3、练习2 利用数轴比较大小例4、练习3 利用数轴性质建立方程求点对应的数 例5、练习4 数轴折叠 例6、练习5 周期问题与数轴例7、练习6数轴:规定了原点、正方向和单位长度的直线叫做数轴;原点、正方向、单位长度称为数轴的三要素,三者缺一不可.有理数与数轴的关系:一切有理数都可以用数轴上的点表示出来.在数轴上,右边的点所对应的数总比左边的点所对应的数大.正数都大于0,负数都小于0,正数大于一切负数. 注意:数轴上的点不都代表有理数,如π.相反数:只有符号不同的两个数,互称为相反数.特别地,0的相反数是0.数轴上,位于原点两侧且到原点距离相等的点表示的数互为相反数.绝对值:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a .正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数.数轴上的点,对应的数绝对值越大,离原点越远.【例1】 ⑴在数轴上画出表示12.540252--,,,,各数的点,并按从小到大的顺序重新排列,用“<”连接起来.⑵如图,数轴上表示数2-的相反数的点是( )A .点PB .点QC .点MD .点N ⑶数轴的单位长度为1,点A ,B 表示的数的绝对值相等,那么点A 表示的数是( ) A .4- B .2- C .0 D .4【解析】⑴分别将数的对应点在数轴上画出,如图,按数轴上从左到右的点对应从小到大的实数,得到 1420 2.552-<-<<< ⑵A .⑶B .【例2】 ⑴数轴上有一点A ,它表示的有理数是3-,将点A 向左移动3个单位得到点B ,再向右移动8个单位,得到点C ,则点B 表示的数是 ,点C 表示的数是 .3210﹣1﹣2P Q M BA 52.50-2123初一秋季·第1讲·尖子班·教师版⑵在数轴上,坐标是整数的点称为“整点”.设数轴的单位长度是1厘米,若在这个数轴上随意画出一条长2013厘米的线段AB ,则线段AB 盖住的整点至少有 个, 至多有 个.【解析】 ⑴由数轴的基本定义可知为62-+,.⑵2013;2014针对例2⑵的铺垫:1、⑴在数轴上,表示1999-和1999的两个点之间有 个整数(含1999-和1999). ⑵在数轴上,表示1999.1-和1999.9的两个点之间有 个整数. 【解析】 ⑴3999;⑵ 3999.针对例2⑵的拓展:1、设数轴的单位长度是1厘米,若在这个数轴上随意画出一条长120132厘米的线段AB ,则线段AB 盖住的整点至少有 个,至多有 个.2、设数轴的单位长度是1厘米,若在这个数轴上随意画出一条长M (M 为正整数)厘米的线段AB ,则线段AB 盖住的整点至少有 个,至多有 个.3、设数轴的单位长度是1厘米,若在这个数轴上随意画出一条长M (1m M m <<+,m为正整数)厘米的线段AB ,则线段AB 盖住的整点至少有 个,至多有 个.【解析】 1、2013;2014. 2、M ,1M +.3、m ,1m +.【例3】 ⑴一个机器人从数轴原点出发,沿数轴正方向以每前进3步后退2步的程序运动,设该机器人每秒钟前进或后退1步,并且每步的距离为1个单位长,n x 表示第n 秒时机器人在数轴上的位置所对应的数. ①求3x 、5x 的值.②比较2013x 与2014x 的大小.⑵电子跳蚤在数轴上的某一点0K ,第一步由点0K 向左跳1个单位到点1K ,第二步由点1K 向右跳2个单位到点2K ,第三步由点2K 向左跳3个单位到点3K ,第四步由点3K 向右跳4个单位到点4K ,…,按以上规律跳了100步时,电子跳蚤落在数轴上的点100K 所表示的数恰好是19.94.求电子跳蚤的初始位置点0K 所表示的数.【解析】⑴①33x =,51x =.②2013405x =,2014404x =,20132014x x <.⑵假设电子跳蚤的起点0K 为0x ,规定向左为负,向右为正,根据题意可得: 01234569910019.94x -+-+-+--+=,030.06x =-.【例4】 ⑴有理数a b ,在数轴上的对应点如图,试比较a a b b a b a b --+-,,,,,的大小. 0ba4初一秋季·第1讲·尖子班·教师版⑵已知a b ,是不为0的有理数,且a a b b a b =-=>,,,那么用数轴上的点来表示a b ,,正确的应该是哪一个( )DCB A a bab 0abb a【解析】⑴根据a b ,在数轴上的位置可知,00a b <>,,且a 的绝对值比2b 的绝对值大,所以a b a a b b b a -<<+<-<<-.⑵ C ,根据题意,00a b <>,,且在数轴上a 的对应点与原点的距离较b 的对应点大.【例5】 ⑴如图,数轴上标出若干点,每相邻的两点相距一个单位长度,点A 、B 、C 、D 对应的数分别为整数a 、b 、c 、d ,且24d a -=.试问:数轴上的原点在哪一点上?A B C D MNabcd⑵如图,数轴上标出若干个点,每相邻的两点相距1个单位,点A 、B 、C 、D 对应的数分别是整数a 、b 、c 、d .①若2a b c d +++=-,那么与数轴原点最接近的点是( )A .A 点B .B 点C .C 点D .D 点② 若7a b +=,那么与数轴原点最接近的点是( )A .A 点B .B 点C .C 点D .D 点⑶如图,在数轴上有若干个点,每相邻两个点之间的距离是一个单位长,有理数a 、b 、c 、d 所表示的点是这些点中的4个,且在数轴上的位置如图所示,已知343a b =-,求2c d +的值.dc b a【解析】⑴由数轴可知,3d a =+,代入24d a -=得324a a +-=,解得1a =-所以原点应在点B 处.⑵①C .(3)(4)(7)2a a a a ++++++=-,4a =-,1b =-,0c =,3d =. ② A .37a a ++=,4a a +=,∴0a >,2a =.⑶2-. 提示:2b a =+.【例6】 已知在纸面上有一数轴(如图),折叠纸面.1⑴ 若1表示的点与1-表示的点重合,则2-表示的点与数 表示的点重合: ⑵ 若1-表示的点与3表示的点重合,则5表示的点与数 表示的点重合;⑶ 若数轴上A 、B 两点之间的距离为c 个单位长度,点A 表示的有理数是a ,并且A 、A5初一秋季·第1讲·尖子班·教师版B 两点经折叠后重合,请写出此时折线与数轴的交点表示的有理数是多少?【解析】 ⑴ 2;⑵3-; ⑶此时折线与数轴的交点表示的有理数是12a c ±.【例7】 如图所示,数轴被折成90︒,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3.先让圆周上数字2所对应的点与数轴上的数3所对应的点重合,数轴固定,圆紧贴数轴沿着数轴的正方向滚动,那么数轴上的数2013将与圆周上的数字 重合?98765431023【解析】201345031÷=,则与数字0重合. 针对例7的铺垫:如图所示,圆的周长为4个单位长度,在圆的4等分点处 标上数字0,1,2,3.先让圆周上数字0所对应的点与数轴上的数1-所对应的点重合,再让数轴按逆时针方向绕在该圆上,那么数轴上的数2012-将与圆周上的数字 重合.3210-5-4-3-2-10【解析】20124503÷=,则与数字0重合. 针对例7的拓展:1、如图所示,一数轴被折围成长为3,宽为2的长方形,圆的周长为4且圆上刻一指针,若1在数轴固定的情况下,圆紧贴数轴沿数轴正方向滚动,当圆与7接触的时候,指针的方向是( )DCBA76543210-12、如图,边长为1的等边三角形ABC 从图示的位置开始在数轴上顺时针无滑动地向右滚动,当三角形的一个顶点落在2013x =处时,三角形停止滚动. ①落在2013x =处的点是ABC △的哪个顶点?说明理由. ②在滚动过程中,点A 走过的路程是多少?…20131C B A6初一秋季·第1讲·尖子班·教师版3、把一数轴折成如图所示,第1段为1个单位长度,第2段为2个单位长度,第3段为3个单位长度,……,点O 处有一个圆,圆上刻一指针,开始指针朝东,圆周为4个单位长度,圆紧贴数轴沿着数轴的正方向滚动,当圆与点A 接触时,指针指向 (东、南、西、北),当圆与2009接触时,指针指向 (东、南、西、北).O 北西南东A-10【解析】1、C .2、①顶点C ;②894π.3、在直的数轴上,线段41AO =,414101=⨯+,指针指向北;2009(14)2023--=,因为636420162⨯=,202320167-=,故2009在点O 的西边,202345053÷=+,指针指 向西.7初一秋季·第1讲·尖子班·教师版训练1. 已知a b +与a b -互为相反数,求2000200020032003a b a b ++-【解析】 0. 因为a b +与a b -互为相反数,所以0a b a b ++-=,从而得到00a b ==,所以原式等于0.训练2. 在数轴上任取一条长度为119999的线段,则此线段在这条数轴上最多能盖住的整数点的个数为 . 【解析】 2000.训练3. 设a 是大于1的有理数,若a ,23a +,213a +在数轴上对应的点分别记作A ,B ,C ,则A ,B ,C 三点在数轴上自左至右的顺序是 .(人大附中期中)【解析】 B C A .训练4. ⑴ a 、b 、c 、d 分别为有理数,a 是绝对值最小的有理数,b 是最小的正整数,c 的相反数是其本身,d 为负数且它的倒数是本身.求:①ab 的值;②a b c d ++-的值.⑵ 非零整数m ,n 满足||||50m n +-=,所有这样的有序(即()(),,m n n m 和不同)整数组()m n ,共有 组.(清华附中期中)【解析】 ⑴ 0ab =,2a b c d ++-=;⑵ 5m n +=,若1m =,4n =,有()14,,()14-,,()14-,,()14--,; 若2m =,3n =,有()23,,()23-,,()23-,,()23--,; 若3m =,2n =,有()32-,,()32,,()32-,,()32--,; 若4m =,1n =,有()41,,()41-,,()41--,,()41-,. 所以共有16组.8初一秋季·第1讲·尖子班·教师版用数轴表示数【练习1】 一辆货车从超市出发,向东走了3km 到达小彬家,继续向前走了1.5km 到达小颖家,然后向西走了9.5km 到达小明家,最后回到超市⑴以超市为原点,向东作为正方向,用1个单位长度表示1km ,在数轴上表示出小明,小彬,小颖家的位置. ⑵小明家距离小彬家多远? ⑶货车一共行驶了多少千米? 【解析】⑴如图所示:小颖家小彬家超市小明家西东-6-5-4-3-2-154321⑵小明距离小彬家8km⑶货车共行驶了3 1.59.5519km +++=. 数轴上的点、线段的移动【练习2】 ⑴在数轴上,点A 和点B 都在与154-对应的点上,若点A 以每秒3个单位长度的速度向右运动,点B 以每秒2个单位长度的速度向左运动,则7秒之后,点A 和点B 所处的位置对应的数是什么?这时线段AB 的长度是多少?⑵在数轴上表示整数的点称为整数点,某数轴的单位长度是1cm ,若在这个数轴上随意画出一条长2007cm 的线段AB .被线段AB 盖住的整数有( )个.A .2005或2006B .2006或2007C .2007或2008D .2008或2009【解析】⑴点A 对应的数是694,点B 对应的数是714-,线段AB 的长度是35;⑵C.利用数轴比较大小 【练习3】 数a b c d ,,,所对应的点A B C D ,,,在数轴上的位置如图所示,那么a c +与b d +的大小关系为 .【解析】a c b d +<+.利用数轴性质建立方程求点对应的数【练习4】 如图,数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、D 对应的整数a 、b 、c 、d ,且29b a -=,那么数轴的原点对应点是( ).A .A 点B .B 点C .C 点D .D 点DCB A【解析】C .2(4)9b b --=,1b =-.9初一秋季·第1讲·尖子班·教师版数轴折叠【练习5】 已知在纸面上有一数轴(如图),折叠纸面.1⑴ 若1-表示的点与5表示的点重合,则7表示的点与数 表示的点重合; ⑵ 若数轴上A 、B 两点之间的距离为8个单位长度,点A 表示的有理数是10-,并且A 、B 两点经折叠后重合,请写出此时折线与数轴的交点表示的有理数是多少?【解析】⑴ 3-;⑵此时折线与数轴的交点表示的有理数是6-或14-.周期问题与数轴【练习6】 如图,圆的周长为3,在圆的三等分点处标上数字0、1、2. 圆从图示的位置向右滚动,那么数轴上的2013将与圆上哪个数字重合?120…201321﹣1【解析】1.数轴是谁最先发现的?勒内·笛卡儿1596年3月31日生于法国安德尔-卢瓦尔省的图赖讷(现笛卡尔,因笛卡儿得名),1650年2月11日逝世于瑞典斯德哥尔摩,是世界著名的法国哲学家、数学家、物理学家。
学而思初中数学培优教材
学而思初中数学培优教材学而思初中数学培优教材是一套专为初中生量身定制的数学学习教材。
它以全面的知识点覆盖和系统的知识结构设计为特点,旨在帮助学生提高数学学习能力和能力水平。
首先,学而思初中数学培优教材注重知识点的深度和广度。
该教材根据国家教育部制定的课程标准,以及专家的专业建议,确保每一个数学知识点都得到细致的讲解。
教材对数学知识点进行了分类整理,将复杂的数学问题分解成简单易懂的小步骤,帮助学生逐步理解和掌握每一个知识点。
此外,教材还提供了大量例题和习题,让学生有机会进行实际操作和练习,加深对知识点的理解。
其次,学而思初中数学培优教材强调数学思维的培养。
教材不仅注重数学知识的学习,还注重培养学生的数学思维能力。
教材中布置了一些思维性的题目,鼓励学生通过不同的思路和方法解决问题。
这样培养学生分析问题、归纳总结、抽象思维和逻辑推理等能力,有助于提高学生的数学思维水平。
再次,学而思初中数学培优教材注重学习方法的指导。
教材中详细介绍了不同的学习方法和技巧,帮助学生找到适合自己的学习方法。
教材提供了学习计划和学习方法的指导,帮助学生有效安排学习时间,并培养良好的学习习惯。
通过学习方法的指导,学生可以更加高效地学习数学,提高学习效果。
最后,学而思初中数学培优教材注重培养学生的问题解决能力。
教材中提供了一些实际生活中的数学问题和数学建模问题,引导学生运用所学的数学知识解决实际问题。
这样既增加了学生对数学的兴趣,也培养了他们独立思考和解决问题的能力。
总之,学而思初中数学培优教材通过全面的知识点覆盖、系统的知识结构设计、培养数学思维能力和指导学习方法,帮助学生提高数学学习能力和水平。
这套教材不仅适用于学校的正式教学,也适用于学生的课外辅导和自学。
通过使用这套教材,学生可以更好地理解和掌握数学知识,提高解决数学问题的能力,并在数学学习中取得更好的成绩。
学而思初一数学秋季班第5讲.找规律、程序运算和定义新运算.基础-提高班.教师版
1初一秋季·第5讲·基础-提高班·教师版生活水平提高了满分晋级阶梯漫画释义5找规律、程序运算 和定义新运算代数式3级 找规律、程序运算 和定义新运算代数式2级整体思想求值代数式1级整式的概念及加减运算2初一秋季·第5讲·基础-提高班·教师版题型切片(六个) 对应题目题型目标 数列的规律 例1;练习1 数表的规律 例2;练习2 图形的规律 例3;练习3 算式的规律 例4;练习4 程序运算例5、例6:练习5 定义新运算 例7;练习6找规律解题思维过程:从简单、局部或特殊情况入手,经过提炼、归纳和猜想,探索规律,获得结论.有时候还需要通过类比联想才能找到隐含条件.一般有下列几个类型:⑴一列数的规律:把握常见几类数的排列规律及每个数与排列序号n 之间的关系.⑵一列等式的规律:用含有字母的代数式总结规律,注意此代数式与序号n 之间的关系. ⑶图形(图表)规律:观察前几个图形,确定每个图形中图形的个数或图形总数与序号n 之间的关系.⑷图形变换的规律:找准循环周期内图形变换的特点,然后用图形变换总次数除以一个循环变换周期,进而观察商和余数.⑸数形结合的规律:观察前n 项(一般前3项)及利用题中的已知条件,归纳猜想一般性结论.常见的数列规律:⑴ 1,3,5,7,9,… ,21n -(n 为正整数). ⑵ 2,4,6,8,10,…,2n (n 为正整数). ⑶ 2,4,8,16,32,…,2n (n 为正整数). ⑷ 2,5,10,17,26,…,21n +(n 为正整数). ⑸0, 3, 8, 15, 24,…,21n - (n 为正整数). ⑹ 2, 6, 12, 20,…, (1)n n +(n 为正整数). ⑺x -,x +,x -,x +,x -,x +,…,(1)n x -(n 为正整数).⑻x +,x -,x +,x -,x +,x -,…,1(1)n x +-(n 为正整数). ⑼特殊数列:①斐波那契数列:1,1,2,3,5,8,13,…,从第三个数开始每一个数等于与它相邻的前两个数的和.②三角形数:1,3,6,10,15,21,…,(1)2n n +.【例1】 ⑴ 观察下列一组数:12,34,56,78,…,它们是按一定规律排列的.那么这一组数 的第k 个数是 .(k 为正整数)数列的规律思路导航题型切片3初一秋季·第5讲·基础-提高班·教师版⑵瑞士中学教师巴尔末成功地从光谱数据95,1612,2521,3632,…中得到巴尔末公式,从而打开了光谱奥妙的大门.请你按这种规律写出第八个数据是 .⑶找规律,并按规律填上第五个数:357924816--,,,, ,第n 个数为: . (n 为正整数)⑷有一列数12-,25,310-,417,…,那么第7个数是 .第n 个数为 . (n 为正整数)(5)一组按规律排列的式子:2b a -,52b a ,83b a -,114b a,…(0ab ≠),其中第7个式子是 ,第n 个式子是 .(n 为正整数)【解析】 ⑴ 212k k -; (2) 10096, ⑶1132-,21(1)2n n n +-;⑷ 750-,2(1)1nn n -+ ;(5)207b a -,31(1)n n nb a --.【例2】 ⑴将杨辉三角中的每一个数都换成分数,得到一个如图所示的分数三角形,称为莱布尼茨三角形,若用有序数对(),m n 表示第m 行,从左到右第n 个数,如()4,3表示分数112.那么()9,2表示的分数是 . 1112211136311114121241111152030205(2) 正整数按图的规律排列. 请写出第20行第21列的数字: .数表的规律4初一秋季·第5讲·基础-提高班·教师版⑶按一定的规律排列成的数表如图所示.①当“X”型框中间数字为15时,框中五个数的和为 .当“X”型框中间数字为-57时,框中五个数的和为 .②如果设“X”型框中间的数为a ,请用含a 的代数式表示“X”型框中五个数的和; ③若将“X”型框上下左右移动,所框住的五个数之和能等于-285吗?若能,请求出这-13 -5 7 -9 11 -13 15 -17 19 -21 23 -25 27 -29 31 -33 35 -37 39 -41 43 -45 47 -49 51 -53 55 -57 59 -61 63 -65 67 -69 71 ………………【解析】 ⑴172⑵ 420;观察可得规律: 第一行第二列的数:212=⨯;第二行第三列的数:623=⨯; 第三行第四列的数:1234=⨯; ……第n 行第1n +列的数:(1)n n +故可得第20行第21列的数为:2021420⨯=.(3)①-45,171 ②-3a ③不能,中间数字应该为95,但是95却在最后一列第一行 第二行 第三行 第四行 第五行 第一列第二列 第三列 第四列 第五列 1 2 5 10 17 ... 4 3 6 11 18 ... 9 8 7 12 19 ... 16 15 14 13 20 (25)232221………5初一秋季·第5讲·基础-提高班·教师版【例3】 ⑴ 下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,第3个图案由 个基础图形组成,……,第n (n 是正整数)个 图案由 个基础图形组成.⑵观察下列图形:它们是按照一定规律排列的,依照此规律,第9个图形中共有个★,第n 个图形有 个★.⑶ 图1是一个三角形,分别连接这个三角形三边的中点得到图2,再分别连接图2中间小三角形三边的中点,得到图3.图3图2图1① 图2有 个三角形;图3有 个三角形;② 按上面的方法继续下去,第n 个图形中有多少个三角形?⑷如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是 .【解析】 ⑴ 10,31n +; ⑵;28,3n+1;⑶ ①5,9.② 43n -. ⑷(2)n n +或22n n +或2(1)1n +-;算式的规律图形的规律第1个图形 第2个图形 第3个图形 第4个图形6初一秋季·第5讲·基础-提高班·教师版【例4】 观察下列等式:①23a a +=;②65a a +=;③127a a+=;④209a a +=…;则根据此规律第6个等式为 ,第n 个等式为 .【解析】 1342=+aa ; 122+=++n a n n a .一般的以计算机程序为背景的新型求值题,解这类题的关键是弄清计算机程序与数学表达式之间的关系.【例5】 ⑴ 如下图,输入23x =-,则输出值y 是 .y=-x +4(x >1)y=x +4(x ≤1)输出 y输入 x⑵ 如下图所示是计算机程序计算,若开始输入1x =-,则最后输出的结果是 .YES NO输出结果<-5计算1+x -2x 2输入x 的值⑶ 如图所示的运算程序中,若开始输入的x 值为48,我们发现第1次输出的结果为24, 第2次输出的结果为12,……,第2013次输出的结果为 .x +3x 2x 为奇数x 为偶数输出输入x⑷ 按下面的程序计算,若开始输入的值x 为正整数,最后输出的结果为853,试求出满足条件的x 的所有值.程序运算思路导航7初一秋季·第5讲·基础-提高班·教师版>800输出结果是否将值赋给x ,再次运算计算4x +1的值输入x【解析】 ⑴5-;此程序为选择式,因91x =-≤,故4945y x =+=-+=-.⑵ 9-;经过第一次程序运算得2-,因为25->-,需要返回循环;经第二次运算得9-,因为95-<-,此程序结束,故输出结果为9-. ⑶ 6.(提示:利用循环,多进行几次运算.)⑷ 由题意:()85314213>0-÷=,()2131453>0-÷=,()531413>0-÷=,()13143>0-÷=,()1314>02-÷=∴只有213,53,13,3符合题意.(也可用方程思想理解:∵ x 为正整数, ∴ 415x +≥. 当41853x +=时,213x =. 当41213x +=时,53x =. 当4153x +=时,13x =. 当4113x +=时,3x =.综上所述,213x =或53x =或13x =或3x =).【例6】 阅读右面的框图并回答下列问题: (1)若A 为785,则E=_____________;(2)按框图流程,取不同的三位数A ,所得E 的值都相同吗?如果相同,请说明理由;如果不同,请求出E 的所有可能的值;(3)将框图中的第一步变为“任意写一个个位数字不为0的三位数A ,它的百位数字减去个位数字所得的差大于..2.”,其余的步骤不变,请猜想E 的值是否为定值?并对你猜想的结论加以证明. 【解析】 ⑴E =1089; ⑵ E 的值都相同.理由如下:设A =100a+10b +c 且a -c =2,则B =100c +10b + a .∴C =A -B =(100a +10b +c )-(100c +10b + a )=99a -99c =99(a -c )=99×2=198. ∴D =891.∴E =C +D =198+891=1089. (3) E =1089.8初一秋季·第5讲·基础-提高班·教师版证法1:设A =100a +10b +c 且a -c >2,则B =100c +10b + a .∴C =A -B =(100a +10b +c )-(100c +10b + a )=100(a -c )+(c -a )=100(a -c -1)+10×9+(10+c -a ) . ∴D =100(10+c -a ) +10×9+ (a -c -1) .∴E =C +D =[100(a -c -1)+10×9+(10+c -a )]+[ 100(10+c -a ) +10×9+ (a -c -1)]=1089.定义新运算⑴基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、运算律进行运算.⑵注意事项:①新的运算不一定符合运算律,特别注意运算顺序. ②每个新定义的运算符号只能在本题中使用.【例7】 ⑴现定义两种新运算∆∇、,对于任意两个整数a 、b ,都有:1a b a b ∆=+-, 1b a b a ∇=-.试求:(∆∆∇(34)21)的值.⑵ 用“×”定义新运算:对于任意a b ,,都有a ×b 2a b =-. 例如,4×27479=-=,那么5×3= ; 当m 为有理数时,m ×(1-×2)= .⑶ 对于正整数a ,b ,c ,d ,规定a b ad bc c d=-,若1134bd <<,则b d += .⑷ 定义:a 是不为1的有理数,我们把11a -称为a 的差倒数....如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知113a =-, ① 2a 是1a 的差倒数,则2a = ; ② 3a 是2a 的差倒数,则3a = ;③ 4a 是3a 的差倒数,则4a = ,…,依此类推,则2009a = .【解析】 ⑴ 6;⑵ 22,21m +;⑶由题意得42bd -=,故2bd =,又b d ,为正整数,所以3b d +=.定义新运算思路导航9初一秋季·第5讲·基础-提高班·教师版⑷ ①34;② 4;③ 13-;34. 【点评】 一个值得注意的问题是:定义一个新运算,这个新运算常常不满足加法、乘法所满足的运算律,因此在没有确定新运算是否具有这些性质之前,不能运用这些运算律来解题.【选讲题】【例8】 (1)右图为手的示意图,在各个手指间标记字母A B C D ,,,.请你按图中箭头所指方向(即A B C D C B A B →→→→→→→C →→…的方式)从A 开始数连续的正整数1234,,,,…,当数到12时,对应的字母是_______;当字母C 第201次出现时,恰好数到的数是 ;当字母C 第21n +次出现时(n 为正整数),恰好数到的数是 (用含n 的代数式表示).【解析】 B ,603,63n + . (2)数1234,,,,a a a a 满足下列条件:10a =,211a a =-+ ,322a a =-+,433a a =-+,则2013a 的值为 .【解析】 1006(3)如图,将一张正方形纸片,剪成四个大小形状一样的小正方形,然后将其中的一个小正方形再按同样的方法剪成四个小正方形,再将其中的一个小正方形剪成四个小正方形,如此循环进行下去:⑴ 填表:⑵ 如果剪了100次,共剪出多少个小正方形? ⑶ 如果剪n 次,共剪出多少个小正方形?【解析】 ⑴ 如表.剪的次数1 23 4 5 正方形个数 47101316⑵ 如果剪了100次,共剪出11003301+⨯=个小正方形; ⑶ 如果剪n 次,共剪出13n +个小正方形.剪的次数1 2 3 4 5 正方形个数 4 710 初一秋季·第5讲·基础-提高班·教师版训练1. 下面是一组按规律排列的数:1,2,4,8,16,……,第2002个数应该是( )A .20022B .200221-C .20012D .以上答案均不对【解析】 C.训练2. 根据右图所示的程序计算变量y 的值,若输入自变量x 的值为32,则输出的结果是 .(汇文中学期中) 【解析】 72-.训练3. 读一读:式子“12345100++++++”表示1开始的100个连续自然数的和.由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“12345100++++++”表示为1001n n =∑,这里“∑”是求和符号.例如:1357999++++++,即从1开始的100以内的连续奇数的和,可表示为50121n n =-∑(); 又如333333333312345678910+++++++++可表示为1031n n =∑.通过对以上材料的阅读,请解答下列问题.⑴ 246810100++++++(即从2开始的100以内的连续偶数的和)用求和符号可表示为 . ⑵ 计算5211n n =-=∑() .(填写最后的计算结果)(北大附中期中)【解析】 ⑴ 5012n n =∑;⑵ 50,52222221(1(11(21(31(41(5150n n=-=-----=∑))+)+)+)+)训练4. 在某种特制的计算器有一个按键★★★,它代表运算2a b a b++-.例如:输入顺序 1,★★★,2-,ENTER=屏幕显示()1***2-2上述操作即是求()()12122+-+--的值,运算结果为2.回答下面的问题:y=-x -2(1<x ≤2)y=x 2(-1≤x ≤1)y=x -2(-2≤x <-1)输出y 的值输入x 的值11初一秋季·第5讲·基础-提高班·教师版⑴ 小明的输入顺序为5-,★★★,7,ENTER=,运算结果是 .⑵ 小杰的输入顺序为100101,★★★,165-,ENTER=,★★★,1101-,ENTER=,★★★,6665-,ENTER=,★★★,101100,ENTER=,运算结果是 .⑶ 若在20112012-,20102011-,20092010-,……,12-,0,12,……,20092010,20102011这些数中,任意选取两个作为a 、b 的值,进行★★★运算,则所有的运算结果中最大的值是 .(一零一期中)【解析】 ⑴ 7⑵6665⑶ 2011201212 初一秋季·第5讲·基础-提高班·教师版数列的规律【练习1】 ⑴ 观察一列有规律的数:4,8,16,32,…,它的第2007个数是( )A .20072B .200721-C .20082D .20062⑵ 观察下列单项式,2x ,25x -,341017x x -,,……根据你发现的规律写出第5个式子是 ,第8个式子是 ,第n 个式子是 .(n 为正整数)【解析】 ⑴ C . ⑵ 582665x x -, ,12(1)(1)n n n x +-+.数表的规律【练习2】 下面是由自然数排成的数表,分为A ,B ,C 三列,按这个规律,1999在第 列。
学而思七年级数学培优教材word版(全年级章节培优)
第1讲 与有理数有关的概念考点·方法·破译1.了解负数的产生过程,能够用正、负数表示具有相反意义的量. 2.会进行有理的分类,体会并运用数学中的分类思想.3.理解数轴、相反数、绝对值、倒数的意义.会用数轴比较两个有理数的大小,会求一个数的相反数、绝对值、倒数. 经典·考题·赏析【例1】写出下列各语句的实际意义⑴向前-7米⑵收人-50元⑶体重增加-3千克【解法指导】用正、负数表示实际问题中具有相反意义的量.而相反意义的量包合两个要素:一是它们的意义相反.二是它们具有数量.而且必须是同类两,如“向前与自后、收入与支出、增加与减少等等”解:⑴向前-7米表示向后7米⑵收入-50元表示支出50元⑶体重增加-3千克表示体重减小3千克.【变式题组】01.如果+10%表示增加10%,那么减少8%可以记作( ) A . -18% B . -8% C . +2% D . +8% 02.(金华)如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为( ) A . -5吨 B . +5吨 C . -3吨 D . +3吨 03.(山西)北京与纽约的时差-13(负号表示同一时刻纽约时间比北京晚).如现在是北京时间l5:00,纽约时问是____【例2】在-227,π,0.033.3这四个数中有理数的个数( )A . 1个B . 2个C . 3个D . 4个【解法指导】有理数的分类:⑴按正负性分类,有理数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负份数;按整数、分数分类,有理数⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数0负整数正分数分数负分数;其中分数包括有限小数和无限循环小数,因为π=3.1415926…是无限不循环小数,它不能写成分数的形式,所以π不是有理数,-227是分数0.033.3是无限循环小数可以化成分数形式,0是整数,所以都是有理数,故选C . 【变式题组】01.在7,0.1 5,-12,-301.31.25,-18,100.l ,-3 001中,负分数为 ,整数为 ,正整数 .02.(河北秦皇岛)请把下列各数填入图中适当位置 15,-19,215,-138,0.1.-5.32,123, 2.333【例3】(宁夏)有一列数为-1,12,-13,14.-15,16,…,找规律到第2007个数是 .【解法指导】从一系列的数中发现规律,首先找出不变量和变量,再依变量去发现规律.击归纳去猜想,然后进行验证.解本题会有这样的规律:⑴各数的分子部是1;⑵各数的分母依次为1,2,3,4,5,6,…⑶处于奇数位置的数是负数,处于偶数位置的数是正数,所以第2007个数的分子也是1.分母是2007,并且是一个负数,故答案为-12007.【变式题组】 01.(湖北宜宾)数学解密:第一个数是3=2 +1,第二个数是5=3 +2,第三个数是9=5+4,第四十数是17=9+8…观察并精想第六个数是 . 02.(毕节)毕选哥拉斯学派发明了一种“馨折形”填数法,如图则?填____. 03.(茂名)有一组数l ,2,5,10,17,26…请观察规律,则第8个数为____. 【例4】(2008年河北张家口)若l +m 2的相反数是-3,则m 的相反数是____.【解法指导】理解相反数的代数意义和几何意义,代数意义只有符号不同的两个数叫互为相反数.几何意义:在数轴上原点的两旁且离原点的距离相等的两个点所表示的数叫互为相反数,本题m2=-4,m =-8【变式题组】 01.(四川宜宾)-5的相反数是( ) A .5 B . 15 C . -5 D . -1502.已知a 与b 互为相反数,c 与d 互为倒数,则a +b +cd =______03.如图为一个正方体纸盒的展开图,若在其中的三个正方形A 、B 、C 内分别填人适当的数,使得它们折成正方体.若相对的面上的两个数互为相反数,则填人正方形A 、B 、C 内的三个数依次为( )A . - 1 ,2,0B . 0,-2,1C . -2,0,1D . 2,1,0 【例5】(湖北)a 、b 为有理数,且a >0,b <0,|b|>a ,则a,b 、-a,-b 的大小顺序是( ) A . b <-a <a <-b B . –a <b <a <-b C . –b <a <-a <b D . –a <a <-b <b【解法指导】理解绝对值的几何意义:一个数的绝对值就是数轴上表示a 的点到原点的距离,即|a|,用式子表示为|a|=0)0(0)(0)a a a a a >⎧⎪=⎨⎪-<⎩(.本题注意数形结合思想,画一条数轴标出a 、b,依相反数的意义标出-b,-a,故选A .【变式题组】01.推理①若a =b ,则|a|=|b|;②若|a|=|b|,则a =b ;③若a≠b ,则|a|≠|b|;④若|a|≠|b|,则a≠b ,其中正确的个数为( )A . 4个B . 3个C . 2个D . 1个02.a 、b 、c 三个数在数轴上的位置如图,则|a|a +|b|b +|c|c = .03.a 、b 、c 为不等于O 的有理散,则a |a|+b |b|+c|c|的值可能是____.【例6】(江西课改)已知|a -4|+|b -8|=0,则a+bab的值.【解法指导】本题主要考查绝对值概念的运用,因为任何有理数a 的绝对值都是非负数,即|a|≥0.所以|a -4|≥0,|b -8|≥0.而两个非负数之和为0,则两数均为0.解:因为|a -4|≥0,|b -8|≥0,又|a -4|+|b -8|=0,∴|a -4|=0,|b -8|=0即a -4=0,b -8=0,a =4,b =8.故a+b ab =1232=38【变式题组】01.已知|a|=1,|b|=2,|c|=3,且a >b >c ,求a +b +C . 02.(毕节)若|m -3|+|n +2|=0,则m +2n 的值为( ) A . -4 B . -1 C . 0 D . 403.已知|a|=8,|b|=2,且|a -b|=b -a ,求a 和b 的值 【例7】(第l8届迎春杯)已知(m +n)2+|m|=m ,且|2m -n -2|=0.求mn 的值.【解法指导】本例关键是通过分析(m +n)2+|m|的符号,挖掘出m 的符号特征,从而把问题转化为(m +n)2=0,|2m -n -2|=0,找到解题途径. 解:∵(m +n)2≥0,|m|≥O∴(m +n)2+|m|≥0,而(m +n)2+|m|=m ∴ m≥0,∴(m +n)2+m =m ,即(m +n)2=0 ∴m +n =O ① 又∵|2m -n -2|=0 ∴2m -n -2=0 ②由①②得m =23,n =-23,∴ mn =-49【变式题组】01.已知(a +b)2+|b +5|=b +5且|2a -b –l|=0,求a -B . 02.(第16届迎春杯)已知y =|x -a|+|x +19|+|x -a -96|,如果19<a <96.a≤x≤96,求y 的最大值. 演练巩固·反馈提高 01.观察下列有规律的数12,16,112,120,130,142…根据其规律可知第9个数是( )A .156 B . 172 C . 190 D . 111002.(芜湖)-6的绝对值是( )A . 6B . -6C . 16D . -1603.在-227,π,8..0.3四个数中,有理数的个数为( )A . 1个B . 2个C . 3个D . 4个 04.若一个数的相反数为a +b ,则这个数是( )A . a -bB . b -aC . –a +bD . –a -b05.数轴上表示互为相反数的两点之间距离是6,这两个数是( ) A . 0和6 B . 0和-6 C . 3和-3 D . 0和3 06.若-a 不是负数,则a( )A . 是正数B . 不是负数C . 是负数D . 不是正数 07.下列结论中,正确的是( )①若a =b,则|a|=|b| ②若a =-b,则|a|=|b| ③若|a|=|b|,则a =-b ④若|a|=|b|,则a =bA . ①②B . ③④C . ①④D . ②③08.有理数a 、b 在数轴上的对应点的位置如图所示,则a 、b ,-a ,|b|的大小关系正确 的是( )A . |b|>a >-a >bB . |b| >b >a >-aC . a >|b|>b >-aD . a >|b|>-a >b09.一个数在数轴上所对应的点向右移动5个单位后,得到它的相反数的对应点,则这个数是____. 10.已知|x +2|+|y +2|=0,则xy =____. 11.a 、b 、c 三个数在数轴上的位置如图,求|a|a+|b|b +|abc|abc +|c|c12.若三个不相等的有理数可以表示为1、a 、a +b 也可以表示成0、b 、ba 的形式,试求a 、b 的值.13.已知|a|=4,|b|=5,|c|=6,且a >b >c ,求a +b -C .14.|a|具有非负性,也有最小值为0,试讨论:当x 为有理数时,|x -l|+|x -3|有没有最小值,如果有,求出最小值;如果没有,说明理由.15.点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为|AB|.当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1,|AB|=|OB|=|b|=|a -b| 当A 、B 两点都不在原点时有以下三种情况:①如图2,点A 、B 都在原点的右边|AB|=|OB|-|OA|=|b|-|a|=b -a =|a -b|;②如图3,点A 、B 都在原点的左边,|AB|=|OB|-|OA|=|b|-|a|=-b -(-a)=|a -b|; ③如图4,点A 、B 在原点的两边,|AB|=|OB|-|OA|=|b|-|a|=-b -(-a )=|a -b|; 综上,数轴上A 、B 两点之间的距离|AB|=|a -b|.回答下列问题:⑴数轴上表示2和5的两点之间的距离是 , 数轴上表示-2和-5的两点之间的距离是 , 3 ,数轴上表示1和-3的两点之间的距离是 4 ;⑵数轴上表示x 和-1的两点分别是点A 和B ,则A 、B 之间的距离是 |x+1| ,如果|AB|=2,那么x = 1或3;⑶当代数式|x +1|+|x -2|取最小值时,相应的x 的取值范围是 7 .培优升级·奥赛检测01.(重庆市竞赛题)在数轴上任取一条长度为199919的线段,则此线段在这条数轴上最多能盖住的整数点的个数是( )A . 1998B . 1999C . 2000D . 2001 02.(第l8届希望杯邀请赛试题)在数轴上和有理数a 、b 、c 对应的点的位置如图所示,有下列四个结论:①abc <0;②|a -b|+|b -c|=|a -c|;③(a -b )(b -c)(c -a)>0;④|a|<1-bc .其中正确的结论有( ) A . 4个 B . 3个 C . 2个 D . 1个03.如果a 、b 、c 是非零有理数,且a +b +c =0.那么a |a|+b |b|+c |c|+abc|abc|的所有可能的值为( )A . -1B . 1或-1C . 2或-2D . 0或-2 04.已知|m|=-m ,化简|m -l|-|m -2|所得结果( )A . -1B . 1C . 2m -3D . 3- 2m05.如果0<p <15,那么代数式|x -p|+|x -15|+|x -p -15|在p ≤x ≤15的最小值( ) A . 30 B . 0 C . 15 D . 一个与p 有关的代数式 06.|x +1|+|x -2|+|x -3|的最小值为 .07.若a >0,b <0,使|x -a|+|x -b|=a -b 成立的x 取值范围 . 08.(武汉市选拔赛试题)非零整数m 、n 满足|m|+|n|-5=0所有这样的整数组(m ,n)共有 组 09.若非零有理数m 、n 、p 满足|m|m +|n|n +|p|p =1.则2mnp |3mnp|= .10.(19届希望杯试题)试求|x -1|+|x -2|+|x -3|+…+|x -1997|的最小值.11.已知(|x +l|+|x -2|)(|y -2|+|y +1|)(|z -3|+|z +l|)=36,求x +2y +3的最大值和最小值.12.电子跳蚤落在数轴上的某点k0,第一步从k0向左跳1个单位得k1,第二步由k1向右跳2个单位到k2,第三步由k2向左跳3个单位到k3,第四步由k3向右跳4个单位到k4…按以上规律跳100步时,电子跳蚤落在数轴上的点k100新表示的数恰好19.94,试求k0所表示的数.13.某城镇,沿环形路上依次排列有五所小学,它们顺扶有电脑15台、7台、1l台、3台,14台,为使各学校里电脑数相同,允许一些小学向相邻小学调出电脑,问怎样调配才能使调出的电脑总台数最小?并求出调出电脑的最少总台数.第02讲有理数的加减法考点·方法·破译1.理解有理数加法法则,了解有理数加法的实际意义.2.准确运用有理数加法法则进行运算,能将实际问题转化为有理数的加法运算.3.理解有理数减法与加法的转换关系,会用有理数减法解决生活中的实际问题.4.会把加减混合运算统一成加法运算,并能准确求和.经典·考题·赏析【例1】(河北唐山)某天股票A开盘价18元,上午11:30跌了1.5元,下午收盘时又涨了0.3元,则股票A这天的收盘价为()A.0.3元B.16.2元C.16.8元D.18元【解法指导】将实际问题转化为有理数的加法运算时,首先将具有相反意义的量确定一个为正,另一个为负,其次在计算时正确选择加法法则,是同号相加,取相同符号并用绝对值相加,是异号相加,取绝对值较大符号,并用较大绝对值减去较小绝对值.解:18+(-1.5)+(0.3)=16.8,故选C.【变式题组】01.今年陕西省元月份某一天的天气预报中,延安市最低气温为-6℃,西安市最低气温2℃,这一天延安市的最低气温比西安低()A.8℃B.-8℃C.6℃D.2℃02.(河南)飞机的高度为2400米,上升250米,又下降了327米,这是飞机的高度为__________ 03.(浙江)珠穆朗玛峰海拔8848m,吐鲁番海拔高度为-155 m,则它们的平均海拔高度为__________ 【例2】计算(-83)+(+26)+(-17)+(-26)+(+15)【解法指导】应用加法运算简化运算,-83与-17相加可得整百的数,+26与-26互为相反数,相加为0,有理数加法常见技巧有:⑴互为相反数结合一起;⑵相加得整数结合一起;⑶同分母的分数或容易通分的分数结合一起;⑷相同符号的数结合一起.解:(-83)+(+26)+(-17)+(-26)+(+15)=[(-83)+(-17)]+[(+26)+(-26)]+15=(-100)+15=-85【变式题组】01.(-2.5)+(-312)+(-134)+(-114)02.(-13.6)+0.26+(-2.7)+(-1.06)03.0.125+314+(-318)+1123+(-0.25)【例3】计算111112233420082009++++⨯⨯⨯⨯【解法指导】依111(1)1n n n n =-++进行裂项,然后邻项相消进行化简求和.解:原式=1111111(1)()()()2233420082009-+-+-++-=111111112233420082009-+-+-++-=112009-=20082009【变式题组】01.计算1+(-2)+3+(-4)+ … +99+(-100)02.如图,把一个面积为1的正方形等分成两个面积为12的长方形,接着把面积为12的长方形等分成两个面积为14的正方形,再把面积为14的正方形等分成两个面积为18的长方形,如此进行下去,试利用图形揭示的规律计算11111111248163264128256+++++++=__________.【例4】如果a <0,b >0,a +b <0,那么下列关系中正确的是( ) A .a >b >-b >-a B .a >-a >b >-b C .b >a >-b >-a D .-a >b >-b >a【解法指导】紧扣有理数加法法则,由两加数及其和的符号,确定两加数的绝对值的大小,然后根据相反数的关系将它们在同一数轴上表示出来,即可得出结论. 解:∵a <0,b >0,∴a +b 是异号两数之和又a +b <0,∴a 、b 中负数的绝对值较大,∴| a |>| b |将a 、b 、-a 、-b 表示在同一数轴上,如图,则它们的大小关系是-a >b >-b >a 【变式题组】01.若m >0,n <0,且| m |>| n |,则m +n ________ 0.(填>、<号)02.若m <0,n >0,且| m |>| n |,则m +n ________ 0.(填>、<号)03.已知a <0,b >0,c <0,且| c |>| b |>| a |,试比较a 、b 、c 、a +b 、a +c 的大小【例5】425-(-33311)-(-1.6)-(-21811)【解法指导】有理数减法的运算步骤:⑴依有理数的减法法则,把减号变为加号,并把减数变为它的相反数;⑵利用有理数的加法法则进行运算.解:425-(-33311)-(-1.6)-(-21811)=425+33311+1.6+21811=4.4+1.6+(33311+21811)=6+55=61【变式题组】01.21511 ()()()()(1) 32632 --+---+-+02.434-(+3.85)-(-314)+(-3.15)03.178-87.21-(-43221)+1531921-12.79【例6】试看下面一列数:25、23、21、19…⑴观察这列数,猜想第10个数是多少?第n个数是多少?⑵这列数中有多少个数是正数?从第几个数开始是负数?⑶求这列数中所有正数的和.【解法指导】寻找一系列数的规律,应该从特殊到一般,找到前面几个数的规律,通过观察推理、猜想出第n个数的规律,再用其它的数来验证.解:⑴第10个数为7,第n个数为25-2(n-1)⑵∵n=13时,25-2(13-1)=1,n=14时,25-2(14-1)=-1故这列数有13个数为正数,从第14个数开始就是负数.⑶这列数中的正数为25,23,21,19,17,15,13,11,9,7,5,3,1,其和=(25+1)+(23+3)+…+(15+11)+13=26×6+13=169【变式题组】01.(杭州)观察下列等式1-12=12,2-25=85,3-310=2710,4-417=6417…依你发现的规律,解答下列问题.⑴写出第5个等式;⑵第10个等式右边的分数的分子与分母的和是多少?02.观察下列等式的规律9-1=8,16-4=12,25-9=16,36-16=20⑴用关于n(n≥1的自然数)的等式表示这个规律;⑵当这个等式的右边等于2008时求n.【例7】(第十届希望杯竞赛试题)求12+(13+23)+(14+24+34)+(15+25+35+45)+…+(150+250+…+4850+4950)【解法指导】观察式中数的特点发现:若括号内在加上相同的数均可合并成1,由此我们采取将原式倒序后与原式相加,这样极大简化计算了.解:设S=12+(13+23)+(14+24+34)+…+(150+250+…+4850+4950)则有S=12+(23+13)+(34+24+14)+…+(4950+4850+…+250+150)将原式和倒序再相加得2S=12+12+(13+23+23+13)+(14+24+34+34+24+14)+…+(150+250+…+4850+4950+4950+4850+…+250+150)即2S=1+2+3+4+…+49=49(491)2⨯+=1225∴S=1225 2【变式题组】01.计算2-22-23-24-25-26-27-28-29+21002.(第8届希望杯试题)计算(1-12-13-…-12003)(12+13+14+…+12003+12004)-(1-12-13-…-12004)(12+13+14+…+12003)演练巩固·反馈提高01.m是有理数,则m+|m|()A.可能是负数B.不可能是负数C.比是正数D.可能是正数,也可能是负数02.如果|a|=3,|b|=2,那么|a+b|为()A. 5 B.1 C.1或5 D.±1或±503.在1,-1,-2这三个数中,任意两数之和的最大值是()A. 1 B.0 C.-1 D.-304.两个有理数的和是正数,下面说法中正确的是()A.两数一定都是正数B.两数都不为0C.至少有一个为负数D.至少有一个为正数05.下列等式一定成立的是()A.|x|-x =0 B.-x-x =0 C.|x|+|-x| =0 D.|x|-|x|=006.一天早晨的气温是-6℃,中午又上升了10℃,午间又下降了8℃,则午夜气温是()A.-4℃B.4℃C.-3℃D.-5℃07.若a<0,则|a-(-a)|等于()A.-a B.0 C.2a D.-2a08.设x是不等于0的有理数,则||||2x xx值为()A.0或1 B.0或2 C.0或-1 D.0或-2 09.(济南)2+(-2)的值为__________10.用含绝对值的式子表示下列各式:⑴若a<0,b>0,则b-a=__________,a-b=__________⑵若a>b>0,则|a-b|=__________⑶若a<b<0,则a-b=__________11.计算下列各题:⑴23+(-27)+9+5 ⑵-5.4+0.2-0.6+0.35-0.25⑶-0.5-314+2.75-712⑷33.1-10.7-(-22.9)-|-2310|12.计算1-3+5-7+9-11+…+97-9913.某检修小组乘汽车沿公路检修线路,规定前进为正,后退为负,某天从A地出发到收工时所走的路线(单位:千米)为:+10,-3,+4,-2,-8,+13,-7,+12,+7,+5⑴问收工时距离A地多远?⑵若每千米耗油0.2千克,问从A地出发到收工时共耗油多少千克?14.将1997减去它的12,再减去余下的13,再减去余下的14,再减去余下的15……以此类推,直到最后减去余下的11997,最后的得数是多少?15.独特的埃及分数:埃及同中国一样,也是世界著名的文明古国,古代埃及人处理分数与众不同,他们一般只使用分子为1的分数,例如13+115来表示25,用14+17+128表示37等等.现有90个埃及分数:12,13,14,15,…190,191,你能从中挑出10个,加上正、负号,使它们的和等于-1吗?培优升级·奥赛检测534333231301.(第16届希望杯邀请赛试题)1234141524682830-+-+-+-+-+-+-等于( ) A .14B .14-C .12D .12-02.自然数a 、b 、c 、d 满足21a +21b +21c +21d =1,则31a +41b +51c +61d 等于( ) A .18B .316C .732D .156403.(第17届希望杯邀请赛试题)a 、b 、c 、d 是互不相等的正整数,且abcd =441,则a +b +c +d 值是( ) A .30 B .32 C .34 D .3604.(第7届希望杯试题)若a =1995199519961996,b =1996199619971997,c =1997199719981998,则a 、b 、c 大小关系是( ) A .a <b <cB .b <c <aC .c <b <aD .a <c <b05.11111(1)(1)(1)(1)(1)1324351998200019992001+++++⨯⨯⨯⨯⨯的值得整数部分为( )A .1B .2C .3D .406.(-2)2004+3×(-2)2003的值为( ) A .-22003 B .22003 C .-22004 D .2200407.(希望杯邀请赛试题)若|m|=m +1,则(4m +1)2004=__________08.12+(13+23)+(14+24+34)+ … +(160+260+…+5960)=__________ 09.19191976767676761919-=__________ 10.1+2-22-23-24-25-26-27-28-29+210=__________ 11.求32001×72002×132003所得数的末位数字为__________ 12.已知(a +b)2+|b +5|=b +5,且|2a -b -1|=0,求aB .13.计算(11998-1)(11997-1) (11996-1) … (11001-1) (11000-1)14.请你从下表归纳出13+23+33+43+…+n3的公式并计算出13+23+33+43+…+1003的值.第03讲有理数的乘除、乘方考点·方法·破译1.理解有理数的乘法法则以及运算律,能运用乘法法则准确地进行有理数的乘法运算,会利用运算律简化乘法运算.2.掌握倒数的概念,会运用倒数的性质简化运算.3.了解有理数除法的意义,掌握有理数的除法法则,熟练进行有理数的除法运算.4.掌握有理数乘除法混合运算的顺序,以及四则混合运算的步骤,熟练进行有理数的混合运算. 5.理解有理数乘方的意义,掌握有理数乘方运算的符号法则,进一步掌握有理数的混合运算.经典·考题·赏析【例1】计算⑴11()24⨯-⑵1124⨯⑶11()()24-⨯-⑷25000⨯⑸3713 ()()(1)() 5697 -⨯-⨯⨯-【解法指导】掌握有理数乘法法则,正确运用法则,一是要体会并掌握乘法的符号规律,二是细心、稳妥、层次清楚,即先确定积的符号,后计算绝对值的积.解:⑴11111 ()() 24248⨯-=-⨯=-⑵11111() 24248⨯=⨯=⑶11111 ()()() 24248 -⨯-=+⨯=⑷250000⨯=⑸3713371031 ()()(1)()() 569756973 -⨯-⨯⨯-=-⨯⨯⨯=-【变式题组】01.⑴(5)(6)-⨯-⑵11()124-⨯⑶(8)(3.76)(0.125)-⨯⨯-⑷(3)(1)2(6)0(2)-⨯-⨯⨯-⨯⨯-⑸111112(2111)42612-⨯-+-02.24(9)5025-⨯3.1111(2345)()2345⨯⨯⨯⨯---04.111 (5)323(6)3333 -⨯+⨯+-⨯【例2】已知两个有理数a、b,如果ab<0,且a+b<0,那么()A.a>0,b<0 B.a<0,b>0C.a、b异号D.a、b异号且负数的绝对值较大【解法指导】依有理数乘法法则,异号为负,故a、b异号,又依加法法则,异号相加取绝对值较大数的符号,可得出判断.解:由ab<0知a、b异号,又由a+b<0,可知异号两数之和为负,依加法法则得负数的绝对值较大,选D.【变式题组】01.若a+b+c=0,且b<c<0,则下列各式中,错误的是()A.a+b>0 B.b+c<0 C.ab+ac>0 D.a+bc>002.已知a+b>0,a-b<0,ab<0,则a___________0,b___________0,|a|___________|b|.03.(山东烟台)如果a+b<0,ba>,则下列结论成立的是()A.a>0,b>0 B.a<0,b<0 C.a>0,b<0 D.a<0,b>0 04.(广州)下列命题正确的是()A.若ab>0,则a>0,b>0 B.若ab<0,则a<0,b<0C.若ab=0,则a=0或b=0 D.若ab=0,则a=0且b=0 【例3】计算⑴(72)(18)-÷-⑵11(2)3÷-⑶13()()1025-÷⑷0(7)÷-【解法指导】进行有理数除法运算时,若不能整除,应用法则1,先把除法转化成乘法,再确定符号,然后把绝对值相乘,要注意除法与乘法互为逆运算.若能整除,应用法则2,可直接确定符号,再把绝对值相除.解:⑴(72)(18)72184 -÷-=÷=⑵1733 1(2)1()1()3377÷-=÷-=⨯-=-⑶131255 ()()()() 10251036 -÷=-⨯=-⑷0(7)0÷-=【变式题组】01.⑴(32)(8)-÷-⑵112(1)36÷-⑶10(2)3÷-⑷13()(1)78÷-02.⑴12933÷⨯⑵311()(3)(1)3524-⨯-÷-÷⑶530()35÷-⨯03.113()(10.2)(3) 245÷-+-÷⨯-【例4】(茂名)若实数a、b满足a ba b+=,则abab=___________.【解法指导】依绝对值意义进行分类讨论,得出a、b的取值范围,进一步代入结论得出结果.解:当ab>0,2(0,0)2(0,0)a ba ba ba b>>⎧+=⎨-<<⎩;当ab<0,a ba b+=,∴ab<0,从而abab=-1.【变式题组】01.若k是有理数,则(|k|+k)÷k的结果是()A.正数B.0 C.负数D.非负数02.若A.b都是非零有理数,那么aba ba b ab++的值是多少?03.如果x yx y+=,试比较xy-与xy的大小.【例5】已知223(2),1 x y=-=-⑴求2008xy的值;⑵求32008xy的值.【解法指导】na表示n个a相乘,根据乘方的符号法则,如果a为正数,正数的任何次幂都是正数,如果a是负数,负数的奇次幂是负数,负数的偶次幂是正数.解:∵223(2),1 x y=-=-⑴当2,1x y ==-时,200820082(1)2xy =-= 当2,1x y =-=-时,20082008(2)(1)2xy =-⨯-=- ⑵当2,1x y ==-时,332008200828(1)x y ==- 当2,1x y =-=-时,3320082008(2)8(1)x y -==--【变式题组】 01.(北京)若2(2)0m n m -+-=,则nm 的值是___________.02.已知x 、y 互为倒数,且绝对值相等,求()n nx y --的值,这里n 是正整数.【例6】(安徽)2007年我省为135万名农村中小学生免费提供教科书,减轻了农民的负担,135万用科学记数法表示为( )A .0.135×106B .1.35×106C .0.135×107D .1.35×107 【解法指导】将一个数表示为科学记数法的a×10n 的形式,其中a 的整数位数是1位.故答案选B . 【变式题组】 01.(武汉)武汉市今年约有103000名学生参加中考,103000用科学记数法表示为( ) A .1.03×105 B .0.103×105 C .10.3×104 D .103×103 02.(沈阳)沈阳市计划从2008年到2012年新增林地面积253万亩,253万亩用科学记数法表示正确的是( )A .25.3×105亩B .2.53×106亩C .253×104亩D .2.53×107亩 【例7】(上海竞赛)222222221299110050002200500010050009999005000k k k ++⋅⋅⋅++⋅⋅⋅+-+-+-+-+【解法指导】找出21005000k k -+的通项公式=22(50)50k -+原式=2222222222221299(150)50(250)50(50)50(9950)50k k ++⋅⋅⋅++⋅⋅⋅+-+-+-+-+ =222222222222199298[][](150)50(9950)50(250)50(9850)50++++⋅⋅⋅+-+-+-+-+ 222222222495150[](4950)50(5150)50(5050)50++-+-+-+=49222+1++⋅⋅⋅+个=99【变式题组】3333+++=( )2+4+6++10042+4+6++10062+4+6++10082+4+6++2006⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅A.31003B.31004C.1334D.1100002.(第10届希望杯试题)已知111111111. 2581120411101640+++++++=求11111111 2581120411101640---+--++的值.演练巩固·反馈提高01.三个有理数相乘,积为负数,则负因数的个数为()A.1个B.2个C.3个D.1个或3个02.两个有理数的和是负数,积也是负数,那么这两个数()A.互为相反数B.其中绝对值大的数是正数,另一个是负数C.都是负数D.其中绝对值大的数是负数,另一个是正数03.已知abc>0,a>0,ac<0,则下列结论正确的是()A.b<0,c>0 B.b>0,c<0 C.b<0,c<0 D.b>0,c>0 04.若|ab|=ab,则()A.ab>0 B.ab≥0 C.a<0,b<0 D.ab<005.若a、b互为相反数,c、d互为倒数,m的绝对值为2,则代数式a bm cdm+-+的值为()A.-3 B.1 C.±3 D.-3或106.若a>1a,则a的取值范围()A.a>1 B.0<a<1 C.a>-1 D.-1<a<0或a>107.已知a、b为有理数,给出下列条件:①a+b=0;②a-b=0;③ab<0;④1ab=-,其中能判断a、b互为相反数的个数是()A.1个B.2个C.3个D.4个08.若ab≠0,则a ba b+的取值不可能为()A.0 B.1 C.2 D.-209.1110(2)(2)-+-的值为()A.-2 B.(-2)21 C.0 D.-21010.(安徽)2010年一季度,全国城镇新增就业人数289万人,用科学记数法表示289万正确的是()A.2.89×107 B.2.89×106 C.2.89×105 D.2.89×10411.已知4个不相等的整数a、b、c、d,它们的积abcd=9,则a+b+c+d=___________.12.21221(1)(1)(1)n n n+--+-+-(n为自然数)=___________.13.如果2xy x y+=,试比较xy -与xy 的大小.14.若a 、b 、c 为有理数且1a b ca b c++=-,求abc abc的值.15.若a 、b 、c 均为整数,且321a b c a -+-=.求a c cb b a-+-+-的值.培优升级·奥赛检测01.已知有理数x 、y 、z 两两不相等,则,,x y y z z xy z z x x y ------中负数的个数是( )A .1个B .2个C .3个D .0个或2个02.计算12345211,213,217,2115,2131-=-=-=-=-=⋅⋅⋅归纳各计算结果中的个位数字规律,猜测201021-的个位数字是( )A .1B .3C .7D .5 03.已知23450ab c d e <,下列判断正确的是( )A .abcde <0B .ab2cd4e <0C .ab2cde <0D .abcd4e <004.若有理数x 、y 使得,,,xx y x y xy y +-这四个数中的三个数相等,则|y|-|x|的值是( )A .12-B .0C .12D .3205.若A =248163264(21)(21)(21)(21)(21)(21)(21)+++++++,则A -1996的末位数字是( ) A .0 B .1 C .7 D .906.如果20012002()1,()1a b a b +=--=,则20032003a b +的值是( ) A .2 B .1 C .0 D .-107.已知5544332222,33,55,66a b c d ====,则a 、b 、c 、d 大小关系是( )A .a >b >c >dB .a >b >d >cC .b >a >c >dD .a >d >b >c08.已知a 、b 、c 都不等于0,且a b c abca b c abc+++的最大值为m ,最小值为n ,则2005()m n +=___________.09.(第13届“华杯赛”试题)从下面每组数中各取一个数将它们相乘,那么所有这样的乘积的总和是___________.第一组:15,3,4.25,5.753-第二组:112,315- 第三组:52.25,,412-10.一本书的页码从1记到n ,把所有这些页码加起来,其中有一页码被错加了两次,结果得出了不正确的和2002,这个被加错了两次的页码是多少?11.(湖北省竞赛试题)观察按下列规律排成一列数:11,12,21,13,22,31,14,23,32,41,15,24,23,42,51,16,…(*),在(*)中左起第m 个数记为F(m),当F(m)=12001时,求m 的值和这m 个数的积.12.图中显示的填数“魔方”只填了一部分,将下列9个数:11,,1,2,4,8,16,32,6442填入方格中,使得所有行列及对角线上各数相乘的积相等,求x 的值.13.(第12届“华杯赛”试题)已知m 、n 都是正整数,并且111111(1)(1)(1)(1)(1)(1);2233A m m =-+-+⋅⋅⋅-+ 111111(1)(1)(1)(1)(1)(1).2233B n n =-+-+⋅⋅⋅-+证明:⑴11,;22m n A B m n ++==⑵126A B -=,求m 、n 的值.第04讲 整式 考点·方法·破译1.掌握单项式及单项式的系数、次数的概念.2.掌握多项式及多项式的项、常数项及次数等概念. 3.掌握整式的概念,会判断一个代数式是否为整式.4.了解整式读、写的约定俗成的一般方法,会根据给出的字母的值求多项式的值.经典·考题·赏析【例1】判断下列各代数式是否是单项式,如果不是请简要说明理由,如果是请指出它的系数与次数.【解法指导】理解单项式的概念:由数与字母的积组成的代数式,单独一个数或一个字母也是单项式,数字的次数为0,是常数,单项式中所有字母指数和叫单项式次数.解:⑴不是,因为代数式中出现了加法运算;⑵不是,因为代数式是与x的商;⑶是,它的系数为π,次数为2;⑷是,它的系数为32,次数为3.【变式题组】01.判断下列代数式是否是单项式02.说出下列单项式的系数与次数【例2】如果与都是关于x、y的六次单项式,且系数相等,求m、n的值.【解法指导】单项式的次数要弄清针对什么字母而言,是针对x或y或x、y等是有区别的,该题是针对x与y而言的,因此单项式的次数指x、y的指数之和,与字母m无关,此时将m看成一个要求的已知数.解:由题意得【变式题组】01.一个含有x、y的五次单项式,x的指数为3.且当x=2,y=-1时,这个单项式的值为32,求这个单项式.02.(毕节)写出含有字母x、y的五次单项式______________________.【例3】已知多项式⑴这个多项式是几次几项式?⑵这个多项式最高次项是多少?二次项系数是什么?常数项是什么?【解法指导】n个单项式的和叫多项式,每个单项式叫多项式的项,多项式里次数最高项的次数叫多项式的次数.解:⑴这个多项式是七次四项式;(2)最高次项是,二次项系数为-1,常数项是1.【变式题组】01.指出下列多项式的项和次数⑴(2)02.指出下列多项式的二次项、二次项系数和常数项⑴(2)【例4】多项式是关于x的三次三项式,并且一次项系数为-7.求m+n-k的值【解法指导】多项式的次数是单项式中次数最高的次数,单项式的系数是数字与字母乘积中的数字因数.解:因为是关于x的三次三项式,依三次知m=3,而一次项系数为-7,即-(3n+1)=-7,故n=2.已有三次项为,一次项为-7x,常数项为5,又原多项式为三次三项式,故二次项的系数k=0,故m+n-k=3+2-0=5.【变式题组】01.多项式是四次三项式,则m的值为()A.2 B.-2 C.±2 D.±102.已知关于x、y的多项式不含二次项,求5a-8b的值.03.已知多项式是六次四项式,单项式的次数与这个多项式的次数相同,求n的值.【例5】已知代数式的值是8,求的值.【解法指导】由,现阶段还不能求出x的具体值,所以联想到整体代入法.解:由得由(3【变式题组】01.(贵州)如果代数式-2a+3b+8的值为18,那么代数式9b-6a+2的值等于()A.28 B.-28 C.32 D.-3202.(同山)若,则的值为_______________.03.(潍坊)代数式的值为9,则的值为______________.【例6】证明代数式的值与m的取值无关.【解法指导】欲证代数式的值与m的取值无关,只需证明代数式的化简结果不出现字母即可.证明:原式=∴无论m的值为何,原式值都为4.∴原式的值与m的取值无关.【变式题组】01.已知,且的值与x无关,求a的值.02.若代数式的值与字母x的取值无关,求a、b的值.【例7】(北京市选拔赛)同时都含有a、b、c,且系数为1的七次单项式共有()个A.4 B.12 C.15 D.25【解法指导】首先写出符合题意的单项式,x、y、z都是正整数,再依x+y+z=7来确定x、y、z的值.解:为所求的单项式,则x、y、z都是正整数,且x+y+z=7.当x=1时,y=1,2,3,4,5,z=5,4,3,2,1.当x=2时,y=1,2,3,4,z=4,3,2,1. 当x=3时,y=1,2,3,z=3,2,1.当x=4时,y=1,2,z=2,1.当x=5时,y=z=1.所以所求的单项式的个数为5+4+3+2+1=15,故选C.【变式题组】01.已知m、n是自然数,是八次三项式,求m、n值.02.整数n=___________时,多项式是三次三项式.演练巩固·反馈提高01.下列说法正确的是()A.是单项式B.的次数为5 C.单项式系数为0 D.是四次二项式02.a表示一个两位数,b表示一个一位数,如果把b放在a的右边组成一个三位数.则这个三位数是()A.100b+a B.10a+b C.a+b D.100a+b03.若多项式的值为1,则多项式的值是()A.2 B.17 C.-7 D.704.随着计算机技术的迅猛发展,电脑价格不断降低,某品牌电脑原售价为n元,降低m元后,又降低20%,那么该电脑的现售价为()A.B.C.D.05.若多项式是关于x的一次多项式,则k的值是()A.0 B.1 C.0或1 D.不能确定06.若是关于x、y的五次单项式,则它的系数是____________.07.电影院里第1排有a个座位,后面每排都比前排多3个座位,则第10排有_______个座位.08.若,则代数式xy+mn值为________.09.一项工作,甲单独做需a天完成,乙单独做需b天完成,如果甲、乙合做7天完成工作量是____________.10.(河北)有一串单项式(1)请你写出第100个单项式;⑵请你写出第n个单项式.11.(安徽)一个含有x、y的五次单项式,x的指数为3,且当x=2,y=-1时,这个单项式值为32,求这个单项式.12.(天津)已知x=3时多项式的值为-1,则当x=-3时这个多项式的值为多少?13.若关于x、y的多项式与多项式的系数相同,并且最高次项的系数也相同,求a-b的值.14.某地电话拨号入网有两种方式,用户可任取其一.A:计时制:0.05元/分B:包月制:50元/月(只限一部宅电上网).此外,每种上网方式都得加收通行费0.02元/分.⑴某用户某月上网时间为x小时,请你写出两种收费方式下该用户应该支付的费用;(2)若某用户估计一个月内上网时间为20小时,你认为采用哪种方式更合算.培优升级·奥赛检测01.(扬州)有一列数,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差.若,则为()A.2007 B.2 C.D.-102.(华师一附高招生)设记号*表示求a、b算术平均数的运算,即,则下列等式中对于任意实数a、b、c都成立的是()①②③④A.①②③B.①②④C.①③④D.②④03.已知,那么在代数式中,对任意的a、b,对应的代数式的值最大的是()A.B.C.D.04.在一个地球仪的赤道上用铁丝箍半径增大1米,需增加m米长的铁丝,假设地球的赤道上一个铁丝箍,同样半径增大1米,需增加n米长的铁丝,则m与n大小关系()A.m>n B.m<n C.m=n D.不能确定05.(广安)已知_____________.06.某书店出售图书的同时,推出一项租书业务,每租看一本书,租期不超过3天,每天租金a元,租期超过3天,从第4天开始每天另加收b元,如果租看1本书7天归还,那么租金为____________元.07.已知=_____________.08.有理数a、b、c在数轴上的位置如图所示,化简后的结果是______________.09.已知=______________.10.(全国初中数学竞赛)设a、b、c的平均数为M,a、b的平均数为N,又N、c的平均数为P,若a>b >c,则M与P大小关系______________.11.(资阳)如图,对面积为1的△ABC逐次进行以下操作:第一次操作,分别延长AB,BC,CA至点A1,B1,C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1,B1,C1,得到△A1B1C1,。
学而思七年级数学下1-10讲
学而思七年级数学下1-10讲第一讲、整式第二讲同底数幂的乘法、幂的乘方与积的乘方第三讲同底数幂的除法与整式的乘除第四讲整式的除法第五讲平方差公式第六讲完全平方公式第七讲、整式的除法第八讲测试第九讲中考经典第十讲平行线与相交线余角与补角第一讲、整式知识要点:1、单项式的意义:数与字母的乘积的代数式叫做单项式。
(单独的一个数或字母也是单项式) 2b 与 2b的区别2、单项式中的数字因数叫做叫做这个单项式的系数3、单项式中所有字母的指数和叫做叫做这个单项式的次数。
4、几个单项式的和叫做多项式5、组成多项式的每一个单项式叫做多项式的项6、多项式里此数目最高的项的次数,就是这个多项式的次数。
7、整式的意义:单项式和多项式统称为整式。
(分母中含有字母的代数式不是整式)8、整式的加减:求几个整式的和或差的运算,运算结果仍是整式9、整式加减的一般步骤:(1)去括号;(2)合并同类项10、整体代入法:11、整式的运算对数的运算的指导性作用:例1、填空题:(1)单项式213x -的系数是,次数是;(2)单项式222a b c-的系数是,次数是;(3)单项式 22x y z π的系数是,次数是;例2、填空:(1)多项式23x +是次项式,最高次项是,常数项是。
(2)多项式43923101232x y x x y -++是次项式,最高次项的系数是,常数项是。
例3 、已知多项式4212331534a x y xy x y +--+(1)求多项式中各项的系数与次数。
(2)若多项式是8次三项式,求a 的值例4、(1)25ax -与24x a -的差是(2)与2421x x ++的差是24x2例5、若2,3xy x y =-+=,求代数式[](310)5(223xy y x xy y x++-+-的值。
例6、证明:对于任意一个三位数字,交换它的百位数和个位数又得到一个一个数,两个数相减,所得结果能被99整除。
例7、甲、乙两种服装的成本共600元,商店老板为获取利润,决定将甲种服装按60%的利润率定价,在实际出售时,两种服装均按八五折出售。
第二节 数轴的应用(含答案)...七年级数学 学而思
第二节数轴的应用1 数轴的概念(1)定义:规定了原点,正方向和单位长度的直线叫数轴;(2)数轴的定义包含三层含义:①数轴是一条直线,可以向两边无线延伸;②数轴有三个要素:原点、正方向、单位长度,三者缺一不可;③原点的选定、正方向的取向、单位长度大小的确定,都是根据实际需要“规定”的,(3)数轴三要素:①原点:在直线上任取一点表示数0,叫做原点;②正方向:正数所在方向,一般规定直线上向右的方向为正方向;③单位长度:选取某一长度作为单位长度.2.数轴的画法第一步:画一条水平直线(画竖直的直线行不行呢?也行,现在为了读者方便,通常把数轴画咸水平的);第二步:在直线上选取一点为原点,原点表示数0(在原点下边标上“0”);第三步:规定从原点向右的为正方向,那么相反的方向(从原点向左)则为负方向.(用箭头表示出来);第四步:选择适当的长度为单位长度,注:(1)画数轴时一定要牢固地把握数轴的三个要素,缺一不可;(2)常见的错误有:① 没有方向;②没有原点;③ 单位长度不统一;④负数排列错误;⑤直线画成射线;(3)原点的位置、正方向的取向、单位长度大小的确定,都是根据实际需要选取的.3.用数轴表示数(1)数轴上的点都能表示数,正半轴上的点表示的数都是正数;负半轴上的点表示的数都是负数,原点表示0;(2)在数轴的正半轴和负半轴上都有无数个点,每一个点都只表示一个数:(3)任何一个实数都可以用数轴上的一个点来表示:(4)任何一个有理数都能用数轴表示,但数轴上的点不一定表示有理数.4.用数轴比大小(1)在数轴上表示的两个数,右边的数总比左边的数大;(2)正数都大于0,负数都小于0,任意一个正数大于一切负数.1.数形结合(1)利用数轴比较有理数大小,左小右大;(2)利用数轴求绝对值,相反数:(3)表示实际问题中的距离(线段长度).2.分类讨论(1)到已知点的距离相等的点有两个,注意讨论;(2)求一条线段覆盖整数点时也要注意分类讨论.3.转化思想在解决实际问题时(行程问题),注意利用数轴思想,把数据用数轴表示,便于解决问题.例1.||n m -的几何意义是数轴上表示m 的点与表示n 的 点之间的距离.(1)当1-=x 时,则=++-|2||2|x x __________(2)在数轴上表示数x 的点到原点的距离为5,则=-x 3________(3)结合数轴求得|3||2|++-x x 的最小值为_________,取得最小值时x 的取值范围为____;(4)满足3|4||1|>+++x x 的x 的取值范围为__________检测1.实数a ,b ,c 在数轴上的位置如图1-2-4所示,化简||||||||c b b a b a --+++的结果是( )c b a A -+32. c b B -3. c b C +. b c D -.例2.数轴上表示整数的点称为整点,某数轴的单位长度是1cm ,若在数轴上随意画出一条长为10cm 的线段AB ,则线段AB 盖住的整点个数为______个,检测2.(1)在数轴上表示整数的点称为整数点,某数轴的单位长度是1cm ,若在这个数轴上随意画出一条长2020cm的线段AB ,则被线段AB 盖住的整数有( )A.2018个或2019个 B .2019个或2020个 C .2020个或2021个 D.2021个或2022个(2)在数轴上任取一条长度为912019的线段,则此线段在这条数轴上最多能盖住的整数点的个数 是________例3.如图1-2-5所示,R P N M ,,,分别是数轴上四个整数所对应的点,其中有一点是原点,并且.2===PR NP MN 数a 对应的点A 在M 与N 之间,数b 对应的点B 在P 与R 之间,若,6||||=+b a 则原点是( )A .M 或NB .M 或RC .N 或PD .P 或R检测3.(1)如图1-2-6所示,数轴上每个刻度为1个单位长度,点A 对应的数为a ,B 对应的数为b ,且,72=-a b那么数轴上原点的位置在( )A.A 点 B .B 点 C .C 点 D .D 点(2)(江苏张家港期末)如图1—2-7所示,数轴上每个刻度为1个单位长度,数轴上的点A ,B ,C ,D 对应的数分别是整数,,,,d c b a 且,2132++=-d c a b 那么数轴上原点对应的点是( )A.A 点 B .B 点 C .C 点 D .D 点例4.(湖南株洲模拟)如图1-2-8所示,数轴上,点A 的初始位置表示的数为1,现点A 做如下移动:第1次点A向左移动3个单位长度至点,1A 第2次从点1A 向右移动6个单位长度至点2A ,第3次从点2A 向左移动9个单位长度至点,,3ΛA 按照这种移动方式进行下去,如果点n A 与原点的距离不小于20,那么n 的最小值是_________检测4.(1)(山东金乡期末)一个机器人从数轴原点出发,沿数轴正方向,以每前进3步后退2步的程序运动,设该机器人每秒前进或后退1步,并且每步的距离是一个单位长度,n x 表示第n 秒时机器人在数轴上的位置所对应的数.给出下列结论:;33=x ①;15=x ②;104108x x <③,20082007x x <④其中,正确结论的序号是( )①③.A ②③.B ①②③.C ①②④.D(2)(江苏徐州模拟)如图1-2-9所示,一质点P 从距原点1个单位的A 点处向原点方向跳动,第一次跳动到OA 的中点1A 处,第二次从1A 点跳动到1OA 的中点2A 处,第三次从2A 点跳动到2OA 的中点3A 处,如此不断跳动下去,则第5次跳动后,该质点到原点0的距离为_________例5.如图1-2 - 10所示:在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,b 是最小的正整数,且a ,c 满足.0)6(|2|2=-++c a=+c a )1(______(2)若将数轴折叠,使得点A 与点B 重合,则点C 与数_____表示的点重合;(3)若点A 与点D 之间的距离表示为AD ,点B 与点D 之间的距离表示为BD ,请在数轴上找一点D ,使AD= 2BD, 则点D 表示的数是 __________;(4)点A ,B ,C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒1个单位长度和2个单位长度的速度向右运动,假设£秒钟过后,若点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC.则=AB _______=AC ________(用含t 的代数式表示);(5)在(4)的条件下,若AB m AC ⋅-2的值不随着时间t 的变化而改变,试确定m 的值(不必陈述理由).检测5.数轴上A点对应的数是-5,B点在A点的右边,电子蚂蚁甲、乙分别在B点以2单位长度每秒、1单位长度每秒的速度向左运动,电子蚂蚁丙在A点以3单位长度每秒的速度向右运动.(1)若电子蚂蚁丙经过5秒到达点C,求点C所代表的数;(2)若它们同时出发,若丙在遇到甲1秒后遇到乙,求B点所表示的数;(3)在(2)的条件下,设它们同时出发经过的时间为t秒,是否存在t值,使得丙到乙的距离是丙到甲的距离的2倍?若存在求t的值;若不存在,说明理由,第二节数轴的应用(建议用时:40分钟)实战演练1.下列说法中,正确的是( )A .比一1大6的数是7 B.数轴上表示的点,在原点右边213-个单位 C.数轴上的原点表示零 D.有些有理数不能在数轴上表示出来2.比较01.0,0,5.0,1--的大小,正确的是( )01.005.01.<<-<-A 01.0015.0.<<-<-B001.05.01.<<-<-C 01.015.00.<-<-<D3.一个点从数轴的原点开始,先向左移动3个单位长度,再向右移动6个单位长度,这个点最终所对应的数是( )6.+A 3.-B 3.+C 9.-D4.如图1-2-1所示,数轴上的点S R Q O P ,,,,表示某城市一条大街上的五个公交车站点,有一辆公交车距P 站点3km ,距Q 站点0.7km ,则这辆公交车的位置在( )A .R 站点与S 站点之间B .P 站点与0站点之间C .O 站点与Q 站点之间D .Q 站点与R 站点之间5.已知a ,b ,c 在数轴上的位置如图1-2-2所示.则在a c b c a a+--⋅-,,,1中,最大的一个是( )a A -.bc B -. a c C +. aD 1.- 6.若有理数在数轴上的对应点如图1-2-3所示,则下列结论中正确的是( )||.b a A > b a B <. ||||.b a C > ||||.b a D <7.如图1-2-4所示,数轴上A ,B 两点分别对应实数a ,b 则下列结论正确的是( )0.>+b a A a b B >. 0.>-b a C 0||||.>-b a D8.如图1-2-5所示,一滴墨水洒在一条数轴上,根据图中标出的数值判断墨迹盖住的整数的个数有( )个?135.A 195.B 200.C 302.D9.(湖北武昌区期末)如图1-2-6所示,数轴上每相邻两点相距一个单位长度,点,,,C B A D 对应的位置对应的数分别是,,,,d c b a 且,10=+-c b d 那么原点对应的点是( )D A . C B . B C . A D .10.如图1- 2-7所示,R P N M ,,,分别是数轴上四个整数所对应的点,其中有一点是原点,并且.1===PR NP MN数a 对应的点在M 与N 之间,数b 对应的点在P 与R 之间,若,3||||=+b a 则原点是( )A .N 或PB M 或RC .M 或ND .P 或R11.(河南郑州中考)在数轴上到原点的距离不大于3的所有整数点有 .12.在数轴上到表示-2的点相距8个单位长度的点表示的数为________13.数轴上的点A 表示-3,将点A 先向右移动7个单位长度,再向左移动5个单位长度得到 点B .那么点B 表示的数是______14.将数轴按如图1-2 -8所示从点A 开始折出一等边△ABC,设A 表示的数为B x ,3-表示的数为C x ,52-表示的数为,5x -则=x ________;若将△ABC 向右滚动,则点2020与点_______重合.(填A 、B 、C )15.已知在纸面上有一数轴(如图1-2-9所示),折叠纸面,例如:若数轴上数2表示的点与数-2表示的点重合,则数轴上数-4表示的点与数4表示的点重合,根据你对例题的理解,解答下列问题:(1)若数轴上数2表示的点与-2表示的点重合,则数轴上数-6表示的点与数________表示的点重合;(2)与数轴上数5表示的点距离为3的点表示的数为____,(3)若数轴上数-4表示的点与数2表示的点重合.①则数轴上数4表示的点与数______表示的点重合;②若数轴上A ,B 两点之间的距离为2016,并且A ,B 两点经折叠后重合,如果A 点表示的数比B 点表示的数大,则A 点表示的数是 _______.16.如图1-2 - 10所示,半径为1个单位的圆片上有一点A 与数轴上的原点重合,AB 是圆片的直径.(注:结果保留π)(1)把圆片沿数轴向右滚动半周,点B 到达数轴上点C 的位置,点C 表示的数是数(填“无理”或“有理”),这个数是____;(2)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,-1,+3,-4,-3①第_____次滚动后,A 点距离原点最远;②当圆片结束运动时,此时点A 所表示的数是________拓展创新17.(江苏泗阳县期末)如图1-2 -11所示,圆的周长为4个单位长度,在圆的4等分点处标上字母A ,B ,C ,D ,先将圆周上的字母A 对应的点与数轴的数字1所对应的点重合,若将圆沿着数轴向左滚动.那么数轴上的- 2015所对应的点将与圆周上字母( )所对应的点重合.A .A B.B C.C D.D拓展1.(河北承德期末)如图1—2 - 12所示,圆的周长为4个单位,在该圆的4等分点处分别标上字母m,n,p,q,先让圆周上表示m的点与数轴原点重合,再将数轴按逆时针方向环绕在该圆上,则数轴上表示- 2016的点与圆周上重合的点对应的字母是( )D.C.qB.PmA.n拓展2.等边△ABC在数轴上的位置如图1-2 - 13所示,点A,C对应的数分别为0和-1,若△ABC绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为1;则翻转2016次后,点B所对应的数是( ).C2015.D20152017.A5.2016.B5.拓展3.正方形ABCD在数轴上的位置如图1—2- 14所示,点D,A对应的数分别为0和1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为2;则翻转2015次后,数轴上数2015所对应的点是( )A.点C B.点D C.点A D.点B极限挑战18.三枚棋子放在数轴的整点上(坐标为整数的点).一次移动可任选其中两枚棋子,并将一枚,向右移一个单位,将另一枚向左移一个单位.在下列选项中,最后可将三枚棋子移到同一点上的是( ).(,2,C)20092010.(D,32009,2010B)2009,2010),0.(2009,2010,1.(A)课堂答案培优答案。
学而思七年级数学下1-10讲
第一讲、整式第二讲同底数幂的乘法、幂的乘方与积的乘方第三讲同底数幂的除法与整式的乘除第四讲整式的除法第五讲平方差公式第六讲完全平方公式第七讲、整式的除法第八讲测试第九讲中考经典第十讲平行线与相交线余角与补角第一讲、整式知识要点:1、 单项式的意义: 数与字母的乘积的代数式叫做单项式。
(单独的一个数或字母也是单项式) 2b 与 2b的 区别2、 单项式中的数字因数叫做叫做这个单项式的系数3、 单项式中所有字母的指数和叫做叫做这个单项式的次数。
4、 几个单项式的和叫做多项式5、 组成多项式的每一个单项式叫做多项式的项6、 多项式里此数目最高的项的次数,就是这个多项式的次数。
7、 整式的意义: 单项式和多项式统称为整式。
(分母中含有字母的代数式不是整式)8、 整式的加减:求几个整式的和或差的运算,运算结果仍是整式9、 整式加减的一般步骤:(1) 去括号; (2)合并同类项 10、整体代入法:11、整式的运算对数的运算的指导性作用: 例1、 填空题:(1)单项式213x -的系数是 ,次数是 ;(2) 单项式222a b c-的系数是 ,次数是 ;(3) 单项式 22x y z π的系数是 ,次数是 ;例2、 填空:(1) 多项式23x +是 次 项式,最高次项是 ,常数项是 。
(2) 多项式43923101232x y x x y -++是 次 项式,最高次项的系数是 ,常数项是 。
例3 、 已知多项式4212331534a x y xy x y +--+(1) 求 多项式中各项的系数与次数。
(2) 若多项式是8次三项式,求a 的值例4、(1)25ax -与24x a -的差是 (2) 与2421x x ++的差是24x(3)已知A=21x x -+, B= 2x -,23A B -=例5、 若2,3xy x y =-+=,求代数式[](310)5(223xy y x xy y x ++-+-的值。
例6、 证明:对于任意一个三位数字,交换它的百位数和个位数又得到一个一个数,两个数相减,所得结果能被99整除 。
学而思初中数学培优教材
学而思初中数学培优教材学而思初中数学培优教材是一套专为初中学生量身打造的优质教材。
本教材从数学的基本概念出发,循序渐进地引导学生理解数学的本质和应用方法。
下面我将从教材的内容结构、教学理念和特点三个方面展开阐述。
首先,学而思初中数学培优教材的内容十分丰富,覆盖了初中数学的所有知识点。
教材按照学科知识体系划分,包括数与式、图与式、代数式、函数、相似与等价、解析几何、统计与概率等多个部分。
每个部分都有详细的知识点介绍、例题分析和习题训练。
教材不仅注重扎实的基础知识,还突出了学习方法和解题技巧的培养,帮助学生提升解题能力。
其次,学而思初中数学培优教材注重启发式教学。
教材通过大量的例题和思考题,引导学生主动思考、独立解决问题。
教材中的例题都有详细的解析过程,激发学生的思维,培养学生的分析和解决问题的能力。
同时,教材还提供了一些拓展思维的问题,帮助学生培养创新思维和探索精神。
最后,学而思初中数学培优教材具有循序渐进、难度递增的特点。
教材在内容安排上按照由易到难的顺序进行,符合学生的认知规律,帮助学生逐步理解和掌握知识。
同时,教材还特别注重知识之间的联系和拓展,帮助学生形成完整的数学思维体系。
总的来说,学而思初中数学培优教材是一套科学、系统的教材,能够有效提升学生的数学水平。
教材内容丰富、启发式教学、循序渐进的特点,使学生能够在学习中理解数学的内涵、培养数学思维、提高解题能力。
对于初中生来说,选择学而思初中数学培优教材是一种明智的选择,将为他们打下坚实的数学基础,帮助他们更好地应对学习和考试的挑战。
初一数学人教版 学而思
初一数学人教版学而思初一数学是初中阶段的第一门数学课程,是学生初步接触数学知识和学习数学方法的重要阶段。
学而思是一家专注于中小学数学教育的教育机构,为学生提供高质量的数学学习资源和学习指导。
本文将围绕初一数学人教版学而思课程进行讨论和分析。
人教版是中国人民教育出版社所编写的教材,人教版初一数学教材是学生学习初中数学的基础教材。
学而思是以此教材为基础,结合自身的教学经验和教学理念,为学生提供一套全面系统的数学学习课程。
学而思的初一数学课程分为数学基础和数学提高两个阶段,每个阶段包括多个学习单元。
数学基础阶段主要学习数学的基本概念和基本运算,如整数、有理数、分数等。
学生通过学习和练习,掌握数学基础知识的运用和解题方法。
数学提高阶段则侧重于数学的拓展学习和应用。
学生将学习更高阶段的数学知识,如代数、几何、概率等。
学而思通过设计生动有趣的学习活动和练习题,激发学生的兴趣,提高他们的学习积极性。
学而思的初一数学课程注重培养学生的数学思维和解决问题的能力。
教师通过引导学生思考、探索和讨论,培养学生的逻辑思维和创新思维。
学生通过解决实际问题和数学问题的联系,提高他们的问题解决能力和应用能力。
学而思的初一数学课程还注重培养学生的数学学习方法和学习习惯。
教师会教授学生学习数学的基本方法,如记忆、思维导图、逻辑分析等。
学生通过学习和实践,掌握科学有效的学习方法,提高学习效果和学习效率。
学而思的初一数学课程还重视学生的学习能力和学习素养的培养。
学生不仅仅学习数学知识,还学习学习的方法和学习的态度。
学而思通过学习单元的设计和教学活动的安排,提高学生的学习能力和学习素养,培养他们的自主学习能力和合作学习能力。
总结来说,初一数学人教版学而思课程是一套系统完整的初中数学学习课程。
学而思以人教版教材为基础,通过精心设计的学习单元和教学活动,帮助学生全面掌握数学基础知识和学习方法。
学而思注重培养学生的数学思维和解决问题的能力,提高他们的学习能力和学习素养。
石家庄学而思新初一数学大纲
石家庄学而思新初一数学大纲
石家庄学而思新初一数学大纲
学而思新初一数学课程旨在帮助学生打好数学基础,培养其数学思维能力和解决问题的能力。
课程内容主要包括以下几个方面:
一、数的认识和运算
1. 数的读法和写法
2. 自然数、整数、有理数和实数的概念及其运算
3. 有理数的比较和排序
4. 计算有理数的加减乘除运算
5. 计算混合运算式的值
二、代数表达式与方程式
1. 代数表达式的概念与性质
2. 展开与合并代数式
3. 解一元一次方程和简单的一元一次不等式
4. 图表法和计算法解二元一次方程组
5. 类比法解简单的实际问题
三、图形与几何
1. 二维图形的认识和分类
2. 直线、射线和线段的概念
3. 角的概念和分类
4. 三角形的性质及分类
5. 等腰三角形、等边三角形和直角三角形的性质
6. 倍数关系和相似三角形
7. 平行四边形、矩形和正方形的性质
8. 四边形的性质及分类
9. 包络定理和容积定理的应用
四、数据与统计
1. 数据的搜集、整理和表示方法
2. 数据的统计和分析
3. 极差、平均数和中位数的计算
4. 折线图和柱状图的制作与分析
五、函数与应用
1. 函数的概念和性质
2. 函数的图像与增减性
3. 函数的应用:比例、利率、速度等
4. 解实际问题中的函数方程
以上为石家庄学而思新初一数学大纲的主要内容。
希望通过这门课程的学习,学生能够掌握数学基本概念和方法,培养数学思维和解决问题的能力,并为进一步学习高中数学打下坚实的基础。
学而思初中数学合肥专版
学而思初中数学合肥专版学而思初中数学合肥专版是一套专门为合肥地区初中生设计的数学教材。
这套教材以合肥地区的教学大纲为依据,结合学生的实际情况和学习需求,精心编写而成。
学而思初中数学合肥专版的教材内容丰富全面,涵盖了初中数学的各个知识点和技能。
教材分为七个单元,分别是数与式、图形与变换、方程与不等式、函数与图像、统计与概率、三角与相似、几何与证明。
每个单元都按照知识点的难易程度进行了细致的划分,有助于学生逐步掌握数学知识。
学而思初中数学合肥专版的教材编写注重培养学生的数学思维能力和解决问题的能力。
教材中的例题和习题都设计得非常有针对性,能够帮助学生理解和掌握知识点,并能够运用所学知识解决实际问题。
同时,教材还注重培养学生的数学推理和证明能力,通过一些证明题目的训练,激发学生的思维灵活性和创造力。
学而思初中数学合肥专版的教材编写还注重培养学生的数学兴趣和学习动力。
教材中穿插了一些有趣的数学问题和数学游戏,激发学生对数学的兴趣,增加学习的乐趣。
同时,教材还提供了一些拓展性的习题和挑战性的问题,让学生有机会进一步提高自己的数学水平。
学而思初中数学合肥专版的教材编写还注重培养学生的数学思维方法和解题技巧。
教材中提供了一些解题思路和解题方法的讲解,帮助学生建立起正确的解题思维模式。
同时,教材还提供了一些解题技巧和解题方法的训练,让学生能够熟练运用这些技巧和方法解决各种数学问题。
总之,学而思初中数学合肥专版是一套优秀的数学教材,它以合肥地区的教学大纲为依据,结合学生的实际情况和学习需求,精心编写而成。
这套教材内容丰富全面,注重培养学生的数学思维能力和解决问题的能力,同时还注重培养学生的数学兴趣和学习动力,培养学生的数学思维方法和解题技巧。
相信通过学习这套教材,合肥地区的初中生们一定能够在数学学习中取得优异的成绩。
学而思七年级数学教材
学而思七年级数学教材(总2页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除2Q Pa学而思七年级数学出题人:吴老师 姓名一、选择题:(每题6分,共30分)1、下列各组量中,互为相反意义的量是( )A 、收入200元与支出20元B 、上升10米与下降7米C 、超过毫米与不足毫米D 、增大2升与减少2升2、21的倒数是( )A 、-2B 、-21C 、2D 、213、如果一个有理数的绝对值是正数,那么这个数必定是( ) A 、是正数 B 、不是0 C 、是负数 D 、以上都不对4、下图中,表示互为相反数的两个点是( )。
A 、点M 与点QB 、点N 与点PC 、点M 与点PD 、点N 与点Q5、有理数a 、b 在数轴上的位置如图所示,下列式子中成立的是( )A 、a>bB 、 a<bC 、ab>0D 、0 ba二、填空题:(每小题5分,共35分)36、(6分)把下列各数填在相应的大括号里: +8,,|2|--,- , -(-10), ,-(-2)2,722,31-,43+: 正整数集合:{ …}负整数集合:{ …}正分数集合:{ …}负分数集合:{ …}7、(6分)相反数等于它本身的数是 ,绝对值等于它本身的数是 ,倒数等于它本身的数是 。
8、某蓄水池的标准水位记为0m ,如果水面高于标水位表示为,那么,水面低于标准水位表示为 ;9、一个点从数轴的原点开始,向右移动5个单位长度,再向左移动8个单位长度,到达的终点表示的数是 。
10、比较大小:43- 54-。
(填:“<”或“>”) 11、计算:1– 2 + 3 – 4 +5 – 6 +······+2003– 2004 = 。
(8分)三、计算:(每题6分,共25分)12、206137+-+-13、(-5)×(-7)-5×(-6)14、532)2(1---+-+ 15、 )12()654332(-⨯-+-四、解答题:(每题5分,共10分)16、把下列各数在数轴上表示出来,并按从小到大的顺序用“<”连接起来; , -, 0, 2, -, 231, 。
上海学而思校内同步课七年级数学第6-10讲
【例1】若方程ຫໍສະໝຸດ xx 3x
2
4
1
x2
xm x 12
无解,则
m
的值为(
)
A. m 10 B. m 24 C. m 10 或 m 24 D.不存在
1. 裂项法
【例2】
解方程: 1 1 1 3 x2 x x2 3x 2 x2 5x 6 2
【例2】 多项式 2x3 3x 4 除以 x 3 的余数为
.
【例3】 分解因式: 2x3 x2 5x 2
【例4】 分解因式: x3 3x2 8x 6 【例5】 分解因式: 2x3 5x2 6x 3
第七讲
因式分解进阶方法(五)
待定系数法
如果两个多项式恒等,则左右两边同类项的系数相等. 即,如果 an xn an1xn1 an2 xn2 a1x1 a0 bn xn bn1xn1 bn2 xn2 b1x1 b0 那么 an bn , an1 bn1 ,…, a1 b1 , a0 b0 .
2. 分离整系数
【例3】 解方程: x2 x 3 1 2x2 5x 4
x 1
2x 3
3. 部分通分法 【例4】 解方程: x 1 x 6 x 2 x 5
x2 x7 x3 x6
第九讲
分式化简与求值
【例1】
当
x
1 2
时,求代数式
x2 x2
6 1
x x
1 1
1
x2
2x x2 x
4
的值
【例2】
先化简,再求值:
(3a
4a 12 4)(a
2)
[a
学而思初一数学秋季班第12章+线段与角的动态问题
线段与角的动态问题本章进步目标★★★★★☆Level 5通过对本节课的学习,你能够:1.对动态线段的长度的计算达到【高级运用】级别;2.对动态的角度的计算达到【高级运用】级别。
VISIBLE PROGRESS SYSTEM命题与定理★★★☆☆Mevel 3第一关动态的线段长度计算★★★★★☆ Level 5本关进步目标U-CAN SECONDARY SCHOOL EDUCATION★★★★★☆对动态的线段长度计算达到【高级运用】级别命题与定理 ★★★☆☆Mevel 3例题A1 .如图,已知数轴上有 A 、B 、C 三个点,它们表示的数分别是 24, 10, 10.(1)填空:AB=, BC=;(2)现有动点P 、Q 都从A 点出发,点P 以每秒1个单位长度的速度向终点 C 移动;当点P 移动到B 点时,点Q 才从A 点出发,并以每秒3个单位长度的速度向右移动,且当点 P 到达C 点时,点Q 就停止移动.设点 P 移动的时间为t 秒,试用含t 的代数式表示P 、Q 两点间的距离.A 3C 、-24-100 L。
例题B2.如图,数轴上线段 AB=2 (单位长度),CD=4 (单位长度),点A 在数轴上表示的数是 10 ,点C 在数轴上表示的数是16.若线段AB 以6个单位长度/秒的速度向右匀速运动,同时线段 CD 以2个 单位长度/秒的速度向左匀速运动.(1)问运动多少时BC=8 (单位长度)?(2)当运动到BC=8 (单位长度)时,点 B 在数轴上表示的数是BD AP(3) P 是线段AB 上一点,当B 点运动到线段CD 上时,是否存在关系式 BD AP 3,若存在, PC求线段PD 的长;若不存在,请说明理由.\t~ B 0c过关指南关卡1-1动态的线段长度计算★ ★★★★☆ 高级运用学习重点:动态线段的长度表示方法.U-CAN SECONDARY SCHOOL EDUCATION过关练习A尔・;I L - I错题记录A 组I|l Exercise 1如图,已知A, B两点在数轴上,点A表示的数为10, OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点。
学而思七年级数学上21-30讲
第21讲找规律—数与图形 第22讲 线段、射线、直线 第23讲 线段与角 第24讲 角的度量与表示 第25讲 角的比较 第26讲 平行 第27讲 垂直第28讲 一元一次方程 第29讲 日历中的方程 第30讲 打折销售 第31讲 生活中的数据 第 32讲 可能性第21讲找规律—数与图形知识要点:掌握等差数列求和公式: 1()2n n a a n s +=例1、 观察下列算式:,65613,21873,7293,2433,813,273,93,3387654321========……用你所发现的规律写出20043的末位数字是__________。
例2 观察下列式子:326241⨯==+⨯;4312252⨯==+⨯;5420263⨯==+⨯;6530274⨯==+⨯…… 请你将猜想得到的式子用含正整数n 的式子表示来__________。
例3=++⨯1212222________,=++++⨯12321333333________,=++++++⨯123432144444444________,由此你可以猜想出哪些类似的算式?例4 图3—4①是一个三角形,分别连接这个三角形三边的中点,得到图3—4②;再分别连结图3—4②中间的小三角形三边的中点,得到图3—4③,按此方法继续下去,请你根据每个图中三角形个数的规律,完成下列问题。
……(1)将下表填写完整(2)在第n 个图形中有____________________个三角形(用含n 的式子表示)。
例6.如图,把一个面积为1的正方形分等分成两个面积为21的矩形,接着把面积为21的矩形等分成两个面积为41的正方形,再把面积为41的矩形等分成两个面积为81的矩形,如此进行下去,试利用图形提示的规律计算:=+++++++25611281641321161814121例7.把棱长为a 的正方体摆成如图的形状,从上向下数,第一层1个,第二层3个……按这种规律摆放,第五层的正方体的个数是课堂练习:1.观察数列0,3,8,15,24,35,…排列的规律性,求出第100项应是多少?①②③2、●表示实心圆,用○表示空心圆,现有若干实心圆与空心圆按一定规律排列如下:●○●●○●●●○●○●●○●●●○●○●●○●●●○问:第2004个圆是圆(填实心或空心)3、研究下列算式,你会发现有什么规律?224131==+⨯;239142==+⨯;2416153==+⨯;2525164==+⨯……请将你找出的规律用公式表示出来:。
学而思七年级上1-10讲
第一讲:数轴和相反数第二讲绝对值第三讲有理数的运算——加减运算第四讲有理数及其加减混合运算复习第五讲有理数的乘法第六讲有理数的除法第七讲有理数复习(一)第八讲:有理数的乘方第九讲有理数复习检测第十讲有理数培优训练【知识要点】1、有理数可分为整数与分数;也可以分为正数、负数和零。
2、相反数:只有符号不同的两个数互为相反数。
倒数:乘积为1的两个数互为倒数。
0没有倒数。
非负数:即大于或等于0的数。
3、数轴上的点及两点间距离。
4、有理数的加减混合运算的方法和步骤:(1)运算顺序:有括号的先算括号里面的,且从小括号开始算起;没有括号的,先算乘方,后算乘除,最后算加减;(2)计算过程中注意先确定每一项的符号,加减及乘除运算都遵循同号得正,异号得负的原则(3)注意观察式子的形式,尽可能运用公式简化计算。
例1. 写出下列各数的相反数,倒数。
(1) -1 (2)23(3) 0(4) -213例2. a的相反数为;1a+的相反数为;1a-的相反数为;a b-的相反数为;a b+的相反数为;例3.计算:(1)1998(1999)(2000)(2001)(2002)+--+--++(2)11121()()()(1)23632--+-++-+例4.已知a、b互为相反数,c、d互为倒数.试求:()2010()()a ba b x a b cdcd+++++--的值.例5、一名运动员参加跳远比赛,共跳了6次。
第一次跳了6m,第二次比第一次多跳0.1m,第三次比第二次少跳0.3m,第四次比第三次多跳0.5m,第五次比第四次少跳0.4m,第六次比第五次多跳0.5m。
(1)他哪一次跳得最远?是多少?哪一次跳得最近?是多少?(2)用折线图表示该运动员的跳远情况。
例6.已知在数轴上点A表示的数为3,点B表示的数为-5,点C表示的数为-7 ,点D表示的数为6点A到原点的距离是多少?点B到原点的距离是多少?点A到点B的距离是多少?点A到点D的距离是多少?点B到点C的距离是多少?若点E表示的数为x,则点E到原点的距离为多少?点E到A的距离为多少?点E到点B的距离为多少?课堂小测1.下列说法:①符号相反的两个数叫做相反数;②0没有相反数;③一个数的相反数一定是负数;④-a的相反数是a;其中正确的是()A、1个B、2个C、3个D、4个2.下列说法正确的是()A、有最小的负数,没有最大的正数B、有最大的负数,没有最小的正数C、没有最大的有理数和最小的有理数D、有最小的正数和最小的负数3.数轴上的点A、B、C、D分别表示数a、b、c、d,已知A在B的右侧,C在B的左侧,D在B、C之间,则下列式成立的是()A、dcba<<< B、adcb<<< C、badc<<< D、abdc<<<5.实数ba,在数轴上的位置如图所示,则下列结论正确的是() A、bababa->>>+ B、babbaa->>+>C、bababa+>>>- D、bbaaba>+>>-6.数学竞赛成绩80分以上为优秀,老师将某一小组5名同学的成绩简记为:+10,-5,0,+7,-2,这5名同学的实际成绩分别是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Q P
-2-3a
10学而思七年级数学
出题人:吴老师
姓名
一、选择题:(每题6分,共30分) 1、下列各组量中,互为相反意义的量是( )
A 、收入200元与支出20元
B 、上升10米与下降7米
C 、超过毫米与不足毫米
D 、增大2升与减少2升
2、21的倒数是( )
A 、-2
B 、-21
C 、2
D 、2
1
3、如果一个有理数的绝对值是正数,那么这个数必定是( )
A 、是正数
B 、不是0
C 、是负数
D 、以上都不对
4、下图中,表示互为相反数的两个点是( )。
A 、点M 与点Q
B 、点N 与点P
C 、点M 与点P
D 、点N 与点Q
5、有理数a 、b 在数轴上的位置如图所示,下列式子中成立的是( )
A 、a>b
B 、 a<b
C 、ab>0
D 、0>b a
二、填空题:(每小题5分,共35分)
6、(6分)把下列各数填在相应的大括号里: +8,,|2|--,- , -(-10), ,-(-2)2,722,31-,43+: 正整数集合:{ …}负整数集合:{ …}
正分数集合:{ …}负分数集合:{ …}
7、(6分)相反数等于它本身的数是 ,绝对值等于它本身的数是 ,倒数等于它本身的数是 。
8、某蓄水池的标准水位记为0m ,如果水面高于标水位表示为,那么,水面低于标准水位表示为 ;
9、一个点从数轴的原点开始,向右移动5个单位长度,再向左移动8个单位长度,到达的终点表示的数是 。
10、比较大小:43- 54-。
(填:“<”或“>”)
11、计算:1– 2 + 3 – 4 +5 – 6 +······+2003– 2004 = 。
(8分)
三、计算:(每题6分,共25分)
12、206137+-+- 13、(-5)×(-7)-5×(-6)
14、532)2(1---+-+ 15、 )12()654332(-⨯-+-
四、解答题:(每题5分,共10分)
16、把下列各数在数轴上表示出来,并按从小到大的顺序用“<”连接起来; , -, 0, 2, -, 231, 。
17、8箱苹果,以每箱5千克为标准,称重记录如下(超过标准的千克数为正数):,—1,3,0,,—,2,—;求这8箱苹果的总重量。