【免费下载】风机计算 通风管道阻力计算

合集下载

除尘管道阻力平衡计算公式

除尘管道阻力平衡计算公式

除尘管道阻力平衡计算公式
总阻力 = 管道阻力 + 弯头阻力 + 风机阻力。

1. 管道阻力计算公式:
管道阻力= (ΣΔP × L) / (ρ × A × v^2)。

其中,ΣΔP为管道长度为L时的阻力系数总和,ρ为气体
密度,A为管道横截面积,v为气体流速。

2. 弯头阻力计算公式:
弯头阻力= K × (v^2/2g)。

其中,K为弯头阻力系数,v为气体流速,g为重力加速度。

3. 风机阻力计算公式:
风机阻力= (P × Q) / (ρ × 3600 × η)。

其中,P为风机压力,Q为风机流量,ρ为气体密度,η为风机总效率。

在实际应用中,以上公式可以根据具体情况进行调整和修正,例如考虑管道壁面粗糙度、局部阻力、气体温度等因素。

另外,还需要根据具体工程情况选择合适的单位,并注意公式中各参数的取值范围和意义,确保计算结果的准确性和可靠性。

风机计算_通风管道阻力计算

风机计算_通风管道阻力计算

通风管道阻力计算风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。

一、摩擦阻力根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:ΔPm=λν2ρl/8Rs对于圆形风管,摩擦阻力计算公式可改写为:ΔPm=λν2ρl/2D圆形风管单位长度的摩擦阻力(比摩阻)为:Rs=λν2ρ/2D以上各式中λ————摩擦阻力系数ν————风管内空气的平均流速,m/s;ρ————空气的密度,Kg/m3;l ————风管长度,mRs————风管的水力半径,m;Rs=f/Pf————管道中充满流体部分的横断面积,m2;P————湿周,在通风、空调系统中既为风管的周长,m;D————圆形风管直径,m。

矩形风管的摩擦阻力计算我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。

再由此求得矩形风管的单位长度摩擦阻力。

当量直径有流速当量直径和流量当量直径两种;流速当量直径:Dv=2ab/(a+b)流量当量直径:DL=1.3(ab)0.625/(a+b)0.25在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。

二、局部阻力当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。

局部阻力按下式计算:Z=ξν2ρ/2ξ————局部阻力系数。

局部阻力在通风、空调系统中占有较大的比例,在设计时应加以注意,为了减小局部阻力,通常采用以下措施:1. 弯头布置管道时,应尽量取直线,减少弯头。

通风管道阻力计算

通风管道阻力计算

通风管道阻力计算风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。

一、摩擦阻力根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:ΔPm=λν2ρl/8Rs对于圆形风管,摩擦阻力计算公式可改写为:ΔPm=λν2ρl/2D圆形风管单位长度的摩擦阻力(比摩阻)为:Rs=λν2ρ/2D以上各式中λ————摩擦阻力系数ν————风管内空气的平均流速,m/s;ρ————空气的密度,Kg/m3;l ————风管长度,m ;Rs————风管的水力半径,m;Rs=f/Pf————管道中充满流体部分的横断面积,m2;P————湿周,在通风、空调系统中既为风管的周长,m;D————圆形风管直径,m。

矩形风管的摩擦阻力计算我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。

再由此求得矩形风管的单位长度摩擦阻力。

当量直径有流速当量直径和流量当量直径两种;流速当量直径:Dv=2ab/(a+b)流量当量直径:DL=1.3(ab)0.625/(a+b)0.25在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。

二、局部阻力当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。

局部阻力按下式计算:Z=ξν2ρ/2ξ————局部阻力系数。

局部阻力在通风、空调系统中占有较大的比例,在设计时应加以注意,为了减小局部阻力,通常采用以下措施:1.弯头布置管道时,应尽量取直线,减少弯头。

通风工程管道阻力计算

通风工程管道阻力计算

通风工程管道阻力计算通风工程中的管道阻力计算是重要的一项工作,它直接关系到系统的通风效果和节能效果。

本文将详细介绍通风工程中的管道阻力计算方法及其影响因素。

一、管道阻力计算方法:通风系统中的管道阻力是指空气在管道中流动时所遇到的阻力。

通常采用以下公式计算:ΔP=K×L×ρ×(V/3600)^2(1)其中,ΔP为管道阻力(Pa),K为阻力系数(Pa/m),L为管道长度(m),ρ为空气密度(kg/m³),V为风量(m³/h)。

阻力系数K是根据流量速度(m/s)和管道直径(m)来计算的。

对于圆形截面的管道,可以使用以下公式计算:K=(0.51+0.002D)×(V/D)^2(2)其中,D为管道直径(m),V为流量速度(m/s)。

二、影响因素:1.管道材质:不同材质的管道具有不同的内表面粗糙度,粗糙度越大,摩擦阻力越大,导致管道阻力增加。

2.管道长度:管道长度越长,空气流动经过的阻力表面越多,阻力增加。

3.管道直径:管道直径越大,流通面积越大,阻力减小。

4.管道弯头和弯管:弯头和弯管的存在会增加管道的阻力,尤其是对空气流动有较大影响的90度弯头。

5.风量:风量越大,管道阻力越大。

三、实际计算:1.根据风量和设计条件选择管道直径。

2.根据管道直径计算阻力系数K。

3.根据管道直径和长度计算总阻力。

4.根据管道阻力和所需风压,判断所选管道是否满足要求。

5.根据需要,可以进行多次迭代计算,直到找到满足要求的管道尺寸。

四、优化策略:1.尽量选择材质光滑、粗糙度低的管道,以减小阻力。

2.在管道设计中尽量减少弯头和弯管的使用,或者采取流线型弯头,以减小阻力。

3.如果风量较大,可以考虑分段设计,通过增加出风口数量来减小单个风口的风量,从而减小管道阻力。

4.在实际计算中可根据实验数据进行修正,以提高计算精度。

总结:通风工程中的管道阻力计算是一个复杂的过程,需要综合考虑管道材质、直径、长度、弯头等因素,并进行科学合理的计算和优化。

通风管道阻力的计算与公式

通风管道阻力的计算与公式

风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。

一、摩擦阻力根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:ΔPm=λν2ρl/8Rs对于圆形风管,摩擦阻力计算公式可改写为:ΔPm=λν2ρl/2D圆形风管单位长度的摩擦阻力(比摩阻)为:Rs=λν2ρ/2D以上各式中λ————摩擦阻力系数ν————风管内空气的平均流速,m/s;ρ————空气的密度,Kg/m3;l————风管长度,mRs————风管的水力半径,m;Rs=f/Pf————管道中充满流体部分的横断面积,m2;P————湿周,在通风、空调系统中既为风管的周长,m;D————圆形风管直径,m。

矩形风管的摩擦阻力计算我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。

再由此求得矩形风管的单位长度摩擦阻力。

当量直径有流速当量直径和流量当量直径两种;流速当量直径:Dv=2ab/(a+b)流量当量直径:DL=1.3(ab)0.625/(a+b)0.25在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。

二、局部阻力当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。

局部阻力按下式计算:Z=ξν2ρ/2ξ————局部阻力系数。

局部阻力在通风、空调系统中占有较大的比例,在设计时应加以注意,为了减小局部阻力,通常采用以下措施:1.弯头布置管道时,应尽量取直线,减少弯头。

风机管道阻力计算

风机管道阻力计算

管道的阻力计算标签:管道阻力计算时间:2010-03-16 23:17:19 点击:23 回帖:0上一篇:婴儿矫正平板足的必要性(图)下一篇:富士变频器一级代理|富士温控表管道的阻力计算风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。

通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图6-1-1)。

图6-1-1 直管与弯管(一)摩擦阻力1.圆形管道摩擦阻力的计算根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:(6-1-1)对于圆形风管,摩擦阻力计算公式可改为:(6-1-2)圆形风管单位长度的摩擦阻力(又称比摩阻)为:(6-1-3)以上各式中λ——摩擦阻力系数;v——风秘内空气的平均流速,m/s;ρ——空气的密度,kg/m3;l——风管长度,m;Rs——风管的水力半径,m;f——管道中充满流体部分的横断面积,m2;P——湿周,在通风、空调系统中即为风管的周长,m;D——圆形风管直径,m。

摩擦阻力系数λ与空气在风管内的流动状态和风管管壁的粗糙度有关。

在通风和空调系统中,薄钢板风管的空气流动状态大多数属于紊流光滑区到粗糙区之间的过渡区。

通常,高速风管的流动状态也处于过渡区。

只有流速很高、表面粗糙的砖、混凝土风管流动状态才属于粗糙区。

计算过渡区摩擦阻力系数的公式很多,下面列出的公式适用范围较大,在目前得到较广泛的采用:(6-1-4)式中K——风管内壁粗糙度,mm;D——风管直径,mm。

进行通风管道的设计时,为了避免烦琐的计算,可根据公式(6-1-3)和(6-1-4)制成各种形式的计算表或线解图,供计算管道阻力时使用。

只要已知流量、管径、流速、阻力四个参数中的任意两个,即可利用线解图求得其余的两个参数。

风机管道阻力简单概算

风机管道阻力简单概算

一风机参数1单台风机风量(m 3/min)23(m 3/s)0.383333(m 3/h)13802风压 Kpa 58.83n运转风机数量24D管道直径 m 0.25风管长度1 m15风管长度2 m10风管长度3 m26A管道有效面积 m 20.0314二摩擦阻力ʋ=V/A 24.41614V风机总风量(m 3/h) 2.76E+0338Rm’=RmK t38K t 见右表2风管摩擦阻力修正前修正后风管摩擦阻力1 Pa570570风管摩擦阻力2 Pa380380风管摩擦阻力3 Pa7676合计 Pa10261026三局部阻力Z局部阻力 Paξ 局部阻力系数查下表ʋ空气流速 m/s24.41614ρ空气密度 kg/m 31.205ξ1 弯头0.18个数5ξ2 弯头0.15个数2ξ3 三通个数3Z 1 Pa323.2611Z 2 Pa107.7537Z 3 Pa 0为了减少三通局部阻力,分夹角,应该取得小一些,一般不超过30°。

只有在安装条件限制或为了平衡阻力的情况下,才用较大的夹角,但在任何情况下,都不宜做成垂直的“T”形三通。

为了避免出现引射现象,应尽可能使总管和分支管的气流速度相等,即按υ3=υ1=υ2来确定总管和分支管的断面积。

这样,风管断面积的关系为:F3=F1+F2。

风机管道阻力计算ʋ风管内空气的平均流速 m/s查右侧图表得单位长度摩擦阻力Rm (Pa)图表条件:气体压力101.3kPa,温度20℃、管壁粗糙度0.15mm。

被输送空气温度与20℃相差较大时需对Rm修正。

22ρυξ=Z绝对压力空气温度空气密度绝对压力空气温度空气密度Mpa 摄氏度Kg/m3Mpa 摄氏度Kg/m30.125 1.1691 1.42516.3670.225 2.3381 1.52517.5370.325 3.5073 1.62518.7060.425 4.6764 1.72519.875力,分支管中心取得小一些,一般不超过在安装条件限制或为了平况下,才用较大的夹角,况下,都不宜做成垂直的通。

风管阻力计算方法

风管阻力计算方法

风管阻力计算方法送风机静压Ps(Pa)按下式计算PS = PD + PA式中:PD——风管阻力(Pa),PD = RL(1 + K)说明:R——风管的单位磨擦阻力,Pa/m;L ——到最远送风口的送风管总长加上到最远回风口的回风管总长,m;K——局部阻力与磨擦阻力损失的比值。

推荐的风管压力损失分配(按局部阻力和磨擦阻力之比)风管系统弯头、三通较少弯头、三通较多K 1.0~2.0 2.0~4.0PD= R(L + Le)式中Le为所有局部阻力的当量长度。

PA——空气过滤器、冷热盘管等空调装置的阻力之和(Pa)☆推荐的风管压力损失分配(按送风与回风管之阻力)系统特征风机单一回风在设备附近单一回风有回风管的单一回风在中等回风管系统的多样回风有大规模回风管系统的多样回风送风%9080706050回风%1020304050☆低速风管系统的推荐和最大流速m/s应用场所(空调风管中功能段)住宅公共建筑工厂推荐最大推荐最大推荐最大室外空气入口 2.5 4.0 2.5 4.5 2.58.0空气过滤器 1.3 1.5 1.5 1.8 1.8 1.8加热排管 2.3 2.5 2.5 3.0 3.0 3.5冷却排管2.32.32.52.53.03.0风机出口6.08.59.011.010.0 14.0主风管4.0 6.06.08.09.011.0支风管(水平) 3.0 5.0 4.0 6.5 5.0 9.0支风管(垂直) 2.5 4.0 3.5 6.0 4.0 8.0☆低速风管系统的最大允许流速m/s应用场所以噪声控制 以磨擦阻力控制主风管 送风主管 回风主管 送风支管回风支管住宅 3.0 5.0 4.0 3.0 3.0 公寓、饭店房间 5.0 7.5 6.5 6.0 5.0 办公室、图书馆 6.0 10.0 7.5 8.0 6.1 大礼堂、戏院 4.0 6.5 5.5 5.0 4.0 银行、高级餐厅 7.5 10.0 7.5 8.0 6.0 百货店、自助餐厅9.0 12.0 7.5 8.0 6.0工厂 12.5 (上限)15.0 9.0 11.0 7.5☆推荐的送风口流速m/s应用场所 流速m/s播音室 1.5~2.5戏院 2.5~3.5住宅、公寓、饭店房间、教室 2.5~3.8一般办公室 2.5~4.0电影院 5.0~6.0百货店、上层 5.0百货店、下层7.510.0☆以噪声标准控制的允许送风流速m/s应用场所流速m/s 图书馆、广播室 1.75~2.5住宅、公寓、私人办公室、医院房间2.5~4.0银行、戏院、教室、一般办公室、商店、餐厅4.0~5.0工厂、百货店、厨房 5.0~7.5☆回风格栅的推荐流速m/s位置近座位逗留区以上门下部门上部工业用流速m/s2~33~443≥4布袋风管的压力损失:布袋送风不只只是传递气流,同时在进行径向送风,所以管道内风速是不断减少的,管道平均风速比传统风管小的多,铁皮风管有个经验数据1pa/m,布袋风管由于管径的不同阻力变化较大,但一般可以近似的认为0.3-0.5pa/m。

关于通风管道阻力的计算与公式和方法

关于通风管道阻力的计算与公式和方法

关于通风管道阻力的计算与公式和方法通风管道阻力是指空气在管道内流动过程中所克服的运动阻力,计算和求解通风管道阻力是工程设计中非常重要的一项内容。

下面将介绍通风管道阻力的计算公式和方法。

一、计算公式:通风管道阻力的计算公式一般可以分为两种情况:对于圆形管道,采用简化计算公式;对于非圆形管道,一般采用雷诺数公式或进口流量公式。

1.圆形管道的简化计算公式:(1)流量公式:Q=πd²V/4其中,Q为流量,d为管道直径,V为流速。

(2)雷诺数公式:Re=dVρ/μ其中,Re为雷诺数,ρ为空气密度,μ为空气动力粘度。

(3)彭伯托公式:ΔP=KQ²其中,ΔP为管道阻力,K为阻力系数,Q为流量。

2.非圆形管道的计算公式:非圆形管道的计算公式相对复杂,一般需要根据具体的几何形状和流速情况进行求解。

二、计算方法:通风管道阻力的计算方法主要有以下几种:1.试算法:试算法是通过对不同管道直径和流速的组合进行试算,根据实测数据绘制函数曲线,然后通过函数曲线来计算阻力。

这种方法相对简单易行,适用于不需要精确计算的情况。

2.实测法:实测法是通过在实际通风系统中进行流量和压力的实测,然后根据实测数据来计算阻力。

这种方法的计算结果较为准确,但需要实际设备和条件的支持。

3.数值模拟法:数值模拟法是利用计算机进行数值模拟,通过对通风系统进行建模,并利用数值方法求解流场和压力场分布,从而计算阻力。

这种方法的计算结果精度较高,但需要一定的计算资源和专业软件的支持。

4.经验公式法:经验公式法是通过总结和归纳大量实测数据,得出经验公式来计算阻力。

这种方法适用于一般工程设计情况下的快速计算,但精度相对较低。

三、影响因素:通风管道阻力的计算还需要考虑一些影响因素,如管道长度、管道直径、流速、管道材料、管道内壁粗糙度等。

不同的影响因素会对通风管道阻力产生不同程度的影响,因此在计算阻力时需要综合考虑。

综上所述,通风管道阻力的计算需要根据具体的管道形状和流动条件选择合适的计算公式和方法,并考虑影响因素来进行精确计算。

通风管道阻力计算

通风管道阻力计算

通风管道阻力计算 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】通风管道阻力计算风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。

一、摩擦阻力根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:ΔPm=λν2ρl/8Rs对于圆形风管,摩擦阻力计算公式可改写为:ΔPm=λν2ρl/2D圆形风管单位长度的摩擦阻力(比摩阻)为:Rs=λν2ρ/2D以上各式中λ————摩擦阻力系数ν————风管内空气的平均流速,m/s;ρ————空气的密度,Kg/m3;l————风管长度,m;Rs————风管的水力半径,m;Rs=f/Pf————管道中充满流体部分的横断面积,m2;P————湿周,在通风、空调系统中既为风管的周长,m;D————圆形风管直径,m。

矩形风管的摩擦阻力计算我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。

再由此求得矩形风管的单位长度摩擦阻力。

当量直径有流速当量直径和流量当量直径两种;流速当量直径:Dv=2ab/(a+b)流量当量直径:DL=1.3(ab)0.625/(a+b)0.25在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。

二、局部阻力当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。

局部阻力按下式计算:Z=ξν2ρ/2ξ————局部阻力系数。

风机计算通风管道阻力计算

风机计算通风管道阻力计算

通风管道阻‎力计算风管内空气‎流动的阻力‎有两种,一种是由于‎空气本身的‎粘滞性及其‎与管壁间的‎摩擦而产生‎的沿程能量‎损失,称为摩擦阻‎力或沿程阻‎力;另一种是空‎气流经风管‎中的管件及‎设备时,由于流速的‎大小和方向‎变化以及产‎生涡流造成‎比较集中的‎能量损失,称为局部阻‎力。

一、摩擦阻力根据流体力‎学原理,空气在横断‎面形状不变‎的管道内流‎动时的摩擦‎阻力按下式‎计算:ΔPm=λν2ρl‎/8Rs对于圆形风‎管,摩擦阻力计‎算公式可改‎写为:ΔPm=λν2ρl‎/2D圆形风管单‎位长度的摩‎擦阻力(比摩阻)为:Rs=λν2ρ/2D‎以上各式中‎λ————摩擦阻力系‎数ν————风管内空气‎的平均流速‎,m/s;ρ————空气的密度‎,Kg/m3;l ————风管长度,mRs————风管的水力‎半径,m;Rs=f/Pf————管道中充满‎流体部分的‎横断面积,m2;P————湿周,在通风、空调系统中‎既为风管的‎周长,m;D————圆形风管直‎径,m。

矩形风管的‎摩擦阻力计‎算我们日常用‎的风阻线图‎是根据圆形‎风管得出的‎,为利用该图‎进行矩形风‎管计算,需先把矩形‎风管断面尺‎寸折算成相‎当的圆形风‎管直径,即折算成当‎量直径。

再由此求得‎矩形风管的‎单位长度摩‎擦阻力。

当量直径有‎流速当量直‎径和流量当‎量直径两种‎;流速当量直‎径:Dv=2ab/(a+b)流量当量直‎径:DL=1.3(ab)0.625/(a+b)0.25在利用风阻‎线图计算是‎,应注意其对‎应关系:采用流速当‎量直径时,必须用矩形‎中的空气流‎速去查出阻‎力;采用流量当‎量直径时,必须用矩形‎风管中的空‎气流量去查‎出阻力。

二、局部阻力当空气流动‎断面变化的‎管件(如各种变径‎管、风管进出口‎、阀门)、流向变化的‎管件(弯头)流量变化的‎管件(如三通、四通、风管的侧面‎送、排风口)都会产生局‎部阻力。

局部阻力按‎下式计算:Z=ξν2ρ/2‎ξ————局部阻力系‎数。

【VIP专享】风机管道阻力计算

【VIP专享】风机管道阻力计算

管道的阻力计算标签:管道阻力计算时间:2010-03-16 23:17:19 点击:23 回帖:0上一篇:婴儿矫正平板足的必要性(图)下一篇:富士变频器一级代理|富士温控表管道的阻力计算风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。

通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图6-1-1)。

图6-1-1 直管与弯管(一)摩擦阻力1.圆形管道摩擦阻力的计算根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:(6-1-1)对于圆形风管,摩擦阻力计算公式可改为:(6-1-2)圆形风管单位长度的摩擦阻力(又称比摩阻)为:(6-1-3)以上各式中λ——摩擦阻力系数;v——风秘内空气的平均流速,m/s;ρ——空气的密度,kg/m3;l——风管长度,m;Rs——风管的水力半径,m;f——管道中充满流体部分的横断面积,m2;P——湿周,在通风、空调系统中即为风管的周长,m;D——圆形风管直径,m。

摩擦阻力系数λ与空气在风管内的流动状态和风管管壁的粗糙度有关。

在通风和空调系统中,薄钢板风管的空气流动状态大多数属于紊流光滑区到粗糙区之间的过渡区。

通常,高速风管的流动状态也处于过渡区。

只有流速很高、表面粗糙的砖、混凝土风管流动状态才属于粗糙区。

计算过渡区摩擦阻力系数的公式很多,下面列出的公式适用范围较大,在目前得到较广泛的采用:(6-1-4)式中 K——风管内壁粗糙度,mm;D——风管直径,mm。

进行通风管道的设计时,为了避免烦琐的计算,可根据公式(6-1-3)和(6-1-4)制成各种形式的计算表或线解图,供计算管道阻力时使用。

只要已知流量、管径、流速、阻力四个参数中的任意两个,即可利用线解图求得其余的两个参数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

通风管道阻力计算风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。

一、摩擦阻力根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:ΔPm=λν2ρl/8Rs对于圆形风管,摩擦阻力计算公式可改写为:ΔPm=λν2ρl/2D圆形风管单位长度的摩擦阻力(比摩阻)为:Rs=λν2ρ/2D以上各式中λ————摩擦阻力系数ν————风管内空气的平均流速,m/s;ρ————空气的密度,Kg/m3;l ————风管长度,mRs————风管的水力半径,m;Rs=f/Pf————管道中充满流体部分的横断面积,m2;P————湿周,在通风、空调系统中既为风管的周长,m;D————圆形风管直径,m。

矩形风管的摩擦阻力计算我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。

再由此求得矩形风管的单位长度摩擦阻力。

当量直径有流速当量直径和流量当量直径两种;流速当量直径:Dv=2ab/(a+b)流量当量直径:DL=1.3(ab)0.625/(a+b)0.25在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。

二、局部阻力当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。

局部阻力按下式计算:Z=ξν2ρ/2ξ————局部阻力系数。

局部阻力在通风、空调系统中占有较大的比例,在设计时应加以注意,为了减小局部阻力,通常采用以下措施:1. 弯头布置管道时,应尽量取直线,减少弯头。

圆形风管弯头的曲率半径一般应大于(1~2)倍管径;矩形风管弯头断面的长宽比愈大,阻力愈小;矩形直角弯头,应在其中设导流片。

2. 三通三通内流速不同的两股气流汇合时的碰撞,以及气流速度改变时形成的涡流是造成局部阻力的原因。

为了减小三通的局部阻力,应注意支管和干管的连接,减小其夹角;还应尽量使支管和干管内的流速保持相等。

.在管道设计时应注意以下几点:1. 渐扩管和渐缩管中心角最好是在8~15o。

2. 三通的直管阻力与支管阻力要分别计算。

3. 尽量降低出风口的流速。

以下为常见管段的比摩阻规格(mm*mm) 流速(m/s) 当量直径(流速)(mm) 比摩阻(Pa/m)1600*400 15 640 3.41400*300 13 495 4.51200*300 12 480 4.81000*300 10 460 2.5800*300 9 436 2600*300 8 400 1.8500*300 6 375 1.2400*300 5 342 0.8300*300 4 200 1.3600*250 6 350 1.3400*250 4 307 0.6常见弯头的局部阻力:分流三通:9~24 Pa矩形送出三通:6~16Pa渐缩管:6~12Pa乙字弯:50~198Pa例:有一表面光滑的砖砌风管(粗糙度K=3mm),断面尺寸为500*400mm,流量L=1m3/s(3600m3/h ),求单位长度摩擦阻力。

解:矩形风管内空气流速:v=1/(0.5*0.4)=5m/s矩形风管的流速当量直径:Dv=2ab/(a+b)=2*500*400/(500+400)=444mm根据v=5m/s、Dv=444mm由附录6(通风管单位长度摩擦阻力线算图)查得Rmo=0.62Pa/m粗糙度修正系数Kr=(Kv)^0.25=(3*5)^0.25=1.96则该风管单位长度摩擦阻力Rm=1.96*0.62=1.22Pa/m问:静水压和动水压的定义具体是什么?它们是如何量化计算的(特别是动水压)?答:静水压是指管道内水处于静止状态时的压力,而动压力是指某处水流在外泄时该处的压力。

动压力=静压力-该处的总水头损失。

问:技术措施里说对于比例式减压阀,其阀后的动水压宜按静水压的80%~90%计,那动水压岂不是很大?答:在伯努力方程里边,某一位置,相对于某一基准的z称为位置压头,u2/2g是动压头,p/2g是静压头。

全压=动压+静压。

计算按公式算,动水压增大是因为静水压的转化,正常。

水头损失是通过这个位置的压力损失/能量损失,也可以计算,他表示的是通过前后位置(断面)的损失,应该等于两个位置(断面)的位置压头+动压头+静压头之差值。

当然,位置压头,动压头,静压头一可以实测。

总压=动压头+静压头+位置压头问:对你的公式不理解:如果有一个水箱高100米,在高10米处有一个消火栓,你能说以下它的动压和静压是多少吗?答:根据伯努利方程:Z1+P1/γ+α1V12/2g=Z2+P2/γ+α2V22/2g+HZ:位置水头P/γ:静压水头V2/2g:动压水头H:损失水头问:伯努利方程不错,但规范要求动压大于50米时,要设减压装备,计算以下此时的流速要多大。

看来规范要求动压大于50米不对了吗?答:水箱高100m,10m高处静压是0.9MPa.>0.8应该分区.动压大于50m不好控制水枪,要减压没错啊.15 m左右的水头就可以保证10m的充实水柱了. 水箱高100m ,10m高喷口处流量Q=0.82*3.14*0.019*0.01 9/4*√2*9.8*90=9.76L/s,流速34.4m/s.动压60.5m,静压29.5m.风管阻力计算方法送风机静压Ps(Pa)按下式计算PS = PD + PA式中:PD——风管阻力(Pa),PD = RL(1 + K)说明:R——风管的单位磨擦阻力,Pa/m;L ——到最远送风口的送风管总长加上到最远回风口的回风管总长,m;K——局部阻力与磨擦阻力损失的比值。

推荐的风管压力损失分配(按局部阻力和磨擦阻力之比)风管系统弯头、三通较少弯头、三通较多K 1.0 ~ 2.0 2.0 ~ 4.0PD = R(L + Le)式中Le为所有局部阻力的当量长度。

PA——空气过滤器、冷热盘管等空调装置的阻力之和(Pa)☆推荐的风管压力损失分配(按送风与回风管之阻力)系统特征风机单一回风在设备附近单一回风有回风管的单一回风在中等回风管系统的多样回风有大规模回风管系统的多样回风送风%9080706050回风%1020304050☆低速风管系统的推荐和最大流速m/s住宅公共建筑工厂应用场所(空调风管中功能段)推荐最大推荐最大推荐最大室外空气入口 2.5 4.0 2.5 4.5 2.58.0空气过滤器 1.3 1.5 1.5 1.8 1.8 1.8加热排管 2.3 2.5 2.5 3.0 3.0 3.5冷却排管 2.3 2.3 2.5 2.5 3.0 3.0风机出口 6.08.59.011.010.014.0主风管 4.0 6.0 6.08.09.011.0支风管(水平) 3.0 5.0 4.0 6.5 5.09.0支风管(垂直) 2.5 4.0 3.5 6.0 4.08.0☆低速风管系统的最大允许流速m/s以噪声控制以磨擦阻力控制应用场所主风管送风主管回风主管送风支管回风支管住宅 3.0 5.0 4.0 3.0 3.0公寓、饭店房间 5.07.5 6.5 6.0 5.0办公室、图书馆 6.010.07.58.0 6.1大礼堂、戏院 4.0 6.5 5.5 5.0 4.0银行、高级餐厅7.510.07.58.0 6.0百货店、自助餐厅9.012.07.58.0 6.0工厂12.5 (上限)15.09.011.07.5☆推荐的送风口流速m/s应用场所流速m/s播音室 1.5~2.5戏院 2.5~3.5住宅、公寓、饭店房间、教室 2.5~3.8一般办公室 2.5~4.0电影院 5.0~6.0百货店、上层 5.07.5百货店、下层10.0☆以噪声标准控制的允许送风流速m/s应用场所流速m/s图书馆、广播室 1.75~2.5住宅、公寓、私人办公室、医院房间 2.5~4.0银行、戏院、教室、一般办公室、商4.0~5.0店、餐厅工厂、百货店、厨房 5.0~7.5☆回风格栅的推荐流速m/s位置近座位逗留区以上门下部门上部工业用流速m/s2~33~443≥4通风管的规格一般采用假定流速法设计,主风管保持在8-10m/s,支风管6-8m/s,最末端风管保持4-6m/s。

所设计的风管总体上要求既经济又能达到最低的风阻和噪声,使节能环保空调的送风量尽量达到最大值,风管弯曲半径一般不小于风管直径的两倍,以减少弯管通风阻力;送风管道的长度应根据不同型号的环保空调风压不同的特点进行设计;所设计的管道应尽量取直,避免不必要的拐弯和分支管,以减少管道局部阻力;从平面布置和经济角度上考虑,能不用风管的地方就不用风管,必须使用风管的地方,尽量把风管设计短些;较长管道根据风量设计成多段不同规格的风管,采用变径管连接,变径管的设置不宜过多,一般整根不超过四个,变径管长由“>2(D-d)”来确定;送风管道与环保空调主机出风口连接处应密封好;室外管道过长宜设计保温,室内管道一般不须保温;若在设计中存在支风管,则须在分支管上装设阀门或分风挡板以调节风量,使支管风量达到设计值。

相关文档
最新文档