2014年新课标II高考理科数学压轴卷含解析
2014年新课标2卷理科数学高考真题及答案
2014年新课标2卷理科数学高考真题及答案掌门1对1教育 高考真题2014年普通高等学校招生全国统一考试 理科(新课标卷二Ⅱ)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={0,1,2},N={}2|320x x x -+≤,则M N⋂=( )A. {1}B. {2}C. {0,1}D. {1,2}2.设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i=+,则12z z =( )A. - 5B. 5C. - 4+ iD. - 4 - i3.设向量a,b 满足|a+b 10|a-b 6,则a ⋅b =( )A. 1B. 2C. 3D. 54.钝角三角形ABC 的面积是12,AB=1,2 ,则AC=( ) A. 5 5C. 2D. 15.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A. 0.8B. 0.75C. 0.6D. 0.456.如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A. 1727 B. 59C. 1027D. 137.执行右图程序框图,如果输入的x,t均为2,则输出的S= ()A. 4B. 5C. 6D. 78.设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=A. 0B. 1C. 2D. 39.设x,y满足约束条件70310350x yx yx y+-⎧⎪-+⎨⎪--⎩≤≤≥,则2z x y=-的最大值为()A. 10B. 8C. 3D. 2 10.设F 为抛物线C:23yx=的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,则△OAB 的面积为( )A. 33B. 93C. 6332D. 9411.直三棱柱ABC-A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1, 则BM 与AN 所成的角的余弦值为( )A. 110B. 25C. 30D.212.设函数()3xf x mπ=.若存在()f x 的极值点0x 满足()22200x f x m+<⎡⎤⎣⎦,则m 的取值范围是( )A. ()(),66,-∞-⋃∞ B.()(),44,-∞-⋃∞ C.()(),22,-∞-⋃∞ D.()(),14,-∞-⋃∞第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生必须做答.第22题~第24题为选考题,考生根据要求做答. 二.填空题13.()10x a +的展开式中,7x 的系数为15,则a =________.(用数字填写答案)14.函数()()()sin 22sin cos f x x x ϕϕϕ=+-+的最大值为_________.15.已知偶函数()f x 在[)0,+∞单调递减,()20f =.若()10f x ->,则x 的取值范围是__________.16.设点M (0x ,1),若在圆O:221xy +=上存在点N ,使得∠OMN=45°,则0x 的取值范围是________. 三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知数列{}na 满足1a =1,131n na a +=+. (Ⅰ)证明{}12na +是等比数列,并求{}na 的通项公式; (Ⅱ)证明:1231112naa a++<…+.18. (本小题满分12分)如图,四棱锥P-ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点. (Ⅰ)证明:PB ∥平面AEC ;(Ⅱ)设二面角D-AE-C 为60°,AP=1,3,求三棱锥E-ACD 的体积.19. (本小题满分12分)某地区2007年至2013年农村居民家庭纯收入y (单位:千元)的数据如下表:年份2007 2008 2009 2010 2011 2012 2013 年份1 2 3 4 5 6 7代号t人均2.93.3 3.64.4 4.85.2 5.9纯收入y(Ⅰ)求y 关于t 的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘法估计公式分别为:()()()121niii ni i t t y y b t t ∧==--=-∑∑,ˆˆay bt =-20. (本小题满分12分)设1F ,2F 分别是椭圆()222210y x a b ab+=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N.(Ⅰ)若直线MN 的斜率为34,求C 的离心率; (Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求a,b .21. (本小题满分12分) 已知函数()f x =2xx ee x---(Ⅰ)讨论()f x 的单调性;(Ⅱ)设()()()24g x f x bf x =-,当0x >时,()0g x >,求b 的最大值; (Ⅲ)已知1.41422 1.4143<<,估计ln2的近似值(精确到0.001)请考生在第22、23、24题中任选一题做答,如果多做,同按所做的第一题计分,做答时请写清题号.22.(本小题满分10)选修4—1:几何证明选讲如图,P 是e O 外一点,PA 是切线,A 为切点,割线PBC 与e O 相交于点B ,C ,PC=2PA ,D 为PC 的中点,AD 的延长线交e O 于点E.证明: (Ⅰ)BE=EC ; (Ⅱ)AD ⋅DE=22PB23. (本小题满分10)选修4-4:坐标系与参数方程在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦.(Ⅰ)求C的参数方程;(Ⅱ)设点D在C上,C在D处的切线与直线=+垂直,根据(Ⅰ)中你得到的参数方程,l y x:32确定D的坐标.24. (本小题满分10)选修4-5:不等式选讲设函数()f x=1(0)++->x x a aa(Ⅰ)证明:()f x≥2;(Ⅱ)若()35f<,求a的取值范围.2014年普通高等学校招生全国统一考试理科数学试题参考答案一、 选择题(1)D (2)A (3)A (4)B (5)A (6)C(7)D (8)D (9)B (10)D (11)C (12)C 二、填空题(13)12(14)1 (15)()1,3- (16)[]1,1-三、解答题 (17)解: (Ⅰ)由131n n aa +=+得 n 111a3().22n a ++=+又11322a +=,所以12n a⎧⎫+⎨⎬⎩⎭是首项为32,公比为3的等比数列。
2014年新课标2卷高考理科数学试题及答案
2014年普通高等学校招生全国统一考试 理科(新课标卷二Ⅱ)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=( ) A. {1}B. {2}C. {0,1}D. {1,2}2.设复数1z ,2z 在复平面内的对应点关于虚轴对称,zxxk 12z i =+,则12z z =( ) A. - 5 B. 5 C. - 4+ i D. - 4 - i3.设向量a,b 满足|a+b|a-ba ⋅b = ( ) A. 1 B. 2 C. 3 D. 54.钝角三角形ABC 的面积是12,AB=1,,则AC=( )A. 5C. 2D. 15.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A. 0.8B. 0.75C. 0.6D. 0.456.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A. 1727B. 59C. 1027D. 137.执行右图程序框图,如果输入的x,t 均为2,则输出的S= ( ) A. 4 B. 5 C. 6 D. 78.设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x ,则a = A. 0 B. 1 C. 2 D. 39.设x,y 满足约束条件70310350x y x y x y +-⎧⎪-+⎨⎪--⎩≤≤≥,则2z x y =-的最大值为( )A. 10B. 8C. 3D. 210.设F 为抛物线C:23y x =的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,则△OAB 的面积为( )C. 63D. 9411.直三棱柱ABC-A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1, 则BM 与AN 所成的角的余弦值为( )A. 110B. 2512.设函数()x f x mπ=.若存在()f x 的极值点0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围是( )A. ()(),66,-∞-⋃∞B. ()(),44,-∞-⋃∞C. ()(),22,-∞-⋃∞D.()(),14,-∞-⋃∞第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生必须做答.第22题~第24题为选考题,考生根据要求做答.本试题由 整理二.填空题13.()10x a +的展开式中,7x 的系数为15,则a =________.(用数字填写答案) 14.函数()()()sin 22sin cos f x x x ϕϕϕ=+-+的最大值为_________.15.已知偶函数()f x 在[)0,+∞单调递减,()20f =.若()10f x ->,则x 的取值范围是__________.16.设点M (0x ,1),若在圆O:221x y +=上存在点N ,使得zxxk ∠OMN=45°,则0x 的取值范围是________.三.解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知数列{}n a 满足1a =1,131n n a a +=+.(Ⅰ)证明{}12n a +是等比数列,并求{}n a 的通项公式;(Ⅱ)证明:1231112n a a a ++<…+.18. (本小题满分12分)如图,四棱锥P-ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点. (Ⅰ)证明:PB ∥平面AEC ;(Ⅱ)设二面角D-AE-C 为60°,AP=1,E-ACD 的体积.19. (本小题满分12分)某地区2007年至2013年农村居民家庭纯收入y (单位:千元)的数据如下表:(Ⅰ)求y 关于t 的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入. 附:回归直线的斜率和截距的最小二乘法估计公式分别为:()()()121niii nii t t y y b tt∧==--=-∑∑,ˆˆay bt =-20. (本小题满分12分)设1F ,2F 分别是椭圆C:()222210yx a b a b+=>>的左,右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N.(Ⅰ)若直线MN 的斜率为3,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求a,b .21. (本小题满分12分)已知函数()f x =2x x e e x ---zxxk (Ⅰ)讨论()f x 的单调性;(Ⅱ)设()()()24g x f x bf x =-,当0x >时,()0g x >,求b 的最大值;(Ⅲ)已知1.4142 1.4143<<,估计ln2的近似值(精确到0.001)请考生在第22、23、24题中任选一题做答,如果多做,有途高考网同按所做的第一题计分,做答时请写清题号.23. (本小题满分10)选修4-4:坐标系与参数方程 在直角坐标系xoy 中,以坐标原点为极点,x 轴正半轴 为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦.zxxk (Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.24. (本小题满分10)选修4-5:不等式选讲 设函数()f x =1(0)x x a a a++->(Ⅰ)证明:()f x ≥2;(Ⅱ)若()35f <,求a 的取值范围.2014年普通高等学校招生全国统一考试理科数学试题参考答案一、 选择题(1)D (2)A (3)A (4)B (5)A (6)C (7)D ( 8)D (9)B (10)D (11)C (12)C二、 填空题(13)12(14)1 (15)(-1,3) (16)[-1,1]三、解答题(17)解:(1)由131m m a a +=+得1113().22m m a a ++=+ 又113a 22+=,所以,{12m a + } 是首项为32,公比为3的等比数列。
2014年新课标2卷理科数学高考真题及答案
掌门1对1教育 高考真题2014年普通高等学校招生全国统一考试 理科(新课标卷二Ⅱ)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=( ) A. {1}B. {2}C. {0,1}D. {1,2}2.设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =( ) A. - 5B. 5C. - 4+ iD. - 4 - i3.设向量a,b 满足|a+b 10|a-b 6,则a ⋅b = ( ) A. 1B. 2C. 3D. 54.钝角三角形ABC 的面积是12,AB=1,2 ,则AC=( )A. 5B.5C. 2D. 15.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A. 0.8B. 0.75C. 0.6D. 0.456.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( ) A. 1727 B. 59 C. 1027 D. 137.执行右图程序框图,如果输入的x,t 均为2,则输出的S= ( ) A. 4 B. 5 C. 6 D. 78.设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x ,则a = A. 0 B. 1 C. 2 D. 39.设x,y 满足约束条件70310350x y x y x y +-⎧⎪-+⎨⎪--⎩≤≤≥,则2z x y =-的最大值为( )A. 10B. 8C. 3D. 210.设F 为抛物线C:23y x =的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,则△OAB 的面积为( )A.33 B.938 C. 6332 D. 9411.直三棱柱ABC-A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1,则BM 与AN 所成的角的余弦值为( ) A. 110 B. 25C.30 D.2 12.设函数()3x f x m π=.若存在()f x 的极值点0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围是( ) A.()(),66,-∞-⋃∞ B.()(),44,-∞-⋃∞ C.()(),22,-∞-⋃∞D.()(),14,-∞-⋃∞第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生必须做答.第22题~第24题为选考题,考生根据要求做答. 二.填空题13.()10x a +的展开式中,7x 的系数为15,则a =________.(用数字填写答案) 14.函数()()()sin 22sin cos f x x x ϕϕϕ=+-+的最大值为_________.15.已知偶函数()f x 在[)0,+∞单调递减,()20f =.若()10f x ->,则x 的取值范围是__________.16.设点M (0x ,1),若在圆O:221x y +=上存在点N ,使得∠OMN=45°,则0x 的取值范围是________.三.解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知数列{}n a 满足1a =1,131n n a a +=+.(Ⅰ)证明{}12n a +是等比数列,并求{}n a 的通项公式;(Ⅱ)证明:1231112na a a ++<…+.18. (本小题满分12分)如图,四棱锥P-ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点. (Ⅰ)证明:PB ∥平面AEC ;(Ⅱ)设二面角D-AE-C 为60°,AP=1,3E-ACD 的体积.19. (本小题满分12分)某地区2007年至2013年农村居民家庭纯收入y (单位:千元)的数据如下表:年份2007 2008 2009 2010 2011 2012 2013 年份代号t 1 2 3 4 5 6 7 人均纯收入y2.93.33.64.44.85.25.9(Ⅰ)求y 关于t 的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入. 附:回归直线的斜率和截距的最小二乘法估计公式分别为:()()()121niii ni i t t y y b t t ∧==--=-∑∑,ˆˆay bt =-20. (本小题满分12分)设1F ,2F 分别是椭圆()222210y x a b a b+=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N.(Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求a,b .21. (本小题满分12分) 已知函数()f x =2x x e e x --- (Ⅰ)讨论()f x 的单调性;(Ⅱ)设()()()24g x f x bf x =-,当0x >时,()0g x >,求b 的最大值; (Ⅲ)已知1.41422 1.4143<<,估计ln2的近似值(精确到0.001)请考生在第22、23、24题中任选一题做答,如果多做,同按所做的第一题计分,做答时请写清题号.22.(本小题满分10)选修4—1:几何证明选讲如图,P 是 O 外一点,PA 是切线,A 为切点,割线PBC 与 O 相交于点B ,C ,PC=2PA ,D 为PC 的中点,AD 的延长线交 O 于点E.证明: (Ⅰ)BE=EC ;(Ⅱ)AD ⋅DE=22PB23. (本小题满分10)选修4-4:坐标系与参数方程在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦. (Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线:32l y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.24. (本小题满分10)选修4-5:不等式选讲 设函数()f x =1(0)x x a a a++->(Ⅰ)证明:()f x ≥2;(Ⅱ)若()35f <,求a 的取值范围.2014年普通高等学校招生全国统一考试理科数学试题参考答案一、选择题(1)D (2)A (3)A (4)B (5)A (6)C (7)D (8)D (9)B (10)D (11)C (12)C 二、填空题 (13)12(14)1 (15)()1,3- (16)[]1,1- 三、解答题 (17)解:(Ⅰ)由131n n a a +=+得 n 111a 3().22n a ++=+ 又11322a +=,所以12n a ⎧⎫+⎨⎬⎩⎭是首项为32,公比为3的等比数列。
2014年高考试题理科数学真题及答案(新课标II)Word版解析
2014年普通高等学校招生全国统一考试 理科(新课标卷二Ⅱ)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=( ) A. {1} B. {2}C. {0,1}D. {1,2}【答案】D 【解析】把M={0,1,2}中的数,代入不等式,023-2≤+x x 经检验x=1,2满足。
所以选D.2.设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =( ) A. - 5 B. 5C. - 4+ iD. - 4 - i【答案】A 【解析】.,5-4-1-∴,2-,2212211A z z i z z z i z 故选关于虚轴对称,与==+=∴+=3.设向量a,b 满足|a+b|a-b|=,则a ⋅b = ( ) A. 1 B. 2C. 3D. 5【答案】A 【解析】.,1,62-102∴,6|-|,10||2222A b a b a b a b a b a b a b a 故选联立方程解得,,==+=++==+4.钝角三角形ABC 的面积是12,AB=1,,则AC=( )A. 5B.C. 2D. 1【答案】B 【解析】..5,cos 2-43π∴ΔABC 4π.43π,4π∴,22sin ∴21sin 1221sin 21222ΔABC B b B ac c a b B B B B B B ac S 故选解得,使用余弦定理,符合题意,舍去。
为等腰直角三角形,不时,经计算当或=+======•••==5.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A. 0.8B. 0.75C. 0.6D. 0.45【答案】A【解析】.,8.0,75.06.0,Appp故选解得则据题有优良的概率为则随后一个空气质量也设某天空气质量优良,=•=6.如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.1727 B.59 C.1027D.13【答案】C【解析】..2710π54π34-π54π.342π944.2342π.546π96321Cvv故选积之比削掉部分的体积与原体体积,高为径为,右半部为大圆柱,半,高为小圆柱,半径加工后的零件,左半部体积,,高加工前的零件半径为==∴=•+•=∴=•=∴π7.执行右图程序框图,如果输入的x,t均为2,则输出的S= ()A. 4B. 5C. 6D. 7【答案】 D【解析】8.设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=A. 0B. 1C. 2D. 3【答案】D【解析】..3.2)0(,0)0(.11-)(),1ln(-)(Daffxaxfxaxxf故选联立解得且==′=∴+=′∴+=9.设x,y 满足约束条件70310350x y x y x y +-⎧⎪-+⎨⎪--⎩≤≤≥,则2z x y =-的最大值为( )A. 10B. 8C. 3D. 2 【答案】 B 【解析】..8,)2,5(07-013--2B z y x y x y x z 故选取得最大值处的交点与在两条直线可知目标函数三角形,经比较斜率,画出区域,可知区域为==+=+=10.设F 为抛物线C:23y x =的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,则△OAB 的面积为( ) A.334B.938 C. 6332 D. 94【答案】 D【解析】..49)(4321.6),3-2(23),32(233-4322,343222,2ΔOAB D n m S n m n m n n m m n BF m AF B A 故选,解得直角三角形知识可得,,则由抛物线的定义和,分别在第一和第四象限、设点=+••=∴=+∴=+=•=+•===11.直三棱柱ABC-A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1, 则BM 与AN 所成的角的余弦值为( )A. 110B. 25C.30D.2【答案】 C 【解析】..10305641-0θcos 2-1-,0(2-1,1-(∴).0,1,0(),0,1,1(),2,0,2(),2,2,0(,2,,111111C AN BM N M B A C C BC AC Z Y X C C A C B C 故选)。
2014年高考理科数学全国新课标(Ⅱ)试题及答案
页眉内容2014年全国普通高等学校招生理科数学卷(新课标卷Ⅱ)一、选择题:1.设集合}2,1,0{=M ,}023|{2≤+-=x x x N ,则M N ⋂=( )A. {1}B. {2}C. {0,1}D. {1,2}2.设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =( ) A. 5- B. 5C. i +-4D. i --43.设向量,满足10||=+,6||=-,则⋅ ( ) A. 1B. 2C. 3D. 54.钝角三角形ABC 的面积是12,1=AB ,2=BC ,则=AC ( )A. 5C. 2D. 15.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A. 0.8B. 0.75C. 0.6D. 0.456.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( ) A. 1727 B. 59 C. 1027 D. 137.执行右图程序框图,如果输入的x ,t 均为2,则输出的=S ( ) A. 4 B. 5 C. 6 D. 78.设曲线)1ln(+-=x ax y 在点(0,0)处的切线方程为x y 2=, 则=a ( )A. 0B. 1C. 2D. 39.设x ,y 满足约束条件70310350x y x y x y +-⎧⎪-+⎨⎪--⎩≤≤≥,则2z x y =-的最大值为( )A. 10B. 8C. 3D. 210.设F 为抛物线C :23y x =的焦点,过F 且倾斜角为030的直线交C 于A , B 两点,O 为坐标原点,则OAB ∆的面积为( )C. 6332D. 9411.直三棱柱111C B A ABC -中,090=∠BCA ,M ,N 分别是11B A ,11C A 的中点,1CC CA BC ==,则BM 与AN 所成的角的余弦值为( )A. 110B. 2512.设函数()x f x mπ=.若存在()f x 的极值点0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围是( )A. ()(),66,-∞-⋃∞B. ()(),44,-∞-⋃∞C. ()(),22,-∞-⋃∞D.()(),14,-∞-⋃∞二、填空题:13.()10x a +的展开式中,7x 的系数为15,则=a ________.(用数字填写答案)14.函数()()()sin 22sin cos f x x x ϕϕϕ=+-+的最大值为_________.15.已知偶函数()f x 在[)0,+∞单调递减,()20f =.若()10f x ->,则x 的取值范围是16.设点)1,(0x M ,若在圆O:221x y +=上存在点N ,使得045=∠OMN ,则0x 的取值范围是________.三、解答题:17.已知数列{}n a 满足1a =1,131n n a a +=+.(Ⅰ)证明{}12n a +是等比数列,并求{}n a 的通项公式;(Ⅱ)证明:1231112na a a ++<…+.18. 如图,四棱锥ABCD P -中,底面ABCD 为矩形,⊥PA 平面ABCD ,E 为PD 的中点. (Ⅰ)证明:PB ∥平面AEC ;(Ⅱ)设二面角C AE D --为060,1=PA ,3=AD ,求三棱锥ACD E -的体积.19. (本小题满分12分)某地区2007年至2013年农村居民家庭纯收入y (单位:千元)的数据如下表:(Ⅰ)求y 关于t 的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘法估计公式分别为:()()()121niii ni i t t y y b t t ∧==--=-∑∑,ˆˆay bt =-20. 设1F ,2F 分别是椭圆C : )0(12222>>=+b a by a x 的左,右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N .(Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求a ,b .21. 已知函数()f x =2x x e e x ---(Ⅰ)讨论()f x 的单调性;(Ⅱ)设()()()24g x f x bf x =-,当0x >时,()0g x >,求b 的最大值; (Ⅲ)已知1.4142 1.4143<<,估计2ln 的近似值(精确到0.001)23. 在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴 为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦.(Ⅰ)求C 的参数方程; (Ⅱ)设点D 在C 上,C 在D 处的切线与直线l :23+=x y 垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.24. 设函数()f x =1(0)x x a a a++->(Ⅰ)证明:()f x ≥2;(Ⅱ)若()35f <,求a 的取值范围.2014年普通高等学校招生全国卷(Ⅱ)统一考试一、选择题:(1)D (2)A (3)A (4)B (5)A (6)C (7)D( 8)D (9)B (10)D (11)C (12)C二、填空题:(13)12(14)1 (15)(-1,3) (16)[-1,1] 三、解答题:(17)解:(1)由131m m a a +=+得1113().22m m a a ++=+ 又113a 22+=,所以,{12m a + } 是首项为32,公比为3的等比数列。
[高考真题]2014年新课标2理科数学解析
2014年普通高等学校招生全国统一考试理科(新课标卷二Ⅱ)一.选择题 1.【答案】D 【解析】把M={0,1,2}中的数,代入不等式,023-2≤+x x 经检验x=1,2满足.所以选D. 2.【答案】A 【解析】.,5-4-1-∴,2-,2212211A z z i z z z i z 故选关于虚轴对称,与==+=∴+=Θ3.【答案】A 【解析】.,1,62-102∴,6|-|,10||2222A b a b a b a b a b a b a 故选联立方程解得,,==+=++==+Θ4.【答案】B 【解析】..5,cos 2-43π∴ΔABC 4π.43π,4π∴,22sin ∴21sin 1221sin 21222ΔABC B b B ac c a b B B B B B B ac S 故选解得,使用余弦定理,符合题意,舍去。
为等腰直角三角形,不时,经计算当或=+======•••==Θ5.【答案】 A 【解析】.,8.0,75.06.0,A p p p 故选解得则据题有优良的概率为则随后一个空气质量也设某天空气质量优良,=•=6.【答案】 C 【解析】..2710π54π34-π54π.342π944.2342π.546π96321C v v 故选积之比削掉部分的体积与原体体积,高为径为,右半部为大圆柱,半,高为小圆柱,半径加工后的零件,左半部体积,,高加工前的零件半径为==∴=•+•=∴=•=∴πΘΘ7. 【答案】 D 【解析】8.【答案】 D 【解析】..3.2)0(,0)0(.11-)(),1ln(-)(D a f f x a x f x ax x f 故选联立解得且==′=∴+=′∴+=Θ9.【答案】 B 【解析】..8,)2,5(07-013--2B z y x y x y x z 故选取得最大值处的交点与在两条直线可知目标函数三角形,经比较斜率,画出区域,可知区域为==+=+=10.【答案】 D 【解析】..49)(4321.6),3-2(23),32(233-4322,343222,2ΔOAB D n m S n m n m n n m m n BF m AF B A 故选,解得直角三角形知识可得,,则由抛物线的定义和,分别在第一和第四象限、设点=+••=∴=+∴=+=•=+•===11.【答案】 C 【解析】..10305641-0θcos 2-1-,0(2-1,1-(∴).0,1,0(),0,1,1(),2,0,2(),2,2,0(,2,,111111C AN BM N M B A C C BC AC Z Y X C C A C B C 故选)。
2014年普通高等学校招生全国统一考试(全国Ⅱ卷)数学(理)试卷及解析
【答案解析】C.
解析:毛胚的之比为:
,故选C.
7.执行右图的程序框图,如果输入的x,t均为2,则输出的S=( )
A.4 B.5 C.6D.7
【答案解析】D.
解析:第1次循环M=2,S=5,k=1
第2次循环,M=2,S=7,k=2
第3次循环k=3>2,故输出S=7
【答案解析】[-1,1]
解析:设N点的坐标为
(1)当 时
∵
∴OM,MN的斜率分别为:
∵
∴
即
取正号时,化简(*)式得:
取负号化简(*)式得:
∴
∴
故 且
(2)当 时,取 ,此时满足题设.
(3)当 时,取 ,此时也满足题设.
综上所述,
三、解答题(本大题共8小题)
17.(12分)
已知数列 满足 .
(I)证明 是等比数列,并求 的通项公式;
A.0.8B.0.75 C. 0.6 D.0.45
【答案解析】A.
解析:设第i天空气优良记着事件 ,则 ,
∴第1天空气优良,第2天空气也优良这个事件的概率为
,故选A.
6.如图,网格纸上正方形小格子的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛胚切削而得到,则切削掉部分的体积与原来毛胚体积的比值为( )
A. B. C. D.
【答案解析】 D
解析:∵
∴抛物线C的焦点的坐标为:
所以直线AB的方程为:
故
从而
∴弦长
又∵O点到直线 的距离
∴ ,故选D.
11.直三棱柱 中,∠BCA=90°,M,N分别是 , 的中点, ,则BM与AN的夹角的余弦值为( )
2014年新课标2卷理科数学高考真题及标准答案
掌门1对1教育 高考真题2014年普通高等学校招生全国统一考试 理科(新课标卷二Ⅱ)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={0,1,2},N ={}2|320x x x -+≤,则M N ⋂=( )A. {1} B . {2} C . {0,1} D. {1,2}2.设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =( )A . - 5 B. 5 C. - 4+ i D. - 4 - i3.设向量a,b 满足|a+b |10a -b |6,则a ⋅b = ( )A. 1 B. 2 C . 3 D. 54.钝角三角形AB C的面积是12,A B=1,BC 2 ,则AC=( ) A . 5 B . 5 C. 2 D. 15.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A. 0.8 B. 0.75 C. 0.6 D. 0.456.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A. 1727B. 59 C. 1027 D. 137.执行右图程序框图,如果输入的x,t均为2,则输出的S = ( )A. 4 B . 5 C. 6 D. 78.设曲线y=ax-l n(x+1)在点(0,0)处的切线方程为y=2x,则a =A. 0 B. 1 C. 2 D. 39.设x ,y 满足约束条件70310350x y x y x y +-⎧⎪-+⎨⎪--⎩≤≤≥,则2z x y =-的最大值为( )A . 10B . 8 C. 3 D. 210.设F 为抛物线C:23y x =的焦点,过F且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,则△OA B的面积为( )A .B.C. 6332D. 94 11.直三棱柱ABC-A 1B1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1, 则BM 与AN 所成的角的余弦值为( )A. 110 B. 25 C.D. 12.设函数()x f x mπ=.若存在()f x 的极值点0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围是( )A. ()(),66,-∞-⋃∞ B . ()(),44,-∞-⋃∞ C. ()(),22,-∞-⋃∞ D.()(),14,-∞-⋃∞第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生必须做答.第22题~第24题为选考题,考生根据要求做答.二.填空题13.()10x a +的展开式中,7x 的系数为15,则a =________.(用数字填写答案)14.函数()()()sin 22sin cos f x x x ϕϕϕ=+-+的最大值为_________.15.已知偶函数()f x 在[)0,+∞单调递减,()20f =.若()10f x ->,则x 的取值范围是__________.16.设点M(0x ,1),若在圆O:221x y +=上存在点N ,使得∠OMN=45°,则0x 的取值范围是________.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知数列{}n a 满足1a =1,131n n a a +=+.(Ⅰ)证明{}12n a +是等比数列,并求{}n a 的通项公式; (Ⅱ)证明:1231112n a a a ++<…+. 18. (本小题满分12分)如图,四棱锥P-ABCD 中,底面AB CD 为矩形,PA ⊥平面ABC D,E 为PD 的中点. (Ⅰ)证明:PB ∥平面A EC;(Ⅱ)设二面角D -A E-C为60°,AP =,求三棱锥E-AC D的体积.。
2014年全国高考新课标Ⅱ数学(理)试卷及答案【精校版】
2014年普通高等学校招生全国统一考试 理科(新课标卷二Ⅱ)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中, 只有一项是符合题目要求的.1.设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=( ) A. {1}B. {2}C. {0,1}D. {1,2}2.设复数1z ,2z 在复平面内的对应点关于虚轴对称,zxxk 12z i =+,则12z z =( ) A. - 5B. 5C. - 4+ iD. - 4 - i3.设向量a,b 满足|a+b 10|a-b 6,则a ⋅b = ( ) A. 1B. 2C. 3D. 54.钝角三角形ABC 的面积是12,AB=1,2 ,则AC=( )A. 5B.5 C. 2 D. 15.某地区空气质量监测资料表明,一天的空气质量为优良 的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A. 0.8B. 0.75C. 0.6D. 0.456.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( ) A. 1727 B. 59C. 1027D. 137.执行右图程序框图,如果输入的x,t 均为2,则输出的S= ( ) A. 4 B. 5 C. 6 D. 78.设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x ,则a = A. 0 B. 1 C. 2 D. 39.设x,y 满足约束条件70310350x y x y x y +-⎧⎪-+⎨⎪--⎩≤≤≥,则2z x y =-的最大值为( )A. 10B. 8C. 3D. 210.设F 为抛物线C:23y x =的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,则△OAB 的面积为( ) A. 33 B.93 C. 6332 D. 9411.直三棱柱ABC-A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1, 则BM 与AN 所成的角的余弦值为( ) A. 110 B. 25C.30 D.2 12.设函数()3x f x m π=.若存在()f x 的极值点0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围是( ) A.()(),66,-∞-⋃∞ B.()(),44,-∞-⋃∞ C.()(),22,-∞-⋃∞D.()(),14,-∞-⋃∞第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题, 每个试题考生必须做答.第22题~第24题为选考题,考生根据要求做答. 二.填空题13.()10x a +的展开式中,7x 的系数为15,则a =________.(用数字填写答案) 14.函数()()()sin 22sin cos f x x x ϕϕϕ=+-+的最大值为_________.15.已知偶函数()f x 在[)0,+∞单调递减,()20f =.若()10f x ->,则x 的取值范围是__________.16.设点M (0x ,1),若在圆O:221x y +=上存在点N ,使得zxxk ∠OMN=45°,则0x 的取值范围是________.三.解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知数列{}n a 满足1a =1,131n n a a +=+.(Ⅰ)证明{}12n a +是等比数列,并求{}n a 的通项公式;(Ⅱ)证明:1231112na a a ++<…+.18. (本小题满分12分)如图,四棱锥P-ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点. (Ⅰ)证明:PB ∥平面AEC ;(Ⅱ)设二面角D-AE-C 为60°,AP=1,3E-ACD 的体积.19. (本小题满分12分)(Ⅰ)求y 关于t 的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入. 附:回归直线的斜率和截距的最小二乘法估计公式分别为:()()()121nii i nii tty y b tt∧==--=-∑∑,ˆˆay bt =-20. (本小题满分12分)设1F ,2F 分别是椭圆C:()222210y x a b a b+=>>的左,右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N. (Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求a,b .21. (本小题满分12分) 已知函数()f x =2x x e e x ---zxxk (Ⅰ)讨论()f x 的单调性;(Ⅱ)设()()()24g x f x bf x =-,当0x >时,()0g x >,求b 的最大值; (Ⅲ)已知1.4142 1.4143<<,估计ln2的近似值(精确到0.001)请考生在第22、23、24题中任选一题做答,如果多做, 同按所做的第一题计分,做答时请写清题号.22.(本小题满分10)选修4—1:几何证明选讲如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于点B ,C ,PC=2PA ,D 为PC 的中点,AD 的延长线交O 于点 E.证明:(Ⅰ)BE=EC ;(Ⅱ)AD ⋅DE=22PB23. (本小题满分10)选修4-4:坐标系与参数方程 在直角坐标系xoy 中,以坐标原点为极点,x 轴正半轴 为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦.zxxk (Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线:32l y x =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.24. (本小题满分10)选修4-5:不等式选讲 设函数()f x =1(0)x x a a a++->(Ⅰ)证明:()f x ≥2;(Ⅱ)若()35f <,求a 的 取值范围.2014年普通高等学校招生全国统一考试理科数学试题参考答案一、 选择题(1)D (2)A (3)A (4)B (5)A (6)C(7)D (8)D (9)B (10)D (11)C (12)C二、 填空题(13)12(14)1 (15)(1,3-) (16)[]1,1-三、 解答题 (17)解:(I )由131n n a a +=+得1113()22n n a a ++=+。
2014年高考真题——理科数学(新课标Ⅱ卷)解析版
2014年普通高等学校招生全国统一考试 理科(新课标卷二Ⅱ)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=( ) A. {1}B. {2}C. {0,1}D. {1,2}2.设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =( ) A. - 5B. 5C. - 4+ iD. - 4 - i3.设向量a,b 满足|a+b|a-ba ⋅b = ( ) A. 1B. 2C. 3D. 54.钝角三角形ABC 的面积是12,AB=1,,则AC=( )A. 5B.C. 2D. 15.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A. 0.8B. 0.75C. 0.6D. 0.456.如图,格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( ) A. 1727 B. 59 C. 1027 D. 137.执行右图程序框图,如果输入的x,t 均为2,则输出的S= ( ) A. 4 B. 5 C. 6 D. 78.设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x ,则a = A. 0 B. 1 C. 2 D. 39.设x,y 满足约束条件70310350x y x y x y +-⎧⎪-+⎨⎪--⎩≤≤≥,则2z x y =-的最大值为( )A. 10B. 8C. 3D. 210.设F 为抛物线C:23y x =的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,则△OAB 的面积为( )A.B.C. 6332D. 9411.直三棱柱ABC-A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1, 则BM 与AN 所成的角的余弦值为( ) A. 110 B. 25C.D.12.设函数()x f x mπ=.若存在()f x 的极值点0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围是( ) A.()(),66,-∞-⋃∞ B.()(),44,-∞-⋃∞ C.()(),22,-∞-⋃∞D.()(),14,-∞-⋃∞第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生必须做答.第22题~第24题为选考题,考生根据要求做答. 二.填空题13.()10x a +的展开式中,7x 的系数为15,则a =________.(用数字填写答案) 14.函数()()()sin 22sin cos f x x x ϕϕϕ=+-+的最大值为_________.15.已知偶函数()f x 在[)0,+∞单调递减,()20f =.若()10f x ->,则x 的取值范围是__________.16.设点M (0x ,1),若在圆O:221x y +=上存在点N ,使得∠OMN=45°,则0x 的取值范围是________.三.解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知数列{}n a 满足1a =1,131n n a a +=+.(Ⅰ)证明{}12n a +是等比数列,并求{}n a 的通项公式;(Ⅱ)证明:1231112na a a ++<…+.18. (本小题满分12分)如图,四棱锥P-ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点. (Ⅰ)证明:PB ∥平面AEC ;(Ⅱ)设二面角D-AE-C 为60°,AP=1,E-ACD 的体积.19. (本小题满分12分)(Ⅰ)求y 关于t 的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入. 附:回归直线的斜率和截距的最小二乘法估计公式分别为:()()()121niii nii t t y y b tt∧==--=-∑∑,ˆˆay bt =-20. (本小题满分12分)设1F ,2F分别是椭圆()222210y x a b a b+=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N.(Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求a,b .21. (本小题满分12分) 已知函数()f x =2x x e e x --- (Ⅰ)讨论()f x 的单调性;(Ⅱ)设()()()24g x f x bf x =-,当0x >时,()0g x >,求b 的最大值; (Ⅲ)已知1.4142 1.4143<<,估计ln2的近似值(精确到0.001)请考生在第22、23、24题中任选一题做答,如果多做,同按所做的第一题计分,做答时请写清题号.22.(本小题满分10)选修4—1:几何证明选讲如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于点B ,C ,PC=2PA ,D 为PC 的中点,AD 的延长线交O 于点 E.证明:(Ⅰ)BE=EC ;(Ⅱ)AD ⋅DE=22PB23. (本小题满分10)选修4-4:坐标系与参数方程在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦. (Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线:2l y +垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.24. (本小题满分10)选修4-5:不等式选讲 设函数()f x =1(0)x x a a a++->(Ⅰ)证明:()f x ≥2;(Ⅱ)若()35f <,求a 的取值范围.2014年高考新课标Ⅱ数学(文)卷解析(参考版)第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题。
2014年新课标2卷高考理科数学试题及答案
2014年普通高等学校招生全国统一考试 理科(新课标卷二Ⅱ)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=( ) A 。
{1}B. {2}C. {0,1}D 。
{1,2}2。
设复数1z ,2z 在复平面内的对应点关于虚轴对称,zxxk 12z i =+,则12z z =( ) A 。
— 5 B. 5 C. — 4+ i D 。
- 4 - i3。
设向量a ,b 满足|a+b |10|a —b |6a ⋅b = ( ) A 。
1 B. 2 C 。
3 D 。
54。
钝角三角形ABC 的面积是12,2,则AC=( )A. 5 5 C. 2 D. 15.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0。
75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A. 0.8B. 0。
75C. 0。
6 D 。
0。
456。
如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A 。
1727 B. 59 C 。
1027 D. 137。
执行右图程序框图,如果输入的x ,t 均为2,则输出的S= ( ) A. 4 B. 5 C 。
6 D. 78。
设曲线y=a x —ln(x+1)在点(0,0)处的切线方程为y=2x ,则a = A. 0 B 。
1 C. 2 D 。
39。
设x,y 满足约束条件70310350x y x y x y +-⎧⎪-+⎨⎪--⎩≤≤≥,则2z x y =-的最大值为( )A. 10 B 。
8 C. 3 D. 2 10。
设F 为抛物线C :23y x =的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,则△OAB 的面积为( ) 33。
2014新课标Ⅱ高考压轴卷-数学(理)-Word版含解析
2014新课标II 高考压轴卷理科数学一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={0,1,2},B={x|x=2a ,a ∈A},则A ∩B 中元素的个数为( )2. 已知复数z 满足z •i=2﹣i ,i 为虚数单位,则z 的共轭复数为( )3. 由y=f (x )的图象向左平移个单位,再把所得图象上所有点的横坐标伸长到原来的2倍得到y=2sin 的图象,则 f (x )为( ) 2sin2sin2sin2sin4.已知函数,则的值是( )D5. 设随机变量~X N (3,1),若(4)P X p >=,,则P(2<X<4)= ( A)12p + ( B)l —p (C)l-2p (D)12p -6. 6.运行右面框图输出的S 是254,则①应为 (A) n ≤5 (B) n ≤6 (C)n ≤7 (D) n ≤87. 若曲线在点(a ,f (a ))处的切线与两条坐标轴围成的三角形的面积为18,则a=( )8.已知A 、B 是圆22:1O x y +=上的两个点,P 是AB 线段上的动点,当AOB ∆的面积最大时,则AO AP ⋅-2AP 的最大值是( )A.1-B.0C.81D.21 9.一个四面体的四个顶点在空间直角坐标系xyz O -中的坐标分别是(0,0,0),(1,2,0),(0,2,2),(3,0,1),则该四面体中以yOz 平面为投影面的正视图的面积为 A .3 B .25 C .2 D .2710. .已知函数2()cos()f n n n π=,且()(1)n a f n f n =++,则123100a a a a ++++=A . 0B .100-C .100D .1020011.设x ,y 满足约束条件,若目标函数z=ax+by (a >0,b >0)的最大值为12,则+的最小值为( )12.设双曲线﹣=1(a >0,b >0)的右焦点为F ,过点F 作与x 轴垂直的直线l 交两渐近线于A 、B 两点,且与双曲线在第一象限的交点为P ,设O 为坐标原点,若=λ+μ(λ,μ∈R ),λμ=,则该双曲线的离心率为( )D二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13.某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示.从抽样的100根棉花纤维中任意抽取一根,则其棉花纤维的长度小于20mm 的概率为 .14.已知1cos21sin cos ααα-=,1tan()3βα-=-,则tan(2)βα-的值为 .15.函数43y x x =++(3)x >-的最小值是 . 16.已知函数f(x)=x 3+x ,对任意的m ∈[-2,2],f(mx -2)+f(x)<0恒成立,则x 的取值范围为________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.17.已知函数3cos 32cos sin 2)(2-+=x x x x f ,R ∈x .(Ⅰ)求函数(3)1y f x =-+的最小正周期和单调递减区间;(Ⅱ)已知ABC ∆中的三个内角,,A B C 所对的边分别为,,a b c ,若锐角A 满足()26A f π-=7a =,sin sin B C +=,求ABC ∆的面积. 18.随机询问某大学40名不同性别的大学生在购买食物时是否读营养说明,得到如下列联表: 性别与读营养说明列联表⑴根据以上列联表进行独立性检验,能否在犯错误的概率不超过0.01的前提下认为性别与是否读营养说明之间有关系?⑵从被询问的16名不读营养说明的大学生中,随机抽取2名学生,求抽到男生人数ξ的分布列及其均值(即数学期望).(注:))()()(()(22d b c a d c b a bc ad n K ++++-=,其中d c b a n +++=为样本容量.)19.已知正四棱柱1111-ABCD A B C D 中,12,4==AB AA . (Ⅰ)求证:1BD A C ⊥;(Ⅱ)求二面角11--A A C D 的余弦值;(Ⅲ)在线段1CC 上是否存在点P ,使得平面11A CD ⊥平面PBD ,若存在,求出1CPPC 的值;若不存在,请说明理由.20.已知动圆P 与圆221:(3)81F x y ++=相切,且与圆222:(3)1F x y -+=相内切,记圆心P的轨迹为曲线C ;设Q 为曲线C 上的一个不在x 轴上的动点,O 为坐标原点,过点2F 作OQ 的平行线交曲线C 于,M N 两个不同的点. (Ⅰ)求曲线C 的方程;(Ⅱ)试探究||MN 和2||OQ 的比值能否为一个常数?若能,求出这个常数,若不能,请说明理由;(Ⅲ)记2QF M ∆的面积为1S ,2OF N ∆的面积为2S ,令12S S S =+,求S 的最大值. 21.已知0t >,函数()3x tf x x t-=+. (1)1t =时,写出()f x 的增区间;(2)记()f x 在区间[0,6]上的最大值为()g t ,求()g t 的表达式;(3)是否存在t ,使函数()y f x 在区间(0,6)内的图象上存在两点,在该两点处的切线互相垂直?若存在,求t 的取值范围;若不存在,请说明理由.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.22.选修4﹣1:几何证明选讲如图,AB 是⊙O 的直径,AC 是弦,直线CE 和⊙O 切于点C ,AD 丄CE ,垂足为D . (I ) 求证:AC 平分∠BAD ;(II ) 若AB=4AD ,求∠BAD 的大小.23.选修4﹣4:坐标系与参数方程将圆x 2+y 2=4上各点的纵坐标压缩至原来的,所得曲线记作C ;将直线3x ﹣2y ﹣8=0绕原点逆时针旋转90°所得直线记作l . (I )求直线l 与曲线C 的方程;(II )求C 上的点到直线l 的最大距离.24. 选修4﹣5:不等式选讲 设函数,f (x )=|x ﹣1|+|x ﹣2|. (I )求证f (x )≥1; (II )若f (x )=成立,求x 的取值范围.KS5U2014新课标II 高考压轴卷理科数学参考答案1. 【KS5U 答案】A.【KS5U 解析】由A={0,1,2},B={x|x=2a ,a ∈A}={0,2,4}, 所以A ∩B={0,1,2}∩{0,2,4}={0,2}. 所以A ∩B 中元素的个数为2. 故选C .2. 【KS5U 答案】A.【KS5U 解析】由z •i=2﹣i ,得,∴.故选:A .3. 【KS5U 答案】B.【KS5U 解析】由题意可得y=2sin 的图象上各个点的横坐标变为原来的,可得函数y=2sin (6x ﹣)的图象.再把函数y=2sin (6x ﹣)的图象向右平移个单位,即可得到f (x )=2sin[6(x ﹣)﹣)]=2sin (6x ﹣2π﹣)=2sin的图象,故选B .4. 【KS5U 答案】C. 【KS5U 解析】=f (log 2)=f (log 22﹣2)=f (﹣2)=3﹣2=,故选C .5. 【KS5U 答案】C.【KS5U 解析】因为(4)(2)P X P X p >=<=,所以P(2<X<4)= 1(4)(2)12P X P X p ->-<=-,选C. 6. 【KS5U 答案】C.【KS5U 解析】本程序计算的是212(12)2222212n nn S +-=+++==--,由122254n +-=,得12256n +=,解得7n =。
2014年全国卷2理科数学试题及答案
2014年普通高等学校招生全国统一考试 理科(新课标卷二Ⅱ)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1。
设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=( ) A 。
{1} B 。
{2}C. {0,1}D 。
{1,2}【答案】D 【解析】把M={0,1,2}中的数,代入不等式,023-2≤+x x 经检验x=1,2满足.所以选D.2。
设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =( ) A. - 5 B. 5C. - 4+ iD. — 4 — i【答案】B 【解析】.,5-4-1-∴,2-,2212211B z z i z z z i z 故选关于虚轴对称,与==+=∴+=3.设向量a ,b 满足|a+b |a —b,则a ⋅b = ( ) A 。
1 B 。
2C. 3D 。
5【答案】A 【解析】.,1,62-102∴,6|-|,10||2222A b a b a b a b a b a b a b a 故选联立方程解得,,==+=++==+4.钝角三角形ABC 的面积是12,AB=1,,则AC=( )A 。
5B 。
C 。
2D 。
1【答案】B 【解】..5,cos 2-43π∴ΔABC 4π.43π,4π∴,22sin ∴21sin 1221sin 21222ΔABC B b B ac c a b B B B B B B ac S 故选解得,使用余弦定理,符合题意,舍去。
为等腰直角三角形,不时,经计算当或=+======•••== 5.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0。
75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A 。
0。
8 B. 0。
75 C. 0.6 D 。
0.45【答案】 A 【解析】.,8.0,75.06.0,A p p p 故选解得则据题有优良的概率为则随后一个空气质量也设某天空气质量优良,=•=6.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A. 1727B. 59C. 1027D 。
2014年普通高等学校招生全国统一考试(全国新课标Ⅱ卷)数学试题(理科)解析版
2014年普通高等学校招生全国统一考试(四川卷)数 学(文史类)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。
第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页。
满分150分。
考试时间120分钟。
考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效。
考试结束后,将本试题卷和答题卡一并交回。
第Ⅰ卷 (选择题 共50分)注意事项:必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑。
第Ⅰ卷共10小题。
一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一个是符合题目要求的。
1、已知集合{|(1)(2)0}A x x x =+-≤,集合B 为整数集,则A B =I ( ) A 、{1,0}- B 、{0,1} C 、{2,1,0,1}-- D 、{1,0,1,2}- 1、解:A={x|(x+1)(x ﹣2)≤0}={x|﹣1≤x ≤2},又集合B 为整数集, 故A ∩B={﹣1,0,1,2}, 故选D2、在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析。
在这个问题中,5000名居民的阅读时间的全体是( ) A 、总体 B 、个体C 、样本的容量D 、从总体中抽取的一个样本 2、解:根据题意,结合总体、个体、样本、样本容量的定义可得,5000名居民的阅读时间的全体是总体,故选:A3、为了得到函数sin(1)y x =+的图象,只需把函数sin y x =的图象上所有的点( ) A 、向左平行移动1个单位长度 B 、向右平行移动1个单位长度 C 、向左平行移动π个单位长度 D 、向右平行移动π个单位长度 3、解:∵由y=sinx 到y=sin (x+1),只是横坐标由x 变为x+1,∴要得到函数y=sin (x+1)的图象,只需把函数y=sinx 的图象上所有的点向左平行移动1个单位长度.故选:A4、某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积是( )(锥体体积公式:13V Sh =,其中S 为底面面积,h 为高)A 、3B 、2 CD 、1侧视图俯视图112222114、解:由三棱锥的俯视图与侧视图知:三棱锥的一个侧面与底面垂直,高为,底面为等边三角形,边长为2, ∴三棱锥的体积V=××2××=1.故选:D .5、若0a b >>,0c d <<,则一定有( ) A 、a b d c > B 、a b d c <C 、a b c d >D 、a bc d< 5、解:不妨令a=3,b=1,c=﹣3,d=﹣1, 则,∴C 、D 不正确;,∴A 不正确,B 正确. 故选:B6、执行如图的程序框图,如果输入的,x y R ∈,那么输出的S 的最大值为( ) A 、0 B 、1 C 、2 D 、36、解:由程序框图知:算法的功能是求可行域内,目标还是S=2x+y 的最大值,画出可行域如图:当时,S=2x+y 的值最大,且最大值为2.故选:C .7、已知0b >,5log b a =,lg b c =,510d =,则下列等式一定成立的是( ) A 、d ac = B 、a cd = C 、c ad = D 、d a c =+ 7、解:由5d =10,可得,∴cd=lgb1lg 5=log 5b=a . 故选:B .8、如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75o ,30o ,此时气球的高是60m ,则河流的宽度BC 等于( )A 、240(31)m -B 、180(21)m -C 、120(31)m -D 、30(31)m +8、解:如图,由图可知,∠DAB=15°,∵tan15°=tan (45°﹣30°)===23.在Rt △ADB 中,又AD=60,∴DB=AD •tan15°=60×(23)=120﹣3 在Rt △ADB 中,∠DAC=60°,AD=60, ∴DC=AD •tan60°3∴BC=DC ﹣3120﹣3)=1203-1)(m ).30°75°60mA∴河流的宽度BC 等于120(3-1)m . 故选:C .9、设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB +的取值范围是( )A 、[5,25]B 、[10,25]C 、[10,45]D 、[25,45] 9、解:由题意可知,动直线x+my=0经过定点A (0,0),动直线mx ﹣y ﹣m+3=0即 m (x ﹣1)﹣y+3=0,经过点定点B (1,3),∵动直线x+my=0和动直线mx ﹣y ﹣m+3=0始终垂直,P 又是两条直线的交点, ∴PA ⊥PB ,∴|PA|2+|PB|2=|AB|2=10.由基本不等式可得|PA|2+|PB|2≤(|PA|+|PB|)2≤2(|PA|2+|PB|2), 即10≤(|PA|+| PB|)2≤20,可得10≤(|PA|+|PB|)2≤25, 故选:B10、已知F 为抛物线2y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB ⋅=u u u r u u u r (其中O 为坐标原点),则ABO ∆与AFO ∆面积之和的最小值是( )A 、2B 、3C 、1728D 、10 10、解:设直线AB 的方程为:x=ty+m ,点A (x 1,y 1),B (x 2,y 2),直线AB 与x 轴的交点为M ((0,m ),21·cn ·jy ·com 由⇒y 2﹣ty ﹣m=0,根据韦达定理有y 1•y 2=﹣m ,∵OA OB u u u r u u u rg=2,∴x 1•x 2+y 1•y 2=2,从而,∵点A ,B 位于x 轴的两侧,∴y 1•y 2=﹣2,故m=2. 不妨令点A 在x 轴上方,则y 1>0,又, ∴S △ABO +S △AFO ==.当且仅当,即时,取“=”号,∴△ABO 与△AFO 面积之和的最小值是3,故选B .第Ⅱ卷 (非选择题 共100分)注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所示的答题区域内作答。
2014年新课标II卷高考理科数学试卷(带详解)
2014年普通高等学校招生全国统一考试 理科(新课标卷Ⅱ)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M ={0,1,2},N ={}2|320x x x -+≤,则M ∩N =( )A.{1}B.{2}C.{0,1}D.{1,2} 【测量目标】并集的运算.【考查方式】用描述法表示两集合求两集合并集 【难易程度】容易 【参考答案】D【试题解析】集合N =[1,2],故M ∩N ={1,2}.2.设复数1z ,2z 在复平面内的对应点关于虚轴对称,1z =2+i ,则12z z =( ) A.-5 B.5 C.-4+i D.-4-i 【测量目标】复数代数的基本运算.【考查方式】给出一复数并给出另一复数与其的关系求两复数乘积. 【难易程度】容易 【参考答案】A【试题解析】由题知2z =-2+i ,所以12z z =(2+i)(-2+i)=2i -4=-53.设向量a ,b 满足|a +b |=10,|a -b |=6,则a·b =( ) A.1 B.2 C.3 D.5【测量目标】向量的基本运算【考查方式】给出限定条件求两向量乘积 【难易程度】容易 【参考答案】A【试题解析】由已知得|a +b |2=10,|a -b |2=6,两式相减,得4a ·b =4,所以a ·b =1. 4.钝角三角形ABC 的面积是12,AB =1,BC =2 ,则AC =( )A.5B.5C.2D.1 【测量目标】三角函数【考查方式】利用三角函数求三角形其中一边边长 【难易程度】容易 【参考答案】B【试题解析】根据三角形面积公式,得12BA ·BC ·sin B =12,即12×1×2×sin B =12,得sin B =22,其中C <A .若B 为锐角,则B =π4,所以AC =2122122+-⨯⨯⨯=1=AB ,易知A 为直角,此时△ABC 为直角三角形,所以B 为钝角,即B =3π4,所以AC =212212()2+-⨯⨯⨯-=5.5.某地区空气质量监测资料表明,一天的空气质量为优良学科网的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A.0.8 B.0.75 C.0.6 D.0.45ZX066(第5题图)【测量目标】随机事件的概率. 【考查方式】给出随机事件求概率 【难易程度】容易 【参考答案】A【试题解析】设“第一天空气质量为优良”为事件A ,“第二天空气质量为优良”为事件B ,则P (A )=0.75,P (AB )=0.6,由题知要求的是在事件A 发生的条件下事件B 发生的概率,根据条件率公式得P (B |A )=()()p AB p A =0.60.75=0.8. 6.如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.13【测量目标】三视图【考查方式】给出三视图计算其几何图形的体积之比 【难易程度】容易 【参考答案】C【试题解析】该零件是一个由两个圆柱组成的组合体,其体积为π×23×2+π×22×4=34π(cm 3),原毛坯的体积为π×23×6=54π(cm 3),切削掉部分的体积为54π-34π=20π(cm 3),故所求的比值为20π54π=1027. 7.执行右图程序框图,如果输入的x ,t 均为2,则输出的S= ( ) A. 4 B. 5 C. 6 D. 7ZX067(第7题图)【测量目标】程序框图【考查方式】运行程序框图的结论 【难易程度】容易 【参考答案】D【试题解析】逐次计算,可得M =2,S =5,k =2;M =2,S =7,k =3,此时输出S =7. 8.设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( ) A.0 B.1 C. 2 D. 3 【测量目标】导数的意义【考查方式】给原函数式并给出在某点的切线方程求原式上的未知量. 【难易程度】中等 【参考答案】D【试题解析】y '=a -11x +,根据已知得,当x =0时,y '=2,代入解得a =3. 9.设x ,y 满足约束条件70310350x y x y x y +-⎧⎪-+⎨⎪--⎩≤≤≥,则2z x y =-的最大值为( )A.10B.8C.3D.2 【测量目标】线性规划【考查方式】做出不等式的平面区域,求目标函数的最大值 【难易程度】容易 【参考答案】B【试题解析】已知不等式组表示的平面区域如图中的阴影部分所示,根据目标函数的几何意义可知,目标函数在点A (5,2)处取得最大值,故目标函数的最大值为2×5-2=8.ZX73(第9题图)10.设F 为抛物线C :23y x =的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( ) A.334B. 938 C. 6332 D. 94【测量目标】抛物线的基本性质【考查方式】给出抛物线的标注方程并给出约束条件求锁定区域三角形的面积 【难易程度】中等 【参考答案】D【试题解析】抛物线的焦点为F 3,04⎛⎫⎪⎝⎭,则过点F 且倾斜角为30°的直线方程为y =3334x ⎛⎫- ⎪⎝⎭,即x =3y +34,代入抛物线方程得2y -33y -94=0.设A ()11,x y ,B ()22,x y ,则12y y +=33,1294y y =-,则121||||2OAB S OF y y =-△21399(33)4().2444=⨯⨯-⨯-=11.直三棱柱ABC -111A B C 1中,∠BCA =90°,M ,N 分别是11A B ,11AC 的中点,BC =CA =1CC ,则BM与AN 所成的角的余弦值为( )A.110B.25C.3010D.22【测量目标】余弦定理、空间几何体的相关性质 【考查方式】给出约束条件求异面直线的余弦值 【难易程度】中等 【参考答案】C【试题解析】如图,E 为BC 的中点.由于M ,N 分别是11A B ,11AC 的中点,故MN ∥11B C 且MN =1112B C ,故MN ∥BE ,所以四边形MNEB 为平行四边形,所以EN ∥BM ,所以直线AN ,NE 所成的角即为直线BM ,AN 所成的角.设BC =1,则1B M =1112A B =22,所以MB =112+=62=NE ,AN =AE =52,在△ANE 中,根据余弦定理得cos ∠ANE =655304441065222+-=⨯⨯.ZX74(第11题图)12.设函数()π3sin x f x m=.若存在()f x 的极值点0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围是( )A. ()(),66,-∞-+∞B. ()(),44,-∞-+∞C. ()(),22,-∞-+∞D.()(),14,-∞-+∞【测量目标】函数的基本计算和极值的性质的应用.【考查方式】给出解析式并给予约束条件求未知量的取值范围. 【难易程度】中等 【参考答案】C【试题解析】函数f (x )的极值点满足πx m =π2+k π,即x =m 12k ⎛⎫+ ⎪⎝⎭,k ∈Z ,且极值为3±,问题等价于存在0k 使之满足不等式22201()32m k m ++<.因为212k ⎛⎫+ ⎪⎝⎭的最小值为14,所以只要22134m m +<成立即可,即24m >,解得m >2或m <-2,故m 的取值范围是(-∞,-2)∪(2,+∞). 第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,学科网每个试题考生必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题13.()10x a +的展开式中,7x 的系数为15,则a =________.(用数字填写答案) 【测量目标】二项式定理【考查方式】给出一解析式求其展开式某项的系数 【难易程度】容易 【参考答案】12【试题解析】展开式中7x 的系数为3310C 15,a =即318a =,解得12a =。
2014年全国卷2理科数学试题及答案
2014年普通高等学校招生全国统一考试 理科(新课标卷二Ⅱ)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=( ) A. {1} B 。
{2}C 。
{0,1}D. {1,2}【答案】D 【解析】把M={0,1,2}中的数,代入不等式,023-2≤+x x 经检验x=1,2满足.所以选D 。
2。
设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =( ) A 。
- 5 B 。
5C. — 4+ iD. - 4 — i【答案】B 【解析】.,5-4-1-∴,2-,2212211B z z i z z z i z 故选关于虚轴对称,与==+=∴+=3。
设向量a,b 满足|a+b|a —b则a ⋅b = ( ) A. 1 B 。
2C. 3D. 5【答案】A 【解析】.,1,62-102∴,6|-|,10||2222A b a b a b a b a b a b a b a 故选联立方程解得,,==+=++==+4.钝角三角形ABC 的面积是12,AB=1,,则AC=( )A 。
5B.C. 2 D 。
1【答案】B 【解】..5,cos 2-43π∴ΔABC 4π.43π,4π∴,22sin ∴21sin 1221sin 21222ΔABC B b B ac c a b B B B B B B ac S 故选解得,使用余弦定理,符合题意,舍去。
为等腰直角三角形,不时,经计算当或=+======•••==5。
某地区空气质量监测资料表明,一天的空气质量为优良的概率是0。
75,连续两为优良的概率是0。
6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A 。
0。
8B 。
0.75 C. 0.6 D. 0.45【答案】 A 【解析】.,8.0,75.06.0,A p p p 故选解得则据题有优良的概率为则随后一个空气质量也设某天空气质量优良,=•=6.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年新课标II 高考理科数学压轴卷含解析 (贵州 甘肃 青海 西藏 黑龙江 吉林 宁夏 内蒙古 新疆 云南)理科数学一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={0,1,2},B={x|x=2a ,a ∈A},则A ∩B 中元素的个数为( )2. 已知复数z 满足z •i=2﹣i ,i 为虚数单位,则z 的共轭复数为( )3. 由y=f (x )的图象向左平移个单位,再把所得图象上所有点的横坐标伸长到原来的2倍得到y=2sin 的图象,则 f (x )为( ) 2sin2sin2sin2sin4.已知函数,则的值是( )D5. 设随机变量~X N (3,1),若(4)P X p >=,,则P(2<X<4)= ( A)12p + ( B)l —p (C)l-2p (D)12p -6. 6.运行右面框图输出的S 是254,则①应为 (A) n ≤5 (B) n ≤6 (C)n ≤7 (D) n ≤87. 若曲线在点(a ,f (a ))处的切线与两条坐标轴围成的三角形的面积为18,则a=( )8.已知A 、B 是圆22:1O x y +=上的两个点,P 是AB 线段上的动点,当AOB ∆的面积最大时,则AO AP ⋅-2AP 的最大值是( )A.1-B.0C.81D.21 9.一个四面体的四个顶点在空间直角坐标系xyz O -中的坐标分别是(0,0,0),(1,2,0),(0,2,2),(3,0,1),则该四面体中以yOz 平面为投影面的正视图的面积为 A .3 B .25 C .2 D .2710. .已知函数2()cos()f n n n π=,且()(1)n a f n f n =++,则123100a a a a ++++=A . 0B .100-C .100D .1020011.设x ,y 满足约束条件,若目标函数z=ax+by (a >0,b >0)的最大值为12,则+的最小值为( )12.设双曲线﹣=1(a >0,b >0)的右焦点为F ,过点F 作与x 轴垂直的直线l 交两渐近线于A 、B 两点,且与双曲线在第一象限的交点为P ,设O 为坐标原点,若=λ+μ(λ,μ∈R ),λμ=,则该双曲线的离心率为( )D二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13.某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示.从抽样的100根棉花纤维中任意抽取一根,则其棉花纤维的长度小于20mm 的概率为 .14.已知1cos21sin cos ααα-=,1tan()3βα-=-,则tan(2)βα-的值为 .15.函数43y x x =++(3)x >-的最小值是 . 16.已知函数f(x)=x 3+x ,对任意的m ∈[-2,2],f(mx -2)+f(x)<0恒成立,则x 的取值范围为________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.17.已知函数3cos 32cos sin 2)(2-+=x x x x f ,R ∈x . (Ⅰ)求函数(3)1y f x =-+的最小正周期和单调递减区间;(Ⅱ)已知ABC ∆中的三个内角,,A B C 所对的边分别为,,a b c ,若锐角A 满足()26A f π-=7a =,sin sin 14B C +=,求ABC ∆的面积. 18.随机询问某大学40名不同性别的大学生在购买食物时是否读营养说明,得到如下列联表: 性别与读营养说明列联表⑴根据以上列联表进行独立性检验,能否在犯错误的概率不超过0.01的前提下认为性别与是否读营养说明之间有关系?⑵从被询问的16名不读营养说明的大学生中,随机抽取2名学生,求抽到男生人数ξ的分布列及其均值(即数学期望).(注:))()()(()(22d b c a d c b a bc ad n K ++++-=,其中d c b a n +++=为样本容量.)19.已知正四棱柱1111-ABCD A BC D 中,12,4==AB AA . (Ⅰ)求证:1BD AC ⊥;(Ⅱ)求二面角11--A AC D 的余弦值;(Ⅲ)在线段1CC 上是否存在点P ,使得平面11ACD ⊥平面PBD ,若存在,求出1CPPC 的值;若不存在,请说明理由.20.已知动圆P 与圆221:(3)81F x y ++=相切,且与圆222:(3)1F x y -+=相内切,记圆心P 的轨迹为曲线C ;设Q 为曲线C 上的一个不在x 轴上的动点,O 为坐标原点,过点2F 作OQ 的平行线交曲线C 于,M N 两个不同的点. (Ⅰ)求曲线C 的方程;(Ⅱ)试探究||MN 和2||OQ 的比值能否为一个常数?若能,求出这个常数,若不能,请说明理由;(Ⅲ)记2QF M ∆的面积为1S ,2OF N ∆的面积为2S ,令12S S S =+,求S 的最大值. 21.已知0t >,函数()3x tf x x t-=+. (1)1t =时,写出()f x 的增区间;(2)记()f x 在区间[0,6]上的最大值为()g t ,求()g t 的表达式;(3)是否存在t ,使函数()y f x 在区间(0,6)内的图象上存在两点,在该两点处的切线互相垂直?若存在,求t 的取值范围;若不存在,请说明理由.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.22.选修4﹣1:几何证明选讲 如图,AB 是⊙O 的直径,AC 是弦,直线CE 和⊙O 切于点C ,AD 丄CE ,垂足为D . (I ) 求证:AC 平分∠BAD ; (II ) 若AB=4AD ,求∠BAD 的大小.23.选修4﹣4:坐标系与参数方程将圆x 2+y 2=4上各点的纵坐标压缩至原来的,所得曲线记作C ;将直线3x ﹣2y ﹣8=0绕原点逆时针旋转90°所得直线记作l . (I )求直线l 与曲线C 的方程;(II )求C 上的点到直线l 的最大距离.24. 选修4﹣5:不等式选讲 设函数,f (x )=|x ﹣1|+|x ﹣2|. (I )求证f (x )≥1; (II )若f (x )=成立,求x 的取值范围.KS5U2014新课标II 高考压轴卷理科数学参考答案1. 【KS5U 答案】A.【KS5U 解析】由A={0,1,2},B={x|x=2a ,a ∈A}={0,2,4}, 所以A ∩B={0,1,2}∩{0,2,4}={0,2}. 所以A ∩B 中元素的个数为2. 故选C .2. 【KS5U 答案】A.【KS5U 解析】由z •i=2﹣i ,得,∴.故选:A .3. 【KS5U 答案】B.【KS5U 解析】由题意可得y=2sin 的图象上各个点的横坐标变为原来的,可得函数y=2sin (6x ﹣)的图象.再把函数y=2sin (6x ﹣)的图象向右平移个单位,即可得到f (x )=2sin[6(x ﹣)﹣)]=2sin (6x ﹣2π﹣)=2sin的图象,故选B .4. 【KS5U 答案】C. 【KS5U 解析】=f (log 2)=f (log 22﹣2)=f (﹣2)=3﹣2=,故选C .5. 【KS5U 答案】C.【KS5U 解析】因为(4)(2)P X P X p >=<=,所以P(2<X<4)= 1(4)(2)12P X P X p ->-<=-,选C. 6. 【KS5U 答案】C.【KS5U 解析】本程序计算的是212(12)2222212n nn S +-=+++==--,由122254n +-=,得12256n +=,解得7n =。
此时18n +=,不满足条件,输出,所以①应为7n ≤,选C. 7. 【KS5U 答案】A. 【KS5U 解析】∵,(x >0),∴f'(x )=,∴在点(a ,f (a ))处的切线斜率k=f'(a )=(a >0).且f (a )=,∴切线方程为y ﹣=(x ﹣a ),令x=0,则y=,令y=0,则x=3a ,即切线与坐标轴的交点坐标为(0,),(3a ,0),∴三角形的面积为,即,∴a=64. 故选:A . 8. 【KS5U 答案】C 【KS5U 解析】9. 【KS5U 答案】A【KS5U 解析】设O (0,0,0),A (0,2,0),B (0,2,2),C (0,0,1),易知该四面体中以yOz 平面为投影面的正视图为直角梯形OABC,其中OA=1,AB=2,OA=2,所以S=3. 10. 【KS5U 答案】B【KS5U 解析】因为2()cos()f n n n π=,所以123100a a a a ++++=[(1)(2)(100)][(2)(101)]f f f f f ++++++(1)(2)(100)f f f +++=222222123499100-+-+--+222222(21)(43)(10099)=-+-+-50(3199)3719950502+=+++==,(2)(101)f f ++=22222223499100101-+--+-222222=2345+100101-+-+-()()()50(5201)5920151502--=----==-,所以123100a a a a ++++=[(1)(2)(100)][(2)(101)]f f f f f ++++++51505050100=-+=-,选B.11. 【KS5U 答案】A.【KS5U 解析】作出不等式组表示的平面区域,得到如图的四边形OABC 及其内部,其中A(2,0),B(4,6),C(0,2),O为坐标原点设z=F(x,y)=ax+by(a>0,b>0),将直线l:z=ax+by进行平移,观察y轴上的截距变化,可得当l经过点B时,目标函数z达到最大值∴z最大值=F(4,6)=12,即4a+6b=12.因此,+=(+)×(4a+6b)=2+(),∵a>0,b>0,可得≥=12,∴当且仅当即2a=3b=3时,的最小值为12,相应地,+=2+()有最小值为4.故选:A12. 【KS5U答案】C.【KS5U解析】双曲线的渐近线为:y=±x,设焦点F(c,0),则A(c,),B(c,﹣),P(c,),∵,∴(c,)=((λ+μ)c,(λ﹣μ)),∴λ+μ=1,λ﹣μ=,解得λ=,μ=,又由λμ=得=,解得=,∴e==故选C.13. 【KS5U答案】【KS5U解析】根据题意,棉花纤维的长度小于20mm的有三组,[5,10)这一组的频率为5×0.01=0.05,有100×0.05=5根棉花纤维在这一组,[10,15)这一组的频率为5×0.01=0.05,有100×0.05=5根棉花纤维在这一组, [15,20)这一组的频率为5×0.04=0.2,有100×0.2=20根棉花纤维在这一组, 则长度小于20mm 的有5+5+20=30根,则从抽样的100根棉花纤维中任意抽取一根,其长度小于20mm 的概率为=;故答案为.14. 【KS5U 答案】.1-【KS5U 解析】由1cos21sin cos ααα-=得221(12sin )2sin 2tan 1sin cos sin cos ααααααα--====,所以1tan 2α=。